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Abstract. In this work, we propose a new upwind compact scheme with
appropriately designed new boundary closures. The scheme is obtained
by minimizing weighted dispersion error and is asymptotically stable. As
the formulation leads to an implicit tridiagonal system for approximat-
ing spatial derivative it is computationally efficient for long time simula-
tion. The scheme thus derived is tested in conjunction with explicit and
implicit time advancing strategies. Verification and validation studies
help establish the newly developed method.
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1 Introduction

Wave propagation problems often require solutions that are accurate in the far-
field and for longer periods. In such situations, it is imperative to simulate flows
resolving a wide range of spatial and temporal scales. For example, the chal-
lenging areas of direct numerical simulation (DNS) and large eddy simulation
(LES) of turbulence, aeroacoustics, and fluid-structure interactions (FSI) could
be cited. The severe computational requirements of such processes might be mit-
igated by adopting a highly accurate dispersion error-free numerical method. In
this context, compact schemes offer an attractive choice because of their spectral
like resolution [1]. These schemes offer higher order approximations to differen-
tial operators using compact stencils and implicitly relate various function val-
ues and their derivatives at discrete nodes. Compact discretizations are known
to carry higher spectral resolution compared to the explicit methods. Although
implicit they often lead to a diagonally dominant banded system. Indeed com-
pact schemes leading to the tridiagonal system are most favoured because of
their obvious computational advantages. Although compact schemes employ a
stencil with fewer grid points, their implicit nature can involve a large number
of points in the domain thereby making such schemes attractive.

Traditionally compact schemes are of central type [1,2]. As such these
schemes carry no dissipation error but do carry significant dispersion error [3].
Central compact schemes applied to problems with periodic boundary conditions
are indeed efficient. However, for practical problems, periodic boundary condi-
tions are often absent and one-sided approximations are required for boundary
c© Springer Nature Singapore Pte Ltd. 2021
A. Awasthi et al. (Eds.): CSMCS 2020, CCIS 1345, pp. 134–145, 2021.
https://doi.org/10.1007/978-981-16-4772-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4772-7_10&domain=pdf
http://orcid.org/0000-0001-6218-8422
https://doi.org/10.1007/978-981-16-4772-7_10


A New (3, 3) Low Dispersion Upwind Compact Scheme 135

points. This forced upwinding near boundaries render instability to the entire
discretization process [4]. Thus many a time convection dominated flow requires
extra filtering or added numerical dissipation [3]. On the other hand, upwind
biased compact schemes are seen to be robust and are used for the Navier-
Stokes equation with great success [3–6]. The upwind biased nature of the com-
pact scheme invariably introduces numerical dissipation and is found enough to
control aliasing error [3]. Here it is important to remember that good quality
numerical solutions schemes should not only resolve all scales present in the
flow but also adequately capture the physical propagation speed of the individ-
ually resolved scales. Failure might lead to an extreme form of dispersion error
often seen as unphysical q-waves. In this context importance of dispersion rela-
tion preservation (DRP) in conjunction with high accuracy approximations for
acoustic problems are well documented [7].

In the last two decades development of upwind compact schemes to simu-
late fluid flow problems has seen significant attention. Among them, the works
of Zhong [3], Sengupta et al. [4], and Bhumkar et al. [6] deserve special men-
tion. The higher order compact finite-difference schemes developed by Zhong [3]
were found to be stable and were less dissipative than a straightforward upwind
scheme developed using an upwind-biased grid stencil. But in this work, the
author did not attempt to optimize the scheme developed for interior as well as
boundary closures. Sengupta et al. [4] analyzed various upwind compact schemes
for spatial discretization and highlighted the importance of boundary closure for
the overall stability of the scheme. The authors further suggested special bound-
ary treatment to avoid the stability shortcomings of the schemes. Bhumkar et
al. [6] stressed the importance of dispersion relation preserving nature of upwind
compact schemes for good quality numerical simulation. They optimally reduced
dispersion error and worked with varied stencils of lengths three to thirteen. But
the authors dealt with wavenumber range [0, 7π/8] instead of requisite range
[0, π]. Further, the work made little effort to derive stable and compatible bound-
ary closures.

Issue of stability of various inner and boundary schemes was deliberated
by Gustafsson, Kreiss, and Sundström [8]. The technique referred to as G-K-S
stability theory provides conditions that schemes must satisfy to ensure stability.
But its application to fully discrete higher order schemes with multistage time
integration is highly involved [3,9]. On the other hand, application to a semi-
discrete hyperbolic system is easier. Unfortunately, a disturbing feature of this
stability definition is that the solution need not remain bounded for all time,
even though the actual solution remains bounded. The definition only ensures
that the error remains uniformly bounded by an exponential amount for all time
[9,10]. Thus simulation resulting from such a scheme might lead to unstable
modes in the numerical solution to dominate after a sufficiently long time and
was amply demonstrated by Carpenter et al. [9]. Carpenter et al. [9] showed
that the asymptotic stability of the upwind schemes with numerical boundary
closures is necessary for the stability of long time numerical integration. This
procedure requires that the eigenvalues of the spatial discretization matrices
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contain no positive real parts. Numerical computations often reveal that the
matrices for compact upwind schemes with boundary conditions carry a full set
of eigenvalues thereby elevating any further need of eigenvalue analysis.

In this work, we develop a new upwind compact scheme that employs a
stencil of size three and is third order accurate. The scheme is termed (3, 3) as it
discretizes spatial derivative at a nodal point using functional value at three grid
points and its gradients also at those three points. The scheme thus developed is
supplemented by newly developed boundary closures which render the scheme
globally third order accurate. As our main motivation is to arrive at a scheme
efficient for long time simulation in situations involving convection and diffusion
we carry out asymptotically stability analysis of the scheme. Finally, numerical
investigation help establish the efficiency of the newly proposed algorithm. All
computations are done using in-house C-codes run on a system supported by
Intel Core i3 processor with 4 GB RAM.

2 Upwind Compact Spatial Discretization

The model equation often used in deriving the upwind schemes is the linear wave
equation

∂u

∂t
+ c

∂u

∂x
= 0, a ≤ x ≤ b, t > 0, c > 0. (1)

This equation is complemented with the Dirichlet boundary condition

u(a, t) = g(t), (2)

and initial condition

u(x, 0) = f(x). (3)

Traditionally first order spatial derivative in Eq. (1) at an interior grid point say
jth node with uniform grid spacing h can compactly be approximated as

M∑

l=−M

blu
′
j+l =

1
h

N∑

l=−N

aluj+l, (4)

where u′
j is the numerical approximation of (∂u/∂x)j . Compact schemes are

known to attain higher spectral resolution on a coarser mesh. The scheme here
uses a total of 2M + 1 and 2N + 1 grid points on left and right respectively
leading to a banded system of equations with bandwidth 2M + 1. In this study,
we are interested to estimate gradients using only the adjacent grid points. Such
a choice is inherently advantageous as it leads to a tridiagonal system and is
computationally efficient. Thus in our case M = 1 = N leading to (3, 3) system.
The system is given by the Eq. (4) and is often expressed in linear algebraic
form

M1u
′ =

1
h
M2u (5)
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where u = (u0, u1, ..., un)T . We strive to evaluate the coefficients al and bl of
the upwind schemes in such a manner that the order of the schemes is one less
than the maximum achievable order of the central stencil. Thus opting to go
with third order accuracy and hence we are left with a free parameter called �.
This free parameter is set as the coefficient of the leading truncation term i.e.

b−1u
′
j−1 + u′

j + b1u
′
j+1 =

1
h

(
a−1uj−1 + a0uj + a1uj+1

) − �

4!
h3

(
∂4u

∂x4

)

j

+ ...,

j = 1, 2, ..., n − 1. (6)

Equation (6) contains five unknowns, namely b−1, b1, a−1, a0, a1. For unique-
ness b0 is set to unity. One needs five equations to obtain these coefficients. By
using the Taylor series expansion and equating the coefficients upto third order
on both sides of Eq. (6) we get,

a−1 + a0 + a1 = 0, (7)
−a−1 + a1 − b−1 − b1 = 1, (8)
a−1 + a1 + 2b−1 − 2b1 = 0, (9)

−a−1 + a1 − 3b−1 − 3b1 = 0, (10)
a−1 + a1 + 4b−1 − 4b1 = �. (11)

In terms of � the other coefficients are given by

b±1 = ∓�

4
+

1
4
, a±1 = −�

2
± 3

4
, a0 = �. (12)

We intend to choose � in such a manner that the associated upwind scheme
carries minimum dispersion error. Subsequent to the work of Haras and Ta’asan
[11] we start by taking uj = eIω(jh) in the Eq. (4) and obtain

Iωeqh(b−1e
−Iωh + 1 + b1e

Iωh) = (a−1e
−Iωh + a0 + a1e

Iωh) (13)

where ω and ωeq are the exact and approximate wavenumber respectively. In
general, ωeq is a complex quantity and its difference from ω could be minimized
over wavenumber domain [−π, π]. Subsequently, the expression for the real part
of ωeq denoted here as Re[ωeqh] is used to define error function E as

E =
∫ π

−π

(ωh − Re[ωeqh])2|u0(ωh)|2d(ωh). (14)

Here u0 is the weight function and we are inclined to work with u0(ωh) = e−ω2h2

as such a choice entails a higher emphasis on smaller values of ωh. Thus the error
function in terms of � is

E =
∫ π

−π

[
2� sin x(� − � cos x) + 3 sin x(2 + cos x)

�2 sin2 x + (2 + cos x)2
− x

]2

e−2x2
dx. (15)
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We minimize the dispersion error function E with respect to � and obtain
� = 0.8300949493 as the point of minima. The corresponding value of the other
coefficients is given in Table 1 leading to compact upwind discretization for inte-
rior nodes. On the other hand choice, � = 0 leads to central fourth order Padé
scheme.

Table 1. Third order low dispersion upwind compact scheme.

Parameter j = 0 1 ≤ j < n j = n

b−1 – 0.4575237373 2.1351328557

b1 2.1351328557 0.0424762627 –

a−3 0.0225221426

a−2 −0.6351328557

a−1 – −1.1650474747 −1.9324335721

a0 −2.5450442852 0.8300949493 2.5450442852

a1 1.9324335721 0.3349525254 –

a2 0.6351328557 – –

a3 −0.0225221426 – –

2.1 Boundary Formulation

Considering that there are n + 1 grid points j = 0, 1, ..., n laid out in one direc-
tion, it is imperative to develop independent and adequate boundary closures
for the two extreme nodes. Our scheme being (3, 3) the discretization developed
earlier could be implemented at all other nodes. We present below the proce-
dure adopted to obtain closure at j = 0. This approximation is proposed to be
obtained from a relation of the form

u′
0 + b1u

′
1 =

1
h

(a0u0 + a1u1 + a2u2 + a3u3) (16)

to preserve the overall tridiagonal nature and third order truncation error of the
system. Introducing additional free parameter and writing the modified differen-
tial equation as discussed earlier for the interior nodes the constraints satisfying
third order accuracy here are

a0 + a1 + a2 + a3 = 0, (17)
a1 + 2a2 + 3a3 − b1 = 1, (18)

a1 + 4a2 + 9a3 − 2b1 = 0, (19)
a1 + 8a2 + 27a3 − 3b1 = 0, (20)

a1 + 16a2 + 81a3 − 4b1 = �. (21)

In terms of �, the other coefficients are given by

b1 = 3 − �

2
, a0 = −17

6
+

�

6
, a1 =

3
2

+
�

4
, a2 =

3
2

− �

2
, a3 = −1

6
+

�

12
.

(22)
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Subsequently the error function E in terms of � for the scheme in Eq. (16) is

E =

∫ π

−π

[
(8�2 − 94� + 348) sinx + (24− 4� − �2) sin 2x + (2� − 4) sin 3x

6(6− �)2 + 24(6− �) cosx + 24
− x

]2

e−2x2
dx.

(23)

As earlier minimization of the error function with respect to � leads to � =
1.7297342886. The corresponding value of the other coefficients is given in
Table 1. Note that the closure at j = n is the mirror image of the above proce-
dure and hence its derivation is avoided. Nevertheless, the coefficients could be
found in Table 1.

2.2 Stability

As compact finite difference schemes require additional approximations at grid
points near the boundaries of the computational domain its analysis should
invariably include boundary closures. In this work, we carry out asymptotic sta-
bility analysis of the upwind scheme in conjunction with Dirichlet boundary
closures by computing the eigenvalues of the matrices obtained by spatial dis-
cretization of the wave equation. As we discuss the upwind scheme Neumann
boundary condition is not deliberated on [3,4,9]. In periodic domain the scheme
is automatically stable. The asymptotic stability, which requires that the eigen-
values of the spatial discretization matrices contain no positive real parts, is
necessary for the stability of long time integration of the equation. The newly
developed low dispersion unwind compact scheme having global third order accu-
racy can be expressed in compact form as

M1u
′ =

1
h
M2u

where M1 and M2 are (n + 1) × (n + 1) matrices with M1 being tridiagonal. In
these two matrices, the first and the last row correspond to the first and the last
column of Table 1 whereas the other elements directly correspond to the middle
column of the same table. Using the boundary condition the semi-discrete form
of the prototype PDE given by Eq. (1) can be expressed as

∂ũ

∂t
+

c

h
C̃ũ +

c

h
M̃1

−1
Bg(t) = 0 (24)

where ũ = (u1, u2, ..., un)T . C̃ = M̃1
−1

M̃2 with M̃1 and M̃2 reduced from M1

and M2 on account of boundary condition Eq. (2) being applied. For complete-
ness we report below the matrices M̃1 and M̃2 as also the vector B.

M̃1 =

⎛

⎜⎜⎜⎜⎜⎝

1
b−1

− b
(0)
1

b1
b−1

b−1 1 b1
. . .

b−1 1 b1

b
(n)
−1 1

⎞

⎟⎟⎟⎟⎟⎠

n×n

,
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M̃2 =

⎛

⎜⎜⎜⎜⎜⎝

a0
b−1

− a
(0)
1

a1
b−1

− a
(0)
2 −a

(0)
3

a−1 a0 a1

. . .
a−1 a0 a1

a
(n)
−3 a

(n)
−2 a

(n)
−1 a

(n)
0

⎞

⎟⎟⎟⎟⎟⎠

n×n

,

B =

⎛

⎜⎜⎜⎜⎝

a−1
b−1

− a
(0)
0

0
.
0
0

⎞

⎟⎟⎟⎟⎠

n

.

In the above expressions superscript is used to denote the corresponding
boundary nodes related to the first and last column in Table 1. The first row
of the vector B documents dependence of the discretization on the boundary
condition. The asymptotic stability condition for the semi-discrete equations
requires that all the eigenvalues of the matrix −C̃ contain no positive real parts.
The same computed on an 81×81 grid is depicted in Fig. 1(a). It is heartening to
see that all the eigenvalues of the matrix have negative real parts rendering our
newly developed scheme asymptotically stable. Figure 1(b) shows the eigenvalue
spectrum for the fourth order Padé scheme (� = 0) with fourth order boundary
closure. This figure presented for the sake of comparison clearly shows that
there are eigenvalues with positive real part rendering the scheme asymptotically
unstable.

3 Numerical Examples

3.1 Problem 1: Propagation of Sinusoidal Wave

Following Carpenter et al. [9] we consider the propagation of sinusoidal wave
u(x, t) = sin 2π(x − t) in the bounded domain [−1, 1]. The boundary and initial
conditions are

u(−1, t) = sin 2π(−1 − t), t > 0 (25)
and u(x, 0) = sin 2πx, −1 ≤ x ≤ 1 (26)

respectively. We have used 41 grid points for computing the solution up to time
t = 60. For this problem, time is advanced with the fourth order four stage
explicit R-K scheme. For spatial discretization apart from newly developed (3,
3) scheme we also use Padé approximation discussed earlier. Simulations are run
for CFL numbers (Nc) 0.25 and 0.5. In Figs. 2(a) and (b) we have plotted time
evolution of L2-norm error for new (3, 3) scheme. From these figures, we see that
error quickly settles down to a periodic profile with a small amplitude implying
asymptotic stability of the scheme. In Figs. 3(a) and (b) we have plotted L2-
norm error for Nc = 0.25 and 0.5 computed using fourth order central Padé
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Fig. 1. Eigen value spectra (a) New (3, 3) scheme for � = 0.8300949493, (b) Fourth
order central Padé scheme for � = 0.

scheme with fourth order boundary closure. Although theoretically, the schemes
carry higher order of accuracy an unbounded error growth is registered for the
scheme documenting asymptotically unstable nature of the scheme. This test
case establishes the efficiency of the strategy advocated here. A comparison of
the CPU time and error reported at t = 60 is presented in Table 2. Padé scheme
is found to consume CPU time almost four times that of newly developed (3, 3)
scheme. This may be attributed to its higher error leading to more iterations for
convergence.

Table 2. Error and CPU time at t = 60.

Scheme New (3, 3) Padé

Error CPU Time (s) Error CPU Time (s)

Nc = 0.25 5.3e−3 6.8 3.4e−1 23.4

Nc = 0.50 4.5e−3 3.8 1.0e−2 12.7

3.2 Problem 2: Convection of Wave Combination

Next we consider convection of combination of two waves of wavenumbers 2πk1
and 2πk2 [12]. The initial condition is given by

u(x, 0) = e− (x−xm)2

b2 × [cos(2πk1(x − xm)) + cos(2πk2(x − xm))] (27)

where xm = 90, b = 20, k1 = 0.125 and k2 = 0.0625. Solution is computed up to
t = 300 for Nc = 0.5 and 1.0. In this problem, time discretization is carried
out using the implicit two stage fourth order Gauss-Legendre scheme (IRK24)
[13]. This serves as a test case for the newly developed scheme in conjunction
with implicit time discretization. Numerical solutions are shown in Fig. 4. L2-
norm error between numerical and exact solutions at t = 300 is found to be
approximately 4.66 × 10−2 for both the cases. CPU time for this problem with
Nc values 0.5 and 1.0 is 1.2 s and 0.6 s respectively.
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Fig. 2. Time evolution of L2-norm error for new (3, 3) scheme at (a) Nc = 0.25, (b)
Nc = 0.5.

Fig. 3. Time evolution of L2-norm error for central Padé scheme at (a) Nc = 0.25, (b)
Nc = 0.5.

Fig. 4. Numerical solution at t = 300 for (a) Nc = 0.5, (b) Nc = 1.0.
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3.3 Problem 3: Convection-Diffusion of Gaussian Pulse

Finally, we study unsteady two-dimensional convection-diffusion equation with
zero source term given by

a
∂ψ

∂t
− ∂2ψ

∂x2
− ∂2ψ

∂y2
+ c

∂ψ

∂x
+ d

∂ψ

∂y
= 0. (28)

We consider a Gaussian pulse in a square domain [0,2] × [0,2] following Sen [14]
whose analytical solution is

ψ(x, y, t) =
1

4t + 1
exp

[
− (ax − ct − 0.5a)2

a(4t + 1)
− (ay − dt − 0.5a)2

a(4t + 1)

]
. (29)

Initially, the Gaussian pulse is centered at (0.5, 0.5) with pulse height 1. Dirichlet
boundary conditions are used for this problem along all boundaries. The usual
procedure to approximate the diffusion terms ψxx and ψyy is to use explicit cen-
tral differencing. Such a technique lead to loss of high accuracy of the discretized
governing equation, which is achieved by the compact schemes on the convective
terms. Further, as we emphasize dispersion error reduction it is important to
employ a suitable discretization for the diffusion terms. Recently Sen [14] devel-
oped a central compact fourth order discretization for second order derivative.
This approximation was found to carry good numerical dispersion and dissipa-
tion characteristics. Further, it uses functional values and their gradients in a
three-point stencil. Hence the strategy developed by Sen [14] is seen to be partic-
ularly suitable in this context. Of course, to compute ψx and ψy, we employ the
newly developed (3, 3) scheme. Time advancing is carried out with the implicit
Crank-Nicolson method. For this simulation convection coefficients are fixed at
c = d = 80 with a = 100. Computations are done for three different grids 21×21,
41×41, and 81×81. Errors in L1, L2, and L∞ norms at time t = 0.5 and t = 1.0
are shown in Table 3. In this table, we also present CPU time. With grid size
decreasing by a factor of two the associated algebraic system increasing by a
factor of four. Additionally, as the temporal step is reduced by a factor of four,
CPU time as expected increases by a factor of sixteen. In Fig. 5 we compare
the analytical solution with the solution computed using the newly developed
scheme in the region 0.8 ≤ x, y ≤ 1.8. An excellent comparison can be seen in
this figure.
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Table 3. L1, L2 and L∞-norm error and CPU time with δt = h2 = k2.

Time 21 × 21 41 × 41 81 × 81

t = 0.5 L1 6.0710e−2 1.4420e−4 3.7067e−6

L2 2.1452e−1 6.1790e−4 1.5732e−5

L∞ 2.3199e+0 8.6617e−3 1.8969e−4

CPU Time 1.1 20.9 326.3

t = 1.0 L1 1.5141e−2 7.5830e−5 7.8776e−6

L2 3.6316e−2 2.4850e−4 2.5428e−5

L∞ 2.1846e−1 2.3459e−3 1.7324e−4

CPU Time 2.4 40.0 643.6

Fig. 5. Comparison of numerical (solid, blue) and analytical (dashed, red) contour at
t = 1.0. (Color figure online)

4 Conclusion

In this work, we have developed a new (3, 3) dispersion relation preserving third
order optimized upwind compact scheme. The scheme is obtained by minimizing
phase error over the entire wavenumber range. Subsequently, the boundary clo-
sures with optimum dispersion accuracy are also developed. Overall the scheme
is found to be asymptotically stable. Three numerical tests are envisaged to illus-
trate the importance of dispersion relation preserving character and stability of
the newly developed spatial discretization. They duly demonstrate the efficiency
and accuracy of the scheme proposed.
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