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Preface

It is indeed a pleasure for us to present the CCIS proceedings of The International
Conference on Computational Sciences—Modelling, Computing, and Soft Computing
(CSMCS 2020) to the authors, participants, speakers, faculty members, research
scholars, and interested persons from industry and academia. We sincerely hope that
everyone will find this proceedings useful, insightful, and motivating.

CSMCS 2020 aimed to bring together the leading academicians, scientists, and
researchers from academia and industry to share their experiences and views in the field
of computational sciences. CSMCS 2020 provided a platform for scientists and engi-
neers to discuss their research findings including applications to industry in all areas
under the theme of the conference. The conference was held virtually (online) during
September 10–12, 2020, at the National Institute of Technology Calicut, India, due to
the prevailing COVID-19 situation. There were three simultaneous related tracks,
namely modelling, computing, and soft computing. All papers received in CSMCS
2020 have gone through a rigorous review process consisting of three stages. At the
first stage review have been done by the Abstract Review Committee (ARC), program
chairs have done at the second stage and at the final third stage papers were sent for
peer reviews. The acceptance rate for the CCIS is less than 20%.

Mathematical modeling is one of the most ubiquitous branches of mathematics. This
track’s scope lay in the formulation, analysis, and simulation of mathematical models
of real-world problems. Two papers are included in the proceedings under this track.

Computational sciences have given rise to the significant development in advanced
techniques in modeling and simulations. This track was aimed at catering to the needs
of modern and advanced industries, and it included computational partial differential
equations (PDEs), computational finance, and computational complexity, amongst
other topics. The proceedings include 12 papers presented in this conference track.

Soft computing refers to a collection of computational techniques that study, model,
and analyze complex systems for which the conventional methods have not yielded the
best solutions. This track focused on the theoretical basis of non-standard reasoning;
research in fuzzy logic programming; design of calculi for uncertainty, imprecision,
and vagueness; soft sets; rough sets; multisets; artificial neural networks, etc. Five
papers are included from this track.

Also, two interdisciplinary papers related to general computing are included in the
proceedings, in addition the above mentioned tracks.

We sincerely express our gratitude to our fellow members of the Program Com-
mittee and the members of the Scientific Advisory Committee for their consistent
support and guidance throughout this conference. We are also thankful to our speakers,
chairs, and participants for their valuable time and effort. We also acknowledge the



support rendered by our reviewers to select the best possible papers for this proceed-
ings. We put on record our thanks to all authors for contributing their research to
CSMCS 2020. We also place on record our heartfelt thanks to the National Institute of
Technology Calicut, India, for providing the institute’s infrastructural facilities and the
financial support for this conference under TEQIP Phase III. We are most appreciative
of the help provided Springer’s CCIS team for assembling the conference proceedings.

January 2021 Ashish Awasthi
Sunil Jacob John
Satyananda Panda

vi Preface



Organization

Patron

P. S. Sathidevi National Institute of Technology Calicut, India

Conveners

Ashish Awasthi National Institute of Technology Calicut, India
Satyananda Panda National Institute of Technology Calicut, India
Sunil Jacob John National Institute of Technology Calicut, India

Program Committee

A. K. Nandakumaran IISc Bangalore, India
A. K. Pani IIT Bombay, India
Aleksander Grm University of Ljubljana, Slovenia
Alpesh Kumar Rajiv Gandhi Institute of Petroleum Technology, India
Appadu Appanah Rao Nelson Mandela University, South Africa
Ashish Awasthi National Institute of Technology Calicut, India
Aswathy R. K. National Institute of Technology Calicut, India
Aswin V. S. Mahindra University École Centrale School of

Engineering, India
B. V. Rathish IIT Kanpur, India
Babitha K. V. Government College Kasaragode, India
Baiju T. Manipal Institute of Technology, India
Chithra A. V. National Institute of Technology Calicut, India
Dirbude Sumer Bharat National Institute of Technology Calicut, India
Dominic P. Clemence North Carolina A&T State University, USA
Farzad Ismail Universiti Sains Malaysia, Malaysia
Gayathri Varma Indian Statistical Institute, Delhi, India
Govindan Rangarajan IISc Bangalore, India
Harish Garg Thapar Institute of Engineering & Technology, India
Jacob M. J. National Institute of Technology Calicut, India
Jaya Paul St. Peter’s College, Kolenchery, India
Jessy John C. National Institute of Technology Calicut, India
Kapil Kumar Sharma South Asian University, Delhi, India
Kiran Kumar Patra VIT-AP University, India
Krishnan Paramasivam National Institute of Technology Calicut, India
Kuldeep Singh Patel IIIT Naya Raipur, India
Lakshmi C. Bharata Mata College, India
Lineesh M. C. National Institute of Technology Calicut, India
Lokpati Tripathi IIT Goa, India



Mahesh Kumar National Institute of Technology Calicut, India
Mani Mehra IIT Delhi, India
Mohan K. Kadalbajoo IIT Kanpur, India
Naveen Jha Government Engineering College Bharatpur, India
Neela Nataraj IIT Bombay, India
Niladri Chatterjee IIT Delhi, India
Olga Gil Medrano University of Valencia, Spain
Pankaj Mishra Deshbandhu College, University of Delhi, India
Peeyush Chandra IIT Kanpur, India
Priyadarsan K. P. CKG Memorial Government College Perambra, India
Ram Ajor Maurya National Institute of Technology Calicut, India
Ratheesh K. P. Government Arts and Science College, Malappuram,

India
Ritesh Kumar Dubey SRM Institute of Science and Technology, India
S. P. Tiwari IIT Dhanbad, India
S. Sundar IIT Madras, India
Samarjit Kar NIT Durgapur, India
Sanjay P. K. National Institute of Technology Calicut, India
Satyananda Panda National Institute of Technology Calicut, India
Shijina V. Co-operative Arts & Science College, Madayi, India
Shinoj T. K. ISRO, Trivandrum, India
Shiv Prasad Yadav IIT Roorkee, India
Shruti Dubey IIT Madras, India
Shuvam Sen Tezpur University, India
Siju K. C. Vidya Academy of Science & Technology, India
Simon Peter National Institute of Technology Calicut, India
Snehashish Chakraverty NIT Rourkela, India
Stefano Bianchini University of Bologna, Italy
Sunil Jacob John National Institute of Technology Calicut, India
Sunil Mathew National Institute of Technology Calicut, India
Sunitha M. S. National Institute of Technology Calicut, India
Suresh Kumar N. National Institute of Technology Calicut, India
Sushama C. M. National Institute of Technology Calicut, India
Tamal Pramanick National Institute of Technology Calicut, India
Tanmoy Som IIT Varanasi, India
Vijitha Mukundan Sacred Heart College, Chalakudy, India
Vikas Gupta The LNM Institute of Information Technology, India
Vivek Kumar Aggarwal Delhi Technological University, India
Wil Schilders Eindhoven University of Technology, The Netherlands
Zhonghua Qiao The Hong Kong Polytechnic University, Hong Kong

Scientific Advisory Committee

Olga Gil Medrano University of Valencia, Spain
Dominic P. Clemence North Carolina A & T State University
John R. Ockendon University of Oxford

viii Organization



Florentin Smarandache University of New Mexico
Wil Schilders T U Eindhoven
Siddartha Mishra ETH Zurich
Saied Jafari College of Vestsjaelland
Reza Langari Texas A&M University
J. N. Singh Barry University
Bilge Inan kilis 7 aralik university
Mohan K. Kadalbajoo IIT Kanpur
Niladri Chatterjee IIT Delhi
Govindan Rangarajan IISc, Bangalore
A. K. Nandakumaran IISc Bangalore
A. K. Pani IIT Bombay
Neela Nataraj IIT Bombay
S. Sundar IIT Madras
Peeyush Chandra IIT Kanpur
Shiv Prasad Yadav IIT Roorkee
Tanmoy Som IIT Varanasi
S. P. Tiwari IIT Dhanbad
Snehashish Chakraverty NIT Rourkela
Samarjit Kar NIT Durgapur
Harish Garg Thapar Institute of Engineering & Technology, Patiala
Kapil Kumar Sharma South Asian University, Delhi
B. V. Rathish IIT Kanpur

Reviewers

Sreedharan R.
Madhusudanan Pillai
Waquar Ahamad
Jay Prakash
Sudev Das
T. J. Sarvoththama Jothi
Ranjith Maniyeri
Jidesh P.
Arumuga Perumal D.
Aradhana Dutt Jauhari
Yedida V. S. S. Sanyasiraju
Dhirendra Bahuguna
Bini A .A.
Rajkumar
N. Kamatchi
Sharmistha Ghosh
Piyush Tiwari
K. M. Kathiresan
N. Kishore Kumar

Ramis M. K.
Favas T. K.
Rajesh Thumbakara
Vinodkumar P. B.
Aswathy R. K.
A. Balu
Brinda R. K.
Parbati Sahoo
Mini Rani
Dhanya Mol
Minu K. K.
Bajeel P. N.
Kavitha Raj
Chithralekha K.
Lincy George
Rajesh Kumar
R. Sivaraj
Praveen Nagarajan

Organization ix



Contents

Computing

An Auxiliary Inequality Based Method for Stabilization
and Mesh-Adaptation of Steady and Time-Dependent
Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Vivek Kumar and Balaji Srinivasan

Existence and Uniqueness of Time-Fractional Diffusion Equation
on a Metric Star Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Vaibhav Mehandiratta, Mani Mehra, and Günter Leugering

Learning Numerical Viscosity Using Artificial Neural
Regression Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Ritesh Kumar Dubey, Anupam Gupta, Vikas Kumar Jayswal,
and Prashant Kumar Pandey

Computational Study of Some Numerical Methods for the Generalized
Burgers-Huxley Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Appanah Rao Appadu, Yusuf Olatunji Tijani, and Justin Munyakazi

A Local Meshless Method for a Multi-term Time Fractional Non-linear
Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Akanksha Bhardwaj, Karuna Pati Tripathi, and Alpesh Kumar

On Space-Fractional Diffusion Equations with Conformable Derivative . . . . . 79
Kamla Kant Mishra and Shruti Dubey

Compact Finite Difference Method for Pricing European and American
Options Under Jump-Diffusion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Kuldip Singh Patel and Mani Mehra

New Exact Solutions for Double Sine-Gordon Equation. . . . . . . . . . . . . . . . 109
Subin P. Joseph

Numerical Study of Mixed Convection in Single and Double Lid Driven
Cavity Using LBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Srijit Sen, D. Arumuga Perumal, and Ajay Kumar Yadav

A New (3, 3) Low Dispersion Upwind Compact Scheme . . . . . . . . . . . . . . . 134
Subhajit Giri and Shuvam Sen



Solution of Variable-Order Space Fractional Bioheat Equation
by Chebyshev Collocation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Rupali Gupta and Sushil Kumar

An Efficient Numerical Method for Singularly Perturbed Parabolic
Problems with Non-smooth Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Narendra Singh Yadav and Kaushik Mukherjee

Soft Computing

Scheduling of Jobs on Computational Grids by Fuzzy Particle Swarm
Optimization Algorithm Using Trapezoidal and Pentagonal
Fuzzy Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Debashis Dutta and Subhabrata Rath

S-Metacompact Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Baiju Thankachan

Interval Valued Fuzzy Graph and Complement Number. . . . . . . . . . . . . . . . 192
Deepthi Mary Tresa Souriar, Divya Mary Daise Souriar,
and Shery Fernandez

Fermatean Fuzzy Soft Sets and Its Applications . . . . . . . . . . . . . . . . . . . . . 203
Aparna Sivadas and Sunil Jacob John

A Fast Computing Model for Despeckling Ultrasound Images . . . . . . . . . . . 217
Febin Iyyath Pareedpillai and Jidesh Padikkal

General Computing

Non-linear Convection in Couple Stress Fluid with Non-classical Heat
Conduction Under Magnetic Field Modulation . . . . . . . . . . . . . . . . . . . . . . 231

Maria Thomas, K. Sangeetha George, and S. Pranesh

A Characterization for V4-Vertex Magicness of Trees with Diameter 5 . . . . . 243
Muhammed Sabeel Kollaran, Appattu Vallapil Prajeesh,
and Krishnan Paramasivam

Modelling

Data-Driven Regression-Based Compartmental Model to Identify
the Dynamical Behavior of Dengue Incidences in Urban Colombo . . . . . . . . 253

K. K. W. H. Erandi, S. S. N. Perera, and A. C. Mahasinghe

xii Contents



Ball Convergence of Multipoint Methods for Non-linear Systems . . . . . . . . . 260
Ioannis K. Argyros, Santhosh George, and Shobha M. Erappa

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Contents xiii



Computing



An Auxiliary Inequality Based Method
for Stabilization and Mesh-Adaptation

of Steady and Time-Dependent
Differential Equations

Vivek Kumar1(B) and Balaji Srinivasan2

1 Department of Applied Mathematics, Delhi Technological University,
Bawana Road, Delhi 110042, India

2 Department of Mechanical Engineering, Indian Institute of Technology,
Chennai 600036, India

Abstract. We develop a general discrete inequality based on the
entropy idea in hyperbolic conservation laws, and demonstrate that
enforcing this auxiliary inequality can be utilized for a number of steady
and time-dependent problems. We demonstrate that, for any existing
central difference based method, addition of this auxiliary inequality at
the discrete level, enables one to achieve several desired purposes. Firstly,
the violation of the inequality allows us to determine unphysical regions
in the numerical solution without any a-priori knowledge of the solu-
tion. Secondly, the sign of the discrete production also functions as an
excellent indicator for mesh adaptation in several problems in general
and singular perturbation problems in particular. Thirdly, the operator
can be used to derive robust schemes for convection dominated prob-
lems. Most importantly, all these are achieved without any ad-hoc, user
introduced, parameters. We provide a range of numerical results demon-
strating the efficacy of the method and its applicability to both steady
and time dependent problems.

Keywords: Central finite difference schemes · Entropy ·
Layer-adaptive meshes

1 Introduction

Computation of convection dominated flows is made difficult even in the lami-
nar case due to several numerical artefacts. These numerical artefacts may be
either cosmetic, (such as, oscillatory numerical solutions in physically mono-
tonic regions [1]) or they may be incipient serious instabilities such as the sonic
glitch [2] or the carbuncle, etc. [3]. The typical approach to handling such arte-
facts is by a judicious combination of stabilization and mesh adaptation [4].

While there is abundant literature on both these approaches, there is rarely
any universality in the specifics of the approach. There are also situation depen-
dent ad-hoc parameters in the problem and a strong dependence on geometrical
c© Springer Nature Singapore Pte Ltd. 2021
A. Awasthi et al. (Eds.): CSMCS 2020, CCIS 1345, pp. 3–24, 2021.
https://doi.org/10.1007/978-981-16-4772-7_1
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parameters such as the value of the local gradient. Overall, a unified, non-ad-
hoc approach to improving diagnosis of unphysical behavior, stabilization and
meshing would help in increasing robustness of solution to a variety of prob-
lems. In the case of hyperbolic conservation laws, [5] demonstrated that a local
entropy measure could be employed to derive numerical schemes. Guermond et
al. [6] have recently extended this to derive stabilization schemes for higher order
finite element schemes. Both these attempt to obtain the appropriate weak solu-
tion in non-smooth regions. We demonstrate here that it is possible to derive an
auxiliary discrete inequality even in the case of smooth regions. This auxiliary
inequality can be utilized to (a) detect unphysical behavior, (b) derive stabi-
lization schemes and (c) derive adaptive mesh schemes for steady and unsteady
differential equations. The organization of the rest of the paper is as follows. In
the Sect. 2, we outline our methodology for deriving and utilizing the auxiliary
inequality. In the Sect. 3, we present numerical results on a variety of test cases.
We offer our conclusions and suggestions for future possibilities in the Sect. 4.

2 The Auxiliary Entropy Inequality

2.1 Physical Motivation

As mentioned in the previous section, the computation of convection dominated
is complicated by several factors. The clearest demonstration of this occurs in
the case of the computation of hyperbolic conservation laws where the numerical
solution may converge to the incorrect weak solution [7,8]. Theoretically, this is
handled by ensuring that that the numerical solution converges to the correct
entropy solution. We extend this idea to design an auxiliary entropy inequality
for all the purposes outlined above – diagnosis of unphysical solutions, mesh
adaptation, derivation of stabilization schemes. In essence, our idea is as fol-
lows – Just as an entropy inequality separates the correct weak solution from
the incorrect ones, it is possible to identify incorrect numerical behavior by the
violation of an auxiliary, entropy like inequality.

We may physically motivate the inequality by observing the function that
the entropy inequality plays in the case of hyperbolic conservation laws. In the
latter case, the entropy inequality is often equivalent to the presence of a van-
ishingly small, positive, viscosity [7]. Similarly, any general, discrete, auxiliary
inequality would determine if the numerical scheme is adding sufficient numerical
dissipation locally. It is important to note here that even though the governing
differential equation may be dissipative, in the case of small viscosity coefficients
or large mesh sizes, the numerical discretization may not have sufficient dissi-
pation to mask the destabilizing effect of the numerical scheme. As will become
clear in the derivations below, the auxiliary inequality measures precisely this
lack of dissipation.

2.2 A Simple Prototype

We now show how such an auxiliary entropy may be derived using a simple
prototype equation. We choose the naive, central discretization of the convection
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diffusion problem as it has often been used as a departure point for deriving
numerical schemes for the Navier-Stokes equations [1].

The steady state convection-diffusion equation is given as

du

dx
= ε

d2u

dx2
(1)

with some specified boundary conditions.
For insufficiently resolved boundary layers, the central discretization of this

equation results in highly oscillatory solutions though the exact solution is mono-
tonic [1]. We may determine the dissipation inherent in the physical solution by
multiplying (1) with 2u and obtaining

d(u2)
dx

− ε
d2(u2)
dx2

= −2ε

(
du

dx

)2

(2)

By invoking an analogy to the Navier-Stokes equations [9], the term on the right
hand side of the (2) may be physically interpreted as the dissipation of the energy
u2. Therefore, all smooth solutions to the original equation satisfy the following
auxiliary inequality

dS

dx
− ε

d2S

dx2
≤ 0 (3)

where S(u) = u2 is defined as the entropy variable with analogy to hyperbolic
conservation laws.

As mentioned above, while continuous solutions of discretizations of (1) will
necessarily the auxiliary inequality, not all discretizations may satisfy a discrete
version of (3). So, in order to ensure that there is sufficient dissipation locally, at
the discrete level, we discretize each of the derivative operations in the auxiliary
inequality identically to the corresponding term in the original (1).

For instance, corresponding to the 2nd order central difference discretization
of (1) on a uniform grid

ui+1 − ui−1

2h
= ε

(
ui+1 − 2ui + ui−1

h2

)
(4)

we would have the natural discretization of (3) as

Pi =
Si+1 − Si−1

2h
− ε

(
Si+1 − 2Si + Si−1

h2

)
≤ 0 (5)

Inequality (5) is the discrete auxiliary inequality corresponding to the central
discretization of the steady state convection diffusion (1). Despite its simplicity,
the discrete auxiliary inequality has several remarkable properties. The most
important among these is that the central discretization shows unphysical oscil-
lations if and only if the discrete inequality (5) is violated by the solution. This
can be seen as follows. Multiplying (4) by (ui+1 + ui−1) we get

Si+1 − Si−1

2h
= ε(ui+1 + ui−1)

(
ui+1 − 2ui + ui−1

h2

)
(6)
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Subtracting the above (6) from (5) and rearranging gives

Pi = −2ε

(
ui+1 − ui

h

) (
ui − ui−1

h

)
. (7)

Equation (7) demonstrates immediately that the auxiliary inequality is sat-
isfied/violated whenever the original solution is monotonic/oscillatory. We refer
the reader to [10–12] for a detailed discussion of this property as well as other
properties of this inequality.

The above property of being able to discern unphysical numerical behavior
purely by a posteriori determination of the satisfaction of an auxiliary inequality,
without a priori knowledge of solution behavior can provide a unified, non-ad-
hoc way to address the various issues raised above.

1. Diagnosis: Once the discretization as well as the governing equation are
known, the corresponding discrete entropy production operator Pi can be
computed a posteriori and evaluated. Any local violation of the inequality
may be utilized to determine both the location and magnitude of unphysical
numerical behavior. We would immediately know that the numerical solu-
tion in the corresponding region is physically suspect. We emphasize that we
require no a priori knowledge of solution behavior.

2. Mesh adaptation: A simple, non-ad-hoc mesh adaptation scheme may be
derived by adapting the mesh at all regions where the inequality is violated.
We note that this adaptation scheme differs from others in the literature in
that it depends on a criterion that depends both on the governing equation
being solved as well as the specific discretization scheme being chosen (since
both these are woven into the auxiliary inequality). As we will see in the next
section this allows us perform mesh adaptation with remarkably sparse initial
meshes.

3. Stabilization: We may add stabilization terms until the corresponding
inequality is satisfied locally everywhere. We demonstrate in the next section
that this allows us to deal with persistent problems such as the sonic glitch
in the Burgers equation.

2.3 Extensions to General Differential Equations

The above procedure may be easily applied to derive auxiliary inequalities for
singular perturbation problems, elliptic equations and parabolic equations in one
and higher dimensions. We show a couple of illustrative extensions below and
the rest in Sect. 3.

Second Order ODEs: The above principle can be extended to any general
scalar singular perturbation problem of the form

− εu′′(x) − a(x)u′(x) + b(x)u(x) = f (8)
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Here, a(x) represents the (possibly spatially varying) background velocity
and ε is the diffusion coefficient as before. Once again, as ε becomes smaller,
convective processes dominate over diffusive processes. ε also represents the sin-
gular perturbation parameter. Without loss of generality, we consider cases where
ε > 0 by allowing the sign of a(x), b(x) to vary arbitrarily. Proceeding as before,
we multiply (8) by 2u and rearrange to obtain

− εS′′(x) − a(x)S′(x) − 2uf + 2b(x)u(x) = −2ε(u′)2 (9)

The left hand side of the above (9) represents the entropy production P for
(8). Our numerical results [11] show that in certain cases (especially for mesh
adaptation), tighter results are obtained for the stabilizing b(x) > 0 case when
we use

P = −εS′′(x) − a(x)S′(x) − 2uf = −2b(x)u(x) − 2ε(u′)2 ≤ 0 (10)

Unsteady Advection Diffusion: For the unsteady advection-diffusion equa-
tion

ut + aux = εuxx (11)

the corresponding entropy inequality is obtained as

P = St + aSx − εSxx = −ε(ux)2 ≤ 0 (12)

The discrete version of this inequality is obtained by mimicking the discretization
of (11) term by term. For instance for the FTCS scheme one obtains

Pi =
Sn+1
i − Sn

i

Δt
+ a

Sn
i+1 − Sn

i−1

2h
− ε

Sn
i+1 − 2Sn

i + Sn
i−1

h2
(13)

Viscous Burgers Equation: The viscous Burgers equation is given by

ut +
(

u2

2

)
x

= εuxx (14)

This non-linear equation is popularly used as a benchmark case for compressible
flows. The numerical problems caused here are of a slightly different nature than
those in the convection diffusion equation; In the Burgers shock, oscillations are
found around the nearly discontinuous shock, whereas in the convection-diffusion
case they are found in high-gradient smooth regions. The corresponding entropy
inequality is derived as before (by multiplying the original Eq. (14) by 2u) as

P = St +
(

2u3

3

)
x

− εSxx = −2ε(ux)2 ≤ 0 (15)

The flux term is chosen so as to retain the conservative nature of the entropy
flux in the vanishing viscosity case. As before, the terms in (15) are discretized
exactly like the corresponding terms in (14).
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3 Results

We now demonstrate that the auxiliary inequality may be utilized to successfully
diagnose unphysical numerical solutions, stabilize them and also to adapt meshes
for a wide range of steady and time dependent differential equations.

3.1 Diagnosis

As discussed earlier, we determine the region and magnitude of unphysical
numerical artifact by determining the local inequality violation of the solution.
We demonstrate this for a steady case, an unsteady case and a nonlinear case.

Steady Convection Diffusion Equation: Figure 1 shows how the local vio-
lation of the auxiliary inequality directly correlates with unphysical numeri-
cal behavior. It may also be seen that the extent of violation of the inequality
matches extremely well with the magnitude of unphysical oscillations.

Fig. 1. Convection diffusion equation for N = 20. (a) Resolved solution, ε = 0.1 (b)
Under-resolved solution, ε = 0.01



Auxiliary Inequality Based Method for Stabilization and Mesh-Adaptation 9

Unsteady Advection Diffusion Equation: We use the formulation described
above to demonstrate how the inequality correctly diagnoses problematic dis-
cretizations for this unsteady case. Figure 2 shows the time evolution of a “square
wave” initially non-zero in (−0.1, 0.1) for a FTCS discretization. We use two
different sets of coefficients. The convection-dominated case can be seen to
have oscillations. These are directly correlated with the violation of the entropy
inequality. Further, the inequality indicator correctly identifies the smooth sub-
regions as entropy satisfying regions [14,15].

Fig. 2. Unsteady advection-Diffusion equation with 200 equally spaced mesh points of
a square wave. (a) Non-oscillatory solution for a = 1, ε = 0.01 (b) Stable, oscillatory
solution for a = 10, ε = 0.01.

Viscous Burgers Equation: We consider an insufficiently resolved expansion
fan, which famously leads to a numerical artifact known as the sonic glitch [2].
This phenomenon is known to be “entropy satisfying”. This is true in the sense
that at infinitesimal resolution the solution does converge to the correct weak
solution. However, at finite resolution, this may still lead to unphysical behavior
– a situation that the auxiliary inequality is designed to detect.

Figure 3 shows an under-resolved expansion for a Riemann problem with ini-
tial conditions being uL = −1 and uR = 1. We choose ε = 0.5 for this problem
to clearly demonstrate the presence of the sonic glitch. It can be seen that the
auxiliary inequality correctly classifies the physical and unphysical portions of
the solution. A comparison with the inviscid (i.e. ε = 0) solution also demon-
strates that the viscous numerical solution is, paradoxically, less diffusive than
the inviscid solution. This clearly explains the origin of the unphysical behavior
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– incorrect numerical dissipation. We would also like to point out that this dis-
proves the claim in [2] that central methods do not show the sonic glitch and
that the glitch is not an entropy violation. It is clear from our results that the
glitch is a local entropy violation and that under-resolved central schemes may
exhibit the glitch.

Fig. 3. Expansion fan with uL = −1 and uR = 1, and 40 equally spaced mesh points.
An under-resolved solution for ε = 0.05, time = 0.2 is shown. Inequality violations
correlate closely with the glitch.

3.2 Stabilization

The violation of the auxiliary inequality may be corrected by adding compen-
satory diffusive terms with a free coefficient to the governing equation. This
coefficient may then be adjusted in order to satisfy the inequality correctly.

Upwinding the Convection Diffusion Equation: For instance, for the
steady state convection diffusion equation (1) the physical diffusion ε may be aug-
mented by a numerical diffusion α. The corresponding inequality is also modified
by this simple augmentation. One can very quickly demonstrate that a constant
α = h/2 is the least amount of diffusion that ensures unconditional satisfaction
of the inequality. The resultant numerical discretization is given by

ui − ui−1

h
= ε

(
ui+1 − 2ui + ui−1

h2

)
, (16)
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which is the well known upwind discretization. This has the corresponding
inequality

Pi =
Si − Si−1

h
− ε

(
Si+1 − 2Si + Si−1

h2

)
(17)

Multiplying (16) by ui + ui−1 and subtracting from (17) we get Pi =

−2ε
(

ui−ui−1
h

)2

. Hence, the discrete entropy inequality is satisfied for all positive
values of ε.

Stabilizing the Sonic Glitch: We may also adapt the above method to allow
for locally varying diffusion coefficients as done in the entropy viscosity method of
Guermond et al. [6]. We adapt this method to fix the sonic glitch by additionally
enforcing Galilean invariance for the additional viscosity (else the solution may
become too diffusive). For every grid point, the entropy production is calculated
using the local velocities [ui−1−ui, 0, ui+1−ui]. The corresponding local entropy
function is S = (u−ui)2 and the entropy flux is modified to F = 2

3

(
u − 3ui

2

)
u2.

The corresponding inequality is P = St + Fx − εSxx = −2ε(ux)2 ≤ 0. We show
results for the extreme case of ε = 0 (finite ε work better but this choice allows
direct comparison with the Godunov method). As can be seen in the Fig. 4, the
stabilization works remarkably well in comparison to the solution obtained by
using the Godunov method [7] for the convective terms.

Fig. 4. Solution at t = 0.2 for an expansion fan. (a) Stabilized solution which removes
the sonic glitch (b) Godunov solution with clear sonic glitch around the sonic point.

3.3 Numerical Results

One Dimensional (1D) Heat Equation: We consider 1D heat equation given
as

ut = εuxx, x ∈ (0, 1), 0 < ε � 1, 0 ≤ t ≤ T, (18)

with initial conditions

u(x, t = 0) = exp(−100(4x − 1)2). (19)
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The series solution for zero boundary conditions is given as

u(x, t) =
∞∑

n=1

Bn sin(
nπx

L
) exp(−ε(

nπ

L
)2t), (20)

where

Bn =
2
L

∫ L

0

u(x, t = 0) sin(
nπx

L
)dx ; L = 1 in this case.

The entropy production equation for the above heat Eq. (18) can be obtained by
multiplying with a factor 2u, which becomes

2uut = 2uεuxx

which can be further written as (putting S(t, x) = u2)

St − εSxx = −2εu2
x ≤ 0. (21)

The parameter ε is known as diffusion coefficient. Figure 5(a) shows the initial
solution at the initial uniform mesh for N= 16 and ε = .01 and the corresponding
entropy production. Ideally, the entropy should be non positive throughout the
domain but it violates this criteria only in the region where solution needs more
resolution. The points starts accumulating automatically in the exact location
where the entropy is being violated. Figure 5(b) shows the solution and the
adaptive mesh (Na = 40) after the first iteration. The corresponding entropy is
also satisfying the criteria as given in Eq. (21). Figure 6(a) shows the diffusion
after 100 iterations with Na = 76 adaptive mesh points and Fig. 6(b) shows the
final solution at the final time t = 1. We have also plotted the series solution
and it matches with the computational solution.

1D Advection Diffusion Equation: We consider 1D advection diffusion equa-
tion given as

ut + aux = εuxx, x ∈ (0, 1), 0 < ε � 1, 0 ≤ t ≤ T, (22)

with initial conditions

u(x, t = 0) = exp(−100(4x − 1)2). (23)

Its exact solution, using operator splitting, is given as

u(x, t) = h(x − at, t), where h is the solution of the equation ht = εhxx. (24)

Its corresponding entropy production equation can be written as

St + aSx − εSxx = −2εu2
x ≤ 0. (25)
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Fig. 5. Results for the test case of heat equation with black as computed solution and
blue as series solution (Color figure online)

Figure 7(a) represents the initial solution and the corresponding entropy pro-
duction for the initial starting uniform mesh for diffusion coefficient ε = .01.
Again, the entropy is being violated in the exact location where the solution is
under resolved. Figure 7(b) shows the adaptive mesh with mesh point Na = 40
and the solution after the first iteration is over. Figure 8 shows the results for
the reduced diffusion coefficient ε = .0001 during the first iteration. Figure 9(a)
demonstrate the solution at the 26th iteration and Fig. 9(b) shows the solution
after 50 iterations and the corresponding entropy and the adaptive mesh points.

Steady State 1D Burgers Equation: We also consider the nonlinear steady
state Burgers equation

uux = εuxx, a ≤ x ≤ b (26)

with boundary conditions as

u(a) = α, u(b) = β (27)
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Fig. 6. Results for the test case of heat equation with black as computed solution and
blue as series solution (Color figure online)

The above Eq. (26) can be written in the conserved form as

(
u2

2
)x = εuxx. (28)

In this problem whenever α and β have opposite sign, the solution must cross the
x-axis (at least once). The location of this crossing may be quite susceptible to
the values of α and β, therefore it is a very interesting example to demonstrate
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Fig. 7. Results for the advection equation. Black line shows computed sol. and the blue
line shows the series sol. (Color figure online)

the robustness of the proposed method for finding the location and then pro-
ducing the adaptive mesh using the concept of entropy production. The entropy
production equation for the conserved form (28) (on multiplying by 2u) is given
as

− εSxx + (
2u2

3
)x = −2ε(ux)2, where S = u2. (29)

We solve the conserved form (28) using central finite difference scheme for initial
N = 11 uniform mesh points and the nonlinearity is handled using the Newton’s
iterations. Figure 10(a) shows the results for ε = .01 using proposed adaptive
mesh technique corresponding to the entropy production as given in the Eq. (29)
with resolution Na = 19. Figure 10(b) gives the results for very small diffusion
parameter ε = .0001 with adaptive mesh having resolution Na = 39. These



16 V. Kumar and B. Srinivasan

0 0.2 0.4 0.6 0.8 1
<----x---->

0

0.5

1

<
--
--
u
--
--
>

Ini. Sol. for  = 0.0001,  time t=0

0 0.2 0.4 0.6 0.8 1
<----x---->

-0.05

0

0.05

<
--
--
P
--
--
>

Entropy Production,  N=20

0 0.2 0.4 0.6 0.8 1
<----x---->

0

0.5

1

<
--
--
u
--
--
>

Compu. Sol. at time t = 0,  itr. =1

0 0.2 0.4 0.6 0.8 1
<----x---->

-0.2

0

0.2

<
--
--
P
--
--
>

Entropy Production,  N
a
=28

Fig. 8. Results for the advection equation. Black line shows computed sol. and the blue
line shows the series sol. (Color figure online)

results has been calculated for boundary conditions α = 1 and β = −1 and the
solution cross the x-axis at the location close to x = 0.12. Figure 11(a) shows
the results for the parameters α = .995, β = −1 and ε = .001 for adaptive
mesh with Na = 55 mesh points. We have observed that the location of the
crossing of the solution to x-axis (x = −.06) has changed to the left of the zero.
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Fig. 9. Results for the advection equation using adaptive mesh points Na = 100 for
ε = .0001

Figure 11(b) also demonstrate the results for α = 1.005 and for this value the
crossing happens at x = .07. As in this test problem, the location of the crossing
of the solution is sensitive to the values of α and β, no piecewise uniform mesh
based on pre-knowledge of location of the crossing will be able to produce correct
solutions.

2D Elliptic Equation: We also consider a 2D elliptic test problem given as

− ε(uxx + uyy) − (x − 1
2
)ux = 0, with domain Ω = (0, 1)2. (30)

with Dirichlet boundary conditions as

u(0, y) = 1, u(1, y) = 2, u(x, 0) = u(x, 1) = 0.
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Fig. 10. Results for the steady state Burgers equation with α = 1 and β = −1.

This equation has interior layer at the location x = 1/2 [13]. This problem
serves as a good model for complex fluid flow with relatively small diffusion
(ε) and dominating convection to demonstrate the extension of the proposed
method of adaptivity to higher dimensional problems. The problem is discretized
using central finite difference on nonuniform cartesian grid with initial uniform
grid points (xi, yj), i = 1, 2, 3, . . . ,m ; j = 1, 2, 3, . . . , n. Let ui,j represents an
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Fig. 11. Results for the steady state Burgers equation (a) For α = .995 and β = −1
(b) For α = 1.005 and β = −1

approximation to u(xi, yj), using 5 points stencil, the discretized equation can
be written as

−ε{ 2ui−1,j

(xi−1 − xi)(xi−1 − xi+1)
+ ui,j(

2

(xi − xi−1)(xi − xi+1)
+

2

(yj − yj−1)(yj − yj+1)
)

+
2ui+1,j

(xi+1 − xi−1)(xi+1 − xi)
+

2ui,j−1

(yj−1 − yj)(yj−1 − yj+1)
+

2ui,j+1

(yj+1 − yj−1)(yj+1 − yj)
}

+(xi − 1/2)
ui+1,j − ui−1,j

(xi+1 − xi−1)
= 0.

On multiplying Eq. (30) by a factor of 2u and considering entropy as S(x, y) = u2

with Sx = 2uux, Sy = 2uuy, Sxx = 2(uuxx + u2
x), Syy = 2(uuyy + u2

y), the
entropy production equation can be written as

− ε(Sxx + Syy) − (x − 1
2
)Sx = −ε(ux + uy)2 ≤ 0. (31)
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Once we find the solution on the uniform mesh, we compute the entropy through-
out the domain using entropy production Eq. (31) by applying the central finite
difference. For computing entropy at the boundary, we need to introduce the
ghost mesh points along x and y axes as shown in the Fig. 12. Red dots shows
the corner ghost points and black dots represents the interior ghost points.
Ghost points has been taken at the same distance to the boundaries to the
next grid points. The solution at the interior ghost points can be computed
using the Eq. (30) for the boundaries. For example to compute the interior ghost
points at the bottom of the domain, we compute the solution using Eq. (30) for
i = 2, 3, . . . ,m − 1, j = 1. Computing the solution at the corner ghost points
is rather more difficult. We approximate the solution at the corner points using
predictor and corrector methods. For example to approximate the solution at
the bottom left corner, first we predict the value at left corner using double mesh
method and then correct this value using the usual finite difference operator.

Fig. 12. Ghost points to calculate entropy at the boundaries (Color figure online)

Once we are able to compute the entropy at all the grid points in the domain,
we locate the location where the entropy production is positive, violating the
Eq. (31), and then add one point to the left and one point to the right of the
x, y coordinates. Figure 13(a) shows the solution and the corresponding entropy
for the initial course grid with 9 × 8 points for ε = .01 and Fig. 13(b) gives the
solution for ε = .00001. It can been seen that entropy is not satisfied as expected
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Fig. 13. Solution with the initial uniform mesh.

in the Eq. (31) in the some part of the domain. Then, as discussed earlier, points
being added in the neighbourhood of the (x, y) location of the maximum entropy
violation. Figure 14 represents the well resolved solution corresponding to the
adaptive mesh having 13 × 10 mesh points. Figure 15 shows the solution for
ε = .00001 for the corresponding adaptive mesh. As we reduce the ε, interior
layer becomes quite sharp and more mesh points are needed for well resolved
solution as evident in the Fig. 15.
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4 Conclusions

We have presented in this paper a unified framework by which one may address
several problems that occur in computations of convection dominated problems.
Through the enforcement of a discrete auxiliary inequality that depends both
on the governing equation and the discretization, we were able to (a) diagnose
unphysical solutions without a priori knowledge of the solution (b) stabilize
solutions (c) derive mesh adaptation schemes. All these could be done with a
single operator with no ad-hoc parameters. The method performed well on a wide
range of test cases including steady and time-dependent problems. The method
still needs to be adapted so that it may be used in practical flow problems. Firstly,
the method needs to be extended to be capable of handling unstructured meshes
and associated discretization approaches such as finite element and finite volume.
This would allow for complex geometries. Secondly, theory has to be developed
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to handle multiple variables instead of just the scalar cases demonstrated here.
In particular, it would be interesting to investigate if there would be more than
one inequality in operation in such cases.
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Abstract. In this paper, we study the time-fractional diffusion equation
on a metric star graph. The existence and uniqueness of the weak solution
are investigated and the proof is based on eigenfunction expansions. Some
priori estimates and regularity results of the solution are proved.
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1 Introduction

We consider a graph G = (V,E) consisting of a finite set of vertices (nodes)
V = {v0, v1, . . . , vk} and a finite set of edges E (such as heat conducting ele-
ments) connecting these nodes. The graph considered in this work is a metric
graph. A metric graph is a graph in which each edge is endowed with an implicit
metric structure. More precisely, each edge ei, i = 1, 2, . . . , k is parametrised by
an interval (0, li) such that 0 < li < ∞. The study of partial differential equa-
tions (PDEs) on networks or metric graphs is not just the analysis of known
mathematical objects on special domains, since in our context, graphs or net-
worked domains are not manifolds. Thus, we investigate PDEs on single edges
of graph (interpreted as continuous curves or manifolds) [37] along with certain
transmission conditions such as continuity and Kirchoff condition at junction
node. Hence, we define a coordinate system on each edge ei by taking v0 as the
origin and x ∈ (0, li) as the coordinate. We consider a time-fractional diffusion
equation (TFDE) on a metric star graph G, which is a graph consisting of k
edges incident to a common vertex v0 (see Fig. 1):

CDα
0,ty(x, t) =

∂2y(x, t)
∂x2

+ f(x, t), x ∈ G, t ∈ (0, T ), 0 < α < 1. (1.1)

y(x, 0) = y0(x), x ∈ G. (1.2)

c© Springer Nature Singapore Pte Ltd. 2021
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More precisely, at each edge we have the following fractional diffusion equation

CDα
0,tyi(x, t) =

∂2yi(x, t)
∂x2

+ fi(x, t), x ∈ (0, li), t ∈ (0, T ), 0 < α < 1, (1.3)

yi(x, 0) = y0
i (x), x ∈ (0, li), i = 1, 2 . . . , k, (1.4)

along with the continuity and Kirchoff conditions at junction node v0 as

yi(0, t) = yj(0, t), i �= j, i, j = 1, 2, . . . , k, t ∈ (0, T ), (1.5)
k∑

i=1

∂yi(0, t)
∂x

= 0, (1.6)

and Dirichlet boundary conditions at boundary nodes vi

yi(li, t) = 0, t ∈ (0, T ), i = 1, 2, . . . , k. (1.7)

Here CDα
0,t denotes the Caputo fractional derivative of order α with respect to

t which is defined as

CDα
0,ty(x, t) =

1
Γ (1 − α)

(∫ t

0

(t − ξ)−α ∂y(x, ξ)
∂ξ

dξ

)
, 0 < α < 1, t ∈ (0, T ),

where Γ (.) denotes the Euler gamma function. In this paper, we prove the exis-
tence and uniqueness of the weak solution of initial-value problem (IVP) (1.1)–
(1.2) whose restriction to the edge ei gives the weak solution of initial-boundary
value problem (IBVP) (1.3)–(1.7). When α approaches 1, the Caputo fractional
derivative CDα

0,ty approaches the ordinary derivative ∂y
∂t and, thus, IBVP (1.3)–

(1.7) represents the standard diffusion equation on graphs for which existence
and uniqueness was proved in [40]. In [24], authors established the existence and
uniqueness of solution for nonlinear fractional boundary value problem on a star
graph, see also [23,27,42]. Hence, this work could be seen as the extension of
[24] for time dependent problem.

v0

v1

v2

v3

v4

v5

vk

Edge

Boundary

Junction

Fig. 1. A star graph consisting of k edges
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The origin of the study of differential equation on graphs can be traced
back to 1980s with Lumer’s work [20] on ramification spaces. Considerable work
related to eigenvalue problems (Sturm-Liouville type problems) on networks,
i.e. metric graphs has been done, for instance see the article by von Below [2]
and [32]. Partial differential equations on graphs or multi-link structures play an
important role in the field of science and engineering. For instance, controlled
vibrations of networks of strings (hyperbolic wave equations) [7], water wave
propagation in open channel networks (Burgers type equation) [41], naturally
lead to partial differential equation on graphs. Evolutionary problems (such as
linear parabolic equations) on metric graphs were considered in [3]. The dynamic
networks of strings and beams along with their control properties were studied
by Lagnese et al. [14]. The progress of problems defined on metric graphs until
2006 has been presented in an excellent survey by Dager and Zuazua [5]. Since
then, modeling, analysis and optimal control problems for linear and nonlinear
partial differential equations on metric graphs have become an active area of
research. In [41], Yoshioka et al. considered the Burger type equation models on
connected graph and discussed the existence and uniqueness of the model along
with the energy estimates. For more problems on metric graphs, we refer [1,8,34]
and references therein.

On the other hand, fractional calculus find its importance in different fields
of science and engineering [4,6,9,12,13,22,25,38,39]. Moreover, there are some
classical models, describing the biological process, such as [26] that can also
be modeled using fractional differential/difference equations. A strong motiva-
tion for the study and analysis of fractional diffusion equations comes from
the fact that they efficiently describe the phenomenon of anomalous diffusion
[19]. Fractional diffusion equations on bounded domains have been studied by
various authors. For instance in [17], Luchko gave the maximum principle for
the time-fractional diffusion equation, while in [18] he established the existence
and uniqueness results for time fractional diffusion equation using eigenfunction
expansion by taking source term f = 0. In [36], the existence results for frac-
tional diffusion-wave equations were established by Sakamoto and Yamamoto,
while IBVP for a coupled fractional diffusion system was discussed in [15]. For
more results on fractional time dependent problems, we refer [16,21,31] and
references therein.

To the best of author’s knowledge, there has not been any published work
related to the existence and uniqueness results for the time-fractional diffusion
equation on metric graphs so far. In this paper, we focus on proving the existence
and uniqueness of IBVP (1.3)–(1.7) and study the regularity of solution given
by the eigenfunction expansions.

2 Preliminaries

First of all, we define the following function spaces on a star graph G:

L2(G) =
k∏

i=1

L2(0, li) and Hm(G) =
k∏

i=1

Hm(0, li)
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with the corresponding inner products

〈y, w〉L2(G) :=
k∑

i=1

〈yi, wi〉L2(0,li) and 〈y, w〉Hm(G) :=
k∑

i=1

〈yi, wi〉Hm(0,li),

where L2(0, li) and Hm(0, li) are standard Sobolev spaces. The spaces L2(G)
and Hm(G) are Hilbert spaces with the inner products 〈·, ·〉L2(G) and 〈·, ·〉Hm(G),
respectively (see [28]). We define the operator L on the Hilbert space L2(G) as
follows:

D(−L) =
{

y ∈ L2(G) : yi ∈ H2(0, li),

yi(li) = 0, yi(0) = yj(0), i �= j, i, j = 1, 2, . . . , k and
k∑

i=1

y′
i(0) = 0

}
,

∀y ∈ D(−L) : Ly =
(

∂2yi

∂x2

)k

i=1

.

Remark 1. The operator −L is a non-negative self-adjoint operator since it is
the Friedrichs extension of the triple (L2(G);V ; a) defined by [10]

V =
{

y ∈
k∏

i=1

H1(0, li) : yi(li) = 0, yi(0) = yj(0), i �= j, i, j = 1, 2, . . . , k

}
,

which is a Hilbert space with the inner product 〈y, w〉V :=
∑k

i=1

∫ li
0

y′
iw

′
idx and

a is the corresponding bilinear form defined as a(y, w) =
∑k

i=1

∫ li
0

y′
i(x)w′

i(x)dx.

The spectrum of operator −L consist of eigenvalues, having the form

0 < μ1(G) ≤ μ2(G) ≤ . . . → ∞;

and the eigenfunction Ψn = (ψn,1, ψn,2 , . . . , ψn,k) corresponding to eigenvalue
μn: −LΨn = μnΨn, n ∈ N. Then the sequence {Ψn}n∈N forms an orthonormal
basis of L2(G) (see [29,35]). Hence {μn, Ψn}n∈N is the eigensystem of following
problem:

ψ
′′
n,i(x) = −μnψn,i(x), 0 < x < li, (2.1)

ψn,i(li) = 0, i = 1, 2, . . . , k, (2.2)
ψn,i(0) = ψn,j(0), i, j = 1, 2, . . . , k, i �= j, (2.3)

k∑

i=1

ψ′
n,i(0) = 0. (2.4)

Now, using the spectral decomposition of operator L, one can define the frac-
tional power (−L)γ , γ ∈ R, as (−L)γy = ((−M)γyi)

k
i=1, where (M)γyi =

∞∑

n=1

μγ
n〈y, Ψn〉ψn,i, with the norm
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‖(−L)γy‖2L2(G) =
k∑

i=1

‖(−M)γyi‖2L2(0,li)
=

∞∑

n=1

μ2γ
n |〈y, Ψn〉|2 .

Then we define

D ((−L)γ) =

{
y ∈ L2(G) :

∞∑

n=1

μ2γ
n |〈y, Ψn〉|2 < ∞

}
.

It follows that D ((−L)γ) forms a Hilbert space equipped with the norm

‖y‖D((−L)γ) = ‖(−L)γy‖L2(G) =

( ∞∑

n=1

μ2γ
n |〈y, Ψn〉|2

) 1
2

. (2.5)

Remark 2. Using Parseval’s identity, we have [30]

‖y‖2V ∼ ‖y‖2D(−L1/2),

while in general D ((−L)γ) ⊂ H2γ(G) holds for γ > 0. Hence, in view of (2.5),
the spaces V , L2(G) and H2(G) can be characterised as follows:

V =

{
y =

∞∑

n=1

〈y, Ψn〉Ψn : ‖y‖2V =
∞∑

n=1

μn |〈y, Ψn〉|2 < ∞
}

L2(G) =

{
y =

∞∑

n=1

〈y, Ψn〉Ψn : ‖y‖2L2(G) =
∞∑

n=1

|〈y, Ψn〉|2 < ∞
}

and

H2(G) =

{
y =

∞∑

n=1

〈y, Ψn〉Ψn : ‖y‖2H2(G) =
∞∑

n=1

μ2
n |〈y, Ψn〉|2 < ∞

}
.

Now, we give the following definition and propositions (for proofs see [33]) regard-
ing Mittag-Leffler function which will be used further.

Definition 1. The Mittag-Leffler function is defined as follows

Eα,β(z) =
∞∑

j=0

zj

Γ (αj + β)
, z ∈ C,

where α > 0 and β ∈ R are arbitrary constants.

Proposition 1. Let 0 < α < 2, β ∈ R be arbitrary and μ be such that πα/2 <
μ < min{π, πα}, then there exists a positive constant C = C(α, β, μ) such that
|Eα,β(z)| ≤ C

1+|z| , μ ≤ |arg(z)| ≤ π.
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Proposition 2. Let 0 < α < 1 and η > 0, then 0 < Eα,α(−η) < 1
Γ (α) . Further-

more, Eα,α(−η) is a monotonic decreasing function with η > 0.

Proposition 3. Let 0 < α < 1 and t > 0, then 0 < Eα,1(−t) < 1. Furthermore,
Eα,1(−t) is completely monotonic that is (−1n) dn

dtn Eα,1(−t) ≥ 0, n ∈ N.

Proposition 4. Let α > 0, λ > 0 and m ∈ N, then

dm

dtm
Eα,1(−λtα) = −λtα−mEα,α−m+1(−λtα), t > 0.

Proposition 5. Let α > 0 and λ > 0, then we have

CDα
0,tEα,1(−λtα) = −λEα,1(−λtα), t > 0.

Lemma 1. Let f(·, t) ∈ L2(G), y0 ∈ L2(G), then the solution yi(x, t) of IBVP
(1.3)–(1.7) has the form

yi(x, t) =
∞∑

n=1

〈y0, Ψn〉Eα,1(−μntα)ψn,i(x)

+
∞∑

n=1

(∫ t

0

〈f(x, ξ), Ψn〉(t − ξ)α−1Eα,α (−μn(t − ξ)α) dξ

)
ψn,i(x),

(2.6)
where {μn, Ψn}n∈N is the eigensystem of (2.1)–(2.4) and 〈·, ·〉 denotes the inner
product in L2(G).

Proof. We will use the method of eigenfunction expansions for the solution of
(1.3). Hence, we write the solution in the form

yi(x, t) =
∞∑

n=1

Tn(t)ψn,i(x), i = 1, 2, . . . , k. (2.7)

Thus, we obtain

∂2yi(x, t)
∂x2

=
∞∑

n=1

Tn(t)ψ
′′
n,i(x) and CDα

0,tyi(x, t) =
∞∑

n=1

(
CDα

0,tTn(t)
)
ψn,i(x).

After substituting the value of above expressions in Eq. (1.3), we get

∞∑

n=1

[(
CDα

0,tTn(t)
)
ψn,i(x) − Tn(t)ψ

′′
n,i(x)

]
= fi(x, t)

and ∞∑

n=1

[
CDα

0,tTn(t) + μnTn(t)
]
ψn,i(x) = fi(x, t), (2.8)



Fractional Diffusion Equation on a Metric Star Graph 31

where we used the fact that ψ
′′
n,i(x) = −μnψn,i(x), x ∈ (0, li). Now, we expand

the functions y0(x) and f(x, t) in terms of Fourier series, given by,

f(x, t) =
∞∑

n=1

fn(t)Ψn(x) and y0(x) =
∞∑

n=1

anΨn(x), (2.9)

which gives

fi(x, t) =
∞∑

n=1

fn(t)ψn,i(x) and y0
i (x) =

∞∑

n=1

anψn,i(x), (2.10)

where
fn(t) = 〈f(x, t), Ψn(x)〉 and an = 〈y0(x), Ψn(x)〉.

Hence, from Eqs. (2.8) and (2.9), we obtain

∞∑

n=1

[
CDα

0,tTn(t) + μnTn(t)
]
Ψn(x) =

∞∑

n=1

fn(t)Ψn(x).

Using the uniqueness of Fourier series we get the family of fractional ODE’s

CDα
0,tTn(t) + μnTn(t) = fn(t) (2.11)

and

yi(x, 0) =
∞∑

n=1

Tn(0)ψn,i(x) = y0
i (x) =

∞∑

n=1

anψn,i(x),

so that
Tn(0) = an n ≥ 1. (2.12)

The solution of fractional differential equation (2.11) subject to initial condition
(2.12) is given by [11]

Tn(t) = anEα,1(−μntα) +
∫ t

0

(t − ξ)α−1Eα,α (−μn(t − ξ)α) fn(ξ)dξ.

Hence, from Eq. (2.7), we have

yi(x, t) =
∞∑

n=1

anEα,1(−μntα)ψn,i(x)

+
∞∑

n=1

(∫ t

0

(t − ξ)α−1Eα,α (−μn(t − ξ)α) fn(ξ)dξ

)
ψn,i(x).

(2.13)

After substituting the value of an and fn(t) in Eq. (2.13), we obtain the desired
result.
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3 Existence and Uniqueness Results of a Weak Solution

In this section, the existence and uniqueness of weak solutions will be proved.
Therefore, let us first define the weak solution as follows.

Definition 2. We define y as a weak solution of (1.1)–(1.2) if (1.1) holds in
L2(G) and y(·, t) ∈ V for almost all t ∈ (0, T ) and satisfy

lim
t→0

‖y(·, t) − y0‖L2(G) = 0.

Now we state our first main result as follows.

Theorem 1. Let y0 ∈ L2(G) and f(x, t) ∈ L∞(0, T ;L2(G)). Then there exists a
unique weak solution y ∈ C([0, T ];L2(G))∩C((0, T ];D(−L)) such that CDα

0,ty ∈
L∞(0, T ;L2(G)). Furthermore, there exists a positive constant C1 such that

‖y‖C([0,T ];L2(G)) ≤ C1

(
‖y0‖L2(G) + ‖f‖L∞(0,T ;L2(G))

)
, (3.1)

‖y(·, t)‖∏k
i=1 H2(0,li)

≤ C1

(
‖y0‖L2(G)t

−α + ‖f‖L∞(0,T ;L2(G))

)
. (3.2)

Proof. We will show that y(x, t) = (yi(x, t))k
i=1, where yi(x, t) is given by

Eq. (2.6), is certainly the weak solution of (1.1)–(1.2). We assume C > 0 to
be a generic constant in the following proof. Hence, using Eq. (2.6) and the fact

that
∑k

i=1〈ψn,i, ψm,i〉L2(0,li) =

{
1 if m = n

0 for m �= n
, we have

k∑

i=1

‖yi(·, t)‖2L2(0,li)
=

∞∑

n=1

∣∣〈y0, Ψn〉Eα,1(−μntα)
∣∣2

+
∞∑

n=1

∣∣∣∣
∫ t

0

〈f(·, ξ), Ψn〉(t − ξ)α−1Eα,α (−μn(t − ξ)α) dξ

∣∣∣∣
2

.

Using Propositions 2 and 3, we get

k∑

i=1

‖yi(·, t)‖2L2(0,li)
≤

∞∑

n=1

∣∣〈y0, Ψn〉∣∣2 +
∞∑

n=1

∣∣∣∣
∫ t

0

〈f(·, ξ), Ψn〉 (t − ξ)α−1

Γ (α)
dξ

∣∣∣∣
2

≤ ‖y0‖2L2(G) +
∞∑

n=1

sup
0≤t≤T

|〈f(·, t), Ψn〉|2
(

tα

Γ (α + 1)

)2

≤ ‖y0‖2L2(G) + ‖f‖2L∞(0,T ;L2(G))

T 2α

(Γ (α + 1))2
·

Hence,

‖y(·, t)‖L2(G) ≤ C1

(
‖y0‖L2(G) + ‖f‖L∞(0,T ;L2(G))

)
, t ∈ [0, T ].
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Therefore, y ∈ C([0, T ];L2(G)). Now, it will be shown that y ∈ C((0, T ];D(−L))
and CDα

0,ty ∈ L∞(0, T ;L2(G)). We have

(−M)yi(x, t) =

∞∑

n=1

μn〈y0, Ψn〉Eα,1(−μntα)ψn,i(x)

+

∞∑

n=1

μn

(∫ t

0

〈f(·, ξ), Ψn〉(t − ξ)α−1Eα,α (−μn(t − ξ)α) dξ

)
ψn,i(x).

Now,

‖(−L)y(·, t)‖2
L2(G) =

k∑

i=1

‖(−M)yi(·, t)‖2
L2(0,li)

=
∞∑

n=1

μ2
n

∣∣〈y0, Ψn〉Eα,1(−μntα)
∣∣2

+

∞∑

n=1

μ2
n

∣∣∣∣
∫ t

0

〈f(·, ξ), Ψn〉(t − ξ)α−1Eα,α (−μn(t − ξ)α) dξ

∣∣∣∣
2

.

Also from Propositions 3 and 4
∫ t

0

∣∣ξα−1Eα,α(−μnξα)
∣∣ dξ =

∫ t

0
ξα−1Eα,α(−μnξα)dξ

= − 1

μn

∫ t

0

d

dξ
Eα,1(−μnξα)dξ =

1

μn
(1 − Eα,1(−μntα)) ≤ 1

μn
.

(3.3)

Now, using Eq. (3.3), Proposition 1 and Young inequality for the convolution,
we get

‖(−L)u‖2L2(G) ≤
∞∑

n=1

μ2
n

∣∣〈y0, Ψn〉∣∣2
(

C1

1 + μntα

)2

+
∞∑

n=1

μ2
n sup

0≤t≤T
|〈f(·, t), Ψn〉|2

∣∣∣∣∣

∫ T

0

tα−1Eα,α(−μntα)dt

∣∣∣∣∣

2

.

Hence, we obtain

‖(−L)y‖2L2(G) ≤ ‖y0‖2L2(G)t
−2α + ‖f‖2L∞(0,T ;L2(G)). (3.4)

Since −Ly is convergent in L2(G) uniformly on t ∈ (t0, T ] for any given t0 > 0,
we deduce that −Ly ∈ C((0, T ];L2(G)), that is −Myi ∈ C((0, T ];L2(0, li)),
i = 1, 2 . . . , k and hence y ∈ C((0, T ];D(−L)). Furthermore, we obtain the
following estimate from Eq. (3.4)

‖y(·, t)‖∏k
i=1 H2(0,li)

=
k∑

i=1

‖yi(·, t)‖H2(0,li)

= C ′‖(−L)y(·, t)‖L2(G)

≤ C
(
‖y0‖L2(G)t

−α + ‖f‖L∞(0,T ;L2(G))

)
. (3.5)
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By (1.1), we get CDα
0,ty ∈ L∞(0, T ;L2(G)) and (1.1) holds in L2(G) for t ∈ (0, T ].

Next, we will show that limt→0 ‖y(·, t) − y0‖L2(G) = 0. From Eqs. (2.6) and
(2.10), we have

yi(x, t) − y0
i (x) =

∞∑

n=1

〈y0, Ψn〉 (Eα,1(−μntα) − 1) ψn,i(x)

+
∞∑

n=1

(∫ t

0

〈f(x, ξ), Ψn〉(t − ξ)α−1Eα,α (−μn(t − ξ)α) dξ

)
ψn,i(x).

Hence,

k∑

i=1

‖yi(·, t) − y0
i (·)‖2

L2(0,li)
≤

∞∑

n=1

∣∣〈y0, Ψn〉 (Eα,1(−μntα) − 1)
∣∣2

+
∞∑

n=1

∣∣∣∣
∫ t

0

〈f(x, ξ), Ψn〉(t − ξ)α−1Eα,α (−μn(t − ξ)α) dξ

∣∣∣∣
2

=: V1(t) + V2(t).

Clearly, lim
t→0

V2(t) = 0, using Proposition 3

V1(t) =
∞∑

n=1

∣∣〈y0, Ψn〉 (Eα,1(−μntα) − 1)
∣∣2 ≤ C‖y0‖2L2(G)

and lim
t→0

(Eα,1(−μntα) − 1) = 0. Hence, by using Lebesgue dominated con-

vergence theorem, we have lim
t→0

V1(t) = 0. Hence limt→0

∑k
i=1‖yi(·, t) −

y0
i (·)‖L2(0,li)

= 0, which shows that

lim
t→0

‖y(·, t) − y0‖L2(G) = 0.

Finally, we show the uniqueness of the weak solution to IVP (1.1)–(1.2).

Uniqueness: Under the conditions y0 = 0 and f = 0, we need to show that
system (1.3)–(1.7) has only the trivial solution. On taking the inner product of
(1.1) with Ψn(x), applying Green’s formula and setting yn(t) = (y(·, t), Ψn), we
obtain

CDα
0,ty

n(t) =
∫

G

∂2y(x, t)
∂x2

Ψn(x)dx

=
k∑

i=1

∫ li

0

∂2yi(x, t)
∂x2

ψn,i(x)dx

= −
k∑

i=1

∫ li

0

∂yi(x, t)
∂x

ψ′
n,i(x)dx +

k∑

i=1

∂yi(x, t)
∂x

ψn,i(x)
∣∣∣∣
li

0

.
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Using Eqs. (1.6) and (2.3), we get

k∑

i=1

∂yi(x, t)
∂x

ψn,i(x)
∣∣∣∣
li

0

=
k∑

i=1

∂yi(li, t)
∂x

ψn,i(li) −
k∑

i=1

∂yi(0, t)
∂x

ψn,i(0)

= −
k∑

i=1

∂yi(0, t)
∂x

ψn,i(0) = −φn(0)
k∑

i=1

∂yi(0, t)
∂x

= 0,

where ψn,i(0) = ψn,j(0) = φn(0), i �= j, i, j = 1, 2, . . . , k. Hence, we get

CDα
0,ty

n(t) = −
k∑

i=1

∫ li

0

∂yi(x, t)
∂x

ψ′
n,i(x)dx

=
k∑

i=1

∫ li

0

yi(x, t)ψ
′′
n,i(x)dx −

k∑

i=1

yi(x, t)ψ′
n,i(x)

∣∣∣∣
li

0

.

Again using Eqs. (1.5) and (2.4) and a similar approach as above, we get

k∑

i=1

yi(x, t)ψ′
n,i(x)

∣∣∣∣
li

0

= 0.

Therefore,

CDα
0,ty

n(t) =
k∑

i=1

∫ li

0

yi(x, t)ψ
′′
n,i(x)dx

= − μn

k∑

i=1

∫ li

0

yi(x, t)ψn,i(x)dx = −μn〈y(·, t), Ψn〉.

Hence, we get the following initial value fractional differential equation
{

CDα
0,ty

n(t) = −μnyn(t), t ∈ (0, T ),
yn(0) = 0.

Due to the existence and uniqueness of the above fractional differential equation,
we get that yn(t) = 0, n = 1, 2, · · · . Since Ψn forms a complete orthonormal basis
of L2(G), we get y = 0 in G × (0, T ).

Theorem 2. Let y0 ∈ V , f(x, t) ∈ L∞(0, T ;L2(G)). Then there exists a unique
weak solution y ∈ L2((0, T ];D(−L)) such that CDα

0,ty ∈ L2(G × (0, T )) and the
following inequality holds:

‖y‖L2((0,T ];
∏k

i=1 H2(0,li))+‖CDα
0,ty‖L2(G×(0,T )) ≤ C

(
‖y0‖V + ‖f‖L∞(0,T ;L2(G))

)
.

(3.6)
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Proof. We have,

‖(−L)y(·, t)‖2L2(G) =
∞∑

n=1

∣∣μn〈y0, Ψn〉Eα,1(−μntα)
∣∣2

+
∞∑

n=1

μ2
n

∣∣∣∣
∫ t

0

〈f(·, ξ), Ψn〉(t − ξ)α−1Eα,α (−μn(t − ξ)α) dξ

∣∣∣∣
2

.

Now, using Proposition 1 and Young inequality for the convolution, we get

‖(−L)y(·, t)‖2L2(G) ≤
∞∑

n=1

μn

∣∣〈y0, Ψn〉∣∣2
(

C1
√

μn

1 + μntα

)2

+
∞∑

n=1

μ2
n sup

0≤t≤T
|〈f(·, t), Ψn〉|2

∣∣∣∣∣

∫ T

0

tα−1Eα,α(−μntα)dt

∣∣∣∣∣

2

=
∞∑

n=1

μn

∣∣〈y0, Ψn〉∣∣2
(

C1
√

μntα

1 + μntα

)2

t−α

+
∞∑

n=1

μ2
n sup

0≤t≤T
|〈f(·, t), Ψn〉|2

∣∣∣∣∣

∫ T

0

tα−1Eα,α(−μnξα)dt

∣∣∣∣∣

2

≤ C‖y0‖2V t−α + ‖f‖2L∞(0,T ;L2(G)),

where we have used Eq. (3.3). Hence,

‖y‖2L2((0,T ];
∏k

i=1 H2(0,li)) =
∫ T

0

‖y(·, t)‖2∏k
i=1 H2(0,li)

dt

≤
∫ T

0

(
C‖y0‖2V t−α + ‖f‖2L∞(0,T ;L2(G))

)
dt

=
CT 1−α

1 − α
‖y0‖2V + T‖f‖2L∞(0,T ;L2(G))

≤ C1

(
‖y0‖2V + ‖f‖2L∞(0,T ;L2(G))

)
.

Therefore, we have y ∈ L2((0, T ];D(−L)). Now, using Proposition 5 and Lemma
2.8 in [16], we have

CDα
0,tyi(x, t) = −

∞∑

n=1

μn〈y0, Ψn〉Eα,1(−μntα)ψn,i(x) +
∞∑

n=1

〈f(x, t), Ψn〉ψn,i(x)

−
∞∑

n=1

μn

(∫ t

0

〈f(x, ξ), Ψn〉(t − ξ)α−1Eα,α (−μn(t − ξ)α) dξ

)
ψn,i(x).
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Hence,

k∑

i=1

‖CDα
0,tyi(·, t)‖2

L2(0,li)
≤

∞∑

n=1

∣∣μn〈y0, Ψn〉Eα,1(−μntα)
∣∣2 +

∞∑

n=1

|〈f(x, t), Ψn〉|2

+
∞∑

n=1

μ2
n

∣∣∣∣
∫ t

0

〈f(x, ξ), Ψn〉(t − ξ)α−1Eα,α (−μn(t − ξ)α) dξ

∣∣∣∣
2

≤
∞∑

n=1

μn

∣∣〈y0, Ψn〉∣∣2
(

C1
√

μntα

1 + μntα

)2

t−α +
∞∑

n=1

|〈f(x, t), Ψn〉|2

+

∞∑

n=1

μ2
n sup

0≤t≤T
|〈f(·, t), Ψn〉|2

∣∣∣∣
∫ T

0

tα−1Eα,α(−μntα)dt

∣∣∣∣
2

.

Again, using Eq. (3.3), we obtain

‖CDα
0,ty(·, t)‖2L2(G) =

k∑

i=1

‖CDα
0,tyi(·, t)‖2L2(0,li)

≤ C‖y0‖2V t−α + ‖f(·, t)‖2L2(G) + ‖f‖2L∞(0,T ;L2(G))

≤ C1

(
‖y0‖2V t−α + ‖f‖2L∞(0,T ;L2(G))

)
.

Since 0<α<1, we see that ‖CDα
0,ty‖L2(G×(0,T ))≤C

(
‖y0‖V + ‖f‖L∞(0,T ;L2(G))

)
.

Therefore, we have CDα
0,ty ∈ L2(G × (0, T )).

The proof of limt→0 ‖y(·, t)−y0‖L2(G) = 0 and uniqueness of weak solution is
similar to the one derived in the proof of Theorem 1. Thus, the proof of Theorem
2 is complete.

Theorem 3. Let y0 ∈ D(−L), f(x, t) ∈ L∞(0, T ;L2(G)). Then there exists a
unique weak solution y ∈ C([0, T ];L2(G))∩C((0, T ];D(−L)) such that CDα

0,ty ∈
L2(G × (0, T )). Furthermore, there exists a positive constant C1 such that

‖y‖C([0,T ];
∏k

i=1 H2(0,li))
+ ‖CDα

0,ty‖L2(G×(0,T ))

≤ C1

(
‖y0‖∏k

i=1 H2(0,li)
+ ‖f‖L∞(0,T ;L2(G))

)
.

(3.7)

Proof. Under the assumption y0 ∈ D(−L), using Proposition 4, Proposition 3
and Young inequality for the convolution, we get

‖(−L)y(·, t)‖2L2(G) =
∞∑

n=1

μ2
n

∣∣〈y0, Ψn〉Eα,1(−μntα)
∣∣2

+
∞∑

n=1

μ2
n

∣∣∣∣
∫ t

0

〈f(·, ξ), Ψn〉(t − ξ)α−1Eα,α (−μn(t − ξ)α) dξ

∣∣∣∣
2
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≤
∞∑

n=1

μ2
n

∣∣〈y0, Ψn〉∣∣2

+
∞∑

n=1

μ2
n sup

0≤t≤T
|〈f(·, t), Ψn〉|2

∣∣∣∣∣

∫ T

0

tα−1Eα,α(−μntα)dt

∣∣∣∣∣

2

≤ ‖y0‖2∏k
i=1 H2(0,li)

+ ‖f‖2L∞(0,T ;L2(G)).

Hence, y(·, t)‖∏k
i=1 H2(0,li)

≤ C
(
‖y0‖∏k

i=1 H2(0,li)
+ ‖f‖L∞(0,T ;L2(G))

)
. Now,

k∑

i=1

‖CDα
0,tyi(·, t)‖2

L2(0,li)
≤

∞∑

n=1

μ2
n

∣∣〈y0, Ψn〉Eα,1(−μntα)
∣∣2 +

∞∑

n=1

|〈f(x, t), Ψn〉|2

+

∞∑

n=1

μ2
n

∣∣∣∣
∫ t

0

〈f(x, ξ), Ψn〉(t − ξ)α−1Eα,α (−μn(t − ξ)α) dξ

∣∣∣∣
2

≤
∞∑

n=1

μ2
n

∣∣〈y0, Ψn〉∣∣2 +
∞∑

n=1

|〈f(x, t), Ψn〉|2

+

∞∑

n=1

μ2
n sup

0≤t≤T
|〈f(·, t), Ψn〉|2

∣∣∣∣
∫ T

0

tα−1Eα,α(−μntα)dt

∣∣∣∣
2

.

Using Eq. (3.3), we obtain

‖CDα
0,ty(·, t)‖2L2(G) =

k∑

i=1

‖CDα
0,tyi(·, t)‖2L2(0,li)

≤ ‖y0‖2∏k
i=1 H2(0,li)

+ ‖f(·, t)‖2L2(G) + ‖f‖2L∞(0,T ;L2(G))

≤ ‖y0‖2∏k
i=1 H2(0,li)

+ C‖f‖2L∞(0,T ;L2(G)).

Hence,

‖CDα
0,ty‖2L2(G×(0,T )) =

∫ T

0

‖CDα
0,ty(·, t)‖2L2(G)dt

≤ T
(
‖y0‖2∏k

i=1 H2(0,li)
+ C‖f‖2L∞(0,T ;L2(G))

)

≤ C1

(
‖y0‖2∏k

i=1 H2(0,li)
+ ‖f‖2L∞(0,T ;L2(G))

)
.

In view of above theorems the following results are immediate.

Corollary 1. Let y0 ∈ L2(G) and f = 0. Then we obtain the following estimate
for the unique weak solution y ∈ C([0, T ];L2(G)) ∩ C((0, T ];D(−L)):

‖y(·, t)‖L2(G) ≤ C

1 + μ1tα
‖y0‖L2(G), t ∈ (0, T ). (3.8)
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Corollary 2. Let y0 ∈ D(−L) and f = 0. Then there exists a positive constant
C1 such that

‖y(·, t)‖∏k
i=1 H2(0,li)

+ ‖CDα
0,ty(·, t)‖L2(G) ≤ C1

1 + μ1tα
‖y0‖∏k

i=1 H2(0,li)
, t ∈ (0, T ).

(3.9)

4 Conclusion and Future Work

In this paper, the existence and uniqueness of time-fractional diffusion equation
on a star graph has been investigated. By using the method of eigenfunction
expansion the existence and uniqueness of the weak solution and the regularity
of the solution are derived. In future, we investigate the numerical solution of
time-fractional diffusion equation on a metric star graph using finite difference
approximation.
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& Applications, Birkhäuser Boston Inc., Boston (1994). https://doi.org/10.1007/
978-1-4612-0273-8

15. Li, L., Jin, L., Fang, S.: Existence and uniqueness of the solution to a coupled
fractional diffusion system. Adv. Differ. Equ. 2015(1), 1–14 (2015). https://doi.
org/10.1186/s13662-015-0707-0

16. Li, Y.S., Wei, T.: An inverse time-dependent source problem for a time-space
fractional diffusion equation. Appl. Math. Comput. 336, 257–271 (2018)

17. Luchko, Y.: Maximum principle for the generalized time-fractional diffusion equa-
tion. J. Math. Anal. Appl. 351, 218–223 (2009)

18. Luchko, Y.: Some uniqueness and existence results for the initial-boundary value
problems for the generalized time-fractional diffusion equations. Comput. Math.
Appl. 59, 1766–1772 (2010)

19. Luchko, Y.: Anomalous diffusion: models, their analysis, and interpretation. In:
Rogosin, S., Koroleva, A. (eds.) Advances in Applied Analysis, pp. 115–145.
Springer, Basel (2012). https://doi.org/10.1007/978-3-0348-0417-2 3

20. Lumer, G.: Connecting of local operators and evolution equations on a network.
Lect. Notes Math. 787, 219–234 (1980)

21. Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation.
Appl. Math. Lett. 9, 23–28 (1996)

22. Mehandiratta, V., Mehra, M., Leugering, G.: An approach based on Haar wavelet
for the approximation of fractional calculus with application to initial and bound-
ary value problems. Math. Methods Appl. Sci. 44, 3195–3213 (2020)

23. Mehandiratta, V., Mehra, M., Leugering, G.: Fractional optimal control problems
on a star graph: optimality system and numerical solution. Math. Control Related
Fields 11, 189–209 (2021)

24. Mehandiratta, V., Mehra, M., Leugering, G.: Existence and uniqueness results for
a nonlinear Caputo fractional boundary value problem on a star graph. J. Math.
Anal. Appl. 477, 1243–1264 (2019)

25. Mehandiratta, V., Mehra, M., Leugering, G.: Existence results and stability anal-
ysis for a nonlinear fractional boundary value problem on a circular ring with
an attached edge: A study of fractional calculus on metric graph. Netw. Heterog.
Media. 16, 155–185 (2021)

26. Mehra, M., Mallik, R.K.: Solutions of differential-difference equations arising from
mathematical models of granulocytopoiesis. Differ. Equ. Dyn. Syst. 22(1), 33–49
(2014)

27. Mophou, G., Leugering, G., Fotsing, P.S.: Optimal control of a fractional Sturm-
Liouville problem on a star graph. Optimization 70, 659–687 (2020)

28. Mugnolo, D.: Gaussian estimates for a heat equation on a network. Netw. Hetero-
gen. Media 2, 55–79 (2007)

https://doi.org/10.1007/978-3-642-66282-9
https://doi.org/10.1007/978-1-4612-0273-8
https://doi.org/10.1007/978-1-4612-0273-8
https://doi.org/10.1186/s13662-015-0707-0
https://doi.org/10.1186/s13662-015-0707-0
https://doi.org/10.1007/978-3-0348-0417-2_3


Fractional Diffusion Equation on a Metric Star Graph 41

29. Nicaise, S.: Some results on spectral theory over networks, applied to nerve impulse
transmission. In: Brezinski, C., Draux, A., Magnus, A.P., Maroni, P., Ronveaux,
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Abstract. Numerical diffusion plays an important role in deciding the
characteristics of numerical schemes for flow problems containing dis-
continuities. In this work, we attempt to learn the numerical viscos-
ity of underlying three-point shock-capturing schemes using non-linear
regression neural network in a supervised learning paradigm. Details on
network architecture, used data type and training are elaborated. Com-
puted results by underlying schemes using exact numerical diffusion and
predicted diffusion by trained network are given and compared. These
results show that the network gives a good approximation of numerical
diffusion and computed solutions are indistinguishable from the solution
using exact numerical diffusion.

1 Introduction

Hyperbolic conservation laws are an important class of problems in engineering
and sciences. They are a natural model for many physical phenomena for example
fluid flow problem, nonlinear acoustic, atmospheric modeling. Let Ω ⊂ R then
in 1D setting conservation laws can be written in the form

ut + f(u)x = 0, (x, t) ∈ Ω × R
+ (1.1)

along with the initial condition u(x, 0) = u0(x). Variable u : R → R is said
to be the vector of conserved quantity and f : R → R is known as associated
non-linear flux function of u. It is well known that finding a closed-form solution
of (1.1) is not always possible due to the nonlinearity of the flux function. In
fact, even with a smooth initial condition, solution of (1.1) develops disconti-
nuities like shocks and rarefaction in finite time which makes even the numeri-
cal approximation of its solution very tedious. In particular, many well known
classical schemes fail to crisply resolve these discontinuities without spurious
oscillations and often converge to nonphysical weak solution [Smo12,DDD+05].
c© Springer Nature Singapore Pte Ltd. 2021
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A few theoretical attempts are made to define a framework for the physically
correct solution for systems of conservation laws e.g., vanishing viscosity solu-
tion [BB05] and entropy stable solutions [Lax73] etc. These challenges lead to
the development of several shock capturing methods for solving conservation
laws in the past few years. Some of the classical shock capturing methods are
Lax–Wendroff, Lax-Friedrich, and MacCormack method [Lan98]. Examples of
modern shock-capturing schemes which formally high order, non-oscillatory, and
give high resolution for discontinuities are limiters based second-order total varia-
tion diminishing schemes [Har83,Swe84,TB00], essentially non-oscillatory(ENO)
scheme proposed by Harten et al. [HEOC87], WENO scheme [LOC+94,Shu12].
These methods although are interesting in their approach but the core underly-
ing feature is their adaptive nature. In other words, to avoid Gibbs oscillations
near discontinuities limiters based high-resolution schemes use adaptive artifi-
cial numerical viscosity whereas schemes like ENO or WENO use an adaptive
stencil or adaptive weights respectively. In this work, we focus on the classical
and modern three points finite-difference shock-capturing schemes.

2 Finite Difference Discretization

In order to get finite difference (volume) scheme we discretize the spatial domain
Ω in the form of intervals Ii = [xi− 1

2
, xi+ 1

2
] with uniform spacing �x = xi+ 1

2
−

xi− 1
2

so that xi is the center of Ii, time domain [0, T ] is discretize with uniform
spacing �t such that T = n�t ,where n is the number of time steps. A scheme
to solve (1.1) in conservative form is given by following equation.

un+1
i = un

i − �t

�x
(Fn

i+ 1
2

− Fn
i− 1

2
), (2.1)

where un
i = u(xi, t

n) is grid function, Fn
i+ 1

2
is a consistent numerical flux such

that Fn
i+ 1

2
(u, u...u) = f(u). On dropping the superscript n for time level, for

scalar conservation laws numerical flux of any centred three points scheme can
be written as

Fi+ 1
2

= f̄i+ 1
2

− 1
2
Di+ 1

2
(ui+1 − ui) (2.2)

where f̄i+ 1
2

= fi+fi+1
2 , fi = f(ui) and D is the coefficient of numerical viscosity

which determines the shock-capturing nature of the numerical approximation by
the resulting scheme. In particular, the presence of excessive numerical diffusion
makes the underlying scheme too diffusive to capture the discontinuities whereas
insufficient diffusion causes oscillatory approximation of the discontinuities. Clas-
sical shock capturing methods like first-order Lax Friedrichs and second-order
Lax-Wendroff use the fixed amount of diffusion (at least in linear case) whilst
high-resolution shock-capturing schemes use nonlinear diffusion depending on
the regularity of the solution. In fact, a key point in the shock-capturing ability
of the resulting scheme is the choice of suitable numerical diffusion.
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Recently, artificial neural networks (ANNs) are applied for the computation
of solutions of partial differential equations. These neural networks of compu-
tational models are capable of learning any input-output function containing a
high degree of non-linearity and complexity. These networks are although sim-
ple, yet powerful function approximator [Hor91]. Once trained on a suitable
data-set they can be used to make predictions for unknown data generally said
to be test data set. Due to this capability of generalization they are used as
universal black boxes in many applications such as speech recognition, image
segmentation, medical imaging, etc. Few recent applications are neural networks
as trouble cell detector [RH18] in RKDG solver, in a recent work Discacciati
et al. [DHR20] used a regression type ANN to learn artificial viscosity in DG
scheme. Recently a novel ANN called PINN (Physics informed neural network)
is introduced in [RPK17] for learning PDEs from data.

In this work, our goal is to study and implement ANN for learning numerical
viscosity of three points shock-capturing schemes. For this, we rely on a specific
architecture of ANNs called Multi-layer perception(MLP). In the MLP network,
neurons are arranged in a fashion called layers the data fed to the network
process from the input layer to the output layer through hidden layers. The
costly training of the network is done offline using a suitably designed data-set.
The trained network is used in the numerical solver.

3 Shock Capturing Schemes

In this section, numerical flux of a few representative three point schemes are
considered in diffusion form (2.2). Let λ = �t

�x where the time step �t is deter-
mined by the relationship �t = �x

maxu(|f ′ (u)|) .

3.1 Local Lax-Friedrich Scheme

The finite difference Local Lax -Friedrich numerical flux [Hes17] is given by

Fn
i+ 1

2
=

1
2
(f(un

i+1) + f(un
i )) − α

2
(ui+1 − ui) (3.1)

where α = max
j=i,i+1

(|f ′
(uj)|). On comparison the Eq. (3.1) with the dissipation

form (2.2) we get dissipation coefficient to be DLxF = α.

3.2 Lax-Wendroff Scheme

Lax -wendroff numerical flux is given by

Fn
i+ 1

2
=

1
2
(f(un

i+1) + f(un
i )) − λ

2
f

′
(ūi+ 1

2
)(f(un

i+1) − f(un
i )), (3.2)

where λ = �t
�x and ūi+ 1

2
= (ui+1+ui)

2 . By using above flux in Eq. (2.1) we get
the desired scheme. Upon comparing the above flux with form (2.2) we get the
non-linear dissipation coefficient D.
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3.3 Entropy Stable TVD Scheme

It is well known that the solution of conservation law (1.1) develops discontinuity
in finite time due to non-linearity that is why we need to extend the notion
of solution to the more general class of solution called a weak solution. Weak
solutions are generally non-unique and a physically relevant weak solution needs
to satisfy an additional entropy inequality given by,

ηt + q(u)x ≤ 0, (3.3)

where η ≡ η(u) is convex function, said to be entropy function and q(u) is known
as entropy flux. They satisfy the following compatibility condition

vT fu = qT
u (3.4)

v = ηu called entropy variable. Scheme (2.1) is said to be entropy conservative if
solution satisfies following semi-discrete entropy equation

dη(ui(t))
dt

+
1

�x
(q̂i+ 1

2
− q̂i− 1

2
) = 0 (3.5)

where ui(t) is grid value of u at (xi, t), q̂i+ 1
2

is numerical entropy flux consistent
with q that is,

q̂i+ 1
2

= q̂(u, u, ...., u) = q(u) (3.6)

One method to make entropy conservative scheme is to find numerical flux F ∗
i+ 1

2

which satisfies following relation refer [Tad87]

[v]i+ 1
2

· F ∗
i+ 1

2
= [ψ]i+ 1

2
, [ψ]i+ 1

2
= ψi+1 − ψi (3.7)

where ψ given as

ψ(v) = v · g(v) − q(u(v)), g(v) ≡ f(u(v)). (3.8)

However, a scheme using entropy conservative flux F ∗ may give oscillation near
shock which can be overcome by adding positive diffusion term in the flux. The
resulting entropy stable flux can be written in the form

Fi+ 1
2

= F ∗
i+ 1

2
− 1

2
D̃i+ 1

2
[v]i+ 1

2
, D̃i+ 1

2
> 0 (3.9)

where D̃i+ 1
2

is diffusion matrix. On writing it in viscosity form (2.2) we get

Fi+ 1
2

= f̄i+ 1
2

− 1
2
Di+ 1

2
[v]i+ 1

2
, (3.10)

The above flux (3.9) result in to entropy stable and TVD scheme for following
choices of diffusion coefficients D refer [DB18].

D1
i+ 1

2
= |bi+ 1

2
| + |Q∗

i+ 1
2
| + Q∗

i+ 1
2

(3.11a)

D2
i+ 1

2
= |bi+ 1

2
| +

(
−Q∗

i+ 1
2

)+

+ Q∗
i+ 1

2
(3.11b)

D3
i+ 1

2
=

(
|bi+ 1

2
| − Q∗

i+ 1
2

)+

+ Q∗
i+ 1

2
(3.11c)
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where z+ = (z+|z|)
2 and Q∗

i+ 1
2

is said to be numerical viscosity which is given by

Q∗
i+ 1

2
=

∫ ξ= 1
2

ξ=− 1
2

(
1
4

− ξ2
)

g
′′
(vi+ 1

2
(ξ))dξ · [v], vi+ 1

2
(ξ) = v̄i+ 1

2
+ ξ[v]i+ 1

2
(3.12)

where g is defined in (3.8) and bi+ 1
2

=
[f ]

i+1
2

[v]
i+1

2

. For scalar conservation laws choice

of entropy function η = u2/2 leads to easily computable expression for b and
Q∗ in the diffusion coefficients (3.11). In particular for inviscid Burgers equation
they are defined as

bi+ 1
2

= ūi+ 1
2

(3.13a)

Q∗
i+ 1

2
=

1
12

(ui+1 − ui) (3.13b)

4 Artificial Neural Networks (ANNs)

Artificial neural networks are computational models mimicking the behavior of
the human brain. They process the information with the help of simple units
called neurons in a similar way the biological neurons do in the human brain.
Each neuron is connected by edges called connections in this way they form
a parallel processing network. The arrangement of neurons defines the type of
network architecture. We describe here simple yet the powerful architecture of
neural networks called multi-layer perceptions (MLPs). In MLPs, neurons are
grouped in layers. The first layer is said to be a source (input) layer made of
nI number of neurons and the last layer is called the output layer containing
nO number of neurons. All the M ≥ 1 layers between input and output layers
are called hidden layers made of nm

H number of neurons (m = 1, 2....,M). In
fully connected MLP, each neuron in a layer is connected to the neurons in the
immediate next layer as shown in Fig. 1.

Fig. 1. An MLP with one hidden layer. Number of neurons nI = 2 nH = 20 and
nO = 1.
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4.1 Network Training

There are several paradigm of learning we focus here on supervised one. In the
supervised learning the input for each forward pass through network and target
values are given a priory. In this setting, approximation of a nonlinear function
Φ : RnI → R

no can be considered as a neural network map N
N : RnI → R

nO s.t. ŷi = N (xi;W, b) (4.1)

where the input data is X = {x1, x2, . . . , xN} and corresponding target values
Y = {y1, y2, . . . yN} are such that yi = Φ(xi). Note that, each sample (xi, yi) ∈
R

nI ×R
no , i = 1, 2, . . . N . The learnable/trainable parameters W and b are called

weight and bias of the network. In order to get a good approximation of the non-
linear function Φ, the weights and biases of neural network N are trained so that
N (X;W, b) ≈ Φ(X)).

The parameter training aims to minimize the difference between the predicted
value Ŷ = N (X;W, b) and the target truth value Y = Φ(X). This is done
by minimizing a suitable cost function C(Y, Ŷ ) with respect to the network
parameters W and b. The idea is to train the network by optimal values of
weights and biases of the network connections so that it minimizes C for the
training data-set T fed into it.

The minimization of the cost function C is done by an iterative process called
gradient descent based back-propagation algorithm. In simple word, the elements
of weights and bias matrices are updated as

wk
i,j = wk

i,j − η
∂C

∂wi,j
(4.2a)

bk
i = bk

i − η
∂C
∂bi

(4.2b)

where wk
i,j is weight for node j in layer lk for incoming node i, bk

i is the associated
bias and η is the learning rate. The trained network is tested on validation
and test data which is outside the train data to determine its generalization
performance. This helps to avoid over-fitting, this property of the network is
called generalization for further details of ANNs see [GBC16,Kri05].

5 Viscosity Network

5.1 Network Architecture

We took a MLP network with one hidden layer as shown in Fig. 1 consist of
n1

H = 20 neurons, input layer with nI = 2 neuron ,output layer has nO = 1
neuron. For calculating discrepancy in the prediction of the network with respect
to actual output we chose Mean square error (MSE) loss as cost function C(y, ŷ).

C(y, ŷ) =
1
n

n∑
1

(yi − ŷi)2 (5.1)
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where n is sample size. In order to introduce non-linearity in the network Relu
as non-linear activation function [NH10,HSM+00] is used and shown in Fig. 2.
The Adam optimization algorithm for training the MLP network is used. Note
that Adam is an extension of stochastic gradient descent optimization [KB14].
In it, the entire training and validation data is divided into small batches and
then pass into the training loop. Once the whole training set is exhausted, the
training is said to have completed one epoch.

Fig. 2. Relu activation function, Relu(x) = max(x, 0).

5.2 Training and Validation Data Creation

The viscosity (diffusion) coefficient in the considered numerical fluxes can be
viewed as a mapping α : R2 → R. The input to network is given pairwise data
u = (ui, ui+1), i = 1, 2, ...N , where N is the number of samples. The input data
X is generated through

• Smooth functions Si(x), jump functions Ji(x) and their combinations.
• Random variants of smooth jump function i.e., miSi(x) kiJi(x), where ki,mi

are random numbers from a Gaussian distribution and i = 1, 2...N for some
fixed N .

The target data Y is generated using the diffusion coefficients of respective fluxes
defined in Eqs. (3.1), (3.2), (3.11). In order to train and validate the neural net-
work, the generated data set D = (X,Y ) with approximately 62, 000 samples is
divided in to the train data T = (Xt, Yt) and validation data V = (Xv, Yv) in
70% and 30% ratios respectively. The trained model is saved for best validation
accuracy i.e., for which the cost C(yv, ŷv) is minimum. This is one of the proven
and tested approach to train the network without over-fitting with respect to
training data T. It is needed to be emphasized that in the field of machine learn-
ing the standard prevailing practice is to use normalized/scaled data a priory.
However, since the considered network in this work has two input neurons, there-
fore underlying networks for each diffusion could be trained efficiently with raw
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data without any scaling. This makes the application of a trained network more
efficient when it comes to numerical computation as there also scaling and the
re-scaling step is omitted. The entire code for network training is written using
PyTorch API [PGC+17] https://pytorch.org/. The learning rate in Adams opti-
mizer is set to η = 10−3 with all other arguments are set to default. The train
batch size is 1024 and validation batch size 256 is used.

6 Numerical Results

We have given various numerical tests for scalar conservation laws to see the
performance of the network in predicting the numerical diffusion. We consider the
transport equation with constant speed 1 and Burger’s equation with periodic
boundary conditions. The training and validation loss plots of all the trained
diffusion networks are given in Fig. 3 and Fig. 4. The trained network is used
in Python codes of numerical schemes We followed few conventions to represent
solutions by numerical schemes using exact diffusion coefficient and predicted
one by the network, which are given by following

• For Entropy stable TVD scheme with diffusion D1
i+ 1

2
, D3

i+ 1
2

labels ESTVD1
and ESTVD3 respectively are used whereas Lax-Wendroff and local Lax-
Friedrichs scheme are represented by LxW and LLxF respectively.

• For the solutions calculated by using the network we use NN LxW and
NN LLxF for Lax-Wendroff and Lax-Friedrich scheme for ESTVD1 and
ESTVD3 we used NN ESTVD1 and NN ESTVD3.

• To represent the training and validation loss of network we use notations
train loss and val loss respectively.

6.1 Network Loss Plots

Fig. 3. Loss plot of the viscosity network trained for the Advection equation with LxF
scheme (left), LxW sxcheme (right)

https://pytorch.org/
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Fig. 4. Loss plots of the viscosity networks trained for Burger’s equation with LLxF
scheme (left), LxW scheme (right)

Fig. 5. Loss plots of the viscosity networks trained for Burger’s equation with ESTVD1
scheme (left), ESTVD2 scheme (right)

6.2 Solution of Scalar Conservation Law

6.2.1 Advection Equation
The first set of test problems considered is following scalar Advection equation

ut + ux = 0 (6.1)

with following two initial conditions

u0(x) = sin(πx) (6.2)

u0(x) =

{
1, if |x| < 1/3.

0, otherwise.
(6.3)

we have taken CFL = 0.5 and final time T = 4 for the smooth initial con-
dition (6.2). Solution is calculated using Lax-Friedrichs scheme, Lax-Wendroff
scheme with exact and predicted diffusion by neural network(NN). Computed
and exact solutions are shown in left side of the Fig. 6 and 7.



Learning Numerical Viscosity Using Artificial Neural Regression Network 51

Similarly the solution at time T = 2 and CFL = 0.5, with respect to the (6.3)
is shown in right side of Fig. 6 and 7.

Fig. 6. Solution of Advection equation using Lax-Friedrichs scheme and trained net-
work with initial conditions (6.2) (left), (6.3) (right).

Fig. 7. Solution of Advection equation using Lax-Wendroff scheme and trained network
with initial conditions (6.2) (left), (6.3) (right).

Note that, the solutions of the transport equation is simply a translation of
initial data by fixed speed here f ′(u) = 1. The computed solutions obtained
by LxF is diffusive whereas the solution obtained by LxW is oscillatory near
discontinuity as expected.

6.2.2 Burger’s Equation
In the second test we take Burger’s equation

ut +
(

u2

2

)

x

= 0 (6.4)

with following initial condition

u0(x) =

{
1, if |x| < 1/3.

0, otherwise.
(6.5)
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The initial condition defined above introduces a steady shock and a rarefaction in
its solution. Numerical results are given in Fig. 8 calculation are performed with
CFL = 0.5 and final time T = 0.3. The solution by Local Lax-Friedrichs scheme
is diffusive whereas solution by LxW scheme is oscillatory around discontinuities.
Our network, in this case, is trained for 500 epochs the corresponding loss plots
are given in Fig. 4.

Fig. 8. Solution of Burger’s equation using networks and the LxW scheme (right),
LLxF scheme (left)

We perform another test with Burgers equation with following smooth initial
condition

u0(x) =
1
2

+ sin(πx) (6.6)

the solution by above condition gives left moving shock after finite time. The
computed solution by Local Lax Friedrichs scheme using CFL = 0.5 at final
time T = 0.5 are shown in Fig. 9.

Fig. 9. Solution of Burger’s equation using network and LLxF scheme
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The networks to learn numerical viscosity of ESTVD schemes are trained for
500 epochs and the loss plots are shown in Fig. 5. Solution using ESTVD1 and
ESTVD3 for Burgers equation with initial condition (6.5) are given in Fig. 10
using CFL = 0.3 at final time T = 0.3. Similarly the solution by ESTVD1
and ESTVD3 corresponding to initial condition (6.6) are given in Fig. 11 using
CFL = 0.5 at final time T = 0.5.

Fig. 10. The solution of Burger’s equation with ESTVD1, ESTVD3 and corresponding
networks for 6.3

Fig. 11. Solution of Burger’s equation by using ESTVD1 (left), ESTVD3 (right) and
networks corresponding to initial condition (6.6)

In another test, consider the Burgers equation with initial condition

u0(x) = −sin(πx), x ∈ [−1, 1] (6.7)

The solution of Burgers equation with above initial condition develops a sta-
tionary shock centerd at x = 0. The computed solutions by ESTVD1 and
ESTVD3 for Burgers equation with initial condition (6.7) are given in Fig. 12
using CFL = 0.5 at final time T = 0.5.
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Fig. 12. Solution of Burger’s equation by using ESTVD1 (left), ESTVD3 (right) and
networks, for 6.7

Note that all the presented results in this section show that numerical solution
by underlying three-point schemes using exact numerical and predicted diffusion
using trained networks has a very good agreement and almost indistinguishable.

7 Concluding Remarks

In this work, a numerical diffusion network of multi-layer perception type is
designed and implemented for non-linear regression to learn the numerical dif-
fusion of shock-capturing schemes. Computed results show that the proposed
model works well in approximating the solution of scalar hyperbolic conservation
laws. This work is being extended to learn more complex diffusion coefficients
in high order schemes for systems.
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Abstract. In this work, we initially construct three finite difference
methods in order to solve the 1D Generalized Burgers-Huxley (GBH)
equation which consists of advective, dissipative and reactive terms. We
considered a numerical experiment where the coefficients of advective
and reactive parameters are equal. These methods are two versions of
non-standard finite difference and an explicit exponential finite differ-
ence method. Satisfactory results are obtained. To improve the results,
each scheme is modified by using the technique of remainder effect. The
modified schemes proved to be very efficient. By computing the L1 and
L∞ errors as well as CPU time and rate of convergence, the performance
of all the schemes are analysed.

Keywords: Generalized Burgers-Huxley equation · Nonstandard finite
difference method · Explicit exponential finite difference method · Rate
of convergence · L1 and L∞ errors

1 Introduction

The Generalized Burgers-Huxley equation which can be seen as the prototype
for describing the relations between convection, reaction and diffusion is of great
scientific and engineering importance. Some of the methods used for obtaining
approximate and numerical solutions to the GBH equation are variational itera-
tion method [1], adomian decomposition method [2] to list but a few. İnan [3] con-
structed an explicit exponential finite difference scheme (EEFDM) to solve the
generalized Huxley and Burgers-Huxley equations. Zibaei et al. [4] constructed
nonstandard finite difference method and a finite difference method using the
exact solution to solve Burgers-Huxley equation. Recently, Appadu et al. [5] con-
structed four numerical methods to solve Burgers-Huxley equation and this was
the first time that a comparison was made between nonstandard and exponential
finite difference methods. The use of both nonstandard and exponential finite
difference methods are very new for the Burgers-Huxley equation.
c© Springer Nature Singapore Pte Ltd. 2021
A. Awasthi et al. (Eds.): CSMCS 2020, CCIS 1345, pp. 56–67, 2021.
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In this work, we solve the generalized Burgers-Huxley equation which is given
by

ut = uxx − αuδux + βu(1 − uδ)(uδ − γ), (1)

for x ∈ [0, 1] and t ∈ [0, 1.0] subject to the initial condition u(x, 0) = (γ
2 +

γ
2 tanh{σγx})

1
δ , where α > 0, β > 0, 0 < γ < 1 and δ > 0 is a positive

constant, σ =
δ(ρ − α)
4(1 + δ)

and ρ =
√

α2 + 4β(1 + δ). α, β are the coefficients of

advection and reaction respectively and γ is the species carrying capacity. The
exact solution to Eq. (1) is obtained from Wang et al. [6] and lies in the interval
(0, γ

1
δ ). In this study, we work with δ = 4, α = 1.0, β = 1.0 and γ = 0.01.

The time of the experiment is Tmax = 1.0. The performance of the methods was
measured by computing L1 and L∞ errors as well as the rate of convergence
(using L∞ norm) in time as follows:

L1 = h

N∑

j=1

|u (xj , tn) − U (xj , tn)| , (2)

L∞ = max |u (xj , tn) − U (xj , tn)| , (3)

and

Rt =
log(ed/e2d)

log 2
, (4)

where e2d and ed are the L∞ errors corresponding to the number of grid points
2d and d respectively.

Tables 1, 2, 3, 4, 5 and 6 show the L1, L∞ errors and rate of convergence in
time. Figures 1, 2, 3, 4, 5 and 6 shed light on the performance of the schemes.

2 Nonstandard Finite Difference Scheme (NSFD)

The derivations are mostly based on the idea of dynamical consistency which
are positivity, boundedness and monotonicity of the solutions, see Mickens [7].

2.1 NSFD1

Two versions of NSFD schemes were constructed by Appadu et al. [5] for dis-
cretising the Burgers-Huxley equation. We modify these schemes to discretise
the Generalized Burgers-Huxley equation.

We propose the following scheme for Eq. (1):

Un+1
j − Un

j

φ(k)
=

[ Un
j+1 − 2Un

j + Un
j−1

[ψ(h)]2

]
− αU

n+1
j (U

n
j )

3 Un
j − Un

j−1

ψ(h)
+ β(1 + γ)

[
2(U

n
j )

5 − (U
n
j )

4
U

n+1
j

]

− βγU
n+1
j − βU

n+1
j (U

n
j )

8
.

(5)
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The denominator functions are ψ(h) =
eβh − 1

β
and φ(k) =

eβk − 1
β

. We obtain

Un+1
j =

(1− 2R)Un
j + R(Un

j+1 + Un
j−1) + 2φ(k)β(1 + γ)(Un

j )5

1 + αr(Un
j )3(Un

j − Un
j−1) + φ(k)βγ + φ(k)β(1 + γ)(Un

j )4 + φ(k)β(Un
j )8

, (6)

where R =
φ(k)

[ψ(h)]2
and r =

φ(k)
ψ(h)

.

For positivity, we require 1 − 2R ≥ 0 and 1 − αrγ ≥ 0. Using h = 0.1, we
require k ≤ 5.515 × 10−3 or k ≤ Tmax/182.

Boundedness

We assume Un
j ∈ [

0, γ
1
4
]

for all considered values of n and j. Therefore,
(

U
n+1
j − γ

1
4

)(
1 + αr(U

n
j )

3
(U

n
j − U

n
j−1) + φ(k)βγ + φ(k)β(1 + γ)(U

n
j )

4
+ φ(k)β(U

n
j )

8
)

= (1 − 2R)U
n
j + R(U

n
j+1 + U

n
j−1) + 2φ(k)β(1 + γ)(U

n
j )

5 − γ
1
4 − αrγ

1
4 (U

n
j )

3
(U

n
j − U

n
j−1) − φ(k)βγ

5
4

−φ(k)βγ
1
4 (1 + γ)(U

n
j )

4 − φ(k)βγ
1
4 (U

n
j )

8 ≤ −αrγ
1
4 (U

n
j )

3
(U

n
j − U

n
j−1) ≤ 0.

(7)

Table 1. L1 and L∞ errors, CPU times and rate of convergence (in time) for α =
1.0, β = 1.0, γ = 0.01 at some different time-step size k with spatial mesh size h = 0.1
using NSFD1 at Tmax = 1.0.

Time step (k) L1 Error L∞ Error Rt CPU (s)

Tmax/2000 1.967743 × 10−4 2.981740 × 10−4 - 0.3044

Tmax/4000 1.967834 × 10−4 2.981878 × 10−4 −6.667 × 10−5 0.5403

Tmax/8000 1.967880 × 10−4 2.981947 × 10−4 −3.338 × 10−5 1.1334

Tmax/16000 1.967902 × 10−4 2.981982 × 10−4 −1.693 × 10−5 2.5852

2.2 NSFD1-ε

Ruxun et al. [8] designed a stable, high resolution scheme by controlling the
numerical effects of dispersion and dissipation. They used a simple approach by
reforming the Lax-Wendroff (LW) scheme when used to discretise the 1-D linear
advection equation. LW-ε was derived which is monotonic, positive and second-
order accurate in space. Some more work on use of remainder effect technique
can be found in Appadu et al. [9], Agbavon et al. [10]. We construct NSFD1-ε by
adding the expression ε1U

n
j+1 + ε2U

n
j + ε3U

n
j−1 to the right hand side of Eq. (6).

We have

U
n+1
j

=
(1 − 2R)Un

j + R(Un
j+1 + Un

j−1) + 2φ(k)β(1 + γ)(Un
j )5

1 + αr(Un
j

)3(Un
j

− Un
j−1) + φ(k)βγ + φ(k)β(1 + γ)(Un

j
)4 + φ(k)β(Un

j
)8

+ ε1U
n
j+1 + ε2U

n
j + ε3U

n
j−1.

(8)
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Fig. 1. Plot of initial and numerical, exact profiles at time Tmax = 1.0 with h = 0.1
and some different values of k. The numerical method used is NSFD1.

For consistency, we have ε1 = ε3 = ε and ε2 = −2ε. The NSFD1-ε scheme is
given by

U
n+1
j =

(1 − 2R)Un
j + R(Un

j+1 + Un
j−1) + 2φ(k)β(1 + γ)(Un

j )5 + εΩ(Un
j+1 − 2Un

j + Un
j−1)

Ω
, (9)

where Ω = 1+αr(Un
j )3(Un

j −Un
j−1)+φ(k)βγ+φ(k)β(1+γ)(Un

j )4+φ(k)β(Un
j )8.

We require 0 < ε << 1, see [8]. It is noted that the scheme has first order accu-
racy in time and first order accuracy in space on performing truncation analysis.
For positivity, 1 − 2R − 2εΩ ≥ 0 and 1 − αrγ ≥ 0. Using h = 0.1, we obtain
k ≤ 4.414 × 10−3 or k ≤ Tmax/227.

Boundedness
We assume 0 ≤ Un

j ≤ γ
1
4 for all considered values of n and j, thus

(
U

n+1
j − γ

1
4

)
Ω = (1 − 2R)U

n
j + R(U

n
j+1 + U

n
j−1) + 2φ(k)β(1 + γ)(U

n
j )

5
+ εΩ(U

n
j+1 − 2U

n
j + U

n
j−1)

− γ
1
4 − αrγ

1
4 (U

n
j )

3
(U

n
j − U

n
j−1) − φ(k)βγ

5
4 − φ(k)βγ

1
4 (1 + γ)(U

n
j )

4 − φ(k)βγ
1
4 (U

n
j )

8

≤ −αrγ
1
4 (U

n
j )

3
(U

n
j − U

n
j−1) ≤ 0.

(10)
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Table 2. L1 and L∞ errors, CPU times and rate of convergence (in time) for α =
1.0, β = 1.0, γ = 0.01 at some different time-step size k with spatial mesh size h = 0.1
and ε = 0.1 using NSFD1-ε at Tmax = 1.0.

Time step (k) L1 Error L∞ Error Rt CPU (s)

Tmax/2000 6.131780 × 10−5 9.290899 × 10−5 − 0.2692

Tmax/4000 3.638588 × 10−5 5.513125 × 10−5 7.529 × 10−1 0.5284

Tmax/8000 2.013180 × 10−5 3.050307 × 10−5 8.539 × 10−1 1.1998

Tmax/16000 1.070422 × 10−5 1.621861 × 10−5 9.112 × 10−1 2.6968
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Fig. 2. Plot of initial and numerical, exact profiles at time Tmax = 1.0 with h = 0.1
and some different values of k. The numerical method used is NSFD1-ε.

2.3 NSFD2

We propose the following scheme to discretise Eq. (1):

Un+1
j − Un

j

φ(k)
=

[ Un
j+1 − 2Un

j + Un
j−1

[ψ(h)]2

]
− αU

n+1
j (U

n
j )

3 Un
j − Un

j−1

ψ(h)
β(1 + γ)(U

n
j )

5 − βγU
n+1
j

− β

[
2U

n+1
j (U

n
j )

8 − (U
n
j )

9
]

.

(11)
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The denominator functions are the same as in NSFD1. We have

Un+1
j =

(1 − 2R)Un
j + R(Un

j+1 + Un
j−1) + βφ(k)[(1 + γ)(Un

j )5 + (Un
j )9]

1 + αr(Un
j )3(Un

j − Un
j−1) + φ(k)βγ + 2φ(k)β(Un

j )8
. (12)

For positivity, the requirement is 1−2R ≥ 0 and 1−αrγ ≥ 0. We have the same
condition as for NSFD1 scheme.

Boundedness

(U
n+1
j − γ

1
4 )

(
1 + αr(U

n
j )

3
(U

n
j − U

n
j−1) + φ(k)βγ + 2φ(k)β(U

n
j )

8
)

= (1 − 2R)U
n
j + R(U

n
j+1 + U

n
j−1)

+ φ(k)β(1 + γ)((U
n
j )

5
+ (U

n
j )

9
) − γ

1
4 − αrγ

1
4 (U

n
j )

3
(U

n
j − U

n
j−1) − φ(k)βγ

5
4 − 2φ(k)βγ

1
4 (U

n
j )

8

≤ −αr(U
n
j )

3
γ

1
4 (U

n
j − U

n
j−1) ≤ 0.

(13)

Table 3. L1 and L∞ errors, CPU times and rate of convergence (in time) for α =
1.0, β = 1.0, γ = 0.01 at some different time-step size k with spatial mesh size h = 0.1
using NSFD2 at Tmax = 1.0.

Time step (k) L1 Error L∞ Error Rt CPU (s)

Tmax/2000 1.967740 × 10−4 2.981737 × 10−4 - 0.2936

Tmax/4000 1.967833 × 10−4 2.981877 × 10−4 −6.773 × 10−5 0.5784

Tmax/8000 1.967879 × 10−4 2.981947 × 10−4 −3.387 × 10−5 1.2037

Tmax/16000 1.967902 × 10−4 2.981981 × 10−4 −1.644 × 10−5 2.7648

2.4 NSFD2-ε

We construct NSFD2-ε by adding the expression ε1U
n
j+1 + ε2U

n
j + ε3U

n
j−1 to the

right hand side of Eq. (12). This yields

U
n+1
j =

(1 − 2R)Un
j + R(Un

j+1 + Un
j−1) + βφ(k)[(1 + γ)(Un

j )5 + (Un
j )9]

1 + αr(Un
j )3(Un

j − Un
j−1) + φ(k)βγ + 2φ(k)β(Un

j )8
+ ε1U

n
j+1 + ε2U

n
j + ε3U

n
j−1

(14)
Same consistency condition as NSFD1-ε was obtained. Further simplification of
Eq. (14) produces

U
n+1
j =

(1 − 2R)Un
j + R(Un

j+1 + Un
j−1) + φ(k)β((1 + γ)(Un

j )5 + (Un
j )9) + εχ(Un

j+1 − 2Un
j + Un

j−1)

χ
,

(15)
where χ = 1 + αr(Un

j )3(Un
j − Un

j−1) + φ(k)βγ + 2φ(k)β(Un
j )8.

We require 0 < ε << 1. It is noted that the scheme is first order accu-
racy in time and first order accuracy in space. For positively invariant solution
1−2R−2εχ ≥ 0 and 1−αrγ ≥ 0. We have that k ≤ 4.414×10−3 or k ≤ Tmax/227.
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Fig. 3. Plot of initial and numerical, exact profiles at time Tmax = 1.0 with h = 0.1
and some different values of k. The numerical method used is NSFD2.
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3 Explicit Exponential Finite Difference Method
(EEFDM)

In 1985, Bhatacharry [11] conceived the idea of exponential finite difference
scheme. This scheme was designed in [11] to solve the heat equation. This scheme
conserves the properties (positivity) of many emerging mathematical models in
mathematical biology. By rearranging Eq. (1), we have

∂u

∂t
= βu

(
1 − uδ

) (
uδ − γ

) − αuδ ∂u

∂x
+

∂2u

∂x2
.
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Table 4. L1 and L∞ errors, CPU times and rate of convergence (in time) for α =
1.0, β = 1.0, γ = 0.01 at some different time-step size k with spatial mesh size h = 0.1
and ε = 0.1 using NSFD2-ε at Tmax = 1.0.

Time step (k) L1 Error L∞ Error Rt CPU (s)

Tmax/2000 6.131785 × 10−5 9.290906 × 10−5 − 0.2645

Tmax/4000 3.638590 × 10−5 5.513128 × 10−5 7.529 × 10−1 0.5259

Tmax/8000 2.013180 × 10−5 3.050308 × 10−5 8.539 × 10−1 1.1093

Tmax/16000 1.070422 × 10−5 1.621861 × 10−5 9.113 × 10−1 2.6161
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Fig. 4. Plot of initial and numerical, exact profiles at time Tmax = 1.0 with h = 0.1
and some different values of k. The numerical method used is NSFD2-ε.

Dividing by u and using standard finite difference approximations for derivatives,
we obtain

ΛUn
j =

1
Un
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[
βUn
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(
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j

]
, (17)



64 A. R. Appadu et al.

By setting δ = 4, we have

U
n+1
j

= U
n
j exp

{ k

Un
j

[
βU

n
j (1 − (U

n
j )4)((U

n
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2 h

)
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( Un
j+1 − 2Un

j + Un
j−1

h2

)]}

(18)

Table 5. L1 and L∞ errors, CPU times and rate of convergence (in time) for α =
1.0, β = 1.0, γ = 0.01 at some different time-step size k with spatial mesh size h = 0.1
using EEFDM at Tmax = 1.0.

Time step (k) L1 Error L∞ Error Rt CPU (s)

Tmax/2000 1.779623 × 10−4 2.696663 × 10−4 - 0.2964

Tmax/4000 1.779623 × 10−4 2.696662 × 10−4 9.521 × 10−8 0.5549

Tmax/8000 1.779623 × 10−4 2.696662 × 10−4 5.049 × 10−8 1.1924

Tmax/16000 1.779623 × 10−4 2.696662 × 10−4 2.596 × 10−8 2.7481

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lu
tio

n

0.263

0.264

0.265

0.266

0.267

0.268

0.269

EEFDM
Initial
Exact

(a) k = Tmax/2000

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lu
tio

n

0.263

0.264

0.265

0.266

0.267

0.268

0.269

EEFDM
Initial
Exact

(b) k = Tmax/4000

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lu
tio

n

0.263

0.264

0.265

0.266

0.267

0.268

0.269

EEFDM
Initial
Exact

(c) k = Tmax/8000

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lu
tio

n

0.263

0.264

0.265

0.266

0.267

0.268

0.269

EEFDM
Initial
Exact

(d) k = Tmax/16000

Fig. 5. Plot of initial, numerical and exact profiles vs x for EEFDM at time Tmax = 1.0
with h = 0.1 for different values of k.
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3.1 EEFDM-ε

We modified the scheme in Eq. (18) following the idea of Ruxun et al. [8]. We
have

U
n+1
j

= U
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Un
j
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n
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n
j )4)((U
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( Un
j+1 − 2Un

j + Un
j−1

h2

)]}

+ ε1U
n
j+1 + ε2U

n
j + ε3U

n
j−1.

(19)
Same consistency condition as NSFD1-ε were obtained.

Table 6. L1 and L∞ errors, CPU times and rate of convergence (in time) for α =
1.0, β = 1.0, γ = 0.01 at some different time-step size k with spatial mesh size h = 0.1
and ε = 0.1 using EEFDM-ε at Tmax = 1.0.

Time step (k) L1 Error L∞ Error Rt CPU (s)

Tmax/2000 5.936640 × 10−5 8.995212 × 10−5 − 0.2808

Tmax/4000 3.569349 × 10−5 5.408214 × 10−5 7.340 × 10−1 0.5573

Tmax/8000 1.992047 × 10−5 3.018287 × 10−5 8.414 × 10−1 1.2706

Tmax/16000 1.064557 × 10−5 1.612975 × 10−5 9.040 × 10−1 2.7636
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Fig. 6. Plot of initial and numerical, exact profiles at time Tmax = 1.0 with h = 0.1
and some different values of k. The numerical method used is EEFDM-ε.
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Table 7. Absolute errors from six constructed schemes with the results of [1] and [2]
for α = 1.0, β = 1.0 and γ = 0.01 using k = 0.0005

t x NSFD1 NSFD1-ε NSFD2 NSFD2-ε EEFDM EEFDM-ε VIM [1] ADM [2]

0.1 0.1 6.8702 × 10−5 3.2044 × 10−5 6.8702 × 10−5 3.2044 × 10−5 6.5341 × 10−5 3.1174 × 10−5 2.1768 × 10−4 2.1778 × 10−4

0.1 0.5 1.7270 × 10−4 8.8190 × 10−5 1.7270 × 10−4 8.8190 × 10−5 1.6656 × 10−4 8.5868 × 10−5 2.1721 × 10−4 2.1731 × 10−4

0.5 0.1 1.0670 × 10−4 3.3623 × 10−5 1.0670 × 10−4 3.3623 × 10−5 9.6886 × 10−5 3.2553 × 10−5 1.0876 × 10−3 1.0901 × 10−3

0.5 0.5 2.9597 × 10−4 9.3362 × 10−5 2.9597 × 10−4 9.3362 × 10−5 2.6890 × 10−4 9.0391 × 10−5 1.0852 × 10−3 1.0877 × 10−3

Table 8. Relative errors from six constructed schemes with the results of [1] and [2]
for α = 1.0, β = 1.0 and γ = 0.01 using k = 0.0005

t x NSFD1 NSFD1-ε NSFD2 NSFD2-ε EEFDM EEFDM-ε VIM [1] ADM [2]

0.1 0.1 2.5823 × 10−2 1.2044 × 10−2 2.5823 × 10−2 1.2044 × 10−2 2.4560 × 10−2 1.1717 × 10−2 8.1822 × 10−2 8.1860 × 10−2

0.1 0.5 6.4870 × 10−2 3.3124 × 10−2 6.4870 × 10−2 3.3124 × 10−2 6.2561 × 10−2 3.2252 × 10−2 8.1588 × 10−2 8.1625 × 10−2

0.5 0.1 4.0055 × 10−2 1.2622 × 10−2 4.0055 × 10−2 1.2622 × 10−2 3.6370 × 10−2 1.2220 × 10−2 4.0828 × 10−1 4.0921 × 10−1

0.5 0.5 1.1102 × 10−1 3.5022 × 10−2 1.1102 × 10−1 3.5022 × 10−2 1.0087 × 10−1 3.3908 × 10−2 4.0711 × 10−1 4.0804 × 10−1

4 Conclusion

Three schemes were initially constructed in order to solve the generalized
Burgers-Huxley equation and we obtained conditions for which the schemes
are positive definite and bounded. There is some phase error in the profiles
as depicted in Figs. 1, 3 and 5. The schemes are modified following the technique
devised by Ruxun et al. [8]. The modified schemes give accurate and satisfac-
tory results as depicted in Figs. 2, 4 and 6. The modified methods give reduced
L1 and L∞ errors as compared to NSFD1, NSFD2 and EEFDM schemes. The
rate of convergence in time for the modified schemes is close to theoretical rate
of convergence. We also compared the modified methods with adomian decom-
position and variational iteration methods and our methods outperformed these
two methods as shown in Tables 7 and 8.
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Abstract. In the current work, a radial basis function based local mesh-
less method is taken into consideration to solve the multi-term time frac-
tional nonlinear diffusion equation. We mentioned the proof of uncon-
ditional stability and also theoretically discussed the convergence of the
proposed numerical scheme. Some numerical problems are given to show
the exactness and efficiency of the developed scheme. The present result
indicates that the proposed numerical scheme is very accurate and effi-
cient for modeling and simulating the considered problems.

Keywords: Diffusion equation · RBF · Meshless method · Finite
difference method

1 Introduction

In this paper, we consider the time fractional non-linear multi-term diffusion
equation

⎧
⎪⎪⎨

⎪⎪⎩

l∑

i=0

di
c
0D

αi
t u(x, t) = Δu(x, t) − F (u(x, t)) + f(x, t), (x, t) ∈ Ω × (0, T ],

u(x, 0) = ξ(x), x ∈ Ω
u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ],

(1)
where 0 < αl ≤ . . . ≤ α0 < 1, di ≥ 0, i = 0, 1, . . . , l, l ∈ N, T > 0, with
convention d0 = 1 and ξ(x) and f(x, t) are sufficiently smooth functions on
closed and bounded domain Ω ⊂ R

2, with Lipschitz boundary ∂Ω. The non-
linear function F (u(x, t)) satisfied the assumption |F (u(x, t))| ≤ C|u(x, t)|, and
first derivative of F (u(x, t)) with respect to u is bounded. Furthermore for any
positive integer z, c

0D
α
t u(x, t) the Caputo’s differential operator is defined as

follows

c
0D

α
t u(x, t) =

⎧
⎨

⎩

1
Γ (z−α)

t∫

0

∂zu(x,s)
∂sz

ds
(t−s)α−(z−1) , z − 1 < α < z,

∂zu(x,t)
∂tz , α = z.

(2)
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2 The Time-Semi Discretization Scheme

For 0 < α < 1, Caputo’s fractional derivative c
0D

α
t u(x, t) can be defined as

c
0D

α
t u(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

1
Γ (1−α)

t∫

0

∂u(x,s)
∂s

ds
(t−s)α , 0 < α < 1,

∂u(x,t)
∂t , α = 1.

(3)

Let us consider δt = T
N denotes the step size in time, where N is any positive

integer, and tn = nδt, n = 0, 1, . . . , N be temporal mesh points.
Let us introduce some notations un− 1

2 = 1
2 (un+un−1), and δtu

n− 1
2 = 1

δt (u
n−

un−1), where expansion of un is u(x, tn).

Lemma 1. For 0 < α < 1, and ζ ∈ C2[0, T ], we have

tn∫

0

ζ ′(s)(tn − s)−αds =
n∑

k=1

ζ(tk) − ζ(tk−1)
δt

tk∫

tk−1

(tn − s)−αds + Rn, 1 ≤ n ≤ N

(4)
and

|Rn| ≤
(

1
2(1 − α)

+
1
2

)

δt2−α max
0≤t≤tn

|ζ ′′(t)|. (5)

Proof. See [1].

Lemma 2. Let 0 < αi < 1, ai,0 = 1
δtΓ (1−αi)

and bi,k =
δt1−αi

(1−αi)

[
(k + 1)1−αi − (k)1−αi

]
, i = 0, 1, . . . , l, k = 0, 1, 2, . . ., then

∣
∣
∣
∣
∣
∣

1

Γ (1 − αi)

tn∫

0

g′(s)
(tn − s)αi

ds − ai,0

[

bi,0g(tn) −
n−1∑

k=1

(bi,n−k−1 − bi,n−k)g(tk) − bi,n−1g(0)

]
∣
∣
∣
∣
∣
∣

≤ 1
Γ (1 − αi)

(
1

2(1 − αi)
+

1
2

)

δt2−αi max
0≤t≤tn

|g′′(t)| (6)

Proof. It proceeds from Lemma 1.

Lemma 3. Let 0 < αi < 1, and bi,k = δt1−αi

(1−αi)

[
(k + 1)1−αi − (k)1−αi

]
, i =

0, 1, . . . , l, k = 0, 1, 2, . . ., then

bi,0 > bi,1 > bi,2 > . . . > bi,k → 0, as k → ∞.

Proof. See [1].

We define that

wi(x, t) =
1

Γ (1 − αi)

t∫

0

∂u(x, s)
∂s

ds

(t − s)αi
. (7)
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Thus,
l∑

i=0

diw
n− 1

2
i = Δun− 1

2 − F (un−1) + fn− 1
2 + r

n− 1
2

1 , n ≥ 1, (8)

where
|rn− 1

2
1 | ≤ C1δt. (9)

From (7), we have

wi(x, tn) =
1

Γ (1 − αi)

tn∫

0

∂u(x, t)
∂t

dt

(tn − t)αi

using Lemma 2, we have

wn
i = ai,0

[

bi,0u
n −

n−1∑

k=1

(bi,n−k−1 − bi,n−k)uk − bi,n−1u
0

]

+ O(δt2−αi). (10)

Now define the operator [1]

Pi(un, q) =

[

bi,0u
n −

n−1∑

k=1

(bi,n−k−1 − bi,n−k)uk − bi,n−1q

]

and using the condition u0 = u(x, 0) = ξ(x) = ξ, we have

w
n− 1

2
i = ai,0Pi(un− 1

2 , ξ) + (r2)
n− 1

2
i (11)

where
| (r2)n− 1

2
i | ≤ C2δt

2−αi . (12)

now substituting above expression in (8), we have

l∑

i=0

di

(
ai,0Pi(un− 1

2 , ξ) + (r2)
n− 1

2
i

)
= Δun− 1

2 − F (un−1) + fn− 1
2 + r

n− 1
2

1

l∑

i=0

diai,0Pi(un− 1
2 , ξ) = Δun− 1

2 − F (un−1) + fn− 1
2 + Rn− 1

2 (13)

where,

Rn− 1
2 = −

l∑

i=0

di (r2)
n− 1

2
i + r

n− 1
2

1

|Rn− 1
2 | ≤

l∑

i=0

diC2δt
2−αi + C1δt

≤ Cδt
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where C =
[

C1 +
l∑

i=0

diC2

]

.

Now excluding the Rn− 1
2 that is truncation error term, and approximating

the analytical value un by its approximating value Un, then the resulted discrete
scheme is as following

l∑

i=0

diai,0Pi(Un− 1
2 , ξ) = ΔUn− 1

2 − F (Un−1) + fn− 1
2 , 1 ≤ n ≤ N, (14)

or we have the above equation in more specific form as

LUn = b (15)

where the value of linear differential operator L and b are:

L U
n

=

l∑

i=0

di
ai,0bi,0

2
U

n − 1

2
ΔU

n

b =
1

2
ΔU

n−1 −
l∑

i=0

di
ai,0bi,0

2
U

n−1
+

l∑

i=0

diai,0

[
n−1∑

k=1

(bi,n−k−1 − bi,n−k)U
k− 1

2 + bi,n−1U
0

]
−

F (U
n−1

) + f
n− 1

2

2.1 Convergence and Stability Analysis

Next we consider L2 norm to discuss the stability analysis and convergence of
the time discrete numerical scheme.

Lemma 4. For any η = {η1, η2, . . .}, 0 < αi < 1 and θ, we have

n∑

j=1

Pi(ηj , θ)ηj ≥ t−αi
n

2
δt

n∑

j=1

η2
j − t1−αi

n

2(1 − αi)
θ2

Proof. See [1].

Theorem 1. Let Un be the solution of the Eq. (14), belonging to H1
0 (Ω). Then

the time discrete scheme (14) is unconditionally stable and have the following
inequality:

‖Un‖2 ≤ C2

⎛

⎝
l∑

i=0

2diT

δtΓ (2 − αi)
‖ξ‖2 + Γ (1 − α0)T

n∑

j=1

‖f j− 1
2 ‖2

⎞

⎠ .

Proof. Consider the equation

l∑

i=0

di

δtΓ (1 − αi)

⎡

⎣bi,0U
n− 1

2 −
n−1∑

k=1

(bi,n−k−1 − bi,n−k)U
k− 1

2 − bn−1ξ

⎤

⎦ = ΔU
n− 1

2 −F (U
n−1

)+f
n− 1

2 ,

(16)
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Multiplying above equation by Un− 1
2 , and integrating over Ω, give

l∑

i=0

di

δtΓ (1 − αi)

⎧
⎨

⎩bi,0

(
U

n− 1
2 , U

n− 1
2

)
−

n−1∑

k=1

(
bi,n−k−1 − bi,n−k

) (
U

k− 1
2 , U

n− 1
2

)
− bn−1

(
ξ, U

n− 1
2

)⎫
⎬

⎭

=
(
ΔUn− 1

2 , Un− 1
2

)
−

(
F (Un−1), Un− 1

2

)
+

(
fn− 1

2 , Un− 1
2

)
, (17)

Now using the fact
(
ΔUn− 1

2 , Un− 1
2

)
= −

(
∇Un− 1

2 ,∇Un− 1
2

)

= −
∫

Ω

(∇Un + ∇Un−1

2

)(∇Un + ∇Un−1

2

)

dΩ

= −1
4

∫

Ω

(∇Un + ∇Un−1)2dΩ

= −1
4

(‖∇Un + ∇Un−1‖)2
,

we have
l∑

i=0

di

δtΓ (1 − αi)

⎧
⎨

⎩bi,0‖U
n− 1

2 ‖2 −
n−1∑

k=1

(
bi,n−k−1 − bi,n−k

) ‖U
k− 1

2 ‖‖U
n− 1

2 ‖ − bn−1‖ξ‖‖U
n− 1

2 ‖
⎫
⎬

⎭

= −1
4

(‖∇Un + ∇Un−1‖)2 −
(
F (Un−1), Un− 1

2

)
+

(
fn− 1

2 , Un− 1
2

)
, (18)

now taking the summation from n = 1 to m on both the sides, we have

m∑

n=1

l∑

i=0

di

δtΓ (1 − αi)

⎧
⎨

⎩bi,0‖U
n− 1

2 ‖ −
n−1∑

k=1

(
bi,n−k−1 − bi,n−k

) ‖U
k− 1

2 ‖ − bn−1‖ξ‖
⎫
⎬

⎭ ‖U
n− 1

2 ‖

≤ −1
4

m∑

n=1

(‖∇Un + ∇Un−1‖)2
+ C

m∑

n=1

‖Un−1‖‖Un− 1
2 ‖ +

m∑

n=1

‖fn− 1
2 ‖‖Un− 1

2 ‖.

(19)
now using the inequality |xy| ≤ 1

2θ x2 + θ
2y2, together with θ = d0t−α0

m

2Γ (1−α0)
, we

have
C

m∑

n=1
‖U

n−1‖‖U
n− 1

2 ‖ ≤ C
2 Γ (1 − α0)

d0t
−α0
m

m∑

n=1
‖U

n−1‖2
+

d0t
−α0
m

4Γ (1 − α0)

m∑

n=1
‖U

n− 1
2 ‖2

.

and
m∑

n=1

‖fn− 1
2 ‖‖Un− 1

2 ‖ ≤ Γ (1 − α0)
d0t

−α0
m

m∑

n=1

‖fn− 1
2 ‖2 +

d0t
−α0
m

4Γ (1 − α0)

m∑

n=1

‖Un− 1
2 ‖2.

Now using above relation together with Lemma 4, we have

d0t−α0
m

2δtΓ (1 − α0)
δt

m∑

n=1

‖U
n− 1

2 ‖2 −
l∑

i=0

dit
1−αi
m

2δtΓ (2 − αi)
‖ξ‖2 ≤ − 1

4

m∑

n=1

(
‖∇U

n
+ ∇U

n−1‖
)2

+

C
2 Γ (1 − α0)

d0t
−α0
m

m∑

n=1
‖U

n−1‖2+
d0t

−α0
m

4Γ (1 − α0)

m∑

n=1
‖U

n− 1
2 ‖2+

Γ (1 − α0)

d0t
−α0
m

m∑

n=1
‖f

n− 1
2 ‖2+

d0t
−α0
m

4Γ (1 − α0)

m∑

n=1
‖U

n− 1
2 ‖2

.
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Now simplifying above relation, we have

m∑

n=1

(
‖∇U

n
+ ∇U

n−1‖
)2 ≤

l∑

i=0

2dit
1−αi
m

δtΓ (2 − αi)
‖ξ‖2

+ 4C
2
Γ (1 − α0)t

α0
m

m∑

n=1

‖U
n−1‖2

+4Γ (1 − α0)t
α0
m

m∑

n=1

‖f
n− 1

2 ‖2

m∑

n=1

‖∇U
n‖2

+

m∑

n=1

‖∇U
n−1‖2 ≤

l∑

i=0

2dit
1−αi
m

δtΓ (2 − αi)
‖ξ‖2

+ 4C
2
Γ (1 − α0)t

α0
m

m∑

n=1

‖U
n−1‖2

+4Γ (1 − α0)t
α0
m

m∑

n=1

‖f
n− 1

2 ‖2 (20)

switching the index from m to n, we get

‖∇U
n‖2 ≤

l∑

i=0

2dit
1−αi
n

δtΓ (2 − αi)
‖ξ‖2

+ 4C
2
Γ (1 − α0)t

α0
n

n−1∑

j=0

‖U
j‖2

+ 4Γ (1 − α0)t
α0
n

n∑

j=1

‖f
j− 1

2 ‖2 (21)

‖∇U
n‖2 ≤

l∑

i=0

2diT

δtΓ (2 − αi)
‖ξ‖2

+ 4C
2
Γ (1 − α0)T

n−1∑

j=0

‖U
j‖2

+ 4Γ (1 − α0)T
n∑

j=1

‖f
j− 1

2 ‖2 (22)

Now using Discrete Gronwall Lemma [2], we have

‖∇Un‖2 ≤ C2

⎛

⎝
l∑

i=0

2diT

δtΓ (2 − αi)
‖ξ‖2 + Γ (1 − α0)T

n∑

j=1

‖f j− 1
2 ‖2

⎞

⎠ (23)

Now using Poincare inequality ‖Un‖2 ≤ C̃2‖∇Un‖2, we have

‖Un‖2 ≤ C2

⎛

⎝
l∑

i=0

2diT

δtΓ (2 − αi)
‖ξ‖2 + Γ (1 − α0)T

n∑

j=1

‖f j− 1
2 ‖2

⎞

⎠ (24)

Theorem 2. Let un, the analytical solution of (13) and Un, the numerical solu-
tion of (14) both belonging to H1

0 , then time semi discrete scheme (14) is con-
vergent with convergence order O(δt).

Proof. We consider En = un − Un for n ≥ 1, together with E0 = 0. Now
subtracting (14) from (13), we have

l∑

i=0

di

δtΓ (1 − αi)

⎧
⎨

⎩bi,0En− 1
2 −

n−1∑

k=1
(bi,n−k−1 − bi,n−k)Ek− 1

2

⎫
⎬

⎭ = ΔEn− 1
2 −

[
F (u

n−1) − F (U
n−1)

]
+R

n− 1
2 ,

(25)
Multiplying the above equation by En− 1

2 , and taking the integration over Ω,
give

l∑

i=0

di

δtΓ (1 − αi)

{

bi,0‖En− 1
2 ‖ −

n−1∑

k=1

(bi,n−k−1 − bi,n−k)‖Ek− 1
2 ‖

}

‖En− 1
2 ‖

= −1
4

(‖∇En + ∇En−1‖)2 −
([

F (un−1) − F (Un−1)
]
, En− 1

2

)
+ (Rn− 1

2 , En− 1
2 )
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Now summing the above relation from n = 1 to m, we have

m∑

n=1

l∑

i=0

di

δtΓ (1 − αi)

{
bi,0‖En− 1

2 ‖ −
n−1∑

k=1

(bi,n−k−1 − bi,n−k)‖Ek− 1
2 ‖

}
‖En− 1

2 ‖

≤ −1

4

m∑

n=1

(
‖∇En

+ ∇En−1‖
)2 −

m∑

n=1

([
F (u

n−1
) − F (U

n−1
)
]

, En− 1
2

)
+

m∑

n=1

‖R
n− 1

2 ‖‖En− 1
2 ‖

now using application of Lemma4, we get

l∑

i=0

di

δtΓ (1 − αi)

[
t−αi
m

2
δt

m∑

n=1

‖En− 1
2 ‖2

]

+
1
4

m∑

n=1

(‖∇En + ∇En−1‖)2

≤ −
m∑

n=1

([
F (un−1) − F (Un−1)

]
, En− 1

2

)
+

m∑

n=1

‖Rn− 1
2 ‖‖En− 1

2 ‖. (26)

Using inequality |xy| ≤ 1
2θ x2 + θ

2y2, together with θ = d0t−α0
m

2Γ (1−α0)
, we have

−
m∑

n=1

([
F (u

n−1
) − F (U

n−1
)
]

, En− 1
2

)
≤ L

2 Γ (1 − α0)

d0t
−α0
m

m∑

n=1
‖En−1‖2

+
d0t

−α0
m

4Γ (1 − α0)

m∑

n=1
‖En− 1

2 ‖2

m∑

n=1
‖R

n− 1
2 ‖‖En− 1

2 ‖ ≤ Γ (1 − α0)

d0t
−α0
m

m∑

n=1
‖R

n− 1
2 ‖2

+
d0t

−α0
m

4Γ (1 − α0)

m∑

n=1
‖En− 1

2 ‖2
.

Using above relation into Eq. (26), we have

d0t−α0
m

2Γ (1 − α0)

m∑

n=1

‖En− 1
2 ‖2 +

1

4

m∑

n=1

(‖∇En + ∇En−1‖)2 ≤ L2 Γ (1 − α0)

d0t−α0
m

m∑

n=1

‖En−1‖2

+
d0t−α0

m

4Γ (1 − α0)

m∑

n=1

‖En− 1
2 ‖2 +

Γ (1 − α0)

d0t−α0
m

m∑

n=1

‖Rn− 1
2 ‖2 +

d0t−α0
m

4Γ (1 − α0)

m∑

n=1

‖En− 1
2 ‖2,

switching index from m to n, and after simplification we get

‖∇En‖2 ≤ 4L
2
Γ (1 − α0)t

α0
n

n−1∑

j=0

‖Ej‖2
+ 4Γ (1 − α0)t

α0
n

n∑

j=1

‖R
j− 1

2 ‖2

≤ 4L
2
Γ (1 − α0)t

α0
n

n−1∑

j=0

‖Ej‖2
+ 4nΓ (1 − α0)t

α0
n max

1≤j≤n
‖R

j− 1
2 ‖2

.

Now using Poincare inequality, we have

‖En‖2 ≤ C2
ΩL2Γ (1 − α0)tα0

n

n−1∑

j=0

‖Ej‖2 + C2
ΩΓ (1 − α0)TC2δt2 (27)

Now application of Discrete Gronwall Lemma [2], with parameters zk = 0, δ0 =
C2

ΩC2TΓ (1 − α0)δt2, xk = L2C2
ΩΓ (1 − α0)tα0

n , and yk = ‖Ek‖2, we have

‖En‖2 ≤ C(T, α0, CΩ)δt2.

Therefore we have
‖En‖ ≤ C ′(T, α0, CΩ)δt,

which completes the proof.
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3 Spatial Discretization

In local collocation method the computational domain Ω, containing M colloca-

tion points is partitioned into M overlapping sub domains Ωi, such that
M⋃

i=1

Ωi =

Ω. For each x[i]
k ∈ Ωi, the influence points of x[i]

k are {x[i]
1 ,x[i]

2 ,x[i]
3 , . . . ,x[i]

mi} are
mi closest points of x[i]

k in sub domain Ωi.
The numerical approximation of u(x, tn) in local interpolation form can be

given as

û(x, tn) =
mi∑

j=1

λjφ(‖x − x[i]
j ‖) +

l∑

j=1

γjpj(x), (28)

where {λj} and {γj} are unknown coefficients at nth time level, φ is considered
radial basis function, ‖ · ‖ is the Euclidean norm and {pj(x)}l

j=1 denote basis
for the l =

(
m−1+d

m−1

)
dimensional linear space of d-variate polynomials of total

degree ≤ m − 1. The interpolation condition on sub domain Ωi

û(x[i]
k , tn) = u(x[i]

k , tn), ∀ 1 ≤ k ≤ mi, (29)

is supported with extra l regularization conditions
mi∑

j=1

λjpk(x[i]
j ) = 0 ∀ 1 ≤ k ≤ l. (30)

Imposing conditions (29–30) on û(x, tn), at each stencil we obtain following linear
system [

Φ P
P t O

] [
λ
γ

]

=
[
u |Ωi

O

]

(31)

where Φ := [φ‖x[i]
j − x[i]

k ‖]1≤j,k≤mi
, P := [pk(x[i]

j )]1≤j≤mi,1≤k≤l.
The above system can be written in matrix form as

ΛΩi
= A−1

Ωi
Un

Ωi
, (32)

where Λ=
Ωi

[λ1, . . . , λmi
, γ1, . . . , λl]ᵀ, Un

Ωi
= [u(x[i]

1 , tn), . . . , u(x[i]
mi , tn), 0, . . . , 0]ᵀ,

and AΩi
is coefficient matrix of the system (31).

Suppose φ is a conditionally positive definite function of order m on R
d and

the points Ωi = {x1, x2, . . . , xni
} form (m − 1) unisolvent set of centers. Then

the system (31) is uniquely solvable.
For a linear differential operator D , at each stencil x[i]

k ∈ Ωi, we have approx-
imation for Du(x, tn) as;

D û(x
[i]
k , tn) =

mi∑

j=1

λjDφ(‖x[i]
k − x

[i]
j ‖) +

l∑

j=1

γjDpj(x
[i]
k ),

= [Dφ(‖x[i]
k − x

[i]
1 ‖), . . . ,Dφ(‖x[i]

k − x[i]
mi

‖),Dp1(x
[i]
k ), . . .Dpl(x

[i]
k )]ΛΩi

= DΨΩiA
−1
Ωi

Un
Ωi

, (33)



76 A. Bhardwaj et al.

where ΨΩi
= [φ(‖x[i]

k − x[i]
1 ‖), . . . , φ(‖x[i]

k − x[i]
mi‖), p1(x

[i]
k ), . . . pl(x

[i]
k )]. For each

k the local operator DΨΩi
A−1

Ωi
is a 1 × mi row vector.

Now for each collocation points xi ∈ Ω, applying the local collocation method
described through Eq. (33) to the linear operator L defined in Eq. (15), we have

L ΨΩi
A−1

Ωi
Un

Ωi
= bi, xi ∈ Ω. (34)

For each arbitrary i, the L ΨΩi
A−1

Ωi
is a 1 × mi row vector, that going to store

in M ×M matrix, by filling extra spaces by zeros. Thus we have following linear
system

LUn = b. (35)

The resulting system is sparse having only mi non zero entries in each rows, and
hence can be calculate efficiently.

4 Numerical Experiments

This section included some numerical simulation to verify the theoretical results
and demonstrate the reliability and correctness of the proposed method. The
second order thin plate spline r4 ln r is taken in both the numerical problems
and a constant number of collocation points in each subdomain. We used two
different definitions of errors to measure the accuracy. They are defined as

Maximmu absolute error L∞ = max
1≤i≤M

|u(xi, T ) − U(xi, T )|,

Root mean square error Lrms =

√
√
√
√ 1

M

M∑

i=1

|u(xi, T ) − U(xi, T )|2,

where M is total collocation points, u(xi, T ) and U(xi, T ) are analytical and
numerical solution respectively.

Example 1. Consider the following two-term test problem
c
0D

α0
t u(x, t) +c

0 D
α1
t u(x, t) = Δu(x, t) − F (u(x, t)) + f(x, t).

source term, initial and boundary conditions are computed from the exact solu-
tion

u(x, t) = (1 + t2)(−x2 + x).

and f(x, t) =
(

2t2−α0

Γ (3−α0)
+ 2t2−α1

Γ (3−α1)

)
(x − x2) + 2

(
1 + t2

)
+ F (u(x, t)).

In this problem, we take F (u(x, t)) = 0, which means that the given problem
is considered as linear problem. We solve this problem in the computational
domain [0, 1] for different values of δt together with different combinations of
α0 and α1. Table 1 reports the results with M = N , m = 3 at T = 1 and the
computational order of convergence is (2 − α).

The proposed method is compared with the method employed by Qiao and
Xu [3]. We found that our proposed method is more correct and very efficient
than [3], also the corresponding results for different values of α0 and α1 = 0.2
are shown in Table 2.
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Table 1. The absolute errors and RMS errors for different values of α0 and α1 for
Example 1.

h α0 = 0.5, α1 = 0.1 α0 = 0.7, α1 = 0.3

L∞ Lrms Rate L∞ Lrms Rate

1/10 3.3320e−04 2.2792e−04 – 8.5665e−04 5.8593e−04 –

1/20 1.1935e−04 8.2898e−05 1.5 3.4262e−04 2.3795e−04 1.3

1/40 4.2383e−05 2.9746e−05 1.5 1.3667e−04 9.5908e−05 1.3

1/80 1.4998e−05 1.0587e−05 1.5 5.4596e−05 3.8535e−05 1.3

1/160 5.2987e−06 3.7516e−06 1.5 2.1863e−05 1.5478e−05 1.3

Table 2. Comparison of L2 errors with α1 = 0.2, for Example 1.

h α0 = 0.50 α0 = 0.75 α0 = 0.95

Present method Method [3] Present method Method [3] Present method Method [3]

1/10 2.5369e−04 3.7247e−04 6.5893e−04 9.6734e−04 1.3850e−03 2.0331e−03

1/20 9.1285e−05 1.3154e−04 2.7960e−04 4.0229e−04 6.7602e−04 9.7424e−04

1/30 4.9877e−05 7.1352e−05 1.6872e−04 2.4138e−04 4.4312e−04 6.3399e−04

1/40 3.2416e−05 4.6196e−05 1.1778e−04 1.6786e−04 3.2807e−04 4.6762e−04

1/50 2.3185e−05 3.3963e−05 8.9082e−05 1.2666e−04 2.5974e−04 3.6936e−04

Example 2. Consider the following two-dimensional two-term test problem

c
0D

α0
t u(x, y, t) +c

0 D
α1
t u(x, y, t) = Δu(x, y, t) − u(x, y, t)3 + f(x, y, t).

source term, initial and boundary conditions are computed from the exact solu-
tion

u(x, y, t) = t4 sin(πx + πy).

and f(x, y, t) = sin(πx + πy)
(

24t4−α0

Γ (5−α0)
+ 24t4−α1

Γ (5−α1)
+ 2π2t4

)
+ u(x, y, t)3.

We considered this test problem in the computational domain [0, 1]2 with 2025
spatial points and m = 5 for different δt, α0 and α1. To prove the reliability and

Table 3. The absolute errors and RMS errors with different values of α0, α1 and δt at
T = 1.0 s for Example 2.

δt α0 = 0.7, α1 = 0.4 α0 = 0.9, α1 = 0.7

L∞ Lrms Rate L∞ Lrms Rate

1/5 2.7105e−02 1.2861e−02 – 4.1120e−02 1.9814e−02 –

1/10 1.4665e−02 6.9194e−03 0.8 2.1751e−02 1.0445e−02 0.9

1/20 7.2565e−03 3.4142e−03 1.0 1.0707e−02 5.1348e−03 1.0

1/40 3.5543e−03 1.6699e−03 1.0 5.2029e−03 2.4933e−03 1.0

1/80 1.7903e−03 8.4149e−04 0.9 2.5673e−03 1.2301e−03 1.0
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correctness of the proposed method, the results are reported in Table 3 and this
table shows that the proposed method has convergence order one.

5 Conclusion

This work aimed to develop a meshless method based on the radial basis function
to numerically solve the multi-term time fractional nonlinear diffusion equation
which involves multiple Caputo fractional derivatives in time. The Finite differ-
ence method has been used for the discretization in time. Further, we proved
that the proposed scheme has unconditional stability property and convergence.
A fully discrete scheme was obtained using the meshless local collocation method
for spatial variables. To verify the theoretical outcome some test problems are
considered. From the presented results one can see that the proposed scheme is
robust and reliable to deal with the described problems.
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Abstract. We study the generalized space fractional diffusion equa-
tion on bounded domain Ω. The fractional derivative is considered in
conformable sense. In particular, we extend and prove the maximum-
minimum principle for the considered parabolic problem. Then, we show
the use of this principle in the establishment of uniqueness of the solu-
tion and its continuous dependence on the initial and boundary data. We
also present the construction of series solution for IBVP of the considered
equation with homogeneous and nonhomogeneous boundary values.

Keywords: Conformable fractional derivative · Space-fractional
diffusion equation · Initial-boundary-value problems · Maximum
(Minimum) principle

1 Introduction

From the last few decades, the theories of fractional calculus have been developed
extensively due to its application in the area of science and engineering, see [5,
6,8,9,12,13,22]. In [27], the author proved that there are some complex medium
which behaves anomalously due to the diverse characteristic of the elementary
units. As a result, the evolution process within such system does not follow
the standard laws. Fractional calculus plays a significant role to describe the
time evolution of a physical phenomenon within such system. In fact, in the
pioneer article [22], the author has pointed out that diffusion process in a complex
media does not follow Gaussian statistics, rather it follows some other non-linear
statistics, in which the mean square displacement of an unit element depends
on logarithm of time or fractional power of time. By considering the statistics
〈x2(t)〉 ∼ tα, 0 < α < 1, where 〈x2(t)〉 represents the mean square of the
displacement of an unit arbitrary element, the author proved that the diffusion
phenomenon in such medium is modelled by fractional differential equations.
Consequently, the fractional calculus draws a great importance to study the real
world physical problems.

Fractional calculus is a generalization of classical calculus which has been
generalized in many ways. Among all, the most used versions in the history of
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fractional calculus, are due to Riemann-Liouville and Caputo. A considerable
work on Riemann-Liouville and Caputo derivatives is available in literature,
see [4,7,24,29,30] and references therein. However, there are some disadvan-
tages as these derivatives do not obey the chain rule property, see [23]. In [11],
the author proposed a generalization, known as “Conformable fractional deriva-
tive”, which is quiet natural and closer to classical derivative and follows the
chain rule property. After that, it becomes an attraction among the researcher
and some notable works have been studied involving this derivative. For more
details, we refer to [1,2,10,14–17,26,28]. Recently, some numerical studies have
also been reported for equations with conformable fractional derivative. In [25],
authors proposed numerical approximation approach based on differential trans-
form method. In particular, they discussed approximation of conformable time
fractional Burger equation using the proposed method. Discretization method
using piecewise constant approximation is discussed in [18] while authors in [3],
introduced three numerical techniques named conformable variational iteration
method, conformable fractional reduced differential transform method and con-
formable homotopy analysis method for linear and nonlinear conformable partial
differential equations.

In this paper, we study the initial-boundary value problem for the space-
fractional diffusion equations,

ut(x, t) = kTα
x u(x, t), (x, t) ∈ Ω := (0, l) × (0, T ), (1)

where Tα
x represents the Conformable spatial fractional differential operator of

order α ∈ (1, 2] and k is the diffusion constant. We prove the uniqueness result
by utilizing the maximum-minimum principle for the problem (1).

In [19], the author established the uniqueness of classical solution based on
maximum-minimum principle of time fractional initial-boundary value problem
for diffusion equation with the diffusive term L(u) := ∇·(p(x)∇u)−q(x)u, where
p ∈ C1(Ḡ) and q ∈ C(Ḡ), over an open bounded domain G × (0, T ), G ⊂ R

n.
Again, the existence and uniqueness of generalized and classical solutions have
been investigated for the same problem in [20]. The same author in [21], con-
sidered the more generalised version (inhomogeneous equation with inhomoge-
neous boundary conditions) of the aforesaid problem and showed the equiva-
lence between generalized and classical solution. This was done by using the
very well known classical method, known as separation of variable technique. In
one dimensional case with constant coefficient, the problem turns out to be a
very well investigated diffusion problem, known as Heat equations. To the best
of author’s knowledge, no work has been reported on the analysis of the con-
formable spatial-fractional Heat equation. This work provide the opportunity to
investigate the said problem.

The organization of this paper is as follows. In the next section, we present
the definitions and some of the properties of conformable fractional derivative.
In Sect. 3, maximum-minimum principle for the considered problem is proved
and applied to show that it possesses at most one solution and solution depends
continuously on initial and boundary data. In the last section, analytic solutions
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of the space fractional diffusion equation with homogeneous and nohomogeneous
boundary conditions are provided.

2 Preliminary Results

In this section, we list some definitions, lemmas and weighted spaces which are
useful in the sequel. For more details and more properties, we refer [1,11]. Let
Ω = (0, l) × (0, T ), where l, T ∈ R+, C(Ω) is the set of all continuous functions
defined on Ω, C1

t (0, T ) is the set of all continuously differentiable functions with
respect to t which are defined on (0, T ) and C2

x(0, l) is the set of all two times
continuously differentiable functions with respect to x which are defined on (0, l).

Definition 1 [1,11]. Given a function f : [a,∞) → R. Then, the (left) con-
formable fractional derivative starting from a of order α ∈ (0, 1] is defined by

Tα
a f(x) = lim

ε→0

f(x + ε(x − a)1−α) − f(x)
ε

, (2)

if the limit exists.
In case of the conformable fractional derivative, the point a ∈ R appearing

in (2) will be called the lower terminal of the left-side conformable derivative.
Usually, if the conformable derivative of order α of a function f exists, then we
simply say that f is α-differentiable. When a = 0, we write Tα instead of Tα

0 . If
Tα

a f(x) exists on (a, a + ε) then Tα
a f(a) = lim

x→a+
(Tα

a f(x).

It may be noted that some authors (see, for example [11]) use the notation
T a

α instead Tα
a , but, following the tradition from the notations of the classical

fractional derivatives, we will write the order above and the lower terminal below.
The (right) conformable fractional derivative of f of order α ∈ (0, 1] termi-

nating at b is defined as [1,11]

Tα
b f(x) = lim

ε→0

f(x + ε(b − x)1−α) − f(x)
ε

. (3)

If Tα
b f(x) exists on (a, b), then Tα

b f(b) = limx→b−(Tα
b f)(x).

It is worth to note that the conformable fractional derivative of a constant
function is zero.

Definition 2 [1,11]. Given a function f : [a,∞) → R and f is nthdifferentiable
at x. Then, the conformable fractional derivative starting from a of order α ∈
(n, n + 1] is defined by

Tα
a f(x) = lim

ε→0

f (�α�−1)(x + ε(x − a)(�α�−α)) − f (�α�−1)(x)
ε

, (4)

if the limit exists. 
α� is the smallest integer greater than or equal to α.
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Consequently, one can show that

Tαf(x) = x(�α�−α)f�α�(x).

Examples
Conformable fractional derivative of order α ∈ (0, 1]

(1) Tα(f(x)) = Tα(ecx) = cx1−αecx.
(2) Tα(f(x)) = Tα(sin(cx)) = cx1−αcos(cx).
(3) Tα(f(x)) = Tα( 1

αxα) = 1.
(4) Tα(f(x)) = Tα(sin( 1

αxα)) = cos( 1
αxα).

Next, we give the definition of left and right fractional integral of order α.

Definition 3 [1,11]. Given a function f : [a,∞) → R. Then, the (left) con-
formable fractional integral starting from a of order α ∈ (0, 1] is defined as

Iα
a f(x) =

∫ x

a

(t − a)α−1f(t)dt. (5)

[1,11] The (right) conformable fractional integral of f of order α ∈ (0, 1]
terminating at b is defined as

Iα
b f(x) =

∫ b

x

(b − t)α−1f(t)dt. (6)

In our exposition below we will use only left-side conformable derivative but
will omit the expression “left-side” for simple writing. Following lemmas present
few relation between conformable fractional derivative and integral and also some
properties of conformable fractional derivative.

Lemma 1 [1,11]. If f : [a,∞) → R is a continuous function, then for all x > a,
Tα

a Iα
a f(x) = f(x).

Lemma 2 [1,11]. If Tα
a f(x) is continuous on [a,b], then Iα

a Tα
a f(x) = f(x) −

f(a).

Lemma 3 [1,11]. Let f : [a,∞) → R be a function which is α differentiable at
x0 > 0, then f is continuous at x0.

Lemma 4 [1,11]. Let α ∈ (0, 1] and f, g be α-differentiable functions at a point
x > 0. Then, following statements hold true:

(1) Tα(pf + qg) = pTα(f) + qTα(g), for all p, q ∈ R.
(2) Tα(xp) = pxp−α, for all p ∈ R.
(3) Tα(μ) = 0, for all constant functions f(x) = μ.
(4) Tα(fg) = fTαg + gTαf .
(5) Tα( f

g ) = gT α(f)−fT α(g)
g2 , where g �= 0.

(6) If f is differentiable, then Tαf(x) = x1−α df(x)
dx .
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Khalil [11] who introduced the notion of conformable fractional derivative,
gave the following examples which assure the readers that a function can be
α-differentiable at a point but not differentiable at the same point.

Example 1 [11]. Consider a function f(x) = 2x
1
2 . For this function, we have

T
1
2 f(x) = 1 for every x ∈ R+. Hence T

1
2 f(0) = lim

x→0+
T

1
2 f(x) = 1. Then f is

α-differentiable at a point zero, but f ′(0) does not exist.

3 Maximum-Minimum Principle

In general, the Eq. (1) has infinite number of solutions. However, deterministic
character of real world processes that are modelled as Eq. (1) is ensured by
certain conditions describing an initial state of the corresponding process and
the observations of its visible parts.

We consider the initial-boundary value problem of the Eq. (1) along with the
following initial and boundary conditions:

u(x, 0) = φ(x), 0 < x < l, (7)

u(0, t) = g(t), u(l, t) = h(t), 0 < t < T, (8)

where g ∈ C[0, T ], h ∈ C[0, T ], φ ∈ C[0, l], φ(0) = g(0) and φ(l) = h(0).

Definition 4. The function u = u(x, t) defined on Ω = [0, l] × [0, T ] is called a
classical solution of the problem (1) if it belongs to the space C(Ω) ∩ C1

t (0, T ) ∩
C2

x(0, l) and satisfies (1).

The maximum-minimum principle is a well known principle for the clas-
sical PDEs of the elliptic and parabolic type. Here we present the exten-
sion of it and establish the maximum-minimum principle for the generalized
space-conformable fractional diffusion equation over an open bounded domain
(0, l) × (0, T ), l, T ∈ R+.

Theorem 1. Let Ω = {(x, t) : 0 ≤ x ≤ l, 0 ≤ t ≤ T} be a closed rectangle and
∂Ω = {(x, t) ∈ Ω : t = 0 or x = 0 or x = l}. Let u(x, t) be a continuous

function on Ω which satisfies the following equation:

ut(x, t) = kTα
x u(x, t), 1 < α < 2, 0 < x < l, t > 0. (9)

Then,
max

(x,t)∈Ω
{u(x, t)} = max

(x,t)∈∂Ω
{u(x, t)}. (10)

Proof. Let
M = max

(x,t)∈∂Ω
{u(x, t)}. (11)

Then, it is enough to show max
(x,t)∈Ω

{u(x, t)} ≤ M.



84 K. K. Mishra and S. Dubey

Consider a function
v(x, t) = u(x, t) + εx2, (12)

where ε is a positive constant.
Let Dα = ∂

∂t − kTα
x .

For (x, t) ∈ Ω − ∂Ω, we have

Dα(v(x, t)) = Dα(u(x, t)) − kTα
x (εx2) (13)

= −kεTα
x (14)

= −kεx1−α2x (15)
= −2kεx2−α < 0. (16)

Hence,
Dα(v(x, t)) < 0. (17)

Note that

v(x, t) = u(x, t) + εx2 (18)
⇒ v(x, t) ≤ M + εl2, for (x, t) ∈ ∂Ω. (19)

If v(x, t) attains its maximum at some interior point, say (x1, t1), then it implies
Dαv(x1, t1) ≥ 0 which contradicts the Eq. (17). Therefore v(x, t) attains its
maximum at a point of ∂Ω ∪Γ , where Γ = {(x, t) : t = T}. Suppose that v(x, t)
attains its maximum at a point (x, T ) ∈ Γ , 0 < x < l. Then

Tα
x v(x, t) ≤ 0. (20)

Since v(x, T ) ≥ v(x, T − δ), 0 < δ < T , therefore we have,

lim
δ→0

v(x, T − δ) − v(x, T )
−δ

= vt(x, T ) ≥ 0,

which leads to Dα(v(x, T )) ≥ 0, a contradiction to (17).
Hence, max

(x,t)∈Ω
v(x, t) = max

(x,t)∈∂Ω
v(x, t) ≤ M + εl2.

Therefore, u(x, t) ≤ M + εl2 − εx2,
⇒ u(x, t) ≤ M + ε(l2 − x2), on Ω and for every ε > 0.

Taking ε → 0, we get u(x, t) ≤ M on Ω, which means

max
Ω

u(x, t) = max
∂Ω

u(x, t).

This completes the proof of the theorem.

Theorem 2. Let Ω = {(x, t) : 0 ≤ x ≤ l, 0 ≤ t ≤ T} be a closed rectangle and
∂Ω = {(x, t) ∈ Ω : t = 0 or x = 0 or x = l}. Let u(x, t) be a continuous

function on Ω which satisfies the following equation:

ut(x, t) = kTα
x u(x, t), 1 < α < 2, 0 < x < l, t > 0. (21)

Then,
min

(x,t)∈Ω
{u(x, t)} = min

(x,t)∈∂Ω
{u(x, t)}. (22)
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Proof. This Theorem can be proved in a similar way to the proof of the Theorem
(1) by replacing u(x, t) by −u(x, t).

Remark 1. By the above theorem, the maximum(minimum) of u(x, t) cannot
be assumed anywhere inside the rectangle, instead it is attained either on the
bottom or lateral sides (unless u is constant).

3.1 Uniqueness and Stability of the Solution

We apply maximum-minimum principle to show that the uniqueness of the solu-
tion to considered initial boundary value problem (1), (7)–(8), We also prove
that the solution, if it exists, continuously depends on the data given in the
problem.

Theorem 3. The initial value problem (1), (7)–(8) possesses at most one clas-
sical solution.

Proof. Suppose that u1(x, t) and u2(x, t) are two solutions of (1) satisfying (7)–
(8).
Consider a function w(x, t) = u1(x, t)−u2(x, t). Then, w(x, t) solves the following
problem:

wt(x, t) − kTα
x w(x, t) = 0, 0 < x < l, 0 < t < T, 1 < α < 2, (23)

w(x, 0) = 0, 0 ≤ x ≤ l, (24)
w(0, t) = w(l, t) = 0, 0 ≤ t ≤ T. (25)

By maximum-minimum principle Theorems (1) and (2), we get

max
Ω

w(x, t) = 0 and min
Ω

w(x, t) = 0, where Ω = [0, l] × [0, T ].

Therefore, it follows that w(x, t) = 0, consequently u1(x, t) = u2(x, t), ∀(x, t) ∈
Ω. This completes the proof of the theorem.

Consider the IBVP (1), (7)–(8) with g = h = 0, that is

ut − kTα
x u(x, t) = 0, 0 < x < l, 0 < t < T, 1 < α < 2, (26)
u(x, 0) = φ(x), 0 < x < l, (27)
u(0, t) = 0, 0 < t < T, (28)
u(l, t) = 0, 0 < t < T. (29)

Theorem 4. Let uj(x, t) be two solutions of Eq. (26) with initial data φj(x),
j = 1, 2. Then,

max
0≤x≤l

|u1(x, t) − u2(x, t)| = max
0≤x≤l

|φ1(x) − φ2(x)|, for all t ∈ [0, T ]. (30)



86 K. K. Mishra and S. Dubey

Proof. Consider the function w(x, t) = u1(x, t) − u2(x, t), which satisfies,

wt − kTα
x w(x, t) = 0, 0 < x < l, 0 < t < T, 1 < α < 2, (31)
w(x, 0) = φ1(x) − φ2(x), 0 < x < l, (32)
w(0, t) = 0, 0 < t < T, (33)
w(l, t) = 0, 0 < t < T. (34)

So, by the Theorem (1) and (2),

u1(x, t) − u2(x, t) ≤ max{ max
0≤x≤l

(φ1(x) − φ2(x)), 0}
⇒ u1(x, t) − u2(x, t) ≤ max

0≤x≤l
|φ1(x) − φ2(x)|.

and

u1(x, t) − u2(x, t) ≥ min{ min
0≤x≤l

(φ1(x) − φ2(x)), 0}
⇒ u1(x, t) − u2(x, t) ≥ −max{ max

0≤x≤l
(φ1(x) − φ2(x)), 0}

⇒ u1(x, t) − u2(x, t) ≥ − max
0≤x≤l

|φ1(x) − φ2(x)|.

Therefore,
max
0≤x≤l

|u1(x, t) − u2(x, t)| ≤ max
0≤x≤l

|φ1(x) − φ2(x)|. (35)

This completes the proof of the theorem.

4 Construction of Solutions

In this section, we demonstrate the construction of analytic solution of the IBVP
of diffusion equation (1), with the conditions (7)–(8) in the series form using the
Fourier method. We present two cases: first for homogeneous and second for
nonhomogeneous boundary conditions.

Equation with Homogeneous Boundary Conditions
Consider the following well posed problem of space-fractional diffusion equation

ut − kTα
x u = 0, 0 < x < l, t > 0, 1 < α < 2, (36)

u(x, 0) = φ(x), 0 < x < l, (37)
u(0, t) = u(l, t) = 0, t > 0. (38)

Let us consider the variable separable form

u(x, t) = X(x)S(t).

Substituting it into (36) and separating variables, we get
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StX − kSTα
x (X) = 0, (39)

1
k

St
1
T

=
1
X

Tα
x (X) = λ (say), (40)

where λ is a constant. This along with the boundary conditions leads to

St − kλS = 0, (41)

Tα
x X − λX = 0, X(0) = 0 = X(l). (42)

For λ = 0 and λ > 0, we get trivial solution u = 0.
In case of λ < 0, say λ = −p2, the general solution of fractional differential

equation (42) is given by

X(x) = c1 cos(
p

β
xβ) + c2 sin(

p

β
xβ),

where 2β = α and c1, c2 are arbitrary constants.Using the boundary conditions,
we obtain

Xn(x) = cn sin(
1
lβ

xβnπ), n = 1, 2, 3, . . . (43)

For λ = −p2 = − β2

l2β n2π2, (41) solves as

Sn(t) = dne−( β

lβ
)2kn2π2t. (44)

Thus, the solutions of space fractional diffusion equation satisfying boundary
conditions are given by the functions

un(x, t) = Ane
−(

α/2

lα/2 )2kn2π2t sin
( 1
lα/2

xα/2nπ
)
, n = 1, 2, 3, . . . (45)

To satisfy the initial condition, we superpose the solutions

u(x, t) =
∞∑

n=1

Ane
−(

α/2

lα/2 )2kn2π2t sin(
1

lα/2
xα/2nπ). (46)

Then, at t = 0, we get

φ(x) =
∞∑

n=1

An sin(
1

lα/2
xα/2nπ).

If initial function φ(x) can be represented as its Fourier series, then the general
solution of (36) is given by (46), where

An =
2
l

∫ l

0

φ(x) sin(
1

lα/2
xα/2nπ)dx.
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Non-homogeneous Boundary Conditions
Consider the following well posed problem for a space-fractional diffusion equa-
tion

ut − kTα
x u = 0, 0 < x < l, t > 0, 1 < α < 2, (47)

u(x, 0) = f(x), 0 < x < l, (48)
u(0, t) = A(t), t ≥ 0, (49)
u(l, t) = B(t), t ≥ 0. (50)

where A(t) and B(t) are smooth functions.
Likewise, the classical parabolic equations (47) is to be transformed into

the problem with homogeneous boundary conditions. We first find a function
U(x) ∈ C2[0, l] such that

U
′′
(x) = 0, U(0) = A(t), U(l) = B(t),

This gives,

U(x) =
(

B(t) − A(t)
l

)
(x) + A(t).

Then, define
V (x, t) = u(x, t) − U(x), x ∈ [0, l], t ≥ 0.

Clearly, V (x, t) solves the following problem

Vt − kTα
x V = 0, 0 < x < l, t > 0, 1 < α < 2, (51)

V (x, 0) = f(x) − U(x), 0 < x < l, (52)
V (0, t) = 0, t ≥ 0, (53)
V (l, t) = 0, t ≥ 0. (54)

It is an IBVP with homogeneous boundary conditions and therefore can be
solved similar to the previous case. Thus, (47) is solved as u(x, t) = V (x, t) −(

B(t)−A(t)
l

)
(x) − A(t).
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Abstract. In this article, a compact finite difference method is pro-
posed for pricing European and American options under jump-diffusion
models. Partial integro-differential equation and linear complementarity
problem governing European and American options respectively are dis-
cretized using Crank-Nicolson Leap-Frog scheme. In proposed compact
finite difference method, the second derivative is approximated by the
value of unknowns and their first derivative approximations which allow
us to obtain a tri-diagonal system of linear equations for the fully discrete
problem. Further, consistency and stability for the fully discrete problem
are also proved. Since jump-diffusion models do not have smooth ini-
tial conditions, the smoothing operators are employed to ensure fourth-
order convergence rate. Numerical illustrations for pricing European and
American options under Merton jump-diffusion model are presented to
validate the theoretical results.

Keywords: Compact finite difference method · European and
American options · Jump-diffusion models · Operator splitting
technique

1 Introduction

F. Black and M. Scholes [4] derived a partial differential equation (PDE) govern-
ing the option prices in the stock market with the assumption that the dynam-
ics of the underlying asset are driven by geometric Brownian motion with con-
stant volatility. Though Black-Scholes model is a seminal work in option pricing,
numerous studies found that these assumptions are inconsistent with the mar-
ket price movements. Therefore, various approaches have been considered to
overcome the shortcomings of Black-Scholes model. In one of these approaches,
Merton [24] incorporated the jumps into the dynamics of underlying asset to
determine the volatility skews and it is known as Merton jump-diffusion model.
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In another approach, S. L. Heston [10] considered the volatility to be a stochas-
tic process and this model is known as stochastic volatility model. Apart from
these, Dupire [8] considered the volatility to be a deterministic function of time
and stock price. Further, Bates [3] combined the jump-diffusion model with
stochastic volatility approach to capture the typical features of market option
prices. Anderson and Andreasen [1] combined the deterministic volatility func-
tion approach with jump-diffusion model and proposed a second-order accurate
numerical method for valuation of options. Our interest in present manuscript
lies in option pricing under Merton’s jump-diffusion model for European and
American options.

The prices of European options under jump-diffusion models can be evaluated
by solving a partial integro-differential equation (PIDE), whereas a linear com-
plementarity problem (LCP) is solved for the evaluation of American options.
Let us introduce some existing literature on numerical methods for the solution
of the PIDE and LCP. Cont and Voltchkova [5] used implicit-explicit (IMEX)
scheme for pricing European and barrier options and proved the stability and
convergence of the proposed scheme. d’Halluin et al. [6] proposed a second-order
accurate implicit method for pricing European and American options which uses
fast Fourier transform (FFT) for the evaluation of convolution integral. They also
proved the stability and the convergence of the fixed-point iteration method. An
excellent comparison of various approaches for jump-diffusion models is given in
[7]. A three-time levels second-order accurate implicit method using finite differ-
ence approximations is proposed for European and American put options under
jump-diffusion models in [16] and [17] respectively. Salmi et al. [30] proposed a
second-order accurate implicit-explicit (IMEX) time semi-discretization scheme
for pricing European and American options under Bates model. They explicitly
treated the jump term using the second-order Adams-Bashforth method and rest
of the terms are discretized implicitly using the Crank-Nicolson method.

The majority of numerical approaches discussed in [6,16,17,30] to price
European and American options under jump-diffusion models are based on
second-order discretization methods. In order to increase the accuracy of second
order finite difference approximations, inclusion of more grid points in compu-
tation stencil is required which results in a computationally expensive scheme.
Therefore, finite difference approximations have been developed using compact
stencils, commonly known as compact finite difference approximations, at the
expense of some complication in their evaluation (see [20] for details). As a result,
compact finite difference approximations provide high-order accuracy and bet-
ter resolution characteristics as compared to finite difference approximations for
equal number of grid points. A detailed study about the accuracy and resolution
characteristics of various order compact finite difference approximations is pre-
sented in [22] and algorithms to compute derivative approximation in one and
two-dimensions are also given.

Compact finite difference approximations have been used for option pricing
problems [19,32] and in various other applications [15,23,29]. In [19,32], the
original equation is considered as an auxiliary equation and each of the deriva-
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tive of leading term of truncation error is compactly approximated. However,
in present manuscript, we consider a different (Hermitian scheme) approach to
derive compact scheme for solving PIDE and LCP. An immediate advantage of
using Hermitian scheme approach instead of auxiliary equation approach is that
earlier approach can be easily extended for solving higher-dimensional PDEs,
PIDEs and LCPs arising in other areas of applied Mathematics.

Nevertheless, high-order approximations are not customary tools for option
pricing because initial conditions for option pricing are always non-smooth.
As a result, it affects the rate of convergence of numerical methods. Various
approaches, e.g. co-ordinate transformation [32], and local mesh refinement [19],
have been considered for option pricing problems to achieve high-order conver-
gence rate even for non-smooth initial conditions. These approaches suffer with
certain drawbacks e.g. it is not always easy to define a coordinate transforma-
tion for PIDE and the stability results for using local mesh refinement are not
straight forward. Therefore as another approach, we apply smoothing operator to
the initial conditions to obtain high-order convergence rate even for non-smooth
initial conditions [14].

Our aim in this manuscript is to develop high-order compact scheme for
solving PIDEs and LCPs in order to get option price and hedging parameters.
The continuous model problem is discussed in next section. In third Section,
compact finite difference method for pricing European and American options is
proposed. Consistence and stability analysis for European options is also proved
in this Section. In fourth section, numerical illustrations are presented to validate
the theoretical findings. Finally, conclusions and some future work are given in
fifth section.

2 The Mathematical Model

The PIDE for European option price can be written as [16]

∂u

∂τ
(x, τ) = Lu, (x, τ) ∈ (−∞,∞) × (0, T ],

u(x, 0) = f(x) ∀ x ∈ (−∞,∞),
(1)

where

Lu =
σ2

2

∂2u

∂x2
(x, τ)+

(
r − σ2

2
− λζ

)
∂u

∂x
(x, τ)− (r +λ)u(x, τ)+λ

∫
R

u(y, τ)g(y −x)dy,

(2)
τ = T − t, x = ln

(
S
S0

)
, u(x, τ) = V (S0e

x, T − τ), λ is the intensity of the jump

sizes, ζ =
∫
R
(ex − 1)g(x)dx, and V (S, t) is the option price. Further, the LCP

for American options is written as [17]

∂u

∂τ
(x, τ) − Lu(x, τ) ≥ 0, u(x, τ) ≥ f(x), (3)

(
∂u

∂τ
(x, τ) − Lu(x, τ)

)
(u (x, τ) − f(x)) = 0.
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The initial condition for European and American put options is

f(x) = max(K − S0e
x, 0) ∀ x ∈ R, (4)

and the asymptotic behaviour is described as

European put options: lim
x→−∞[u(x, τ) − (Ke−rτ − S0e

x)] = 0, lim
x→∞ u(x, τ) = 0

American put options: lim
x→−∞[u(x, τ) − (K − S0e

x)] = 0, lim
x→∞ u(x, τ) = 0

3 Compact Finite Difference Method

In this section, compact finite difference approximations for first and second
derivatives will be discussed. Fully discrete problem for PIDE (1) and LCP (3)
will also be obtained in this section. Further, consistency and stability of the
fully discrete problem will also be proved.

3.1 Compact Finite Difference Approximations for First and
Second Derivatives

Let us consider the fourth-order compact finite difference approximations for
first and second derivatives [20] of function u as follows

1
4
uxi−1 + uxi

+
1
4
uxi+1 =

1
δx

[
−3

4
ui−1 +

3
4
ui+1

]
, (5)

1
10

uxxi−1 + uxxi
+

1
10

uxxi+1 =
1

δx2

[
6
5
ui−1 − 12

5
ui +

6
5
ui+1

]
, (6)

where uxi
and uxxi

represents first and second derivatives approximations of
unknown u at grid point xi. If Δxui and Δxxui represent second-order finite
difference approximation for first and second derivative respectively, then we
may write

Δxui =
ui+1 − ui−1

2δx
, Δxxui =

ui+1 − 2ui + ui−1

δx2
. (7)

If the first derivative of unknowns are also considered as variables then Eq. (5)
can be written as

1
4
uxxi−1 + uxxi

+
1
4
uxxi+1 =

1
δx

[
−3

4
uxi−1 +

3
4
uxi+1

]
. (8)

Eliminating uxxi−1 and uxxi+1 from Eqs. (6) and (8) and using Eq. (7) we have

uxxi
= 2Δxxui − Δxuxi

. (9)

In this way, compact finite difference approximation for second derivative is
expressed in terms of the value of the functions and their first derivative approx-
imations. The value of uxi

in Eq. (9) is obtained from Eq. (5). In case of non-
periodic boundary conditions, fourth order accurate one-sided compact finite
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difference approximation for first derivative at boundary point can be obtained
from [33]. Moreover, a detailed discussion about the resolution characteristics of
above discussed compact finite difference approximations is presented in [27]. It
is shown in [27] that resolution characteristics of compact approximation given
in (9) are better than the compact approximation given in (6). This is another
advantage of splitting the second derivative approximation as above apart from
that it gives us a tri-diagonal system of linear equations for the fully discrete
problem which will be shown later in this manuscript.

3.2 Localization to Bounded Domain

The domain of the spatial variable is restricted to a bounded interval Ω =
(−L,L) for some fixed real number L to solve the PIDE (1) numerically. For
given positive integers M AND N , let δx = 2L/N and δτ = T/M and in this
way we define xn = −L+nδx (n = 0, 1, ...., N) and τm = mδτ (m = 0, 1, ...,M).
Cont and Voltchkova [5] proved that truncation error after localization decreases
exponentially point-wise. Further, Matache et al. [21] also proved an exponential
bound in L2-norm on truncation error. Now, the PIDE (1) can be written as

∂u(x, τ)
∂τ

= Du(x, τ) + Iu(x, τ), (x, τ) ∈ Ω × [0, T ), (10)

where D corresponds to the differential operator and I represents the integral
operator. The operators D and I are as follows

Du(x, τ) =
σ2

2
∂2u

∂x2
(x, τ) +

(
r − σ2

2
− λζ

)
∂u

∂x
(x, τ) − (r + λ)u(x, τ),

Iu(x, τ) = λ

∫

R

u(y, τ)g(y − x)dy.

(11)

3.3 Temporal Semi-discretization

A direct application of Crank-Nicolson Leap-Frog scheme for time semi-
discretization of Eq. (10) gives us

um+1 − um−1

2δτ
= D

(
um+1 + um−1

2

)
+ λI(um), m ≥ 1, (12)

um+1(xmin) = K(e−rτm+1 − exmin), um+1(xmax) = 0.

Let us suppose um and ũm represents the exact and approximate solution of the
Eq. (12) respectively with error em := um − ũm. The following theorem has been
proved in [13] for the stability of the semi-discrete problem (12).

Theorem 1. There exist a constant γ such that ∀ δτ < 1
γ , we have

||ei||2 ≤ C||e0||2, ∀ 2 ≤ i ≤ M,

where C is a constant depends on r, σ, λ, and T .
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3.4 The Fully Discrete Problem

The numerical approximations for the differential operator D and the integral
operator I are discussed in this section. If Dδ represents the discrete approxima-
tions for the operator D, then

Dδu
m
n =

σ2

2
um

xxn
+

(
r − σ2

2
− λζ

)
um

xn
− (r + λ)um

n , (13)

where um
n = u(xnτm) and um

xn
, um

xxn
are the first and second derivative approxi-

mations of u(xn, τm) respectively. Now using Eq. (9) in above Eq. (13), we get

Dδu
m
n =

σ2

2
(
2Δ2

xum
n − Δxum

xn

)
+

(
r − σ2

2
− λζ

)
um

xn
− (r + λ)um

n . (14)

In this way, second derivative approximation of unknowns are eliminated from
the PIDE using the unknowns itself and their first derivative approximation.

Now, the discrete approximation for the integral operator Iu using fourth-
order accurate composite Simpson’s rule is discussed. Integral operator Iu(x, τ)
given in Eq. (11) is divided into two parts namely on Ω = (−L,L) and R\Ω.
The value (Υ (x, τ, L)) of integral operator Iu on R\Ω can be obtained from

Υ (x, τ, L) =

⎧⎪⎨
⎪⎩

Ke−rτΦ
(
−x+μJ+L

σJ

)
− S0e

x+
σ2

J
2 +μJ Φ

(
−x+σ2

J+μJ+L

σJ

)
, (European),

KΦ
(
−x+μJ+L

σJ

)
− S0e

x+
σ2

J
2 +μJ Φ

(
−x+σ2

J+μJ+L

σJ

)
, (American),

where Φ(y) is the cumulative distribution function of standard normal random
variable. The discrete approximation (Iδu) for the integral operator (Iu) can
be obtained from [25]. If Lδ denote the discrete approximation of operator L

(defined in Eq. (2)), then

Lδu
m
n = Dδ

(
um+1

n + um−1
n

2

)
+ Iδu

m
n . (15)

We find Um
n (the approximate value of um

n ) which is the solution of following
problem

Um+1
n − Um−1

n

2δτ
= Dδ

(
Um+1

n + Um−1
n

2

)
+ IδU

m
n , 1 ≤ m ≤ M − 1, 1 ≤ n ≤ N − 1,

(16)
Using the values of DδU

m
n from Eq. (14) in Eq. (16), we obtain

Um+1
n − Um−1

n

2δτ
=

1

2

[
σ2

2

(
2Δ

2
xU

m+1
n − ΔxU

m+1
xn

)
+

(
r − σ2

2
− λζ

)
U

m+1
xn

− (r + λ)U
m+1
n

]

+
1

2

[
σ2

2

(
2Δ

2
xU

m−1
n − ΔxU

m−1
xn

)
+

(
r − σ2

2
− λζ

)
U

m−1
xn

− (r + λ)U
m−1
n

]

+ IδU
m
n , for 1 ≤ m ≤ M − 1.
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Re-arranging the terms in above equation, the following fully discrete problem
is obtained[

1 − δτ
σ2

2
2Δ

2
x − δτ(r + λ)

]
U

m+1
n = δτ

[
− σ2

2
ΔxU

m+1
xn

+

(
r − σ2

2
− λζ

)
U

m+1
xn

]

+ δτ

[
σ2

2
(2Δ

2
xU

m−1
n − ΔxU

m−1
xn

) +

(
r − σ2

2
− λζ

)
U

m−1
xn

−(r + λ)U
m+1
n

]
+ U

m−1
n + 2δτIδU

m
n .

(17)

for 1 ≤ m ≤ M − 1. Let us introduce the following notation

Um = (Um
1 , Um

2 , ..., Um
N−1)

T and Um
x = (Um

x1
, Um

x2
, ..., Um

xN−1
)T ,

the resulting system of equations corresponding to the difference scheme (17)
can be written as

AUm+1 = F (Um,Um−1,Um−1
x ,Um+1

x ). (18)

The presence of Um+1
x on the right hand side of the Eq. (18) bind us to use a pre-

dictor corrector method to solve the system of equations. Therefore, correcting
to convergence approach presented in [26] is used to solve (18).

Computational Complexity: In above discussed approach, number of iter-
ations to achieve desired accuracy are not known in advance. Let number of
iterations required by above approach be nm at a fixed time level m and
ns:= max

1≤m≤M
nm. We know that a tri-diagonal system of equations is solved with

O(N) operations and we have also discussed that matrix-vector multiplication
is obtained with O(NlogN) complexity. Therefore, maximum computational
complexity of the proposed compact finite difference method will be of order
O ((ns + logN)NM).

Now, the fully discrete problem for American options using compact finite
difference method is discussed. Ikonen et al. [11] proposed the operator splitting
technique for American put options under Black-Scholes model and it is extended
by Toivanen [34] for jump-diffusion models. For detailed explanation about the
operator splitting technique, one can see [17] and references therein. A new
auxiliary variable ψ is taken such that ψ = Uτ − LU and LCP (3) is written as
follows:

Uτ − LU = ψ,

ψ ≥ 0, U ≥ f, ψ(U − f) = 0.
(19)

The above equation is discretized using operator splitting technique as follows:

Ũm+1
n − Um−1

n

2δτ
−

[
Dδ

(
Ũm+1

n + Um−1
n

2

)
+ IδU

m
n

]
= Ψm

n , (20)

Um+1
n − Um−1

n

2δτ
−

[
Dδ

(
Ũm+1

n + Um−1
n

2

)
+ IδU

m
n

]
= Ψm+1

n . (21)
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Now, a pair (Ψm+1
n , Um+1

n ) is to be obtained satisfying the Eqs. (20) and (21)
and the constraints

Um+1
n ≥ f(xn), Ψm+1

n ≥ 0, Ψm+1
n

(
Um+1

n − f(xn)
)

= 0. (22)

Algorithm to solve Eqs. (20), (21), and (22):

for m = 0, n = 1, 2, ..., N − 1
Ũm+1

n −Um
n

δτ = DδŨ
m+1
n + IδU

m
n + Ψm

n

end
Solve for n = 1, 2, ..., N − 1
Um+1

n = max
(
u0(xn), Ũm+1

n − δτΨm
n

)

Ψm+1
n = Um+1

n −Ũm+1
n

δτ + Ψm
n

end
for m ≥ 1, n = 1, 2, ..., N − 1
Ũm+1

n −Um−1
n

2δτ = Dδ

(
Ũm+1

n +Um−1
n

2

)
+ IδU

m
n + Ψm

n

end
Solve for n = 1, 2, ..., N − 1
Um+1

n = max
(
u0(xn), Ũm+1

n − 2δτΨm
n

)

Ψm+1
n = Um+1

n −Ũm+1
n

2δτ + Ψm
n

end

3.5 Consistency

In order to prove consistency of fully discrete problem (17), the following theorem
is a direct application of Taylor series expansion and compact finite difference
approximations discussed above (see [26] for more details).

Theorem 2. For sufficiently small δx and δτ , we have

∂u

∂τ
(xn, τm)−Lu(xn, τm)−

(
u(xn, τm+1) − u(xn, τm−1)

2δτ
− Lδu(xn, τm)

)
= O(δτ

2
+ δx

4
), (23)

for m ≥ 1, where L and Lδ are given in Eqs. (2) and (15) respectively and
(xn, τm) ∈ (−L,L) × (0, T ].

3.6 Stability

The stability of proposed compact finite difference method is proved using von
Neumann stability analysis. Consider a single node

Um
n = pmeInθ, (24)

where I =
√−1, pm is the mth power of amplitude at time levels τm. We consider

the integration term given in Eq. (11) in an equivalent form as follows.

Iu(x, τ) = λ

∫ L

−L

u(y + x, τ)g(y)dy.
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Fourth-order accurate composite Simpson’s rule for above equation is then given
by

Iδu = δx

N∑
k=0

wkUm
k+ngk,

= δx

N∑
k=0

wkpmeIθ(k+n)gk,

≡ pmeIθnGk,

where

Gk = δx
N∑

k=0

wkeIθkgk and gk = g(xk). (25)

The following lemma has been proved in [26] which gives that numerical quadra-
ture Gk is fourth order accurate.

Lemma 1. The numerical quadrature Gk given in Eq. (25) satisfies the follow-
ing

|Gk| ≤ 1 + cδx4,

where c is a constant.

For sake of simplicity, we denote σ2

2 = a and
(
r − σ2

2 − λζ
)

= b in the rest of
the section. Therefore, the fully discrete problem (17) can be written as follows

(1 − 2aδτΔ2
x + δτ(r + λ))Um+1

n = (1 + 2aδτ2Δ2
x − δτ(r + λ))Um−1

n + 2δτ[
b

2
− a

2
Δx

]
Um+1

xn
+ 2δτ

[
b

2
− a

2
Δx

]
Um−1

xn
+ 2δτλGkUm

n .

(26)
From [28], the following relations are obtained

ΔxUm
n = I

sin(θ)
δx

Um
n , Δ2

xUm
n =

2cos(θ) − 2
δx2

Um
n , Um

xn
= I

3sin(θ)
δx(2 + cos(θ))

Um
n .

(27)
Using (27) in the difference scheme (26), we obtain

[
1 − 4aδτ

(
cos(θ) − 1

δx2

)
+ δτ(r + λ)

]
U

m+1
n =

[
1 + 4aδτ

(
cos(θ) − 1

δx2

)
− δτ(r + λ)

]
U

m−1
n

+ δτ

[(
a

sin(θ)

δx
+ Ib

)
3sin(θ)

δx(2 + cos(θ))

]
U

m+1
n

+ δτ

[(
a

sin(θ)

δx
+ Ib

)
3sin(θ)

δx(2 + cos(θ))

]
U

m−1
n

+ 2δτλGkU
m
n , (28)
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which implies
[
1 − δτa

cos2(θ) + 4cos(θ) − 5
δx2(2 + cos(θ))

+ δτ(r + λ) − Iδτb
3sin(θ)

δx(2 + cos(θ))

]
Um+1

n

=
[
1 + δτa

cos2(θ) + 4cos(θ) − 5
δx2(2 + cos(θ))

− δτ(r + λ) + Iδτb
3sin(θ)

δx(2 + cos(θ))

]
Um−1

n

+ 2δτλGkUm
n . (29)

Now using Eq. (24) in above and divide the above equation by pm−1eInθ, we get
the amplification polynomial

Θ(δx, δτ, θ) = γ0p
2 − 2γ1p − γ2, (30)

where

γ0 =
[
1 − δτ

(
a
cos2(θ) + 4cos(θ) − 5

δx2(2 + cos(θ))
− (r + λ) + Ib

3sin(θ)
δx(2 + cos(θ))

)]
,

γ1 = λδτGk,

γ2 =
[
1 + δτ

(
a
cos2(θ) + 4cos(θ) − 5

δx2(2 + cos(θ))
− (r + λ) + Ib

3sin(θ)
δx(2 + cos(θ))

)]
.

(31)

The following lemma is proved in [31] which states the necessary and sufficient
condition for a finite difference scheme to be stable.

Lemma 2. A finite difference scheme is stable if and only if all the roots, pu,
of the amplification polynomial Θ satisfies the following condition:

– There is a constant C such that |pu| ≤ 1 + Cδτ .
– There are positive constants a0 and a1 such that if a0 < |pu| ≤ 1 + Cδτ then

|pu| is simple root and for any other root pv, following relation holds

|pv − pu| ≥ a1,

as δx, δτ→ 0.

The above Lemma 2 is proved for fully discrete problem (17) in the following
theorem.

Theorem 3. The fully discrete problem (17) is stable in the sense of Von-
Neumann for δτ ≤ 1/(2λ).

Proof: First, some properties of the coefficients γ0, γ1 and γ2 of amplification
polynomial Θ are proved. Using Lemma 1 in Eq. (31) it is observed that |γ1| <
δτλ. We can write |γ0| = |(1 − A) − IB|, where

A = a
cos2(θ) + 4cos(θ) − 5

δx2(2 + cos(θ))
− (r + λ), and B = b

3sin(θ)
δx(2 + cos(θ))

.
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This implies |γ0|2 = 1 + A2 − 2A + B2. Since cos2(θ)+4cos(θ)−5
δx2(2+cos(θ)) < 0, a > 0,

(r + λ) > 0 =⇒ A < 0, therefore |γ0| > 1. Similarly
∣∣∣∣
γ2
γ0

∣∣∣∣
2

=
1 + A2 + 2A + B2

1 + A2 − 2A + B2
.

Again A < 0 =⇒
∣∣∣γ2
γ0

∣∣∣ < 1. Now, roots of the amplification polynomial Θ can
be written as

|p| =

∣∣∣∣∣
γ1 ±

√
γ2
1 − γ0γ2

γ0

∣∣∣∣∣ ,

≤
∣∣∣∣
γ2
γ0

∣∣∣∣
1
2

+ 2
∣∣∣∣
γ1
γ0

∣∣∣∣ ,

≤ 1 + 2δτλ.

(32)

Hence, first part of the Lemma 2 is proved for constant C = 2λ. Now for second
part of the Lemma 2, let us assume that p1 and p2 are two roots of amplification
polynomial Θ. Take the constant a0 = 1 which will imply that p1 > 1, then

|p1 − p2| ≥ 2|p1| − |p1 + p2|,
≥ 2 − 2δτλ.

(33)

If δτ satisfies the given condition, we have |p1 − p2| ≥ 1, and this prove the
second part of the Lemma 2 with a1 = 1. This completes the proof.

Remark 1. We would like to compare the stability result presented in this
manuscript with the stability results in [26]. Note that in [26], the restriction
on δτ depends on jump size λ and risk free interest rate r. However in the
present manuscript, the choice of δτ only depend on the jump size λ. Therefore,
one can say that stability result present in this manuscript is less restrictive as
compared to [26].

4 Numerical Results

In this section, the applicability of the proposed compact finite difference method
for pricing European and American options under jump-diffusion models is
demonstrated. According to [14], fourth-order convergence cannot be expected
for non-smooth initial conditions. Since the initial conditions given in Eqs. (4) has
low regularity, the smoothing operator φ4 given in [14] is employed to smoothen
the initial conditions and it’s Fourier transform is define as

φ̂4(ω) =
(

sin(ω/2)
ω/2

)4 [
1 +

2
3
sin2(ω/2)

]
.

As a result, the following smoothed initial condition (ũ0) is obtained

ũ0(x1) =
1
δx

∫ 3δx

−3δx

φ4

( x

δx

)
u0(x1 − x)dx, (34)
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where u0 is the actual non-smooth initial condition and x1 is the grid point
where smoothing is required. The smoothed initial conditions obtained from
Eq. (34) tends to the original initial conditions as δx → 0. The parameters
considered for pricing European and American options under Merton jump-
diffusion model are listed in Table 1. The parabolic mesh ratio ( δτ

δx2 ) is fixed as
0.4 in all our computations, although neither the von Neumann stability analysis
nor the numerical experiments showed any such restriction. The relative �2-error
||Uref −U ||�2

||Uref ||�2 is used to determine the numerical convergence rate, where Uref

represents the numerical solution on a fine grid (δx = 4.8828125e−04) and U
denotes the numerical solution on coarser grid. Order of convergence is obtained
as the slope of the linear least square fit of the individual error points in the
loglog plot of error versus number of grid points.

Table 1. The values of parameters for pricing European and American options under
jump-diffusion models.

Parameters λ T r K σ μJ σJ S0

Values 0.10 0.25 0.05 100 0.15 −0.90 0.45 100

In option pricing, Greeks are important instruments for the measurement
of an option position’s risks. The rate of change of option price with respect
to change in the underlying asset’s price is known as Delta whereas the rate
of change in the delta with respect to change in the underlying price is called
as Gamma. The proposed compact finite difference method is considered for
valuation of options and Greeks as well in the following examples.

Table 2. Values of European put options and Greeks under Merton jump-diffusion
model with constant volatility using N = 1536.

(S, τ) Option Price Delta Gamma

In [12] Our method In [12] Our method In [12] Our method

(90, 0) 9.285418 9.285416 −0.846715 −0.846716 0.034860 0.034862

(100, 0) 3.149026 3.149018 −0.355663 −0.355661 0.048825 0.048828

(110, 0) 1.401186 1.401182 −0.058101 −0.058103 0.012129 0.012131

Example 1: Merton Jump-Diffusion Model for European Put Options
with Constant Volatility
The values of option prices and Greeks for various stock prices are presented
in Table 2 and it is observed that proposed compact finite difference method
is accurate for valuation of options and Greeks as well. The difference between
the reference and numerical solutions as a function of asset price and time with
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Fig. 1. (a) Efficiency: CPU time and relative error for finite difference method and
proposed compact finite differential method (b) Numerical Stability Plot.

Fig. 2. The difference between reference and numerical solutions as a function of asset
price and time using: (a) finite difference method with non-smooth initial condition,
(b) proposed compact finite difference method with non-smoothing initial condition,
(c) finite difference method with smoothed initial condition and (d) proposed compact
finite difference method with smoothed initial condition.
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non-smooth initial condition are plotted in Figs. 2(a) and 2(b) respectively. It is
observed from the figures that maximum error at strike price is comparatively
smaller with proposed compact finite difference method. Similarly, the difference
between reference and numerical solutions with smoothed initial conditions are
plotted in Figs. 2(c) and 2(d). It is evident from the figures that oscillations
in the solution near the strike price are lesser with proposed compact finite
difference method. The relative �2-errors using finite difference method (second-
order accurate) and proposed compact finite difference method are plotted in
Fig. 3(a) and it can be concluded that proposed method is only second order
accurate with non-smooth initial condition. Further, it is observed that numerical
order of convergence rate is in excellent agreement with the theoretical order of
convergence of the proposed method when initial condition is smoothed.

The PIDE (16) is also solved using finite difference method [16] in order to
compare the efficiency of proposed compact finite difference method with finite
difference method. The relative �2 errors between the numerical and reference
solutions and corresponding CPU time at grid points N = 12, 24, 48, 96, 192
and 384 using finite difference method and proposed compact finite difference
method are computed and presented in Fig. 1(a). It is observed from Fig. 1(a)
that for a given accuracy, proposed method is significantly efficient as compared
to finite difference method. An additional numerical stability test is performed
in order to validate the theoretical stability results. The numerical solutions
for varying values of the parabolic mesh ratio ( δτ

δx2 ) and mesh width δx are
computed. Plotting the associated relative �2 errors should allow us to detect
stability restrictions depending on the values of δτ and δx. The similar approach
for numerical stability test is also discussed in [9]. The relative �2 error is plotted
in Fig. 1(b) with δτ

δx2 = k
10 , k = 1, ..., 10 for various values of δx and it is observed

that the influence of the parabolic mesh ratio on the relative �2 error is only
marginal. Thus, we can infer that there does not seem to be any condition on
the choices of δτ and δx.

Example 2: Merton Jump-Diffusion Model for European Put Options
with Local Volatility
In this example, the volatility σ is assumed to be a function of stock price and
time and is given as

σ(x, τ) = 0.15 + 0.15 (0.5 + 2(T − τ))
((S0e

x/100) − 1.2)2

(S0ex/100)2 + 1.44
. (35)

In Table 3, the values of European options with local volatility for various stock
prices are presented. It is observed that option prices obtained using proposed
compact finite difference method are in excellent agreement with the reference
values. The relative �2-errors using finite difference method and proposed com-
pact finite difference method are plotted in Fig. 3(b) and it is observed that
proposed method is only second order accurate with non-smooth initial condi-
tion. The numerical order of convergence rate agrees with the theoretical order of
convergence rate of the proposed method when the initial condition is smoothed.
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Table 3. Values of European put options with local volatility under Merton jump-
diffusion model using N = 1536.

(S, τ) = (90, 0) (S, τ) = (100, 0) (S, τ) = (110, 0)

Reference values [18] 9.317323 3.183681 1.407745

Proposed method 9.317322 3.183682 1.407743

Example 3: Merton Jump-Diffusion Model for American Put Options
with Constant Volatility
The values of American options for various stock prices are presented in Table 4
and it is observed that proposed compact finite difference method is also accurate
for valuation of American options. The relative �2-errors using finite difference
method and proposed compact finite difference method are plotted in Fig. 3(c)
and it is observed that proposed method is only second order accurate with non-
smooth initial condition. The numerical order of convergence rate is 3.2 with
smoothed initial condition which does not represents the theoretical order of
convergence rate. The reason could be the lack of regularity of the problem due
to the free boundary feature which needs further research to be resolved [2].

Table 4. Values of American put options under Merton jump-diffusion model with
N = 1536.

(S, τ) = (90, 0) (S, τ) = (100, 0) (S, τ) = (110, 0)

Reference values [18] 10.003866 3.241207 1.419790

Proposed method 10.003862 3.241208 1.419791

Example 4: Merton Jump-Diffusion Model for American Put Options
with Local Volatility
In Table 5, the values of American options with non-constant volatility are pre-
sented for various stock prices. It can be concluded that proposed method is
also accurate for valuation of American options with non-constant volatility.
The relative �2-errors using finite difference method and proposed compact finite
difference method are plotted in Fig. 3(d).
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Fig. 3. Relative 
2 error with (i) FDM: finite difference method, (ii). CFDMW : pro-
posed compact finite difference method without smoothing the initial condition, (iii).
CFDM: proposed compact finite difference method with smooth initial condition for
(a) European put option with constant volatility, (b) European put option with local
volatility, (c) American put option with constant volatility, and (d) American put
option with local volatility.

Table 5. Values of American put options with local volatility under Merton jump-
diffusion model using N = 1536.

(S, τ) = (90, 0) (S, τ) = (100, 0) (S, τ) = (110, 0)

Reference values [18] 10.008881 3.275957 1.426403

Proposed method 10.008880 3.275955 1.426403

5 Conclusion and Future Work

In this article, a compact finite difference method has been proposed for pric-
ing European and American options under Merton jump-diffusion model with
constant and local volatilities. Consistency and stability of fully discrete prob-
lem have also been proved. The effect of non-smooth initial condition on the
numerical convergence rate is discussed and it is shown that smoothing of ini-
tial condition helps us to achieve high-order numerical convergence rate. More-
over, Greeks (Delta and Gamma) are computed for European options and it is
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shown that proposed compact finite difference method is accurate for valuation
of options and Greeks as well. It would be interesting to extend the proposed
compact finite difference method for stochastic volatility jump-diffusion models
(a.k.a. Bates model) as a future work.
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Abstract. Finding exact solutions of nonlinear partial differential equa-
tions is one of the very difficult topics in mathematical physics. In this
paper, we find new exact solutions to the general Sine-Gordon equation.
These equations are used in different fields such as electromagnetic waves
propagating in semiconductor quantum super lattices, fluxion dynamics
in Josephson junctions and nonlinear optics. Different ansatz methods
are applied to obtain the required solutions. Solutions are obtained in
terms of periodic functions and hyperbolic functions.

Keywords: Sine-Gordon equation · Exact solutions · Periodic
solutions

1 Introduction

One of the important nonlinear partial differential equations attracting intensive
study in obtaining exact solutions is the Sine-Gordon equation. Solving such
nonlinear partial differential equations have attracted several researchers due to
the importance of these equations in mathematical physics. Researchers have
worked on solving several variants of Sine-Gordon equation. They have derived
certain particular solutions for these equations [1,4,5,8,9,11,12,14–17].

Sine-Gordon equation can be classified as a hyperbolic partial differential
equation. There are several methods available to solve hyperbolic partial dif-
ferential equations numerically, such as composite methods [2,3]. Sine-Gordon
equations have found applications in different physical situations including elec-
tromagnetic waves propagating in semiconductor quantum super lattices, flux-
ion dynamics in Josephson junctions, nonlinear optics and charge density waves
[6,7,10,13].

The double Sine-Gordon equation is given by

∂2u

∂t2
− ∂2u

∂x2
= γ sin(nu) + δ sin(2nu),
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where u = u(x, t) and γ, δ, n are real parameters. When δ = 0, we get the single
Sine-Gordon equation

∂2u

∂t2
− ∂2u

∂x2
= γ sin(nu).

In this paper a general double Sine-Gordon equation given by

α
∂2u

∂t2
+ β

∂2u

∂x2
= γ sin(nu) + δ sin(2nu) (1)

is considered. A traveling wave ansatz method is applied to obtain the required
solutions for the Eq. (1) in the next section. The computations are done using
a computer algebra system. Some of the existing solutions are shown to be
particular solutions of the derived solutions.

2 Exact Solutions

The traveling wave transformation is used to obtain the exact solutions of the
double Sine-Gordon equation (1). Assume that the solution is in the form

u = u(bx + ct).

Substituting this in the Eq. (1) we get an ordinary differential equation
(
βb2 + αc2

)
u′′ − γ sin(nu) − δ sin(2nu) = 0.

This equation was solved in [17] by two different methods to obtain certain
solutions. Another family of solutions are derived in [15]. In this paper we derive
several other new exact solutions. The transformation

u =
2
n

arctan v (2)

is used to derive the required solutions. Then the Eq. (1) becomes

v

(

n(γ − 2δ)v2 + 2α

(
∂v

∂t

)2

+ 2β

(
∂v

∂x

)2

+ γn + 2δn

)

=
(
v2 + 1

)
(

α
∂2v

∂t2
+ β

∂2v

∂x2

)
.

Now assuming traveling wave solution v = v(ζ), where ζ = bx+ct, this equation
becomes

v(ζ)
(
2v′(ζ)2

(
βb2 + αc2

)
+ n

(
γ + 2δ + (γ − 2δ)v(ζ)2

))

− (
v(ζ)2 + 1

)
v′′(ζ)

(
βb2 + αc2

)
.

(3)

Any solution to this ordinary differential equation will lead to a solution to the
double Sine-Gordon equation. To obtain the required solutions several ansatz
forms are assumed for the function v and the solutions are derived with the help
of computer algebra system.



New Exact Solutions for Double Sine-Gordon Equation 111

2.1 Sin-Cos Ansatz

Assume the solutions in the form

v(ζ) = A0 + A1 sin ζ. (4)

Substituting this ansatz in the Eq. (3), this will be a solution if the following
algebraic equations are satisfied.

2A2
1A0

(
βb2 + αc2

)
+ A3

0n(γ − 2δ) + A0γn + 2A0δn = 0,

3A0A
2
1n(γ − 2δ) = 0

2A3
1

(
βb2 + αc2

)
+ A2

0A1

(
βb2 + αc2

)
+ A1

(
βb2 + αc2

)

+ 3A2
0A1n(γ − 2δ) + A1γn + 2A1δn = 0

A3
1

(−βb2 − αc2
)

+ A3
1n(γ − 2δ) = 0.

(5)

Solving this algebraic system simultaneously,

A0 = 0,

A1 = ±
√

γ√
2δ − γ

,

c = ±
√

n(γ − 2δ) − b2β√
α

.

(6)

Then the original solutions for the Eq. (1) are given by

u1 = ± 2
n

arctan

⎛

⎜
⎜
⎝

√
γ sin

(
bx ± t

√
n(γ−2δ)−b2β√

α

)

√
2δ − γ

⎞

⎟
⎟
⎠ . (7)

Similarly using the ansatz

v(ζ) = A0 + A1 cos ζ, (8)

we get the solutions

u2 = ± 2
n

arctan

⎛

⎜
⎜
⎝

√
γ cos

(
bx ± t

√
n(γ−2δ)−b2β√

α

)

√
2δ − γ

⎞

⎟
⎟
⎠ . (9)

Letting n = 3, b = −4, α = 1, β = −3, δ = 3, γ = 1, the solution (7) becomes

2
3

arctan

(
sin

(√
33t − 4x

)

√
5

)

.
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Graphical representation of this solution is given in Fig. 1. Letting n = 5, b =
−4, α = 1, β = −3, δ = 3, γ = 1, the solution (9) becomes

−2
5

arctan

(
cos

(√
23t + 4x

)

√
5

)

.

Graphical representation of this solution is given in Fig. 2.

Fig. 1. A solution of Sin-Gordon equation given by (7) with n = 3, b = −4, α = 1, β =
−3, δ = 3, γ = 1

2.2 Sinh-Cosh Ansatz

Assume the solutions in the ansatz form

v(ζ) = A0 + A1 sinh ζ. (10)

Substituting this ansatz in the Eq. (3), this will be a solution if the following
algebraic equations are satisfied.

2A2
1A0

(
βb2 + αc2

)
+ A3

0n(γ − 2δ) + A0γn + 2A0δn = 0,

2A0A
2
1

(
βb2 + αc2

)
+ 2A0A

2
1

(−βb2 − αc2
)

+ 3A0A
2
1n(γ − 2δ) = 0,

2A3
1

(
βb2 + αc2

)
+ A2

0A1

(−βb2 − αc2
)

+ A1

(−βb2 − αc2
)

+ 3A2
0A1n(γ − 2δ) + A1γn + 2A1δn = 0,

2A3
1

(
βb2 + αc2

)
+ A3

1

(−βb2 − αc2
)

+ A3
1n(γ − 2δ) = 0.

(11)
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Fig. 2. A solution of Sin-Gordon equation given by (9) with n = 5, b = −4, α = 1, β =
−3, δ = 3, γ = 1

Solving this algebraic system simultaneously,

A0 = 0,

A1 = ±
√

γ√
γ − 2δ

,

c = ±
√

−b2β − γn + 2δn√
α

.

(12)

Then the original solutions for the Eq. (1) are given by

u3 = ± 2
n

arctan

⎛

⎜
⎜
⎝

√
γ sinh

(
bx ± t

√
−b2β−γn+2δn√

α

)

√
γ − 2δ

⎞

⎟
⎟
⎠ . (13)

Similarly using the ansatz

v(ζ) = A0 + A1 cosh ζ, (14)

we get the solutions

u4 = ± 2
n

arctan

⎛

⎜
⎜
⎝

√
γ cosh

(
bx ± t

√
−b2β−γn+2δn√

α

)

√
2δ − γ

⎞

⎟
⎟
⎠ . (15)

Letting n = 5, b = −4, α = 1, β = −3, δ = 3, γ = 1, the solution (13) becomes

2
5

arctan

(
sinh

(√
13t − 4x

)

√
7

)

.
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Graphical representation of this solution is given in Fig. 3. Letting n = 5, b =
−4, α = 1, β = −3, δ = 3, γ = 1, the solution (15) becomes

arctan

(
cosh

(√
35t + 3x

)

√
2

)

.

Graphical representation of this solution is given in Fig. 4.

Fig. 3. A solution of Sin-Gordon equation given by (13) with n = 5, b = −4, α = 1, β =
−3, δ = 3, γ = 1

2.3 Sec-Csc Ansatz

Let us take the solutions in the ansatz form

v(ζ) = A0 + A1 sec ζ. (16)

Substituting this ansatz in the Eq. (3), this will be a solution if the following
algebraic equations are satisfied.

A3
0n(γ − 2δ) + A0γn + 2A0δn = 0,

A1A
2
0

(
βb2 + αc2

)
+ A1

(
βb2 + αc2

)
+ 3A1A

2
0n(γ − 2δ) + A1γn + 2A1δn = 0,

2A0A
2
1

(
βb2 + αc2

)
+ 4A0A

2
1

(−βb2 − αc2
)

= 0,

− 2A0A
2
1

(
βb2 + αc2

) − 2A0A
2
1

(−βb2 − αc2
)

+ 3A0A
2
1n(γ − 2δ) = 0,

2A3
1

(−βb2 − αc2
)

+ 2A
(
βb2 + αc2

)
= 0,

A3
1

(− (
βb2 + αc2

))
+ 2A2

0A1

(−βb2 − αc2
)

+ 2A1

(−βb2 − αc2
)

+ A3
1n(γ − 2δ) = 0.

(17)
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Fig. 4. A solution of Sin-Gordon equation given by (15) with n = 5, b = −4, α = 1, β =
−3, δ = 3, γ = 1

Solving this algebraic system simultaneously,

A0 = 0,

A1 = ±
√−γ − 2δ√

γ
,

c = ±
√−b2β − n(γ + 2δ)√

α
.

(18)

Then the original solutions for the Eq. (1) are given by

u5 = ± 2
n

arctan

⎛

⎜
⎜
⎝

√−γ − 2δ sec
(

t
√

−b2β−n(γ+2δ)√
α

+ bx

)

√
γ

⎞

⎟
⎟
⎠ . (19)

Similarly using the ansatz

v(ζ) = A0 + A1 csc ζ, (20)

we get the solutions

u6 = ± 2
n

arctan

⎛

⎜
⎜
⎝

√−γ − 2δ csc
(

t
√

−b2β−n(γ+2δ)√
α

+ bx

)

√
γ

⎞

⎟
⎟
⎠ . (21)

Letting n = 2, b = 4, α = −1, β = 3, δ = 3, γ = −3, the solution (19) becomes

arctan
(
sec

(
3
√

6t + 4x
))

.
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Graphical representation of this solution is given in Fig. 5. Letting n = 2, b =
−3, α = 1, β = −3, δ = −3, γ = 1, the solution (21) becomes

arctan
(√

5 csc
(√

37t − 3x
))

.

Graphical representation of this solution is given in Fig. 6.

Fig. 5. A solution of Sin-Gordon equation given by (19) with n = 2, b = 4, α = −1, β =
3, δ = 3, γ = −3

2.4 Csch-Sech Ansatz

Let us take the solutions in the ansatz form

v(ζ) = A0 + A1cschζ. (22)

Substituting this ansatz in the Eq. (3), this will be a solution if the following
algebraic equations are satisfied.

A3
0n(γ − 2δ) + A0γn + 2A0δn = 0,

A1A
2
0

(−βb2 − αc2
)

+ A1

(−βb2 − αc2
)

+ 3A1A
2
0n(γ − 2δ) + A1γn + 2A1δn = 0,

2A0A
2
1

(
βb2 + αc2

)
+ 4A0A

2
1

(−βb2 − αc2
)

= 0,

2A0A
2
1

(
βb2 + αc2

)
+ 2A0A

2
1

(−βb2 − αc2
)

+ 3A0A
2
1n(γ − 2δ) = 0,

2A3
1

(
βb2 + αc2

)
+ 2A3

1

(−βb2 − αc2
)

= 0,

2A3
1

(
βb2 + αc2

)
+ A3

1

(−βb2 − αc2
)

+ 2A2
0A1

(−βb2 − αc2
)

+ 2A1

(−βb2 − αc2
)

+ A3
1n(γ − 2δ) = 0.

(23)



New Exact Solutions for Double Sine-Gordon Equation 117

Fig. 6. A solution of Sin-Gordon equation given by (21) with n = 2, b = −3, α = 1, β =
−3, δ = −3, γ = 1

Solving this algebraic system simultaneously,

A0 = 0,

A1 = ±
√

γ + 2δ√
γ

,

c = ±
√

n(γ + 2δ) − b2β√
α

.

(24)

Then the original solutions for the Eq. (1) are given by

u7 = ± 2
n

arctan

⎛

⎜
⎜
⎝

√
γ + 2δcsch

(
bx ± t

√
n(γ+2δ)−b2β√

α

)

√
γ

⎞

⎟
⎟
⎠ . (25)

Similarly using the ansatz

v(ζ) = A0 + A1sechζ, (26)

we get the solutions

u8 = ± 2
n

arctan

⎛

⎜
⎜
⎝

√−γ − 2δsech
(

bx±t
√

n(γ+2δ)−b2β√
α

)

√
γ

⎞

⎟
⎟
⎠ . (27)

Letting n = 4, b = 2, α = 1, β = −3, δ = 3, γ = 1, the solution (25) becomes

1
2

arctan
(√

7csch
(
2
√

10t + 2x
))

.
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Graphical representation of this solution is given in Fig. 7. Letting n = 2, b =
−3, α = 1, β = 1, δ = 5, γ = −1, the solution (27) becomes

arctan(3sech(3t − 3x)).

Graphical representation of this solution is given in Fig. 8.

Fig. 7. A solution of Sin-Gordon equation given by (25) with n = 4, b = 2, α = 1, β =
−3, δ = 3, γ = 1

2.5 A Rational Function Ansatz

Let us take the solutions in the rational ansatz form

v(ζ) = A +
A1

B + B1 cot(ζ)
. (28)
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Fig. 8. A solution of Sin-Gordon equation given by (27) with n = 2, b = −3, α = 1, β =
1, δ = 5, γ = −1

Substituting this ansatz in the Eq. (3), this will be a solution if the following
algebraic equations are satisfied.

A3B4n(γ − 2δ) + A2A1B
(
3B2n(γ − 2δ) − 2B1

2 (
βb2 + αc2

))

+ A1B
(
A1

2n(γ − 2δ) − 2B1
2 (

βb2 + αc2
)

+ B2n(γ + 2δ)
)

+ A
(−2A1

2B1
2 (

βb2 + αc2
)

+ 3A1
2B2n(γ − 2δ) + B4n(γ + 2δ)

)
= 0,

B1

(
A1

3 (
2βb2 + 2αc2 + n(γ − 2δ)

) − 2
(
A2 + 1

)
A1B1

2 (
βb2 + αc2

)

+ 4AB3n
(
A2γ − 2A2δ + γ + 2δ

)
+ 2AA1

2B
(
2βb2 + 2αc2 + 3n(γ − 2δ)

)

A1B
2 (

2
(
A2 + 1

)
b2β + 2α

(
A2 + 1

)
c2 + 9A2n(γ − 2δ) + 3γn + 6δn

))
= 0,

B1n(2AB + A1)
(
A2B(γ − 2δ) + AA1(γ − 2δ) + B(γ + 2δ)

)
= 0,

B1

(
2

(
A2 + 1

)
A1B

2 (
βb2 + αc2

)
+ 4AA1

2B
(
βb2 + αc2

)
+ 2A1

3 (
βb2 + αc2

)

4ABB1
2n

(
A2γ − 2A2δ + γ + 2δ

)
+ A1B1

2 (−2
(
A2 + 1

)
βb2 − 2α

(
A2 + 1

)
c2

+ 3A2n(γ − 2δ) + γn + 2δn
))

= 0,

B1

(
2A2A1B

(
βb2 + αc2

)
+ 2AA1

2 (
βb2 + αc2

)
+ 2A1B

(
βb2 + αc2

)

+ A3B1
2n(γ − 2δ) + AB1

2n(γ + 2δ)
)

= 0.

(29)
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Solving this algebraic system simultaneously we get,

A1 = −B
(
A2γ − 2A2δ + γ + 2δ

)

A(γ − 2δ)
,

B1 = ±B
√

γ + 2δ

A
√

γ − 2δ
,

c = ±
√

A2γ − 2A2δ + γ + 2δ
√

8βb2δ + n (γ2 − 4δ2)

2
√

2
√

A
√

−αδ(A2γ−2A2δ+γ+2δ)
A

.

(30)

Then the original solutions for the Eq. (1) are given by

u9 = ± 2
n

arctan

(

A +
2
(
A2 − 1

)
δ − (

A2 + 1
)
γ

±√
γ + 2δ

√
γ − 2δ cot (bx + ct) + A(γ − 2δ)

)

, (31)

where c is as given in Eq. (30).

3 Discussion

Several new exact solutions for generalized double Sine-Gordon equation are
derived in this paper. These solutions are derived using the trigonometric and
hyperbolic ansatz forms. The required calculations can be done using any of the
computer algebra system such as Maple or Mathematica. We can also obtain
several exact solutions to single sine-Gordon equation (1) by putting δ = 0 in
the exact solutions derived in this paper. The tan-cot solutions and tanh-coth
solutions are excluded in this paper as they were previously derived in the papers
[15,17]. These solutions were derived by them using a variable separated ordi-
nary differential equation method. The ansatz method used in this paper are
easier and powerful method in deriving the exact solutions of Double-Sine Gor-
don equations. Such ansatz method can be applied to obtain exact solutions of
several other nonlinear partial differential equations that appear in mathematical
physics.
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Abstract. The lattice Boltzmann method (LBM) has been gaining pop-
ularity over the last two decades and the method has been extended from
simple fluid flow problems to problems involving heat transfer. In the
present work, an attempt is made to model cases involving mixed con-
vection. Two types of problems are considered in this study; the first one
dealing with mixed convection in a single-sided lid-driven cavity and the
second one dealing with mixed convection in a double-sided lid-driven
cavity in parallel and anti-parallel configurations at constant Prandtl
number and various values of Richardson number. For the first problem,
a square domain is considered with a moving lid at a lower tempera-
ture while the stationary wall at the bottom at a higher temperature.
The cavity side walls are treated with an adiabatic boundary condition.
In LBM, a forcing term dependent on temperature difference is utilized
to vary the value of y-velocity in order to satisfy the effects of gravity
on mixed convection. A grid independence study is conducted to show
that the results are independent of the grid chosen, and good agreement
with literature is achieved. The second problem is an extension of the
first one; the cavity bottom wall is first given a velocity in the opposite
direction, and then in the same direction, and the velocity streamlines,
temperature contours and local Nusselt number variation in the top wall
for these cases are plotted. The developed method helps in the visualiza-
tion of various phenomena such as splitting of flow into two halves for
the parallel configuration and formation of secondary vortices with high
Reynolds number.

Keywords: Mixed convection · LBM · Lid driven cavity

1 Introduction

Mixed convection flows occur in many technological and industrial applications
in nature, e.g., solar receivers exposed to wind currents, electronic devices cooled
by fans, nuclear reactors cooled during emergency shutdown, heat exchangers
placed in a low-velocity environment, flows in the ocean and in the atmosphere,
c© Springer Nature Singapore Pte Ltd. 2021
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and so on [1–5]. It is known that mixed convection is a combination of natu-
ral convection and forced convection. Natural convection is a type of flow in
which fluid movement is generated by buoyancy force. The colder part of the
fluid being heavier than the warmer part gets pulled downwards, whereas the
warmer part moves upwards. On coming in contact with the heating source the
colder part becomes warm and a cycle is thus established. Forced convection is
a type of heat transfer in which transport of heat and movement of fluid is gen-
erated by an external source like a fan, pump, moving plate and so on. In mixed
convection, both phenomena work simultaneously and the relative strength of
each phenomenon is determined by the Richardson number, which is the ratio
of Grashoff number and the square of Reynolds number. A heated lid driven
cavity proves to be a perfect problem to study mixed convection as the moving
plate(s) provides a source for forced convection and the effect of gravity brings
into picture buoyancy driven natural convection.

CFD studies of mixed convection in a heated single lid driven cavity have
been studied by many authors. Moallemi et al. [2] and Iwatsu et al. [6] modeled
mixed convection in a heated single lid driven cavity. Some attempts have been
made to model mixed convection using LBM. Darzi et al. [7] validated a specific
case presented in Moallemi et al.’s [2] work and extended the results to study
mixed convection in inclined lid driven cavity at various angles of inclination.
Lamarti et al. [8] validated Iwatsu’s results and studied mixed convection in a
heated lid driven cavity using Multi Relaxation time (MRT) LBM. However,
traditionally a MRT approach is more computationally intensive than a Single
Relaxation time (SRT) approach. Hence in this work we use a SRT approach
with a forcing term demonstrated by Guo et al. [4] is used to first verify Moallemi
et al.’s [2] results for Pr = 1.0 and to then observe the effects of mixed convection
in a double lid driven cavity in parallel and anti-parallel configuration.

2 Problem and Solution Methodology

2.1 Problem Specification

Fluid flow and heat transfer are modeled via LBM in the two dimensional cavity
with length equivalent to the grid size chosen. In all cases the top lid is assigned a
lower temperature (Tc = 0) and the bottom lid is assigned a higher temperature
(Th = 1). The vertical walls are assumed to be insulated. In the first scenario,
which is used for validation, the top lid moves to the right with velocity utop

and the bottom lid remains stationary (Fig. 1(a)). In the second scenario, the
top and bottom lid move in opposite directions with velocity utop (Fig. 1(b)). In
the third scenario, the top and the bottom lid move in the same direction with
velocity utop (Fig. 1(c)). The flow is assumed to be in the laminar regime with
density changing continuously by virtue of the Boussinesq Approximation.
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(a) Single Configuration (b) Anti-Parallel Type (c) Parallel Type

Fig. 1. Description of boundary conditions for three mixed convection cases

2.2 Non Dimensional Mixed Convection Equations

The governing equations of the problem in non dimensional form are the con-
servation of mass, momentum and thermal energy:

∂U

∂X
+

∂V

∂Y
= 0 (1)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+

1
Re

(
∂2U

∂X2
+

∂2U

∂Y 2

)
(2)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+

1
Re

(
∂2 V

∂X2
+

∂2 V

∂Y 2

)
+

Gr

Re2
Θ (3)

U
∂Θ

∂X
+ V

∂Θ

∂Y
=

1
RePr

(
∂2Θ

∂X2
+

∂2Θ

∂Y 2

)
(4)

In the above equations, it can be noted that an additional term, namely the
buoyancy term gets added to the y- momentum equation due to the effect of
external force due to buoyancy being felt only in the y-direction i.e. gravitation
force direction and not in the x-direction. As is evident from the above set
of equations, the parameters that govern the simulation are Reynolds number,
Grashoff number and Prandtl number. The coupling between heat transfer and
fluid flow is via the buoyancy term in the y-momentum equation. The Richardson
number (Ri) as defined above is a more intuitive parameter that can replace
Grashoff number as it takes into account both Reynolds number and Grashoff
number, giving a relative comparison of natural and mixed convection. Four
cases are tested: case (i) Ri = 0.01, Re = 1000, case (ii) Ri = 0.4, Re = 500,
case (iii) Ri = 1, Re = 1000 & case (iv) Ri = 4, Re = 500. Prandtl number is
taken as 1 for all 4 cases.

2.3 Lattice Boltzmann Methodology

The lattice Boltzmann method is an alternate method to CFD for solving
fluid flow problems. It is a middleman between the continuum and molecular
approaches of flow modeling. The method has found applications in a variety
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of domains thanks to the speed of the method and the ease of adoption of con-
cepts of parallelism. It also has been extended to multiphase and heat transfer
problems showing the method’s versatility.

The basic assumption of the LBM is that a system can be described as a
probability distribution over particles. Each particle has a probability density
f associated with it which represents that the particle is at a position x with
velocity c (taken as 1) at time t. The Boltzmann equation is as follows [9]:

fi (x + ciδt, t + δt) =
1
τ

(feq
i − fi) (5)

Where τ is the relaxation time and ci is the velocity in the i-th direction, feq
i is

usually computed from statistical particle equilibrium distribution. The relax-
ation time τ is taken as

τ = 3ν + 0.5 (6)

The kinematic viscosity ν is computed as

ν =
utopL

Re
(7)

The space and time discretization are done as usual but the velocities are dis-
cretized in a different manner. Particles are given velocities in a set number of
directions. In the current study a D2Q9 model is used in which the particles are
assigned velocities as shown in Fig. 2. The discrete particle velocities are defined
as,

ci =

⎧⎪⎪⎨
⎪⎪⎩

(0, 0) if i = 0(
cos

(
π (i−1)

4

)
, sin

(
π (i−1)

4

))
if i = 1, 2, 3, 4(√

2 cos
(

π (i−1)
4

)
,
√

2 sin
(

π (i−1)
4

))
if i = 5, 6, 7, 8

(8)

Fig. 2. D2Q9 lattice model

Equation 5 is solved in two steps [9]:

1. Collision

f
′
i (x, t) = fi(x, t) +

1
τ

(feq
i (x, t) − fi(x, t)) (9)
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2. Streaming
fi (x + ciδt, t + δt) = f

′
i (x, t) (10)

The equilibrium distribution function is chosen as,

feq
i = ρwi

[
1 +

3(ci · u)
c2

+
9(ci · u)2

2c4
− 3(u · u)

2c2

]
(11)

Where u is the macroscopic velocity vector. The lattice weights are given by
w0= 4/9, w1 = w2 = w3 = w4 = 1/9, w5 = w6 = w7 = w8 = 1/36. Now, the
density ρ is defined as follows:

ρ =
8∑

n=0

fi (12)

The velocity used to compute macroscopic velocity also needs to be modified
by adding a force term to take into account the effect of buoyancy. In mixed
convection, the effect of gravity is taken into account by means of a force term.
The force term can be modeled in three ways according to Mohamad et al. [3]
out of which the approach used by Guo et al. [4] is chosen due to its ability to
satisfy the Navier Stokes equation.

F = ρg β (T − Tref ) (13)

Fi = wi

(
1 − 1

2τ

)[
ci − u

c2s
+

ci(ci · u)
c4s

]
F (14)

u =
1
ρ

8∑
n=0

cifi +
Fτ

ρ
(15)

Where g is gravitational acceleration in y-direction, β is thermal expansion coef-
ficient and Tref is reference temperature which is assumed as 0.5. Fi gets added
to Eq. (5). To find F, we compute gβ as

gβ =
u2

topRi

L
(16)

This modifies the Eq. (9) as follows:

f
′
i (x, t) = fi(x, t)+

1
τ

(feq
i (x, t)− fi(x, t))+wi

(
1 − 1

2τ

) [
ci − u

c2s
+

ci(ci · u)
c4s

]
F

(17)
For modeling temperature a D2Q9 approach is used for temperature proba-

bility distribution function g and associated relaxation time τs, with the equation
to be solved being:

gi (x + ciδt, t + δt) =
1
τs

(geq
i − gi) (18)



Numerical Study of Mixed Convection Using LBM 127

where

geq
i = Twi

[
1 +

3(ci · u)
c2

]
(19)

τs =
3ν

Pr
+ 0.5 (20)

For velocity, the bounce back boundary condition is applied at the stationary
boundaries for velocity whereas the moving boundaries are assigned equilibrium
distribution functions [10]. For temperature, at the top and bottom wall the con-
stant temperature boundary condition [11] is applied whereas at the boundaries
a second order accurate scheme is applied which at left and right boundaries
respectively as follows:

gi(0) =
4
3
gi(1) − 1

3
gi(2) (21)

gi(n) =
4
3
gi(n − 1) − 1

3
gi(n − 2) (22)

3 Validation

The credibility of the LBM code can be proven by comparing the results provided
by Moallemi et al. [2]. In this section problem 1 as described above is considered.
As speed of sound in LBM is taken as 1/sqrt(3), taking utop = 0.1 brings Mach
number below 0.3 makes sure the flow is incompressible. Tref is assumed to be

(a) Ri = 0.4 (b) Ri = 0.01

(c) Ri = 1 (d) Ri = 4

Fig. 3. Plot of Nusselt number at hot wall v/s non-dimensional length
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(a) Velocity Streamlines for Ri = 0.01 (b) Temperature contours for Ri= 0.01

(c) Velocity Streamlines for Ri = 0.4 (d) Temperature contours for Ri = 0.4

(e) Velocity Streamlines for Ri = 1 (f) Temperature contours for Ri = 1

(g) Velocity Streamlines for Ri = 4 (h) Temperature contours for Ri = 4

Fig. 4. Streamlines and contours for mixed convection in heated single lid driven cavity
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0.5. The variation of Nusselt number (ratio of temperature difference between
boundary node and adjacent node, and nodal distance) at the top wall with
normalized length is plotted in Fig. 3.

Figure 3(a) clearly proves that the simulation results are independent of
lattice sizes chosen as the grids with 100, 120, 128 and 140 elements are close
to each other. Based on the results, 128 × 128 is chosen as the standard for
all simulations. The simulations for Ri = 0.01, 0.40, 1.0 and 4.0 show good
agreement with the results provided by Moallemi [2] as shown in Fig. 3 (a) to (d).
The streamline patterns and temperature contours are shown in the Fig. 4(a)–
(h).

4 Results and Discussion

Figure 5 shows the velocity streamline patterns and temperature contours for
mixed convection in heated double lid driven cavity in anti-parallel configuration.
In this configuration, a primary vortex is formed at the centre of the cavity for
all cases. However in case (i) and case (iii), where the Reynolds number is high,
two secondary vortices appear near the trailing edge of the plate. It is also
observed that the flow structure is also similar classical single lid-driven cavity
flow. Figure 6 shows the velocity streamline patterns and temperature contours
for mixed convection in heated double lid driven cavity in parallel configuration.
In this case, the flow splits with two primary vortices being formed on the top and
bottom of the flow domain. In case (i) and (iii), secondary vortices appear at the
right wall, where the flow gets split into two parts by virtue of higher Reynolds
number. The top half and bottom half of case (i) seems to be a mirror of each
other whereas in the other cases, the flow structure at the top suppresses the
flow structure at the bottom. The effect of convection is noticed in the contours.
It is also seen that, a very small Ri can cause good heat transfer effect than a
high Ri.

In the anti-parallel configuration, the left wall has a higher average tempera-
ture than the right wall for all values of Ri. In the parallel configuration, certain
interesting observations can be made. In the top half section, the left side has
a higher average temperature than the right side, whereas at the bottom half
section the right side has a higher average temperature than the left side. A
considerable difference in temperature is noticed between the two halves along
the imaginary boundary between the halves, which becomes more prominent as
the right wall is approached. There is a stronger vertical gradient in temperature
along the right wall near the boundary, in comparison with the left wall, where
the change is much more gradual. From Fig. 6(a), it is observed that the primary
vortices are formed & separated by free shear layer in between them.

Figure 7 (a)–(b) shows the variation of Nusselt number at the top wall with
length. Figure 7(a) shows the anti-parallel configuration. For various Ri the flow
trend is not changed greatly. It is noticed that the cold wall Nusselt number
in the anti-parallel configuration in general is higher than that of the parallel
configuration. For case (iii) and case (iv) in the anti-parallel case, a point of
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(a) Velocity streamlines for Ra = 103 (b) Temperature contours for Ra = 103

(c) Velocity streamlines for Ra = 104 (d) Temperature contours for Ra = 104

(e) Velocity streamlines for Ra = 105 (f) Temperature contours for Ra = 105

(g) Velocity streamlines for Ra = 106 (h) Temperature contours for Ra = 106

Fig. 5. Streamlines and contours for mixed convection in a heated double lid driven
cavity in anti-parallel configuration
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(a) Velocity streamlines for Ra = 103 (b) Temperature contours for Ra = 103

(c) Velocity streamlines for Ra = 104 (d) Temperature contours for Ra = 104

(e) Velocity streamlines for Ra = 105 (f) Temperature contours for Ra = 105

(g) Velocity streamlines for Ra = 106 (h) Temperature contours for Ra = 106

Fig. 6. Streamlines and contours for mixed convection in a heated double lid driven
cavity in parallel configuration
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inflection is noticed in the curves. This tendency of inflection is noticed with an
increase in Richardson number i.e. the cases with Ri = 1 & 4 have a tendency
to inflect. For both configurations the Nusselt number is highest at left wall for
the high Reynolds number cases i.e. case (i) and (iii).

Figure 7 (a)–(b) shows the variation of Nusselt number at the top wall with
length. Figure 7(a) shows the anti-parallel configuration. For various Ri the flow
trend is not changed greatly. It is noticed that the cold wall Nusselt number
in the anti-parallel configuration in general is higher than that of the parallel
configuration. For case (iii) and case (iv) in the anti-parallel case, a point of
inflection is noticed in the curves. This tendency of inflection is noticed with an
increase in Richardson number i.e. the cases with Ri = 1 & 4 have a tendency
to inflect. For both configurations the Nusselt number is highest at left wall for
the high Reynolds number cases i.e. case (i) and (iii).

(a) Nu v/s anti-parallel configuration (b) Nu v/s x parallel configuration

Fig. 7. Plots of Nusselt number v/s non dimensional length for mixed convection in
heated double lid driven cavity

5 Conclusion

A new method with appropriate boundary condition is demonstrated to model
mixed convection using LBM. This study demonstrates that LBM has a tremen-
dous capability to be implemented in the arena of heat transfer where convection
phenomena are prevalent. The suitability of LBM is proven by the strong agree-
ment shown between the results derived by LBM and those derived by CFD.
The present method of including force term is indeed best suited to convection
problems. The parallel and anti-parallel configurations of double sided lid driven
cavity are both analyzed and the formation of secondary vortices are noted when
the Reynolds number is high. The separation of fluid flow into two parts in the
parallel cases is also noteworthy as no such separation is observed in the anti-
parallel cases. Future scope of work could include studying mixed convection in
flow over objects which could be useful for aerospace applications.
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Abstract. In this work, we propose a new upwind compact scheme with
appropriately designed new boundary closures. The scheme is obtained
by minimizing weighted dispersion error and is asymptotically stable. As
the formulation leads to an implicit tridiagonal system for approximat-
ing spatial derivative it is computationally efficient for long time simula-
tion. The scheme thus derived is tested in conjunction with explicit and
implicit time advancing strategies. Verification and validation studies
help establish the newly developed method.

Keywords: Dispersion relation · Upwind · Compact

1 Introduction

Wave propagation problems often require solutions that are accurate in the far-
field and for longer periods. In such situations, it is imperative to simulate flows
resolving a wide range of spatial and temporal scales. For example, the chal-
lenging areas of direct numerical simulation (DNS) and large eddy simulation
(LES) of turbulence, aeroacoustics, and fluid-structure interactions (FSI) could
be cited. The severe computational requirements of such processes might be mit-
igated by adopting a highly accurate dispersion error-free numerical method. In
this context, compact schemes offer an attractive choice because of their spectral
like resolution [1]. These schemes offer higher order approximations to differen-
tial operators using compact stencils and implicitly relate various function val-
ues and their derivatives at discrete nodes. Compact discretizations are known
to carry higher spectral resolution compared to the explicit methods. Although
implicit they often lead to a diagonally dominant banded system. Indeed com-
pact schemes leading to the tridiagonal system are most favoured because of
their obvious computational advantages. Although compact schemes employ a
stencil with fewer grid points, their implicit nature can involve a large number
of points in the domain thereby making such schemes attractive.

Traditionally compact schemes are of central type [1,2]. As such these
schemes carry no dissipation error but do carry significant dispersion error [3].
Central compact schemes applied to problems with periodic boundary conditions
are indeed efficient. However, for practical problems, periodic boundary condi-
tions are often absent and one-sided approximations are required for boundary
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points. This forced upwinding near boundaries render instability to the entire
discretization process [4]. Thus many a time convection dominated flow requires
extra filtering or added numerical dissipation [3]. On the other hand, upwind
biased compact schemes are seen to be robust and are used for the Navier-
Stokes equation with great success [3–6]. The upwind biased nature of the com-
pact scheme invariably introduces numerical dissipation and is found enough to
control aliasing error [3]. Here it is important to remember that good quality
numerical solutions schemes should not only resolve all scales present in the
flow but also adequately capture the physical propagation speed of the individ-
ually resolved scales. Failure might lead to an extreme form of dispersion error
often seen as unphysical q-waves. In this context importance of dispersion rela-
tion preservation (DRP) in conjunction with high accuracy approximations for
acoustic problems are well documented [7].

In the last two decades development of upwind compact schemes to simu-
late fluid flow problems has seen significant attention. Among them, the works
of Zhong [3], Sengupta et al. [4], and Bhumkar et al. [6] deserve special men-
tion. The higher order compact finite-difference schemes developed by Zhong [3]
were found to be stable and were less dissipative than a straightforward upwind
scheme developed using an upwind-biased grid stencil. But in this work, the
author did not attempt to optimize the scheme developed for interior as well as
boundary closures. Sengupta et al. [4] analyzed various upwind compact schemes
for spatial discretization and highlighted the importance of boundary closure for
the overall stability of the scheme. The authors further suggested special bound-
ary treatment to avoid the stability shortcomings of the schemes. Bhumkar et
al. [6] stressed the importance of dispersion relation preserving nature of upwind
compact schemes for good quality numerical simulation. They optimally reduced
dispersion error and worked with varied stencils of lengths three to thirteen. But
the authors dealt with wavenumber range [0, 7π/8] instead of requisite range
[0, π]. Further, the work made little effort to derive stable and compatible bound-
ary closures.

Issue of stability of various inner and boundary schemes was deliberated
by Gustafsson, Kreiss, and Sundström [8]. The technique referred to as G-K-S
stability theory provides conditions that schemes must satisfy to ensure stability.
But its application to fully discrete higher order schemes with multistage time
integration is highly involved [3,9]. On the other hand, application to a semi-
discrete hyperbolic system is easier. Unfortunately, a disturbing feature of this
stability definition is that the solution need not remain bounded for all time,
even though the actual solution remains bounded. The definition only ensures
that the error remains uniformly bounded by an exponential amount for all time
[9,10]. Thus simulation resulting from such a scheme might lead to unstable
modes in the numerical solution to dominate after a sufficiently long time and
was amply demonstrated by Carpenter et al. [9]. Carpenter et al. [9] showed
that the asymptotic stability of the upwind schemes with numerical boundary
closures is necessary for the stability of long time numerical integration. This
procedure requires that the eigenvalues of the spatial discretization matrices
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contain no positive real parts. Numerical computations often reveal that the
matrices for compact upwind schemes with boundary conditions carry a full set
of eigenvalues thereby elevating any further need of eigenvalue analysis.

In this work, we develop a new upwind compact scheme that employs a
stencil of size three and is third order accurate. The scheme is termed (3, 3) as it
discretizes spatial derivative at a nodal point using functional value at three grid
points and its gradients also at those three points. The scheme thus developed is
supplemented by newly developed boundary closures which render the scheme
globally third order accurate. As our main motivation is to arrive at a scheme
efficient for long time simulation in situations involving convection and diffusion
we carry out asymptotically stability analysis of the scheme. Finally, numerical
investigation help establish the efficiency of the newly proposed algorithm. All
computations are done using in-house C-codes run on a system supported by
Intel Core i3 processor with 4 GB RAM.

2 Upwind Compact Spatial Discretization

The model equation often used in deriving the upwind schemes is the linear wave
equation

∂u

∂t
+ c

∂u

∂x
= 0, a ≤ x ≤ b, t > 0, c > 0. (1)

This equation is complemented with the Dirichlet boundary condition

u(a, t) = g(t), (2)

and initial condition

u(x, 0) = f(x). (3)

Traditionally first order spatial derivative in Eq. (1) at an interior grid point say
jth node with uniform grid spacing h can compactly be approximated as

M∑

l=−M

blu
′
j+l =

1
h

N∑

l=−N

aluj+l, (4)

where u′
j is the numerical approximation of (∂u/∂x)j . Compact schemes are

known to attain higher spectral resolution on a coarser mesh. The scheme here
uses a total of 2M + 1 and 2N + 1 grid points on left and right respectively
leading to a banded system of equations with bandwidth 2M + 1. In this study,
we are interested to estimate gradients using only the adjacent grid points. Such
a choice is inherently advantageous as it leads to a tridiagonal system and is
computationally efficient. Thus in our case M = 1 = N leading to (3, 3) system.
The system is given by the Eq. (4) and is often expressed in linear algebraic
form

M1u
′ =

1
h
M2u (5)
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where u = (u0, u1, ..., un)T . We strive to evaluate the coefficients al and bl of
the upwind schemes in such a manner that the order of the schemes is one less
than the maximum achievable order of the central stencil. Thus opting to go
with third order accuracy and hence we are left with a free parameter called �.
This free parameter is set as the coefficient of the leading truncation term i.e.

b−1u
′
j−1 + u′

j + b1u
′
j+1 =

1
h

(
a−1uj−1 + a0uj + a1uj+1

) − �

4!
h3

(
∂4u

∂x4

)

j

+ ...,

j = 1, 2, ..., n − 1. (6)

Equation (6) contains five unknowns, namely b−1, b1, a−1, a0, a1. For unique-
ness b0 is set to unity. One needs five equations to obtain these coefficients. By
using the Taylor series expansion and equating the coefficients upto third order
on both sides of Eq. (6) we get,

a−1 + a0 + a1 = 0, (7)
−a−1 + a1 − b−1 − b1 = 1, (8)
a−1 + a1 + 2b−1 − 2b1 = 0, (9)

−a−1 + a1 − 3b−1 − 3b1 = 0, (10)
a−1 + a1 + 4b−1 − 4b1 = �. (11)

In terms of � the other coefficients are given by

b±1 = ∓�

4
+

1
4
, a±1 = −�

2
± 3

4
, a0 = �. (12)

We intend to choose � in such a manner that the associated upwind scheme
carries minimum dispersion error. Subsequent to the work of Haras and Ta’asan
[11] we start by taking uj = eIω(jh) in the Eq. (4) and obtain

Iωeqh(b−1e
−Iωh + 1 + b1e

Iωh) = (a−1e
−Iωh + a0 + a1e

Iωh) (13)

where ω and ωeq are the exact and approximate wavenumber respectively. In
general, ωeq is a complex quantity and its difference from ω could be minimized
over wavenumber domain [−π, π]. Subsequently, the expression for the real part
of ωeq denoted here as Re[ωeqh] is used to define error function E as

E =
∫ π

−π

(ωh − Re[ωeqh])2|u0(ωh)|2d(ωh). (14)

Here u0 is the weight function and we are inclined to work with u0(ωh) = e−ω2h2

as such a choice entails a higher emphasis on smaller values of ωh. Thus the error
function in terms of � is

E =
∫ π

−π

[
2� sin x(� − � cos x) + 3 sin x(2 + cos x)

�2 sin2 x + (2 + cos x)2
− x

]2

e−2x2
dx. (15)
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We minimize the dispersion error function E with respect to � and obtain
� = 0.8300949493 as the point of minima. The corresponding value of the other
coefficients is given in Table 1 leading to compact upwind discretization for inte-
rior nodes. On the other hand choice, � = 0 leads to central fourth order Padé
scheme.

Table 1. Third order low dispersion upwind compact scheme.

Parameter j = 0 1 ≤ j < n j = n

b−1 – 0.4575237373 2.1351328557

b1 2.1351328557 0.0424762627 –

a−3 0.0225221426

a−2 −0.6351328557

a−1 – −1.1650474747 −1.9324335721

a0 −2.5450442852 0.8300949493 2.5450442852

a1 1.9324335721 0.3349525254 –

a2 0.6351328557 – –

a3 −0.0225221426 – –

2.1 Boundary Formulation

Considering that there are n + 1 grid points j = 0, 1, ..., n laid out in one direc-
tion, it is imperative to develop independent and adequate boundary closures
for the two extreme nodes. Our scheme being (3, 3) the discretization developed
earlier could be implemented at all other nodes. We present below the proce-
dure adopted to obtain closure at j = 0. This approximation is proposed to be
obtained from a relation of the form

u′
0 + b1u

′
1 =

1
h

(a0u0 + a1u1 + a2u2 + a3u3) (16)

to preserve the overall tridiagonal nature and third order truncation error of the
system. Introducing additional free parameter and writing the modified differen-
tial equation as discussed earlier for the interior nodes the constraints satisfying
third order accuracy here are

a0 + a1 + a2 + a3 = 0, (17)
a1 + 2a2 + 3a3 − b1 = 1, (18)

a1 + 4a2 + 9a3 − 2b1 = 0, (19)
a1 + 8a2 + 27a3 − 3b1 = 0, (20)

a1 + 16a2 + 81a3 − 4b1 = �. (21)

In terms of �, the other coefficients are given by

b1 = 3 − �

2
, a0 = −17

6
+

�

6
, a1 =

3
2

+
�

4
, a2 =

3
2

− �

2
, a3 = −1

6
+

�

12
.

(22)
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Subsequently the error function E in terms of � for the scheme in Eq. (16) is

E =

∫ π

−π

[
(8�2 − 94� + 348) sinx + (24− 4� − �2) sin 2x + (2� − 4) sin 3x

6(6− �)2 + 24(6− �) cosx + 24
− x

]2

e−2x2
dx.

(23)

As earlier minimization of the error function with respect to � leads to � =
1.7297342886. The corresponding value of the other coefficients is given in
Table 1. Note that the closure at j = n is the mirror image of the above proce-
dure and hence its derivation is avoided. Nevertheless, the coefficients could be
found in Table 1.

2.2 Stability

As compact finite difference schemes require additional approximations at grid
points near the boundaries of the computational domain its analysis should
invariably include boundary closures. In this work, we carry out asymptotic sta-
bility analysis of the upwind scheme in conjunction with Dirichlet boundary
closures by computing the eigenvalues of the matrices obtained by spatial dis-
cretization of the wave equation. As we discuss the upwind scheme Neumann
boundary condition is not deliberated on [3,4,9]. In periodic domain the scheme
is automatically stable. The asymptotic stability, which requires that the eigen-
values of the spatial discretization matrices contain no positive real parts, is
necessary for the stability of long time integration of the equation. The newly
developed low dispersion unwind compact scheme having global third order accu-
racy can be expressed in compact form as

M1u
′ =

1
h
M2u

where M1 and M2 are (n + 1) × (n + 1) matrices with M1 being tridiagonal. In
these two matrices, the first and the last row correspond to the first and the last
column of Table 1 whereas the other elements directly correspond to the middle
column of the same table. Using the boundary condition the semi-discrete form
of the prototype PDE given by Eq. (1) can be expressed as

∂ũ

∂t
+

c

h
C̃ũ +

c

h
M̃1

−1
Bg(t) = 0 (24)

where ũ = (u1, u2, ..., un)T . C̃ = M̃1
−1

M̃2 with M̃1 and M̃2 reduced from M1

and M2 on account of boundary condition Eq. (2) being applied. For complete-
ness we report below the matrices M̃1 and M̃2 as also the vector B.

M̃1 =

⎛

⎜⎜⎜⎜⎜⎝

1
b−1

− b
(0)
1

b1
b−1

b−1 1 b1
. . .

b−1 1 b1

b
(n)
−1 1

⎞

⎟⎟⎟⎟⎟⎠

n×n

,
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M̃2 =

⎛

⎜⎜⎜⎜⎜⎝

a0
b−1

− a
(0)
1

a1
b−1

− a
(0)
2 −a

(0)
3

a−1 a0 a1

. . .
a−1 a0 a1

a
(n)
−3 a

(n)
−2 a

(n)
−1 a

(n)
0

⎞

⎟⎟⎟⎟⎟⎠

n×n

,

B =

⎛

⎜⎜⎜⎜⎝

a−1
b−1

− a
(0)
0

0
.
0
0

⎞

⎟⎟⎟⎟⎠

n

.

In the above expressions superscript is used to denote the corresponding
boundary nodes related to the first and last column in Table 1. The first row
of the vector B documents dependence of the discretization on the boundary
condition. The asymptotic stability condition for the semi-discrete equations
requires that all the eigenvalues of the matrix −C̃ contain no positive real parts.
The same computed on an 81×81 grid is depicted in Fig. 1(a). It is heartening to
see that all the eigenvalues of the matrix have negative real parts rendering our
newly developed scheme asymptotically stable. Figure 1(b) shows the eigenvalue
spectrum for the fourth order Padé scheme (� = 0) with fourth order boundary
closure. This figure presented for the sake of comparison clearly shows that
there are eigenvalues with positive real part rendering the scheme asymptotically
unstable.

3 Numerical Examples

3.1 Problem 1: Propagation of Sinusoidal Wave

Following Carpenter et al. [9] we consider the propagation of sinusoidal wave
u(x, t) = sin 2π(x − t) in the bounded domain [−1, 1]. The boundary and initial
conditions are

u(−1, t) = sin 2π(−1 − t), t > 0 (25)
and u(x, 0) = sin 2πx, −1 ≤ x ≤ 1 (26)

respectively. We have used 41 grid points for computing the solution up to time
t = 60. For this problem, time is advanced with the fourth order four stage
explicit R-K scheme. For spatial discretization apart from newly developed (3,
3) scheme we also use Padé approximation discussed earlier. Simulations are run
for CFL numbers (Nc) 0.25 and 0.5. In Figs. 2(a) and (b) we have plotted time
evolution of L2-norm error for new (3, 3) scheme. From these figures, we see that
error quickly settles down to a periodic profile with a small amplitude implying
asymptotic stability of the scheme. In Figs. 3(a) and (b) we have plotted L2-
norm error for Nc = 0.25 and 0.5 computed using fourth order central Padé
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Fig. 1. Eigen value spectra (a) New (3, 3) scheme for � = 0.8300949493, (b) Fourth
order central Padé scheme for � = 0.

scheme with fourth order boundary closure. Although theoretically, the schemes
carry higher order of accuracy an unbounded error growth is registered for the
scheme documenting asymptotically unstable nature of the scheme. This test
case establishes the efficiency of the strategy advocated here. A comparison of
the CPU time and error reported at t = 60 is presented in Table 2. Padé scheme
is found to consume CPU time almost four times that of newly developed (3, 3)
scheme. This may be attributed to its higher error leading to more iterations for
convergence.

Table 2. Error and CPU time at t = 60.

Scheme New (3, 3) Padé

Error CPU Time (s) Error CPU Time (s)

Nc = 0.25 5.3e−3 6.8 3.4e−1 23.4

Nc = 0.50 4.5e−3 3.8 1.0e−2 12.7

3.2 Problem 2: Convection of Wave Combination

Next we consider convection of combination of two waves of wavenumbers 2πk1
and 2πk2 [12]. The initial condition is given by

u(x, 0) = e− (x−xm)2

b2 × [cos(2πk1(x − xm)) + cos(2πk2(x − xm))] (27)

where xm = 90, b = 20, k1 = 0.125 and k2 = 0.0625. Solution is computed up to
t = 300 for Nc = 0.5 and 1.0. In this problem, time discretization is carried
out using the implicit two stage fourth order Gauss-Legendre scheme (IRK24)
[13]. This serves as a test case for the newly developed scheme in conjunction
with implicit time discretization. Numerical solutions are shown in Fig. 4. L2-
norm error between numerical and exact solutions at t = 300 is found to be
approximately 4.66 × 10−2 for both the cases. CPU time for this problem with
Nc values 0.5 and 1.0 is 1.2 s and 0.6 s respectively.
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Fig. 2. Time evolution of L2-norm error for new (3, 3) scheme at (a) Nc = 0.25, (b)
Nc = 0.5.

Fig. 3. Time evolution of L2-norm error for central Padé scheme at (a) Nc = 0.25, (b)
Nc = 0.5.

Fig. 4. Numerical solution at t = 300 for (a) Nc = 0.5, (b) Nc = 1.0.
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3.3 Problem 3: Convection-Diffusion of Gaussian Pulse

Finally, we study unsteady two-dimensional convection-diffusion equation with
zero source term given by

a
∂ψ

∂t
− ∂2ψ

∂x2
− ∂2ψ

∂y2
+ c

∂ψ

∂x
+ d

∂ψ

∂y
= 0. (28)

We consider a Gaussian pulse in a square domain [0,2] × [0,2] following Sen [14]
whose analytical solution is

ψ(x, y, t) =
1

4t + 1
exp

[
− (ax − ct − 0.5a)2

a(4t + 1)
− (ay − dt − 0.5a)2

a(4t + 1)

]
. (29)

Initially, the Gaussian pulse is centered at (0.5, 0.5) with pulse height 1. Dirichlet
boundary conditions are used for this problem along all boundaries. The usual
procedure to approximate the diffusion terms ψxx and ψyy is to use explicit cen-
tral differencing. Such a technique lead to loss of high accuracy of the discretized
governing equation, which is achieved by the compact schemes on the convective
terms. Further, as we emphasize dispersion error reduction it is important to
employ a suitable discretization for the diffusion terms. Recently Sen [14] devel-
oped a central compact fourth order discretization for second order derivative.
This approximation was found to carry good numerical dispersion and dissipa-
tion characteristics. Further, it uses functional values and their gradients in a
three-point stencil. Hence the strategy developed by Sen [14] is seen to be partic-
ularly suitable in this context. Of course, to compute ψx and ψy, we employ the
newly developed (3, 3) scheme. Time advancing is carried out with the implicit
Crank-Nicolson method. For this simulation convection coefficients are fixed at
c = d = 80 with a = 100. Computations are done for three different grids 21×21,
41×41, and 81×81. Errors in L1, L2, and L∞ norms at time t = 0.5 and t = 1.0
are shown in Table 3. In this table, we also present CPU time. With grid size
decreasing by a factor of two the associated algebraic system increasing by a
factor of four. Additionally, as the temporal step is reduced by a factor of four,
CPU time as expected increases by a factor of sixteen. In Fig. 5 we compare
the analytical solution with the solution computed using the newly developed
scheme in the region 0.8 ≤ x, y ≤ 1.8. An excellent comparison can be seen in
this figure.
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Table 3. L1, L2 and L∞-norm error and CPU time with δt = h2 = k2.

Time 21 × 21 41 × 41 81 × 81

t = 0.5 L1 6.0710e−2 1.4420e−4 3.7067e−6

L2 2.1452e−1 6.1790e−4 1.5732e−5

L∞ 2.3199e+0 8.6617e−3 1.8969e−4

CPU Time 1.1 20.9 326.3

t = 1.0 L1 1.5141e−2 7.5830e−5 7.8776e−6

L2 3.6316e−2 2.4850e−4 2.5428e−5

L∞ 2.1846e−1 2.3459e−3 1.7324e−4

CPU Time 2.4 40.0 643.6

Fig. 5. Comparison of numerical (solid, blue) and analytical (dashed, red) contour at
t = 1.0. (Color figure online)

4 Conclusion

In this work, we have developed a new (3, 3) dispersion relation preserving third
order optimized upwind compact scheme. The scheme is obtained by minimizing
phase error over the entire wavenumber range. Subsequently, the boundary clo-
sures with optimum dispersion accuracy are also developed. Overall the scheme
is found to be asymptotically stable. Three numerical tests are envisaged to illus-
trate the importance of dispersion relation preserving character and stability of
the newly developed spatial discretization. They duly demonstrate the efficiency
and accuracy of the scheme proposed.
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Abstract. This study presents the mathematical model of space frac-
tional variable-order bioheat equation and proposes a numerical method
to find its solution. We use the Chebyshev collocation method, which con-
verts the differential equation into a set of algebraic equations, and then
we solve it for unknowns. The effect of temperature distribution within
living biological tissue has been studied. The results of the temperature
profile in the case of variable-order are demonstrated graphically. An
investigation of different types of fractional-orders on maximum temper-
ature is also presented. In the end, the comparison between various types
of fractional-order shows the usefulness of variable-order over other cases.

Keywords: Bioheat equation · Caputo type variable-order fractional
derivative · Chebyshev polynomial · Collocation method

1 Introduction

Thermal regulation of body temperature has been used for a long period. The
effect of temperature alterations is studied in mainly three categories: hyper-
thermia (raising the temperature) [18], cryobiology (subfreezing the tempera-
ture) [15] and hypothermia (lowering the temperature) [36]. In hyperthermia,
the temperature lies approximately 42 ◦C to heat the particular volume of the
tumor for around 30–40 min.

To ensure that extreme temperatures are contained in tumors and not in
the corresponding healthy tissues, one should have a profound knowledge of the
transport of heat in a human body to anticipate the temperature profiles that
can be achieved during therapy. The diffusion of heat in living tissues is known
as bioheat transfer. The mathematical model for the heat transfer in biological
tissues, used by many researchers, is derived in 1948 by Pennes [30] and referred
to as the bioheat equation. This model is widely known for its simplicity and
effectiveness.

In [7], authors implemented the Galerkin and implicit backward Euler app-
roach to solve the multi-segmental bioheat model, coupled with the arterial fluid
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dynamics of a human body. Giordano et al. [16] derived a linear bioheat transfer
operator in cylindrical, spherical, and Cartesian coordinate systems and depicted
the advantage of these in the heat transfer model. Deka et al. [10] used the dif-
ferential transform method for the steady and unsteady heat equation. The one-
dimensional bioheat model with constant and space-dependent heat generation
function was solved both analytically and numerically in [3]. They applied sepa-
ration of the variable in the first case and explicit finite difference technique for
numerical solution. The 1-D time-dependent bioheat equation in the Cartesian
coordinate solved analytically in [12], an extension of [12] is found in [11], where
the authors find the exact solution in spherical and cylindrical coordinates.

Recently, fractional derivatives have attracted the attention of many research
scientists, and the ubiquitous appearance can be seen in various applications like
physics [27], viscoelasticity [1], biology [26], fluid mechanics [4] and many areas
in engineering [17,29]. The fractional calculus has been used to enhance the
simulation precision of several anomalies in the sciences. The reason behind the
enormous application of the fractional derivative usage is its non-local property
[19], which means that the current state’s data is affected by all the data of
previous states.

It is generally known that finding an analytical solution to such problems
is not an easy task. Therefore, computational and approximation methods are
widely accepted techniques to achieve the solution. In the field of heat trans-
fer analysis, the temperature distribution is the primary concern. In [28], the
authors used a fractional calculus approach to examine the periodic transfer
of heat in peripheral tissue areas. Fahmy [14] studied the effect of fractional
derivative parameters on temperature profile using the combination of the gen-
eral boundary element method and the radial basis function collocation method
for the dual-phase bioheat model. Ezzat et al. [13] used a different approach to
model the fractional-order bioheat equation. The authors considered the frac-
tional derivative as an indicator of bioheat efficiency in the bioheat model. In [34],
the role of fractional-orders has been investigated by Singh et al. in the fractional
single-phase lagging heat conduction model using the Riemann-Liouville space
fractional derivative and applied the finite-difference and homotopy perturba-
tion methods for approximation of bioheat equation. Damor et al. [9] employed
the same model with Caputo fractional time derivative and solved by utilizing a
quadrature formula for time derivative and central difference formula for approx-
imating the space derivative. They also discussed the stability of the method and
the thermal damage of tissues. The analysis is based on time-fractional derivative
whereas, the space derivative is considered as integer order. An extension of [9] is
given in [31], where authors discussed three cases by introducing the heat gener-
ation function as time depended, space depended, and sinusoidal function. They
also analyzed the case of the locally variable initial condition and time-depended
boundary conditions.

Samko and Ross give the generalization of the constant fractional derivative
in [32], where the order of derivatives depends upon the space only or time only
or space and time both. The generalization has been implemented in biology,
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physics, engineering, and many other fields [2,8,35]. Mathematical structures
that have been built on this new term are more sensitive to the solution. It also
plays a significant part in the accuracy of the solution. Bhrawy and Zaky [6]
implemented the shifted Chebyshev collocation method to solve a differential
equation with Dirichlet boundary conditions and Caputo’s variable-order frac-
tional derivative is utilized. Shekari et al. [33] solved 2-D variable-order time-
fractional PDE by using a meshless approach. In [22], Heydari et al. has solved
the fractional diffusion-wave equation with all kind of boundary conditions by
using Chebyshev wavelets. In [23], authors used Legendre wavelet to solve the
2-D transient dual-phase lag bioheat model.

In all the work mentioned above, the analysis of the transfer of heat in
thermo-fluid is based on constant fractional derivative whereas, the investiga-
tion on space and time depended fractional derivative is significantly less. The
main target of this paper is to present a mathematical problem of bioheat equa-
tion with space fractional variable-order. By using the Chebyshev collocation
method, we examine the temperature profile for different variable-orders. From
the results and graphs, we make conclusions.

2 Mathematical Model

Due to simplicity, ease of use and effectiveness in studying the transfer of heat in
tissues, the Pennes’ bioheat Model is widely known among many researchers [30].
In this article, we present the space fractional variable-order Pennes’ bioheat
model by replacing the space derivative to variable-order Caputo’s fractional
derivative.

ρC
∂βT

∂tβ
= Kt

∂α(r,t)T

∂rα(r,t)
+ WbCb (Ta − T ) + Qmet + Qext, 0 < β ≤ 1, 1 < α ≤ 2,

T(r, t)|t=0 = T,

∂T (r, t)
∂r

∣
∣
∣
∣
r=0

= 0,

T(r, t)|r=R = Tw,

(1)

where T, r, t, ρ, C,Kt represent the tissue’s local temperature, space coordinate,
time, density, specific heat and thermal conductivity of the tissues respectively.
Subscript b stands for blood, Wb represent blood perfusion rate, Ta stands for the
arterial blood temperature which is considered as constant, R is the tissue length.
Qmet is the metabolic heat created by natural process of the body. Any reduction
in metabolic heat will lead to an increase in input energy for hyperthermia and
conversly [24]. The relation between metabolic heat and tissue temperature is
given by

Qmet = Qmo

[

1 + d

(
T − T0

T0

)]

, (2)

where d = 0.1T0.
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Qext represent the heat source which is produced by an external electromag-
netic field, given by

Qext = ρSPea(y−0.01), (3)

where y = R− r, notations S, a, P and y represent the antenna constants, trans-
mitted power, distance of the tissue from the outer surface respectively. For
simplicity, we define the dimensionless variables as given below [34]

x = r
R , τ =

(
Kt

ρCRα(x,τ)

) 1
β

t, θ =
(

T−T0
T0

)

, θ =
(

Ta−T0
T0

)

, θ =
(

Tw−T0
T0

)

,

ξm = QmoR2

T0Kt
, ξf =

√
WbCb

Kt
R, ξr = ρSP

T0Kt
R2, a0 = 0.04 × a, b0 = R × a.

(4)

By using Eq. (4), Eqs. (1)–(3) can be written as

∂βθ

∂τβ
= Kt

∂α(x,τ)θ

∂xα(x,τ)
+ Λθ + Θ,

θ (x, τ)|τ=0 = 0,

∂θ (x, τ)
∂τ

∣
∣
∣
∣
x=0

= 0,

θ (x, τ)|x=1 = θw,

(5)

where Λ = ξmd − ξ2f , Θ (x) = ξm − ξ2fθa + ξr exp (a0 − b0x) .

3 Preliminaries

Here we give some basic definitions of variable-order fractional derivatives,
shifted Chebyshev polynomial and its derivative.

Definition 1. The Riemann-Liouville fractional derivative of order α(x, t) is
defined as [5]

RL
0 Dα(x,t)

x u (x, t) =

⎧
⎨

⎩

1
Γ (n−α(x,t))

dn

dxn

x∫

0

u(s,t)

(x−s)α(x,t)+1−n ds, n − 1 < α(x, t) < n ∈ N,

dn

dxn u (x, t) , α(x, t) = n,

Definition 2. The Caputo fractional derivative of order α(x, t) is defined as
[21]

C
0 Dα(x,t)

x u (x, t) =

⎧

⎨

⎩

1
Γ (n−α(x,t))

x∫

0

1
(x−s)α(x,t)+1−n

∂nu(s,t)
∂sn ds, n − 1 < α(x, t) < n,

dn

dxn u (x, t) , α(x, t) = n,

with the help of definition given above, we can write the following formula [20]

C
0 Dα(x,t)

x xγ =

{
Γ (γ+1)

Γ (γ+1−α(x,t))x
γ−α(x,t), γ ≥ �α(x, t)�,

0, γ < �α(x, t)�. (6)
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Definition 3. The analytical closed form of shifted Chebyshev polynomial T ∗
n (x)

is given by [25]

T ∗
n (x) =

n∑

i=0

(−1)i22n−2in (2n − i − 1)!
i! (2n − 2i)!

(x

a

)n−i

, n = 1, 2, 3....

Specially, T ∗
n (0) = (−1)n and T ∗

n (a) = 1.

Theorem 1. The Caputo variable-order fractional derivative of shifted Cheby-
shev polynomial is given by

C
0 Dα(x,t)

x T ∗
n (x) =

⎧

⎨

⎩

n−�α(x,t)�∑

i=0

ξ
α(x,t)
n,i xn−i−α(x,t), n ≥ �α(x, t)� ,

0, n < �α(x, t)� ,

where

ξ
α(x,t)
n,i =

(−1)i22n−2in (2n − i − 1)! (n − i)!
i! (2n − 2i)!Γ (n − i − α(x, t))

(
1
a

)n−i

.

Proof. By using Definition 3 and Eq. (6), we can write

C
0 D

α(x,t)
x T

∗
n (x) =

n−�α(x,t)�∑

i=0

(−1)i22n−2in (2n − i − 1)! (n − i)!

i! (2n − 2i)!Γ (n − i − α(x, t))

(
1

a

)n−i

x
n−i−α(x,t)

, n ≥ �α(x, t)� ,

C
0 D

α(x,t)
x T

∗
n (x) = 0, n = 0, 1, ..... �α(x, t)� − 1,

which gives the desired result. ��

4 Proposed Numerical Technique

We use Chebyshev collocation method for the numerical solution of bioheat
model given in Eq. (5). Since Chebyshev polynomials generate an orthogonal
basis set so we use it to approximate the temperature.

We can write

θ (x, τ) ∼=
n∑

j=0

m∑

i=0

φi (x) cijψj (τ) = Φ C Ψ, (7)

where φ, ψ and C are 1 × (m + 1), (n + 1) × 1 and (m + 1) × (n + 1) matrices
respectively and denoted as

Φ (x) = [φ0 (x)φ1 (x) φ2 (x) .....φm (x)] ,

Ψ (τ) = [ψ0 (τ) ψ1 (τ) ψ2 (τ) .....ψn (τ)]T ,

and

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c00 c01 · · · c0n

c10 c11 · · · c1n

c20 c21 · · · c2n

...
...

. . .
...

cm0 cm1 · · · cmn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.
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From Eq. (7), it can be written as

C
0 Dβ

τ θ (x, τ) = C
0 Dβ

τ (Φ (x) CΨ (τ)) =
(

Φ (x) CC
0 Dβ

τ Ψ (τ)
)

. (8)

C
0 Dα(x,τ)

τ θ (x, τ) = C
0 Dα(x,τ)

τ (Φ (x)CΨ (τ)) =
(

C
0 Dα(x,τ)

τ Φ (x) CΨ (τ)
)

. (9)

Substituting the values from Eqs. (7), (8) and (9) in Eq. (5), we get

(

Φ (x) CC
0 Dβ

τ Ψ (τ)
)

=
(

C
0 Dα(x,τ)

τ Φ (x) CΨ (τ)
)

+Λ (Φ (x)CΨ (τ))+Θ (x) . (10)

Φ (x)CΨ (τ)|τ=0 = 0,
Φ′ (x) CΨ (τ)|x=0 = 0,
Φ (x)CΨ (τ)|x=1 = θw.

(11)

To get the values of unknowns, we need to collocate Eq. (10). For this, we use
uniform nodes xi, i = 1, 2...,m − 1 and τj = 1, 2, ..., n as a collocating points.

We get n(m − 1) equations from Eq. (10) which is of the form,

A(m−1),(m+1)C(m+1),(n+1)B
T
(n+1),n = M(m−1),(m+1)C(m+1),(n+1)N

T
(n+1),n

+Λ
(

A(m−1),(m+1)C(m+1),(n+1)N
T
(n+1),n

)

+ Θ (x) . (12)

The initial and boundary conditions can be written as

A(m−1),(m+1)C(m+1),(n+1)I
T
1(1,(n+1)) = 0,

B1(1,(m+1))C(m+1),(n+1)R
T
(n+1),(n+1) = 0,

B2(1,(m+1))C(m+1),(n+1)R
T
(n+1),(n+1) = θw,

where

A =

⎡

⎢⎢⎢⎢⎣

φ0 (x1) φ1 (x1) · · · φm (x1)

φ0 (x2) φ1 (x2) · · · φm (x2)

.

.

.
.
.
.

. . .
.
.
.

φ0 (xm−1) φ1 (xm−1) · · · φm (xm−1)

⎤

⎥⎥⎥⎥⎦
, B =

⎡

⎢⎢⎢⎢⎣

C
0 Dβ

τ ψ0 (τ1)
C
0 Dβ

τ ψ1 (τ1) · · · C
0 Dβ

τ ψn (τ1)
C
0 Dβ

τ ψ0 (τ2)
C
0 Dβ

τ ψ1 (τ2) · · · C
0 Dβ

τ ψn (τ2)

.

.

.
.
.
.

. . .
.
.
.

C
0 Dβ

τ ψ0 (τn) C
0 Dβ

τ ψ1 (τn) · · · C
0 Dβ

τ ψn (τn)

⎤

⎥⎥⎥⎥⎦
,

C =

⎡

⎢⎢⎢⎢⎢⎢⎣

c00 c01 · · · c0n

c10 c11 · · · c1n

c20 c21 · · · c2n

.

.

.
.
.
.

. . .
.
.
.

cm0 cm1 · · · cmn

⎤

⎥⎥⎥⎥⎥⎥⎦
, M =

⎡

⎢⎢⎢⎢⎣

Dα(x,τ)
τ φ0 (x1) Dα(x,τ)

τ φ1 (x1) · · · Dα(x,τ)
τ φm (x1)

Dα(x,τ)
τ φ0 (x2) Dα(x,τ)

τ φ1 (x2) · · · Dα(x,τ)
τ φm (x2)

.

.

.
.
.
.

. . .
.
.
.

Dα(x,τ)
τ φ0 (xm−1) Dα(x,τ)

τ φ1 (xm−1) · · · Dα(x,τ)
τ φm (xm−1)

⎤

⎥⎥⎥⎥⎦
,

N =

⎡

⎢⎢⎢⎢⎣

ψ0 (τ1) ψ1 (τ1) · · · ψn (τ1)

ψ0 (τ2) ψ1 (τ2) · · · ψn (τ2)

.

.

.
.
.
.

. . .
.
.
.

ψ0 (τn) ψ1 (τn) · · · ψn (τn)

⎤

⎥⎥⎥⎥⎦
, R =

⎡

⎢⎢⎢⎢⎣

ψ0 (τ0) ψ1 (τ0) · · · ψn (τ0)

ψ0 (τ1) ψ1 (τ1) · · · ψn (τ1)

.

.

.
.
.
.

. . .
.
.
.

ψ0 (τn) ψ1 (τn) · · · ψn (τn)

⎤

⎥⎥⎥⎥⎦
,

I1 =

⎡

⎢⎢⎢⎢⎣

ψ0 (0)

ψ1 (0)

.

.

.

ψn (0)

⎤

⎥⎥⎥⎥⎦
, B1 =

⎡

⎢⎢⎢⎢⎣

φ′
0 (0)

φ′
1 (0)

.

.

.

φ′
m (0)

⎤

⎥⎥⎥⎥⎦

1

, B2 =

⎡

⎢⎢⎢⎢⎣

φ0 (1)

φ1 (1)

.

.

.

φm (1)

⎤

⎥⎥⎥⎥⎦
.
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We use Kronecker product to write Eq. (12) with initial and boundary con-
ditions in a simplified form as

[B ⊗ A − N ⊗ M − Λ (N ⊗ A)] C = P 1,

[I1 ⊗ A] C = 0,

[R ⊗ B1] C = 0,

[R ⊗ B2] C = θw,

which can also be written in the form

A1C = P 1. (13)

A2C = 0,
A3C = 0,
A4C = θw.

(14)

Dimension of A1 is (m − 1)n, (m + 1)(n + 1), dimension of C is ((m +
1)(n + 1), 1) and it is defined as C = [c00, c01, ..., c0n, c10, c11, c12, ..., c1n,
c21, c22, ..., c2n, c20, c21, ...., c2n, cm0, cm1, ...., cmn, ]T , dimension of P1 is
((m − 1)n, 1). The dimension of A2, A3 and A4 is (m − 1, (m + 1)(n + 1)), ((n +
1, (m + 1)(n + 1))) and ((n + 1), (m + 1)(n + 1)) respectively. Now a complete
matrix can be obtained by collectively writing the equations as follows

EC = Z,

where E = [A1, A2, A3, A4]T is of dimension ((m + 1)(n + 1), (m + 1)(n + 1) and
Z = [P1,0,0,θw ]T is of dimension ((m+1)(n+1), 1). This is a system of linear
equations in which the unknowns coefficients C can be obtained by solving it.
The required solution will be then extracted from Eq. (7).

5 Numerical Results and Discussion

For numerical analysis, we use the following parametric values [34] for liv-
ing biological tissues R = 0.05m−1,Kt = 0.5m−1◦C−1, S = 12.5 kg−1, a =
−127m−1, ρ = 1000 kg m−3, Cb = 3344 J kg−1◦C−1, Qmo = 1091W m−3, C =
4180 J kg−1◦C−1, T0 = Ta = Tw = Tf = 37 ◦C−1, b0 = −6.35, a0 = −5.08,Wb =
8kg m−3s−1. The value of antenna power can be vary and depend upon require-
ment, in this analysis we consider P = 10W.

On applying the proposed Chebyshev collocation method, we examine the
behavior of the model with initial and boundary conditions as defined in equation
(5). We consider following cases to study the anomalous diffusion to this model
for various values of fractional-order α and β including the variable-order space
fractional derivative.
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Case 1. The temperature profile for integer-order case, i.e., for α = 2 and β = 1
along x for different time is shown in the Fig. 1. We utilize the proposed method
with m = n = 20. In hyperthermia treatment, the non-dimensional temperature
(θ) for heating the cancer cells ranges from 0.102 to 0.216, and to achieve this,
the non-dimensional time (τ) normally varies from 0.04 to 0.08. It should be
clear from Fig. 1 that 0.04 is the maximum non-dimensional temperature which,
occurs at τ = 5 × 10−3 whereas, at τ = 0.04 it reaches to the hyperthermia
position.

Fig. 1. The non-dimensional temperature variation at various non-dimensional time
for α = 2 and β = 1

Case 2. By decreasing the order of space fractional derivative from 1.9 to 1.8, the
maximum non-dimensional temperature raises from 0.155 to 0.165 at τ = 0.04
which is shown in Fig. 2. Similarly, Fig. 3 shows the graph of θ with respect to x
for dissimilar values of β. There are minor changes in the maximum temperature
by changing the non-integer time derivative from 0.9 to 0.8. It should be noted
from Fig. 2 and 3 that by changing any of the fractional-order either space or
time, there is a different time to achieve the hyperthermia position. It can also
be concluded that space fractional derivative has a more considerable impact on
temperature variation.
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Case 3. Figure 4 represents the temperature variation for various space frac-
tional variable-order derivative α which depend on x and τ . Figure 5 shows the
temperature profile at different time. The graph follows the same pattern of ele-
vation and decrease in temperature as constant fractional-order. It reaches to
the peak at x = 0:9.

Fig. 2. The non-dimensional temperature variation (θ) at various dimensionless time
(τ), m = n = 20.

Fig. 3. The non-dimensional temperature variation (θ) at various dimensionless time
(τ), m = n = 20.
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Fig. 4. The non-dimensional temperature variation (θ) for different space fractional
variable-order, m = n = 20.

Fig. 5. The non-dimensional temperature variation along x for α = 1.7 + 0.3 sin(xτ)
and β = 1

5.1 Comparison of Variable-Order and Constant Fractional-Order
Derivative

We applied the proposed Chebyshev collocation method to variable-order bio-
heat model for m = 20, n = 20. Figure 6 depicts the non-dimensional temperature
field within the living tissues along x and at a fixed time. It can be observed
from Fig. 6 that up to a certain length, the increase in temperature is lump sum
similar for every choices of α. The variation in temperature profile can be seen
when the length of the tissue (x) is greater than 0.7. From the achieved results,
the maximum temperature increases from 0.105 and 0.145, which is about 38%,
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Fig. 6. The non-dimensional temperature variation along x at τ = 0.02 for various
values of α and β = 1.

by changing the space derivative from integer-order to variable-order. Hence at a
specified time, the hyperthermia process gives the anticipated temperature level
faster for those tissues with the variable-order space fractional exponent.

6 Conclusion

This paper presents a numerical method for space fractional variable-order bio-
heat model to find the temperature distribution in living tissues. We use the
Chebyshev collocation method, which converts the PDE into a set of algebraic
equations, and then we solved it for unknowns. We have shown the temperature
profile for different variable-orders along with distance (x) and time (τ).

We examine the results of anomalous diffusion with variable-order fractional
derivative and compare it with constant fractional diffusion. We observed that
the extreme temperature profile in the variable-order case is higher than the
later one.

Temperature prediction is significant in many clinical practices like
cryosurgery, cancer hyperthermia, etc. The obtained result may be useful for
predicting the temperature in space fractional variable-order bioheat model. The
proposed method may also be helpful for the researchers working on a variable-
order fractional derivative field.
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Abstract. This article deals with a class of singularly perturbed convection-
diffusion parabolic problems with discontinuous source term exhibiting both
boundary and weak interior layers. In order to solve this class of problems,
we discretize the time derivative by the backward-Euler method on the uniform
mesh; and for the spatial discretization, a new finite difference scheme is pro-
posed utilizing a layer resolving piecewise-uniform Shishkin mesh. We discuss
the monotonocity of the proposed method. Further, we demonstrate through the
numerical experiment that the proposed method converges uniformly with respect
to the perturbation parameter ε; and is almost second-order accurate in space,
regardless of the larger and smaller values of ε . In addition to this, we compare
the present numerical method with the classical implicit upwind finite difference
scheme.

Keywords: Singularly perturbed parabolic problem · Boundary layer · Interior
layer · Numerical scheme · Piecewise-uniform Shishkin mesh · Uniform
convergence

1 Introduction

At first, for defining the domain associated with the model problem, the following nota-
tions are introduced :

I= (0,1),I− = (0,ξ ),I+ = (ξ ,1); Q− = I− × (0,T],Q+ = I+ × (0,T],Q= I× (0,T].

In this article, we deal with singularly perturbed parabolic initial-boundary-value prob-
lems (IBVPs) of the form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lεy(x, t) ≡ ε
∂ 2y
∂x2

+a(x)
∂y
∂x

−b(x)y− ∂y
∂ t

= f(x, t), (x, t) ∈ Q− ∪Q+,

y(x,0) = g0(x), x ∈ I= [0,1],

y(0, t) = gl(t), y(1, t) = gr(t), t ∈ (0,T],

(1)
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together with the interface conditions

[u](ξ , t) = 0,
[∂u

∂x

]
(ξ , t) = 0, t ∈ (0,T], (2)

Here, ε is a small parameter such that ε ∈ (0,1]; and it is assumed that the convec-
tion coefficient a(x), the reaction term b(x) and the source term f(x, t) are sufficiently
smooth functions in their respective domains such that

{
a(x) ≥ α > 0, on I− ∪I+, b(x) ≥ 0, on I,
∣
∣[a](ξ )

∣
∣ ≤C,

∣
∣[f](ξ , t)

∣
∣ ≤C.

(3)

Since the source term is considered to be discontinuous at x = ξ and the convection
coefficient a(x) satisfies the conditions given in (3); the solution of the IBVP (1)–(3)
generally possesses a weak interior layer to the right side of x = ξ , in addition to the
boundary layer at x = 0. This type of model problem appears in the semiconductor
device modeling (see, e.g., [5]).

We assume that the given data g0,gl and gr are sufficiently smooth functions and
also satisfy the necessary compatibility conditions at the points (0,0),(1,0) and (ξ ,0);
and under these hypothesis, the IBVP (1)–(3) possesses a unique solution y(x, t) ∈
C1+λ (Q)∩C2+λ (Q− ∪Q+) (for detailed discussion, one can refer [4]).

Finding the robust numerical solution of singularly perturbed problems having non-
smooth data has been an interesting subject in the last few years. To cite a few, Far-
rell et al. discuss about the first-order classical numerical schemes for singularly per-
turbed convection-diffusion BVPs possessing strong interior layers in [2], and bound-
ary and interior layers in [3]. Further, Cen in [1] develop a second-order numerical
scheme to solve singularly perturbed BVPs having discontinuous convection coeffi-
cient . Moreover, Shanthi et al. in [11] also analyze numerical aspects of singularly
perturbed reaction-diffusion problems with discontinuous source term. Apart from the
above mentioned literature, O’Riordan and Shishkin in [9] and Mukherjee and Natesan
in [7,8], respectively develop and analyze the first-order and the second-order implicit
numerical schemes for time-dependent singularly perturbed parabolic IBVPs possess-
ing strong interior layers.

In this article, our primary objective is to develop an ε-uniformly convergent
numerical method with better numerical accuracy for the IBVP (1)–(3) whose solution
exhibits both boundary and weak interior layers. To achieve this purpose, the domain
is discretized using a spacial rectangular mesh which consists of a layer-resolving
piecewise-uniform Shishkin mesh in the spatial direction, and an equidistant mesh in
the temporal direction. The proposed numerical method is comprised of the backward-
Euler method for the time derivative and a new hybrid finite difference scheme for the
spatial discretization. In the recent past, similar scheme has been proposed and ana-
lyzed for singularly perturbed BVPs in [6] and singularly perturbed IBVPs in [12],
having discontinuous convection coefficient.

The rest of this paper is arranged as follows: In Sect. 2, the proposed numerical
method is described using the spacial rectangular mesh. Further, the monotonocity of
the proposed method is discussed at the end of this section. In Sect. 3, the numeri-
cal results are presented for some test example and also compared with the implicit
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upwind scheme in order to verify the efficiency and the accuracy of the present numer-
ical method. Moreover, a brief conclusion has been presented in Sect. 4.

In this paper, the notation [φ ](ξ , t) denotes the jump of φ across x= ξ and is defined
by [φ ](ξ , t) = φ(ξ+, t)−φ(ξ −, t), where φ(ξ ±, t) = limx→ξ±0 φ(x, t). Throughout the
paper, we use

∥
∥φ

∥
∥

∞,D
as the supremum norm, where D corresponds to the domain of the

function φ and for simplicity, we sometimes omit D whenever the domain is obvious.

2 Numerical Approximation

Here, we give description of the spacial rectangular mesh for the discretization of the
domain. We also provide the detailed construction of the proposed numerical method
and discuss the monotonocity of the method.

2.1 Discretization of the Domain

Here, we choose Nx(≥ 8) as an even positive integer. Now, to discretize the
domain Q = I × [0,T], we construct a rectangular mesh Q

Nx,Nt = I
Nx × SNt , where

SNt denotes the equidistant mesh on the temporal domain [0,T] such that SNt =
{tn = nΔ t, n= 0, . . . ,Nt , Δ t = T/Nt} , whereas INx = {xk}Nx

k=0 denotes the piecewise-
uniform Shishkin mesh on the spatial domain I. The Shishkin mesh is condensed near
x= 0 and in the vicinity of the right side of x= ξ . To obtain I

Nx , we divide I into four
subintervals as I= [0,ς1]∪ [ς1,ξ ]∪ [ξ ,ξ + ς2]∪ [ξ + ς2,1], where

ς1 =min

{
ξ
2
,ς0ε lnNx

}

, ς2 =min

{
1−ξ
2

,ς0ε lnNx

}

, ς0 is a positive constant;

and we introduce equidistant mesh with Nx/4 mesh intervals on each sub-interval. Let
hk = xk −xk−1, k = 1, . . . ,Nx,with ĥk = hk+hk+1, k = 1, . . . ,Nx −1. We further denote

the mesh width hk as follows: hk = h1 =
4ς1
Nx

, for k= 1, . . . ,Nx/4; hk =H1 =
4(ξ − ς1)

Nx
,

for k=Nx/4+1, . . . ,Nx/2; hk = h2 =
4ς2
Nx

, for k=Nx/2+1, . . . ,3Nx/4; and hk =H2 =

4(1−ξ − ς2)
Nx

, for k = 3Nx/4+1, . . . ,Nx.

2.2 Proposed Numerical Method

We define the difference operators D+
x , D

−
x , D

+
x D

−
x , D

∗
x , and D−

t , respectively for a
given mesh function Y (xk, tn) = Yn

k as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D+
x Y

n
k =

Yn
k+1 −Yn

k

hk
, D−

x Y
n
k =

Yn
k −Yn

k−1

hk
, D+

x D
−
x Y

n
k =

2

ĥk
(D+

x Y
n
k −D−

x Y
n
k ),

D∗
xY

n
k =

hk

ĥk
D+
x Y

n
k +

hk+1

ĥk
D−
x Y

n
k , D−

t Y
n
k =

Yn
k −Yn−1

k

Δ t
.

(4)
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Further, we define Yn
k+ 1

2
= (Yn

k+1 + Yn
k )/2, ak+ 1

2
= (ak + ak+1)/2, bnk+ 1

2
= (bnk +

bnk+1)/2, f
n
k+ 1

2
= (fnk +fnk+1)/2.

In order to constitute the numerical method, we use the backward-Euler method
for discretizing the time derivative and for the spatial discretization, we propose a
new hybrid finite difference scheme, which is comprised of a modified central dif-
ference scheme whenever ε > 2‖a‖Nx

−1; and a suitable combination of the midpoint
upwind scheme and the modified central difference scheme whenever ε ≤ 2‖a‖Nx

−1.
We impose second-order one-sided difference approximation at the point of disconti-
nuity. The proposed numerical method is now described in the following form on the
mesh QNx,Nt :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y (xk,0) = g0(xk), for k = 0, . . . ,Nx,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L
Nx,Nt
mc Yn+1

k = fn+1
k , for k = 1, . . . ,Nx/4−1 and k = Nx/2+1, . . . ,3Nx/4−1,

L
Nx,Nt
mc Yn+1

k = fn+1
k , for k = Nx/4, . . . ,Nx/2−1 and k = 3Nx/4, . . . ,Nx −1,

and when ε > 2||a||N−1
x ,

L
Nx,Nt
mu Yn+1

k = fn+1
k+1/2, for k = Nx/4, . . . ,Nx/2−1,

and when ε ≤ 2||a||N−1
x ,

L
Nx,Nt
mu Yn+1

k = fn+1
k+1/2, for k = 3Nx/4, . . . ,Nx −1,

and when ε ≤ 2||a||N−1
x ,

DF
x Y

n+1
k −DB

xY
n+1
k = 0, for k = Nx/2,

Y (0, tn+1) = gl(tn+1), Y (1, tn+1) = gr(tn+1), for n= 0, . . . ,Nt −1,

(5)

where the midpoint upwind operator LNx,Nt
mu and the modified central difference operator

LNx,Nt
mc are respectively defined as

⎧
⎨

⎩

LNx,Ntmc Y n+1
k = εD+

x D
−
x Y

n+1
k +akD∗

xY
n+1
k −bkY

n+1
k −D−

t Y
n+1
k ,

LNx,Nt
mu Yn+1

k = εD+
x D

−
x Y

n+1
k +ak+1/2D

+
x Y

n+1
k −bk+1/2Y

n+1
k+1/2 −D−

t Y
n+1
k+1/2,

(6)

and

DF
x Y

n+1
Nx/2

= (−Yn+1
Nx/2+2+4Yn+1

Nx/2+1 −3Yn+1
Nx/2

)/2h2, DB
xY

n+1
Nx/2

= (Yn+1
Nx/2−2 −4Yn+1

Nx/2−1+3Yn+1
Nx/2

)/2H1. (7)

Now, we rewrite (5) in the following form:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Y (xk,0) = g0(xk), for k = 0, . . . ,Nx,

⎧
⎨

⎩

LNx,Nt
ε Yn+1

k = Fn+1
k , for k = 1, . . . ,Nx −1,

Y (0, tn+1) = gl(tn+1), Y (1, tn+1) = gr(tn+1), for n= 0, . . . ,Nt −1,

(8)
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where the difference operator LNx,Nt
ε is defined as

LNx,Nt
ε Yn+1

k =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
μ−
k Y

n+1
k−1 +μc

kY
n+1
k +μ+

k Y
n+1
k+1

]
+

[
λ−
k Y

n
k−1+λ c

kY
n
k +λ+

k Y
n
k+1

]
,

for k = 1, . . . ,Nx/2−1,Nx/2+1, . . . ,Nx −1,

[
ν−,2
k Y n+1

k−2 +ν−,1
k Y n+1

k−1 +νc
kY

n+1
k +ν+,1

k Y n+1
k+1 +ν+,2

k Y n+1
k+2

]
,

for k = Nx/2,

(9)

and the term Fn+1
k as

Fn+1
k ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fn+1
k , for k = 1, . . . ,Nx/4−1, and k = Nx/2+1, . . . ,3Nx/4−1,

fn+1
k , for k = Nx/4, . . . ,Nx/2−1, and k = 3Nx/4, . . . ,Nx −1, and when ε > 2||a||N−1

x

fn+1
k+1/2, for k = Nx/4, . . . ,Nx/2−1, and when ε ≤ 2||a||N−1

x ,

fn+1
k+1/2, for k = 3Nx/4, . . . ,Nx −1, and when ε ≤ 2||a||N−1

x ,

0, for k = Nx/2.

(10)

The coefficients μ−
k ,μ

c
k ,μ

+
k ;λ

−
k ,λ c

k ,λ
+
k ;ν−,2ν−,1

k ,νc
k ,ν

+,1
k ,ν+,2

k associated with the

difference operator LNx,Nt
ε in (9) can be obtained from (5)–(7).

2.3 Monotonocity of the Proposed Method

We convert the difference scheme (8)–(10) into the following system of equations:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Y (xk,0) = g0(xk), for 0 ≤ k ≤ Nx,
⎧
⎨

⎩

LNx,Nt
hyb Y n+1

k = F̃n+1
k , for 1 ≤ k ≤ Nx −1,

Y (0, tn+1) = gl(tn+1), Y (1, tn+1) = gr(tn+1), for n= 0, . . . ,Nt −1,

(11)

where the difference operator LNx,Nt
hyb and the term F̃n+1

k are respectively defined as

LNx,Nt
hyb Y n+1

k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
μ̃−
k Y

n+1
k−1 + μ̃c

kY
n+1
k + μ̃+

k Y
n+1
k+1

]
+

[
λ̃−
k Y

n
k−1+ λ̃ c

kY
n
k + λ̃+

k Y
n
k+1

]
,

for k = Nx/2,

LNx,Nt
ε Yn+1

k , for k �= Nx/2,

(12)

and

F̃n+1
k =

⎧
⎨

⎩

γ̃−
k f

n+1
k−1+ γ̃ckf

n+1
k + γ̃+k f

n+1
k+1, for k = Nx/2,

Fn+1
k , for k �= Nx/2.

(13)

Here, one can derive the coefficients μ̃−
k , μ̃c

k , μ̃+
k ; λ̃

−
k , λ̃ c

k , λ̃+
k ; γ̃−

k , γ̃ck , γ̃+k , for the
scheme (5)–(7). Now, we set

−L
Nx ,Nt
hyb Y n+1

k =
[

Ak,k−1Y
n+1
k−1 +Ak,kY

n+1
k +Ak,k+1Y

n+1
k+1

]

−
[

Bk,k−1Y
n
k−1+Bk,kY

n
k +Bk,k+1Y

n
k+1

]

,
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where for k �= Nx/2,
⎧
⎨

⎩

Ak,k = −μc
k , Ak,k+1 = −μ+

k , Ak,k−1 = −μ−
k ,

Bk,k = λ c
k , Bk,k+1 = λ+

k , Bk,k−1 = λ−
k ,

and for k = Nx/2,

⎧
⎨

⎩

Ak,k = −μ̃c
k , Ak,k+1 = −μ̃+

k , Ak,k−1 = −μ̃−
k ,

Bk,k = λ̃ c
k , Bk,k+1 = λ̃+

k , Bk,k−1 = λ̃−
k .

It is obvious that the matrix B= (Bk, j)≥ 0. Now, by considering the case ε ≤ 2‖a‖N−1
x ,

one can derive that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ANx/2,Nx/2 = −
[

2ε −aNx/2+1h2
2h2(2ε +aNx/2+1h2)

− 3
2h2

− 3
2H1

− H1

2ε

( 1
2Δ t

+
b(Nx/2−1)+ 1

2

2
−

a(Nx/2−1)+ 1
2

H1
− ε

H2
1

)]

> 0,

ANx/2,Nx/2+1 = − 1
2h2

[

4− 4ε +2h22(bNx/2+1+ 1
Δ t )

2ε +aNx/2+1h2

]

≤ 0,

under the assumptions Nx/lnNx > 2ς0‖a‖ and

(
1

Δ t + ||b||
)

≤ αNx/2. Also, we have

ANx/2,Nx/2−1 = − 1
2H1

[

4−
2ε +a(Nx/2−1)+ 1

2
H1+H2

1 (b(Nx/2−1)+ 1
2
+ 1

Δ t )/2

ε

]

,

=
1

2H1

[

−4+
2ε +a(Nx/2−1)+ 1

2
H1+H2

1 (b(Nx/2−1)+ 1
2
+ 1

Δ t )/2

ε

]

,

≤ 1
2H1

[

−2+
‖a‖H1

ε
+

H2
1 (‖b‖+ 1

Δ t )
2ε

]

.

Now, using H1 ≤ 4N−1
x and

(
1

Δ t + ||b||
)

≤ αNx/2, we have

ANx/2,Nx/2−1 ≤ 1
εH1

[

− ε +4‖a‖N−1
x

]

� 0,

since ε ≤ 2‖a‖N−1
x ≤ 4‖a‖N−1

x . This shows that the matrix A := (Ak, j) does not satisfy
the M-matrix criterion; and hence according to [Lemma 3.12, Part II] given in the book
of Roos et al. [10], the discrete operator LNx,Nt

hyb does not satisfy the discrete maximum

principle, i.e., if the conditionsYn
k ≤ 0 on ∂QNx,Nt , and LNx,Nt

hyb Y n
k ≥ 0 in QNx,Nt are satisfied

by a mesh function Yn
k , it implies that Yn

k ≤ 0 at each point (xk, tn) ∈ Q
Nx,Nt , where

QNx,Nt = Q
Nx,Nt ∩Q and ∂QNx,Nt = Q

Nx,Nt \QNx,Nt .
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3 Numerical Experiment

Here, we present the numerical results computed using the newly proposed method (5)–
(8) and also compare the numerical results of the proposed method with the classical
implict upwind scheme (14)–(16) .

3.1 The Classical Implicit Upwind Scheme

We introduce the classical implicit upwind scheme for the problem (1)–(3), which takes
the following form on the mesh Q

Nx,Nt :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Y (xk,0) = g0(xk), for k = 0, . . . ,Nx,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

LNx,Nt
up Y n+1

k = fn+1
k , for k = 1, . . . , ,Nx/2−1, and k = Nx/2+1, . . .Nx −1,

D+
x Y

n+1
k −D−

x Y
n+1
k = 0, for k = Nx/2,

Y (0, tn+1) = gl(tn+1), Y (1, tn+1) = gr(tn+1), for n= 0, . . . ,Nt −1,

(14)

where the difference operator LNx,Nt
up is defined as

LNx,Nt
up Y n+1

k = εD+
x D

−
x Y

n+1
k +akD

+
x Y

n+1
k −bkY

n+1
k −D−

t Y
n+1
k , (15)

and

D+
x Y

n+1
Nx/2

= (Yn+1
Nx/2+1 −Yn+1

Nx/2
)/h2, D−

x Y
n+1
Nx/2

= (Yn+1
Nx/2

−Yn+1
Nx/2−1)/H1. (16)

3.2 Numerical Results

We carry out numerical experiments for the following test example . In all the numerical
experiments, we choose the constant ς0 = 2.2.

Example 1. Consider the parabolic IBVP of the form (1)–(3), where a(x) = 1+ x(1−
x), b(x) = 1+ x and the term f(x, t) is given by

f(x, t) = −9, for (x, t) ∈ (0,1/2)× (0,1], f(x, t) = 9(x−1)2, for (x, t) ∈ (1/2,1)× (0,1].

We set g0(x) = 0, for x ∈ [0,1] and gl(t) = −1, gr(t) = 0, for t ∈ [0,1].

In Fig. 1, we plot numerical solutions with Nx = 128 and Δ t = 1.6/Nx using the pro-
posed numerical method for ε = 2−6 and ε = 2−14. Since, the exact solution of Exam-
ple 1 is not known, we use the following technique in order to demonstrate the ε-
uniform convergence and the accuracy of the proposed method.

For each ε, we compute the maximum point-wise errors by

êNx,Nt
ε = max

0≤k≤Nx, n=Nt

∣
∣YNx,Nt (xk, tn)− Ŷ 2Nx,2Nt (xk, tn)

∣
∣,
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Fig. 1. Numerical solutions obtained using the proposed method.

and the corresponding order of convergence by

r̂Nx,Nt
ε = log2

(
êNx,Nt

ε

ê2Nx,2Nt
ε

)

.

Here, YNx,Nt (xk, tn) and Ŷ 2Nx,2Nt (xk, tn), respectively denote the numerical solutions
computed on Q

Nx,Nt and Q̂2Nx,2Nt , where Q̂2Nx,2Nt is the fine mesh with 2Nx mesh-
intervals in the spatial direction and 2Nt mesh-intervals in the temporal direction such
that the transition parameters ς1, ς2 remain unaltered after doubling the mesh-intervals.

Further, for each Nx and Nt , we calculate the ε-uniform maximum point-wise
errors by êNx,Nt = max

ε
êNx,Nt

ε and the corresponding order of convergence by r̂Nx,Nt =

log2

(
êNx,Nt

ê2Nx,2Nt

)

.

We display the computed ε-uniform maximum point-wise errors and corresponding
order of convergence for Example 1 using the proposed method and the implicit upwind
scheme, respectively in Tables 1 and 2. Moreover, those ε-uniform errors are depicted
in Fig. 2. It indicates that both the proposed numerical method as well as the implicit
upwind scheme are ε-uniformly convergent.
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Table 1. ε-uniform errors and order of convergence for Example 1 computed using the proposed
method, using Δ t = 1.6/Nx.

ε ∈ {20,2−2, . . . ,2−20} Number of mesh intervals Nx/time step size Δ t

64 / 1
40 128/ 1

80 256/ 1
160 512/ 1

320 1024/ 1
640

êNx ,Nt 3.4355e−02 1.1767e−02 3.7684e−03 1.2055e−03 4.4002e−04

r̂Nx ,Nt 1.5457 1.6428 1.6443 1.4540

Table 2. ε-uniform errors and order of convergence for Example 1 computed using the implicit
upwind scheme, using Δ t = 1.6/Nx.

ε ∈ {20,2−2, . . . ,2−20} Number of mesh intervals Nx/time step size Δ t

64 / 1
40 128/ 1

80 256/ 1
160 512/ 1

320 1024/ 1
640

êNx ,Nt 1.5889e−01 1.0211e−01 6.3016e−02 3.7045e−02 2.1099e−02

r̂Nx ,Nt 0.63794 0.69634 0.76644 0.81212

Fig. 2. Loglog plot of ε-uniform errors

Apart from the above, we compare region-wise errors and order of convergence of
the proposed method and the implicit upwind scheme in Tables 3, 4, 5 and 6. It confirms
that proposed method is almost second-order accurate in space, whereas the implicit
upwind scheme is almost first-order accurate is space.

Finally, to demonstrate the computational efficiency, we compare the computational
time of both the methods in Table 7. It shows that the proposed method takes approx-
imately same compuational time in comparison with the implicit upwind scheme to
produce more accuarte results.
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Table 3. Comparison of errors for Example 1 computed in the boundary layer region, i.e., in
[0,ς1), using Δ t = 1/Nx

2.

N Proposed method Implicit upwind scheme

Error Order of convergence Error Order of convergence

ε = 2−4 ≈ 10−1

128 2.0966e−03 2.1601 3.2950e−02 0.93205

256 4.6909e−04 2.4473 1.7269e−02 0.96712

ε = 2−6 ≈ 10−2

128 1.1626e−02 1.6466 9.3721e−02 0.69956

256 3.7131e−03 1.6542 5.7709e−02 0.76086

ε = 2−14 ≈ 10−4

128 1.0142e−02 1.6307 1.0225e−01 0.69814

256 3.2752e−03 1.6642 6.3021e−02 0.76695

Table 4. Comparison of errors for Example 1 computed in the left outer region, i.e., in [ς1,ξ ),
using Δ t = 1/Nx

2.

N Proposed method Implicit upwind scheme

Error Order of convergence Error Order of convergence

ε = 2−4 ≈ 10−1

128 1.1314e−03 2.7203 2.5086e−02 0.97540

256 1.7169e−04 2.6860 1.2759e−02 0.98778

ε = 2−6 ≈ 10−2

128 2.0038e−03 1.3156 1.8673e−02 0.74241

256 8.0507e−04 1.5815 1.1162e−02 0.79448

ε = 2−14 ≈ 10−4

128 5.4657e−05 2.0008 8.0483e−03 0.99238

256 1.3657e−05 1.9879 4.0455e−03 0.99738
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Table 5. Comparison of errors for Example 1 computed in the interior layer region, i.e., in [ξ ,ξ +
ς2), using Δ t = 1/Nx

2.

N Proposed method Implicit upwind scheme

Error Order of convergence Error Order of convergence

ε = 2−4 ≈ 10−1

128 1.1423e−03 2.7266 2.5396e−02 0.98431

256 1.7258e−04 2.6490 1.2837e−02 0.99219

ε = 2−6 ≈ 10−2

128 2.0049e−03 1.3074 1.9109e−02 0.76166

256 8.1008e−04 1.5865 1.1271e−02 0.80253

ε = 2−14 ≈ 10−4

128 6.7940e−05 1.9834 4.6467e−03 1.0023

256 1.7182e−05 1.9645 2.3197e−03 1.0015

Table 6.Comparison of errors for Example 1 computed in the right outer region, i.e., in [ξ +ς2,1],
using Δ t = 1/Nx

2.

N Proposed method Implicit upwind scheme

Error Order of convergence Error Order of convergence

ε = 2−4 ≈ 10−1

128 8.4070e−06 2.0983 4.3284e−04 0.88021

256 1.9634e−06 2.1945 2.3516e−04 0.94147

ε = 2−6 ≈ 10−2

128 2.2584e−04 4.8935 1.6133e−03 1.2596

256 7.5984e−06 2.3127 6.7384e−04 1.2808

ε = 2−14 ≈ 10−4

128 6.7601e−05 1.9835 4.6468e−03 1.0023

256 1.7094e−05 1.9668 2.3197e−03 1.0015
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Table 7. Comparison of computational time (in seconds) for Example 1 taking Δ t = 1/Nx.

N Implicit upwind scheme Proposed method

Time Error Time Error

ε = 2−6 ≈ 10−2

64 0.028958 1.4376e−01 0.065921 3.4440e−02

128 0.237022 9.3638e−02 0.296579 1.1808e−02

256 1.629150 5.7675e−02 1.712070 3.7911e−03

512 12.395647 3.4041e−02 12.624179 1.2180e−03

1024 93.223280 1.9445e−02 95.346525 3.8100e−04

ε = 2−14 ≈ 10−4

64 0.038513 1.5909e−01 0.079077 3.0435e−02

128 0.226236 1.0216e−01 0.451556 1.0151e−02

256 1.771846 6.3008e−02 2.142324 3.2759e−03

512 12.419061 3.7034e−02 13.709683 1.0335e−03

1024 94.296317 2.1092e-02 98.567949 3.1886e-04

4 Conclusions

In this article, we propose an efficient numerical method for solving a class of singularly
perturbed parabolic IBVPs with non-smooth data utilizing a layer-resolving piecewise-
uniform Shishkin mesh. The current investigation reveals the following important fea-
tures of the newly proposed method and also addresses the future challenges.

It is shown that the discrete maximum principle can not be established by convert-
ing the system (8) associated with the proposed method into a new system (11). How-
ever, it has been computationally demonstrated that the proposed method is uniformly
convergent, and is at least almost second-order spatially accurate throughout the spatial
domain I= [0,1], regardless of the larger and the smaller values of the parameter ε . It is
also observed that the proposed method exhibits notable improvement over the implicit
upwind scheme. Moreover, the comparison of the computational time shows that the
present method is compuatationally more efficent than the implicit upwind scheme.

Henceforth, by considering the performance of the newly proposed method from
the computational perspective, we are currently working to resolve the theoretical dif-
ficulty in establishing the discrete maximum principle, and also interested to obtain the
parameter-uniform error estimate of the proposed method.
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Abstract. Grid computing is a computational technique used to meet
growing computational demands. Scheduling of independent tasks in
Computational Grids commonly arises in many Grid-enabled large scale
applications. This paper introduces fuzzy particle swarm optimization
(FPSO) using trapezoidal and pentagonal fuzzy numbers for job schedul-
ing problems. It is to be noted that the Job scheduling on computational
grid is an N-P Complete problem, this requires a lot of attention because
of its practical importance and complexity. The position and velocity of
particles in conventional particle swarm optimization (PSO) is extended
from real vectors to fuzzy matrices where trapezoidal and pentagonal
fuzzy numbers play a key role. We evaluated the performances of FPSO
with trapezoidal fuzzy numbers and FPSO with pentagonal fuzzy num-
bers. Results are compared for scheduling.

Keywords: Fuzzy particle swarm optimization · Trapezoidal fuzzy
number · Pentagonal fuzzy number

1 Introduction

A computational grid is a large scale and heterogeneous collection of autonomous
systems [1]. The sharing of computational job among the grid is one of the major
applications of the grids. It’s resources may be distributed among different own-
ers, who may have some constraints and various access policy. Several meta-
heuristic methods are developed for minimizing the average completion time of
jobs on each Grid node through optimal Job allocation [2]. A more complete
analysis of the scheduling on the grid was provided by Dong and Akl [3], which
is known as a N-P complete problem [4]. Every grid node has a processing speed
of its own and requirements of its own. So here we are using fuzzy PSO a job
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scheduling problem on computational grids. Then we will compare the results
obtained using trapezoidal fuzzy number with the result obtained using pen-
tagonal fuzzy number. The objective in this problem is to minimize the time
complexity and efficient use of grid nodes. PSO is a particle swarm optimiza-
tion method developed by Kennedy and Eberhart in [5]. The success in a PSO
problem depends on the mapping between PSO particle and possible solution.

The rest of the paper is organized as follows. In Sect. 2, it explains about the
problem we have tackled in this paper. It explains some basic concepts required
for proper understanding of this paper and our objective in this paper. In Sect. 3,
it explains about the process used in this paper. In Sect. 3.1, it explains about
the fuzziness used for solving this paper. In Sect. 3.1, it explains the basic PSO
method which will extended fuzzy PSO. In Sect. 3.3, it explains the fuzzy PSO
algorithm that is used to solve this problem. In Sect. 4, Numerical experiment is
given. In Sect. 5, the conclusion of the above approach is given.

2 Problem Formulation

Here in this problem on computational Grids, there is generally a framework
focusing on the interaction between grid information server, resource broker of
the grid and the manager of the domain resource [7]. In this section the problem
of this paper is explained. In the computational grid environment, scheduling of
jobs on the grids using fuzzy PSO is explained. For our proper understanding
some important terms and concepts are defined. They are as follows-

Scheduling Problem. Schedule is a function from jobs to the specific intervals
of time of the grid node. Scheduling problem is defined as the jobs allocated to the
machines with an optimal criteria. In this paper, scheduling problem is defined
as allocation of jobs to specific computational grid with an optimal criteria. Here
optimal criteria is the max number of iterations allowed.

Grid Nodes. A gird node is a computational resource whose capacity is limited.
It can be a computer lab, workstation, personal computer or a collection of
computers at a specific location. The computational capacity of the grid node
depends on amount of memory, number of the Central processing unit, basic
storage space and other types of specifications. Every Grid node has a processing
speed of its own which is expressed as number of cycles per unit time.

Jobs. Job is a collection of the operations or a single operation allocated to the
computational grid.

Now we are going to explain the concerned problem. Now J(j) means Job
on machine j and G(i) means Grid at node i. Now let us consider jobs J(j),
j ∈ (1, 2, . . . , b) that are independent on Grid nodes G(i), i ∈ (1, 2, . . . , a). The
speed of each grid node is expressed as number of CPUT. The objective of this
problem is to minimize the time complexity and efficient use of grid nodes.
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Now we define d(i,j) as the completion time, In other words time taken by
grid node G(i) to finish the job J(j). The time taken by the grid node to execute
all the jobs allocated to that grid node only is represented by (

∑
d(i)). Now max

(
∑

d(i)) is called makespan. (
∑a

i=1(
∑

d(i))) is called as the flow time. These
concepts are used while applying fuzzy PSO algorithm.

The Objective in this paper is to minimize the makespan value. We have
to optimize a job scheduling that minimizes the makespan value. That is to
minimize the maximum time taken by all Grids to complete all the jobs assigned
to them. And then to see the effects of trapezoidal fuzzy number and pentagonal
fuzzy number on it.

3 Fuzzy PSO

In this section fuzzy particle swarm optimization is explained, that has been used
in solving the above job scheduling problem in a computational grid atmosphere.
This paper compares fuzzy PSO with trapezoidal fuzzy number and pentagonal
fuzzy number and then compares them.

In Sect. 3.1 fuzziness that has been used in this paper is explained. In Sect. 3.2
particle swarm optimization is explained. In Sect. 3.3 fuzzy particle swarm opti-
mization that has been used in this paper has been explained in detail.

3.1 Fuzziness

Fuzzy Number. A fuzzy set is called a fuzzy number when the following
properties are satisfied

1) A must be a normal fuzzy set.
2) All alpha cut of A must be in a closed interval.
3) The support of A must be bounded.

If it satisfies all the conditions then it is called a fuzzy number.

Trapezoidal Fuzzy Number. A Trapezoidal fuzzy number denoted by
A is defined as (a, b, c, u) where the membership function is given by

(x)=                                                     0,                                          ≤

( − )/( −a),                      ≤ ≤

1,                                           ≤ ≤ 

( − )/( − ),                    ≤ ≤ 

0,                                          ≥

Pentagonal Fuzzy Number. A fuzzy number is called pentagonal fuzzy num-
ber if the following conditions are satisfied-

1) Let the pentagonal fuzzy number denoted by (a, b, c, d, e) with membership
function (x)
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2) (x) must be a continuous membership function whose interval is [0, 1].
3) (x) must be a strictly non-decreasing function that is continues on the inter-

vals [a, b] and [b, c].
4) (x) must be a strictly non-increasing function that is continues on the intervals

[c, d] and [d, e].

3.2 Particle Swarm Optimization (PSO)

To successfully apply PSO, one of the factor is to find the map between solution
of the problem and PSO particle. PSO is originally designed by Kennedy and
Eberhart. It is naturally inspired by fish schooling and bird flocking [8,9]. In
PSO each particle represents a possible solution. The main strength of this algo-
rithm is it has faster convergence when compared with other global optimization
algorithms [10–14]. Each particle moves with some velocity, keeping it’s personal
best position and global best position. Mathematically the particle is guided in
the domain by the following formula -

x(t + 1) = q ∗ x(t) + (q1 ∗ a1) ∗ (y′(t) − y(t)) + (q2 ∗ a2) ∗ (y′′(t) − y(t)) (1)

y(t + 1) = y(t) + x(t + 1) (2)

Here x(t + 1) represents velocity of a particle at (t + 1) iteration. x(t) repre-
sents velocity of a particle at (t) iteration. Here a1 and a2 are random numbers
taken initially. y(t) represents the position of the particle at (t) iteration. y′(t)
represents the personal best position of a particle at (t) iteration. y′′(t) repre-
sents the global best position among all the particles at (t) iteration. Also y′(t)
and y′′(t) are known as personal best of a particle and global best respectively.

Here q1 and q2 are constants that are positive, these are called acceleration
coefficients. q represents the inertia weight. Now, a1 and a2 are two random
numbers in the range [0, 1]. When inertia weight is very large it implies a global
exploration and small inertia weight implies local exploitation. q plays an impor-
tant role, as it affects the convergence behaviour of PSO.

3.3 Fuzzy PSO Algorithm

In this section, fuzzy PSO algorithm is explained in detail. Here in the scheduling
of jobs on the computational Grids environment using PSO, the position and
velocities of particles are taken in the form of fuzzy matrices [6]. In this section
it is explained how fuzzy PSO is used for solving problems on scheduling of jobs
on the computational grid nodes. Then their results are compared for fuzzy PSO
with trapezoidal fuzzy number and fuzzy PSO with pentagonal fuzzy number.
To successfully apply PSO, one of the factor is to find the map between problem
solution and PSO particle. The performance and feasibility are directly affected
by it. Suppose G = (G(1), G(2), . . .,G(a)) , J = (J(1), J(2), . . ., J(b)) are the
grid nodes and jobs respectively. The number of Grids and Jobs are a and b
respectively. Let the position of the particle is defined as
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Y = [(y(1, 1) y(1, b)
y(a, 1) y(a, b))]

The elements of Y must satisfy the following criteria-

y(i, j) ∈ [0, 1], i ∈ (1, 2, ..., a) and j ∈ (1, 2, ..., b)∑a
i=1(y(i, j)) = 1, i ∈ (1,2,...,a) and j ∈ (1, 2, ..., b)

Similarly the velocity of the particle is defined as

x = [(x(1, 1) x(1, b)
x(a, 1) x(a, b))]

Now in order to update the velocities and positions of the particles, we have to
follow the following mathematical expression-

x(t + 1) = q ∗ x(t) + (q1 ∗ a1) ∗ (y′(t) − y(t)) + (q2 ∗ a2) ∗ (y′′(t) − y(t)) (3)

y(t + 1) = y(t) + x(t + 1) (4)

Here x(t + 1) represents velocity of a particle at (t + 1) iteration. x(t) repre-
sents velocity of a particle at (t) iteration. Here a1 and a2 are random numbers
taken initially. y(t) represents the position of the particle at (t) iteration. y′(t)
represents the personal best position of a particle at (t) iteration. y′′(t) repre-
sents the global best position among all the particles at (t) iteration. Also y′(t)
and y′′(t) are known as personal best of a particle and global best respectively.
Here q1 and q2 are constants that are positive, these are called acceleration coef-
ficients. q represents the inertia weight. Now, a1 and a2 are two random numbers
in the range [0, 1].

Before going into detail of the fuzzy PSO algorithm, first let us see some of
the notations required on the way, they are as follows-

α1 = Collection of all the jobs to be processed.
α2 = Collection of all the jobs that are being scheduled
α3 = Collection of all the jobs after job allocation is already completed.
α4 = Collection of all the available grid nodes.
α5 = Collection of all the grids nodes that has already been allocated to the
jobs.
α6 = Collection of all the grid nodes that are available or free.

The algorithm of fuzzy PSO is as follows
STEP 1 When the nodes are active and no new jobs are available, then we

have to wait for the jobs that are new or update α4 and α1.
STEP 2
At t = 0, If α4 = 0, wait for new grids to be available. If α1 > 0, update

JL2. If α2 < α4, then jobs are allocated on the principle called first come first
serve basis. If α2 > α4, job allocation is done by the following -

STEP 3
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3.0) Now we have to initialize all the parameters of the particle swarm. The
size of the particle swarm (N) depends on the experiment and its value is
given before the start of the algorithm. The values of the parameters are
as taken as q = 0.8, q1 = 2, q2 = 1.3.

3.1) Now we have to initialize the position for each particle. So we have taken
random matrices which will be treated as position of the particles. Then
the matrices are normalized.

3.2.0) t = t + 1 (Here we will start the iteration process from t = 1 to the
maximum iteration, which can be changed in the programming code
depending on the requirement of the coder)

3.2.1) Then the makespan value is calculated for each particle.
3.2.2) The latest best solution is calculated as follows-

y′′ = argmin(f(y′′(t –1)), f(y(1)(t)), f(y(2)(t)),...f(y(b)(t)))
3.2.3) For each particle personal best solution is computed as follows

y′(t) = argmin(f(y′(t – 1)), f(y(t)))
3.2.4.a) Take random velocity as a trapezoidal matrix, i.e. every element of the

matrix is a trapezoidal fuzzy number for the first Case.
3.2.4.b) Take random velocity as a pentagonal matrix, i.e. every element of the

matrix is a pentagonal fuzzy number for the second Case.
3.2.5) Now update each particle using Eq. (1) and (2).
3.2.6) Now for each particle the position matrix is normalized.

3.3) The iteration process is continued until the optimality criteria is fulfilled.

STEP 4
Repeat the process as long as the grid is active.

4 Experiment

Now we have taken some parameters required to solve the problem. They are
Inertia weight (q) = 0.8. Acceleration coefficient q1 and q2 are as follows 2 and
1.3 respectively. The two random numbers are generated automatically.

4.1 Experiment 1

Number of Grid Nodes = 2 Number of Jobs = 3 Now we will explain this by
taking a small example. In this example we are taking two Grid nodes and three
Jobs.

Total number of particles (N) = 3. Inertia weight (q) = 0.8. Acceleration
coefficient q1 and q2 are as follows 2 and 1.3 respectively. Two random num-
bers are generated automatically. The speed of two grid nodes are 4 and 4.1
respectively. The time required for each job are as follows 1119, 1112 and 1811
respectively.

For first case we have taken velocity matrix with each element as trapezoidal
fuzzy number. Here we have observed that job1 is scheduled on grid 2, job2 is
scheduled on grid 1 and job3 is scheduled on grid 2. With increase in number of
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iterations makespan value decreases and after some iterations it remains more
or less constant.

For Second case we have taken velocity matrix with each element as pentag-
onal fuzzy number. Here we have observed that job1 is scheduled on grid 2, job2
is scheduled on grid 2 and job3 is scheduled on grid 1. With increase in number
of iterations makespan value decreases and after some iterations it remains more
or less constant.

4.2 Experiment 2

Number of Grid Nodes = 3 Number of Jobs = 7 Here ‘1’ represents job assigned
to the Grid and ‘0’ represents no job assigned to the Grid. Total number of
particles (N) = 20.

Optimal Schedule with Trapezoidal Fuzzy Number

Table 1. Optimal schedule with trapezoidal fuzzy number.

J1 J2 J3 J4 J5 J6 J7

G1 0 0 0 0 0 1 1

G2 0 0 1 0 0 0 0

G3 1 1 0 1 1 0 0

Here the Grid Speed are as following – 17, 34, 13 and the time required
for each job is as following-45, 103, 80, 62, 91, 113, 88 respectively. Here ‘1’
represents job assigned to the Grid and ‘0’ represents no job assigned to the
Grid.

The above Table 1 is the Optimal Schedule. Here job 1 is scheduled on grid
3, job 2 is scheduled on grid 3, job 3 is scheduled on grid 2, job 4 is scheduled on
grid 3, job 5 is scheduled on grid 3, job 6 is scheduled on grid 1, job 7 is scheduled
on grid 1. With increase in number of iterations makespan value decreases and
after some iterations it remains more or less constant.

Optimal Schedule with Pentagonal Fuzzy Number

Table 2. Optimal schedule with Pentagonal fuzzy number.

J1 J2 J3 J4 J5 J6 J7

G1 0 1 0 1 0 0 1

G2 0 0 0 0 1 1 0

G3 1 0 1 0 0 0 0

Here the Grid Speed are as following – 28, 9, 23 and the time required for each
job is as following-124, 71, 132, 99, 83, 78, 64 respectively. Here ‘1’ represents
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job assigned to the Grid and ‘0’ represents no job assigned to the Grid. The
above Table 2 is the Optimal Schedule. Here job 1 is scheduled on grid 3, job 2
is scheduled on grid 1, job 3 is scheduled on grid 3, job 4 is scheduled on grid
1, job 5 is scheduled on grid 2, job 6 is scheduled on grid 2, job is scheduled
on grid 1. With increase in number of iterations makespan value decreases and
after some iterations it remains more or less constant.

4.3 Experiment 3

Number of Grid Nodes = 4 Number of Jobs = 12 Here ‘1’ represents job assigned
to the Grid and ‘0’ represents no job assigned to the Grid. Total number of
particles (N) = 20.

Optimal Schedule with Trapezoidal Fuzzy Number

Table 3. Optimal schedule with Trapezoidal fuzzy number.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12

G1 0 0 0 0 1 0 0 1 0 0 0 0

G2 0 0 0 0 0 1 0 0 0 0 1 0

G3 0 0 1 1 0 0 0 0 0 1 0 0

G4 1 1 0 0 0 0 1 0 1 0 0 1

Here the Grid Speed are as following – 44, 3, 11, 23 and the time required for
each job is as following-144, 119, 68, 51, 9, 112, 77, 30, 65, 26, 113, 56 respectively.
Here ‘1’ represents job assigned to the Grid and ‘0’ represents no job assigned
to the Grid.

The above Table 3 is the Optimal Schedule. Here job 1 is scheduled on grid
4, job 2 is scheduled on grid 4, job 3 is scheduled on grid 3, job 4 is scheduled
on grid 3, job 5 is scheduled on grid 1, job 6 is scheduled on grid 2, job 7 is
scheduled on grid 4, job 8 is scheduled on grid 1, job 9 is scheduled on grid 4,
job 10 is scheduled on grid 3, job 11 is scheduled on grid 2, job 12 is scheduled
on grid 4. With increase in number of iterations makespan value decreases and
after some iterations it remains more or less constant.

Optimal Schedule with Pentagonal Fuzzy Number
Here the Grid Speed are as following – 50, 21, 45, 10 and the time required

for each job is as following-101, 74, 71, 58, 23, 123, 17, 123, 124, 41, 15, 84
respectively. Here ‘1’ represents job assigned to the Grid and ‘0’ represents no
job assigned to the Grid.

The above Table 4 is the Optimal Schedule. Here job 1 is scheduled on grid
3, job 2 is scheduled on grid 4, job 3 is scheduled on grid 4, job 4 is scheduled
on grid 3, job 5 is scheduled on grid 4, job 6 is scheduled on grid 1, job 7 is
scheduled on grid 3, job 8 is scheduled on grid 1, job 9 is scheduled on grid 2,
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Table 4. Optimal schedule with Pentagonal fuzzy number.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12

G1 0 0 0 0 0 1 0 1 0 0 0 1

G2 0 0 0 0 0 0 0 0 1 0 1 0

G3 1 0 0 0 0 0 0 0 0 1 0 0

G4 0 1 1 0 1 0 0 0 0 0 0 0

job 10 is scheduled on grid 3, job 11 is scheduled on grid 2, job 12 is scheduled
on grid 1. With increase in number of iterations makespan value decreases and
after some iterations it remains more or less constant.

4.4 Experiment 4

Number of Grid Nodes = 5 Number of Jobs = 20 Here ‘1’ represents job assigned
to the Grid and ‘0’ represents no job assigned to the Grid. Total number of
particles (N) = 20.

Optimal Schedule with Trapezoidal Fuzzy Number

Table 5. Optimal schedule with Trapezoidal fuzzy number.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16 J17 J18 J19 J20

G1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1

G2 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

G3 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0

G4 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0

G5 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0

Here the Grid Speed are as following – 4, 34, 47, 24, 19 and the time required
for each job is as following-13, 82, 140, 105, 124, 129, 17, 106, 83, 79, 48, 25, 48,
101, 79, 92, 115, 25, 75, 115 respectively. Here ‘1’ represents job assigned to the
Grid and ‘0’ represents no job assigned to the Grid.

The above Table 5 is the Optimal Schedule. Here job 1 is scheduled on grid
4, job 2 is scheduled on grid 3, job 3 is scheduled on grid 5, job 4 is scheduled
on grid 1, job 5 is scheduled on grid 4, job 6 is scheduled on grid 3, job 7 is
scheduled on grid 4, job 8 is scheduled on grid 2, job 9 is scheduled on grid 2,
job 10 is scheduled on grid 1, job 11 is scheduled on grid 3, job 12 is scheduled
on grid 5, job 13 is scheduled on grid 1, job 14 is scheduled on grid 3, job 15 is
scheduled on grid 5, job 16 is scheduled on grid 5, job 17 is scheduled on grid 1,
job 18 is scheduled on grid 3, job 19 is scheduled on grid 4, job 20 is scheduled
on grid 1. With increase in number of iterations makespan value decreases and
after some iterations it remains more or less constant.
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Table 6. Optimal schedule with Pentagonal fuzzy number.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16 J17 J18 J19 J20

G1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

G2 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

G3 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0

G4 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0

G5 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1

Optimal Schedule with Pentagonal Fuzzy Number
Here the Grid Speed are as following – 19, 12, 8, 36, 15 and the time required

for each job is as following-86, 16, 142, 55, 96, 145, 81, 5, 51, 13, 119, 61, 20,
107, 100, 42, 75, 112, 71, 134 respectively. Here ‘1’ represents job assigned to the
Grid and ‘0’ represents no job assigned to the Grid.

The above Table 6 is the Optimal Schedule. Here job 1 is scheduled on grid
4, job 2 is scheduled on grid 1, job 3 is scheduled on grid 2, job 4 is scheduled
on grid 5, job 5 is scheduled on grid 3, job 6 is scheduled on grid 5, job 7 is
scheduled on grid 3, job 8 is scheduled on grid 3, job 9 is scheduled on grid 4,
job 10 is scheduled on grid 2, job 11 is scheduled on grid 4, job 12 is scheduled
on grid 1, job 13 is scheduled on grid 5, job 14 is scheduled on grid 3, job 15 is
scheduled on grid 3, job 16 is scheduled on grid 5, job 17 is scheduled on grid 4,
job 18 is scheduled on grid 5, job 19 is scheduled on grid 1, job 20 is scheduled
on grid 5. With increase in number of iterations makespan value decreases and
after some iterations it remains more or less constant.

Then we have taken some more examples with more Grids Nodes and Jobs,
i.e. 10 Grid Node and 50 Jobs, 40 Grid Node and 100 Jobs. We are getting
similar result.

Here the termination criteria is Maximum iteration. Here the optimal Criteria
is the makespan value. We have to optimize a job scheduling that minimizes the
makespan value. That is to minimize the maximum time taken by all Grids to
complete all the jobs assigned to them. Here we can see the makespan value of
fuzzy PSO using trapezoidal fuzzy number and the makespan value of fuzzy PSO
using pentagonal fuzzy number remains the same. Here we can also see that the
global best position is same for both the approaches the approaches.

5 Conclusion

Here a job scheduling problem on a computational grid is solved by fuzzy par-
ticle swarm optimization with trapezoidal fuzzy number and pentagonal fuzzy
number. In this paper fuzzy PSO using trapezoidal fuzzy number is calculated
and then compared with fuzzy PSO using pentagonal fuzzy number. Here we
see that fuzzy PSO with pentagonal fuzzy number gives the same result as com-
pared with fuzzy PSO with trapezoidal fuzzy number. For future work we can
take other fuzzy numbers in this process and compare the results.
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Abstract. Semi-open sets in topological spaces was introduced by
Levine in 1963. In 2006, Al-Zoubi introduced the concept of S-
paracompact spaces using locally finite semi-open refinement and studied
some characterizations and basic properties of S-paracompact spaces. In
this paper we introduce the class of S-metacompact spaces as a gen-
eralization of metacompact spaces using point finite semi-open refine-
ments. A topological space (X, τ) is said to be S-metacompact if every
open cover of X has a point finite semi-open refinement. Moreover we
obtain a characterization of S-metacompact spaces and study some basic
properties of S-metacompact spaces. Also we investigate the relationship
between S-metacompact spaces and metacompact spaces.

Keywords: Point finite · Metacompactness · S-metacompactness

1 Introduction

A number of generalizations of open sets have been considered by many authors
in the past few years and some of these notions were defined similarly using
the closure and interior operators; viz semi-open set by Levine [1], preopen set
Corson and Michael [2], semi-preopen set by Abd El-Monsef et al. [3]. After
the introduction of semi-open sets, several authors studied its properties and
characteristics in topological spaces and also introduced a number of spaces in
terms of semi-open sets such as S-expandable spaces by Al-Zoubi in 2004 [4],
H-closed topological spaces by Velicko [5], countably S-closed spaces by dlaka
et al. [6] etc.

Al-Zoubi [7] introduced the concept of S-paracompact spaces using locally
finite semi-open refinement and studied its basic properties and characteriza-
tions. The purpose of this paper is to introduce the class of S-metacompact
spaces as a generalization of metacompact spaces using point finite semi-open
refinement. Moreover we obtain a characterization of S-metacompact spaces and
study some basic properties of it. Also we investigate the relationship between
S-metacompact spaces and metacompact spaces.

2 Preliminaries

Let (X, τ) be a topological spaces and A be a subset of X. We shall denote the
closure of A, interior of A by clA, intA respectively.
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Definition 1. [1] A subset A is called a semi-open subset of (X, τ) if there exists
an open set U of X such that U ⊆ A ⊆ cl(U). i.e. A ⊆ cl(intA).

Semi-closed sets are defined as the complement of semi-open sets. i.e.A is semi-
closed if and only if int(cl(A)) ⊆ A. The concepts of preclosed and semi-preclosed
subsets are similarly defined.

Definition 2. [8] The smallest semi-closed set containing the subset A is defined
as the semi closure of A and is denoted by scl(A).

SO(X, τ) denots the family of all semi-open subsets of a space(X, τ).

Definition 3. [9] A collection B = {Bt : t ∈ T} ⊆ X is a closure preserving
collection if for every subfamily B0 = {Bt : t ∈ T0 ⊂ T} of B, cl(∪Bt : t ∈
T0) = ∪(cl(Bt : t ∈ T0)

Definition 4. [10] A collection U of subsets of a space (X, τ) is said to be
interior-preserving if int(∩W) = ∩{intW : W ∈ W} for every W ⊂ U.

Definition 5. [9] A partially ordered set P is called a well-ordered set, if for
every nonempty subset A of P , there exists x0 ∈ A such that x0 ≤ x for every
x ∈ A. Then the partial order is called a well order.

Definition 6. [9] For any subset A of X and collection U, the star of U about
A, denoted by st(A,U),is defined as the set ∪{U ∈ U : U ∩ A �= φ}. For any
x ∈ X, st({x},U) is denoted as st(x,U).

Definition 7. [9] Let A,B be covers of a space (X, τ). B is said to be a pointwise
W-refinement of A if for any x ∈ X there is a finite C ⊂ A such that if
x ∈ B ∈ B, then B ⊂ A for some A ∈ C.

Definition 8. [9] A collection V of subsets of a space (X, τ) is said to be well-
monotone if the subset relation ⊂ is a well-order on V

Definition 9. [9] A collection V is said to be directed if U, V ∈ V ⇒ U∪V ⊂ W
for some W ∈ V

3 S-Metacompact Spaces

Definition 10. [9] A ccollection B of subsets of a space (X, τ) is said to be
point finite if each point x ∈ Xis an element of atmost finitely many members
of B.

Definition 11. [11] A space (X, τ) is metacompact if every open cover of X has
a point finite open refinement.

Definition 12. A space (X, τ) is said to be S-metacompact if every open cover
of Xhas a point finite semi-open refinement.
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The proof of the following proposition follows immediately from the definition.

Proposition 1. Every locally finite family is point finite.

Remark 1. From the above proposition it follows that
S-paracompactness ⇒ S-metacompactness.

Remark 2. We have the following obvious implication
metacompactness ⇒ S-metacompactness.

Corollary 1. The unit interval [0, 1] is S-metacompact.

Example 1. The Space (X, τ), where X is the set of real numbers and the topol-
ogy τ = {φ,X, {1}}, is a S-metacompact space.

Proposition 2. If B is a closure preserving collection of closed sets in X and
A a closed subset of X,then {B ∩ A : B ∈ B} is closure preserving.

Proposition 3. A point finite closure preserving closed collection is always
locally finite.

Remark 3. A collection U = {U : U ∈ U} is locally finite implies that so is
{cl(U) : U ∈ U}
Proposition 4. Let (X, τ) be a topological space, A be a subset of X and B ∈ τ ′.
Then
A is S-metacompact ⇒ A ∩ B is S-metacompact.

Proof. Let U be an open cover of A ∩ B and take V = U ∪ {B′}. It is clear
that V is an open cover A. Since A is S-metacompact, it has point finite semi-
open refinement W such that W is an open cover of A. It is also obvious that
W′ = {W ∈ W : W ⊆ U for some U ∈ U} is point finite in A ∩ B. Next we will
show that W′ is an open cover of A ∩ B.
Let D ⊆ A ∩ B ⊆ A. Then there exist W ∈ W such that D ⊆ W . Now since
D ⊆ B, we have B ⊇ D �⊆ W ′ and hence W �⊆ B′. Since W refines V = U∪{B′}
there exist U ∈ U such that W ⊆ U . Therefore D ⊆ W ∈ W′. Thus W′ is an
open cover of A ∩ B and it follows that A ∩ B is S-metacompact.

Lemma 1. Let U = {Uα : α ∈ Λ,Λ is well order } is an open cover of (X, τ)
and Vα = ∪{Uβ : β ≤ α, α ∈ Λ}. If {Vα : α ∈ Λ} has a precise point finite
semi-open refinement {Wα : α ∈ Λ} and each X − ∪{Wγ : γ > α} has a point
finite semi-open cover which is a partial refinement of {Uβ : β ≤ α}, then U has
a point finite semi-open refinement.

Proof. Let Wα �= Φ and Wα �= Wβ if α �= β. For each α ∈ Λ, suppose Hα is a
point finite semi-open cover of X−∪{Wγ : γ > α} such that H ∈ Hα ⇒ H ⊂ Uβ

for some β.
Consider Kα = {Wα ∩ H : H ∈ Hα,H ⊂ Uβ for some β ≤ α}. Then the
family M =

⋃

α∈Λ

Kα is a point finite semi-open collection such that M ∈ M
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implies M ⊂ Uβ for some β. Now to show that M covers (X, τ), let x ∈ X.
Then the set {α ∈ Λ : x ∈ Wα is finite and δ be the largest element. Then
x ∈ X − ∪{Wγ : γ > α} and so x ∈ P for some P ∈ Hδ. It follows that
x ∈ W ∩ P ∈ Kα and this completes the proof.

Theorem 1. Let (X, τ) be a topological space. Then the following are equivalent:

(i) (X, τ) is S-metacompact
(ii) Every well monotone open cover of X has a point finite semi-open refinement

which is also an open cover of X.

Proof. (i)⇒(ii) is obvious.
(ii)⇒(i) Assume that (ii) holds. If (X, τ) is not S-metacompact there is a smallest
cardinal number α such that there exist an open cover U of (X, τ) with no point
finite semi-open refinement and | U |= α. i.e. whenever V is an open cover
of (X, τ) with | V |<| U |, then V has a point finite semi-open refinement.
Represent U as U = {Uβ : β < α}and for each β < α, let Wβ =

⋃

γ≤β

Uγ .

The collection W = {Wβ : β < α} is a well monotone open cover of X so
there is a point finite semi-open refinement {Vβ : β < α} of W. For β < α, let
Gβ = X−∪{Vγ : γ > β. Then {X−Gβ}∪{Uγ : γ ≥ β} is an open cover of X and
the cardinality is less than α and so by the minimal condition on α it must have a
point finite semi-open refinement Hβ . If we take Kβ = {P ∈ Hβ : P ∩ Gβ �= φ},
then by the above lemma U has a point finite semi-open refinement which is a
contradiction and it completes the proof.

Lemma 2. Let (X, τ) be a topological space. If the open cover C has a point
finite semi-open refinement V such that x ∈ int(st(x,V)) for all x ∈ X, then C
has a semi-open pointwise W -refinement.

Proof. For each V ∈ V take CV ∈ C such that V ⊂ CV . Let Ux =
[int(st(x,V))] ∩ [∩{CV : x ∈ V ∈ V}],x ∈ X. Then the collection U = {Ux :
x ∈ X} is the required semi-open pointwise W -refinement of C.

Theorem 2. Let (X, τ) be a topological space. If C is an interior-preserving
open cover of X, then CF has a closure preserving semi-closed refinement if and
only if C has an interior-preserving semi-open pointwise W -refinement.
CF denotes the collection of all unions of finite subcollections from C.

Proof. LetUx = [∩{C ∈ C : x ∈ C}] − ∪{G ∈ G : x /∈ G}, where G is a closure
preserving semi-closed refinement of CF . Then U = {Ux : x ∈ X} is an interior-
preserving semi-open pointwise W -refinement of C.
Conversely assume that U is an interior-preserving semi-open pointwise W -
refinement of C. For H ∈ CF , take MH = {x ∈ X : st(x,U) ⊂ H and the
collection M = {MH : H ∈ CF } is a closure preserving semi-closed refinement
of CF .

The proof of the following lemma follows from the above Theorem2 since a point
finite open cover of X is an interior-preserving semi-open pointwise W -refinement
of itself.
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Lemma 3. If C is a point finite open cover of X, then CF has a closure pre-
serving semi-closed refinement.

Theorem 3. Let (X, τ) be a topological space. Then every directed open cover
of X has a closure preserving semi-closed refinement if and only if for every
open cover C of X, CF has a closure preserving semi-closed refinement.

Proof. Necessary part: Clearly CF is directed and hence it has a closure pre-
serving semi-closed refinement.
Sufficient part: Let C be a directed open cover of (X, τ). Since C is directed, CF

is a refinement of C. Then by our assumption, CF has a closure preserving semi-
closed refinement say V which is an open cover of (X, τ). Now V ⊂ CF ⊂ C
and this follows that V is the required closure preserving semi-closed refinement
of C.

Theorem 4. Let (X, τ) be a topological space. Then (X, τ) is S-metacompact
if and only if for every open cover of (X, τ), there is a point finite semi-open
refinement B such that x ∈ int(st(x,B)) for every x ∈ X.

Proof. Necessary part is obvious.
Sufficient part: Let U be an open cover of X. Then there exists a point finite semi-
open refinement B such that x ∈ int(st(x,B)). i.e. x ∈ int(∪{B ∈ B : B∩{x} �=
φ}. Then B is an open cover of (X, τ) and hence (X, τ) is S-metacompact.

Theorem 5. Let (X, τ) be a topological space. If for every open cover U of X,
UF has a closure preserving semi-closed refinement then every well-monotone
open cover of Xhas a point finite semi-open refinement which covers X.

Proof. Let U be a well-monotone open cover of (X, τ). It is obvious that U is
an interior-preserving open cover of X. By the repeated application of Lemma
3.4(ii) there is a sequence {Un}∞

1 of open covers X such that U = U1 and Un+1

is an interior-preserving semi-open pointwise W -refinement of Un. Then U has a

semi-open refinement W =
∞⋃

n=1
Wn, Wn is point finite. Take Hn =

⋃{W : W ∈
Wk, k ≤ n}. Then {Hn : n ∈ N} is a directed open cover of X and it has a closure
preserving semi-closed refinement D expressed as D = {Dn : Dn ⊂ Hn, n ∈ N}.

Let En = {W − ⋃

k<n

Dn : W ∈ Wn}. It follows that
∞⋃

n=1
En is a point finite

semi-open refinement of U.

Combining Theorem 1, Theorem 3, Theorem 4, Theorem 5 and Lemma 3 we
obtain the following characterization of S-metacompact spaces.

Theorem 6. Let (X, τ) be a topological space. Then the following are equivalent:

(i) (X, τ) is S-metacompact.
(ii) Every well-monotone open cover of (X, τ) has a point finite semi-open

refinement.
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(iii) Every directed open cover of (X, τ) has a closure preserving semi-closed
refinement.

(iv) For every open cover V of (X, τ), VF has a closure preserving semi-closed
refinement.

(v) Every open cover V of (X, τ) has a point finite semi-open refinement B
such that x ∈ int(st(x,B)) for every x ∈ X.
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Abstract. In this paper,we present an example to show thatmany non-isomorphic
IVFGs may have a same complement. To overcome this limitation, we introduce
the notion of complement number of an edge and prove that given a complement
IVFG Ḡ along with its complement numbers, the IVFG for which Ḡ acts as the
complement can be uniquely determined. We also study the range of variation of
complement number and some of its properties.
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1 Introduction

George Cantor defined set (crisp set) as a well-defined collection of objects. That is, after
defining a setwemust be able to saywhether a given object belongs to the set or not. But in
real life situationwe cannot always say yes or no. In 1965, L.A.Zadeh [27] introduced the
notionof fuzzy set, inwhich the partialmembership of objects is also possible. Ever since,
the theory of fuzzy sets has become a vigorous area of research in different disciplines
including medical and life sciences, management sciences, engineering, statistics, graph
theory, artificial intelligence, signal processing, etc. In 1975, Rosenfeld [15] introduced
the notion of fuzzy graph, which allows partial membership of vertices and edges of
a graph. The complement of a fuzzy graph was defined by Mordeson and Nair [10].
Complement of fuzzy graphs and the complement of the operations of union, join and
composition of fuzzy graphs thatwere introduced in [27].Also, Sunitha andVijayakumar
[24] studied complement of fuzzy graphs. Hawary [2] defined complete fuzzy graphs
and presented new operations on it. Mathew and Sunitha [11, 12] studied different types
of connectivity of fuzzy graphs. Mordeson [9], defined several new operations on fuzzy
graphs. As an extension of fuzzy sets, Zadeh [27] introduced the notion of interval valued
fuzzy sets, in which the values of themembership degree are intervals of numbers instead
of fixed numbers. In 2009,Hongmei andLianhua [8] defined interval valued fuzzy graphs
(IVFG’s) and in 2011,AkramandDudek [1] defined someoperations on them.Talebi and
Rashmanlou [24] studied properties of isomorphism and complement of interval valued
fuzzy graphs. Samanta et al. studied strong edge, weak edge of an interval-valued fuzzy
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graph, degree of a vertex in bipolar fuzzy graph, regular, irregular bipolar fuzzy graphs,
bipolar fuzzy hyper graphs, fuzzy k-competition, p-competition of fuzzy graphs, m-
step fuzzy competition graphs, Fuzzy planar graphs, tolerance, threshold fuzzy graphs
[13, 16–23]. In 2018, were defined the definition of complement of IVFGs [4] as we
come across with an example for which the definition of complement given in [24] was
not valid. In the light of new definition, we introduced two classes of Interval Valued
Fuzzy Graphs (IVFGs), Classic IVFGs and Non-classic IVFGs, and classify edges as
Perfect and Imperfect edges of an IVFG. In [3], we studied some of their properties
regarding degree, isomorphism, weak – isomorphism, union, join etc. and in [4], we
derived a necessary and sufficient condition for an IVFG to be classic. In this paper we
present a drawback of the new definition of complement IVFG [4] and to overcome it
we introduce the concept of complement number of an edge of an IVFG. We study the
range of variation of complement number and we proved some results regarding it. Also,
using this idea of complement numbers we constructed a lattice of IVFGs in [6]. Many
researches are still going on in this area of IVFGs and it has numerous applications in
various fields since it provides a more adequate description of uncertainty than fuzzy
graph [14, 26] are some recent works in this area.

2 Some Basic Concepts

A fuzzy set [27]. A on a set X is characterized by a mapping M : X → [0, 1]
which is called the membership function and fuzzy set A on X is denoted by A =
{(x,M(x)) : x ∈ X }.
An interval valued fuzzy set(IVFS) [28]. A on X is characterized by an interval-valued
function i : X → P[0, 1], where P [0,1] denotes the power set of [0,1], such that
i(x) = [

a−
x , a+

x

]
where 0 ≤ a−

x ≤ a+
x ≤ 1. For each x ∈ X , i(x) is called the interval

number of x. An IVFS A on X is denoted by A = {(x, i(x)) : x ∈ X }.
A graph (or a crisp graph) [7] is defined as a pair, G∗ = (V , E) consisting of a non-
empty finite set V of elements called vertices and a finite set E of pairs of vertices called
edges.

An interval valued fuzzy graph(IVFG) [8]. G = (V , σ, μ) consists of a nonempty
set V together with a pair of interval valued functions σ : V → P [0, 1] and μ :
V × V → P[0, 1] where

σ(A) = [
σ−

A , σ+
A

]
, 0 ≤ σ−

A ,≤ σ+
A ≤ 1 and

μ(AB) = [
μ−

AB, μ+
AB]], 0 ≤ μ−

AB ≤ μ+
AB ≤ 1

represent the interval numbers of the vertexA and edge (A, B) respectively inG satisfying

μ−
AB ≤ min

{
σ−

A , σ−
B

}
and μ+

AB ≤ min
{
σ+

A , σ+
B

}

for all A, B ∈ V .
Let G = (V , σ, μ) and G′ = (V ′, σ ′, μ′) be two IVFG’s. Then G and G′ are said

to be isomorphic [1], written as G ∼= G′, if there exist a bijection h : V → V ′ such
that
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1. σ−
A = σ ′ −

h(A)
, σ+

A = σ ′ +
h(A)

for every vertex A ∈ V .

2. μ−
AB = μ′ −

h(A)h(B)
, μ+

AB = μ′ +
h(A)h(B)

for every edge AB in G.

Otherwise we say that G and G′ are non – isomorphic, and denote it as G�G′.

2.1 Classic and Non-classic IVFG

An IVFG G = (V , σ, μ) is called a classic IVFG [4] if all its edges satisfy the condition

min
{
σ−

A , σ−
B

} − μ−
AB ≤ min

{
σ+

A , σ+
B

} − μ+
AB.

Otherwise we call it as a non-classic IVFG [4].
We shall refer to the above condition as the classic condition for an edge AB.

Fig. 1. An example for a classic IVFG.

Fig. 2. An example for a non-classic IVFG.

Example
In Fig. 1 and (2) edges BC, CD, BD are not drawn. It means that the interval number
those edges are [0,0].

In the graph in Fig. 2, edge AB does not satisfy the classic condition. So it is a
non-classic IVFG. Also, in a non-classic IVFG, there may be some edges satisfying the
classic condition. For example, edge AC in Fig. 2. This observation leads to the next
definition.
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Let G = (V , σ, μ) be an IVFG. Then edges AB in G satisfying

min
{
σ−

A , σ−
B

} − μ−
AB ≤ min

{
σ+

A , σ+
B

} − μ+
AB

are called perfect edges [4] and all other edges AB for which

min
{
σ−

A , σ−
B

} − μ−
AB > min

{
σ+

A , σ+
B

} − μ+
AB

are called imperfect edges [4].
That is, an edge satisfying the classic condition is perfect and others imperfect. It

may be observed that, in a classic IVFG, all edges are perfect; and a non-classic IVFG
must contain at least one imperfect edge.

Now, seeing that the definition of complement given by Talebi and Rashmanlou [25]
does not apply to all IVFGs, we redefined complement as follows (Fig. 3).

Fig. 3. An example of complement of IVFG.

2.2 Complement of an Interval Valued Fuzzy Graph

The complement of IVFG G = (V , σ, μ) is an IVFG G = (V , σ, μ ) where

μ (AB) =
[
μ −

AB , μ +
AB

]
=

⎧
⎨

⎩

[min
{
σ−

A , σ−
B

}
− μ−

AB , min
{
σ+

A , σ+
B

}
− μ+

AB] , if AB is a perfect edge of G

[min
{
σ+

A , σ+
B

}
− μ+

AB , min
{
σ+

A , σ+
B

}
− μ+

AB] , if AB is an imperfect edge of G

for all A, B ∈ V .

Example
Observe that, the IVFG G given above is the non-classic graph in Fig. 2.

Remark 1. If edge AB is an imperfect edge, then μ (AB) is always a real number in
[0,1).

Theorem 2 [4] . For any IVFG G = (V , σ, μ), G is always classic.

Theorem 3 [5] . If G ∼= G then, G is a classic IVFG, but the converse is not true.
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Fig. 4. An example to show that G1 � G2 � G3, but G1 = G2 = G3 = G4

3 Complement Number

Several non-isomorphic IVFGs may have the same complement. For example, consider
the following graphs G1, G2 and G3 in Fig. 4.

It is clear that G1 �G2 � G3 , but G1 = G2 = G3 = G4. We can form several
non-isomorphic IVFG’s whose complement is G4. To have uniqueness of complement,
we need another notion called complement number of an edge. This is defined below
(Fig. 5).

Fig. 5. Two IVFGs used to illustrate complement number.

3.1 Complement Number of an Edge

Let G = (V , σ, μ) be any IVFG, then in G complement number of an edge AB w.r.t.
G (denoted as cGAB or simply cAB) is defined as

cAB =
{
min

{
σ−

A , σ−
B

} − μ−
AB, if AB is an imperfect edge of G

0, otherwise
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Remark 4. In Ḡ, if cAB is not givenwewill consider that complement number of edgeAB
as zero.

Example. Consider the two IVFGs G1, and G2 given in Fig. 4.

Observe that, in G1 both the edges AB and AC are imperfect, and BC is a per-
fect edge with membership [0,0]. Since BC is perfect its complement number is
zero and need not be specified. So, the collection of complement numbers of G1 is
{CAB = 0.09, CAC = 0.06}. Similarly, since the only imperfect edge ofG2 isAB, all other
edges in G2 have complement number zero and hence, the collection of complement
numbers of G2 is {CAB = 0.09}.

Fig. 6. Complement of G1 with {cAB = 0.09, cAC = 0.06}

Fig. 7. Complement of G2 with cAB = 0.09.

From Fig. 6 and Fig. 7 it can be noted that, the visualization of both G1 and G2 are
same but their complement numbers are different. Also, G1 is the only IVFG having
G1 as complement with cAB = 0.09 and cAC = 0.06. Similarly, observation holds good
for G2 also. Thus, specification of complement numbers, ensures unique of IVFG while
going back from complement to IVFG.

Remark 5.

1. cAB = 0 for all edges AB in G (by Theorem 2).
2. IfG is self-complementary IVFG, then cG

AB = 0, for all edgeAB inG (by Theorem3).
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In G = cAB �= 0 ⇒ μ (AB) = [
μ +

AB, μ +
AB ,

]
, a real number in [0,1).

Proposition 6. Let G = (V , σ, μ) be any IVFG. Then in G , cAB = 0 ⇔ AB is a
perfect edge of G.

Proof. Suppose AB is a perfect edge of G. Then by definition of complement number,
cAB = 0.

Conversely, suppose cAB = 0. If possible assume that, AB is an imperfect edge of G

min
{
σ−

A , σ−
B

} − μ−
AB > min

{
σ+

A , σ+
B

} − μ+
AB ⇒ cAB > min

{
σ+

A , σ+
B

} − μ+
AB

⇒ 0 > min
{
σ+

A , σ+
B

} − μ+
AB , which is not possible by definition of IVFG. �

Corollary 7. cG
AB = 0, for all edge AB in G ⇔ G is classic.

Proposition 8. For an edge AB in G , either cAB = 0 or μ +
AB < cAB ≤ min

{
σ−

A , σ−
B

}

Proof. Suppose cAB �= 0. Then by Proposition 6, AB is an imperfect edge of G.

⇒ min
{
σ−

A , σ−
B

} − μ−
AB > min

{
σ+

A , σ+
B

} − μ+
AB

⇒ cAB > μ +
AB (by Definition (3.1) and Definition (2.2))

Also by Definition (3.1), cAB ≤ min
{
σ−

A , σ−
B

}
. Hence proved. �

The following example shows that cAB may attain its upper bound min
{
σ−

A , σ−
B

}
.

Example. Consider the IVFG G and its complement Ḡ given in Fig. 8. Since AB is an
imperfect edge of G, by Definition 3.1., cG

AB = 0.1 = min {0.3, 0.1}.

Fig. 8. An example to show that cAB attains its upper bound min
{
σ−

A , σ−
B

}

The next theorem gives information regarding the range of μ−
AB and μ+

AB, if cAB

attains its upper bound min
{
σ−

A , σ−
B

}
.

We have observed from examples in Fig. 4 that many non-isomorphic IVFGs may
have same complement. So, if we are given any complement graph Ḡ, we may not
uniquely determine the IVFG G from which the Ḡ is made. The proof of following
theorem gives us a method to construct an unique IVFG, if its complement IVFG with
complement numbers are given.

Theorem 9. Given any complement graph G = (V , σ, μ ) along with its complement
numbers, the IVFG G can be uniquely determined.
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Proof. Let G1 = (V , σ, μ1) where

μ1(AB) = [
μ1

−
AB, μ1

+
AB

]

=
{ [

min
{
σ−

A , σ−
B

} − cAB ,min
{
σ+

A , σ+
B

} − μ +
AB

]
, if cAB �= 0[

min
{
σ−

A , σ−
B

} − μ −
AB ,min

{
σ+

A , σ+
B

} − μ +
AB

]
, if cAB = 0.

(1)

First, we are going to show that G1 = G . It is enough to show that μ1 = μ .

Case 1. cAB = 0.
⇒ AB is a perfect edge of G1, by Proposition 6.
Now, μ1(AB) = [min

{
σ−

A , σ−
B

} − μ1
−
AB, min

{
σ+

A , σ+
B

} − μ1
+
AB], by Definition

(2.2).
= [min

{
σ−

A , σ−
B

} − (
min

{
σ−

A , σ−
B

} − μ −
AB

)
,min

{
σ+

A , σ+
B

} − (min
{
σ+

A , σ+
B

} −
μ +

AB)]= [
μ −

AB, μ +
AB

] = μ (AB).

Case 2. cAB �= 0.
By Proposition 8,

cAB > μ̄ +
AB . (2)

Now,

min
{
σ−

A , σ−
B

} − μ1
−
AB = min

{
σ−

A , σ−
B

} − (min
{
σ−

A , σ−
B

} − cAB) = cAB

and

min
{
σ+

A , σ+
B

} − μ1
+
AB = min

{
σ+

A , σ+
B

} − (min
{
σ+

A , σ+
B

} − μ̄ +
AB = μ +

AB) (3)

min
{
σ−

A , σ−
B

} − μ1
−
AB > min

{
σ+

A , σ+
B

} − μ1
+
AB, by (3)

⇒ AB is an imperfect edge of G1.
Hence by Definition (2.2),

μ1(AB) = [
min

{
σ+

A , σ+
B

} − μ1
+
AB , min

{
σ+

A , σ+
B

} − μ1
+
AB

] = [
μ +

AB, μ +
AB

]
, by (2)

= μ (AB), by Remark 5 (3).

Hence G1 = G .

Now to prove uniqueness letG2 = (V , σ, μ2)be an IVFG such thatG2 = G and let the

complement numbers ofG w.r.t. bothG1 and G2 are same. (4)

Case 1: cAB �= 0.
Then by Definition (3.1) and Proposition 6,

cAB = min
{
σ−

A , σ−
B

} − μ1
−
AB = w.r.t. G1 and cAB = min

{
σ−

A , σ−
B

} − μ2
−
AB w.r.t. G2.

⇒ μ1
−
AB = μ2

−
AB, by (4)

Case 2: cAB = 0. Then by Proposition 6, AB is a perfect edge of both G1 and G2.
Hence by Definition (2.2),
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CAB = min
{
σ−

A , σ−
B

} − μ1ĀB w.r.t. G1 and CAB = min
{
σ−

A , σ−
B

} − μ
2

−
A B

w.r.t G2
⇒ μ

1
−
A B

= μ
2

−
A B

In either case, μ+
A B

= min
{
σ+

A , σ+
B

} − μ
1

+
A B

w.r.t. G1 and CAB = min
{
σ+

A , σ+
B

} −
μ
2

+
A B

w.r.t G2
⇒ μ

1
+
A B

= μ
2

+
A B

Hence
[
μ
1

−
A B

, μ
1

+
A B

]
=

[
μ
2

−
A B

, μ
2

+
A B

]
⇒ G1G2.

Taking G = G1 will complete the proof. �
Remark 10. Let any complement graph G = (V , σ, μ )) along with its complement
numbers be given. Then the unique IVFG from which G made is, G = (V , σ, μ) where

μ(AB) =
[
μ −

AB, μ +
AB

]
=

⎧
⎨

⎩

[
min

{
σ−

A , σ−
B

}
− cAB ,min

{
σ+

A , σ+
B

}
− μ +

AB

]
, if cAB �= 0

[
min

{
σ−

A , σ−
B

}
− μ −

AB ,min
{
σ+

A , σ+
B

}
− μ +

AB

]
, if cAB = 0.

Example. Consider the complement IVFG G4 = (V , σ, μ ) in Fig. 4 (without com-
plement numbers). Sinceμ (BC) = [0.2,0.3] is not a real number, byDefinition (2.2) and
by Proposition 6 the only possible complement number for edge BC is zero.ie. cBC = 0.
By Proposition 8, for edge AB, cAB = 0 or 0.05 < cAB ≤ min{0.1, 0.2} ⇒ cAB = 0 or
0.05 < cab ≤ 0.1. In similar way, we can find the range of variation of complement
number of all other edges and hence we get,

• CAB = 0 or 0.05 < cab ≤ 0.1
• cAC = 0
• 0 ≤ cAD ≤ 0.1
• CBC = 0
• cBD = 0
• CCD = 0

Now, consider the IVFG G4 along with the collection {cAB = 0.06, cAC =
0, cAD = 0, cBC = 0, cBD = 0, cCD = 0} of complement number. To deter-
mine the IVFG G = (V , σ, μ) from which the complement G4 is made, we
will use Remark 10. Here, μ (AB) = [0.05, 0.05] with cAB = 0.06. So, μ(AB) =
[0.1 − 0.06, 0.2 − 0.05] = [0.04, 0.15]. And μ (AC) = [0.05, 0.1] with cAC = 0. So,
μ(AC) = [0.1 − 0.05, 0.2 − 0.1] = [0.05, 0.1]. Similarly, μ(AD) = [0.1,0 .2], μ(BC)

= [0,0], μ(BD) = [0,0], μ(CD) = [0,0]. It is now clear that the IVFG G = G1 in Fig. 4.

In G4, corresponding to the collection{cAB = 0.09, cAC = 0, cAD = 0, cBC =
0, cBD = 0, cCD = 0} of complement number, we get G3 in Fig. 4 which is non-
isomorphic to G1 and having complement G4.

Similarly, in the given range of complement numbers of each edge, we can vary
complement numbers and corresponding to each collection of complement numbers we
will get an IVFG and all those IVFGs will have the same complement G4 in Fig. 4.

Proposition 11. If μ (AB) is not a real number for all edge AB in G , then there exist
unique graph whose complement is G and the determined graph will be classic IVFG.



Interval Valued Fuzzy Graph and Complement Number 201

Proof. Let μ (AB) �= r, r ∈ [0, 1) for all edge AB in G . Then by Remark 1, AB is not
an imperfect edge of G.

⇒ G is classic IVFG and also by Definition (3.1), cAB = 0 for all edge AB in G .
Hence by Theorem 9, we can conclude the result. �

Proposition 12. If min
{
σ−

A , σ−
B

} = 0, for all edge AB in G with μ (AB) = r, r ∈
[0, 1), then there exist unique graph whose complement is G and the determined graph
will be classic IVFG.

Proof. Ifμ (AB) is not a real number, then cAB = 0, in G . Now for those edges AB in G
with μ (AB) = r, r ∈ [0, 1), it is given that min

{
σ−

A , σ−
B

} = 0. Also, by Proposition
8, either cAB = 0 or μ̄ +

AB < cAB ≤ min
{
σ−

A , σ−
B

}
. So, min

{
σ−

A , σ−
B

} = 0 ⇒ cAB = 0.
Hence, cAB = 0, for all edge AB in G . Then by Theorem 9, we can uniquely

determine G and G will be classic IVFG, by Proposition 6. �

4 Conclusion

In our previous work we redefined complement of IVFG as its definition in [24] is
invalid for some IVFGs. In this paper we confirmed existence of infinitely many non-
isomorphic IVFGs having same complement by providing an example. To overcome this
problem, we assigned a number to each edge of a complement IVFG, which is termed
as complement number of that edge. Also, we proved that given a complement IVFG
Ḡ along with its complement numbers, the IVFG for which Ḡ acts as the complement
can be uniquely determined. sWe studied some relevant properties and derived the range
of variation of complement number of each edge of a complement IVFG. Finally, we
derived two cases in which the complement numbers to all edges of a complement IVFG
are unique and hence has a unique IVFG whose complement is the given one.
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Abstract. A hybrid structure-Fermatean fuzzy soft set is proposed,
which includes the characteristics of Fermatean fuzzy set along with the
parameterization of soft set. A few basic operations are specified such
as union, intersection and complement. Further an algorithm to solve
decision-making problem is developed using the aggregation operators
defined for this structure.

Keywords: Fermatean fuzzy sets · Soft sets · Fermatean fuzzy soft
sets · Decision-making problems

1 Introduction

Orthopair fuzzy set is a potential tool to express uncertain information.The
membership grade of this non standard fuzzy set contains a pair of numbers
in [0, 1]. The first value depicts the degree of membership and the other the
degree of non-membership. Clearly the classical intuitionistic fuzzy set [1,2],
can be viewed as an orthopair fuzzy set with the condition that the sum of
degree of membership and degree of non-membership is bounded by one. Sev-
eral researchers have developed various algorithms to deal with problems in
MCDM using aggregation operators (AOs) on IFSs. Some weighted averaging
operators were introduced by Xu [3]. Garg [4,5] presented AOs which made use
of Einstein t-norms and t-conorms in operational laws on intuitionistic fuzzy
numbers (IFNs). AOs using Hamacher operators were developed by Huang [6]
and Garg [7]. Cheng and Chang [8] suggested a technique to convert intuitionis-
tic fuzzy values into right-angled triangular fuzzy numbers and vice-versa which
was then used to define geometric AOs.

Another orthopair fuzzy set is the Pythagorean fuzzy set [9] whose sum of
squares of membership value and non-membership value is confined to the value
one. Clearly it is a generalization of IFSs and can handle more information than
IFSs. Moreover Yager [10] suggested a variety of AOs on this set. Later Yager and
Abbasov [11] suggested that Pythagorean membership grades can be expressed
as complex numbers and used this relation in geometric aggregation operations.
Along with some properties of already defined averaging operators Peng and
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Yuan [12] introduced some generalized averaging operators for the Pythagorean
fuzzy information. Garg [13] suggested the notion of using Einstein t-norm and
t-conorm operations to aggregate Pythagorean fuzzy numbers (PFNs). Another
Pythagorean fuzzy AO was put forward by Zeng et al. [14] and they illustrated
its application in MAGDM problem. Unfamiliarity of decision makers about
the objects evaluated is a concern in decision making problems. Thus Garg [15]
developed AOs which included the notion of confidence levels for each evaluation
of decision maker in the form of PFN.

The concept of q-rung orthopair fuzzy set proposed by Yager [16] has a
pair of values as membership grades with the property that sum of the qth
power of the membership value and the qth power of non-membership value is
bounded by one. Thus IFS and PFS can be considered as its particular cases.
Since an increase in the rung q increases the number of pairs satisfying the
mentioned condition, it is clear that q-rung orthopair fuzzy set allows us to
capture uncertain information more effectively. Along with various set operations
Yager [16] proposed the aggregation of q-rung orthopair fuzzy sets. Liu and Wang
[17] suggested two new aggregation operators for this fuzzy set. They developed
some methods using these operators to approach decision-making problems.

Senapati and Yager [18] suggested an extension of IFSs called the Fermatean
fuzzy set. When q = 3 q-rung orthopair fuzzy set is called a Fermatean fuzzy
set. They listed some set operations like union, intersection complement etc.
on this set. Two values specifically score function and accuracy function were
defined to rank FFSs. Moreover they applied TOPSIS technique to tackle MCDM
problems with Fermatean fuzzy information. Recently they developed several
AOs for FFSs [19] and also applied the WPM method, a frequently applied
MCDM method, to Fermatean fuzzy data.

Molodtsov [20] proposed the notion of soft set, a family of subsets of universal
set where the subsets are obtained based on a parameter set. Maji et al. [21]
deliberated on this new concept of soft set and provided several operations on
soft set. In most of the practical situations the parameter set involved is fuzzy
in nature and this resulted in hybrid structures like Fuzzy Soft Set (FSS) [22],
Intuitionistic Fuzzy Soft Set (IFSS) [23] and Pythagorean Fuzzy Soft Set (PFSS)
[24]. R.Arora and H.Garg [25] presented averaging and geometric operators for
IFSNs and discussed a MCDM method using these operators. Along with various
binary operations Peng [24] suggested a decision making algorithm based on
this set. Abhishek Guleria and Rakesh Kumar Bajaj [26] represented PFSS as
Pythagorean Fuzzy Soft Matrix and formulated decision making algorithm using
these matrices. This matrix formulation is further utilised by Naeem et al. [27]
to employ PFSS in MCGDM. In addition to this they developed a PFS TOPSIS
and PFS VIKOR techniques and illustrated its application in real life decision
making problems.

Within this work we have introduced Fermatean fuzzy soft set (FFSS) and
defined a few basic operations on it. Two Fermatean fuzzy soft aggregation
operators are developed for the Fermatean fuzzy soft numbers (FFSNs) and a
decision making approach is discussed using these two AOs.
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2 Preliminaries

In this section, some basic concepts of soft set and Fermatean fuzzy set required
for further discussions are enlisted.

Definition 1. [21] Let U be the universe set and E be a set of parameters. Let
P (U) be the power set of U and A ⊆ E. A pair (F,A) is called a soft set over U
where F is a mapping F : A → P (U). In other words a soft set is a parameterized
family of subsets of U .

Definition 2. [21] Let (F,A) and (G,B) be two soft sets over a common uni-
verse U and A,B ⊆ E then

1. (F,A) is a soft subset of (G,B), if A ⊆ B and F (a) ⊆ G(a) for all a ∈ A,
denoted as (F,A) � (G,B) .

2. (F,A) and (G,B) are soft equal, if (F,A) � (G,B) and (G,B) � (F,A).
3. The union of (F,A) and (G,B) is the soft set (H,C), where C = A ∪ B and

for all e ∈ C,

H(e) =

⎧
⎨

⎩

F (e) if e ∈ A \ B
G(e) if e ∈ B \ A
F (e) ∪ G(e) if e ∈ A ∩ B

4. The intersection of (F,A) and (G,B) is the soft set (H,C), where C = A ∩
B �= ∅ and for all e ∈ C, H(e) = F (e) ∩ G(e).

5. The complement of a soft set (F,A) is the soft set (F c, A) where F c(a) =
U \ F (a) for all a ∈ A.

Definition 3. [18] Let U be the universe set, a Fermatean fuzzy set F in U is an
object having the form F = {(u, αF (u), βF (u)) : u ∈ U} where αF : U → [0, 1]
and βF : U → [0, 1], with the condition 0 ≤ (αF (u))3 + (βF (u))3 ≤ 1 for all
u ∈ U .

The numbers αF (u) and βF (u) indicate respectively, the degree of membership
and the degree of non-membership of the element u to the set F . The value
3
√

1 − ((αF (u))3 + (βF (u))3) is defined as the degree of indeterminacy of u to
F . Each (αF (u), βF (u)) is called a Fermatean fuzzy number (FFN) and for sim-
plicity it is denoted as (αF , βF ).

Definition 4. [18] For two Fermatean fuzzy sets F and G in the universe U ,
the union, intersection and complement are defined as follows:

1. F ⊆ G, if for all u ∈ U,αF (u) ≤ αG(u) and βF (u) ≥ βG(u).
2. F = G if F ⊆ G and G ⊆ F .
3. F ∪ G = {(u,max{αF (u), αG(u)},min{βF (u), βG(u)}) : u ∈ U}.
4. F ∩ G = {(u,min{αF (u), αG(u)},max{βF (u), βG(u)}) : u ∈ U}.
5. F c = {(u, βF (u), αF (u)) : u ∈ U}.
Definition 5. [18] Let F = (αF , βF ), F1 = (αF1 , βF1) and F2 = (αF2 , βF2) be
three FFNs and λ > 0, then their operations are defined as follows:
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1. F1 � F2 = ( 3

√
α3

F1
+ α3

F2
− α3

F1
α3

F2
, βF1βF2)

2. F1 � F2 = (αF1αF2 ,
3

√
β3

F1
+ β3

F2
− β3

F1
β3

F2
)

3. λF = ( 3
√

1 − (1 − α3
F )λ, βλ

F )
4. Fλ = (αλ

F , 3
√

1 − (1 − β3
F )λ).

In order to rank FFNs Senapati and Yager defined the score function for FFNs.

Definition 6. [18] Let F = (αF , βF ) be a FFN, then the score function of F
can be defined as score(F ) = α3

F − β3
F

Clearly score(F ) lies in [−1, 1].

For any two FFNs F1 and F2 if score(F1) < score(F2) then F1 < F2, if
score(F1) > score(F2), then F1 > F2 and if score(F1) = score(F2), then
F1 ∼ F2. But in some situations this score function is not suitable to com-
pare two FFNs, for instance if F1 = (0.7, 0.7) and F2 = (0.4, 0.4) then
score(F1) = score(F2) = 0 but these FFNs are not identical. For this reason
accuracy function for FFN was defined.

Definition 7. [18] Let F = (αF , βF ) be a FFN, then the accuracy function of
F can be defined as acc(F ) = α3

F + β3
F .

Evidently acc(F ) ∈ [0, 1]. Greater the value of acc(F ), higher is the degree of
accuracy of the FFN F . In accordance with the values of the score and accuracy
functions of FFNs, the ordering for any two FFNs is explained as:

Definition 8. [18] Let F1 = (αF1 , βF1) and F2 = (αF2 , βF2) be two FFNs, then

1. if score(F1) < score(F2), then F1 < F2;
2. if score(F1) > score(F2), then F1 > F2;
3. if score(F1) = score(F2), then

(a) if acc(F1) < acc(F2), then F1 < F2.
(b) if acc(F1) > acc(F2), then F1 > F2.
(c) if acc(F1) = acc(F2), then F1 = F2.

3 Fermatean Fuzzy Soft Sets

Definition 9. Let U be the universe set and E be a set of parameters, A ⊆ E a
Fermatean fuzzy soft set (FFSS) on U is defined as the pair (F,A) where where F
is mapping given by F : A → FFS(U), where FFS(U) is the set of all Fermatean
fuzzy sets over U . Here for any parameter e ∈ A, F (e) is the Fermatean fuzzy set
given as F (e) = {(u, αF (e)(u), βF (e)(u)) : u ∈ U} where αF (e)(u) and βF (e)(u)
are the degree of membership and the degree of non-membership respectively with
the condition 0 � (αF (e)(u))3 + (βF (e)(u))3 � 1.
Hence (F,A) = {(e, {(u, αF (e)(u), βF (e)(u)}) : e ∈ A, u ∈ U}.
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Example: Let U = {p1, p2, p3, p4} be a set of jobs available for an individual.
Let E = { high salary (e1), interesting job (e2), close driving distance (e3)} be
the set of parameters under consideration. Then we can dsecribe the ”feasibility
of the job” using a Fermatean fuzzy soft set. Let
F (e1) = {(p1, 0.5, 0.9), (p2, 0.8, 0.6), (p3, 0.4, 0.6), (p4, 0.2, 0.9}
F (e2) = {(p1, 0.6, 0.6), (p2, 0.8, 0.76), (p3, 0.3, 0.6), (p4, 0.5, 0.2)}
F (e3) = {(p1, 0.35, 0.7), (p2, 0.8, 0.9), (p3, 0.1, 0.5), (p4, 0.5, 0.7)}
Then the Fermatean fuzzy soft set (F,E) = {F (e1), F (e2), (F (e3)} is a parame-
terized collection of Fermatean fuzzy sets over U . Each pair in the set Fej

(ui) =
{(ui, αF (ej)(ui), βF (ej)(ui)) : ui ∈ U} is called a Fermatean fuzzy soft number
(FFSN) and is denoted as Feij

= (αij , βij).

Definition 10. Let (F,A) and (G,B) be two FFSSs over a common universe U

and A,B ⊆ E then (F,A) is a soft subset of (G,B) denoted as (F,A)
�⊂ (G,B)

if

1. A ⊆ B
2. for all e ∈ A, F (e) is a Fermatean fuzzy subset of G(e).

If (F,A)
�⊂ (G,B) and (G,B)

�⊂ (F,A) then (F,A) and (G,B) are said to be
equal.

Definition 11. Let (F,A) and (G,B) be two FFSSs over a common universe U ,
intersection of (F,A) and (G,B) represented as (F,A)

�∩ (G,B) is the Fermatean
fuzzy soft set (H,C) where C = A∩B �= ∅ and H(e) = F (e)∩G(e) for all e ∈ C.

Definition 12. Let (F,A) and (G,B) FFSSs over a common universe U , union
of (F,A) and (G,B) represented as (F,A)

�∪ (G,B) is the Fermatean fuzzy soft
set (H,C) where C = A ∪ B and

H(e) =

⎧
⎨

⎩

F (e) if e ∈ A \ B
G(e) if e ∈ B \ A
F (e) ∪ G(e) if e ∈ A ∩ B

Definition 13. Let (F,A) is a FFSS over U , the complement of (F,A) is
denoted by (F c, A) where F c : A → FFS(U) is the mapping given by F c(e) =
(F (e))c for all e ∈ A.

Definition 14. A FFSS (F,E) over U is known as a null FFSS represented
as F∅ if for all e ∈ E, F∅(e) = 0 where 0 denote the null Fermatean fuzzy set,
F∅ = {(e, {u, 0, 1}) : e ∈ E, u ∈ U}.
Definition 15. A FFSS (F,E) over U is known as an absolute FFSS repre-
sented as Ũ if F (e) = 1̃ for all e ∈ E, 1̃ denote absolute Fermatean fuzzy set,
hence Ũ = {(e, {u, 1, 0}) : e ∈ E, u ∈ U}.
Proposition 1. Let (F,A) and (G,B) are FFSS over U , then
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1. (F,A)
�∩ (F,A) = (F,A)

2. (F,A)
�∪ (F,A) = (F,A)

3. (F,A)
�∩ (G,B) = (G,B)

�∩ (F,A)
4. (F,A)

�∪ (G,B) = (G,B)
�∪ (F,A)

5. (F,A)
�∩ ((G,B)

�∩ (H,C)) = ((F,A)
�∩ (G,B))

�∩ (H,C)
6. (F,A)

�∪ ((G,B)
�∪ (H,C)) = ((F,A)

�∪ (G,B))
�∪ (H,C).

Proposition 2. Let (F,A) and (G,B) are FFSS over U , then

1. ((F,A)
�∩ (G,B))

�⊂ (F,A)
�⊂ ((F,A)

�∪ (G,B)).
2. ((F,A)

�∩ (G,B))
�⊂ (G,B)

�⊂ ((F,A)
�∪ (G,B)).

Proof: min{αF (e)(u), αG(e)(u)} ≤ αF (e)(u) ≤ max{αF (e)(u), αG(e)(u)} and
max{βF (e)(u), βG(e)(u)} ≥ βF (e)(u) ≥ min{βF (e)(u), βG(e)(u)} for all u ∈ U ,
hence (1) is true. Similarly (2) is true.

Remark 1. Let U = {u1, u2, u3, u4, u5, u6}, E = {e1, e2, e3, e4, e5},A1 = {e1, e3},
A2 = {e3, e5}.
Consider the FFSSs (F,A1) and (G,A2) given as
(F,A1)= {(e1, {u1, 0.3, 0.9}, {u3, 0.6, 0.9}, {u6, 0.8, 0.78}), (e3, {u2, 0.5, 0.9}, {u6,
0.3, 0.8})}
(G,A2) = {(e3, {u1, 0.7, 0.4}, {u6, 0.6, 0.6}), (e5, {u2, 0.7, 0.2}, {u3, 0.6, 0.5}, {u6,
0.4, 0.2})}.
Then
(F,A1)c = {(e1, {u1, 0.9, 0.3}, {u3, 0.9, 0.6}, {u6, 0.78, 0.8}), (e3, {u2, 0.9, 0.5}, {u6,
0.8, 0.3})}
(G,A2)c = {(e3, {u1, 0.4, 0.7}, {u6, 0.6, 0.6}), (e5, {u2, 0.2, 0.7}, {u3, 0.5, 0.6}, {u6,
0.2, 0.4})}
(F,A1)

�∪ (G,A2)= {(e1, {u1, 0.3, 0.9}, {u3, 0.6, 0.9}{u6, 0.8, 0.78}), (e3, {u1, 0.7,
0.4}, {u2, 0.5, 0.9},
{u6, 0.6, 0.6}), (e5, {u2, 0.7, 0.2}, {u3, 0.6, 0.5}, {u6, 0.4, 0.2})}
((F,A1)

�∪ (G,A2))c = {(e1, {u1, 0.9, 0.3}, {u3, 0.9, 0.6}, {u6, 0.78, 0.8}), (e3, {u1,
0.4, 0.7}, {u2, 0.9, 0.5},
{u6, 0.6, 0.6}), (e5, {u2, 0.2, 0.7}, {u3, 0.5, 0.6}, {u6, 0.2, 0.4})}
(F,A1)c

�∩ (G,A2)c = {(e3, {u6, 0.6, 0.6})}
Here ((F,A1)

�∪ (G,A2))c �= (F,A1)c
�∩ (G,A2)c

(F,A1)
�∩ (G,A2) = {(e3, {u6, 0.3, 0.8})}

((F,A1)
�∩ (G,A2))c = {(e3, {u6, 0.8, 0.3})}

(F,A1)c
�∪ (G,A2)c = {(e1, {u1, 0.9, 0.3}, {u3, 0.9, 0.6}, {u6, 0.78, 0.8}), (e3, {u1,

0.4, 0.7}, {u2, 0.9, 0.5},
{u6, 0.8, 0.3}), (e5, {u2, 0.4, 0.7}, {u3, 0.5, 0.6}, {u6, 0.2, 0.4})}.
Here ((F,A1)

�∩ (G,A2))c �= (F,A1)c
�∪ (G,A2)c.

Thus FFSSs do not satisfy the De Morgan’s laws.
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Remark 2. Let U = {u1, u2, u3, u4, u5, u6}, E = {e1, e2, e3, e4, e5}, A = {e1, e3}
Consider the FFSS (F,A) = {(e1, {u1, 0.3, 0.9}, {u3, 0.6, 0.9}, {u6, 0.8, 0.78}),
(e3, {u2, 0.5, 0.9}, {u6, 0.3, 0.8})}.
Then (F,A)c = {(e1, {u1, 0.9, 0.3}, {u3, 0.9, 0.6}, {u6, 0.78, 0.8}), (e3, {u2, 0.9,
0.5}, {u6, 0.8, 0.3})}
(F,A)

�∪ (F,A)c = {(e1, {u1, 0.9, 0.3}, {u3, 0.9, 0.6}, {u6, 0.8, 0.78}), (e3, {u2, 0.9,
0.5}, {u6, 0.8, 0.3})}
Here (F,A)

�∪ (F,A)c �= Ũ .
(F,A)

�∩ (F,A)c = {(e1, {u1, 0.3, 0.9}, {u3, 0.6, 0.9}, {u6, 0.78, 0.8}), (e3, {u2, 0.5,
0.9}, {u6, 0.3, 0.8})}.
Here (F,A)

�∩ (F,A)c �= F∅.

3.1 Aggregation Operators for Fermatean Fuzzy Soft Numbers

In this section, two aggregation operators namely Fermatean Fuzzy Soft
Weighted Averaging operator (FFSWA) and Fermatean Fuzzy Soft Weighted
Geometric operator (FFSWG) are discussed. Let Λ denote a collection of FFSNs.

Definition 16. Let Feij
= (αij , βij)(i = 1, 2, ....n; j = 1, 2, ...m) be FFNs and

rj and si be the the weight vectors for the parameters ej’s and experts xi’s
respectively satisfying rj > 0, si > 0 and

∑m
j=1 rj = 1,

∑n
i=1 si = 1, then the

operator FFSWA : Λn → Λ is defined as
FFSWA(Fe11 , Fe12 , Fe13 , ....., Fenm

) = �m
j=1rj(�n

i=1siFeij
).

Theorem 1. Let Feij
= (αij , βij)(i = 1, 2, ....n; j = 1, 2, ...m) be FFNs, the

aggregated value using the FFSWA operator is again a FFSN obtained by the
following expression

FFSWA(Fe11 , Fe12 , Fe13 , ....., Fenm
) = ( 3

√
1 − ∏m

j=1(
∏n

i=1(1 − α3
ij)si)rj ,

∏m
j=1

(
∏n

i=1 βsi
ij )rj ).

Proof: For n = 1, we get s1 = 1
FFSWA(Fe11 , Fe12 , Fe13 , ....., Fe1m) = �m

j=1rjFe1j

�m
j=1rjFeij

= r1Fe11 � r2Fe12 � ...... � rmFe1m

r1Fe11 � r2Fe12 = ( 3
√

1 − [(1 − α3
11)r1(1 − α3

12)r2 ], βr1
11β

r2
12)

r1Fe11 �r2Fe12 �r3Fe13 = ( 3
√

1 − [(1 − α3
11)r1(1 − α3

12)r2(1 − α3
13)r3 ], βr1

11β
r2
12β

r3
13)

Hence �m
j=1rjFe1j = ( 3

√
1 − ∏m

j=1(1 − α3
1j)rj ,

∏m
j=1 β

rj

1j ) =

( 3

√

1 − ∏m
j=1(

∏1
i=1(1 − α3

ij)si)rj ,
∏m

j=1(
∏1

i=1 βsi
ij )rj ).

For m = 1, we get r1 = 1 we have
FFSWA(Fe11 , Fe21 , Fe31 , ....., Fen1) = �n

i=1siFei1 = ( 3
√

1 − ∏n
i=1(1 − α3

i1)si ,
∏n

i=1 βsi
i1) = ( 3

√

1 − ∏1
j=1(

∏n
i=1(1 − α3

ij)si)rj ,
∏1

j=1(
∏n

i=1 βsi
ij )rj ).

Thus the expression is true for n = 1, m = 1.
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Assume the expression is true for m = t1 + 1, n = t2 and m = t1, n = t2 + 1
that is
�t1+1

j=1 rj(�t2
i=1siFeij

) = ( 3

√

1 − ∏t1+1
j=1 (

∏t2
i=1(1 − α3

ij)si)rj ,
∏t1+1

j=1 (
∏t2

i=1 βsi
ij )rj )

�t1
j=1rj(�t2+1

i=1 siFeij
) = ( 3

√

1 − ∏t1
j=1(

∏t2+1
i=1 (1 − α3

ij)si)rj ,
∏t1

j=1(
∏t2+1

i=1 βsi
ij )rj ).

Now for m = t1 + 1, n = t2 + 1 we get
�t1+1

j=1 rj�t2+1
i=1 siFeij

= �t1+1
j=1 rj(�t2

i=1siFeij
�st2+1Fe(t2+1)j ) = �t1+1

j=1 rj�t2
i=1siFeij

� �t1+1
j=1 rjst2+1Fe(t2+1)j = ( 3

√

1 − ∏t1+1
j=1 (

∏t2
i=1(1 − α3

ij)si)rj ,
∏t1+1

j=1 (
∏t2

i=1 βsi
ij )rj )

� ( 3

√
1 − ∏t1+1

j=1 ((1 − α3
(t2+1)j)

st2+1)rj ,
∏t1+1

j=1 (βst2+1

(t2+1)j)
rj ) =

( 3

√

1 − ∏t1+1
j=1 (

∏t2+1
i=1 (1 − α3

ij)si)rj ,
∏t1+1

j=1 (
∏t2+1

i=1 βsi
ij )rj ).

Hence it is true for m = t1 + 1, n = t2 + 1 and thus it is true by induction for all
n,m ≥ 1.

We have 0 ≤ αij ≤ 1 =⇒ 0 ≤ α3
ij ≤ 1 =⇒ 0 ≤ 1 − α3

ij ≤ 1 =⇒
0 ≤ ∏m

j=1(
∏n

i=1(1 − α3
ij)

si)rj ≤ 1 =⇒ 0 ≤ 1 − ∏m
j=1(

∏n
i=1(1 − α3

ij)
si)rj ≤ 1

0 ≤ βij ≤ 1 =⇒ 0 ≤ βsi
ij ≤ 1 =⇒ 0 ≤ ∏m

j=1(
∏n

i=1 βsi
ij )rj ≤ 1.

Consider [ 3

√
1 − ∏m

j=1(
∏n

i=1(1 − α3
ij)si)rj ]3 + [

∏m
j=1(

∏n
i=1 βsi

ij )rj ]3 = 1 −
∏m

j=1(
∏n

i=1(1−α3
ij)

si)rj +
∏m

j=1(
∏n

i=1(β
3
ij)

si)rj ≤ 1−∏m
j=1(

∏n
i=1(1−α3

ij)
si)rj +

∏m
j=1(

∏n
i=1(1 − α3

ij)
si)rj = 1.

Thus we obtain a FFSN using the FFWA operator.

Definition 17. Let Feij
= (αij , βij)(i = 1, 2, ....n; j = 1, 2, ...m) be FFNs and

rj and si be the the weight vectors for the parameters ej’s and experts xi’s
respectively satisfying rj > 0, si > 0 and

∑m
j=1 rj = 1,

∑n
i=1 si = 1, then the

operator FFSWG : Λn → Λ is defined as
FFSWG(Fe11 , Fe12 , Fe13 , ....., Fenm

) = �m
j=1(�n

i=1F
si
eij

)rj .

Theorem 2. Let Feij
= (αij , βij)(i = 1, 2, ....n; j = 1, 2, ...m) be FFNs, the

aggregated value using the FFSWG operator is again a FFSN obtained by the
following expression
FFSWG(Fe11 , Fe12 , Fe13 , ....., Fenm

) = (
∏m

j=1(
∏n

i=1 αsi
ij )

rj ,

3

√
1 − ∏m

j=1(
∏n

i=1(1 − β3
ij)si)rj ).

Proof: For n = 1, we get s1 = 1
FFSWA(Fe11 , Fe12 , Fe13 , ....., Fe1n) = �m

j=1F
rj
e1j = (

∏m
j=1 α

rj

ij ,

3

√
1 − ∏m

j=1(1 − β3
ij)rj ) = (

∏m
j=1(

∏1
i=1 αsi

ij )
rj , 3

√

1 − ∏m
j=1(

∏1
i=1(1 − β3

ij)si)rj )
For m = 1, we get r1 = 1 we have
FFSWA(Fe11 , Fe21 , Fe31 , ....., Fen1) = �n

i=1Fei1
si = (

∏n
i=1 αsi

ij ,

3

√
1 − ∏n

i=1(1 − β3
ij)si) = (

∏1
j=1(

∏n
i=1 αsi

ij )
rj , 3

√

1 − ∏1
j=1(

∏n
i=1(1 − β3

ij)si)rj )
Thus the expression is true for n = 1,m = 1.
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Assume the expression is true for m = t1 +1, n = t2 and m = t1, n = t2 +1 that
is
�t1+1

j=1 (�t2
i=1F

si
eij

)rj = (
∏t1+1

j=1 (
∏t2

i=1 αsi
ij )

rj , 3

√

1 − ∏t1+1
j=1 (

∏t2
i=1(1 − β3

ij)si)rj ) and

�t1
j=1(�t2+1

i=1 F si
eij

)rj = (
∏t2

j=1(
∏t2+1

i=1 αsi
ij )

rj , 3

√

1 − ∏t1
j=1(

∏t2+1
i=1 (1 − β3

ij)si)rj )
Now for m = t1 + 1, n = t2 + 1 we get
�t1+1

j=1 (�t2+1
i=1 F si

eij
)rj = �t1+1

j=1 (�t2
i=1F

si
eij

� F
st2+1
e(t2+1)j )

rj = �t1+1
j=1 (�t2

i=1F
si
eij

)rj �
�t1+1

j=1 (F st2+1
e(t2+1)j )

rj = (
∏t1+1

j=1 (
∏t2

i=1 αsi
ij )

rj , 3

√

1 − ∏t1+1
j=1 (

∏t2
i=1(1 − β3

ij)si)rj )�

(
∏t1+1

j=1 (αst2+1

(t2+1)j)
rj , 3

√

1 − ∏t1+1
j=1 (1 − β3

ij)
st2+1)rj )

= (
∏t1+1

j=1 (
∏t2+1

i=1 αsi
ij )

rj , 3

√

1 − ∏t1+1
j=1 (

∏t2+1
i=1 (1 − β3

ij)si)rj )
Hence it is true for m = t1 + 1, n = t2 + 1 and thus by induction it is true for all
n,m ≥ 1.
0 ≤ αij ≤ 1 =⇒ 0 ≤ αsi

ij ≤ 1 =⇒ 0 ≤ ∏m
j=1(

∏n
i=1 αsi

ij )
rj ≤ 1

0 ≤ βij ≤ 1 =⇒ 0 ≤ ∏n
i=1(1 − βij)si ≤ 1 =⇒ 0 ≤ ∏m

j=1(
∏n

i=1(1 − βij)si)rj ≤
1 =⇒ 0 ≤ 3

√
1 − ∏m

j=1(
∏n

i=1(1 − βij)si)rj ≤ 1.

[
∏t1+1

j=1 (
∏t2+1

i=1 αsi
ij )

rj ]3 + [ 3

√
1 − ∏m

j=1(
∏n

i=1(1 − β3
ij)si)rj )]3 =

∏t1+1
j=1 (

∏t2+1
i=1

(α3
ij)

si)rj + 1 − ∏m
j=1(

∏n
i=1(1 − β3

ij)
si)rj ) ≤ ∏t1+1

j=1 (
∏t2+1

i=1 (1 − β3
ij)

si)rj +
1 − ∏m

j=1(
∏n

i=1(1 − β3
ij)

si)rj ) = 1. Hence the aggregate using FFSWG opera-
tor is a FFSN.

3.2 Decision-Making Using the Suggested Operators

A MCDM problem involves the evaluation of a set of alternatives by considering
multiple criteria.

Let Y = {y1, y2, y3, ....yt} be the set of alternatives, which are valuated by a
set of n experts, x1, x2, x3, ....xn, with weight vector s = (s1, s2, .....sn)T , si > 0,∑n

i=1 si = 1 under the parameters E = {e1, e2, ...em} with weight vector r =
(r1, r2, .....rm)T , rj > 0,

∑m
j=1 rj = 1. These experts give their assessment for

the alternatives in terms of FFSNs, Feij
= (αij , βij) satisfying α3

ij + β3
ij ≤ 1.

Step 1: Formulate the decision matrix D = (Feij
)nxm where Feij

is the
Fermatean fuzzy number (αij , βij).

Dn×m =

⎡

⎢
⎢
⎢
⎢
⎣

(α11, β11) . . . . (α1m, β1m)
(α21, β21) . . . . (α2m, β2m)

. . . . . .

. . . . . .
(αn1, βn1) . . . . (αnm, βnm)

⎤

⎥
⎥
⎥
⎥
⎦

Step 2: Normalize the decision matrix by converting the assessment values
of cost type parameters to benefit type parameters by applying the formula



212 A. Sivadas and S. J. John

γij =
{

F c
eij

for cost type parameters
Feij

for benefit type parameters

Step 3: Aggregate the FFSNs Feij
using FFSWA (or FFSWG ) operator to

get a collective value vk for each alternative yk(k = 1, 2, ......t).

Step 4: Obtain the value of score function of vk for each alternative.

Step 5: Rank the alternatives according to the values of score function and
accuracy function of vk and choose the best alternative(s).

Example: A manufacturing company wants to purchase raw material for pro-
duction. Four suppliers S1, S2, S3, S4 are ready to provide the raw material. The
company wants to choose a supplier from these four suppliers. The parameters
influencing this selection includes

1. Net price
2. quality
3. financial position
4. delivery

with weight vector (0.3, 0.3, 0.15, 0.25)T . A group of five experts c1, c2, c3, c4, c5
is constituted to assess these four suppliers and make the decision. The weight
vector of these experts is (0.3, 0.1, 0.2, 0.15, 0.25)T .

Following are steps used in finding a suitable supplier. Let

1. e1: Net price
2. e2: quality
3. e3: financial position
4. e4: delivery

Here e1 is a cost type parameter and e2, e3, e4 are benefit type parameters.

Step 1: Experts evaluate the suppliers and provide their evaluations as FFSNs.
The decision matrix corresponding to each supplier is given in Tables 1, 2, 3, 4.

Table 1. Fermatean fuzzy soft matrix of Supplier 1.

Net Price Quality Financial Position Delivery

c1 (0.90, 0.60) (0.60, 0.70) (0.79, 0.62) (0.50, 0.50)

c2 (0.75, 0.70) (0.52, 0.95) (0.65, 0.85) (0.85, 0.58)

c3 (0.56, 0.89) (0.20, 0.55) (0.10, 0.35) (0.59, 0.84)

c4 (0.70, 0.30) (0.92, 0.60) (0.90, 0.45) (0.40, 0.12)

c5 (0.10, 0.80) (0.70, 0.15) (0.25, 0.25) (0.65, 0.45)
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Table 2. Fermatean fuzzy soft matrix of Supplier 2.

Net Price Quality Financial Position Delivery

c1 (0.49, 0.91) (0.40, 0.40) (0.91, 0.48) (0.60, 0.22)

c2 (0.98, 0.36) (0.67, 0.74) (0.86, 0.63) (0.77, 0.39)

c3 (0.24, 0.80) (0.19, 0.48) (0.96, 0.39) (0.51, 0.10)

c4 (0.80, 0.32) (0.41, 0.93) (0.25, 0.73) (0.75, 0.75)

c5 (0.50, 0.73) (0.58, 0.66) (0.79, 0.75) (0.49, 0.20)

Table 3. Fermatean fuzzy soft matrix of Supplier 3.

Net Price Quality Financial Position Delivery

c1 (0.10, 0.93) (0.87, 0.39) (0.52, 0.95) (0.80, 0.78)

c2 (0.35, 0.68) (0.17, 0.23) (0.64, 0.90) (0.20, 0.80)

c3 (0.52, 0.92) (0.64, 0.79) (0.88, 0.62) (0.23, 0.30)

c4 (0.44, 0.99) (0.35, 0.97) (0.59, 0.86) (0.69, 0.74)

c5 (0.81, 0.40) (0.98, 0.21) (0.40, 0.45) (0.30, 0.96)

Table 4. Fermatean fuzzy soft matrix of Supplier 4.

Net Price Quality Financial Position Delivery

c1 (0.89, 0.43) (0.16, 0.65) (0.92, 0.58) (0.37, 0.93)

c2 (0.50, 0.95) (0.47, 0.24) (0.71, 0.85) (0.46, 0.91)

c3 (0.78, 0.78) (0.32, 0.98) (0.40, 0.60) (0.92, 0.56)

c4 (0.38, 0.58) (0.83, 0.10) (0.79, 0.70) (0.99, 0.14)

c5 (0.90, 0.10) (0.66, 0.77) (0.425, 0.51) (0.82, 0.20)

Step 2: Normalize the decision matrices (Tables 5, 6, 7, 8).

Table 5. Normalized Fermatean fuzzy soft matrix of Supplier 1.

Net Price Quality Financial Position Delivery

c1 (0.60, 0.90) (0.60, 0.70) (0.79, 0.62) (0.50, 0.50)

c2 (0.70, 0.75) (0.52, 0.95) (0.65, 0.85) (0.85, 0.58)

c3 (0.89, 0.56) (0.20, 0.55) (0.10, 0.35) (0.59, 0.84)

c4 (0.30, 0.70) (0.92, 0.60) (0.90, 0.45) (0.40, 0.12)

c5 (0.80, 0.10) (0.70, 0.15) (0.25, 0.25) (0.65, 0.45)
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Table 6. Normalized Fermatean fuzzy soft matrix of Supplier 2.

Net Price Quality Financial Position Delivery

c1 (0.91, 0.49) (0.40, 0.40) (0.91, 0.48) (0.60, 0.22)

c2 (0.98, 0.36) (0.67, 0.74) (0.86, 0.63) (0.77, 0.39)

c3 (0.80, 0.24) (0.19, 0.48) (0.96, 0.39) (0.51, 0.10)

c4 (0.32, 0.80) (0.41, 0.93) (0.25, 0.73) (0.75, 0.75)

c5 (0.73, 0.50) (0.58, 0.66) (0.79, 0.75) (0.49, 0.20)

Table 7. Normalized Fermatean fuzzy soft matrix of Supplier 3.

Net Price Quality Financial Position Delivery

c1 (0.93, 0.10) (0.87, 0.39) (0.52, 0.95) (0.80, 0.78)

c2 (0.68, 0.35) (0.17, 0.23) (0.64, 0.90) (0.20, 0.80)

c3 (0.92, 0.52) (0.64, 0.79) (0.88, 0.62) (0.23, 0.30)

c4 (0.99, 0.44) (0.35, 0.97) (0.59, 0.86) (0.69, 0.74)

c5 (0.40, 0.81) (0.98, 0.21) (0.40, 0.45) (0.30, 0.96)

Table 8. Normalized Fermatean fuzzy soft matrix of Supplier 4.

Net Price Quality Financial Position Delivery

c1 (0.43, 0.89) (0.16, 0.65) (0.92, 0.58) (0.37, 0.93)

c2 (0.95, 0.50) (0.47, 0.24) (0.71, 0.85) (0.46, 0.91

c3 (0.78, 0.78) (0.32, 0.98) (0.40, 0.60) (0.92, 0.56)

c4 (0.58, 0.38) (0.83, 0.10) (0.79, 0.70) (0.99, 0.14)

c5 (0.10, 0.90) (0.66, 0.77) (0.425, 0.51) (0.82, 0.20)

Step 3: Aggregate the opinions of experts using FFSWA operator to obtain the
following:

v1 = (0.7010, 0.4468) v2 = (0.7564, 0.4223)
v3 = (0.8337, 0.4762) v4 = (0.7480, 0.5542)

Step 4: Calculate the score function for each vk

S(v1) = 0.2553 S(v2) = 0.3575
S(v3) = 0.4715 S(v4) = 0.2483

Step 5: Rank the suppliers using the above values of score function.
Here v3 > v2 > v1 > v4, thus Supplier 3 is the suitable supplier.
If we employ FFSWG operator for this practical example then the aggregated

opinion of each expert is

v1 = (0.5426, 0.6812) v2 = (0.5746, 0.6046)
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v3 = (0.5831, 0.7645) v4 = (0.4631, 0.7986)

The corresponding score values are:

S(v1) = −0.1564 S(v2) = −0.0313 S(v3) = −0.2486 S(v4) = −0.4099

Here v2 > v1 > v3 > v4. Thus the Supplier 2 is the suitable supplier.

4 Conclusions

In this work we have presented the definition of Fermatean fuzzy soft set and
discussed certain basic operations on it. Two aggregation operators to compile
the information represented by Fermatean fuzzy soft sets is proposed. In the end
a decision-making problem by making use of these two operators is illustrated.

Further many other aggregation operations can be obtained for this new
extension of soft set which could have potential applications in decision making.
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Abstract. Ultrasound imaging is a highly preferred diagnostic method
due to its non- invasive nature; however, the presence of speckle noise
degrades the quality of the images captured by this modality. Among the
plentiful researches that happened in the field of despeckling, the non-
local total variation methods have demonstrated promising results by
maintaining relevant details and edges present in images. Nevertheless,
the model is computationally expensive as it has to deal with large size
matrices in computing the results, which in turn restricts its applicabil-
ity in real-time environments. This study contributes a fast and numeri-
cally stable Non-local Total Variation Model for despeckling Ultrasound
images. Multi-core GPU processors are employed for computing the par-
allelized algorithms developed using a fast converging Split-Bregman iter-
ative scheme. A comprehensive evaluation is performed on the basis of
execution time to demonstrate the efficiency of the model.

Keywords: Non-local total variation · Split-bregman iteration · GPU
Acceleration

1 Introduction

Ultrasound imaging has enormous applications in the medical domain as it lacks
any ionizing radiations. It also acts as a cost-effective diagnostic technique in
numerous medical procedures. Nowadays, real-time applications are prevalent,
and many researchers are striving to replace the existing diagnostic systems with
their automated counterparts. Real-time ultrasound images have a wide range of
usage, which includes monitoring the fetal heart function, measuring blood flow,
etc. It is also used for guided surgeries or robotic surgeries and needle position-
ing in biopsies. The ultrasound beams that enter a human body hits on different
tissue boundaries and get reflected, scattered, or absorbed. The scattering of
this signal occurs when the size of the object on which it hits is smaller than the
wavelength. In some cases, the scattering of the signal leads to a combination of
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constructive and destructive interferences known as speckle. This speckle-noise
degrades the visibility of the image and which in turn limits its application.
Hence, speckle reduction is an essential preprocessing step for all ultrasound
image-based diagnostic systems. As speckles interfere with the details in the
data, their analysis becomes difficult. Moreover, the speckles are observed to be
data-correlated interventions making their removal apparently tedious [1]. Many
existing restoration methods assume the noise as data-uncorrelated and addi-
tive., such as Gaussian [2,3]. However, a hand full of methods are introduced
for data-correlated noise such as multiplicative Gamma or Rayleigh [4,5]. The
speckles being multiplicative they are data-dependent and as evident from many
works in the literature they tend to follow a Gamma law in their distribution.
The initial works in this direction such as Lee et al. [6], Kuan [7] and Frost [8]
are based on the coefficient of variation (CoV). Further modification were pro-
posed by incorporating the CoV in anisotropic diffusion models (inspired by the
Perona-Malik model [9]) see SRAD [10] and its variants OSRAD [11], DPAD
[12] etc. Variational models captured the attention of many researchers due to
its elegant performance in terms of restoring the data, see ROF [2] model and
its variants [13]. Variational models derived from the Bayesian framework were
introduced for various data distributions see [1,4,14] for Gamma, Rayleigh and
Poisson distributions respectively. Non-local variational framework inspired by
the non-local means was first introduced to image processing by Gilboa et al.
in [15]. The non-local models works on the principle of similarity between the
patches selected globally therefore, the restoration appears more natural and
the details are preserved more carefully compared to the local pixel-wise aver-
aging filters [15–17]. However, their computations are more expensive, one has
to deal with large matrices when computing the non-local identities. Therefore,
the usage non-local models in real-time applications is limited. This has paved
the way to introduce fast computing methods that run parallelly under multi-
processing environments. As the cost of multi-core processing units have become
manageable, GPU based computing environments have become ubiquitous. The
GPU based implementations of Non-local means (NLM) filters are given in[18–
20]. Similarly, GPU bases accelerations of many popular restoration algorithms
are introduced in the recent years, see [21,22]. In this study, we try extent the
GPU computing facility to non-local variational framework (by parallelizing the
algorithms) implemented using the fast converging Split-Bregman scheme to
improve the computational efficiency of the model.

2 Methodology

In the despeckling method designed here, we perform a log transformation on the
data to address the multiplicative nature of the noise. The multiplicative noise
becomes additive in the log domain. So the multiplicative Gamma in the original
domain can be approximated with additive Gaussian in the log domain [23]. The
formulation of the model is done using the Bayesian framework. The maximum a
posteriori (MAP) estimate for the Gaussian distribution has already been studied
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in [2], where authors have used TV norm as the regularization prior. The TV
norm has the drawback of losing textures and relevant details. To improve this
method, we use the non-local total variation, which is efficient in preserving local
gradients and textures in the restored image. Gilboa and Osher [15] proposed
the Non-Local gradient of a function I, for a pair of points or pixels (x, y) as
below:

∇NLI(x, y) = (I(y) − I(x))
√

w(x, y), (1)

where the weight w(x, y) depends on similarity between the pixels x and y. It is
defined based on the similarity of intensity vectors v(Nx) and v(Ny), where Nx

and Ny denotes a square neighbourhood of fixed size centered around pixels x
and y respectively. The non-local weight calculation as given below:

w(x, y) =
1

C(x)
e
−
(Gσ ∗ |v(Nx) − v(Ny)|2)

h2 , (2)

where Gσ denotes the Gaussian kernel with standard deviation σ, C(x) is a
normalizing constant, and h is a filtering parameter. A classical algorithm for
non-local weight calculation is given in Algorithm 1. The non-local regularization
functional for Gaussian denoising is as below (see [15,16]):

min
I

{ ∫

Ω

(|∇NLI| + λ||I − I0||22
)
dxdy

}
. (3)

Using Gradient descent method it can be solved as

Ik+1 = Ik + ∇t

(
∇.

( ∇NLI

|∇NLI|
)
+ λ(I − I0)

)
, (4)

where I and I0 denotes the restored and noisy images respectively and ∇t rep-
resents the time step. However the conventional Gradient descent optimization
is slow in convergence and depends on the chosen time step. To address this
issue, we are using the Split-Bregman (SB) based iterative scheme. The Split-
Bregman iteration introduces a constrain d = ∇I and an auxiliary variable b
into the traditional non-local TV model. As a result, the optimization problem
can split into the following I, d and b subproblems.

Ik+1 = min
I

{λ

2
||I − I0||22 +

β

2
||d − ∇NLI − bk||22

}
, (5)

dk+1 = min
d

{
||d|| + β

2
||d − ∇NLI − bk||22

}
, (6)

bk+1 = bk + ∇NLI − dk+1. (7)

After applying Euler-Lagrange equation the minimization problem in Eq. (5)
takes the following form

Ik+1 =
λI0 + β∇.(dk − bk)

λ − βΔNL
, (8)
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where Id represents identity matrix. The problem in Eq. (6) is solved using
shrinkage operator as follows

dk+1 = shrink(∇I + bk,
1
β
) =

∇I + bk

|∇I + bk| max(|∇I + bk| − 1
β

, 0). (9)

1 Input I ← Noisy Digital image of size M × N
2 Output Non-local Weight W
3 begin
4 Initialize SW = 7 × 7, PW = 5 × 5
5 for each pixel of I do
6 Initialize W=0
7 for each pixel of SW do
8 for each pixel of PW do
9 Compute Euclidean distance d

10 end
11 Compute the weight of the pixel within the SW as W = e(−d/h2)

12 end
13 Normalize the weight
14 end
15 end

Algorithm 1: Classical non-local Weight Algorithm

In order to make this restoration method fast enough to work with real-time
data, we introduce a parallel implementation based on GPU. Here we use the
NVIDIA’s parallel computation API called Compute Unified Devise Architec-
ture (CUDA). The CUDA includes the concept of host and device systems where
the host system is the CPU responsible for serial computations, and the device
system is the GPU that performs the parallel computations. A CUDA platform
provides support for allocating and deallocating device memory. Copying of data
from the host to device and vise versa. The parallel functions that execute on
GPU are known as kernels. A typical CUDA program is heterogeneous with CPU
and GPU operations. The operations like memory allocation, data initialization,
thread allocation, and kernel calls come under the CPU operations. The GPU
operations are defined as separate kernels for parallel processing. In a CUDA
program, threads are arranged in the form of several grids. One grid has many
thread blocks and each of which will contain several threads. In CUDA program-
ming, each thread can be uniquely identified using its blockID and threadID.
Threads in a block can communicate with each other through shared memory. A
grid has its own global memory, which is shared by all the threads. In addition
to this, each thread also has its storage registers.

For a Non-local TV algorithm, the gradient is calculated as in Eq. (1), where
the computation of non-local weight takes most of the execution time. In a given
image I, for each pixel (x, y) a Search Window (SW) and Patch Window (PW) is
defined around it. Afterward, the PW around referring pixel I(x, y) is compared
with all such PWs possible inside the defined SW region. Instead of comparing
each pixel with its immediate 4 or 8 neighbours, this method compares PW
around pixel I(x, y) with PWs around all other pixels in a fixed SW. The classical



A Fast Computing Model for Despeckling Ultrasound Images 221

derivative operation works locally; hence they are not robust enough to handle
noisy images. In contrast, non-local gradients make use of the redundancy in
data and help to preserve textures. The classical implementation of non-local
weight is given in Algorithm 1, where the complexity is O(N ∗ M(SW 2)(PW 2)
i.e., it depends on image size (N*M), SW size, and PW size.

The devised Fast Non-local TV method includes three kernels as given in
Algorithm 2; these are nonlocalWeightGradient, nonlocalDivergence, and gradi-
entDescent. The number of threads in a block is fixed based on the empirical
study to get better result. Here we use the SIMD (Single Instruction Multi-
ple Data) parallelism by making all the tasks pixel-wise independent. For each
pixel, corresponding non-local weight and non-local gradient are calculated con-
currently using Algorithm 3. This makes the complexity independent of size of
image. Initially, as in Algorithm 2, a Gradient descent optimization method is
used for creating the parallel Non-local TV, and it is implemented with C++
and CUDA.

1 Input I0 ← Noisy Digital image of size M × N
2 Output Restored Digital image I of size M × N
3 begin
4 Initialize ε = 0.0001

5 while ‖Ik+1 − Ik‖/‖Ik+1‖ < ε do
6 Call nonlocalWeightGradient kernel to calculate weight W and

non-local gradient ∇NLIk.
7 Call nonlocalDivergence kernel to find divergence of ∇NLIk

|∇NLIk| .
8 Call gradientDescent kernel for getting updated Ik+1

9 end
10 update I as Ik+1

11 end
Algorithm 2: GPU based non-local TV

1 Input I ← Noisy Digital image of size M × N
2 Output Gradient of the image ∇I and weight W
3 begin
4 Initialize SW = 7 × 7, PW = 5 × 5
5 Idx=ThreadId.x+blockIdx.x*blockDim.x
6 Extract pixel location (ix, iy) from Idx
7 for each pixel of Search Window around (ix, iy) do
8 Extract neighbour location (jx, jy)
9 for each pixel of Patch Window around (ix, iy) and (jx, jy) do

10 Compute Euclidean distance d
11 end
12 Compute the weight of the pixel as W = e(−d/h2)

13 Calculate ∇I = (I(ix, iy) − I(jx, jy)) ∗ √
W

14 end
15 end

Algorithm 3: nonlocalWeightGradient Algorithm
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We have initiated 320 threads per block, and the number of blocks is cal-
culated as N∗M

ThredsperBlock , where M ∗ N represents the number of pixels in the
image. Generally, threads can be initiated in three dimensions, but we are using
only one dimension, and all of the operations are done in a row major fash-
ion. The conventional Gradient descent optimization takes more iterations to
converge to a final restored result, and as these iterations are executed serially.
More the iterations are, so is the execution time. To further improve the exe-
cution time, we suggest the parallel implementation of the Split-Bregman (SB)
iterative scheme. It works using the Eqs. (8), (9), and (7). We have implemented
the SB based non-local TV as six kernels that work independently for each pixel.
The kernel calls are made in the order, as in Algorithm 4.

The parallel kernels used in this method are calcWeight, calcNLgrad, calcD-
iff, calcDiv, splitBreg, and findDB. The kernel for non-local weight calculation
(calcWeight) is given in Algorithm 5 where each thread is allocated to a pixel
and corresponding SW around that, and different PWs inside it are selected
parallelly in all the initiated threads. Hence the weight for each pixel is calcu-
lated concurrently. The non-local weight estimated needs to be used in the next
kernel call for non-local gradient calculation (calcNLgrad), and consequently, a
synchronization barrier is added in between to avoid possible race conditions. In
calcNLgrad kernel ∇I is estimated based on Eq. (1); see Algorithm 6 for details.
Similarly, the kernels calcDiff and calcDiv are executed to evaluate ∇.(dk − bk).
The kernel findDB is explained in Algorithm 7, where auxiliary variables dk+1

and bk+1 are updated accordingly. Finally, Ik+1 is refreshed in each iteration as
in Eq. (8) using the kernel splitBreg.

1 Input I0 ← Noisy Digital image of size M × N
2 Output Restored Digital image I of size M × N
3 begin
4 Initialize ε = 0.0001, d = 0, b = 0

5 while ‖Ik+1 − Ik‖/‖Ik+1‖ < ε do
6 Call calcWeight kernel to calculate weight W .
7 Call calcNLgrad kernel to calculate non-local gradient ∇NLIk.
8 Call kernels calcDiff and calcDiv to find ∇.(dk − bk).
9 Call splitBreg kernel for getting updated Ik+1

10 Update the value of d and b by calling kernel findDB

11 end
12 update I as Ik+1

13 end
Algorithm 4: GPU based non-local TV with SB

3 Results and Discussion

We have compared the GPU based parallel algorithm with the sequential imple-
mentation of the same. The different GPUs used for the comparison are Nvidia’s
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1 Input I ← Noisy Digital image of size M × N
2 Output weight W
3 begin
4 Initialize SW = 7 × 7, PW = 5 × 5
5 Idx=ThreadId.x+blockIdx.x*blockDim.x
6 Extract pixel location (ix, iy) from Idx
7 for each pixel of Search Window around (ix, iy) do
8 Extract neighbour location (jx, jy)
9 for each pixel of Patch Window around (ix, iy) and (jx, jy) do

10 Compute Euclidean distance d
11 end
12 Compute the weight of the pixel as W = e(−d/h2)

13 end
14 end

Algorithm 5: calcWeight Algorithm

1 Input I ← Noisy Digital image of size M × N , W ← weight
2 Output Non-local gradient of the image ∇I
3 begin
4 Initialize SW = 7 × 7, PW = 5 × 5
5 Idx=ThreadId.x+blockIdx.x*blockDim.x
6 Extract pixel location (ix, iy) from Idx
7 for each pixel of Search Window around (ix, iy) do
8 Extract neighbour location (jx, jy) Calculate

∇I = (I(ix, iy) − I(jx, jy)) ∗ √
W

9 end
10 end

Algorithm 6: calcNLgrad Algorithm

1 Input ∇I ← Non-local gradient of the image
2 Output variables dk+1 and bk+1

3 begin
4 Idx=ThreadId.x+blockIdx.x*blockDim.x
5 Based on current thread ID Idx extract corresponding pixel I(ix, iy)
6 for each pixel of Search Window around (ix, iy) do
7 Compute bk+1 = bk + ∇I − dk+1 (Refer equation (7))
8 Calculate dk+1 = ∇I+bk

|∇I+bk| max(|∇I + bk| − 1
β
, 0) (Refer equation (9))

9 end
10 end

Algorithm 7: findDB Algorithm
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Tesla K40 (Kepler Architecture) and V100 (Volta Architecture). The Nvidia
Tesla K40 GPU has compute ability 3.5, 15 Streaming Multiprocessors(SM), and
192 cores per SM, running at 745MHz, which means it has 2880 CUDA cores in
Kepler architecture. It has 12 GB global memory, and 48 KB shared memory.
The maximum number of threads per multiprocessor is 2048, and the maximum
threads per block are 1024. Threads can be allocated in three dimensions; the
maximum dimension size of the thread block is (1024,1024,64). The comparison
based on the size of the image is given in Fig. 1 and Table 1. From this, we
can infer that the execution time needed for sequential implementation depends
heavily on input image size, which is not the case in parallel implementation.

Fig. 1. Performance comparison of Tesla K40 with Sequential

Fig. 2. Performance comparison of Tesla K40, V100 and V100 with SB

The Tesla V100 with compute ability 7.0 has also been used for comparison.
It has 5120 CUDA cores with 16 GB memory. In addition to the conventional
Gradient descent optimization, for fast convergence, we have also compared the
GPU based non-local TV with Split-Bregman (SB), see Fig. 2 for details. From
the visual comparison, we can infer that the clarity obtained by using both
conventional non-local TV and fast non-local TV methods is comparable, see
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Figs. 3, 4 and 5. The computational time needed for the traditional algorithm is
based on the input image size. For an input image of size N ×N the complexity
for weight calculation is O(N2×SW 2×PW 2). As we do pixel-wise operations in
parallel, the GPU algorithms proposed here only depend on the search window
dimension. We have conducted a study on the basis of window size and details
of which can see in Fig. 6 and Table 2. As we can see from these results, the
small window size helps in fast computations. For our studies, we have fixed the
window size to 7×7. From the comparison shown in Table 1, we can infer that the
Tesla K40 is giving a 60 times speedup over the corresponding serial code. From
Fig. 2, we can see that the computational advancement obtained by Tesla V100
is comparatively high with an average speedup of 356 times. However, the GPU
algorithm with split-Bregman optimization has shown a significant advancement
that supports the use of this algorithm in real-time restoration tasks. For images
of size 512 × 512 this method is giving an average speedup of 1354 times.

Fig. 3. Restored results (a) Original noisy image [24] (b) restored result using conven-
tional Non-local TV (c) restored result using Fast Non-local TV

Table 1. Execution time taken by sequential and parallel implementation

Image Size Sequential TeslaK40 TeslaV100 Tesla V100 with SB

256 × 256 120.06 2.21 0.53 0.08
320 × 320 124.75 3.37 0.78 0.13
512 × 512 487.48 8.26 1.38 0.36
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Fig. 4. Restored results for test image 1 with added gamma noise of variance 0.15 (a)
Noisy image (b) restored result using conventional Non-local TV (c) restored result
using Fast Non-local TV

Fig. 5. Restored results for test image 2 with added gamma noise of variance 0.1 (a)
Noisy image (b) restored result using conventional Non-local TV (c) restored result
using Fast Non-local TV

Table 2. Execution time taken on the basis of window size

Image Size Window size
5 × 5 7 × 7 11 × 11

256 × 256 0.32 0.53 0.95
320 × 320 0.44 0.78 1.45
512 × 512 0.64 1.38 3.36
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Fig. 6. Performance comparison on the basis of window size

4 Conclusion

We have developed a computationally efficient and fast converging non-local TV
model for ultrasound image restoration. The devised methods are tested with
different Nvidia GPUs in the CUDA platform. The experimental results obtained
show that the GPU based non-local TV algorithms are useful in providing quick
restored results. Due to the fast converging nature, the Split-Bregman based
GPU algorithm has outperformed gradient descent based GPU method with an
average speedup of 1354 times. This advancement achieved in execution time
assures the efficient restoration of ultrasound images in real-time scenarios.
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Abstract. A theoretical examination of thermal convection for a cou-
ple stress fluid which is electrically conducting and possessing significant
thermal relaxation time is explored under time dependent magnetic field.
Fourier’s law fails for a diverse area of applications such as fluids sub-
jected to rapid heating, strongly confined fluid and nano-devices and
hence a non-classical heat conduction law is employed. The heat trans-
port in the system is examined and quantified employing the Lorenz
model. The Nusselt number is deduced to quantitate the transfer of heat.

Keywords: Magnetic field modulation · Maxwell-Cattaneo law ·
Couple stress fluid

1 Introduction

Heat transfer problems are in general studied by considering heat conduction
law by Fourier. Although the law explains the phenomena of transfer of heat in
numerous situations and real life scenarios, it violates the principle of causality.
This is because Fourier’s law along with the energy equation gives a parabolic
profile for the temperature field vaticinating the heat propagation speed as infi-
nite. This shortcoming was pointed out by Maxwell [9]. Cattaneo [2] addressed
this drawback by appending a transient term involving the relaxation time to
Fourier’s law which resulted in a hyperbolic energy equation or wave equation.
Straughan and Franchi [19] was the first to study the propagation of thermal
waves for Bénard convection. Straughan [17,18] investigated convection in New-
tonian fluid and Darcy porous material, respectively, with the rate change in heat
flux as proposed by Christov [4] and found that the implications of the thermal
relaxation time on both the systems are significant. Stranges et al. [15] consid-
ered fluids with noticeable relaxation time for studying thermal convection. The
possibility of a bistable mode was seen as a consequence of the occurrence of
stationary as well as oscillatory mode of convection. An analysis of the steady
c© Springer Nature Singapore Pte Ltd. 2021
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convection in non-Fourier fluids was carried out using a dynamical approach
with low-order by Stranges et al. [16].

One of the non-Newtonian fluid theories called couple stress fluids proposed
by Stokes [14] can be employed to understand the dynamics of fluids with couple
stresses along with the classical Cauchy stress, such as in the case of rheologi-
cally complex fluids like animal and human blood , polymeric suspensions,liquids
containing long-chain molecules, lubrication and liquid crystals. Experimental
studies on the flow of blood (Cockelet [5], Goldsmith and Skalak [6]) have shown
that flow of blood under certain conditions deviates from the characteristics
seen in the flow of Newtonian fluid. Pranesh and George [10] considered an
electrically conducting fluid with couple stresses and examined the stability of
magneto-convection of the fluid under modulated temperature walls. Ramesh
[12] investigated an asymmetric channel with homogeneous porous medium and
couple stress fluid. Kumar et al. [8] used Ginzburg-Landau equation to under-
stand the non-linearity of two component convection in fluids with suspensions
under gravity modulation.

The discovery of the presence of magnetic fields in sunspots and the finding
that their interaction with convection leads to the relative coolness and hence
the darkness in them drew the attention of researchers to magneto-convection.
Circulation and convection in small passages can be activated or improved with
magnetic forces. Magneto-convection arises on account of the interference of the
applied magnetic field with the flow of a fluid which is electrically conducting.
Bhadauria and Kiran [1] analysed the non-linearity employing the Ginzburg-
Landau equation of a system with sinusoidal and time dependent external mag-
netic field applied to an electrically conducting fluid layer. Kiran et al. [7] inves-
tigated nonlinear time dependant magneto-convection and have discussed the
consequence of various parameters governing the system. They concluded that
oscillatory mode gives better results in comparison to stationary mode for mod-
ulated magnetic field.

This paper attempts to determine the impacts of non-Fourier law and time-
periodic magnetic field on Bénard convection in a fluid with suspended particles.
The study deduces the convection amplitude in terms of parameters governing
the system. An estimation of the transfer of heat is also carried out by finding
the Nusselt number.

2 Mathematical Formulation

A layer of fluid with couple stresses is enclosed by two parallel and horizontal
plates. The problem under consideration is schematically graphed in Fig. 1. The
system is studied in Cartesian co-ordinates. The origin is placed on the lower
plate and the z-axis is in the vertical upward direction.

The equations governing the system, assuming the Boussinesq approxima-
tion, are given by (Siddheshwar and Pranesh [13] and Stranges et al. [16])

Continuity equation
∇.�q = 0, (1)
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Conservation of momentum

ρ0

[∂�q

∂t
+ (�q.∇)�q

]
= −∇P + ρ�g(t) + μ∇2�q − μ′∇4�q + μm( �H.∇) �H, (2)

Conservation of energy

∂T

∂t
+ (�q.∇)T = −∇. �Q, (3)

Maxwell-Cattaneo heat flux law

τ

[
∂ �Q

∂t
+ �q.∇ �Q − �Q.∇�q − �Q∇.�q

]
= − �Q − κ∇T, (4)

Equation of state

ρ = ρ0
[
1 − γ(T − T0)

]
, (5)

Magnetic induction equations

∇. �H = 0, (6)

∂ �H

∂t
+ (�q.∇) �H = ( �H.∇)�q + νm∇2 �H. (7)

where �q defines the velocity, �g: the acceleration due to gravity, T : the tempera-
ture, T0: the reference temperature, ΔT : the temperature difference between the
plates, P : the hydromagnetic pressure, ρ: the density, ρ0: the density at T = T0,
τ : the relaxation time, �Q: the heat flux vector, μ: the dynamic viscosity, γ: the
coefficient of thermal expansion, μ′: the couple stress viscosity, κ: the thermal
conductivity, �H: the intensity of the magnetic field, νm: the magnetic viscosity,
μm: the magnetic permeability.

A sinusoidal magnetic field varying with respect to time with ω and ε as the
modulation frequency and the amplitude of magnetic modulation respectively,
is imposed vertically on the system which is mathematically represented by

�H = H0

[
1 + ε cos(ωt)

]
k̂. (8)

2.1 Basic State

The layer of fluid is stationary in the basic state and is represented by

�qb(z) = �0, T = Tb(z), P = Pb(z), ρ = ρb(z), �Q = �Qb(z), �Hb = H0k̂. (9)

Substitution of Eq. (9) in Eqs. (1)–(7), the equations for the basic state are
deduced as follows:

∂pb
∂z

= −ρbg, (10)

�Qb = −κ
∂Tb

∂z
, (11)
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Fig. 1. Physical configuration of the problem.

d2Tb

dz2
= 0, (12)

ρb = ρ0[1 − γ(Tb − T0)]. (13)

A perturbation to the basic state is applied as follows:

�q = �qb + �q′, �Q = �Qb + �Q′, T = Tb +T ′, P = Pb +P ′, ρ = ρb +ρ′, �H ′ = �Hb + �H ′,
(14)

where �q′, ρ′, P ′, T ′, �Q′ and �H ′ represents the small perturbed quantities.
Substitution of Eq. (14) in Eqs. (1)–(7) and using Eqs. (10)–(13) gives

∇.�q′ = 0, (15)

ρ0

(∂�q′

∂t
+ (�q′.∇)�q′

)
= −∇P ′ + μ∇2�q′ − μ′∇4�q′ − ρ′gk̂

+μmH0

[
1 + ε cos(ωt)

]∂H ′

∂z
+ μm( �H ′.∇) �H ′,

(16)

∂T ′

∂t
+ (�q′.∇)T ′ − w′ ∂Tb

∂z
= −∇. �Q′, (17)

τ
[∂ �Q′

∂t
− κ ΔT

d

∂W ′

∂z
+ �q.∇ �Q′ − �Q′.∇�q

]
= − �Q′ − κ∇T ′, (18)

ρ′ = −ρ0γT ′, (19)

∇ �H ′ = 0, (20)

∂ �H ′

∂t
+ (�q′.∇) �H ′ = ( �H ′.∇)�q′ + H0

[
1 + ε cos(ωt)

]∂w′

∂z
+ νm∇2 �H ′. (21)
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Equations (15)–(21) represents the expressions for perturbed state.
Since the study explores the two-dimensional disturbances, only the xz-plane

is considered. Hence Ψ , the stream function and Φ, the magnetic potential are
taken as

(u′, w′) =
(∂Ψ

∂z
,−∂Ψ

∂x

)
, (H ′

x,H ′
z) =

(∂Φ

∂z
,−∂Φ

∂x

)
. (22)

The x and z component of Eq. (16) are evaluated. The resulting equations are
cross differentiated to eliminate the pressure, P . �Q′ is eliminated between Eqs.
(17) and (18) by operating divergence on Eq. (18). The equations thus obtained
is non-dimensionalized using

(x∗, y∗) =
(

x

d
,
z

d

)
, ω∗ =

ω( κ

d2

) , t∗ =
t

(d2

κ

) , Ψ∗ =
Ψ

κ
, T ∗ =

T

ΔT
, Φ∗ =

Φ

dH0
.

(23)
Ignoring the asterisk, the non-dimensionalized equations which govern the sys-
tems are given by:

1
Pr

∂

∂t
(∇2Ψ) − 1

Pr
J(∇2Ψ, Ψ) = ∇4Ψ − C∇6Ψ − RTx

+
QPr

Pm

[
1 + ε cos(ωt)

] ∂

∂z
(∇2Φ) − QPr

Pm
J(∇2Φ,Φ),

(24)

M

[
∂2T

∂t2
− 2J(Ψ, Tt) − J(Ψt, T ) + Ψxt − J(Ψ, Ψx) − ΨzJ(Ψx, T ) + ΨxJ(Ψz, T )

−ΨzJ(Ψ, Tx) + ΨxJ(Ψ, Tz)
]

+ Tt + Ψx − J(Ψ, T ) = ∇2T,

(25)

Φt − J(Ψ,Φ) =
[
1 + ε cos(ωt)

]
Ψz +

Pr

Pm
∇2Φ. (26)

where

M =
τκ

d2
: defines the Cattaneo number, C =

μ′

μd2
: the couple stress param-

eter, R =
γgΔTd3

μκ
: the Rayleigh number, Pr =

μ

ρ0κ
: the Prandtl number,

Q =
μmH2

0d2

μνm
: the Chandrasekhar number, Pm =

μm

ρ0νm
: the magnetic Prandtl

number.
Equations (24), (25) and (26) are considered for boundaries that are isother-

mal and stress-free with vanishing couple stresses. Thus the equations are solved
for

Ψ = D2Ψ = 0, DΦ = 0, T = 0 at z = 0 and z = 1. (27)
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2.2 Linear Stability Analysis

The procedure followed by Venezian [20] is applied to derive the critical value of
the Rayleigh number and the corresponding wave number for the case without
modulations. It is given by

R =
k6(1 + Ck2)
α2(1 + Mk2)

+
Qπ2k2

α2(1 + Mk2)
, (28)

where α is the wave number and k2 = π2 + α2.

Limiting cases:

C = 0, M = 0 and Q = 0 in Eq. (28) gives R =
k6

α2
which is the critical Rayleigh

number for a Newtonian fluid ( Chandrasekhar [3]).

M = 0 and Q = 0 in Eq. (28) gives R =
k6(1 + Ck2)

α2
which is the critical

Rayleigh number obtained by Siddheshwar and Pranesh [13].

M = 0 in Eq. (28) gives R =
k6(1 + Ck2)

α2
+

Qπ2k2

α2
, which is the critical

Rayleigh number obtained by Pranesh and George [10].

C = 0 in Eq. (27) gives R =
k6

α2(1 + Mk2)
+

Qπ2k2

α2(1 + Mk2)
which is the

critical Rayleigh number obtained by Pranesh and Kiran [11].

2.3 Non-linear Analysis

A stability analysis involving non-linearity is carried out to quantize the heat
transport, and to examine the non-Fourier characteristics and the impact of
modulated magnetic field and suspended particles on the heat transport. This
task is performed using truncated Fourier series (Siddheshwar and Pranesh [13]).
The temperature field is disturbed by the intersection of Φ and T , and Ψ and
T . A change in the temperature profile produces an alteration in the horizontal
mean, i.e., it leads to the formation of a factor in terms of sin(2πz), and the
zonal velocity field results in the formation of a factor in terms of sin(2παx).

The Fourier series representation characterizing the finite amplitude free con-
vection in a minimal form is taken to be

Ψ = a(t) sin(παx) sin(πz) (29)

Φ = f(t) sin(παx) cos(πz) + g(t) sin(2παx) (30)

T = h(t) cos(παx) sin(πz) + e(t) sin(2πz) (31)

where the dynamics of the system estimate a(t), h(t), e(t), g(t) and f(t) which
are the amplitudes.

Substitution of Eqs. (29), (30) and (31) in Eqs. (24), (25), (26) yields

ȧ(t) = −Prηk2
1a(t) − R Prπα

k2
1

h(t) − π[1 + ε cos(ωt)
]QPr2

Pm
f(t) (32)



Non-linear Convection under Magnetic Field Modulation 237

ḣ(t) = x(t) (33)

ẋ(t) = παηPrk2
1a(t) +

π2α2R Pr

k2
1

h(t) +
π2αQPr2

Pm
[1 + ε cos(ωt)

]
f(t)

− 1
2M

x(t) − πα

2M
a(t) − k2

1

2M
h(t)

(34)

ė(t) = y(t) (35)

ẏ(t) = 2π2αa(t)x(t) − Prπ2αk2
1ηa(t)h(t) − π3α2RPr

k2
1

h(t)2 − π3αQPr2

Pm
f(t)h(t)

+π3α2a(t)2 − 1
M

y(t) +
π2α

2M
a(t)h(t) − 4π4

M
e(t)

(36)

ḟ(t) = −2π2αa(t)g(t) + [1 + ε cos(ωt)
]
πa(t) − Pr

Pm
k2
1f(t) (37)

ġ(t) =
−π2α

2
a(t)f(t) − 4π2α2 Pr

Pm
g(t) (38)

where k2
1 = π2(α2 + 1) and η = 1 + Ck2

1.
It follows that

∂ȧ

∂a
+

∂ẋ

∂x
+

∂ẏ

∂y
+

∂ḟ

∂f
+

∂ġ

∂g
= −(

Prk2
1η +

1
2M

+
1
M

+k2
1

Pr

Pm
+4π2α2 Pr

Pm

)
. (39)

Equation (39) is always negative and hence can concluded that the system is
bounded and dissipative.

2.4 Heat Transport

Analyzing the characteristics of heat transport is significant in the study of con-
vection problems with couple stress as an enhancement in the critical Rayleigh
number is detected more effectively by the characteristics shown in the transport
of heat. It should be noted here that the transport of heat in the basic state takes
place only through conduction.

If the heat transport per unit area is given by J , then

J = −κ

〈
∂Ttotal

∂z

〉

z=0

, (40)

where
Ttotal = T0 − ΔT

z

d
+ T (x, z, t). (41)

and the angular brackets represents the horizontal average. Substitution of Eq.
(31) in Eq. (41) and the resulting expression in Eq. (40) gives

J =
κΔT

d
− κΔT

d
2πe(t) (42)

The Nusselt number is determined by

Nu =
J(κΔT

d

) = 1 − 2πe(t). (43)
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3 Results and Discussion

The non-Fourier effects of a couple stress fluid layer with modulated magnetic
field is analyzed in this paper using a stability analysis which is weakly nonlinear.
The characteristics of the system and transfer of heat in it are explored using
the amplitude equations. The implications of system governing parameters on
heat transport are studied using the graph of Nusselt number.

Fig. 2. Graph of Rc vs. α for a range of
values of Cattaneo number.

Fig. 3. Graph of Rc vs. α for a range of
values of couple stress parameter.

Fig. 4. Graph of Rc vs. α for a range of
values of Chandrasekhar number.

Fig. 5. Variation in Nu with regard to
time for distinct Cattaneo number.

In Fig. 2 it can be observed that as Cattaneo number, M , increases, the
critical Rayleigh number, Rc decreases. M represents the non-Fourier effects.
An increase in M results in the contraction of the convective cells and reduction
in the wave number as M varies inversely with square of the characteristic length,
d, which advances the setting in of convection.

The influence of couple stress parameter, C, on the critical Rayleigh number
is shown in Figs. 3. As C increases, Rc increases. C characterizes the amount
of suspended particles in the fluid layer. Hence as C increases, more amount of
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energy is required for the onset of convection resulting in an enhancement of the
stability of the fluid layer.

Figure 4 depicts that an increase in Chandrasekhar number, Q, leads to an
increase in Rc. Q characterizes the influence of magneto-convection. When a
fluid layer is subjected to an external magnetic field, a current is induced in
the system. The combination of this current and the magnetic field results in
Lorenz force. Lorenz force acts against the velocity, in the opposite direction,
increasing the viscosity of the fluid layer. Hence Q results in a delay in the outset
of convection, thereby stabilizing the system.

Figure 5 shows the features on heat transfer because of the Cattaneo number.
A decrease in the temperature propagation with an increment in M is observed
for a very small time period. M is proportional to the relaxation time. Hence the
more the relaxation time is, lesser the heat transfer in the system. However this
effect reverses and the transfer of heat is enhanced as M increases due to the
decrease in the critical Rayleigh number as given in the explanation for Fig. 2.

Fig. 6. Variation in Nu with regard to
time for distinct couple stress parameter.

Fig. 7. Variation in Nu with regard to
time for distinct Chandrasekhar number.

Figure 6 explores the influence of couple stress parameter on heat transfer.
It is observed that the amplitude of convection decrease with a rise in the value
of C as the Rc increases with an increase in C as seen in Fig. 3.

In Fig. 7, the impact of Chandrasekhar number on transfer of heat is shown.
As Q increases, there is a reduction in the heat transfer. As discussed in Fig. 4,
Rc enhances with an increment in Q resulting in reduced heat transfer.

Figure 8 depicts the influence of Prandtl number, Pr, on heat transfer. It
is seen that Pr diminishes the transport of heat. Couple stress fluids are more
viscous compared to clean fluids and hence Prandtl number greater than 1 is
considered. Since Prandtl number varies inversely with the thermal diffusivity,
Pr > 1 implies less thermal diffusivity. This results in diminishing thermal
boundary layer thickness and the temperature profile which consequently results
in reduced heat transfer.
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Fig. 8. Variation in Nu with regard to
time for distinct Prandtl number.

Fig. 9. Variation in Nu with regard to
time for distinct magnetic Prandtl num-
ber.

Figure 9 shows the influence of magnetic Prandtl number, Pm, and the graph
shows that the effect is insignificant. Pm reflects the rate of viscous diffusion to
that of magnetic diffusion. Since the viscosity of couple stress fluid is high, higher
values of Pm are considered for the study.

Figures 10, 11, 12, 13, 14, 15 depict streamlines for t = 0.03, 0.05, 0.07, 0.1,
0.3, 0.5 respectively where M = 0.01, C = 0.3, Q = 10, Pr = 5, Pm = 15,
ω = 10 and ε = 0.1. In Fig. 10(a) it can be seen that the magnitude of the
streamlines is small for small t. As the time t progress, there is an increase in
the magnitude of streamlines which indicate that convection is taking place.
Convection is seen to become faster on further increasing of time t. As there is
no change in the magnitude of streamlines after t = 0.3, the system is observed
to have achieved steady state beyond t = 0.3. Streamlines attain their maximum
size beyond t = 0.3.

Fig. 10. Streamlines at t = 0.03. Fig. 11. Streamlines at t = 0.05.
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Fig. 12. Streamlines at t = 0.07. Fig. 13. Streamlines at t = 0.1.

Fig. 14. Streamlines at t = 0.3. Fig. 15. Streamlines at t = 0.5.

4 Conclusion

This paper investigates non-Fourier effects in a fluid system with couple stresses
and externally applied modulated magnetic field. Cattaneo number inhibits the
heat transport for a short period of time. This influence is seen to reverse result-
ing in a raise in heat transfer as time progresses. Couple stress parameter, Chan-
drasekhar number and Prandtl number inhibit the heat transport. The influence
of magnetic Prandtl number on heat transport is seen to be insignificant.
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Abstract. Let G be an undirected simple graph with vertex set V (G)
and the edge set E(G) and A be an additive Abelian group with the
identity element 0. A function l : V (G) → A \ {0} is said to be a A-
vertex magic labeling of G if there exists an element µ of A such that
w(v) =

∑
u∈N(v) l(u) = µ for any vertex v of G. A graph G having A-

vertex magic labeling is called a A-vertex magic graph. If G is A-vertex
magic graph for every non-trivial additive Abelian group A, then G is
called a group vertex magic graph. In this article, a characterization for
the A-vertex magicness of any tree T with diameter 5, is given, when
A ∼= Z2 ⊕ Z2.

Keywords: Group vertex magic graph · Tree · Diameter · Interior
neighborhood
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1 Introduction

In this article, we deal with undirected and simple finite graphs. We employ V (G)
for the set of vertices and E(G) for the set of edges ofG. The neighborhoodNG(v)
of a vertex v of G is the set of all adjacent vertices of v, and the degree degG(v)
of v is the number of vertices in NG(v) and if v is a vertex with degG(v) = 1,
then v is called a pendant. Note that for an arbitrary vertex v of G, NG(v) =
Nint(v) ∪ Next(v), where Nint(v) = {u ∈ V (G) : uv ∈ E(G) and degG(v) > 1}
and Next(v) = {u ∈ V (G) : uv ∈ E(G) and degG(v) = 1} and any vertex in
Nint(v) is an interior vertex. A tree is a connected graph containing no cycles.
For a graph G, the vertices of minimum eccentricity are called central vertices
of G. A tree with odd diameter k > 1, has two central vertices, and we denote
them by vc1 and vc2 . The bi-star graph Br,s is a graph, which is obtained by
connecting two copies of stars K1,r and K1,s by adding an edge between central
vertices of two stars. For two graphs G1 and G2, G1 �G2 is the graph obtained
by picking a copy of G1 and |G2| number copies of G2 and then connecting all
vertices of i-th copy of G2 to i-th vertex of G1 by new edges and is called the
c© Springer Nature Singapore Pte Ltd. 2021
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corona product of G1 and G2. We consider only additive Abelian groups A with
the identity element 0. The Klein’s-4 group V4 = {a, b : 2a = 2b = 2(a+ b) = 0},
which also can be represented as Z2 ⊕ Z2 = {(0, 0), (1, 0), (0, 1), (1, 1)} under
component-wise addition modulo 2 with (0, 0) as identity element. For more,
notation and terminology in graph theory and group theory, we refer [1] and [2],
respectively.

The motivation for magic labeling arises from magic squares. Magic squares
are (n × n)-arrays consisting the numbers 1, 2, · · · , n2, each appearing once,
along with the condition that the sum of numbers in each row, column, the
main diagonal, and the main backward diagonal are equal and is n(n2 + 1)/2.
For more details related to magic square, refer [3].

Lee et al. [4] in 2001 introduced the notion of group-magic graphs. For an
arbitrary Abelian group A, a graph G is called A-magic graph, if there exists
a function l : E(G) → A \ {0} such that for any vertex v of G, the induced
function l+ : V (G) → A given by l+(v) =

∑

uv∈E(G)

l(uv), is a constant function.

Further studies on group-magic graphs, can be found in [6–10] including spe-
cialized studies on V4-magicness of trees and group magicness of certain product
graphs.

In 2019, Kamatchi et al. [5], introduced the notion of group vertex magic
graphs.

Definition 1. [5] A be an additive Abelian group with the identity element 0.
A function l : V (G) → A \ {0} is a A-vertex magic labeling of a graph G if
there exists a group element µ of A such that for any vertex v of G, the weight
of v, w(v) =

∑

x∈N(v)

l(x) is µ. A graph G that receives such a labeling is called

an A-vertex magic graph and such weight µ is called magic constant. For any
non-trivial Abelian group A, if G is A-vertex magic, then G is a group vertex
magic graph.

Observation 1. [5] If a graph G is regular, then G is group vertex magic. One
can label all vertices of G by g, where g is an element of any Abelian group A
with g �= 0.

In [5], several results related to V4-vertex magic graphs are proved and a char-
acterization of all V4-vertex magic trees up to diameter 4, is obtained.

Lemma 1. [5] n ≥ 2. Then any element g ∈ V4 can be expressed as g = g1 +
· · · + gn, where gi ∈ V4 and gi �= 0 for all i ∈ {1, · · · , n}.
Theorem 1. [5] If T is a tree with n vertices and if T is of diameter 2, then

(i) T is V4-vertex magic.
(ii) T is group vertex magic, when n is even.
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Theorem 2. [5] If T = Bm,n is a tree with diameter 3, then T is V4-vertex
magic if and only if m,n ≥ 2.

Theorem 3. [5] A tree of diameter 4 is V4-vertex magic if and only if at least
one of the following conditions hold.

(i) All internal vertices have at least two pendant vertices as neighbors.
(ii) The central vertex is of odd degree and have no pendant vertex as its neigh-

bor.
(iii) The central vertex is odd degree with exactly one pendant vertex as its neigh-

bor and all other internal vertices have at least two pendant vertices as its
neighbors.

Note that the following observations are useful while proving the V4-vertex mag-
icness of a graph G having pendants.

Observation 2. Let G be a graph with at least one pendant. Suppose that G
is V4-vertex magic graph with labeling l such that l(u) = g, for some vertex u
having a pendant. Then the magic constant µ = g, with respect to l. Thus the
identity element 0 cannot be the magic constant.

Thus from the above observation, we see that the magic constant of any V4-
vertex magic graph having a vertex v with |Nent(v)| = 1 is always non-identity
element. On the other hand, the magic constant of any V4-vertex magic graph
having all vertices v with |Next(v)| > 1, may or may not be identity element.

Observation 3. Given that g ∈ V4. Suppose v is a vertex of a graph G such
that the labels of all the vertices in Nint(v) are known. If |Next(v)| > 1, then by
Lemma 1, it is possible to label all vertices of Next(v) such that w(v) = g. On the
other hand, if Next(v) is {u}, then it is possible to label u such that w(v) = g,
provided that g �= ∑

x∈Nint(v)
l(x).

The above observation guarantees that for a given group element in V4, if the
labels of all interior neighbor’s of a vertex are known, then it is possible to predict
the labels of all exterior neighbor’s of the same vertex in such a way that the
weight of the vertex is the given group element.

2 Main Results

In this section, certain structural properties of V4-vertex magic graphs are dis-
cussed and finally, a characterization for any tree of diameter 5 to be V4-vertex
magic, is given.

Theorem 4. Suppose G is a graph such that all internal vertices have more
than one pendant. Then G is V4-vertex magic.
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Proof. Let a ∈ V4\{0}. Now label any vertex v of G by a, whenever degG(v) > 1.
Consequently, all the pendants of G have weight a. Now, we need to label the
remaining vertices in such a way that every internal vertex of G, must have
same weight a. Suppose v is an internal vertex of G. Then the weight of v,
w(v) =

∑
x∈Nint(v)

l(x)+
∑

y∈Next(v)
l(y) = |Nint(v)|a+

∑
y∈Next(v)

l(y). Now, if
v is the vertex with |Nint(v)| is odd, then by Lemma 1, label all the vertices of
Next(v) such that

∑
y∈Next(v)

l(y) = 0. If |Nint(v)| is even, then again by Lemma
1, label all the vertices of Next(v) such that

∑
y∈Next(v)

l(y) = a. Therefore, in
either case w(v) = a. This completes the proof.

Corollary 1. For any graph G, G�Kn is a V4-vertex magic graph, where n > 1.

The above corollary guarantees that any graph can be an induced subgraph of
some V4-vertex magic graph. Therefore, V4-vertex magic graphs do not have any
forbidden structures.

In the next theorem, we construct a larger V4-vertex magic graph from the
existing one. Note that Kn is V4-vertex magic for all n ≥ 1. Let K†

n be the graph
derived from Kn by augmenting a new vertex u† to exactly one vertex of Kn by
an edge.

Theorem 5. Let n > 1. Then K†
n is V4-vertex magic if and only if n is even.

Proof. Consider the graph K†
n with the vertex set {v0, v1, · · · , vn−1} ∪ {u†},

where vi’s are the vertices of Kn and v0 is adjacent to u†. Suppose l is a V4-vertex
magic labeling ofK†

n. Then by Observation 2, the magic constant µ = l(v0). Now,
we have,

w(v0) =
n−1∑

i=1

l(vi) + l(u†), (1)

and for j �= 0,

w(vj) =
n−1∑

i=0, i �=j

l(vi). (2)

Adding Eq. (1) and (2), we get, l(vj) = l(u†) + l(v0) for j �= 0.

Now, if n is odd, then w(v1) = l(v0) + (n − 2)(l(u†) + l(v0)) = l(u†). But
µ = l(v0) and hence l(v0) = l(u†), which gives l(v1) = 0, a contradiction. Hence,
K†

n cannot be V4-vertex magic graph for any odd integer n.

If n is even, let l(v0) = a, l(u†) = b and l(vj) = a+b for all j ∈ {1, · · · , n−1},
which yields a V4-vertex magic labeling with µ = a.

Now, we give a typical representation of a tree of diameter 5 with two central
vertices vc1 and vc2 and their internal and external neighborhood’s in Fig. 1.
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Fig. 1. A typical diameter 5 tree

The following two theorems give a characterization for the V4-vertex magic-
ness of diameter 5 trees, when either both of the central vertices have an odd
number of internal vertices or both of the central vertices have even number of
internal vertices.

Theorem 6. Let T be a tree of diameter 5 with central vertices vc1 and vc2 such
that both |Nint(vc1)| and |Nint(vc2)| are even. Then T is V4-vertex magic if and
only if none of the vertices are of degree 2 and both central vertices have at least
one pendant.

Proof. Suppose T has a V4-vertex magic labeling l. By Observation 2, the magic
constant µ �= 0 and we assume µ = a �= 0. Then, |Next(vci)| > 1 for i = 1, 2
(otherwise one of central vertex will have label 0, a contradiction). Therefore,
l(vci) = a, i = 1, 2, and hence no vertex has degree 2 (for if N(x) = {u1, u2}
for some x, where u1 is one of the central vertex, then l(u2) = 0, a contradiction
again.)

Conversely, assume that T is a tree with given conditions. Label all internal
vertices of T with a �= 0 and thus, all the pendants of T have weight a, and for
i = 1, 2, label the vertices of Next(vci) in such a way that

∑
u∈Next(vci

) l(u) = a.
Thus, w(vci) = |Nint(vci)|a+ a = a, for both i = 1, 2. Now, by Observation 2, it
is straight forward to label all remaining pendants of T in such a way that T is
V4-vertex magic.

Theorem 7. Let T be a tree of diameter 5 with central vertices vc1 and vc2 such
that |Nint(vc1)| is odd and |Nint(vc2)| is odd. Then T is V4-vertex magic if and
only if both of the following conditions hold:

(i) whenever one of the central vertex has exactly one pendant, the other central
vertex has no pendants.
(ii) whenever a non-central vertex is of degree 2, then it’s neighboring central
vertex has no pendants and the other central vertex has at least one pendant.
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Proof. Suppose T has a V4-vertex magic labeling l. Then, by Observation 2,
µ �= 0 so that one can assume that µ = a. Without loss of generality, let vc1
has exactly one pendant w. If vc2 has at least one pendant, then l(vc2) = a and
consequently, w(vc1) = |Nint(vc1)|a + l(w) = a, implies l(w) = 0, which is not
possible. Thus, vc2 has no pendants.

Now, without loss of generality, let u ∈ V (T ) with degT (u) = 2, be such
that u is adjacent to vc1 . Clearly, vc1 cannot have any pendants (otherwise,
l(x) becomes 0, where x is the pendant attached to u). Further, if vc2 has no
pendants, then w(vc2) = (|Nint(vc2)|−1)a+ l(vc1) = a, implies l(vc1) = a, which
makes l(x) = 0, a contradiction. Thus, vc1 has no pendants and vc2 has at least
one pendant.

Conversely, assume that T is a tree with given conditions. Then label a �= 0 to
all the vertices having pendants. Also, if both vc1 and vc2 do not have pendants,
label both by a and hence w(vci) = |Nint(vci)|a = a for i = 1, 2. Now, if only
one of the central vertex has no pendant, label it by b �= 0, and by Lemma 1,
label the pendants of other central vertex in such a way that the label-sum is
a+b. Hence, we have w(vc1) = a = w(vc2). By Observation 2, in either case, it is
not hard to label the rest of the pendants of T in such a way that T is V4-vertex
magic with µ = a.

The following theorem discusses the V4-vertex magicness of diameter 5 trees,
when one central vertex has an odd number of internal vertices and another
central vertex has an even number of internal vertices.

Theorem 8. Let T be a tree of diameter 5 with two central vertices vc1 and vc2
such that |Nint(vci)| is odd and |Nint(vcj )| is even, for i, j ∈ {1, 2} and i �= j.
Then T is V4-vertex magic if and only if all of the following conditions hold:

(i) vcj has atleast one pendant and vcj is not adjacent to a two degree vertex.
(ii) if vci has a pendant, then vci is not adjacent to a two degree vertex.
(iii) vci cannot have exactly one pendant.

Proof. Suppose T has a V4-vertex magic labeling l. Then by Observation 2 the
magic constant is a, where a �= 0.

Proof for (i). On contrary, suppose that vcj has no pendants. Then w(vcj ) =
(|Nint(vcj )| − 1)a+ l(vci) = a+ l(vci) = a, contradicts l(vci) �= 0. Therefore, vcj
has a pendant and l(vcj ) = a. Now, if possible vcj is adjacent to a vertex u of
degree 2 and y is the adjacent vertex of u other than vcj , then because of the
fact w(u) = a, we have l(y) is 0, a contradiction.

Proof for (ii). If vci has a pendant, using the same arguments as above, vci
cannot have a degree 2 neighbor.

Proof for (iii). Suppose, vci has exactly one pendant (say) x. Since l(vcj ) = a,
then l(x) is 0, a contradiction.
Conversely, assume T is a tree with given conditions and let a, b ∈ V4 \{0}. Then
label all the vertices having pendants with a. If vci has pendants, label Next(vci)
such that its label sum is 0 and label Next(vcj ) in such a way that sum of the
labels is a, hence both vci and vcj will have weight a. If vci has no pendants,
then label vci with b and Next(vcj ) such that its label sum is b, then both vci
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and vcj will have weight a. In both cases, with the help of 2, label all the rest
of the vertices of T in such a way that T becomes V4-vertex magic with magic
constant a.

Thus, the above three Theorems have completely characterized the existence of
V4-vertex magicness of all trees T of diameter 5.

3 Conclusion

In this article, we characterized all the V4-vertex magic trees of diameter 5 and
proved V4-vertex magicness of certain classes of graphs. Note that for any tree
with diameter ≤ 5, all the internal vertices are always adjacent to one of the
central vertex(s). However, for trees of diameter k, where k > 5, the central
vertex(s) need not be adjacent to all the internal vertices and that crucial factor
increases the number of cases to be considered and analyzed. Thus, we give the
following problem.

Problem 1. Characterize all V4-vertex magic trees T with diameter > 5.
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Abstract. Dengue is a mosquito–borne viral disease that has rapidly
spread in tropical and subtropical regions. Understanding the transmis-
sion dynamics of dengue incidences is vital in developing appropriate
strategies to control potential outbreaks of the diseases. In literature,
the SIR− UV model is one of the mostly–used mathematical model to
describe the dynamics of the disease, of which the solvability of the rele-
vant system of differential equations seems to be uncertain. However, this
system can be reduced down into a two–dimensional system by consider-
ing quasi–equilibrium for infected vector population. Once the reduced
system is considered, its solution requires the estimation of per–capita
vector density, which becomes an infeasible task due to lack of resources
as well as complexity of external impacts. Since the per–capita vector
density heavily depends upon the climate factor, we propose a general-
ized linear regression formula to estimate this by capturing the seasonal
pattern of dengue dynamics according to the effect of climate factors in
urban Colombo. Further, we compare the dynamical behaviour of the
infected host population in the simplified model with reported dengue
incidences. Our simulation shows that the dynamical behaviour of the
infected host population captures the seasonality of the reported dengue
incidences.

Keywords: Dengue transmission · SIR–UV model ·
Quasi–equilibrium · Regression formula

1 Introduction

Dengue is a mosquito–borne viral disease that has rapidly spread in tropical
and subtropical regions during the past few decades. There are currently four
billion people living in high–risk areas of dengue fever transmission, with 390
million cases reported annually [1]. Identified in Sri Lanka for the first time
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in 1962, it has now gained the status of an endemic disease. Statistics of the
epidemiology unit of the Ministry of Health, Sri Lanka indicate that 185,969
dengue cases were reported in 2017. Every year, the government and the private
sector spend a significant amount of funds on individual healthcare and anti–
dengue campaigns. This is the context in which examining the dynamics of
dengue transmission becomes vital.

In order to capture the transmission of the dengue virus, one might natu-
rally look into well–known mathematical models of disease transmission based
on classical compartments. In compartment models, the population is divided
into categories for which the interactions and dynamics are formulated mathe-
matically. Being one such model, the SIR − UV classification divides the host
population into three compartments: susceptible (S), infected (I) and recovered
(R) and vectors population into two compartments: susceptible (U) and infected
(V ) [2]. Thus, the SIR−UV model consists of a system of differential equations
which describes the dynamical behavior of the disease in terms of interactions
between these compartments. Since dengue is a vector–borne disease, the spread-
ing trend of the disease depends on the infected vector density. Accordingly, the
number of adult vectors in an area is a major factor which affects the dynamical
behavior of the disease. However, calculating this vector density is practically
an infeasible task. Thus, the classical SIR − UV model has been modified by
improving its predictability power. First, we considered the fact that vector
dynamics occur in a faster time scale compares to host dynamics and derived a
two dimensional compartmental model with aid of classical SIR − UV models
and a function for per–capita vector density has been introduced. Further, per–
capita vector density is a highly sensitive parameter that heavily depends upon
climatic factors such as rainfall and temperature. According to [5,7], reported
dengue incidences show a strong correlation with rainfall in Colombo with differ-
ent time lags. Motivated from all these, we examine how to use climate factors
in order to yield a formula for per–capita vector density.

Generalized regression formula is particularly interesting when there is time–
dependence between variables and possible to model a temporal structure with
more reliable predictions. In this study, we examine how to use multiple cli-
mate factors and reported dengue data to develop a general regression formula
to capture the per–capita vector population. Once the generalized linear regres-
sion formula is developed, the two dimensional IR model has been moderated
with the developed regression formula to capture the periodic pattern of dengue
according to effect of climate factors in urban Colombo.

2 Method

2.1 Two Dimensional IR Model for Dengue Transmission

A modified version of the SIR − UV model for dengue transmission has been
developed in [2], which represented interactions between human and vectors in
terms of a normalized system of non–linear ordinary differential equations. In
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this study, we simplify these differential equations, making justifiable assump-
tions for a real–world situation as in [3]. First, we convert the model in [2]
into a dimensionless form. Let S, I,R, U and V denote the susceptible human,
infected human, recovered human, susceptible vector and infected vector densi-
ties respectively. Let μh, η, μv and γ denote the birth and death rates for human,
recruitment rate of vectors, death rates for vectors and recovery rate for human.
Let the adequate contact rate of vectors to human and human to vectors be
denoted by βh and βv. Also let Nv denotes the vector population and Nh the
total human population. Accordingly, Eqs. (1a) to (1e) represent a normalized
SIR − UV model.

dS

dt
= μh(1 − S) − βh

Nv

Nh
V S, (1a)

dI

dt
= βh

Nv

Nh
V S − (μh + γh)I, (1b)

dR

dt
= γhI − μhR, (1c)

dU

dt
= η − μvU − βvUI, (1d)

dV

dt
= βvUI − μvV. (1e)

This is reducible further, as the sum of susceptible, infected and recovered
human density is one. Thus, we reduce Eqs. (1a), (1b) and (1c) into two dimen-
sional system and replace S by 1 − I − R . A similar reduction is applicable to
Eqs. (1d) and (1e).

dI

dt
= βhnV (1 − I − R) − (μh + γh)I, (2a)

dR

dt
= γhI − μhR, (2b)

dV

dt
= βv(1 − V )I − μvV. (2c)

Since, there is no method to estimate the infected vector density in practical
manner and simulation results of three dimensional system in Eq. (2) provides
infected vector density with certain assumptions which cannot be validated,
we consider the idea of quasi–equilibrium for vector density to overcome this
problem.

Since the average life expectancy for female mosquito is 6 weeks and the
average life expectancy for human is 72 years, vector dynamics achieve the equi-
librium faster than host. Therefore, we take into consideration that vector den-
sity is in its quasi–equilibrium [6]. Let β = βv

μv
. Then U∗ and V ∗ denote the

quasi–equilibrium values for vector density as follows.

U∗ =
1

βI + 1
, V ∗ =

βI

βI + 1
. (3)
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Now substitute the quasi–equilibrium value V ∗ for the infected vector density
in Eq. (2a). Then we obtain the reduced two–dimensional quasi–equilibrium IR
model as in Eq. (4).

dI

dt
= βhn

βI

βI + 1
(1 − I − R) − (μh + γh)I, (4a)

dR

dt
= γhI − μhR. (4b)

Since n is a time–dependent term as it is proportional to time–dependent exter-
nal force on dengue spreading such as climate change. Our next task is to define
a function for n to capture the seasonal effect on dengue dynamics.

2.2 Linear Regression Formula for Per–capita Vector Density

Generalized linear regression formula measures expected value of dependent
parameter through a linear combination of known parameters [4]. The theory
of the generalized linear regression model requires data that generally follow a
multivariate normal distribution with the same covariance. Let Dt, Rt,MTt and
mTt denote number of dengue incidences, rainfall, maximum temperature and
minimum temperature at time t. In our study t corresponds to the time in weeks.
We use glmfit package in MATLAB to estimate parameters b0, b1, b2, b3 and b4
based on distribution fitting. With the assumption of linearity n(t) is expressed
as follows.

n(t) = b0 + b1Dt + b2Rt + b3MTt + b4mTt. (5)

Recall that per–capita vector density has been changed with climate factors and
dengue incidences. Moreover, dengue incidences have correlated with climate fac-
tors with time lags. Therefore, it is possible to obtain Eq. 6 by including time lag
into rainfall, maximum temperature and minimum temperature variables in Eq.
5. We include time lag lD, lR, lMT and lmT to reported dengue incidences, rain-
fall, maximum temperature and minimum temperature variables respectively.

n(t) = b0 + b1Dt−lD + b2Rt−lR + b3MTt−lMT
+ b4mTt−lmT

(6)

Now the simplified IR model can be restated as,

dI

dt
= βhn(t)

βI

βI + 1
(1 − I − R) − (μh + γh)I, (7a)

dR

dt
= γhI − μhR, (7b)

with
n(t) = b0 + b1Dt−lD + b2Rt−lR + b3MTt−lMT

+ b4mTt−lmT
. (7c)
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3 Results and Discussion

For this study it has been considered the weekly reported dengue incidence
gained from Epidemiology unit, Department of Health, Sri Lanka, weekly rain-
fall, maximum temperature and minimum temperature data from Meteorolog-
ical Department, Sri Lanka from 2006 to 2016 for CMC area. To calculate the
time delay between dengue incidences and climate factors, the Pearson correla-
tion formula has been used and plotted the correlation measure with time lags
from 0 to 20 weeks (refer Fig. 1). Results illustrated by Fig. 1 indicated that
the highest correlation occurs between dengue incidence and rainfall data with
10—weeks time delay, maximum temperature data with 16—weeks time delay,
minimum temperature data with 13—weeks time delay. Furthermore, reported

Fig. 1. Cross–correlation between (a) reported dengue data and rainfall data (b)
reported dengue data and maximum temperature and (c) reported dengue data and
minimum temperature
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dengue data with 4–weeks time delay has been used to define a function for
per—capita vector density. Then glmfit package in MATLAB has been used to
estimate parameters b0, b1, b2, b3 and b4, based on distribution fitting. Moreover,
to assess the distribution histfit function in MATLAB has been used.

Fig. 2. Comparison of infected human population density (IR model simulation and
actual infected human population density)

Figure 2 shows a comparison between simulation results obtained by MAT-
LAB ode45 solver for infected human density in simplified IR model and
reported dengue incidences. Analyzing the results, we can observe that modeled
infection rate capture the seasonality of the disease. Since there is a disagree-
ment between simulation results and reported data, we are looking forward to
extend the model to capture the exact data.

4 Conclusion

As mentioned in the introduction, our main purpose was to find a simple model
to capture the dynamical behaviour of dengue transmission using the SIR −
UV model. We simplified the SIR − UV model to a two dimensional form
by considering quasi–equilibrium for vector density. To capture the per–capita
vector density we derived a generalized linear regression formula. Our simulation
shows that the dynamical behaviour of dengue transmission obtained by the
simplified IR model captured the seasonal effects due to climate variation in
urban Colombo.
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Abstract. We study Multipoint methods using only the first derivative.
Earlier studies use higher than three order derivatives not on the meth-
ods. Moreover Lipschitz constants are used to find error estimates not
presented in earlier papers. Numerical examples complete this paper.
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1 Introduction

In this study, we seek a x∗ ∈ D solving

F (x) = 0. (1.1)

Here F : D ⊆ M → M(M = R
m; M = C

m).
Chebyshev’s, Halley’s, Euler’s, Super Halley’s, [2,5,7,11,18] use the second

derivative F ′′ making them expensive in nature. In this paper, we consider the
4th, 6th and 8th order methods, respectively,

yn = xn − A−1
n F (xn)

xn+1 = yn − BnA−1
n F (yn), (1.2)

yn = xn − A−1
n F (xn)

zn = yn − BnA−1
n F (yn) (1.3)

xn+1 = zn − BnA−1
n F (zn)

and

yn = xn − A−1
n F (xn)

zn = yn − BnA−1
n F (yn)

wn = zn − BnA−1
n F (zn) (1.4)

xn+1 = wn − BnA−1
n F (wn),
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An = DF (xn)−F ′(xn), Bn = − 3
2I + 1

2A−1
n F ′(yn) and DF (xn) is a matrix such

that the entries of the vector F (xn) are on its diagonal and the other elements
of the matrix are zero. These methods were introduced and studied in [2,4–
6,13,17]. The motivation and efficiency of these methods were also discussed in
these references. But the existence of fifth and ninth derivative, is needed for
convergence, respectively restricting the applicability.

Define function φ on D = [− 1
2 , 3

2 ] as

φ(t) =
{

0, t = 0
t3 ln t2 + t5 − t4, t �= 0

so

φ′(t) = 3t2 ln t2 + 5t4 − 4t3 + 2t2, φ′(1) = 3,
φ′′(t) = 6t ln t2 + 20t3 − 12t2 + 10t,

φ′′′(t) = 6 ln t2 + 60t2 − 24t + 22,

so function φ′′′ is not bounded. There are numerous methods [1–19]. But these
local results do not provide a computable radius of convergence.

We deal with these methods in Sect. 2. We use Computational Order of Con-
vergence(COC) or Approximate Computational Order of Convergence (ACOC)
that do not need high order derivatives (see Remark 1). We can do the same to
other methods [1–19].

Next, the convergence is given in Sect. 2 with examples in Sect. 3.

2 Analysis

Consider d ∈ [0, 1), L0, L > 0 and K ≥ 1. Let functions p0 and p on [0, +∞) as
p0(t) = d + L0t, p(t) = d + 2L0t and parameters rp0 , rp and rA by rp0 = 1−d

L0
,

rp = 1−d
2L0

and rA = 2
2L0+L . Notice that 0 ≤ rp < rp0 < 1

L0
and 0 < rA < 1

L0
.

Then, consider g1 and h1 on [0, rp0) as

g1(t) =
1

2(1 − L0t)
[Lt +

2Kp(t)
1 − p0(t)

],

h1(t) = g1(t) − 1.

Suppose that

h1(0) = g1(0) − 1 =
Kd

1 − d
− 1 < 0. (2.5)

We have that h1(0) < 0 and h1(t) → ∞ as t → rp0 . By the IVT, function h1

has roots in (0,rp0). Call by r1 the least such root. Then, consider g2 and h2 on
[0, r1] as

g2(t) = [1 +
(4K + 3d)K
2(1 − p0(t))2

]g1(t)

and
h2(t) = g2(t) − 1.
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Suppose that

h2(0) = g2(0) − 1 =
Kd

1 − d
[1 +

(4K + 3d)K
2(1 − d)2

] − 1 < 0. (2.6)

Then, we obtain that h2(0) < 0 and h2(r1) = (4K+3d)K
2[1−p0(r1)]2

> 0. Let r2 be the
smallest root of function h2 on (0, r1). Koreover, consider functions g3 and h3

on [0,r2] as

g3(t) = [1 +
(4K + 3d)K
2(1 − p0(t))2

]g2(t)

and
h2(t) = g3(t) − 1.

Assume

h3(0) = g3(0) − 1 =
Kd

1 − d
[1 +

(4K + 3d)K
2(1 − d)2

]2 − 1 < 0. (2.7)

Then, we get that h3(0) < 0 and h3(r2) = (4K+3d)K
2(1−p0(r2))2

> 0. Let r3 be the smallest
root of function h3 on (0, r2). Furthermore, consider functions g4 and h4 on [0,
r3] as

g4(t) = [1 +
(4K + 3d)K
2(1 − p0(t))2

]g3(t)

and
h4(t) = g4(t) − 1.

Assume

h4(0) = g4(0) − 1 =
Kd

1 − d
[1 +

(4K + 3d)K
2(1 − d)2

]3 − 1 < 0. (2.8)

Then, we get that h4(0) < 0 and

h4(r3) =
(4K + 3d)K

2(1 − p0(r3))2
> 0. (2.9)

Let r4 be the smallest root of function h4 on (0,r3). Then,

0 ≤ g1(t) < 1, (2.10)

0 ≤ p0(t) < 1, (2.11)

0 < p(t), (2.12)

0 ≤ g2(t) < 1, (2.13)

0 ≤ g3(t) < 1 (2.14)

and
0 ≤ g4(t) < 1, (2.15)
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for each t ∈ [0, r4). Notice also that (2.8) ⇒ (2.7) ⇒ (2.6) ⇒ (2.5). Define
polynomials Hi+1 on [0, 1], i = 0, 1, 2, 3 by

Hi+1(t) = Kt(2(1 − t)2 + (4K + 3t)K)i − 2i(1 − t)i+1. (2.16)

We have that Hi+1(0) = −2i < 0 and Hi+1(1) = Ki+1(4K + 3)i > 0. Let di+1

be the smallest root of polynomial Hi+1 on (0,1). Then, conditions (2.5)–(2.8)
hold, since

Kd1
1 − d1

< 1, (2.17)

Kd2
1 − d2

[1 +
(4K + 3d2)K

(1 − d2)2
] < 1, (2.18)

Kd3
1 − d3

[1 +
(4K + 3d3)K

(1 − d3)2
] < 1 (2.19)

and
Kd4

1 − d4
[1 +

(4K + 3d4)K
(1 − d4)2

] < 1 (2.20)

respectively. Consider conditions (C4) :
There exist a simple x∗ ∈ D, L0, L > 0, K ≥ 1 with

(C1) F : D ⊆ Rm → Rm is a differentiable mapping with F (x∗) = 0.
(C2)

‖F ′(x∗)−1(F ′(x) − F ′(x∗))‖ ≤ L0‖x − x∗‖, x ∈ D. (2.21)

Set U0 = D ∩ U(x∗, 1
L0

).
(C3)

‖F ′(x∗)−1(F ′(x) − F ′(y))‖ ≤ L‖x − y‖, x, y ∈ U0. (2.22)

(C4) ‖F ′(x∗)−1F ′(x)‖ ≤ K, x ∈ U0.
(C5) ‖F ′(x∗)−1DF (x)‖ ≤ d∗, x ∈ U0.
(C6) Ū(x∗, r∗) ⊆ D, where

d∗ =

⎧⎨
⎩

d2 for method (1.2)
d3 for method (1.3)
d4 for method (1.4)

and

r∗ =

⎧⎨
⎩

r2 for method (1.2)
r3 for method (1.3)
r4 for method (1.4).

and
(C7) condition (2.12) holds.
(C8) There exists r̄ ≥ r4 such that L0r̄ < z. Let U1 = D ∩ U(x∗, r).
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Theorem 21. Suppose conditions (C4) hold. Then, {xn} ⊂ U(x∗, r4),
lim
n→∞{xn} = x∗, and for x0 ∈ U(x∗, r4) − {x∗}, en = ‖xn − x∗‖,

‖yn − x∗‖ ≤ g1(en)en ≤ en < r4, (2.23)

‖zn − x∗‖ ≤ g2(en)en ≤ en, (2.24)

‖wn − x∗‖ ≤ g3(en)en ≤ en (2.25)

and
‖xn+1 − x∗‖ ≤ g4(en)en ≤ en, (2.26)

where “g” functions and the convergence radius are defined previously.
Moreover, x∗ is unique in U1 as a solution of equation F (x) = 0

Proof. In view of x0 ∈ U(x∗, r4) − {x∗}, condition (c2)

‖F ′(x∗)−1(F ′(x0) − F ′(x∗))‖ ≤ L0e0 < L0r4 < 1 (2.27)

Using (2.27) and the Banach Perturbation Lemma for mappings [2,8,10,16],
F ′(x0) is invertible, with

‖F ′(x0)−1F ′(x∗)‖ ≤ 1
1 − L0e0

<
1

1 − L0r4
. (2.28)

We can write by condition (C1) that

F (x0) = F (x0) − F (x∗) =
∫ 1

0

F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ. (2.29)

we also have ‖x∗ + θ(x0 − x∗) − x∗‖ = θe0 < r4. So, x∗ + θ(x0 − x∗) ∈ U(x∗, r4).
Then using condition (C4) and (2.29) we get that

‖F ′(x∗)−1F (x0)‖ = ‖
∫ 1

0

F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ‖
≤ Ke0 (2.30)

Next, we show that A−1
0 ∈ L(Rm, Rm). Using conditions (C2), (C3), (C5) we get

in turn that

‖(−F ′(x∗))−1(A0 − F ′(x∗))‖ = ‖(−F ′(x∗))−1(DF (x0) − F ′(x0) + F ′(x∗))‖
≤ ‖F ′(x∗)−1DF (x0)‖ + ‖F ′(x∗)−1(F ′(x0) − F ′(x∗))|
≤ d4 + L0‖x0 − x∗‖
= p0(e0) < 1. (2.31)

It follows from (2.31) that A−1
0 ∈ L(Rm,Rm) and

‖A−1
0 F ′(x∗)‖ ≤ 1

1 − p0(e0)
. (2.32)
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Hence y0, z0, w0 and x1 exist by method (1.4) for n = 0. We also have by (2.31)
the estimate,

‖F ′(x∗)−1(A0 − F ′(x0))‖ ≤ ‖F ′(x∗)−1(A0 − F ′(x∗))‖
+ ‖F ′(x∗)−1(F ′(x0) − F ′(x∗))‖

≤ p0(e0) + L0‖x0 − x∗‖
= p(e0). (2.33)

By (1.4) for n = 0, (2.9)–(2.12), conditions (C1)–(C4) (2.28) and (2.30):

‖y0 − x∗‖ = ‖x0 − x∗ − F ′(x0)
−1F (x0‖

+ ‖(F ′(x0)
−1 − A−1

0 )F (x0)‖

≤ ‖F ′(x0)
−1F ′(x∗)‖‖

∫ 1

0
F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗)) − F ′(x0))(x0 − x∗)dθ‖

+ ‖F ′(x0)
−1F ′(x∗)‖‖F ′(x∗)−1(A0 − F ′(x0))‖‖F ′(x∗)−1F (x0)‖

≤ Le20
2(1 − L0e0)

+
Kp(e0)e0

(1 − L0e0)(1 − p0(e0))

= g1(e0)e0 < e0 < r4, (2.34)

so (2.23) holds for n = 0 and y0 ∈ U(x∗, r4). From (2.30) (for y0 = x0), we have

‖F ′(x∗)−1F (y0)‖ ≤ K‖y0 − x∗‖. (2.35)

Next, we need an estimate on ‖B0‖. Using the definition of B0 we can write in
turn that

B0 = −I +
1
2
A−1

0 (F ′(y0) + F ′(x0) − DF (x0))

= A−1
0 [F ′(x0) − DF (x0) + 1/2(F ′(y0) + F ′(x0) − DF (x0))]

=
1
2
A−1

0 [3(F ′(x0) − DF (x0)) + F ′(y0)]. (2.36)

Using conditions (C4), (C5), (2.32) and (2.36) we have that

‖B0‖ ≤ 1
2
‖A−1

0 F ′(x∗)‖[3‖F ′(x∗)−1F ′(x0)‖
+ ‖F ′(x∗)−1F ′(y0)‖ + 3‖F ′(x∗)−1DF (x0)‖]

≤ 4K + 3d4
2(1 − p0(e0))

. (2.37)

In view of (1.4) for n = 0, (2.9), (2.13) and (2.35)–(2.37), we have that

‖z0 − x∗‖ ≤ ‖y0 − x∗‖ + ‖B0‖‖A−1
0 F ′(x∗)‖‖F ′(x∗)−1F (y0)‖

≤ ‖y0 − x∗‖ +
K(4K + 3d)

2(1 − p0(e0))2
‖y0 − x∗‖

≤ [1 +
K(4K + 3d)

2(1 − p0(e0))2
]g1(e0)e0

= g2(e0)e0 < e0 < r4, (2.38)
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showing z0 ∈ U(x∗, r4) if n = 0. Then, we get by (2.30) (for z0 = x0) that

‖F ′(x∗)−1F (z0)‖ ≤ K‖z0 − x∗‖. (2.39)

Moreover, by (2.9), (2.14), (2.38) and (2.39), we have that

‖w0 − x∗‖ ≤ ‖z0 − x∗‖ +
K(4K + 3d)‖z0 − x∗‖

2(1 − p0(e0))2

≤ [1 +
K(4K + 3d)

2(1 − p0(e0))2
]g2(e0)e0

= g3(e0)e0 < e0 < r4, (2.40)

which shows (2.25), for n = 0 and w0 ∈ U(x∗, r4). Then, we have by (2.30) (for
w0 = x0) that

‖F ′(x∗)−1F (w0)‖ ≤ K‖w0 − x∗‖. (2.41)

In view of (2.9), (2.15), (2.37), (2.39) and (2.40), we get that

‖x1 − x∗‖ ≤ ‖w0 − x∗‖ +
K(4K + 3d)‖w0 − x∗‖

2(1 − p0(e0))2

≤ [1 +
K(4K + 3d)

2(1 − p0(e0))2
]g3(e0)e0

= g4(e0)e0 < e0 < r4, (2.42)

so (2.26) holds, for n = 0 and x1 ∈ U(x∗, r4). Substitute x0, y0, z0, w0, x1 by xk,
yk, zk, wk, xk+1, respectively above we terminate the induction By ‖xk+1−x∗‖ <
‖xk−x∗‖ < r4, we deduce that xk+1 ∈ U(x∗, r4) and limk→∞ xk = x∗. Consider,
Q =

∫ 1

0
F ′(æa+θ(x∗ −æa)dθ for some æa ∈ U1 with F (æa) = 0. By (2.10), (C8)

and we obtain that

‖F ′(x∗)−1(Q − F ′(x∗))‖ ≤
∫ 1

0

L0‖æa + θ(x∗ − æa) − x∗‖dθ

≤ L0

∫ 1

0

(1 − θ)‖x∗ − æa‖dθ ≤ L0

2
T < 1, (2.43)

and we get x∗ = æa from Q is invertible, 0 = F (x∗) − F (æa) = Q(x∗ − æa).
Next, we present the corresponding results for method (1.3) and

method (1.2), respectively are given by specializing Theorem 21.

Corollory 22. Assume conditions (C3) hold. Then, {xn} ⊂ U(x∗, r3),
lim
n→∞{xn} = x∗, and for x0 ∈ U(x∗, r3) − {x∗},

‖yn − x∗‖ ≤ g1(en)en < en < r3,

‖zn − x∗‖ ≤ g2(en)en < en,

‖xn+1 − x∗‖ ≤ g3(en)en,

Moreover, x∗ ∈ U1 is unique as a solution of F (x) = 0.
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Corollory 23. Assume conditions (C2) hold. Then, {xn} ⊂ U(x∗, r2),
lim
n→∞{xn} = x∗, and for x0 ∈ U(x∗, r2) − {x∗},

‖yn − x∗‖ ≤ g1(en)en < en < r2,

‖xn+1 − x∗‖ ≤ g2(en)en < en,

Moreover, the limit point x∗ is the only solution of equation F (x) = 0 in U1.

Remark 24. 1. By (C2) and

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x) − F ′(x∗)) + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x) − F ′(x∗))‖ ≤ 1 + L0‖x − x∗‖,

(C4) is not needed if K is chosen for each t ∈ [0, 1
L0

), as

K(t) = 1 + L0t

or as
K = K(t) = 2.

2. Not using higher than one derivatives, COC and ACOC are given by

μ = ln
(‖xn+1 − x∗‖

en

)
/ ln

( ‖xn − x∗‖
‖xn−1 − x∗‖

)

or

μ1 = ln
(‖xn+1 − xn‖

‖xn − xn−1‖
)

/ ln
( ‖xn − xn−1‖

‖xn−1 − xn−2‖
)

,

respectively. This way we obtain in practice the order of convergence in a way
that avoids the bounds involving estimates using estimates higher than the
first Fréchet derivative of operator F (Table 1).

3 Numerical Illustrations

The results are tested using three examples

Example 31. Considering again example of the introduction one obtains, L =
L0 = 146.6629073, and K = 2. So, we obtain d = 0, rp0 = 0.0068, rp =
0.0034, d1 = 0.3333, d2 = 0.0151, d3 = 0.0061, d4 = 0.0014.

Notice that the conditions in [5,6] are not satisfied.

Table 1. Radius of convergence of Example 31

r1 r2 r3 r4 rA

L = L0 = 146.6629073,K = 2. 0.0011 0.0002 0.0003 0.0003 0.0045
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Example 32. Set Y = X = R
3, x∗ = (0, 0, 0)T . Introduce F on D by

F (u) = (ev1 − 1,
e − 1

2
v2

2 + v2, v3)T ,

for u = (v1, v2, v3)T . Then,

F ′(u) =

⎡
⎣ev1 0 0

0 (e − 1)v2 + 1 0
0 0 1,

⎤
⎦ .

So, L0 = e−1,K = L = e
1

L0 , if D = Ū(0, 1) leading to d = 0, rp0 = 0.5820, rp =
0.2910, d1 = 0.3585, d2 = 0.0210, d3 = 0.0099, d4 = 0.0026.

The parameters with L0 = L = K = e are d = 0, rp0 = 0.3679, rp =
0.1839, d1 = 0.2689, d2 = 0.0061, d3 = 0.0015, d4 = 0.0002. Hence, by Table 2,
rR = 0.3725 ≤ rA.

Table 2. Radius of convergence of Example 32

r1 r2 r3 r4 rA

L0 = e − 1,K = L = e
1

L0 , 0.0997 0.0172 0.0297 0.0299 0.3827

L0 = L = K = e 0.0475 0.0038 0.0071 0.0071 0.2453

Example 33. Let X = Y = C[0, 1], F ′′(x) = B(x), where

F (ψ)(x) = ψ(x) − 5
∫ 1

0

xτψ(τ)3dτ. (3.44)

hence, we obtain

F ′(ψ(λ))(x) = λ(x) − 15
∫ 1

0

xτψ(θ)2λ(τ)dτ, for each λ ∈ D.

Then, we have for x∗ = 0, D = Ū(0, 1) that L0 = 15, L = 30, so d = 0, rp0 =
0.0667, rp = 0.0333, d1 = 0.3333, d2 = 0.0151, d3 = 0.0061, d4 = 0.0014 and
with L0 = L = 30,K = 2 are d = 0, rp0 = 0.0333, rp = 0.0167, d1 =
0.3333, d2 = 0.0151, d3 = 0.0061, d4 = 0.0014. Notice that in Table 3 the radius
of convergence is larger under our approach. Moreover, rR = 0.0222 ≤ rA.

Table 3. Radius of convergence of Example 33

r1 r2 r3 r4 rA

L0 = 15, L = 30, 0.0099 0.0014 0.0025 0.0025 0.0333

L0 = L = 30,K = 2 0.0053 0.0008 0.0013 0.0013 0.0222
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