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Abstract

In this chapter, the stepwise development of carcinogenesis has been addressed
along with biochemical aspects of cancer cells. Different physical, chemical,
viral, and other genetic causes of cancer and deregulation of different molecular
pathways associated with cancer are also discussed. It was found that alterations
of molecular pathways like cell fate, cell survival, and genome maintenance are
important for the development of cancer and their key regulatory genes have been
identified as the molecular targets to diagnose or understand the treatment
procedure for cancer. However, it was found that different natural compounds
could prevent the process of carcinogenesis. So precisely, it can be suggested that
healthy lifestyle and food habit till date could help an individual to stay away
from this dreadful disease. However, there has been reasonable advancement in
the molecular targeted treatment procedure to treat the patients at different stages
of cancer.
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9.1 Introduction

Cancer has now become one of the most dreadful diseases and the main cause of
human death after heart diseases. It is hard to find any family without an incidence of
cancer. This chapter is concerned with how a normal cell or a normal stem cell is
acquiring some properties to behave abnormally and irreversibly to become a cancer
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stem cell. The biochemical cause, natural prevention, and molecular therapies of
cancer have also been discussed in this chapter.

In general, the characteristic features of human cancer cell are dependent upon the
acquisition of the following capabilities: persistent cell division, escape from growth
suppression, restriction of cell death, unlimited replicative potential, induction of
angiogenesis, alteration of cellular metabolism, and escape from immune destruction
(Hanahan and Weinberg 2011) (Fig. 9.1). Most of the above features are either
inherited or acquired somatically by stepwise accumulation of alterations in the
genes associated with cancer such as oncogenes, tumor suppressor, and stability
genes (Table 9.1), each conferring a specific growth advantage to the cell, which
leads to gradual conversion of normal cell into cancer cell (Romero-Garcia et al.
2011; Karakosta et al. 2005; Hanahan and Weinberg 2000).

Among these different hallmarks, the deregulation of cellular metabolism is the
most important biochemical change during carcinogenesis. The main characteristic
features of cancer cells compared with normal cells are to use aerobic glycolysis
(Warburg effect), i.e., to use glycolysis pathway even in the abundance of oxygen.
Healthy cells use anaerobic glycolysis (Phan et al. 2014). In cancer cells, glucose
uptake also increased due to upregulation of glucose transporters mainly Glut1,
Glut2, Glut3, and Glut4 (DeBerardinis and Cheng 2010). c-Myc and HIF-1α are
important among oncogenes to play critical role in induction of some key glycolytic
enzymes like HK2, PFK1, TPI1, and LDHA in tumors due to the presence of
consensus Myc and HIF-1α-binding motifs in their promoter region (Vander Heiden
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Table 9.1 List of genes associated with cancer

Genes
associated
with cancer Definition

Activation/
inactivation Example References

Oncogenes Initially, these
genes were
identified as genes
those were carried
by viruses that
cause
transformation of
their target cells.
These genes
termed as “proto-
oncogene” are
essential for
normal cellular
functions like
controlling cellular
proliferation,
differentiation,
and apoptosis

Mutation,
chromosomal
translocation, gene
amplification, and
viral insertions
altered their
normal function to
gain-of-function
phenotype leads to
constitutive
activation

Transcription
factors
[e.g., MYC, FOS,
JUN gene family],
chromatin
remodelers [e.g.,
SWI/SNF
Complex], growth
factors [e.g., FGF,
PDGF, EGF],
growth factor
receptors [e.g.,
EGFR, PDGFR,
VEGFR], signal
transducers [e.g.,
ABL, SRC, RAF,
RAS gene family,
PI3K], and
regulators of cell
cycle and cell
death [e.g., cyclin
family, MDM2,
BCL-2, BCLXL]

Croce
(2008),
Vogelstein
and Kinzler
(2004)

Tumor
suppressor
genes (TSGs)

These genes are
required to
suppress tumor
formation.

Inactivated by
(a) loss-of-
function
mutations;
(b) Complete or
part deletion of
these genes;
(c) Reduced
expression due to
promoter
hypermethylation;
(d) Deregulation of
imprinting; and
(e) alternate
splicing

TSGs known so
far are involved in
all major cellular
physiological
processes, e.g.,
cell cycle, DNA
damage repair
pathways, cell
signaling
pathways [TP53,
RB, LIMD1,
RBSP3, APC,
ATM, ATR,
MSH2, MLH1,
BRCA1, BRCA2,
BUB1, SMAD4,
PTEN,
phospholipase A2,
etc.]

Sharp et al.
(2004),
Kashuba
et al.
(2009),
Berger et
al. (2011)

(continued)
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Table 9.1 (continued)

Genes
associated
with cancer Definition

Activation/
inactivation Example References

Cancer
susceptibility
genes

The extent
of susceptibility to
cancer is often
determined by the
degree of
penetrance of the
genes, i.e., high
penetrance and
low penetrance.
The alterations of
the genes can be
inherited via
germline or can be
acquired
somatically in
sporadic
malignancies.
High penetrance
genes often result
in multiple cases
of cancer among
first- and second-
degree relatives,
generally at young
age.
Nonhereditary
sporadic cancers
can also develop in
genetically
predisposed
individuals
resulting from
alterations of
several low
penetrance genes

Inactivated by
(a) loss-of-
function
mutations;
(b) Complete or
part deletion of
these genes;
(c) Reduced
expression due to
promoter
hypermethylation

High penetrance
genes: BRCA1,
BRCA2, etc.
Low penetrance
genes: PTEN,
TWIST1, etc.

Vogelstein
and Kinzler
(2004)

Replication
fidelity genes

There is a definite
life span for each
type of eukaryotic
cells, which is
determined by the
number of
telomeric repeats
on end of
chromosome.
After successive
rounds of
replication, the

In majority of
human tumors,
activation of
telomerase
resulting in
acquisition of
replicative
immortality is an
essential step

Telomerase is an
example of this
class of gene

Hanahan
and
Weinberg
(2011)

(continued)
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et al. 2009; DeBerardinis et al. 2008). HIF-1α and c-Myc are mainly functional in
hypoxia and normoxia, respectively (Dang 2007). This synchronization is quite
important for continuous energy supply for cell proliferation and biosynthesis for
glycolysis.

Moreover, pyruvate, the end product of glycolysis, is converted into lactate in
tumor cells instead of acetyl-CoA in normal cells due to overexpressed lactate
dehydrogenase. The role of lactate is very important for creating tumor microenvi-
ronment (Vander Heiden et al. 2009). Lactate restricts intracellular oxidative stress
by reducing reactive oxygen species (ROS) in cancer cells and induces tumors
survival. The pH of extracellular microenvironment is reduced by lactate accumula-
tion, and it helps metalloproteases to induce invasion and metastasis by breaking
down extracellular matrix (Phan et al. 2014).

Glycolytic metabolites, e.g., glucose-6-phosphate and dihydroxyacetone phos-
phate, could be used up in different other metabolic pathways like nucleotide and
lipid biosynthesis pathway. Thus, glycolysis plays an important role in cell prolifer-
ation and tumor growth promotion.

9.2 Causes of Cancer

Multiple factors influence carcinogenesis. Among them, environmental factors,
genetic constitution of an individual, diet, and lifestyle all share equal importance
for causation of cancer. Broadly, environmental factors can be divided into physical,
viral (Carrillo-Infante et al. 2007; Martin and Gutkind 2008), and chemical factors
(Parsa 2012). Genetic constitution of an individual also determines the effectiveness
of the environmental factors for pathogenesis of cancer. The genetic agents that
influence carcinogenesis are shown in Table 9.2.

Table 9.1 (continued)

Genes
associated
with cancer Definition

Activation/
inactivation Example References

telomere repeats
shorten, ultimately
triggering
senescence. Thus,
telomere controls
life span of a cell
by replication

Note: EGF epidermal growth factor, EGFR epidermal growth factor receptor, FGF fibroblast
growth factor, PDGF platelet-derived growth factor, PDGFR platelet-derived growth factor recep-
tor, VEGFR vascular endothelial growth factor receptor
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Table 9.2 List of agents influencing carcinogenesis

Compounds Main source Type of cancer

Physical carcinogens
Ultraviolet
(UV) radiation (UVA,
UVB, UVC rays)

Sun light, tannin, lamps Skin

Ionizing radiation Cosmic ray, radioactive decay Leukemia, skin

Viral carcinogens
Epstein–Barr virus Oral transfer of saliva, genital

secretions
Burkitt’s lymphoma, Hodgkin’s
lymphoma, nasopharyngeal
carcinoma

Helicobacter pylori Stomach Stomach

Hepatitis B, hepatitis C Blood transfusion, body fluid Liver

Human immune
deficiency virus (HIV-1)

Blood transfusion, body fluid Cervical cancer, Kaposi
sarcoma, non-Hodgkin
lymphoma, etc.

Human papillomavirus
(HPV 16, HPV 18, HPV
31, HPV 33, etc.)

Sexually transmitted infection Oral cancer, cervical cancer, etc.

Chemical carcinogens
Polycyclic aromatic hydrocarbon (PAH)

7,12-dimethylbenz
[a]-anthracene (DMBA)

Environmental pollutant,
vehicles exhaust

Skin, lung, stomach

Benzo(a)pyrene (BaP) Tobacco smoke, grilled meat,
coal tar, smoke from the
burning of fossil fuels, coal tar

Lung, skin

Benzo(g)chrysene (BgC) Coal tar Skin

3-methylcholanthrene
(MCA)

Burning organic compounds Prostate cancer, sarcoma

20-methylcholanthrene
(MCA)

Research tool Sarcoma, transformation of
fibroblast

N-Nitroso compounds

4-(methyl nitroso amino)-
1-(3-pyridyl)-1-butanone
(NNK)

Cigarette smoke, fried,
foodstuffs, meat, beer, fish,
latex product

Lung, nasal cavity, liver, oral,
and pancreas

N0-nitroso nornicotine
(NNN)

Lung, oral, esophagus

4-(methylnitrosamino)-1-
(3-pyridyl)-1-butanol
(NNAL)

Lung, nasal cavity, liver, and
pancreas

N-Nitrosodimethylamine
(NDMA)

Liver, gastric, esophagus

N-Nitrosodiethylamine
(NDEA)

Liver, gastric, esophagus

N-methyl-N-nitrosourea
(MNU)

Not used Bone, brain, pancreas, blood

(continued)
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9.3 Development of Cancer

A series of genetic and epigenetic alterations progressively convert the normal cell to
a premalignant state and finally a cancerous state (Yokota and Sugimura 1993).
Different proposed models are there to understand the whole process (Fig. 9.2).

Thus, to understand the genetic and molecular mechanism of cancer develop-
ment, Fould (1957) was the first to propose a progression model stating that cancer
was due to phenotypic manifestation of several genetic damages (Fig. 9.2) followed
by Nowell’s clonal evolution model of neoplastic progression, which was continu-
ous appearance of genetically variant cells within a tumor of monoclonal expansion
that could compete with each other on the basis of highest cellular growth rate
(Fig. 9.2) (Nowell 1976). Then, it was proposed by Ref. (Bodmer 1997; Farber and
Cameron 1980; Scrable et al. 1990) that normal cell progressing to fully malignant
phenotype might be due to a nested set of aberrations (Fig. 9.2). Then, Ilyas et al.

Table 9.2 (continued)

Compounds Main source Type of cancer

Natural carcinogen
Aflatoxin B1 Mycotoxin from Aspergillus

flavus (found in contaminated
peanut, grains)

Liver

Asbestos Thermal insulation Lung, mesothelioma,
gastrointestinal, colorectal

Metals
Arsenic (As) Natural ores, alloys,

groundwater
Skin, lung, liver

Cadmium (Cd) Natural ores, batteries,
pigment, ceramics

Lung, prostate, kidney

Chromium
(Cr) (hexavalent)

Groundwater, tap water Lung

Lead (Pb) Battery, smelter, metal
products, paint

Lung, bladder

Nickel (Ni) Natural ores, electrodes Lung, nasal cavity

Different dyes Pigment, coloring oil, textiles,
paints, printing inks, paper, and
pharmaceuticals

Liver, lung, bladder, stomach,
kidney, oral, larynx, esophagus,
liver, gallbladder, pancreas

Ethanol Alcoholic beverages Liver, colon, oral, breast

Others
Acetaldehyde Alcoholic beverages Liver, colorectal

Ethylene oxide Textile, detergent, industry,
cosmetics, sterilant for food

Leukemia, stomach, pancreas

Formaldehyde Cigarette smoke, air pollution,
fungicide, germicide, etc.

Lung, leukemia, brain cancer,
etc.

Ortho-toluidine Synthetic chemical used too Urinary bladder cancer, liver

Vinyl chloride Petroleum-derived chemicals Liver cancer
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(1999) explained tumor progression through nexus model (Fig. 9.2), which
explained that tumor developed by nexus of interconnecting mutations and selection
pressures applies at each point. They also proposed an inverted pyramid model
(Fig. 9.2), where one mutation could predict the selection of next mutation and
their interaction ensure optimal activity of both. Further studies lead to the develop-
ment of clonal genetic model and epigenetic progenitor model of cancer progression
(Baylin and Ohm 2006) (Fig. 9.2). Clonal genetic model was supported by induction
of oncogenes and inactivation of tumor suppressor. Epigenetic model stated that
cancer developed through three steps: an epigenetic alteration of progenitor cells; an
initiating mutation along with genetic and epigenetic plasticity; and finally, the
advanced somatic evolution model was proposed by Vogelstein et al. (2013). This
model stated that mutation of certain gene associated for the development of
carcinoma from normal cell was due to somatic evolution (Fig. 9.2).

Clinically, human tumors can be divided into three groups: premalignant lesions,
primary tumors, and metastases (Yokota and Sugimura 1993). The process of
carcinogenesis passes through three major sequential steps: (a) initiation,
(b) promotion, and (c) progression (Fig. 9.3).

9.3.1 Initiation

The first step involves irreversible changes incorporated into the cellular genetic
material. If cellular repair mechanism fails to detect damaged DNA, the base
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2006)

Fig. 9.2 Development of different predicted models explaining stage-wise progression of cancer
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Fig. 9.3 Schematic diagram showing stepwise progression of cancer
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sequence would be modified (insertion/deletion/ modification) in the next round of
replication. Ultimately, transcription and translation of this modified template would
synthesize a modified protein with altered function. The initiated cell has
proliferative stimulus, enough to generate clones of modified cell, though this is
unable to generate malignant cell population (Yokota and Sugimura 1993; Feinberg
et al. 2006). However, repeated exposure to initiating agent with certain frequency
might lead to clonal expansion of mutated cells.

9.3.2 Promotion

The initiated cells have limited proliferative potential, which is not sufficient for
continuation of the carcinogenesis process. Initiation followed by promotion
provides an impact for further progress of the carcinogenic process. Tumor promo-
tion involves genetic activation or inactivation to stimulate the proliferative potential
of initiated cells, leading to the development of multiple benign tumors or
hyperplastic lesions. Promoting activity can be achieved by alteration in normal
signal transduction pathway with enhanced rate of transcription and translation of
genes responsible for cellular proliferation.

9.3.3 Progression

This final step of carcinogenesis involves conversion of benign tumors to malignant
neoplasms that is able to invade adjacent tissues resulting in metastasis (Slaga 1983;
DiGiovanni 1992). Specific characteristics of metastatic cells like increasing cellular
proliferation, reprogramming cellular metabolism, alteration in hormonal response,
and loss of cellular differentiation, decreased antigenicity and acquisition of drug
resistance provide selective growth advantage for tumor cell population (Nowell
1986). Multiple host tissue factors, for example, proteolytic enzymes, activators of
plasminogen, tumor angiogenic factor, platelet-agglutinating capacity, and different
membrane molecules including laminin, fibronectin, and major histocompatibility
complex gene products, play important role in tumor progression (Welch et al.
1984).

9.4 Molecular Pathways Associated with Cancer

Stepwise accumulation of genetic and epigenetic changes leads to neoplastic con-
version of a cell (Yokota and Sugimura 1993). Collections of cellular pathways are
altered during the process of carcinogenesis. A brief description of a few pathways is
given in Fig. 9.4. The pathways of the groups seem to have cooperativity to have
selective growth advantage at each stage of tumor development.
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9.4.1 Cell Fate

Alteration in cell division and differentiation due to acquired growth advantage leads
to tumor progression. These self-renewal signal transduction pathways, namely Wnt,
Hedgehog Notch, and Bmi-1, are important for the determination of fate of the stem
cells (Lei et al. 2017; Perrimon et al. 2012; Hoffmann 2012). Most of these pathways
are frequently deregulated in several cancers and most importantly within the
cancers that possess stem-like properties (Curtin and Lorenzi 2010). Also, the key
genes involved in chromatin modification and transcription pathways belong to this
category (Fig. 9.4).

9.4.1.1 Stem Cell Self-Renewal Pathway

WNT Pathway
This pathway is a well-known self-renewal pathway regulating embryonic develop-
ment and tissue homeostasis and contributes to control the cell proliferation, differ-
entiation, and epithelial–mesenchymal transition (Sarkar et al. 2010). β-catenin is the
main effector molecule of this pathway. In the absence of active Wnt ligands,
β-catenin forms complex with scaffold proteins axin and adenomatosis polyposis
coli (APC). Then, β-catenin is phosphorylated by casein kinase Iα (CKIα) and
glycogen synthase kinase (GSK-3β) at N-terminal serine/threonine residues sequen-
tially followed by ubiquitination and proteasomal degradation. In the presence of
Wnt ligand, Wnt binds to frizzled receptor and LRP co-receptor leading to the
inhibition of β-catenin–axin–APC degradation complex formation resulting in
release of β-catenin from the complex. The cytoplasmic-free β-catenin then either
binds to E-cadherin at membrane or phosphorylated at tyrosine-654 residue by
activated receptor tyrosine kinases (like EGFR) followed by phosphorylation at
serine 675 by protein kinase A and translocate to the nucleus. In the nucleus,
β-catenin complexes with T-cell/lymphoid enhancer transcription factors (TCFs/
LEF) and activates the transcription of Wnt target genes such as c-Myc, cyclin D1,

Stress
related
genes

DNA
Damage
control

WNT, Hedgehog,
Notch, chromatin

modification

Cell cycle/ apoptosis,

RAS, PI3K, STAT,

MAPK, TGF-β

Cell Fate Cell Survival Genome
maintenance

Molecular 
stress pathway

Selective growth advantage

Cancer

Fig. 9.4 Cellular pathways associated with cancer development (Edited and modified from Ref.
(Vogelstein et al. 2013))
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CD44, and EGFR. Several secreted or intracellular proteins like secreted frizzled
receptor proteins (sFRPs) negatively regulate Wnt signaling by inhibiting Wnt
ligands binding to receptor (Sarkar et al. 2010; van Veelen et al. 2011).

Aberrant activation of the Wnt/β-catenin pathway due to mutation of β-catenin
gene (CTNNB1) at exon 3 and/or inactivation of APC, axin, or WNT antagonists
SFRP1 and SFRP2 by mutation/deletion/ promoter hypermethylation could lead to
nuclear β-catenin accumulation and transcriptional activation of WNT target genes
like c-Myc and cyclin D1 as seen in different cancers (Sarkar et al. 2010).

Hedgehog (Hh) Pathway
The Hedgehog self-renewal pathway is an important regulator of cell proliferation,
differentiation, and polarity. Alteration in this pathway leads to numerous human
diseases including cancer (Sarkar et al. 2010; Chen and Jiang 2013). The effector
molecule of this pathway is Gli. When Hh ligand is absent, PTCH receptor inhibits
the transmembrane receptor-like protein smoothened (SMO) and Gli2/3 cytoplasmic
form complex with Costal2 (Cos2), Fused (Fu) and Suppressor of fu (Sufu) leading
to sequentially phosphorylation by PKA, CK1, and GSK-3β at several serine/
threonine sites of Gli to form truncated repressor (Gli-r) (Sarkar et al. 2010; Chen
and Jiang 2013). In the presence of Hh ligand, PTCH receptor activates SMO to
engage COS2/Fu complex resulting in accumulation of activated full-length Gli that
could enter into nucleus and transcribe several Hh target genes like Cyclin D1,
c-Myc, Bcl2, Gli1, and PTCH (Chen and Jiang 2013; Sarkar et al. 2010).

Reduced expression of antagonists of the pathways like PTCH, HHIP, and SUFU
due to deletion/mutation/promoter methylation and high expression of SHh, SMO,
and Gli1 resulting in increased expression of target genes are reported in several
cancers (Moeini et al. 2012; Chen and Wang 2015).

Notch Pathway
This signal is triggered by binding of ligand on the membrane of one cell (delta/
delta-like/jagged/serrate) to a receptor (NOTCH1/2/3/4) on the membrane of the
contacting cell leading to proteolytic cleavage of NOTCH receptors to release the
cytoplasmic tail of NOTCH, i.e., intracellular domain of NOTCH (NICD). NICD
translocates to the nucleus and associates with transcription factors p300, master-
mind protein (MAM), and recombination signal-binding protein for
κ-immunoglobulin kappa J region (RBPJκ) in mammals to turn on transcription of
target genes [hairy/enhancer of split (HES) family of transcription factors] (Sikandar
et al. 2010).

Alteration of NOTCH signaling was reported to be associated with several
cancers like mutations in NOTCH1 in non-small cell lung cancer/oral cancer and
upregulation of NOTCH2 in colorectal cancer (Andersson et al. 2011).

BMI Pathway
Self-renewal of hematopoietic stem cells takes place by this pathway. BMI1 (B-cell-
specific Moloney murine leukemia virus integration site 1) is a polycomb ring finger
oncogene. It promotes cell proliferation by transcriptional inhibition of cyclin-
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dependent kinase inhibitor INK4A (p16) and p19ARF (p14) (Park et al. 2003).
Overexpression of BMI-1 has been previously reported in several cancers including
gastric, ovarian, breast, head and neck, pancreatic, lung, liver, and endometrial
carcinoma (Wang et al. 2015).

9.4.1.2 Chromatin Modification
Chromatin modification takes place mainly by DNA methyltransferases (DNMTs:
DNMT1, DNMT3a, DNMT3b), histone acetyltransferase (HAT), histone
deacetylases (HDACs), and histone methylase (HMT).

DNMT1 is a predominant methyltransferase for CpG methylation in
hemimethylated DNA (Lopez-Serra et al. 2006). Overexpression of DNMT1 was
reported in several cancers, for example, pancreatic cancer, pediatric gastric cancer,
and retinoblastoma (Li et al. 2011; Ma et al. 2017; Qu et al. 2010). Among HDACs,
HDAC 1, HDAC 2, HDAC 5, and HDAC 7 could play important roles in carcino-
genesis (Miller et al. 2011; Urbich et al. 2009; Lei et al. 2017). Altered expressions
of different HDACs have been reported in various cancers. HDAC 1 and HDAC
2 were found to be upregulated in colon cancer and gastric cancer, respectively
(Miller et al. 2011). HDACs and histone acetyltransferases could bind to DNA
indirectly through multiprotein complexes like co-repressors and co-activators
(Sengupta and Seto 2004). Histone methylases (HMTs) have important role in
cancer development (Albert and Helin 2010). HMTs could modify histones at
specific Lys and Arg residues to alter their functions (Albert and Helin 2010). In
addition, upregulation of histone demethylases has been seen in different cancers
and suggested to be associated with chemoresistance (Yang et al. 2017).

9.4.2 Cell Survival

Cell survival is mainly controlled by several signaling proteins like EGFR, HER2,
FGFR2, PDGFR, TGFbR2, MET, KIT, RAS, RAF, PIK3CA, and PTEN through
cell cycle and apoptosis (Vogelstein et al. 2013) (Fig. 9.4). Progression through the
cell cycle can be directly controlled by driver genes that directly regulate the cell
cycle or apoptosis, such as P16,MYC, and BCL2, which are very frequently mutated in
cancers. Inactivating mutations in VHL gene could enhance cell survival and stimulate
angiogenesis through secretion of vascular endothelial growth factor (VEGF).

9.4.2.1 Alteration of Cell Cycle
Cell cycle is a highly ordered series of events, responsible for cellular duplication.
Different extracellular signals, for example, growth factor binding, hormonal
responses, cytokines, supply of nutrients, and anchorage attachments, stimulate a
cell to divide (Michalides 1999). The process of cell cycle is highly regulated by
sequential activation and degradation of the cyclins (cyclin D, cyclin E, cyclin A,
and cyclin B), the cyclin-dependent kinases (CDKs: serine/threonine kinases;
CDK1, CDK2, CDK4, and CDK6), and their inhibitory proteins known as cyclin-
dependent kinase inhibitors [CKIs: INK (p16, p15) and KIP (p21, p27, and p57)
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family members] (Michalides 1999). Each of these cyclin–CDK complexes, together
with CKIs, is responsible for controlling cell cycle progression through checkpoints.
Induction of DNA damage results in activation of cell cycle checkpoint proteins to
arrest cell cycle and make necessary DNA repair or elimination of damaged cells by
apoptosis (Hartwell and Weinert 1989). The eukaryotic cell cycle is secured by
4 checkpoints at G1/S phase; S phase; G2/M phase; and M phase (Tyson and Novak
2008). Deregulations of these checkpoints are important events during
carcinogenesis.

9.4.2.2 Alteration of Apoptosis Pathway
Programmed cell death or apoptosis is one of the mostly altered pathways during
carcinogenesis. This is an essential cellular event during embryonic development,
immune system function, and control of tissue homeostasis (Vaux and Korsmeyer 1999).
Programmed cell death follows two alternative pathways depending on death-inducing
cellular response: (1) extrinsic pathway and (2) intrinsic pathway (Gupta 2003).

Extrinsic pathway is activated by binding of ligands to death receptors [tumor
necrosis factor (TNF) receptor superfamily, including Fas/CD95, TNFR1, DR3,
DR4, and DR5] on the cell surface. Upon ligation, this receptor recruits adaptor
molecule (FADD, TRADD) by its cytoplasmic death domain (DD). The death
effector domain (DED) in adaptor further recruits procaspase-8. Procaspase-
8 (cysteinyl-aspartate-specific proteases) cleaves to form active caspase-8, which
further activates effector caspase-3 to execute apoptosis process.

Intrinsic pathway is mitochondria-mediated pathway and is initiated by cellular
stress (UV radiation, cytotoxic drug application) that alters the mitochondrial mem-
brane potential. Mitochondrial membrane permeability is controlled by Bcl-2 family
proteins (Bcl-2, Bax, Bad, Bak, Bcl-xL, Bid) (Walensky 2006). Cellular stress
response mediated by p53 or c-Myc activates pro-apoptotic protein bax, which is
translocated from cytosol to mitochondrial membrane to form dimer. During apo-
ptosis, Bad is dephosphorylated and translocated to the outer membrane of
mitochondria. Otherwise, the phosphorylated form of Bad is sequestered within
cytoplasm. On outer membrane, Bad heterodimerizes with Bcl-xL to block its
anti-apoptotic function (Walensky 2006). Bak also loosely associate with outer
membrane. Bak forms homo-oligomers within mitochondrial membrane resulting
in release of cytochrome-c in cytosol and binds with APAF1 (apoptotic protease-
activating factor-1) to form apoptosome complex. Apoptosome activates procaspase-9
(initiator caspase), and subsequent caspase cascades to precede apoptosis (Pollack and
Leeuwenburgh 2001; Okada andMak 2004). Several other proteins were also released
from mitochondria. For example, Smac (second mitochondria-derived activator of
caspases) and DIABLO bind to IAPs (inhibitors of apoptosis proteins) and AIF
(apoptosis-inducing factor). Translocation of AIF to nucleus induces chromatin con-
densation and DNA fragmentation. Deregulation in apoptosis pathway is a hallmark
feature of carcinogenesis (Hanahan and Weinberg 2011).
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9.4.3 Genome Maintenance

Alterations in the genes that control DNA damage response pathway (Vogelstein
et al. 2013) (Fig. 9.4) allow cells to undergo chromosomal alterations like transloca-
tion, inversion, and duplication to survive and divide.

Direct reversal: This is the most simple DNA repair pathways in human that
directly reverse the O6-methylguanine (O6-mG) (frequently mutated by alkylation)
by the product of the MGMT gene (O6-methylguanine DNA methyltransferase)
(Margison and Santibanez-Koref 2002). Cellular metabolism also produces low
levels of O6-mG lesion in guanine residues of DNA molecule (Sedgwick 1997).

Base excision repair (BER): If the DNA bases are damaged by several cellular
processes like oxidation, methylation, and deamination, this multistep pathway plays
active role to detect and remove the damaged bases. This pathway is of two types
“short patch” and “long patch.” The former involves replacement only of the
damaged base, whereas the later replaces a stretch of about 2–10 nucleotides
including the damaged base (Memisoglu and Samson 2000).

Nucleotide excision repair (NER): This repair system helps to pyrimidine dimers
caused by the UV component of sunlight, bulky chemical adducts, DNA intrastrand
cross-links, and some forms of oxidative damage (Hess et al. 1997).

Double-strand break repair (DSB): This type of repair pathway is the most
important to detect the problem of central dogma of a cell, i.e., replication and
transcription (Mehta and Haber 2014). Several factors like ionizing radiation, expo-
sure of genotoxic chemicals, and any mechanical stress on chromosomes can induce
DSB. There are two pathways for the repair of DSBs viz homologous recombination
(HR) and nonhomologous end joining (NHEJ) (Lieber 2010). Which pathway will
be selected by the cell is unpredictable; the cell cycle stage at that time, however,
plays important role for this decision (Jackson 2002).

Mismatch repair (MMR): This pathway corrects replication errors such as base–
base mismatches and insertion/deletion loops (IDLs) that result from DNA polymer-
ase misincorporation of nucleotides and template slippage, respectively (Fukui
2010). Mispairing generated by the spontaneous deamination of 5-methylcytosine
and heteroduplexes formed following genetic recombination is also corrected via
MMR. A defective MMR pathway leads to “mutator phenotype” characterized by
increased frequencies of spontaneous mutations and microsatellite instability (MSI),
which are the hallmarks of cancer (Loeb et al. 2008).

9.4.4 Molecular Stress Pathway

The hypoxic stress in the intratumor microenvironment augments molecular stress
and provides the required stimulus for expression of the pro-angiogenic factors
(VEGF), which mediates intricate interplay between various extracellular signaling
pathways viz Notch and Hedgehog (Foxler et al. 2012). Hypoxia-inducible factor
(HIF-1α) is a crucial player of tumor angiogenesis. Under normoxic condition, the
oxygen-sensing prolyl hydroxylase (PHD) catalyzes hydroxylation of Pro-564
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residue of HIF-1α. The TSG VHL binds and ubiquitinates this hydroxylated HIF-1α,
subjecting it to proteasomal degradation, thereby shutting down the expression of
hypoxia-specific genes (Fedele et al. 2002). Another candidate TSG, LIMD1, acts as
a molecular scaffold to interact with PHDs and VHL to efficiently degrade HIF-1α
during normoxia (Foxler et al. 2012). However, the intratumoral hypoxic condition
inhibits the aforesaid hydroxylation of HIF-1α, thereby preventing VHL-mediated
ubiquitination and degradation of HIF-1α, leading to its stabilization (Fedele et al.
2002). Under these hypoxic circumstances, the oxygen-dependent asparaginyl
hydroxylase (FIH) fails to hydroxylate Asn-803 residue of HIF-1α, thereby enabling
binding of the co-activators CBP/p300 and HIF-1β to HIF-1α leading to its tran-
scriptional activation and expression of hypoxia-responsive genes viz VEGF and
D-ll4 (Diez et al. 2007). VHL is inactivated in various malignancies, especially in
kidney cancer, facilitating stabilization of HIF-1α and consequent tumor angiogene-
sis, even under normoxia (Banks et al. 2006).

9.5 Cancer Biomarkers

In response to an abnormal or disease conditions like cancer, our body produces
some biological molecule that present in body fluids or tissues, according to National
Cancer Institute (NCI) (Henry and Hayes 2012). According to World Health Orga-
nization (WHO), a biomarker can be any substance, structure, or process that can be
detected, quantified, and influence or predict the incidence or outcome of disease
(Sturgeon et al. 2010); for example, a cancer biomarker measures the risk of cancer
development or measures the cancer progression risk or potential response to
therapy. The widely used cancer biomarkers are mainly proteins (e.g., an enzyme
or receptor) (Table 9.3). In addition, there are also other types of cancer biomarkers,
for example, nucleic acid (e.g., microRNA or other noncoding RNA; microsatellite
DNA markers), antibodies, and peptides (Sturgeon et al. 2008). A biomarker can be
synthesized as a result of alterations of different metabolic and biosynthetic
pathways. Biomarkers are usually detected in noninvasive procedures like collection
of samples (blood, serum, plasma, stool, urine, sputum). Sometimes, it requires
special imaging for evaluation or biopsy sampling for tissue-based analysis. Genetic
biomarkers can be detected as DNA base sequence variations in germline DNA
isolated from whole blood and sputum. Cancer biomarkers can be classified into the
following categories:

Predictive biomarkers: With the help of this marker, a response against specific
therapy such as response against certain chemotherapeutic drugs for specific cancers
could be assessed (Cramer et al. 2011). Like in colorectal cancer, cetuximab
treatment will be in vain if patient has KRAS-activating mutations. So, KRAS
mutation status is a predictive biomarker for this case (Diamandis 2010) (Table 9.3).

Prognostic biomarker: With the help of these markers, disease recurrence or
disease progression can be predicted; i.e., it helps to detect the clinical outcomes of
the disease. An example of a prognostic cancer biomarker is the 21-gene recurrence
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score, which was predictive of breast cancer recurrence and overall survival in node-
negative, tamoxifen-treated breast cancer (Diamandis 2010; Goossens et al. 2015).

Diagnostic biomarker: These markers help to diagnose the disease, i.e., the
condition of a patient in specific disease (Diamandis 2010; Goossens et al. 2015).

Cancer stem cell biomarkers: In our normal system, a particular cell type with
self-renewal ability is called stem cells, which give rise to all the cell lineages in the
corresponding tissues. These cells undergo either asymmetric division generating
one stem cell (S) and another differentiating cell (D) or symmetric division
generating two stem cells. These stem cells have highest potential for proliferation
and have longer life span so they have much greater tendency to acquire necessary
number of transformation-associated genetic/epigenetic changes by exposure of
inflammation, radiation, chemicals, or infection to become a cancer stem cell
(CSC) (Moore and Lyle 2011). In a primary tumor or cancer cell lines, a very
small percentage of the cells are CSC. The prevalence of CSCs is not the same in
each tumor type and varies from tissue to tissue. Cancer stem cells (CSCs) express
different surface markers. Based on the surface markers (Table 9.3 modified and
edited from Ref. (Dawood et al. 2014; Clevers 2011)), e.g., CD44, CD90, CD133,
and EpCAM, different cancers like head and neck, liver, breast, and lung can be
evaluated.

9.6 Molecular Therapy of Cancer

A molecular therapeutic target for cancer can be identified with the following
criteria; for example, it should be an important key regulatory protein or pathway
without which cellular proliferation will be restricted. It should be upregulated in
cancer tissue and not in normal tissue. However, drug should be available for the
particular target. MYC, KRAS, and TP53 are the most common driver genes in
human cancers but are reported to be resistant to therapeutic intervention (Kessler
et al. 2012; Luo et al. 2009). On the other hand, approaches to inhibit kinases are
well developed (Zhang et al. 2009).

To date, several studies identified large number of candidate targets and their
anticancer therapies are now under development. However, only very few pathway-
based targeted therapies have got place in clinical practice (Goossens et al. 2015).
Some of these are listed in Table 9.3. One such example is treatment against chronic
myeloid leukemia (CML) (Nowell and Hungerford 1960).

In breast cancer, amplification of the HER2 gene defines a subset of disease that is
typically highly aggressive. Imatinib and trastuzumab were used as effective targeted
therapy for patients with HER2-enriched breast cancer (Slamon et al. 2001).
BRCA1/BRCA2 is also targeted for treating ovarian cancer (Table 9.3). Olaparib
and iniparib are under clinical trial in patients with BRCA-driven breast cancer after
being passed the preclinical test (Fong et al. 2009; O’Shaughnessy et al. 2011). A
major difficulty in cancer treatment is the intracellular pathways that are interlinked.
Thus, for the development of better molecular targeted therapy of cancer the discrete
analysis of cellular pathways associated with tumor development should be analyzed
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to find out the key regulatory step(s). Then, respective drugs may be designed
accordingly.

9.7 Cancer Chemoprevention

The term chemoprevention was first coined by Michael Sporn (Sporn 1976). Che-
moprevention of cancer is to use natural, synthetic, or biological chemical agents to
reverse, suppress, or prevent carcinogenic progression to invasive cancer (Sporn
1976). It is one of the important areas of current cancer research. Wattenberg
L.W. pioneered the research by chemopreventive approach using animal model
systems (Wattenberg 1993). Epidemiological studies and experiments in in vitro
and in vivo models indicated that several dietary items/products viz. vitamins;
beverages; and food components have cancer-preventive property (Table 9.4). The

Table 9.4 List of few chemopreventive agents along with their sources (Edited and modified from
Ref. (Wang et al. 2012; Pal et al. 2012; Sur et al. 2016)

Food components Name Active compound

Beverages Green tea
Black tea

Epigallocatechin-3-gallate
Theaflavins

Fruits Grapes
Berries

Resveratrol
Resveratrol

Vegetables Broccoli
Cabbage
Carrot
Chili peppers
Soybean
Tomato

Sulforaphane
Indole-3-carbinol
Βeta-caroteneCapsaicin
Genistein
Lycopene

Spices Bay leaves
Cardamom
Cinamon
Clove
Coriander
Cumin
Garlic
Ginger
Mustard
Parsley
Pepper
Sesame seed
Turmeric

Eugenol
Do
Do
Do
Apigenin
Thymoquinone
Diallyl disulfide
Gingerol
Ferulic acid
Apigenin
Piperin
Ferulic acid
Curcumin

Others Honey
Peanut
Mushroom
Sunflower oil

Caffeic acid phenethyl ester
Resveratrol
Vitamin D2
Vitamin E

Medicinal plant Chirata
Karanja

Amarogentin
Pongapin and Karanjin
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potential cancer chemopreventive compounds belong to different structural and
functional chemical classes.

Chemopreventive agents can be classified according to their mechanism of action
and must have the following properties (Fig. 9.5):

• Prevent absorption or metabolism of carcinogens (blocks initiation).
• Prevent carcinogens to react with specific cellular targets (blocks initiation).
• Suppress the expression of neoplasia in cells exposed to carcinogens (blocks

promotion).
• Delay or prevent the conversion of initiated cells to preneoplastic cells and

ultimately to neoplastic cells (blocks promotion/progression).
• Inhibit tumor progression by inhibiting cell proliferation and blocking metastasis

(blocks progression). List of few such important chemopreventive compounds
found in several daily used fruits, vegetables, and spices is listed in Table 9.4.

9.8 Conclusion

There are numerous causes of cancer. Altering molecular pathways like cell fate, cell
survival, and genome maintenance are important for the development of cancer.
Their key regulatory genes have been identified as the molecular targets to diagnose
or understand the treatment procedure for cancer. Different natural compounds could

Cancer Blocking Agents
� Sulphoraphens
� Ellageic acid
� Indole -3-carbinol

Cancer Suppressing Agents
� Beta-Carotene
� Curcumin
� Resveratrol
� Genistein
� Flavonoids
� Capsaicin
� Theaflavin
� Epigallocatechin-gallate
� Amarogentin

Normal 
cells

Initiation Promotion Progression

Fig. 9.5 Dietary phytochemicals that block or suppress different stages of carcinogenesis.
Blocking agents block metabolic activation of pro-carcinogens and restrict the step of initiation.
Cancer-suppressing agents can suppress either promotion or progression step (edited and modified
from Ref. (Kotecha et al. 2016))
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prevent the process of carcinogenesis. Healthy lifestyle and food habit may help
keep this dreadful disease away.
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Appendix

Angiogenesis: In this physiological process, new blood vessels are formed from
preexisting blood vessel. This process is guided mainly by VEGF (vascular endo-
thelial growth factor)-mediated pathway. Other factors are also involved like
VEGFR, FGF, PDGF, and PDGFR. This process is mainly found in case of invasive
tumor.

Hypoxia and normoxia: Normoxia is the condition in which normal oxygen level
in a cell remains between 10 and 21%, whereas in hypoxic condition it is reduced to
less than 5%. Hypoxia is quite evident in the core area of a tumor due to lack of
vascularization (McKeown 2014).

MicroRNA: This is popularly known as miRNA. This is one type of noncoding
RNA, i.e., small noncoding RNA containing ~ 22 nucleotide length, which helps in
gene silencing and alteration of gene expression.

Microsatellite DNA markers: It is a stretch of DNA motif (containing 1–6
nucleotides or more) repeated almost 5–50 times in a genome of an organism. It
has higher mutation rate than other areas of the genome. For example,
ATATATATAT is a dinucleotide microsatellite; GCTGCTGCTGCTGCT is a tri-
nucleotide microsatellite. These microsatellites are located throughout the human
genome at an average of approximately 30-Kb interval.

Noncoding RNA: These RNAs are not transcribed into proteins, but these have
important role in gene transcription regulation. There are several types of noncoding
RNAs such as transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), as well as
small RNAs such as microRNAs, siRNAs, snRNAs, and the long noncoding RNAs.

Polycomb ring finger oncogene: This is BMI1 protein. It has one ring finger
domain. It plays important role in self-renewal pathway, chromatin remodeling, and
DNA repair pathway. Its overexpression is reported in several cancers, e.g., hema-
tological malignancies, breast, ovarian, bladder, prostate, colorectal, and skin.

Stem cells: These are cells with self-renewal property and are capable to differ-
entiate into other cell types. For example, hematopoietic stem cells are present
mainly in bone marrow and can differentiate into different types of blood cells like
red blood cells (RBC), white blood cells (WBC), and platelets.

Ubiquitination: In eukaryotes, a small (8.6 kDa) regulatory protein ubiquitin is
found that helps in the process of ubiquitination. In this process, ubiquitin protein
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binds to the target protein and that protein is degraded via proteasome-mediated
pathway or changes its cellular location or prevents interaction with other proteins.
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