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1 Related Literature on Ranking Methods

Ranking accompanies our everyday activities and is crucial in various situations,
in particular, when facing competitive issues and having to choose from a set of
alternatives. As a consequence, the investigation of appropriate ranking methods
is particularly important. Which method should be used when one needs to rank,
for instance, political candidates or parties in election, teams in sport competition,
universities or institutes in excellence competition, scientific candidates for academic
positions?

The literature on ranking methods and their applications is very rich and gets a
lot of interest for many years; for some examples see, e.g., [16, 57, 67], for rank-
ing scientific journals, web pages on the internet, and alternatives in social choice,
respectively. There exists a vast literature on the classical problem of ranking objects,
based on a binary relation between the objects (e.g., [8, 30, 49, 62]).

In this short overview, we will briefly recall some selected ranking methods. We
will focus on ranking methods for directed graphs, where nodes have different inter-
pretations, depending on the ranking subject and environment. A ranking method is
then formally defined as a mapping which assigns to every directed graph a com-
plete preorder on the set of nodes. Every node gets its ranking score, and a node is
ranked higher, the higher is its score. In this stream of literature, usually axiomatic
characterizations to ranking methods and ranking scores are provided.
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One of the well-known ranking methods is based on Copeland score ([22]). When
defining an outdegree (respectively, an indegree) of a node in a directed graph as
the number of its outgoing (respectively, ingoing) arcs, the Copeland score of the
node simply counts the difference between its outdegree and its indegree. In the
literature, there exist several axiomatizations of the ranking by Copeland score; see
e.g., [7, 41] (also [15] for a related method). Reference [62] provides an axiomatic
characterization of the ranking by Copeland score on the class of tournaments, where
the ranking coincides with the one by outdegree.

In order to measure domination in directed graphs, [18] characterize two rela-
tional power measures: the score measure and the β-measure; see also [42, 70],
as well as [17] for the case of undirected graphs. Reference [19] characterize the
ranking induced by the score measure (that they call the ranking by outdegree) for
arbitrary directed graphs. The ranking induced by the β measure (the β-ranking) is
axiomatically characterized in [14]. A related idea underlies the ranking for chess
players investigated earlier in [34], where defeating a strong opponent gives more
points than defeating a weak one.

[21] introduce a ranking method based on the degree ratio of a node, which is its
outdegree divided by its indegre, and a ranking method based on a modified degree
ratio. The authors provide axiomatic characterizations of these two ranking methods
as well as an alternative axiomatization of the Copeland score.

Some ranking methods have been also introduced for weighted directed graphs.
The outflow as a relational power measure for weighted (and also non-weighted)
directed graphs is axiomatically characterized by [18]. Also [20] deliver an axiomatic
characterization of the outflow ranking method for weighted directed graphs.

There is a variety of other methods that are based on hyperlinks for ranking
web pages or citations for ranking academic journals. Reference [58] presents an
economic analysis of many ranking methods and the use of citations in the law.
Ranking methods based on evaluations or citations consider a one-sided setting in
which experts evaluate some items for ranking, and a peers’ setting when the experts
coincide with the items.

The first citation index for articles published in journals is the Science Citation
Index (SCI), which uses the counting method, based on counting the total number of
citations received by a journal (see [35]). The Impact Factor ([36]) of an academic
journal counts the average number of citations received by articles published on it;
see also [37]. Reference [53] use an iteration (impact adjusted) method to examine
the impact factors of economic journals.

The Markov-chain approach comes originally from [75] and [45]. Reference [57]
introduce the influence measure which counts both direct and indirect citations.
Google’s Page Rank ([16]) uses a similar recursive approach and is based on the
invariantmethod. The axiomatic approach to the invariantmethod and several axiom-
atizations of eigencentrality (used in the eigenvalue centrality method) is presented,
e.g., in [1, 47, 56, 69]; see also [2, 68]. [28] propose a “market” approach to ranking
items in a network, e.g., ranking web pages connected by links or papers connected
by citations. Their set of methods includes the eigencentrality method. Also the so-
called mutual centrality method characterized in [27] is related to the eigenvalue



On Different Ranking Methods 107

centrality. Reference [26] introduces and axiomatically characterizes the handicap-
based method, which assigns both scores to the items and weights to the experts.
References [24, 25] investigates rankings in a dynamic setting.

The related contributions come also from the extremely vast literature on biblio-
metrics. We mention just few of them. Although the Impact Factors of journals are
among the oldest bibliometric indices used for evaluating journals (see, e.g., [5, 38,
39] for surveys), many others have been introduced. The well-known h-index (the
Hirsch index, [43]) widely examined from an axiomatic point of view (see e.g., [12,
54, 60, 77]) induces a ranking method that supports evaluations of researchers. [33]
introduces another bibliometric index, the so-called g-index, axiomatically charac-
terized, e.g., in [76]; see also [32, 55, 61, 78], as well as [4, 31, 44, 48] for some
other bibliometric indices. Also [10] provide an axiomatic foundation of the ranking
of journals based on Impact Factors and suggest alternative rankings that use some
generalizations of Impact Factors.

Within this bibliometric literature, numerous works discuss in detail the impor-
tance of some properties (e.g., independence and consistency) for bibliometric rank-
ings of authors and journals; see e.g., [9–11, 54, 55, 71, 74]. Some other properties
might be subject to discussion, for instance, totality for ranking departments, saying
that when two equal-size departments have the same citation distribution, they must
be equivalent. For various works on ranking departments we also refer to, e.g., [6,
23, 29, 46, 59, 64].

An important issue in ranking is related to the fact that in some situations we
are faced to compare authors, journals, departments belonging to different fields of
research (e.g., [3, 63, 65, 66]). There exist several research directions on how to
solve this normalization problem between different fields. One of the ideas lies on
the fractional counting of citations, meaning that the value of a citation given by an
article is inversely proportional to the total number of articles that it cites. Fractional
counting of citations is proposed in [40, 50, 51]. [13] axiomatically characterize the
ranking authors by using the fractional counting of citations. There exist also some
empirical studies on this concept; see e.g., [52, 72, 73].

In the following two sections, we briefly present preliminaries and then recall
several ranking methods for directed graphs that use outdegree (and indegree) of a
node.

2 Notation and Basic Definitions

We introduce some basic notation and definitions, as in [19].

Directed graphs A directed graph (or digraph) is a pair (N , D), where N =
{1, 2, . . . , n} is a finite set of nodes and D ⊂ N × N is a set of arcs on N . We
only consider digraphs (N , D) that are irreflexive, i.e., (i, i) /∈ D for every i ∈ N .
Since the set of nodes N is fixed, a digraph (N , D) can be represented by its binary
relation D. The collection of all digraphs on N is denoted by D. For i ∈ N and
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D ∈ D, we define the set of successors of node i ∈ N in digraph D by

SD(i) = { j ∈ N | (i, j) ∈ D}

and the set of predecessors of i in D by

PD(i) = { j ∈ N | ( j, i) ∈ D}.

Thecardinalities of SD(i) and PD(i) are called theoutdegreeouti (D) and the indegree
ini (D) of node i in D, i.e.,

outi (D) = #SD(i) and ini (D) = #PD(i).

Preorder A preorder on N is a binary relation R ⊂ N × N that is reflexive (i.e.,
(i, i) ∈ R for all i ∈ N ) and transitive (i.e., if (i, j) ∈ R and ( j, h) ∈ R, then (i, h) ∈
R for every i, j, h ∈ N ). A preorderR on N is complete if (i, j) ∈ R or ( j, i) ∈ R
or both for every pair i, j ∈ N , i �= j . We use the standard notation, i.e.,

i � j if and only if (i, j) ∈ R (i is ranked at least as high as j),

i � j if and only if [i � j and not j � i] (i is ranked higher than j),

i ∼ j if and only if [i � j as well as j � i](i and j are ranked equally).

We denote the collection of all complete preorders by W .

Ranking methods A ranking method is a mapping R : D → W which assigns to
every digraph D ∈ D on N a complete preorder R(D) ∈ W . We use the notation

i �D j if and only if (i, j) ∈ R(D).

A digraph D ∈ D is a tournament on N if

# [{(i, j), ( j, i)} ∩ D] = 1 for all i, j ∈ N , i �= j.

Note that every tournament is a complete digraph, where by a complete digraph we
mean D ∈ D such that (i, j) ∈ D or ( j, i) ∈ D or both for every pair i, j ∈ N , i �= j .
Let CD ⊂ D be the collection of all complete digraphs on N , and let T ⊂ CD ⊂ D
denote the class of all tournaments on N .

The ranking method by outdegree is the ranking method Rout : D → W which
assigns to every digraph D ∈ D on N a complete preorder Rout (D) ∈ W given by

(i, j) ∈ Rout (D) if and only if outi (D) ≥ out j (D).

We use the notation
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i �out
D j if and only if (i, j) ∈ Rout (D).

The Copeland score copi (D) of node i ∈ N in digraph D is defined by

copi (D) = 2# (SD(i) \ PD(i)) + # (SD(i) ∩ PD(i)) .

For D ∈ CD, #SD(i) + #PD(i) − # (SD(i) ∩ PD(i)) = n − 1.
Hence, 2# (SD(i) \ PD(i)) + # (SD(i) ∩ PD(i)) = 2#SD(i) − # (SD(i) ∩ PD(i)) =
#SD(i) − #PD(i) + n − 1, and therefore

copi (D) = 2# (SD(i) \ PD(i)) + # (SD(i) ∩ PD(i)) = outi (D) − ini (D) + n − 1.

The ranking method by Copeland score is the ranking method given by

i �cop
D j if and only if copi (D) ≥ cop j (D) for all i, j ∈ N .

Note that for tournaments the ranking by outdegree and the ranking by Copeland
score are the same, since SD(i) ∩ PD(i) = ∅ for all i ∈ N and D ∈ T .

However, these two ranking methods are different on D.

For a digraph D ∈ D and a permutation π : N → N , the permuted digraph πD ∈
D is given by (π(i),π( j)) ∈ πD if and only if (i, j) ∈ D.

The β-measure on N (introduced in [18]) is the function β : D → R
N defined by

βi (D) =
∑

j∈SD(i)

1

in j (D)
for all i ∈ N and D ∈ D.

The β-measure equally distributes the domination power over a node j ∈ N in a
digraph D over all its predecessors.

The ranking method by the β-measure or the β-ranking is the ranking method
given by

i �β
D j if and only if βi (D) ≥ β j (D) for all i, j ∈ N .

3 Axiomatizations of the Ranking Methods

Rubinstein’s result on the ranking in a tournamentOn the class of tournaments T ,
[62] provides an axiomatic characterization of the ranking byCopeland score (i.e., by
outdegree, since for tournaments the rankings by outdegree and by Copeland score
are the same).

The following three axioms (as formulated in [19]) are used for Rubinstein’s
characterization:
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(i) Anonymity:
Permuting the nodes in a digraph permutes accordingly the ranking, i.e.,

For every D ∈ D and permutation π : N → N it holds that

i �D j if any only if π(i) �πD π( j).

(ii) Positive responsiveness:
If i is ranked at least as high as j , then increasing the outdegree of i makes i
being ranked higher than j , i.e.,

Let D ∈ D and i, j, h ∈N , i �= j be such that (i, h) /∈ D, and let D′ = D ∪ {(i, h)}.
Then i �D j implies that i �D′ j.

(iii) Independence of irrelevant arcs:
The order between two nodes does not change if changes only take place with
respect to arcs on which they are neither the predecessor nor the successor, i.e.,

Let D, D′ ∈ D and i, j ∈ N be such that SD(i) = SD′(i), SD( j) = SD′( j),

PD(i) = PD′(i), and PD( j) = PD′( j).Then i �D j if and only if i �D′ j.

Ranking by outdegree [19] generalize Rubinstein’s result by characterizing the
ranking by outdegree for arbitrary digraphs. The first two axioms introduced in
[62], i.e., anonymity and positive responsiveness are the same, while independence
of irrelevant arcs is generalized in a straightforward way to independence of non-
dominated arcs.

Formally, for a ranking method represented by {�D | D ∈ D} ⊂ W , we consider
the following three axioms ([19]):

(i) Anonymity:
Permuting the nodes in a digraph permutes accordingly the ranking, i.e.,

For every D ∈ D and permutation π : N → N it holds that

i �D j if any only if π(i) �πD π( j).

(ii) Positive responsiveness:
If i is ranked at least as high as j , then increasing the outdegree of i makes i
being ranked higher than j , i.e.,

Let D ∈ D and i, j, h ∈N , i �= j be such that (i, h) /∈ D, and let D′ = D ∪ {(i, h)}.
Then i �D j implies that i �D′ j

(iii) Independence of non-dominated arcs:
The order between two nodes does not change if changes only take place in
arcs on which they are not the predecessors, i.e.,
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Let D, D′ ∈ D and i, j ∈ N be such that SD(i) = SD′(i) and SD( j) = SD′( j).

Then i �D j if and only if i �D′ j.

Reference [19] prove (their Theorem2.4) that a rankingmethod is equal to the ranking
method by outdegree if and only if it satisfies anonymity, positive responsiveness,
and independence of non-dominated arcs.

Ranking by Copeland score [7] presents an alternative generalization of Rubin-
stein’s result by providing an axiomatic characterization of the ranking by Copeland
score for arbitrary digraphs.

More precisely, [7] characterizes the Copeland score by the following axioms
(that we state by using the same notation borrowed from [19], the first two being the
same as in [19]):

(i) Anonymity:
Permuting the nodes in a digraph permutes accordingly the ranking, i.e.,

For every D ∈ D and permutation π : N → N it holds that

i �D j if any only if π(i) �πD π( j).

(ii) Positive responsiveness:
If i is ranked at least as high as j , then increasing the outdegree of i makes i
being ranked higher than j , i.e.,

Let D ∈ D and i, j, h ∈N , i �= j be such that (i, h) /∈ D, and let D′ = D ∪ {(i, h)}.
Then i �D j implies that i �D′ j.

(iii) Independence of 2- or 3-cycles:
Deleting or adding a cycle of length 2 or 3 to a digraph does not change the
ranking of the nodes, i.e.,

Let D, D′ ∈ D be such that D′ = D ∪ {(h, g), (g, h)} for some h, g ∈ N

with {(h, g), (g, h)} ∩ D = ∅, or D′ = D ∪ {(h, g), (g, f ), ( f, h)} for some
h, g, f ∈ N with {(h, g), (g, f ), ( f, h)} ∩ D = ∅.Then i �D j if and only

if i �D′ j for all i, j ∈ N .

(iv) Negative responsiveness:
If i is ranked at least as high as j , then increasing the indegree of j makes i
being ranked higher than j , i.e.,

Let D ∈ D and i, j, h ∈N , i �= j be such that (h, j) /∈ D, and let D′ = D ∪ {(h, j)}.
Then i �D j implies that i �D′ j.

As mentioned in [19], the ranking by Copeland score does not satisfy indepen-
dence of non-dominated arcs on D. Moreover, the ranking by outdegree does not
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satisfy independence of 2- or 3-cycles nor negative responsiveness for arbitrary
digraphs. Furthermore, note that while independence of non-dominated arcs gen-
eralizes independence of irrelevant arcs, independence of 2- or 3-cycles does not.

More precisely, [19] prove the following results (their Proposition 3.4) for a rank-
ing method R on D:

• If R satisfies independence of non-dominated arcs, then R satisfies independence
of irrelevant arcs.

• R satisfies independence of non-dominated arcs on T if and only if R satisfies
independence of irrelevant arcs on T .

• OnD, independence of 2- or 3-cycles and independence of irrelevant arcs are two
independent properties.

Reference [41] provides an axiomatic characterization of the ranking byCopeland
score restricted to the class of complete 2-digraphs, which aremodified digraphs such
that there exist exactly two (possibly the same) arcs between every pair of nodes
i, j ∈ N , i �= j .

As emphasized in [19], the notions of 2-digraphs and “standard” digraphs recalled
in Sect. 2 are different.

Reference [41] shows that for complete 2-digraphs the ranking by Copeland score
is characterized by the following three properties:

(i) Anonymity (stated for complete 2-digraphs);

(ii) Positive responsiveness (stated for complete 2-digraphs);

(iii) Independence of reversing cycles:
Reversing a cycle in a complete 2-digraph does not change the ranking of the
nodes.

Reference [19] point out that for complete 2-digraphs the ranking by Copeland
score is the same as the ranking by outdegree with the outdegree defined for such
graphs by outi (D) = #{(h, j) ∈ D | h = i}. Both rankingmethods also satisfy inde-
pendence of reversing cycles on CD.

Ranking by the β-measure [14] characterize the β-ranking by using the following
axioms:

(i) Anonymity;

(ii) Positive responsiveness;

(iii) Independence of irrelevant arcs:
Some arcs are irrelevant for comparing two nodes, i.e., arcs which do not
“involve” the two nodes.
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(iv) Node addition:
Adding nodes that are not linked to any other node has no influence on the
ranking.

(v) Independence of local density:
Increasing the number of successors of a node and simultaneously increasing
their number of predecessors, in the same proportion, does not change (improve
or worsen) the position of that node.

When comparing the above conditions with the axioms stated in [19], the first two
properties (anonymity, positive responsiveness) are the same, while independence
of irrelevant arcs is strictly weaker than the independence of non-dominated arcs (as
pointed out before). The last two properties (node addition, independence of local
density) are not related to any of the conditions in [19].
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