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1 Introduction

A set of sellers own one unit each of an indivisible good. A buyer wants to purchase
a subset of these units. Additionally, the units in the subset are required to constitute
a path of a feasible length in a graph. The nodes of this graph represent units of the
good, and edges between pair of nodes represent the complementarity of the pair in
the production process used by the buyer. The sellers have non-negative valuations
for the units they own. The buyer has a non-negative valuation for every subset
of units on a feasible path. These valuations may be common knowledge or private
information. An Assembly Problem is the exchange problem described by the graph,
the minimal size of a feasible subset, and the valuations of the agents.

Efficient assembly is obtained easily in static models with complete information.
It is the prospect of strategic delays or private information that makes the assembly
problem interesting. Games of complete information multi-period bargaining are
used to model the former, while static games of incomplete information are used to
model the latter. This chapter provides a brief survey of the literature and discusses
some recent results using these approaches.
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Practical examples of assembly problems include assembling of patent rights for
manufacturing life-saving drugs, copyright of musical pieces for composing scores
for movies or concerts, and land rights for industrial development among others
(see [9] for a survey). In what follows, the problem of assembling land for indus-
trial development is treated as a leading example. For detailed discussions of these
applications, the interested reader may refer to Sarkar [28] and Gupta and Sarkar [8].

Assembly is a problemof exchange between a buyer and a set of sellers. Therefore,
it is a general version of the bilateral trade problem investigated extensively in the
literature on strategic bargaining as well as mechanism design. While the buyer
cannot extract full surplus in the unique equilibrium of an alternate offer bilateral
bargaining problem [27], private information prevents mechanisms for bilateral trade
to be successful [16]. Till recently, the analysis of assembly problemswas restricted to
the case of fully complementary items. Consequently, the results available mimicked
the negative results in the bilateral trade problem. This chapter provides a general
model that accommodates various degrees of complementarity and substitutability—
thus providing a set of results the nature of which ranges from negative to positive.

The next section provides a brief survey of the literature on assembly problems.
A general model is described in the subsequent section which is exploited further to
drive some of the results on the efficiency of equilibria. The final section discusses
and compares the results under alternative approaches and indicates some directions
for further research.

2 Literature

We explore two alternative assumptions about the information structure: (a) agents
have complete information about the valuations of other agents and (b) agents have
private information about their respective valuations. The natural way to model an
assembly problem under the assumption (a) is strategic bargaining among the buyer
and sellers, while the approach taken for characterizing satisfactory equilibrium
outcomes under the assumption (b) is mechanism design.

In strategic bargaining games, agents on one side of the market propose prices,
and those on the other side accept or reject. The range of price offers, sequencing
of the offers, and length of the negotiation process are given by the bargaining
protocol which is common knowledge (see [21]). Consider the one-period bilateral
trade problem where the buyer makes the first offer which the seller may accept or
reject. This game has a unique subgame perfect Nash equilibrium outcome if the
seller accepts any offer that does not make him strictly worse-off: the buyer offers
the seller his exact valuation, the seller accepts, and thus the buyer extracts the entire
surplus. In contrast, in the infinite horizon alternate offer bargaining model due to
Rubinstein [27], the buyer has to offer a strictly positive share of the surplus to the
seller to avoid strategic delay. This share of surplus can be viewed as a cost of the
holdout.
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The holdout problem has been studied in the land assembly context [1–3, 6, 14,
15, 20, 25]. Secret offers [11, 19, 25] and the choice of bargaining order over sellers
[12, 32] are two other topics of interest.

Roy Chowdhury and Sengupta [25] use a protocol which is a natural extension
of the protocol by Rubinstein [27] to the assembly problem where all items are
complementary. If the offers are public, the buyer who has an outside option extracts
a higher share surplus relative to the buyer without an outside option. Holdout may be
unavoidable when offers are less transparent even if the buyer has an outside option.

The general model introduced in the next section potentially accommodates more
number of sellers than the number of items required by the buyer. The buyer may also
require the purchased items to form a path on a given graph. This model allows for
various degrees of complementarity. Secret offers or outside options are not explored
here, and instead, the focus is on competition among sellers. It uses the public offer
protocol due to Roy Chowdhury and Sengupta [25].

Theholdout problemhasbeenmodeledusing theCoalitionalBargaining approach.
In the first of such models, Chatterjee et al. [4] studied sequential offers of n-person
coalitional bargaining with transferable utility and time discounting. They showed
that the efficient coalition may not form for a certain order of proposers. Ray and
Vohra [24] study the same problem where externalities across coalitions are a possi-
bility. Myerson [17] provides a complementary approach to coalitional bargaining,
analyzing bargaining on networks, where edges between agents are used to model
some specific relationship.

Mechanism Design theory lays down rules for “satisfactory” allocation in the
presence of private information [26]. Myerson and Satterthwaite [16] have provided
such a set of desirable properties: maximum welfare or gains at every allocation (ex-
post efficiency), truthful reporting in expectation (interim incentive compatibility),
participation in expectation (interim individual rationality), and balanced payments
(budget balance).

Consider bilateral trade under private information. The double auctionmechanism
due to Chatterjee and Samuelson [5] is described as follows: trade takes place if the
buyer’s reported valuation exceeds that of the seller’s, at a price equal to the average
of these two reports. When all valuations are distributed uniformly over [0, 1], the
double auction mechanism maximizes expected welfare subject to interim incentive
compatibility and individual rationality [16]. But it is not efficient in the ex-post
sense: the double auction mechanism forgoes some efficient trade opportunities.

Early literature onmechanismdesign for land assembly primarily look for second-
best mechanisms in exchange models without any contiguity restrictions (e.g., see
[7, 10, 23]). The question of existence of satisfactory mechanisms for general envi-
ronments remained unresolved till recently.

Williams [31] finds that a satisfactory mechanism can be constructed if and only
if there is a Groves mechanism for the problem that results in an expected budget
surplus. In a closely related paper, Krishna and Perry [13] show that a successful
mechanism can be constructed if and only if the VCG mechanism for the problem
results in a positive expected budget surplus. The second half of the next section
shows how the results due to Williams [31] and Krishna and Perry [13] can resolve
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the question of satisfactorymechanismdesign in the assembly problem.Weprimarily
confine the discussion to the existence of first-best mechanisms in the independent
private value settings following Sarkar [28–30].

3 The Models

For a given production process, the nature of complementarity among items held
by the sellers can be modeled through a graph, say �. In any such graph, items,
or equivalently, corresponding sellers, are represented by nodes. An edge connects
a pair of nodes in this graph if the corresponding inputs are complementary in the
buyer’s production process. A path is a sequence of connected nodes. The buyer
wants to purchase a path of the desired length, say k. This implies that the buyer can
combine any k complementary inputs to produce output. We will denote a path by
P and the corresponding sum of seller valuations by S.

A seller is critical if he lies on every feasible path (see Fig. 1). This implies that
the corresponding input is complementary with respect to every feasible production
plan. If there is only one feasible path in �, all sellers in that path are critical. But if
there are multiple feasible paths, a seller must belong to their intersection in order to
qualify as critical. If there are multiple feasible paths, the number of critical sellers
cannot exceed k − 1: not all sellers on a single path can be critical. Paths of length
less than k that do not have an intersection with any feasible path can be excluded
from the analysis, because the buyer’s valuation over such paths is zero.

A classification of graphs with at least two feasible paths is useful in this context.
In cycles of order k + 1, referred to as �� (see Fig. 2), every input on a feasible

path can be substituted by another input on the graph.

Fig. 1 A feasible path in the
star graph when k = 3; seller
1 is critical

1

23

4 5

Fig. 2 A cycle of length 4
1 4

2 3
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Fig. 3 Graph with disjoint feasible paths; k = 3

Fig. 4 A line graph with
two critical sellers marked
red; k = 3

1 2 3 4

In graphs with two disjoint paths, referred to as �D (see Fig. 3), no input is
completely substitutable, but a feasible path can be substituted by another feasible
path.

In graphs with critical sellers, referred to as �∗ (see Figs. 4 and 1), inputs cor-
responding to critical sellers are not substitutable but those corresponding to non-
critical sellers are substitutable in a limited sense.

Finally, consider graphs where (i) there is no cycle of length k + 1, (ii) no two
paths are disjoint, and (iii) the intersection of all feasible paths is empty, referred to
as �O (see Fig. 5), referred to as oddball. In such graphs, inputs in the intersection of
two or more feasible paths cannot be substituted with respect to these feasible paths,
but they are substitutable with respect to inputs on other feasible paths.

Facts 1–5 below imply that single component graphs with (a) critical sellers,
(b) k + 1-cycle, (c) disjoint paths, and (d) oddball are four mutually exclusive and
exhaustive categories. A graphmay havemultiple components from different classes.

Fig. 5 An oddball graph,
n = 5, k = 3 1

2 4

3 5
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• Fact 1: All sellers on a single path of length k are critical, regardless of whether
this path is a cycle.

• Fact 2: The number of critical sellers on a single path reduces with its length.
• Fact 3: No cycle of length more than k has a critical seller.
• Fact 4: Cycles of length 2k or more have at least two disjoint feasible paths and
hence, no critical seller.

• Fact 5: The oddball class covers all cycles of length larger than k + 1 but smaller
than 2k. Further, since every pair of feasible paths on an oddball graph intersect
at least once, it also covers graphs containing cycles of length less than or equal
to k.

In a complete information environment, the valuation of the buyer and sellers is
given by a vector v ≡ (v0, v1, . . . , vn). The first component of this vector denotes
the valuation of the buyer for a path of length k or more, and other components
denote the valuation of the respective sellers for their items. In a private information
environment, agents only know their own valuation and the support of the valuations
of other agents; a commonly known prior μ describes their beliefs over possible
valuation profiles.

We assume that there exists a pathP ∈ �, such that it results in a positive surplus:
v0 − ∑

i∈P vi > 0. Given such a graph �, the expression maxP∈�

(
v0 − ∑

i∈P vi
)
is

referred to as “full surplus” or “efficient surplus”.
In complete information strategic bargaining games, a discount factor is applied

to compare payoffs that arise in different time periods. We assume that the agents
use the same discounting factor δ ∈ [0, 1].

An assembly problem with complete information is a tuple: 〈�, k, v, δ〉. When
� is a complete graph of order n, an assembly problem is referred to by the tuple
〈n, k, v, δ〉. An assembly problem with private information is a triple: 〈�, k, μ〉.

The results on complete information bargaining and mechanism design for the
assembly problem are discussed in the next two subsections. Only a brief sketch of
the argument is provided below each result. The interested reader is referred to the
original papers for detailed proofs.

3.1 Bargaining with Complete Information

The bargaining protocol due to Rubinstein [27] and its different extended versions
have been used in many contexts. A slightly general version of this protocol due to
RoyChowdhury and Sengupta [25] can be described as follows. In each period, active
agents on one side of the market make offers of surplus shares to the other side—
this gives rise to two alternative cases, where buyers make offers in odd periods and
sellers in even periods and vice versa. The offers made are either accepted or rejected.
If accepted, the deal is implemented, i.e., the seller sells his item at the agreed offer
and leaves the market with his payment immediately. The game proceeds with the
reduced set of agents. The ones making offers in the previous period now take on the
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role of responders. Offers are made and are either accepted or rejected. And so the
game proceeds till the buyer is able to pick up at least one feasible path.

There are usually multiple equilibria in multiagent bargaining problems like
assembly, some of which may be non-stationary. The nature of the equilibria also
depends on which side of the market proposes first. In the discussion below, our
focus will be to characterize bounds on equilibrium surplus shares under this proto-
col. Consequently, we are able to avoid details like stationarity or sequencing of the
offers.

It is a standard practice in bargaining theory to express payoffs in terms of surplus
shares instead of net payoffs. For instance, in the bilateral trade game when the buyer
has valuation v0 and seller v1, the surplus realized on trade is v0 − v1. If the surplus
shares in an equilibrium are α and 1 − α, the net payoffs are α(v0 − v1) and (1 −
α)(v0 − v1)—indicating that trade takes place at the price of v1 + (1 − α)(v0 − v1),
which the buyer pays and the seller receives.

The buyer can utilize negative surplus offers to exclude some sellers from the
bargaining process, i.e., choose the sellers to bargain with in each period. Notice that
a seller will not possibly make a negative offer to the buyer in our setting, since it
delays trade with the buyer or eliminates the prospect of a trade. Bilateral bargaining
models like that by Rubinstein [27] do not use this feature, while multilateral models
like Roy Chowdhury and Sengupta [25] do.

The bilateral game studied by Rubinstein [27] is a special assembly problem
with n = k = 1. Here, the only seller present is critical. The Subgame Perfect Nash
Equilibrium of this game, which is now a standard result, is presented below.

Theorem 1 ([27]) Consider the model where the buyer bargains with one seller for
one input: 〈n = 1, k = 1, v0 > v1, δ〉. There is a unique SPNEof themodel described
as follows:

Agent i proposes a share δ
1+δ

of the surplus to j whenever she has to propose, and accept

any share at least equal to δ
1+δ

whenever j has to propose.

The game ends in the first period itself, with agent i proposing δ
1+δ

to the seller and
the seller accepting it.

To see that the strategies proposed above constitute an equilibrium, apply the
“one-shot deviation principle”: no agent can gain by deviating from these strate-
gies in any period for one period and conforming in the preceding and succeeding
periods. If agent i proposes a higher share, it will be rejected and the play in the
succeeding periods can only guarantee a lower payoff; if she proposes a lower share,
it will be accepted immediately. Accepting lower shares is not profitable. Proving
the uniqueness of this equilibrium is a rather involved exercise (see [22]).

The model studied by Roy Chowdhury and Sengupta [25] is a special assembly
problemwith n = k ≥ 2 and all seller valuations are identical. Since the buyer wants
all n plots, all sellers are critical here.

Theorem 2 ([25]) Consider the model 〈n ≥ 2, k = n, v1 ≤ · · · ≤ vn, v0 >∑n
i=1 vi , δ〉. The buyer’s equilibrium payoff cannot be more than 1−δ

1+δ
of the full

surplus for any δ > 0.
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The proof of this result for n = k = 2 shows profitable deviations for one of the
agents when the bound 1−δ

1+δ
is crossed. An induction argument is used for the general

case.
Both of these results correspond to the situation where all sellers are critical. The

result below, in contrast, shows the possibility of full surplus extraction when there
is no critical seller on the underlying graph, and seller valuations are identical.

Theorem 3 ([8]) Consider 〈�, k, v, δ〉 where � has at least two different feasible
paths and v is any arbitrary valuation profile.There exists δ̄ ∈ [0, 1) such that for all
δ > δ̄ the buyer extracts full surplus in at most two periods in an equilibrium if and
only if

• � 
= �∗, i.e., there does not exist a critical seller in the underlying graph, and
• S1 = S2, i.e., there exist at least two paths with the minimum sum of valuations.

This result characterizes equilibrium outcomes when the valuations of sellers
are equal and the underlying graph does not contain a critical seller, i.e., either the
graph has a k + 1-cycle, or it has at least a pair of disjoint paths, or it is an oddball
graph. These three graphs have special properties—each node on a feasible path is
substitutable by another node in a k + 1 cycle, every path is substitutable by another
path in a graph with a pair of disjoint paths, and each node in a feasible path is
substitutable by a set of nodes in an oddball graph. The first class of graphs exhibits
full substitutability, while the other two exhibit limited substitutability. Consider the
first class of graphs. If the buyer is the first to make offers, she canmake offers of zero
surplus shares to all sellers on a chosen feasible path in an equilibrium: any seller
rejecting such offers must compete with corresponding substitute sellers in the next
period. If the sellers are making first offers, competition ensures that sellers make no
positive claims. Consequently, full surplus extraction takes place in the first period
itself. In the other two classes, the buyer may be required to exclude all sellers in the
first period, to achieve full surplus extraction in the second period.

The buyer cannot extract full surplus when the underlying graph contains at least
one critical seller.

Theorem 4 ([8]) Suppose � = �∗. The buyer cannot extract full surplus in an equi-
librium.

This result is obtained since at least one of the critical sellers can keep rejecting
the offers of the buyer till all other sellers have accepted. He can then claim a positive
surplus share in the ensuing subgame, by Theorem 1.

When seller valuations are not equal, the sum of seller valuations may differ over
paths. The path corresponding to the least sum of seller valuations is efficient in the
sense that it corresponds to the highest potential surplus. It follows that if possible,
the buyer would prefer to purchase the efficient path.

Let Pi denote the path corresponding to the i-th smallest sum of valuations on
a path in �. We will refer to a set of assembly problems as rich if there does not
exist two disjoint pathsP1 andP2 such that S1 = S2. Suppose the richness condition
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is not satisfied. The buyer, if offering first, can offer negative surplus shares to all
sellers who reject such offers. In the next period, sellers on P1 and P2 cannot claim
any surplus: the buyer extracts full surplus in the second period. If the sellers are
making offers first, sellers on these two paths cannot claim any surplus share.

Theorem 5 ([8]) Consider the rich class of assembly problems 〈�, k, v, δ〉. There
does not exist any equilibrium where the buyer extracts full surplus.

The proof of this result shows that at least one seller getting zero surplus share has
a profitable deviation. Thus, full surplus extraction is not an equilibrium outcome.

By Theorem 4, the buyer cannot extract full surplus when the underlying graph
contains critical sellers. The final results of this section provide bounds on the buyer’s
surplus share in such a problem.

Theorem 6 ([8])Consider an assembly problem 〈�, k, v, δ〉with exactly one critical
seller. In any equilibrium buyer’s share of surplus cannot exceed 1

1+δ
.

Theorem 7 ([8]) Consider an assembly problem 〈�, k, v, δ〉 with m critical sellers,
where 2 ≤ m ≤ k. In any equilibrium buyer’s share of surplus cannot exceed 1−δ

1+δ
.

The proof of Theorem 6 closely follows that of Theorem 4, while the proof of
Theorem 7 follows that of Theorem 2. There exist assembly problems where these
bounds are exactly achieved: for example, when n = k = 1, the corresponding bound
is exactly achieved if the buyer is making the first offer (recall Theorem 1). It is also
exactly achieved when � is a single line graph with three nodes, k = 2, and the
buyer is making the first offer. When n = k = 2, the corresponding bound is exactly
achieved if the buyer is making the first offer (recall Theorem 2). It is also exactly
achieved when � is a single line graph with four nodes, k = 3, and the buyer is
making the first offer.

3.2 Mechanism Design

Due to the well-known Revelation Principle (see [18]), it suffices to assume that the
buyer and the sellers directly report their individual valuations to a central planner,
who then decides allocations and payments according to a declared rule. A set of
essential definitions is provided below.

A deterministic allocation x ∈ R
n+1 is described as follows: for components i =

1, . . . , n, xi is -1 if seller i sells and 0 otherwise; x0 = 1 if
∑n

i=1 |xi | ≥ k and 0
otherwise. Let X be the set of all deterministic allocations.

Definition 1 (Allocation Rule) A deterministic allocation rule P : [v0, v̄0] × [v, v̄]n
→ X maps each profile of reported values to a deterministic allocation.

For any agent j , Pj (v) is the j-th component of P(v).
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Definition 2 (TransferRule)A transfer rule t is amap t : [v0, v̄0] × [v, v̄]n → R
n+1.

If t j (v) > 0 (resp. t j (v) < 0), then agent j pays (resp. receives) the amount t j (v).

Definition 3 (Payoffs) Given a mechanism (P, t). The (ex-post) utility of agent j
with valuation v j reporting v̂ j in mechanism (P, t) is

U (P,t)
j (v̂ j , v− j |v j ) = v j Pj (v̂ j , v− j ) − t j (v̂ j , v− j ).

For convenience, the superscript (P, t) in the notation will be henceforth dropped.
Bayesian incentive compatibility requires that truthful reporting is optimal for

each agent and for each valuation in expectation. This expectation is computed with
respect to the prior distribution of valuations of other agents.

Definition 4 (Bayesian IncentiveCompatibility)Amechanism isBayesian incentive
compatible (BIC) if for all j ,

E− jU j (v j , v− j |v j ) ≥ E− jU j (v̂ j , v− j |v j ) for all v j and v̂ j ,

where E− j (·) denotes expectation taken over v− j .

Definition 5 (Interim Individual Rationality) A mechanism is interim individually
rational (IIR) if for all j ,

E− jU j (v j , v− j |v j ) ≥ 0 for all v j .

The rest of the chapter uses the notation Uj (v) and Uj (v j ) for the ex-post and
interim utilities in an equilibrium, respectively. Also, E is used to denote expectation
operator over profile v.

Definition 6 (Efficiency) An allocation rule P is ex-post efficient if for all v,

∑

j

v j Pj (v) ≥
∑

j

v j P
′
j (v) for any allocation rule P ′.

To define ex-post efficient allocations in this setting, denote the feasible paths in
� byP1, . . . ,Pq where q ≥ 1. Consider a valuation profile v. The sum of valuations
in path Pi will be denoted by Si (v), i = 1, . . . , q. These sums are ordered as fol-
lows: S[1](v) ≤ · · · ≤ S[q](v). The paths corresponding to these sums are denoted by
P[1](v), . . . , P[q](v), respectively. Efficiency requires trade to take place with sellers
in P[1](v) if v0 > S[1](v); if v0 ≤ S[1](v), then trade does not occur. For example, in
the graph in Fig. 6, there are two feasible paths {1 − 2 − 3} and {2 − 3 − 4} when
k = 3. If the valuations of the sellers are as indicated in the diagram, efficiency
requires trade with sellers 1, 2, and 3 if v0 > 19. Since the subsequent analysis will
not require any special treatment of tie-breaking, any rule satisfying the condition
above is called an efficient rule, denoted by P∗.
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v4 = 8

Fig. 6 P[1](v)

Definition 7 (Budget Balance) Amechanism (P, t) satisfies ex-post budget balance
if, for all v,

n∑

j=0

t j (v) = 0. (1)

A mechanism achieves the first-best if it satisfies efficiency, IIR, and BB. A
mechanism is successful if (a) it is BIC with respect to some prior μ and (b) it
achieves the first-best.

Part A of the following result provides a sufficient condition and a weaker nec-
essary condition for the existence of a successful mechanism when the number of
feasible paths in the underlying graph ismore than one. PartB states that no successful
mechanism exists when there is only one feasible path.

Theorem 8 ([29])

A. Let 〈�, k, μ〉 be an assembly problem with q > 1.

I. Suppose μ satisfies the following condition:

v0 ≥ E

⎛

⎝
∑

i∈P[1](v)

S[1](v̄, v−i )

⎞

⎠ − (k − 1)E
(
S[1](v)

)
. (2)

Then there exists a successful mechanism with respect to μ.
II. Suppose there exists a successfulmechanismwith respect toμ. Then the following

holds:

v0 > E

⎛

⎝
∑

i∈P[1](v)

S[1](v̄, v−i ) − (k − 1)S[1](v)
∣
∣
∣
∣v ∈ Ṽ

⎞

⎠ , (3)

where

Ṽ = {v ∈ [v0, v̄0] × [v, v̄]n : v0 > S[1](v) and v0 > S[1](v̄, v−i ) for all i ∈ P[1](v)}.

B. Let 〈�, k, μ〉 be an assembly problem with q = 1. The Myerson-Satterthwaite
negative result applies, i.e., there does not exist any successful mechanism.

This result is proved using the WKP condition due to Williams [31] and Krishna
and Perry [13]: there exists a successful mechanism if and only if the well-known
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Fig. 7 Pivotal seller in darker shade and non-pivotal sellers in lighter shade at v

VCG mechanism runs an expected budget surplus. The discussion below provides
further interpretation.

Suppose q > 1 and efficiency requires trade to take place at a profile v. A seller
is called successful at this profile if he trades under the efficient rule. A successful
seller i ∈ P[1](v) is trade-pivotal at v if trade is not efficient at (v̄, v−i ), i.e., when
seller i reports his highest possible valuation. Trade-pivotality is illustrated in the
examples below. Let n = 4, k = 3, and q = 2. The supports of the prior distributions
are as follows: v0 = 25, v̄0 = 35, v = 0, v̄ = 10. Let v0 = 26.

Recall from the example corresponding to Fig. 6 that sellers 1, 2, and 3 trade at v. If
seller 1’s valuation is 10 instead of 1, the sum of the valuations on paths {1 − 2 − 3}
and {2 − 3 − 4} are 28 and 26, respectively. Hence, trade does not take place at
(10, v−1), i.e., seller 1 is trade-pivotal at v. But sellers 2 and 3 are not trade-pivotal
at v: if seller 2 has a valuation of 10, the sum of valuations on {1 − 2 − 3} is 20 and
trade can take place at (10, v−2); same follows for seller 3. Pivotal and non-pivotal
sellers and the efficient feasible path are shown in Fig. 7.

Now consider the profile v′
0 = 28, , v′

1 = 1, v′
2 = 2, v′

3 = 3, and v′
4 = 2. Trade

takes place at v′ with sellers 1, 2, and 3. Note that trade also takes place when the
buyer’s valuation is the lowest possible, i.e., v0 = 25. Furthermore, no successful
seller at v′ is trade-pivotal: if seller 1 reports a valuation of 10, efficiency requires
trade with sellers 2, 3, and 4; if sellers 2 or 3 report a valuation of 10, efficiency
requires trade with sellers 1, 2, and 3. This is illustrated in Fig. 8.

In the statement of Theorem 8, the set Ṽ is the set of profiles v such that (i) it is
efficient to trade at (v0, v−0) and, therefore, also at v, and (ii) all successful sellers
are non-pivotal at v. Hence, v′ ∈ Ṽ but v /∈ Ṽ .

Pick v ∈ Ṽ and a successful seller i . Suppose i’s valuation changes to v̄. Since i
is not trade-pivotal, trade still takes place and the sum of valuations of the successful
sellers in the profile (v̄, v−i ) is S[1](v̄, v−i ). The sum of valuations of all other suc-
cessful sellers at v is S[1](v) − vi . The difference of these two terms, summed over
all successful sellers, is

∑
i∈P[1](v) S[1](v̄, v−i ) − (k − 1)S[1](v). Part A-I of Theo-

rem 8 states that there exists a successful mechanism if the expectation of this term

1

v1 = 1

2

v2 = 2

3

v3 = 3

4

v4 = 2

Fig. 8 Shaded nodes representing non-pivotal sellers at v′
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is at most v0. Part A-II states that if there exists a successful mechanism, then the
expectation of this term, conditional on the profile belonging to Ṽ , is less than v0.

For illustration, consider the simple example: sellers are located on a complete
graph and seller valuations are distributed uniformly in [0, 1]. If v0 ≥ k(k+1)

n+1 , then the
existence of BIC mechanisms that achieve the first-best is guaranteed. For instance,
if n = 2 and k = 1, v0 ≥ 2

3 is the required condition. Since k(k+1)
n+1 → 0 as n → ∞,

it becomes easier to satisfy the sufficient condition as the number of sellers increase.
To examine the role of critical sellers with respect to existence of a successful

mechanism, let c(�) denote the set of critical sellers in 〈�, k, μ〉. If q > 1, then
|c(�)| ≤ k − 1. Conditions (2) and (3) can be reformulated to account for critical
nodes.

Theorem 9 ([29]) Let 〈�, k, μ〉 be an assembly problem with q > 1.

I. Suppose μ satisfies the following condition:

v0 ≥ |c(�)|v̄ + E

⎛

⎝
∑

i∈P[1](v)\c(�)

(
S[1](v̄, v−i ) + vi

) − (k − |c(�)|)S[1](v)

⎞

⎠ .

(4)

Then there exists a successful mechanism with respect to μ.
II. Suppose there exists a successfulmechanismwith respect toμ. Then the following

holds:

v0 > |c(�)|v̄ + E

⎛

⎝
∑

i∈P[1](v)\c(�)

(
S[1](v̄, v−i ) + vi

) − (k − |c(�)|)S[1](v)
∣
∣
∣
∣v ∈ Ṽ

⎞

⎠ ,

(5)

where

Ṽ = {v ∈ [v0, v̄0] × [v, v̄]n : v0 > S[1](v) and v0 > S[1](v̄, v−i ) for all i ∈ P[1](v)}.

Corollary 1 Suppose there exists a successful mechanism with respect to μ. Then

v0 > |c(�)|v̄. (6)

Theorem 9 and Corollary 1 state that the count of critical nodes puts a lower bound
on the support of the buyer’s valuation essential for the existence of a successful
mechanism.
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4 Discussion

The results presented in Sect. 3.1 show the bearing of the degree of complementarity
among inputs and asymmetry of valuations on full surplus extraction in the assembly
problem. While the presence of critical sellers or sufficient asymmetry in seller
valuations prevents full surplus extraction, even limited substitutability enables the
buyer to extract full surplus in two periods, provided she is sufficiently patient. The
number of critical sellers present in the problem also imposes an upper bound on the
volume of surplus that can be extracted by the buyer.

In the light of these results, the formation of seller coalitions becomes one of the
possible explanations of a holdout in the assembly problem. Consider the following
example for an illustration. In the problem where one item is required and two
sellers are present, by making alternate offers to one of the sellers according to the
equilibrium strategy specified in Theorem 1 and by excluding the other seller using
negative offers, the buyer can assure herself δ

1+δ
share of the full surplus. If sellers

are allowed to use trigger strategies, there exists an equilibrium where both sellers
collude to claim 1

1+δ
of the full surplus and the buyer picks one of them with equal

probability provided δ > 1√
2
. This equilibrium is sustained by the following trigger

strategy: if any seller deviates by charging less than 1
1+δ

, the other seller charges
zero surplus share in the subsequent period. The buyer then rejects the deviating
seller’s offer and chooses to purchase from the other seller. The collusive payoff

1
2(1+δ)

is greater than the non-collusive payoff 1 − δ if δ > 1√
2
. In this equilibrium,

both sellers get a positive expected payoff. If δ < 1√
2
, sellers compete and earn zero

surplus shares in the equilibrium. A complete characterization of possible coalitions
and corresponding surplus shares in assembly problems is an open agenda for future
work.

The results in Sect. 3.2 are not strategically informative, since the discussion here
involves direct mechanisms. But the role of critical sellers turns out to be prominent
here as well.

The nature of the first-best mechanism is not described in these results. As shown
by Krishna and Perry [13], it is essentially a projection of the well-known VCG
payments in the space of balanced transfers. Implementing the first-best requires
knowledge of the prior, and hence turn out to be costly in the informational require-
ment in many real-life applications. This remark is also applicable to the optimal
mechanism (see [28]).

TheVCGmechanism itself exhibits several goodproperties like ex-post efficiency,
dominant strategy incentive compatibility, and ex-post individual rationality. Further,
it is also ex-post budget balanced in the limit as the number of sellers becomes large
(see [30]), making it attractive formany applicationswith independent private values.
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