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1 Introduction

Randomization has long been recognized as a useful device to achieve fairness in
allocation problems. For example, in a cricket match, the first use of the pitch for
batting may be important for the determination of the result, and a flip of coin is the
device used to decide this issue. In addition to resolving fairness, randomization is
also useful for incentivizing people to reveal their private information truthfully in
mechanism design problems. In this essay, we will briefly survey some of the main
results in randomized mechanism design problem in the context of voting models.

Avotingmodel is onewhere individuals/agents/voters have to choose one among a
number of alternatives or candidates. Each individual has a ranking or preference over
all alternatives and a (deterministic) social choice function picks an alternative for
every tuple of individual ranking of alternatives. An important feature of the voting
model is that monetary payments or transfers are not permitted—this assumption
is entirely in keeping with our understanding of voting. Individual preferences are
private information and are known only to the individuals themselves. A social choice
function is strategy-proof if no individual can gain bymisrepresenting her preference.
A fundamental question in mechanism design theory is the following: what is the set
of strategy-proof social choice functions? If a social choice function is not strategy-
proof, there are strong grounds to conclude that the social goals represented by the
social choice functions are unattainable in the presence of private information.
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The classical result on strategy-proofness is the Gibbard-Satterthwaite Theorem
[25, 45]. According to the theorem, a social choice function is strategy-proof and
satisfies a mild range condition only if it is dictatorial. Thus, there exists an agent
whose most preferred alternative is always chosen. This result relies on the assump-
tion of an unrestricted domain, i.e., it is assumed that every individual can have
any preference over the alternatives. However, in several situations, it is natural to
assume that individuals can never have certain preferences. In an extreme case, all
individuals have a single ranking; the problem is then rendered trivial because indi-
viduals do not have any opportunity for misrepresentation. In general, considering
plausible restrictions on possible preferences, called the restricted domain approach
to the mechanism design problem, has produced important insights. For instance, the
domain of single-peaked preferences admits a variety of well-behaved strategy-proof
social choice functions (see Sect. 4.2 for further details).

There has been a great deal of research since the 1970s on the structure of strategy-
proof (deterministic) social choice functions on both restricted and unrestricted
domains. In contrast, there has been much less work on strategy-proof random social
choice functions. There has, however, been some recent literature addressing these
issues, and our goal in this paper is to survey some of these results. We focus mainly
on two questions. Does randomization help in escaping the well-known negative
results such as the Gibbard-Satterthwaite Theorem? Secondly, in restricted domain
environments, does randomization further enrich the class of well-behaved deter-
ministic social choice functions?

The paper is organized as follows. Section2 introduces the problem and discusses
various properties of random social choice functions. Sections3 and 4 present results
on unrestricted domains and various restricted domains, respectively. Section5 dis-
cusses the deterministic extreme point property while Sect. 6 concludes.

2 Preliminaries

We consider a society consisting of a (finite) set of individuals N = {1, . . . , n} with
at least two individuals. Except in Sect. 4.5, the set A is assumed to be finite. The set
of alternatives or candidates is Awith |A| ≥ 2. Society faces the problem of choosing
a probability distribution over alternatives based on the “preferences” of individuals
in the society.

For notational convenience, we do not use braces for singleton sets whenever it
is clear from the context; for instance, we denote the set {i} by i .

2.1 Preferences

A complete, reflexive, asymmetric, and transitive binary relation over A (also called
a linear order) is called a preference. A preference can be viewed as a strict ranking
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over the alternatives. We denote by L(A) the set of all preferences over A. For
P ∈ L(A) and a, b ∈ A, aPb is interpreted as “a is strictly preferred to b according
to P”. For P ∈ L(A) and 1 ≤ k ≤ m, by rk(P)we denote the k-th ranked alternative
in P , i.e., rk(P) = a if and only if |{b ∈ A | bPa}| = k. We denote the top-ranked
alternative of a preference P by τ(P) (instead of r1(P)). For P ∈ D and a ∈ A, the
upper contour set of a at P , denoted byU (a, P), is defined as the set of alternatives
that are as good as a in P , that is, U (a, P) = {b ∈ A | bPa}. We call a set U an
upper contour set at a preference P if it is the upper contour set of some alternative
at P .

A set of admissible preferences (henceforth referred to as a domain) is denoted
by D ⊆ L(A). For a ∈ A, we denote by Da the preferences in D that have a as the
top-ranked alternative. For a domain D , the top-set of D , denoted by τ(D), is the
set of alternatives that appear as a top-ranked alternative in some preference in D ,
that is, τ(D) = ∪P∈D τ(P).

A preference profile (or simply a profile), denoted by PN = (P1, . . . , Pn), is an
element of Dn = D × · · · × D that represents a collection of preferences one for
each individual.

2.2 Random Social Choice Functions

In this section, we define social choice functions and discuss their properties. We
denote the set of probability distributions over A by �A. A random social choice
function (RSCF) is a function ϕ : Dn → �A that assigns a probability distribution
or lottery over A at every profile. For a ∈ A and PN ∈ Dn , the probability of a at the
outcome ϕ(PN ) is denoted by ϕa(PN ), and for B ⊆ A, the total probability of the
alternatives in B at ϕ(PN ) is denoted by ϕB(PN ) = ∑

a∈B ϕa(PN ). Some examples
of RSCFs are provided below.

Example 1 (RSCFs based on scoring rules) A score vector s is an m-dimensional
vector (s1, s2, . . . , sm) such that s1 ≥ s2 ≥ · · · ≥ sm with s1 > sm .1 For any individual
i , any preference Pi , and any alternative a, the score assigned by i to a in Pi is
s(a, Pi ) = sk where k is the rank of a in Pi , i.e., rk(Pi ) = a. The score of a at profile
PN is sss(a, PN ) = ∑

i∈N si (a, Pi ). We now define two RSCFs based on score vectors
(for other such RSCFs see [7])

The Proportional Scoring Rule ϕPS: for all a ∈ A and profiles PN ,

ϕPS
a (PN ) = sss(a, PN )

∑
a∈A sss(a, PN )

.

Let M(PN ) denote the set of alternatives that attain the maximum score at profile
PN , i.e., M(PN ) = argmaxa∈A sss(a, PN ).

1 Well-known score vectors are the Plurality vector (1, 0, . . . , 0) and the Borda vector (m − 1,m −
2, . . . , 0).
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Table 1 The proportional scoring rule
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Table 2 The uniform maximal scoring rule

1\2 abc acb bac bca cab cba

abc
(
1, 0, 0

) (
1, 0, 0

) ( 1
2 , 1

2 , 0
) (

0, 1, 0
) (

1, 0, 0
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3 , 1
3 , 1
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3
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2
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)
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2 , 1

2 , 0
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3 , 1

3

) (
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)
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(
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) ( 1
3 , 1

3 , 1
3
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0, 1, 0
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2

)
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2 , 0, 1

2
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3 , 1

3 , 1
3

) (
0, 0, 1

) (
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)

cba
( 1
3 , 1

3 , 1
3

) (
0, 0, 1

) (
0, 1, 0

) (
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2 , 1
2

) (
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) (
0, 0, 1

)

The Uniform Maximal Scoring Rule ϕUMS: for all a ∈ A and profiles PN ,

ϕUMS
a (PN ) =

{ 1
|M(PN )| if a ∈ M(PN ),

0 otherwise.

Tables1 and 2 illustrate the Proportional Scoring Rule and the Uniform Maximal
Scoring Rule, respectively, in the case where N = {1, 2}, A = {a, b, c}, and s is the
Borda score vector.

A RSCF is a deterministic social choice function (DSCF) if it selects a degen-
erate probability distribution at every profile. Formally, an RSCF ϕ : Dn → �A is a
DSCF if ϕa(PN ) ∈ {0, 1} for all a ∈ A and all PN ∈ Dn . For convenience, we shall
sometimes write a DSCF as a function f : Dn → A.

In our model, as in the standard model of mechanism design, an individual’s pref-
erence is her private information, i.e., known only to herself. Since the mechanism
designer goals depend on this information, it must be elicited from the individ-
uals. The property of strategy-proofness ensures that individuals have the correct
incentives to report their true preferences. Specifically, she cannot obtain a strictly
better alternative according to her true preference irrespective of her beliefs about
the reports of other individuals. In game-theoretic terms, truth-telling constitutes a
dominant strategy for every individual in the direct revelation game.
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Strategy-proofness for a DSCF can be defined straightforwardly along the lines of
the discussion in the preceding paragraph: a DSCF f : Dn → A is strategy-proof if
either f (Pi , P−i ) = f (P ′

i , P−i ) or f (Pi , Pi )Pi f (P
′
i , P−i ) for all Pi , P ′

i ∈ D for all
P−i ∈ Dn−1 and all individuals i . Consider an individual i whose true preference is Pi
and “believes” that all other individuals will announce P−i ∈ Dn−1. If she is truthful,
the outcome is f (Pi , P−i ). On the other hand, suppose she considers manipulating
or misrepresenting her preference as P ′

i , the new outcome is f (P ′
i , P−i ). If f is

strategy-proof, the misrepresentation will either keep the outcome unchanged or
lead to a worse outcome according to her true preference Pi . Importantly, i cannot
gain by the misrepresentation no matter what she believes about the preferences of
others.

There are some conceptual difficulties in extending the same idea to RSCFs. The
strategy-proofness property involves the comparison of the outputs of a DSCF or
RSCF at two profiles—one where the individual is truthful and the other, where she
misrepresents her preference. In the case of aDSCF, these two outputs are alternatives
and can be compared using the individual’s (true) preference. However, in the case
of a RSCF, the relevant outputs are lotteries and it is not obvious how preferences
over alternatives can be extended to rankings over lotteries.

In some cases, there is a natural way to evaluate lotteries given an individual’s
preferences. Suppose A = {a, b, c}, and an individual has the preference P = abc.2

Consider the lotteries p = (0.5, 0.3, 0.2) and q = (0.6, 0.35, 0.05).3 Observe that
q can be obtained from p by transferring probabilities from lower to higher ranked
alternatives. Therefore, requiring the individual to prefer q to pwould appear entirely
reasonable. However, this argument cannot be applied while comparing p with r =
(0.4, 0.5, 0.1). Here, probabilities are simultaneously shifted from lower to higher
ranked alternatives and from higher to lower ranked alternatives.

In this essay, we focus on the stochastic dominance approach introduced in Gib-
bard [26]. Following Von Neumann and Morgenstern [46], the standard approach to
lottery comparisons is via expected utility comparisons: thus, lottery q is preferred
to lottery p if the expected utility from q is greater than the expected utility from p.
The difficulty in following this approach is that inputs to the RSCF are preferences
(ordinal rankings) rather than utility functions. A natural way to deal with this issue
is to consider utility representations of preferences. For example, a utility represen-
tation of the preference P = abc, consists of real numbers u(a), u(b), and u(c) with
u(a) > u(b) > u(c). Observe that for any such representation, the expected utility
from q is greater than the expected utility from p. However, the expected utility
from p can be greater or less than that of r depending on the utility representation
chosen.4 According to the stochastic dominance criterion, the expected utility of the

2 By P = abc, we mean the preference where a is the top-ranked, b is the second-ranked, and c is
the third-ranked alternative.
3 By (p1, p2, p3), we denote the lottery where a, b, and c receive probabilities p1, p2, and p3,
respectively.
4 To see this, choose u(a) = 1 and u(c) = 0. If u(b) is close to one, r will have a higher expected
utility than p. The opposite will be true if u(b) is chosen sufficiently close to zero.
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lottery obtained from truth-telling must not be lower than the expected utility of any
lottery arising from misrepresentation of preferences for any representation of true
preferences. This is stated formally below.5

Let P be a preference ordering. The function u : A → 	 is a utility representation
of P if u(a) > u(b)whenever aPb. The RSCF ϕ is stochastic dominance strategy-
proof if

∑
a∈A u(a)ϕa(Pi , P−i ) ≥ ∑

a∈A u(a)ϕa(P ′
i , P−i ) for all Pi , P ′

i ∈ D , for all
P−i ∈ Dn−1, and for all utility representations u of Pi . This notion of strategy-
proofness places a heavy burden on the truth-telling lottery. In the example discussed
previously, ϕ will fail to be strategy-proof if p and r arise from truth-telling and
misrepresentation, respectively, because there exists a utility representation of abc
according to which r has a higher expected utility than p. Thus, we may be confident
that a RSCF that is strategy-proof in this sense will induce individuals to be truthful.
However, we may be excessively cautious in eliminating from consideration RSCFs
that fail to satisfy this property. A weaker notion of strategy-proofness would only
require the expected utility from the lottery from truth-telling not be smaller than
that frommisrepresentation for all utility representation of the true preference. In the
previous example, a RSCF which produced p and q from truth-telling and misrepre-
sentation, respectively, would fail strategy-proofness. However, it would not violate
the condition if misrepresentation yielded r instead of q.6

We now present an alternative formulation of stochastic dominance strategy-
proofness. The lottery p stochastically dominates lottery q at a preference P if
p(U ) ≥ q(U ) for all upper contour sets U of P . Another equivalent way to define
stochastic dominance is as follows. ARSCFϕ : Dn → �A is stochastic dominance
strategy-proof if ϕ(Pi , P−i ) stochastically dominates ϕ(P ′

i , P−i ) for all Pi , P ′
i ∈ D ,

for all P−i ∈ Dn−1 and all individuals i . It is straightforward to verify that the two
notions of stochastic dominance strategy-proofness are equivalent and reduce to
the notion of strategy-proofness for DSCFs. Henceforth, we shall refer to stochas-
tic dominance strategy-proofness simply as strategy-proofness. If a RSCF is not
strategy-proof, we shall say it is manipulable.

Theproportional scoring rule is strategy-proof,while the uniformmaximal scoring
rule is not. For instance, individual 2 can manipulate ϕUMS at the profile (abc, cba)

via the preference cab as ϕU (abc, cba) > ϕU (abc, cab) for the upper contour set
U = c of the preference cba (see Table2).

The next property of a RSCF ensures that it is minimally responsive to the pref-
erences of individuals. This property requires an alternative to be chosen with prob-
ability one if this alternative is top-ranked by all individuals. Formally, a RSCF
ϕ : Dn → �A satisfies unanimity if for all a ∈ A and all PN ∈ Dn , [τ(Pi ) =

5 It is important to emphasize that cardinal mechanisms are not considered here as the private
information of agents is not cardinal (i.e., utility functions). There is a small literature on strategy-
proof RSCFs on cardinal preferences (see [19, 20, 27] for details).
6 For further discussion of alternate notions of strategy-proofness, see [3–6, 9].
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a for all i ∈ N ] ⇒ [ϕa(PN ) = 1].7 Note that the proportional scoring rule is not
unanimous, whereas the uniform maximal scoring rule is unanimous.

There is a natural way to generate “new” RSCFs from any given collection of
RSCFs. Let ϕ j , j = 1, . . . , K be a collection of RSCFs and let λ j , j = 1, . . . , K be
non-negative real numbers such that

∑K
j=1 λ j = 1. Define ϕ = ∑K

j=1 λ jϕ j where

ϕa(PN ) = ∑K
j=1 λ jϕ

j
a (PN ) for all PN ∈ Dn and all a ∈ A. We shall refer to ϕ as a

convex combination of the RSCFs ϕ j . Since the convex combination of a collection
of lotteries is a lottery, ϕ is a RSCF. We record some important properties of convex
combinations of RSCFs below. They can be easily verified and are stated without
proof.

Remark 2.1 Let ϕ be a convex combination of ϕ j , j = 1, . . . , K . If each ϕ j is
strategy-proof and satisfies unanimity, then ϕ is strategy-proof and satisfies unanim-
ity.

The set of strategy-proof RSCFs satisfying unanimity is, therefore, a convex set.
This set can, therefore, be characterized by its extreme points. Note that the RSCFs
ϕ j could be deterministic. Since DSCFs cannot be written as convex combinations of
other RSCFs, it follows that strategy-proof DSCFs satisfying unanimity are extreme
points of the set of strategy-proof RSCFs satisfying unanimity. A question of con-
siderable theoretical and conceptual interest is whether they are the only extreme
points. We shall discuss this issue in greater detail in Sect. 5.

3 Results on the Unrestricted Domain

In this section, we present characterization results for unanimous and strategy-proof
RSCFs on the unrestricted domain. A domain D is unrestricted if it contains all
preferences over A, i.e., D = L(A). We distinguish two cases based on the number
of alternatives in A.

3.1 The Case of Two Alternatives

An important class of social choice problems is concerned with the case of two
alternatives. Among such problems are those where individuals have to vote Yes or
No to a proposal, to Approve or Disapprove a resolution or if there are two candidates
in an election.

We introduce a class of DSCFs on the unrestricted domain with two alternatives.
A committee W is a set of subsets of N such that:

7 It is worth mentioning that under strategy-proofness, unanimity can be weakened in the fol-
lowing way: a RSCF ϕ : Dn → �A satisfies unanimity if for all a ∈ A and all PN ∈ Dn ,
[Pi = Pj for all i, j ∈ N ] ⇒ [ϕa(PN ) = 1] where a = τ(Pi ) for some (and hence, all) i ∈ N .
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(i) ∅ /∈ W and N ∈ W ,
(ii) for all S, T ⊆ N , if S ⊆ T and S ∈ W , then T ∈ W .

The elements of W are called winning coalitions, and other subsets of N are called
losing coalitions.

Let us assume A = {a, b}. For PN ∈ Dn , by Na(PN ), we denote the set of indi-
viduals i ∈ N who have a as their top-ranked alternative, that is, τ(Pi ) = a. For a
committee W , a DSCF fW is called a voting by committees rule with respect to
a and b if at any profile PN , a is chosen as the outcome if and only all members of
some winning coalition vote for a, that is, if for every PN ∈ Dn ,

fW (PN ) =
{
a if Na(PN ) ∈ W
b if Na(PN ) /∈ W .

Voting by Committees is a rich class of rules. It includes majority voting where a
coalition is winning only if it contains at least half the members of the society, the
unanimity rulewhere only the coalition of all individuals is winning, and dictatorship
where a coalition is winning if and only if it contains a specific individual called the
dictator.

A RSCF is called a random voting by committees rule with respect to a and b if
it is a convex combination of voting by committees rules with respect to the same
alternatives.

Theorem 1 ([33, 35]) A RSCF on a domain over two alternatives is unanimous and
strategy-proof if and only if it is a random voting by committees rule.

3.2 The Case of More Than Two Alternatives

It is well-known in social choice theory that the set of strategy-proof DSCFs shrinks
dramatically if the set of alternatives increases beyond two. According to the cele-
bratedGibbard-SatterthwaiteTheorem, every strategy-proofDSCF satisfying una-
nimity must be dictatorial. Formally, a DSCF f : Dn → A is dictatorial or is a dic-
tatorship if there is an individual i ∈ N called the dictator such that f selects the
top-ranked alternative of i at every profile PN , i.e., f (PN ) = τ(Pi ) for all PN ∈ Dn .
Thus, all the well-behaved rules such as majority rule are no longer strategy-proof
once there are at least three alternatives. Gibbard [26] provides a complete answer
to the following question: does the negative result for DSCFs extend to RSCFs as
well?

A RSCF ϕ : Dn → �A is unilateral if (i) ϕ is strategy-proof and (ii) there exists
an individual i ∈ N such that ϕ(PN ) = ϕ(P ′

N ) for all profiles PN , P ′
N such that

Pi = P ′
i . In other words, a RSCF is a unilateral if it is strategy-proof and depends

only on the preference of a single individual.An example of a unilateral is aRSCF that
gives probability 0.5, 0.4, and 0.1 to individual i’s first-ranked, second-ranked, and
third-ranked alternatives, respectively. A duple is a RSCF ϕ if (i) ϕ is strategy-proof
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and (ii) there exist alternatives a, b ∈ A such that for all profiles PN , ϕc(PN ) > 0
only if c ∈ {a, b}. A duple is a strategy-proof RSCF that gives positive probability
to at most two fixed alternatives at any profile.

Remark 2.1 implies that convex combinations of unilaterals and duples are
strategy-proof. Gibbard [26] shows that the converse is also true: every strategy-
proof RSCF (on the unrestricted domain) is a convex combination of unilaterals and
duples.

Theorem 2 ([26]) Assume m ≥ 3. A RSCF on the unrestricted domain is strategy-
proof if and only if it is a convex combination of unilateral and duple rules.

The class of strategy-proof RSCFs on the unrestricted domain is not as restricted
as the class of strategy-proof DSCFs. Although a unilateral only considers the pref-
erence of a single individual while assigning probabilities, unilaterals for differ-
ent individuals can be combined (using convex combinations) to generate a more
acceptable RSCF which is also strategy-proof. Similarly, duples over different pairs
of alternatives can be combined to produce RSCFs that have full support at every
profile. Unilaterals and duples can be combined as well. Consequently, the class
of strategy-proof RSCFs is “large” and includes many RSCFs that have attractive
features from an ethical point of view (unlike dictatorship, for example). One such
RSCF is the Proportional Scoring Rule in Example 1 which can be expressed as a
convex combination of unilaterals and duples. Further examples and results can be
found in Barbera [7].

The discussion in the previous paragraph is subject to an important caveat. A
duple does not satisfy unanimity since it assigns zero probability to all except two
alternatives. Nor can duples be convexified in a manner that the resulting RSCF
satisfies unanimity. A unilateral satisfies unanimity only if the first-ranked alternative
of an individual gets probability one. Recall that a RSCF is a random dictatorship if
it is a convex combination of dictatorial DSCFs. Combining these observations, we
obtain the following result.

Theorem 3 ([26]) Assume m ≥ 3. A RSCF on the unrestricted domain is strategy-
proof and satisfies unanimity if only if it is a random dictatorship.

We provide a proof of this result in the case where there are two individuals. An
induction argument can be used to extend the argument to an arbitrary number of
individuals.8

Proof It is left to the reader to verify that every randomdictatorship is unanimous and
strategy-proof. We prove the converse. Let N = {1, 2}. Assume that ϕ : [L(A)]2 →
�A satisfies unanimity and strategy-proofness.

Lemma 1 Let (P1, P2) ∈ [L(A)]2 be such that τ(P1) �= τ(P2). Then [ϕa(P1, P2) >

0] =⇒ [a ∈ {τ(P1), τ (P2)}].

8 Duggan [17] provides a geometric proof of the result.
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Proof Suppose not, i.e., suppose that there exists P1, P2 ∈ L(A) and a, b ∈ A such
that τ(P1) = a �= b = τ(P2) and ϕa(P1, P2) + ϕb(P1, P2) < 1. Let α = ϕa(P1, P2)
and β = ϕb(P1, P2). Let P ′

1 = ab · · · and P ′
2 = ba · · · . Then strategy-proofness

implies ϕa(P ′
1, P2) = α. Furthermore, it must be that ϕa(P ′

1, P2) + ϕb(P ′
1, P2) = 1

as otherwise voter 1 will manipulate via P2 and thereby obtaining probability one
on b by unanimity. Hence, ϕb(P ′

1, P2) = 1 − α. Note that strategy-proofness also
implies ϕb(P ′

1, P
′
2) = ϕb(P ′

1, P2) = 1 − α and ϕa(P ′
1, P

′
2) = α.

By a symmetric argument, ϕb(P ′
1, P

′
2) = ϕb(P1, P ′

2) = β and ϕa(P ′
1, P

′
2) = 1 −

β. Comparing the probabilities on a and b given by ϕ at the profile (P ′
1, P

′
2), it follows

that α + β = 1 contradicting the earlier conclusion. �

Lemma 2 Let (P1, P2), (P̄1, P̄2) ∈ [L(A)]2 be such that τ(P1) = a �= b = τ(P2)
and τ(P̄1) = c �= d = τ(P̄2). Then [ϕa(P1, P2) = ϕc(P̄1, P̄2)] and [ϕb(P1, P2) =
ϕd(P̄1, P̄2)].
Proof Let P1 = a · · · , P2 = b · · · . Let (P̂1, P̂2)be an arbitrary profilewhere τ(P̂1) =
a and τ(P̂2) = b. Then strategy-proofness implies that ϕa(P̂1, P2) = ϕa(P1, P2).
Lemma 1 implies ϕb(P̂1, P2) = ϕb(P1, P2). Now changing voter 2’s ordering from
P2 to P̂2 and applying the same arguments, it follows that ϕa(P̂1, P̂2) = ϕa(P1, P2)
and ϕb(P̂1, P̂2) = ϕb(P1, P2).

Assume that c �= b. The argument in the previous paragraph implies that it can
be assumed without loss of generality that c is the second-ranked outcome at P1 (if
a and c are distinct), i.e., it can be assumed that P1 = ac · · · . Let P̄1 = ca · · · . Then
strategy-proofness implies ϕa(P̄1, P2) + ϕc(P̄1, P2) = ϕa(P1, P2) + ϕc(P1, P2). By
Lemma 1, ϕc(P1, P2) = ϕa(P̄1, P2) = 0. Hence, ϕa(P1, P2) = ϕc(P̄1, P2) while
ϕb(P1, P2) = ϕb(P̄1, P2). Assume b �= d. Switching voter 2’s preferences from P2 to
P̄2 and applying the same argument as above, it follows that ϕc(P̄1, P2) = ϕc(P̄1, P̄2)
while ϕb(P̄1, P2) = ϕd(P̄1, P̄2).

The arguments above can deal with all cases except the case where c = b and d =
a. Sincem ≥ 3, there exists x ∈ A distinct from a and b. Let P̃1 be such that τ(P̃1) =
x . From earlier arguments, ϕa(P1, P2) = ϕx (P̃1, P̄2) and ϕb(P1, P2) = ϕa(P̃1, P̄2).

Applying these arguments again, it can be inferred that ϕx (P̃1, P̄2) = ϕb(P̄1, P̄2)
and ϕa(P̃1, P̄2) = ϕa(P̄1, P̄2) establishing the Lemma. �

Lemmas 1 and 2 above establish that ϕ is a random dictatorship. �
We now proceed to examine the structure of strategy-proof RSCFs on restricted

domains.

4 Results on Restricted Domains

In many mechanism design problems, the mechanism designer has a-priori infor-
mation about the preferences of individuals. For instance, a and c may represent
candidates with “extreme” positions while b is a “moderate” candidate. The designer
may know (without preference revelation) that b always lies between a and c in the
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preferences of all individuals. As a consequence, RSCFs need to be defined only over
a subset of the set of all preferences. The designer also has to consider a narrower
class of preferences while checking for possible deviations from truth-telling. Of
course, various types of restricted domains can be considered. In this section, we
review results on several well-known restricted domains.

4.1 Dictatorial Domains

A domain D is a dictatorial domain if every unanimous and strategy-proof DSCF
f : Dn → A is dictatorial. Similarly, a domainD is a randomdictatorial domain if
every unanimous and strategy-proof RSCF ϕ : Dn → �A is a random dictatorship.
A random dictatorial domain is clearly a dictatorial domain. The unrestricted domain
is both a dictatorial domain as well as a random dictatorship domain by virtue of
the Gibbard-Satterthwaite Theorem and Theorem 3, respectively. This observation
motivates the following general observation: is every dictatorial domain a random
dictatorial domain?

Aswaletal. [1]providesufficientconditionsforadomaintobedictatorial in termsof
agraphinducedbythedomain.9 Twoalternativesa andbaredefinedtobe linked if there
exist two preferences in the domain, onewhere a is ranked first and b is ranked second
and another preferencewhere the reverse is true.Consider a graphwhere the nodes are
alternatives.There isanedgebetweentwonodes if theyare linked.Aswaletal. [1]show
that a condition on this graph is sufficient for the underlying domain to be dictatorial.
They refer to this as the linked domain condition. It can be described as follows: there
is an ordering of the nodes such that the first two in the ordering are linked; in addition,
every subsequent node is linked to at least two others that are predecessors of the node
in theordering.An implicationof this result is that there are several domainsother than
the unrestricted domain that are dictatorial. These domains can be much smaller than
the unrestricted domain (which has m! orderings). There are, in fact, linked domains
whose size is a linear function ofm.

Chatterji et al. [14] investigate the relationship between linked domains and ran-
dom dictatorial domains. They provide examples of linked domains that are not
random dictatorial. In other words, there are domains where every DSCF that is
strategy-proof and satisfies unanimity is dictatorial but admitRSCFs that are strategy-
proof, satisfy unanimity but are not random dictatorships. In these domains, the
randomization allows the mechanism designer to escape the straightjacket of (ran-
dom) dictatorship. Chatterji et al. [14] also provide additional conditions on linked
domains that make them random dictatorial domains. One such condition is the hub
condition according to which there is a node that is linked to every other node in the
graph. Examples suggest that strong conditions are required to make linked domains,
random dictatorial domains.

We now consider several domains that are not random dictatorial domains.

9 See also Sato [44] and Pramanik [36].
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4.2 Single-Peaked Domains

Single-peaked preferences are the bedrock of the theory of political economy (see [2]
for example). There is an underlying structure on alternatives with respect to which
preferences are described. We proceed to details.

We let A = {a1, . . . , am}. There is a prior ordering ≺ on the elements of A given
by a1 ≺ · · · ≺ am . We write x � y to mean that either x ≺ y or x = y. For all a, b ∈
A, we define [a, b] = {c | either a � c � b or b � c � a} as the set of alternatives
that lie “between” a and b. For any B ⊆ A, [a, b]B = [a, b] ∩ B denotes the set of
alternatives in B that lie in the interval [a, b]. Whenever we refer to the maximum or
minimum of a subset of alternatives, we are referring to the maximum and minimum
with respect to the ordering≺. Whenever we write τ(D) = {b1, . . . , bk}, we assume
without loss of generality that b1 ≺ · · · ≺ bk .

A preference P is single-peaked if for all a, b ∈ A, [τ(P) � a ≺ b or b ≺ a �
τ(P)] implies aPb. A domain is called single-peaked if each preference in the
domain is single-peaked and is calledmaximal single-peaked if it contains all single-
peaked preferences.

A preference is single-peaked if there exists a unique alternative that is first-
ranked (sometimes referred to as the peak). Moving farther away from the peak in
any direction leads to a decline in preferences. Consider the problem of finding a
location on a street to build a public facility such as a hospital or school. Every
individual has a unique location on the street which is her peak. While comparing
two possible locations for the public good on the same side of her peak, she strictly
prefers the location closer to her peak. The street can also be interpreted as the
political spectrum. If a and b are two political candidates with a ≺ b, then a is more
“left-wing” than b. If a voter’s preferences are single-peaked and her peak (or ideal
candidate) c is more left-wing than a, i.e., c ≺ a, then she will prefer candidate a
to b. If on the other hand, the voter’s peak is b, she will prefer a to c. Figure1 is a
diagrammatic representation of a single-peaked preference.

An important class of DSCFs on single-peaked domains is min-max rules. These
rules were introduced in Moulin [30] and constitute the set of all unanimous and
strategy-proof DSCFs on the maximal single-peaked domain. Min-max rules are
based on a class of parameters, one for each subset of individuals, which we denote

Fig. 1 A graphic illustration
of a single-peaked preference
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Table 3 Parameters of the min-max rule f

β β1 β2 β3 β{1,2} β{1,3} β{2,3}
a8 a9 a7 a4 a5 a2

by (βS)S⊆N . These parameters are required to satisfy some boundary conditions and
some monotonicity properties. As the name suggests, the outcome at any profile is
calculated by taking suitable minima and maxima of the top-ranked alternatives at
the profile and the parameters.

Definition 4.1 A DSCF f on Dn is called a min-max rule if for all S ⊆ N , there
exists βS ∈ A satisfying

β∅ = am, βN = a1, and βT � βS for all S ⊆ T

such that

f (PN ) = min
S⊆N

[

max
i∈S {τ(Pi ), βS}

]

.

Aproperty that occurs frequently in social choice theory is tops-onlyness. ARSCF
is tops-only if its outcome at a profile depends only on the top-ranked alternatives
in that profile. Two profiles PN , P ′

N ∈ Dn are tops-equivalent if each individual
has the same top-ranked alternative in the two profiles, i.e., τ(Pi ) = τ(P ′

i ) for all
i ∈ N .ARSCFϕ : Dn → �A is tops-only ifϕ(PN ) = ϕ(P ′

N ) for all tops-equivalent
PN , P ′

N ∈ Dn . Note that min-max rules are tops-only by definition. In what follows,
we provide an example of a min-max rule.

Example 2 Let A = {a1, . . . , a10} and N = {1, 2, 3}. Consider the min-max rule,
say f , with parameters as given in Table3.

The outcome of the min-max rule at the profile (a5, a3, a8), where a5, a3, and a8
are the top-ranked alternatives of individuals 1, 2, and 3, respectively, is determined
as follows.

f (PN ) = min
S⊆{1,2,3}

[
max
i∈S {Pi (1), βS}]

= min
[
max{β∅},max{τ(P1), β1},max{τ(P2), β2},max{τ(P3), β3},
max{τ(P1), τ (P2), β{1,2}},max{τ(P1), τ (P3), β{1,3}},max{τ(P2), τ (P3), β{2,3}},
max{τ(P1), τ (P2), τ (P3), β{1,2,3}}

]

= min
[
a10, a8, a9, a8, a5, a8, a8, a8

]

= a5.�

It is shown inMoulin [30] andWeymark [48] that a DSCF on themaximal single-
peaked domain is unanimous and strategy-proof if and only if it is a min-max rule. In
this section, we present results for RSCFs for a large class of single-peaked domains,
which we call top-connected single-peaked domains.
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For a domain D , the top-interval I (D) is the set of alternatives [min(τ (D)),

max(τ (D))].
Definition 4.2 A single-peaked domain D is top-connected if for every two con-
secutive alternatives ar and as in τ(D) with min(τ (D)) � ar ≺ as � max(τ (D)),
there exist P ∈ Dar and P ′ ∈ Das such that as Par−1 if ar−1 ∈ I (D) and ar P ′as+1

if as+1 ∈ I (D).

Observe that some alternative may not appear as a top-ranked alternative in any
preference in a top-connected single-peaked domain, in other words, the top-set of
such a domain does not necessarily contain all alternatives.

Remark 4.1 Note that top-connectedness does not impose any restriction (except
from single-peakedness) on any preference with the top-ranked alternative as
min(τ (D)) or max(τ (D)). To see this, take, for instance, min(τ (D)) = ar ≺ as �
max(τ (D)). Definition 4.2 says that there must exist a single-peaked preference
P ∈ Dar such that as Par−1 if ar−1 ∈ I (D). However, since ar = min(τ (D)), it
must be that ar−1 /∈ I (D). Therefore, this condition does not apply to P . Similar
logic applies to any preference with the top-ranked alternative as max(τ (D)).

For a sequence of alternatives b1, . . . , bk , denote by 〈b1, . . . , bk〉 . . . a prefer-
ence where P(l) = bl for all l = 1, . . . , k. Then, the top-connectedness property
of a domain D assures that for every two consecutive alternatives ar and as in
τ(D) with min(τ (D)) � ar ≺ as � max(τ (D)), there are two single-peaked pref-
erences P and P ′ such that P = 〈ar , ar+1, . . . , as−1, as〉 . . . if ar−1 ∈ I (D) and
P ′ = 〈as, as−1, . . . , ar+1, ar 〉 . . . if as+1 ∈ I (D). For example, if A = {a1, . . . , a15}
and τ(D) = {a3, a4, a5, a8, a10}, then top-connectedness ensures, for instance, that
preferences such as 〈a5, a6, a7, a8〉 . . . and 〈a8, a7, a6, a5〉 . . . are present in the
domain. Note that as we mention in Remark 4.1, top-connectedness does not impose
any restriction (except from single-peakedness) on the preferences with top-ranked
alternatives a3 or a10. Thus, the top-connectedness property of a domain D guaran-
tees that for every two consecutive alternatives ar and as in τ(D) with min(τ (D)) �
ar ≺ as � max(τ (D)), there are two single-peaked preferences P and P ′ such that
P|I (D ) = 〈ar , ar+1, . . . , as−1, as〉 . . . and P ′|I (D ) = 〈as, as−1, . . . , ar+1, ar 〉 . . ..

We provide an example of a top-connected single-peaked domain in Example 3.

Example 3 Let A = {a1, . . . , a10} be the set of alternatives. Consider the top-
connected single-peaked domain D = {P1, . . . , P9} given in Table4. Here, τ(D) =
{a3, a4, a7, a9}.

It is worth noting that the number of preferences in a top-connected single-peaked
domain can range from 2|τ(D)| − 1 to 2m−1. Thus, the class of such domains is quite
large. It should be further noted that any single-peaked domainD with |τ(D)| = 2 is
a top-connected single-peaked domain. This is because top-connectedness does not
impose any condition on the preferences with top-ranked alternatives min(τ (D)) or
max(τ (D)).
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Table 4 Preference domain for Example 3

P1 P2 P3 P4 P5 P6 P7 P8 P9

a3 a3 a4 a4 a4 a7 a7 a9 a9
a4 a2 a3 a5 a5 a6 a8 a10 a8
a5 a4 a2 a6 a6 a5 a9 a8 a7
a2 a1 a5 a3 a7 a4 a6 a7 a6
a1 a5 a6 a7 a3 a3 a5 a6 a10
a6 a6 a1 a8 a2 a2 a4 a5 a5
a7 a7 a7 a9 a8 a8 a3 a4 a4
a8 a8 a8 a10 a9 a9 a10 a3 a3
a9 a9 a9 a2 a1 a1 a2 a2 a2
a10 a10 a10 a1 a10 a10 a1 a1 a1

Our next theorem provides a characterization of unanimous and strategy-proof
RSCFs on top-connected single-peaked domains. A randommin-max rule is a convex
combination of min-max rules.

Theorem 4 ([40]) A RSCF on a top-connected single-peaked domain is unanimous
and strategy-proof if and only if it is a random min-max rule.

Ehlers et al. [21] consider the case where the set of alternatives is continuous,
say the interval [0, 1]. They provide a different characterization of unanimous and
strategy-proof RSCFs on the maximal single-peaked domain by means of a class of
RSCFs called probabilistic fixed ballot rule (PFBR). Below, we define these rules
for the case of finitely many alternatives.

A PFBR ϕ is based on a collection of parameters (βS)S⊆N , called probabilistic
ballots. Each probabilistic ballot βS , which is associated to the coalition S ⊆ N , is
a probability distribution on A satisfying the following two properties.

• Ballot unanimity: βN assigns probability 1 to a1, and β∅ assigns probability 1 to
am .

• Monotonicity: probabilities according to βS move toward left as S gets bigger,
i.e., βS([a1, ak]) ≤ βT ([a1, ak]) for all S ⊂ T and all ak ∈ A.10

For example, suppose there are two individuals {1, 2} and four alternatives
{a1, a2, a3, a4}. A choice of probabilistic ballots could be β∅ = (0, 0, 0, 1), β{1} =
(0.5, 0.2, 0.1, 0.2), β{2} = (0.4, 0.3, 0.2, 0.1), and βN = (1, 0, 0, 0).11

A PFBR ϕ w.r.t. a collection of probabilistic ballots (βS)S⊆N works as follows. For
each1 ≤ k ≤ m, let S(k, PN ) = {i ∈ N : τ(Ri ) � ak}be the set of individualswhose
peaks are not to the right of ak . Consider an arbitrary profile PN and an arbitrary alter-
native ak . We induce the probabilities βS(k,PN )([a1, ak]) and βS(k−1,PN )([a1, ak−1]). If

10 For a subset B of A, we denote the probability of B according to βS by βS(B).
11 Here (x, y, w, z) is the probability distribution where a1, a2, a3, and a4 receive probabilities x ,
y, w, and z, respectively.
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ak = a1, then set βS(0,PN )([a1, a0]) = 0. The probability of the alternative ak selected
at the profile PN is defined as the difference between these two probabilities, i.e.,
ϕak (PN ) = βS(k,PN )([a1, ak]) − βS(k−1,PN )([a1, ak−1]).12 Consider, for example, the
PFBR ϕ w.r.t. the parameters described in the previous paragraph. Let PN = (P1, P2)
be a profile where τ(P1) = a2 and τ(P2) = a4. Then,

ϕa1(PN ) = βS(1,PN )([a1, a1]) − 0 = 0,

ϕa2(PN ) = βS(2,PN )([a1, a2]) − βS(1,PN )([a1, a1])
= β{1}([a1, a2]) − β∅([a1, a1]) = 0.7 − 0 = 0.7,

ϕa3(PN ) = βS(3,PN )([a1, a3]) − βS(2,PN )([a1, a2])
= β{1}([a1, a3]) − β{1}([a1, a2]) = 0.8 − 0.7 = 0.1, and

ϕa4(PN ) = βS(4,PN )([a1, a4]) − βS(3,PN )([a1, a3])
= βN ([a1, a4])β{1}([a1, a3]) = 1 − 0.8 = 0.2.

Clearly, the PFBR satisfies the tops-only property.
It is important to note that the probabilistic ballot βS for a coalition S ⊆ N rep-

resents the outcome of ϕ at the “boundary profile” where individuals in S have
the preference Pi = (a1 · · · ak−1 ak · · · am), while the others have the preference
Pi = (am · · · ak ak−1 · · · a1). We call such a profile a S-boundary profile.13 If a
PFBR ϕ is unanimous, then it follows that β∅ assigns probability 1 to am and βN

assigns probability 1 to a1, which in turn implies ballot unanimity. We now argue
that (βS)S⊆N is monotonic if ϕ is strategy-proof. Consider a proper subset S ⊂ N
and i ∈ N \ S. Let PN and P ′

N be the S-boundary and S ∪ {i}-boundary profiles,
respectively. In other words, only individual i changes her preference Pi in the
S ∪ {i}-boundary profile to Pi . Strategy-proofness of ϕ implies that the probability
of each upper contour set of Pi is weakly increased from ϕ(PN ) to ϕ(P ′

N ). Since
the interval [a1, ak] coincides with the upper contour set of ak at Pi , it follows that
βS([a1, ak]) ≤ βS∪{i}([a1, ak]). Monotonicity of (βS)S⊆N follows from the repeated
application of this argument.

The outcome of a PFBR at any profile is uniquely determined by its outcomes at
boundary profiles. It is shown in Ehlers et al. [21] that every PFBR is unanimous and
strategy-proof on the single-peaked domain. Thus, unanimity and strategy-proofness
of a PFBR at every profile can be ensured by imposing those conditions only on
boundary profiles.

The deterministic versions of PFBRs can be obtained by additionally requiring the
probabilistic ballots be degenerate, i.e., βS(ak) ∈ {0, 1} for all S ⊆ N and ak ∈ A.
These DSCFs were introduced by Moulin [30]; we refer to these as Fixed Ballot

12 Since S(k − 1, P) ⊆ S(k, PN ) and [a1, ak−1] ⊂ [a1, ak ], monotonicity ensures ϕak (PN ) =
βS(k,PN )([a1, ak ]) − βS(k−1,PN )([a1, ak−1]) ≥ 0. Moreover, note that

∑m
k=1 ϕak (PN ) =∑m

k=1 βS(k,PN )([a1, ak ]) − βS(k−1,PN )([a1, ak−1]) = βS(m,PN )([a1, am ]) = 1. Therefore,
ϕ(PN ) ∈ �(A) and ϕ is a well-defined RSCF.
13 Note that for every S ⊆ N , there is a unique S-boundary profile.
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Rules (or FBRs).14 Moulin [30] showed that a DSCF is unanimous, tops-only, and
strategy-proof on the single-peaked domain if and only if it is an FBR. It can be
easily verified that an arbitrary mixture of FBRs is unanimous and strategy-proof on
the single-peaked domain and is a PFBR. Theorem 3 of [34] and Theorem 5 of [37]
prove that the converse is also true.

Below, we present the formal definition of PFBRs.

Definition 4.3 A RSCF ϕ : Dn → �A is called a Probabilistic Fixed Ballot Rule
(or PFBR) if there exists a collection of probabilistic ballots (βS)S⊆N satisfying
ballot unanimity and monotonicity such that for all PN ∈ Dn and ak ∈ A, we have

ϕak (PN ) = βS(k,PN )([a1, ak]) − βS(k−1,PN )([a1, ak+1]),

where βS(0,PN )([a1, a0]) = 0.

Theorem 5 ([21]) A RSCF on the maximal single-peaked domain is unanimous
and strategy-proof if and only if it is a PFBR.

It follows from Theorem 5 and Theorem 4 that every PFBR is a random min-max
rule and vice versa.15

4.3 Single-Dipped Domains

Single-dipped preferences are the reverse of single-peaked preferences. In the latter,
preferences decline as one moves farther away from its peak. On the other hand,
preferences increase in single-dipped preferences as one moves farther away from
its “dip”. These preferences are appropriate for the location of “public bads” such as
nuclear plants and garbage dumps. All individuals want such facilities to be located
as far away as possible from their location.

A preference P is single-dipped if it has a unique minimal element d(P), the
dip of P , such that for all a, b ∈ A, [d(P) � a ≺ b or b ≺ a � d(P)] ⇒ bPa. A
domain is single-dipped if each preference in it is single-dipped. A single-dipped
preference is illustrated in Fig. 2.

Peters et al. [33] introduce the notion of binary restricted domains and show that
every unanimous and strategy-proof RSCF on a binary restricted domain is a convex
combination of unanimous and strategy-proof DSCFs on the same domain. It is easy
to verify that every top-connected single-dipped domain is a binary restricted domain.

14 Moulin [30] called these Augmented Median Voter Rules, while [8] called these Generalized
Median Voter Schemes. For an FBR ϕ, the subtraction form in Definition 4.3 can be simplified to
a min-max form (see Definition 10.3 in [31]).
15 In a related paper, Dutta et al. [18] analyzed the structure of strategy-proof and unanimous RSCFs
on domains containing strictly convex continuous single-peaked preferences on a convex subset of
Euclidean space. They show that every strategy-proof and unanimous RSCF on any such domain
must be a random dictatorship.
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Fig. 2 An illustration of a
single-dipped preference

It follows that every strategy-proof RSCF satisfying unanimity on a top-connected
single-dipped domain is a random voting by committees rules (recall the definition
of such rules in Sect. 3.1) with respect to the boundary alternatives a1 and am .

Theorem 6 ([33]) A RSCF on a top-connected single-dipped domain is strategy-
proof and satisfies unanimity if and only if it is a random voting by committees rule
with respect to a1 and am.

It follows from Theorem 6 that any strategy-proof RSCF that satisfies unanimity
on a top-connected single-dipped domain can assign positive probability to only the
“boundary” alternatives a1 and am .

4.4 Single-Crossing Domains

The single-crossing property is a familiar one in economic theory.16 It appears fre-
quently in models of income taxation and redistribution [29, 38], local public goods
and stratification [22, 23, 47], and coalition formation [16, 28]. A more detailed
discussion of applications and other issues can be found in Saporiti [42].

A domain D is a single-crossing domain if there exists an ordering ≺ over
A and an ordering � over D such that for all a, b ∈ A and all P, P ′ ∈ D , [a ≺
b, P � P ′, and bPa] =⇒ bP ′a. Preferences in a single-crossing domain can be
ordered in such a way that every pair of alternatives switch their relative ranking at
most once along the ordering. A single-crossing domain D̄ is maximal if there does
not exist another single-crossing domain that is a strict superset of D̄ . Note that a
maximal single-crossing domain withm alternatives containsm(m − 1)/2 + 1 pref-
erences.17 A domain D is successive single-crossing if there is a maximal single-
crossing domain D̄ with respect to some ordering � and two preferences P ′, P ′′ ∈ D̄
with P ′ � P ′′ such that D = {P ∈ D̄ | P ′ � P � P ′′}.18

16 See, for example, Romer [39], p. 181, and Austen-Smith and Banks [2], pp. 114–115.
17 For details, see Saporiti [42].
18 By P � P ′, we mean either P = P ′ or P � P ′.
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Examples of a maximal single-crossing domain and a successive single-crossing
domain with five alternatives are shown below.

Example 4 Let the set of alternatives be A = {a1, a2, a3, a4, a5}with the prior order
a1 ≺ · · · ≺ a5. The domain D̄ = {a1a2a3a4a5, a2a1a3a4a5, a2a3a1a4a5,
a2a3a4a1a5, a2a4a3a1a5, a4a2a3a1a5, a4a2a3a5a1,
a4a3a2a5a1, a4a3a5a2a1, a4a5a3a2a1, a5a4a3a2a1} is a maximal single-crossing
domainwith respect to theordering�givenbya1a2a3a4a5 � a2a1a3a4a5 � a2a3a1a4a5
� a2a3a4a1a5 � a2a4a3a1a5 � a4a2a3a1a5 � a4a2a3a5a1 � a4a3a2a5a1 � a4a3a5a2a1 �
a4a5a3a2a1 � a5a4a3a2a1 since every pair of alternatives change their relative order-
ing at most once along this ordering. Note that the cardinality of A is 5 and that of D̄
is 5(5 − 1)/2 + 1 = 11. The domain D = {a1a2a3a4a5, a2a1a3a4a5, a2a3a1a4a5,
a2a3a4a1a5, a2a4a3a1a5, a4a2a3a1a5} is a successive single-crossing domain since
it contains all the preferences between a1a2a3a4a5 and a4a2a3a1a5 in the maximal
single-crossing domain D̄ . �

In what follows, we introduce a restricted version of min-max rules called tops-
restricted min-max rule. For such a min-max rule, all the parameters are required
to come from the top-set of the domain. Formally, a DSCF f : Dn → A is a tops-
restricted min-max (TM) rule if for all S ⊆ N , there exists βS ∈ τ(D) satisfying
the conditions that β∅ = max(τ (D)), βN = min(τ (D)), and βT � βS for all S ⊆
T such that

f (PN ) = min
S⊆N

[

max
i∈S {τ(Pi ), βS}

]

.

Note that if τ(D) = A, then a TM rule becomes a min-max rule. For an example
of a TM rule, consider the DSCF f in Example 2 and a domain D with τ(D) =
{a2, a3, a4, a5, a7, a8, a9}. Since all parameters of f take values in τ(D), f becomes
a TM rule on D .

It is worth noting that the outcome of a min-max rule at a profile is either some
top-ranked alternative at that profile or some parameter value (that is, βS for some
S ⊆ N ). Since for a TM rule f , all these alternatives must be in the top-set of the
corresponding domain, its outcome also lies in the same set, that is, f (PN ) ∈ τ(D)

for all PN ∈ Dn .
A crucial property of a single-crossing domain is that the outcome of a unanimous

and strategy-proof DSCF always lies in the top-set of the domain. This implies that
one can restrict a single-crossing domain to its top-set for the purpose of analyzing
unanimous and strategy-proof DSCFs on it. It can be verified that a single-crossing
domain restricted to its top-set is a top-connected single-peaked domain. Therefore,
by Theorem 4, it follows that a DSCF on a single-crossing domain is unanimous and
strategy-proof if and only if it is a TM rule. These results are formally proved in
Saporiti [43].19 Subsequently, [41] have shown that these properties hold for RSCFs
on single-crossing domains as well and provide a characterization of unanimous and
strategy-proof RSCFs on these domains.

19 Saporiti [43] uses the term augmented representative voter schemes for TM rules.
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A RSCF ϕ : Dn → �A is a tops-restricted random min-max (TRM) rule if
ϕ can be written as a convex combination of some TM rules on Dn . As we have
explained earlier, if τ(D) = A, then a TRM rule ϕ : Dn → �A becomes a random
min-max rule.

Theorem 7 ([41]) A RSCF on a successive single-crossing domain is unanimous
and strategy-proof if and only if it is a tops-restricted random min-max rule.

4.5 Euclidean Domains

Euclidean preferences are a special case of single-peaked preferences. Alternatives
are located on the real line (or the unit interval without loss of generality) and≺ is the
natural order < on the real numbers. We let the set of alternatives A be the interval
[0, 1]. A preference P is Euclidean if there is x ∈ [0, 1], such that τ(P) = x and
for all alternatives a, b ∈ A, |x − a| < |x − b| implies aPb. A domain is Euclidean
if it contains all Euclidean preferences.

A preference is Euclidean if an alternative a is preferred to another alternative b
only if the distance from a to the peak is smaller than the distance of b to the peak. If
both a and b lie on the same side of the peak, then single-peakednesswould imply that
the alternative closer to the peakwould be preferred. However, Euclidean preferences
also compare alternatives on different sides of the peak unlike single-peakedness.
Euclidean preferences are determined completely by the peak of an individual’s peak.
Consequently, the domain of Euclidean preferences is a strict subset of the set of the
maximal single-peaked domain.

Since theEuclideandomain is a strict subset of themaximal single-peakeddomain,
the possibility that there are unanimous and strategy-proof DSCFs on the domain
apart from the min-max rules cannot be excluded. However, [11] show that this case
does not arise: a DSCF on the Euclidean domain is unanimous and strategy-proof if
and only if it is a min-max rule. Furthermore, [40] show that the same holds even for
RSCFs on the Euclidean domain.

Theorem 8 ([40]) A RSCF on the Euclidean domain is unanimous and strategy-
proof if and only if it is a random min-max rule.

4.6 Dichotomous Domains

Dichotomous preferences are a generalization of binary preferences. There are an
arbitrary number of alternatives but each alternative can belong to exactly one of two
indifference classes—a “good” set and a “bad” set. An important point of departure
from our earlier discussion is that an individual can be indifferent between alterna-
tives. A dichotomous domain is the set of all dichotomous preferences. Dichotomous
domains have been studied extensively in Bogomolnaia et al. [10].
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A dichotomous preference for individual i can be represented by a subset Xi of A
with the interpretation that Xi is the good set of i . A profile is n-tuple (X1, . . . , Xn).
Let X n denote the set of all profiles.

A characterization of strategy-proof DSCFs satisfying unanimity remains an open
and difficult problem. However, [24] provide a necessary condition, called the pair-
triple property, for a strategy-proofRSCF to be representable as a convex combination
of strategy-proof DSCFs.

A RSCF ϕ : X n → �A satisfies the Pair-Triple (PT) Property if for all i, j ∈
N , all a, b, c ∈ A, and all X−{i, j} ∈ X n−2, we have

ϕa({b}, {c}, X−{i, j}) + ϕb({c}, {a}, X−{i, j}) + ϕc({a}, {b}, X−{i, j}) ≤ 1.

In the notation above, the first component of a profile denotes the preference of
individual i and the second one denotes that of individual j .

Theorem 9 ([24]) A strategy-proof RSCF on the dichotomous domain satisfying
unanimity can be represented as a convex combination of strategy-proof DSCF sat-
isfying unanimity only if it satisfies the PT property. In the case of three alternatives,
the converse also holds.

A more complete result on the structure of strategy-proof RSCFs satisfying una-
nimity on dichotomous domains is not yet available.

4.7 Additional Literature

In this subsection, we briefly review some related results in the literature.
Chatterji and Sen [13] provide conditions on a domain which ensure that every

unanimous and strategy-proof DSCF on it has the tops-only property. Subsequently,
[15] consider the same problem for RSCFs. They identify two conditions, the inte-
rior property and the exterior property, and show that on every domain satisfying
these two properties, a strategy-proof RSCF satisfying unanimity also satisfies the
tops-only property. This result is particularly useful in characterizing strategy-proof
RSCFS on various domains.

Chatterji et al. [12] investigate hybrid domains. Given an ordering ≺ over the
alternatives, a preference is hybrid if there exist threshold alternatives ak and ak with
ak ≺ ak such that preferences over the alternatives in the interval between ak and
ak are “unrestricted” relative to each other, while preferences over other alternatives
retain features of single-peakedness. Thus, the set A can be decomposed into three
parts: left interval L = {a1, . . . , ak}, right interval R = {ak, . . . , am}, and middle
interval M = {ak, . . . , ak}. Formally, a preference is (k, k)-hybrid if the following
holds: (i) for a voter whose best alternative lies in L (respectively in R), preferences
over alternatives in the set L ∪ R are conventionally single-peaked,while preferences
over alternatives inM are arbitrary subject to the restriction that the best alternative in
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M is the left threshold ak (respectively, right threshold ak), and (ii) for a voter whose
peak lies in M , preferences restricted to L ∪ R are single-peaked but arbitrary over
M . Observe that if k = 1 and k = m, then preferences are unrestricted, while the
case where k − k = 1 coincides with the case of single-peaked preferences. They
characterize all strategy-proof RSCFs satisfying unanimity on these domains.

Peters et al. [32] consider domains on graphs. In such domains, there is a graph
with the alternatives as nodes with preferences declining as one moves away from
the top-ranked alternative along any spanning tree of the graph. Note that if the
underlying graph is a line graph, then the resulting domain becomes single-peaked.
They characterize all strategy-proof RSCFs satisfying unanimity.

5 The Deterministic Extreme Point Property

In this subsection, we discuss the following issue: in what sense does randomization
enlarge the possibilities for a mechanism designer? As we have noted earlier, an
implication of Remark 2.1 is that a convex combination of strategy-proof DSCFs
satisfying unanimity is a strategy-proof RSCF that satisfies unanimity. A domain D
satisfies the deterministic extreme point property (DEP) if the converse is true:
i.e., if every unanimous and strategy-proof RSCF can be written as a convex com-
bination of unanimous and strategy-proof DSCFs. If a domain satisfies DEP, the
only additional possibility afforded by randomization is that before the elicitation of
preferences from individuals, the designer can pick a strategy-proof DSCF satisfy-
ing unanimity according to a fixed probability distribution. Thereafter, the designer
simply follows the DSCF chosen. Such a procedure does not exhaust all possibili-
ties if the domain does not satisfy DEP. In particular, there will exist strategy-proof
RSCFs satisfying unanimity, where the designer will have to randomize over alter-
natives after the elicitation of preferences. For this reason, we regard DEP as a
benchmark property for domains. Randomization expands the possibilities available
to the designer only if the domain under consideration violates the DEP property.

The DEP property of a domain can be utilized in finding optimal mechanisms
on it. Consider an optimization problem with incentive constraints and unanimity
constraints. Since these are linear constraints, the constraint space is a polytope
and the results identify its extreme points. If the objective function is linear, the DEP
property implies that an optimal solution is a deterministic mechanism. This fact may
help in finding optimal random mechanisms using the knowledge of the same for
deterministic mechanisms as optimizing over an infinite set of random mechanisms
may be harder than optimizing over a finite set of deterministic mechanisms. Further,
the incentive constraints may simplify with deterministic mechanisms.

It follows from Theorems 1, 2, 3, 4, 6, 7, and 8 that several well-known domains
of strict preferences, namely the unrestricted, single-peaked, single-dipped, single-
crossing, and Euclidean domains, satisfy the DEP property. However, as we have
seen, there are dictatorial domains [14] and hybrid domains [12] that are not random
dictatorial. Peters et al. [32] show that DEP is satisfied for a domain on graph only
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when the underlying graph is a line, i.e., only when the domain is single-peaked.
The dichotomous domain (a domain where indifference is permitted) also does not
satisfy DEP. This conclusion follows from Theorem 9 since the TP property is not
vacuous.

In spite of its theoretical significance, there is as yet, nogeneral analysis of domains
satisfying DEP. A more challenging open question is to characterize the extreme
points of strategy-proof RSCFs satisfying unanimity in domains that do not satisfy
DEP.

6 Conclusion

We have attempted to provide a brief survey of recent results pertaining to the struc-
ture of strategy-proof RSCFs on various preference domains. Although considerable
progress has been made, some key issues, such as the precise relationship between
strategy-proof DSCFs and strategy-proof RSCFs on a given domain, require further
investigation.
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