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1 Introduction

Networks are ubiquitous in the natural and social worlds. In social lives, networks
of peers (friends, families, colleagues, and so on) influence the decisions that people
make and are simultaneously impacted by the decisions made by people. As the
world becomes more connected in the digital age, it becomes more and more likely
that any decision-making entity will be impacted by the network it belongs to, and
it has to gauge the impact of its decision on its neighbors in the network. Evidently,
financial markets have become increasingly more complex and entangled with time.
Economies have become more interdependent, both within and across countries, due
to natural growth processes and globalization. Therefore, an interesting question to
ask is “While it is correct that the nature of linkage across economic entities are gran-
ular, does it really impact the economic behavior in a substantial manner?” In other
words, while the network description of an economy might be more realistic than
the earlier homogeneous and representative single entity paradigm, does it provide
any new insights into the working of the economy? In this review article, we would
argue that indeed the network view goes beyond descriptive accuracy and provides
a more complete and useful view of the economic mechanisms.
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At the outset, we would like to mention that there are already some very well-
written books and reviews on networks in economics. For example, [87, 97] provide
applications of networks in the context of microeconomics; [1] reviewed macroeco-
nomics and financial implications of networks. Textbooks on networks are abounded
—for different treatments in the domains of economics andfinance, interested readers
can refer to [66, 86, 96] for a microeconomics-oriented description; [63] considers a
more financial econometrics-oriented viewpoint. This list is merely indicative and by
no means exhaustive. Though there has been substantial developments in different
facets of economic networks, we could not find a single reference that brings both
microeconomic and macroeconomic (and financial) networks in one place; this pro-
vided us the motivation for writing this review. However, this review should be seen
more as a compendium than a stand-alone complete reference.We have also included
in this review, some recent developments in the statistical physics literature that found
applications in high-dimensional financial data. These are mostly non-parametric in
nature, as opposed to more standard parametric economic and finance models. In our
view, such non-parametric approaches provide useful and complementary methods
of analyzing the underlying network structures.

Network description of a system is more computationally intensive than a repre-
sentative agent description, owing to the heterogeneity displayed by the constituent
parts. Even a couple of decades back, the computational burden was too much to
gain reasonable magnification of an economic system into the nodes and linkages
between them. A tremendous improvement in computational power in the last few
decades and the need to develop more realistic models have contributed to the cur-
rent state-of-the art knowledge in networks. Across all the topics that we will discuss
below, a common thread that ties the significant developments due to this approach
is the explicit modeling and analysis of “externalities” or “spillovers”. The outcome
for a particular node may depend on multiple external factors other than its own
decision. Using networks, we are able to analyze the effect of these external factors.
It is important to note that the spillover effects might often be of second-order impor-
tance, whereas the aggregate dynamics of a system can potentially have first-order
importance. As we will emphasize below, that in both macroeconomics and finance,
the network architecture at the macro-level does influence the aggregate behavior of
the economy as well.

The article is organized as follows: we start by discussing the recent literature on
production networks in Sect. 2. Firms typically rely on other firms in the supply chain
for inputs for the production process. These dependencies manifest themselves in
the form of a production network, where firms across different industries are linked
with each other (either directly or indirectly) as sellers or buyers of products that
each firm produces. The study of production networks focuses on the role that these
connections play in shock transmission across the network, i.e., it studies the impact
of an exogenous shock to a particular firm on the rest of the firms in the network to
which it is connected directly or indirectly. Next, we explore the connections between
different countries in the form of international trade networks. With the advent of
globalization, local industries have benefited due to the possibility of cheaper produc-
tion technologies abroad. Similar to the field of production networks, international
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trade networks study linkages between economies through the sale and purchase of
goods, although in different countries. An important question in this field studies the
dynamics of link formations, i.e., how agents decide whether to form or remove a
link with other agents. These decisions are taken in a cost-minimizing way and affect
the efficiency of the equilibrium outcome and distribution of surplus among market
participants.

Section3 focuses on the propagation of risk through financial networks. Financial
networks are formed when there is a transfer of funds (or assets) between agents,
either due to a lack of funds for the borrower, or as a means of insurance against
future uncertainty and risk. Ever since the 2007–08 financial crisis, there has been a
rising interest in the study of the role of networks in transmitting shocks throughout
the financial system. This strand of literature focuses on the reasons for the formation
of different network structures, and the analysis of shock propagation through them.
A complementary approach to study financial network focuses on inferring linkages
based on time series properties of multiple financial assets.

In Sect. 4, we analyze social networks. Given the situation, a person may interact
with others through different media, thus forming a social network. These kinds of
networks can be seen all around us. We find information about our friends, and the
friends of our friends, through online social media platforms like Facebook. Interac-
tion with the people in our neighborhood leads to a transmission of information. We
rely on our contacts, and online job portals, to search for new employment oppor-
tunities. All the above-mentioned situations explore the concept of different forms
of social networks based on their use. As people become more connected with the
rapid growth in technology, social networks emerge as powerful and useful tools,
as a means of communication and information transmission. This section discusses
the impacts of social networks on mechanisms including informal risk-sharing and
information transmission across economic agents.

Next, we present some empirical work on networks in Sect. 5, where we discuss
some recent developments in econometrics-based network approaches to networks,
which are mostly parametric in nature. Finally, we end our discussions with non-
parametric approaches to networks in Sect. 6.

2 Macroeconomic Networks

Wediscuss a benchmarkmodel used in production networks, popularized byRef. [3].
We then discuss a few extensions of this model, followed by the role of production
networks in competition policy. For a discussion on recent empirical work on these
topics, we refer the reader to Ref. [43].
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2.1 Input–Output Networks

The baseline model is a variant of the model developed in Ref. [108]. Following Ref.
[3], the model considers a static economy with n granular industries, each producing
a distinct good. The production function for the i th industry is assumed to be a
constant returns to scale Cobb–Douglas function:

yi = ziτi h
αi
i

n∏

j=1

x
ai j
i j , (1)

where hi denotes the amount of labor hired by industry i , xi j is the quantity of good
j used to produce good i , αi gives the share of labor in industry i’s production
technology, ai j ≥ 0 is a measure of the importance of good j as an input for good i ,
zi is a Hicks-neutral productivity shock, and τi is a normalization constant. Similarly,
the economy consists of a representative household providing an inelastic supply of
1 unit of labor. The utility function of the representative household over the n goods
produced by the industries is given by

u(c1, . . . , cn) =
n∑

i=1

βi log(ci/βi ), (2)

where ci is the amount of good i consumed and βi gives good i’s share in the utility
function of the household. In equilibrium, quantities, and prices are such that firms
maximize their profits conditional on prices and wages, households maximize their
utility, and all markets clear.

In this model, A = [ai j ] denotes the input–output matrix of this economy, where
ai j is defined above. The Domar Weight of an industry is given by the industry’s
sales as a fraction of GDP (λi = pi yi/GDP). Finally the Leontief Inverse of this
economy is denoted by L = (I − A)−1. Given that the spectral radius of A is less
than 1, an element of L - li j—shows the importance of industry j both as a direct
supplier and an indirect supplier (as a supplier to i’s supplier, and so on) to i .

After solving for equilibrium, Ref. [3] derived the following 2 results:

Theorem 1 The log output of industry i (where i ∈ {1, . . . , n}) is given by

log(yi ) =
n∑

j=1

li jε j + δi , (3)

where ε j = log(z j )denotes a productivity shock to industry j , and δi is some constant
which is independent of shocks.

and

Theorem 2 The real value added aggregated across the industries is given by
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log(GDP) =
n∑

i=1

λiεi , (4)

where

λi =
n∑

j=1

β j l j i . (5)

These two theorems imply that shocks can transmit through input–output linkages
across different industries. Since the matrix in consideration here is the Leontief
inverse (which is dependent on the input–output matrix), it implies that along with
direct effects, even the indirect effects of shocks matter across the network.

Another observation is that any shock to industry i will be propagated downstream
to those industries which require i’s good as an input in their own production. This
effect is further propagated throughout the network. Theorem 2 also implies that the
Domar Weights are a sufficient statistic for measuring how idiosyncratic shocks to
different industries affect aggregate output. The downstream propagation of shocks
from an industry to its customers (direct and indirect) means that the economy is
more sensitive to shocks impacting industries which are important input suppliers.

2.1.1 Demand-Side Shocks

To incorporate demand-side shocks, Ref. [1] introduces government purchases for a
good i as gi , which is exogenously given. A change in government spending in this
model is similar to an exogenous shock to the demand for the goods of individual
industries. In this model, after solving for equilibrium output of each industry, we see
that the impact of a productivity shock has an upstream effect, i.e., a shock to firm i
propagates through the network by affecting i’s suppliers, and further their suppliers
and so on. This happens because if industry i is affected by a positive demand shock,
it would increase i’s input demand. This would generate a rise in demand for the
products of i’s suppliers, and so on.

2.2 Extensions

2.2.1 Relaxing the Cobb–Douglas Assumption

The baseline model assumes that production technologies of firms take a Cobb–
Douglas form. This implies that the realization of shocks does not affect an industry’s
expense on inputs as a fraction of its sales. Some papers, like Refs. [21, 42] focus on
nestedCESproduction functions. Theyfind that—up to afirst-order approximation—
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when elasticities of substitution are different from 1, there are 2 propagation channels
for a productivity shock.

• A shock to industry i affects other industries through a downstream propagation
of the shock.

• Productivity shocks can also lead to a reallocation of resources across industries
which is affected by the elasticities of substitution between inputs.

2.2.2 Hulten’s Theorem

Theorem 2 stated that Domar Weights are a sufficient statistic for how shocks to
industries affect aggregate output. Hulten’s theorem Ref. [95] makes a more general
statement: In any efficient economy, the impact of a productivity shock to industry i
(denoted by zi ) on aggregate output is equal to i’s Domar weight, up to a first-order
approximation. This can be written as

dlog(GDP)

dlog(zi )
= λi . (6)

An important consequence of Hulten’s theorem is that the effect on the economy of
an idiosyncratic shock only depends on its size, and not on its location in the produc-
tion network. References [41, 73] use this theorem to analyze the macroeconomic
implications of idiosyncratic shocks to a production network. Generally, positive
shocks to industry i would impact aggregate output in two ways. First, it leads to an
outward shift of the production possibility frontier of the economy. Second, it may
reallocate resources across different industries. If the original allocation is efficient,
the aggregate effect due to the latter channel is second order and can be ignored in
a first-order approximation. This would then imply that if economies are inefficient,
then Hulten’s theorem may not hold as the reallocation effect may be significant.
Since Hulten’s theorem focusses only on first-order approximations, if the focus is
on second-order effects in a general economy, then it is seen that these second-order
effects can be significant, and they depend on the structure of the network [22].

2.2.3 Frictions and Market Imperfections

The baseline model described previously assumes perfect competition. Reference
[32] study the impact of productivity shocks by introducing exogenous wedges
betweenmarginal revenue andmarginal cost of firms throughmarkups. Their finding
is that resource misallocation and its resulting inefficiency depends on the distribu-
tion of the firms’ markups. Distortions are also studied by Ref. [23] in the form of
CES production functions with exogenous wedges. They show that the first-order
impact of productivity shocks in the network can be decomposed into two terms: (a)
a term that accounts for the shocks’ pure technology effect and (b) another term that
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accounts for changes in the economy’s allocative efficiency. They also show that if
we relax the assumption of Cobb–Douglas technology, the second effect could be
substantial.

Reference [89] relaxes theperfect competition assumption, introducingoligopolis-
tic markets in a model of production networks. In this model, shocks affect both
prices and markups as the competitiveness of firms of the same industry changes in
the network. Here, changes in market concentration lead to changes in the demand
of industries for intermediate inputs, leading to an upstream transmission of shocks
that would be absent if the markups were exogenously given.

2.2.4 Endogenous Production Networks

In the discussion above, the production networks were taken as exogenously given.
One extension of the baseline model explicitly models the link formation decisions
of the nodes/agents, thus making the network endogenous. Reference [14] develop a
model using preferential attachment as the basis of link-creation between firms. Pref-
erential attachment means that new edges in a network are more likely to be formed
with nodes which already have more edges. Reference [44] modify the friendship
model of Ref. [98] to form an industry-level network formation model. In this type
of model, existing links between firms are used to search for new links to provide
inputs for production. This model shows that a higher proximity in the network raises
the likelihood that a firm will adopt another firm’s product to use as an input in its
own production.

Link formation incentives are introduced by Ref. [118] into a dynamic network
formation model in which the set of suppliers to a firm keeps evolving and firms
have to optimally choose one input from this randomly evolving set. Reference [2]
consider an alternativemodel where firms in each industry select their input suppliers
as a subset of other industries in the economy, knowing that each input combination
would lead to a different CRS production technology.

2.3 Business Cycle from I-O Networks

We now discuss whether idiosyncratic shocks can build up in aggregate in the econ-
omy through the network structure. According to Lucas, the standard deviation of
aggregate fluctuations is proportional to 1√

n
. This means that as the number of indus-

tries increases, idiosyncratic shocks get dissipated across the network, having a neg-
ligible effect on the economy. But as shown in Ref. [3], this argument breaks down
if sectoral Domar weights show significant heterogeneity. These observations are
also discussed in Ref. [73] through his granularity hypothesis, which states that in
the presence of significant heterogeneity at the micro level, the grains of economic
activity (comprised of firms or disaggregated industries) can matter for the behavior
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of macroeconomic aggregates. Specifically, he shows that even if there is a high
level of disaggregation, aggregate volatility could be much larger than what Lucas
hypothesized if the Domar weights have a heavy-tailed distribution.

Reference [3] then goes on to discuss that if the industries acting as input suppli-
ers are sufficiently heterogeneous, they can generate very high levels of aggregate
volatility, contrary to Lucas’s hypothesis. This effect depends on the Leontief inverse
and Bonacich centrality of the nodes of the production network. If the Bonacich cen-
trality is high, it means that an industry is an important supplier to other central
industries. Therefore, a shock to such an industry might not die down and could lead
to substantial aggregate fluctuations in the economy.

Economieswith heterogeneousproductionnetworks can showsignificant comove-
ment as well. Reference [43] show that even if two economies have identical Domar
weights distributions, the economy which is more interconnected will have a higher
average pairwise correlation of output and it will be less volatile. This happens
because the interconnected economy will have industries which are more diversified
with respect to upstream risk from suppliers to other industries in the economy.

2.4 Policy Impact on Production Network

We now discuss the importance of considering production networks for analysis in
competition policy [88]. For this, we define market power and explain how it is
measured by competition authorities. A firm’s market power denotes its ability to
increase prices above marginal costs to raise its profits. The amount by which price
can be raised over the marginal cost is referred to as a markup. As markups can
be difficult to measure (since there is no reliable way to measure marginal costs),
competition authorities work with concentration ratios instead to infer firms’ market
power. A popular way to measure concentration ratios is given by the Herfindahl–
Hirschmann Index (HHI). This index is given as the sum of firms’ squared market
shares. To calculate HHI, only the sales data for different firms is required. Since
this is readily available, the index is easy to calculate.

HHI is a good indicator of market power as it is directly proportional to Lerner’s
index (which is the difference in price and marginal cost of a firm, divided by the
price). A higher level of concentration (denoted by a high value of HHI) would then
imply a high Lerner’s index, which implies that firms have the ability to increase the
markup by a large margin. This can only happen if competition in the market is low,
leading to somefirmshaving significantly highmarket power.One specific use ofHHI
by competition agencies is to assess the chances of a merger being anti-competitive.
For this exercise, the difference between pre-merger HHI and post-merger HHI is
analyzed. If there is a significant increase in HHI, it would imply that the merger
is anti-competitive, substantially increasing the market power for the newly formed
firm. As discussed by Refs. [71, 112, 130], in Cournot competition (and some other
market forms), such horizontal mergers can harm consumers by leading to a rise in
prices and reduction in output.
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Competition authorities do not usually consider the impact of a merger outside
of the market where the merger takes place. Such partial equilibrium analysis could
lead to an underestimation of the anti-competitive behavior of firms. This is where
network analysis can play a role. Theory suggests that if a merger takes place, it
would result in an increase in prices downstream because of a rise in input costs.
Simultaneously, the reduction in competition in the particular market would lead to
a reduction in quantities (in Cournot competition), which would imply a decrease in
demand for inputs from upstream markets.

2.5 International Trade Networks

The discussion till now focused only on the linkages between industries located
within the same economy. But in this era of globalization, profit-maximizing firms
looking for cheaper production technologies also have the option of forming con-
nections with industries located abroad. This leads to the formation of international
trade networks. Here we discuss the model developed in Ref. [114]. This model has
formed an important base for subsequent research in the field of international trade
networks (some of which are discussed in Ref. [30]).

Consider an economy where firms show heterogeneity in terms of productivity
and quality. These firms can buy inputs frommultiple suppliers and sell the produced
good either to consumers, or to other firms (as inputs). The production function for
a firm i is

yi = κzi l
α
i

(( ∑

k∈Si
(φkiνki )

(σ−1)/σ

) σ
(σ−1)

)1−α

, (7)

where yi is output, zi is productivity, li is labor, α is the labor share, κ > 0 is a
constant, νki is the amount of inputs bought from the kth firm, and Si is the set of
firms supplying to the i th firm. Here, σ > 1 denotes the elasticity of substitution
across i’s suppliers. φki is a measure of shift in demand that captures the idea that
firms use different production technologies, affecting their demand from a particular
firm. The input price index for a particular good is given by

P1−σ
i =

∑

k∈Si
(pki/φki )

1−σ, (8)

where pki denotes the price that the kth supplier charges the i th firm for its product.

A firm’s marginal cost of production is defined as ci = wαP1−α
i

zi
where w denotes the

wage rate. The sales of a firm are given by

si =
∑

j∈Ci

(
φi j

pi j

)σ−1

Pσ−1
j M j + Fi , (9)
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where Mj denotes the amount of intermediate purchases of firm j and Fi gives the
amount of sales pertaining to final demand.

This model gives us two important observations. First, the marginal cost of firm
i increases as the marginal costs of its suppliers increase, through Pi . This implies
that a change in firm productivity (zk) will affect marginal costs of all firms located
downstream for which k acts as a direct or indirect supplier. Similarly, the set of
suppliers Si will also impact firms’ production costs. Production costs are affected
by international trade costs because they impact the set of suppliers, and they affect
the cost of procuring from a supplier k through the price pki . Second, it is observed
that the i th firm’s sales si depend on two important factors: the set of customers Ci ,
and the amount which is sold to each customer (which depends on the price pi j and
the effective demand of the customer (φi j Pj )

σ−1Mj ). A change in trade costs can
lead to a change in both these factors. For example, a rise in tariffs can either reduce
a customer’s demand or remove it from the set of customers entirely.

2.6 Matching in Trade Networks

2.6.1 Bipartite Networks

One section of the literature on international trade networks models buyer–seller
relationships using bipartite graphs. For example, Ref. [31] use bipartite networks
where one group of firms act as buyers (the set Si for such firms is empty) and the
other group acts as suppliers (for whom set Ci is empty). This model assumes full
information for all agents, and costly link formation. As with the general theory on
networks, this model also suggests that the distribution of customers per firm can be
well approximated using a Pareto distribution.

This model shows a unique feature of negative degree assortativity. Low pro-
ductivity suppliers are more likely to connect with high productivity buyers as only
these buyers are able to incur the relatively high cost of linking with a low produc-
tivity seller. Similarly, high productivity sellers are more likely to connect with low
productivity buyers. This also implies that high productivity firms are also highly
connected.

In this model, high relationship-specific costs can lead to a reduction in welfare
in the economy. These costs dampen trade flows and therefore reduce consumers’
income. This happens because higher relation-specific costs make link formation
more expensive and result in fewer links between firms. Even though having more
suppliers is beneficial for each firm, these high production costs prevent them from
doing so. This could reduce welfare if the firm is not able to optimally specialize in
production due to a lack of suppliers. The resulting higher production costs would
lead to an increase in consumer prices and subsequently reduced real wages for con-
sumers. The introduction of tariffs also leads to adverse impacts on the economy.
Tariffs increase the costs of procuring inputs from foreign suppliers and could lead
to the breaking of links because of this rise in costs. Reference [28] relaxes the full
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information assumption bymodeling costly information acquisition for firms. There-
fore, an exporter engages in both production of a good, and search for consumers to
link with.

2.6.2 Networks and Outsourcing

Another section of the literature aims at modeling the full production network. Refer-
ence [69] model such a network to analyze the impact of outsourcing. Here, a firm’s
production technology is such that its labor input and other intermediate inputs are
perfectly substitutable for producing a good. Sellers meet potential buyers at random
and buyers then optimally choose whether or not to outsource production. The prob-
ability of outsourcing is higher if own labor is costly (high wages) or foreign firms
have low costs (due to better technology).

This paper assumes that labor is heterogeneous and consists of production and
non-production workers, where only production workers can be outsourced. One
observation is that trade liberalization increases the likelihood of goods getting out-
sourced. This is because if trade costs are reduced, it increases the probability of
finding a good match abroad. It is then theoretically possible that trade liberaliza-
tion can reduce real wages for production workers and increase real wages for non-
production workers. This would happen since non-production workers would benefit
from cheaper goods, whereas goods produced by production workers are likely to
be outsourced due to liberalization. This paper suggests that the skill premium in the
economy could be affected by the network structure.

Reference [118] relaxes the assumption that labor and inputs are perfect substi-
tutes. Here firms meet possible matches randomly and decide whether to form a link
with some other firm or not. Therefore, firms may not always get to match with the
lowest cost supplier in the market. In equilibrium, it is seen that the distribution of
customer firms asymptotically tends toward a power law distribution.

2.7 Dynamic Networks

2.7.1 Full Information

Reference [107] considers a model similar to the benchmark model presented above
but extends it from a static to a dynamic setting. Using a Poisson process, firms are
selected at random to decide the possible linking or dropping of matches in each
period. Firms have rational expectations about the future and establish a link only
if the relationship is profitable in the future. Therefore, a match may happen even if
no profits are realized in the current period. Calibration of this model leads to very
different shock propagation patterns compared to the static setting.
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2.7.2 Search Frictions

Reference [48] develops a model where firms search for potential customers. This
allows for a geographical dimension in the network model which is missing from
Ref. [107]. As in the friendship model developed in Ref. [98], existing links can
lower the cost of searching for new links for a firm. This implies that information
flows faster through the network channels already established. Chaney’s model then
predicts that superstar firmswill emerge in the economy,where fewfirmswith already
high number of connections grow ever larger.

Reference [68] deviate from the existing literature by allowing both sellers and
buyers to search in the market. This paper models trade between producers (acting as
exporters) and retailers (acting as importers), therefore allowing for many-to-many
matching. In this model, the chances of a firm forming a link with a retailer are
affected by multiple factors such as search intensity and the existing links of a firm.
The latter feature of the model leads to the generation of fat-tailed in-degree and
out-degree distributions.

2.7.3 Learning in Trade Networks

InRef. [67], since perfect information is not available, exporters and importers engage
in costly searching to form new links. Also, the firm can learn from its interaction
with other firms. When a firm forms a link, it receives an imperfect signal about
the attractiveness of its product in the market. The firm updates its belief about the
potential of profits in a Bayesian manner, adjusting its search intensity accordingly.
This implies that firms learn about their attractiveness over time. Popular firms are
more likely to search more intensively, while less-popular firms will also search less.

Another type of information friction is present when firms cannot observe the
productivity of a potential partner perfectly. This is analyzed in Ref. [115] where
importers have the ability to learn about the reliability of potential supplier firms.
Suppliers can either shirk or comply. The importer cannot directly determine the
type of the supplier as contract enforcement forces myopic firms to comply with an
exogenous probability. In every period after the link is formed, the importer observes a
noisy signal about whether the supplier exerts effort or not. If it does, then it increases
the likelihood that the supplier is reliable. If the exporter shirks, then the relationship
is terminated.

There are two important observations of thismodel. First, the volume of trade con-
ducted by a buyer and seller pair increases with time, since expected costs decrease
as the buyer becomes more assured about the reliability of the supplier. Therefore
lower prices lead to more sales and rise in intermediate input demand. Second, the
likelihood of the survival of a relationship improves with time since unreliable sup-
pliers reveal themselves early in the relationship. An important observation of this
model is that learning leads to significantly higher aggregate trade than a scenario
where learning does not take place.
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3 Systemic Risk and Contagion in Financial Systems

In this section, we will start with a discussion of the “robust yet fragile” property
commonly shown by financial networks. This will be followed by a brief explanation
of the different sources of systemic risk, followed by a description of some popular
measures to quantify this risk. Finally, wewill discuss the increasingly important role
of macroprudential stress testing for the stability of the financial network system.

3.1 Robust-Yet-Fragile Properties

We consider a simple model developed in Ref. [76] where a financial network con-
sists of n banks forming links randomly through unsecured lending and borrowing
activities. In the network, every node represents a particular bank, and each edge in
the network denotes the bilateral unsecured interbank exposures between two banks.
This network consists of directed edges, signifying that both lending and borrowing
activities take place between banks. In the model, a bank i has ji interbank lending
links and ki interbank borrowing links. The connectivity between the banks is given
by the average degree of the interbank network which is denoted by z.

The balance sheet of a typical bank in the network looks as follows. The total
assets of a particular bank i are given by its unsecured interbank assets, I Ai , and
illiquid external assets, E Ai . It is assumed that a bank’s total amount of interbank
assets are spread evenly across its lending links.

Every interbank asset of bank i would be a liability for some other bank j . There-
fore, unsecured interbank liabilities of bank i , I Li , will be endogenously determined
within the network. Each bank also has other liabilities given by exogenous customer
deposits, ELi . For each bank i in the network, the solvency condition is given by

(1 − φ)I Ai + E Ai − I Li − ELi > 0, (10)

where φ denotes the fraction of banks which have taken loans from bank i but
have defaulted. There is an implicit zero recovery assumption, which implies that
if a counterparty defaults, all the assets of bank i held by that counterparty are
lost and bank i is unable to recover anything. The solvency condition above could
be simplified as φ < Ki/I Ai , where Ki = I Ai + E Ai − I Li − ELi gives us the
capital buffer of bank i .

Now assume that all banks are identical. This would imply that ji = ki = z for
all banks. If some counterparty to bank i goes into default, then φ = i/z as i’s
assets are uniformly distributed among its counterparties. Contagion would spread
beyond the first bank if another neighboring bank exists for which z < I A/K . This
model also highlights the situations when systemic default can take place. If capital
ratios are low or unsecured interbank lending is high, then it is more likely that
systemic default occurs. The above equation then suggests that there exists a tipping
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point in the network. If the above equation is satisfied and z is sufficiently large,
then an individual bank’s default could induce all the other banks in the network to
subsequently default as well. On the other hand, if the above condition is violated,
then it implies that the bank’s default has no systemic implications.

Reference [75] simulate the model with the assumption that links in the network
are distributed uniformly, where the probability that a link exists between two banks
is independently given by the probability p (a Poisson network). Their aim is to
analyze the impact of the failure of a bank on the whole network. They specifically
study (i) the probability of contagion across the network and (ii) the proportion of
the network which is impacted by contagion, given different values of z (which gives
the average connectivity of the network). Simulation results show that an increase
in connectivity z does not have a monotonic effect on the likelihood that system-
wide contagion will occur in the interbank network, since benefits of sharing risk
eventually dominate the cost of risk-spreading. But even though the probability of
contagion reduces as z increases, its impact is felt throughout the network. Therefore,
the system exhibits a robust-yet-fragile tendency.

3.2 Sources of Contagion

3.2.1 Default Contagion

The line of work focusing on default contagion was first explored by Refs. [10, 70,
145]. Default contagion is described as follows. An exogenous shock to bank i’s
asset value could reduce its net worth and reduce its ability to repay its lenders. If
the shock is large enough, it could lead to a default by bank i . If the loss due to bank
i’s default is large enough, it could lead to bank i’s lenders defaulting as well, and
so on. Recent work was accelerated after the emergence of the 2008 financial crisis
[4, 74, 75, 111].

3.2.2 Distress Contagion

One stream of work explores distress contagion, where financial distress can spread
even though an actual default by a borrower may not take place [24, 137]. This could
happen if the market value of bank i declines due to a reduction in its net worth, even
though it remains solvent. Even if a default does not happen, this could lead to a loss
for bank j if the value of i’s obligation to j is “marked to market”.

3.2.3 Common Asset Contagion

Another line of work explores common asset contagion and fire sales. Banks can be
connected indirectly if they have investments in the same assets. If a shock leads to
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change in asset prices, a bank might sell a significant amount of this asset so that
its price falls significantly. If this asset was held by other banks too, they would be
affected by the secondary shock (due to the sale of asset) as well, causing them to
sell the asset. This would trigger a devaluation spiral [40, 59, 100].

3.2.4 Funding Liquidity Contagion

Contagion could also spread from the liability side. Institutions may be affected
adversely if creditors start hoarding liquidity [6, 72, 74, 77]. This could lead to a
funding run if a liquidity shock occurs unexpectedly, as in Ref. [58].

3.3 Systemic Risk: Measurements and Impact

3.3.1 MES and SES

Suppose there are N financial firms in the economy. Let rit denote the return on
firm i’s equity in time period t . Therefore, we can calculate market return or index
return as the weighted average of the asset returns across all the individual firms,
rmt = ∑N

i=1 wi t ri t . Here, the weight wi t assigned to each return series signifies the
value of relative market capitalization of the i th firm. MES is calculated as each
individual firm’s marginal contribution to systemic risk, which in turn is evaluated
by the system’s expected shortfall, ES. This measure was introduced in Ref. [7].

Given the available information till time t − 1, the ES in time period t is calculated
as

ESmt (C) = Et−1(rmt |rmt < C) =
N∑

i=1

wi t Et−1(rit |rmt < C), (11)

where C is some threshold value (Ref. [7] takes C = −VaRα, where VaRα is
defined as the largest amount that an institution loses with confidence 1 − α, that is,
P(rit < −VaRα) = α). The MES is then given by calculating the partial derivative
of the system’s ES with respect to firm i’s relative market capitalization in the
economy [131]:

MESit (C) = ∂ESmt (C)

wi t
= Et−1(rit |rmt < C). (12)

Intuitively, MES is a measure of the increase in risk due to an infinitesimal change in
the relative market capitalization of the i th firm. The SES modifies this measure and
signifies the level by which the equity of a bank can drop below a particular threshold
(which is given as k, a fraction of the bank’s assets) during a crisis, conditional on
aggregate capital being less than k times the value of aggregate assets:
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SESit
Wit

= kLit − 1 − Et−1

(
rit |

N∑

i=1

Wit < k
N∑

i=1

Ait

)
. (13)

Here Ait gives the total assets of firm i in time t ,Wit denotes the market value of firm
i’s equity, and Lit gives a measure of the firm’s leverage, which is equal to Ait/Wit .

3.3.2 SRISK

SRI SK was introduced in Refs. [5, 39]. It extends the MES to allow for the consid-
eration of a financial firm’s size and liabilities. SRI SK is defined as a firm’s expected
shortfall in capital, when the entire system is affected by a crisis. When a firm has a
larger capital shortfall, it has a higher likelihood of contributing to a financial crisis.
Therefore, such a firm is systemically riskier. SRI SK is calculated as

SRI SKit = max [0, k(Dit + (1 − LRMESit )Wit ) − (1 − LRMESit )Wit ], (14)

where k denotes the prudential capital ratio, LRMES is defined as the long-runMES
and the book value of aggregate liabilities is denoted by Dit . Intuitively, LRMES
provides us ameasure of the expected future drop in a firm’s equity value, conditional
on the market falling below a specific threshold within a given time period (taken
as 6 months here). Substituting Lit = (Dit + Wit )/Wit , the above expression can be
modified as:

SRI SKit = max [0, [kLit − 1 + (1 − k)LRMESit ]Wit ]. (15)

3.3.3 CoVaR

CoVaR is a systemic risk measure given by Ref. [8]. Let CoVaRm|C(rit )
i t be a term

related to the value at risk (VaR) of the realized market return, conditional on the
observation of some event for firm i (denoted by C(rit )):

P(rmt ≤ CoVaRm|C(rit )
i t |C(rit ) = α. (16)

CoVaR for the i th firm is then calculated as the difference of two terms: (i) the VaR
of the entire system when the i th firm is in financial distress, and (ii) the VaR of the
system when firm i is at the median state. Here, we can define distress in multiple
ways depending on the definition of C(rit ). Reference [8] assumes that the loss is
equal to its VaR and subsequently uses a quantile regression approach to analyze
this situation:

CoVaRit (α) = CoVaRm|rit=VaRit (α)

i t − CoVaRm|rit=Median(rit )
i t . (17)
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3.3.4 Debtrank

Reference [25] developed a measure called DebtRank to find systemically important
financial institutions. Debtrank is similar to PageRank by Google, and it is an eigen-
vector centrality measure which can be used to assess the influence of a bank on the
interbank network as a whole. Suppose a bank i is connected to other highly con-
nected banks in the network, then bank i would have a higher centrality. Therefore, a
bank would have a higher DebtRank value when it is connected to other banks which
have high values of DebtRank themselves.

3.4 Macroprudential Stress Testing

Central banks around the world regularly conduct stress tests aiming to measure the
robustness of financial firms (e.g., banks) to adverse shocks. But it is also necessary to
analyze the impact of network contagion as well in potentially amplifying systemic
risk. As mentioned before, evidence suggests that most of the observed interbank
networks show a core-periphery structure [51, 54, 106]. Such network structures
showcase the robust-yet-fragile tendency described before.

Reference [70] describe a model which—under certain assumptions- proves the
existence of a unique clearing vector after at least one bank in the network defaults. A
particular assumption of the EisenbergNoemodel is the absence of deadweight losses
after a bank defaults. This leads to the clearing mechanism redistributing existing
assets among the surviving banks with the aim of maximizing payments. Reference
[127] relax this assumption, allowing for default costs after the failure of banks. Their
model leads to multiple clearing vectors which includes a Pareto-dominant clearing
vector. This clearing vector is found by allowing banks to fail one by one till there
is only a single solvent bank remaining.

Reference [76] states that most of the models used for macroprudential stress
testing mainly focus on post-default contagion. Recent developments in this litera-
ture show extensions where other sources of risk are also considered. For example,
Ref. [99] study liquidity risk and contagion, focusing on the cash-flow constraint
of banks. Reference [52] explore the theory of fire sales. In their model, portfolios
are constrained by leverage or capital considerations, resulting in shocks to asset
values leading to a rapid sale of the asset. The fire sale that follows leads to further
deleveraging. Reference [53] attempt to analyze counterparty credit risk, liquidity
hoarding, and fire sales in the same framework.

An important question for stress testing in the future could be to analyze the impact
of contagion, not just on financial networks, but on the real economy as well. During
the 2008 financial crisis, a debt overhang and reduction in credit supply led to both
a rise in unemployment and a significant decrease in GDP growth rates. Reference
[88] explore input–output networks as an alternative channel for shock propagation
throughout the economy.
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4 Social Networks

In this section, we first discuss the applications of social networks in labor markets,
specifically focusing on job referrals by individuals for employment opportunities.
We then explore different network models of information flows among people. The
last part of this section focuses on the importance of social networks in the domain of
informal risk sharing. For a detailed discussion on labormarkets and social networks,
see Ref. [140]. For information flows and risk sharing, see Ref. [37].

4.1 Labor Markets and Referrals

Job seekers frequently rely on their social networks to obtain information on possible
employment prospects and recommend them for job opportunities, either formally or
informally. Here, we discuss the role that social networks play for recommendations
(or referrals) in the labor market. The literature presents various types of models to
analyze referrals. Themodel ofasymmetric information (analyzed byRefs. [45, 116])
argues that referrals reduce the information asymmetry between the candidate and
employer about the candidate’s quality. A person tends to have like-minded people
in his network, so it is likely that high-quality workers will provide referrals for
people who are themselves highly skilled. This would act as a signal for a prospective
employer to gauge the quality of a candidate.Moreover, since the referrer’s reputation
is also at stake, he would only refer good quality candidates.

The model of symmetric uncertainty suggests that both the employer and job-
candidate are uncertain about their match. Therefore, referrals can provide better
information to both parties compared to other employment channels. This model
is explored in Refs. [65, 78, 135]. According to this theory, employers would be
more willing to provide referred hires with a higher wage subject on getting hired
(since referrals would provide a better indication of the candidate’s quality). Addi-
tionally, as match quality becomes apparent over time, referred hires would have
lower separation rates than non-referred hires.

Another set of models discussed in Refs. [90, 101] focuses on the moral hazard
aspect of referrals. The moral hazard interpretation explains that employers may not
be able to monitor a newly hired worker properly. In this case, the referrer can act
as a monitor, since the performance of the new worker affects his reputation as well.
This allows the employer to motivate better performance from the worker. Empirical
work on referrals studies the impact of this hiring channel on hiring probabilities,
wages, and employee performance, compared to other hiring channels. References
[93, 94] study the employee side of the market and find that hiring probabilities are
higher when candidates use personal contacts rather than using other formal hiring
channels. Similarly, using data obtained from employers’ referral systems, Ref. [38]
find that even though only 6 percent candidates use referrals, theymake up 30 percent
of all eventual hires in the dataset analyzed. References [26, 91, 92, 132] find that
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referrals lead to a greater likelihood of getting high wages compared to other hiring
channels. References [38, 65, 92] state that candidates coming through the referral
channel also tend to stay longer at their jobs. This would imply that referrals are
associated with lower turnover rates. There is also some heterogeneity of referral
effects. Referrals are more likely to be used by the younger demographic, ethnic and
racial minorities, and individuals with lower socio-economic status. But this does not
imply that the probability of getting hired for these groups is high as well. A study
by Ref. [93] observes that conditional on usage of referrals, probability of getting
hired is higher for whites than for blacks. Reference [27] find a similar result when
comparing women to men.

The impact of business cycles on social networks is still largely unexplored.
Local labor market conditions depend on business cycles, subsequently affecting
the formation of social networks and their use in providing referrals. The change
in composition of employed and unemployed contacts in an individual’s network at
different phases of a business cycle would impact the individual’s decisions about
the people he forms links with and the use of his network for different job prospects.
Papers which have started addressing these questions include the works of Refs.
[78, 80, 82, 105]. The study of social networks has been greatly hindered by a
lack of good quality data. This has changed in recent years with the availability of
social media and professional networking data. Recent studies like Refs. [15, 83]
use data from Facebook to study the impact of social networks in decisions related
to housing investment and employment prospects respectively. References [20, 110]
utilize data obtained from online search portals to analyze employment prospects of
workers. The use of referrals to improve a person’s employment outcomes leads to
a role for government policy as well. Even though referrals lead to many benefits,
for both job candidates and employers, they also have some disadvantages. Referrals
can lead to rising inequalities between different socio-economic groups as people
tend to refer like-minded individuals. Reference [38] find significant evidence for
assortativematching between referrers and referred individuals based on race, gender,
and education in their dataset. This suggests a role for government intervention.

4.2 Information Flows

Information transmission is an important aspect of many programs, whether it is the
marketing of a new product by a consumer brand, or a policy intervention by the local
government. An important question in information transmission is the selection of
groups (or specifically, individuals) to be targeted (or seeded) so that the program has
maximum impact. Reference [29] observe that if peer farmers are provided incentives
to transfer information regarding a new technology, the technology’s adoption is 10–
14 percent greater relative to a control group. Similarly, Ref. [12] provide evidence
of higher adoption of a new product or trend if viral campaigns are used.

This implies that whether the use of networks can improve information trans-
mission is important and has relevance in multiple areas. Networks can potentially
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provide huge benefits, but they incur a cost as well. Identifying whether networks
do provide substantial advantage over traditional information transmission channels,
and the subsequent identification of individuals (or seeds) can be an expensive and
time-consuming process. Reference [18] show that a microfinance scheme’s adop-
tion depends heavily on the initial individuals chosen as seeds. Reference [9] find
a similar result for the transfer of messages in the environment of an online social
network.

We now consider different models which are used to study information trans-
mission in networks. In a viral process, an informed individual (infected node) in
a network transmits information to all the nodes it is connected to. This form of
transmission is deterministic and irreversible and is called diffusion. This is a fairly
simple model and thus, may not be of much use in explaining real-world phenom-
ena. In aggregation models, the object of study is the change in intensity of beliefs
as information spreads through a social network. The DeGroot model (used by Ref.
[56]) is one such aggregation model. In this model, everyone receives signals at the
initial stage. In subsequent stages, communication takes place among individuals and
their beliefs are updated by averaging their and their neighbors’ beliefs. This goes
on until a steady state is reached where beliefs are not changed further and everyone
reaches a consensus. One important fact about this model is that the consensus in the
steady state is a weighted average of initial opinions, where the weights are given by
the eigenvector centrality of each individual (Ref. [84]). In other words, a person is
influential if he is connected to other influential individuals, and such a person would
have a large impact on the final consensus which is reached.

The DeGroot model analyzes the speed of convergence toward a consensus in
a given social network. Reference [85] discuss that networks showing homophily
show a very slow rate of convergence. In such networks, people similar to each other
reach a consensus within themselves first, and only then start moving toward a group
consensus. References [17, 113] document this type of behavior when networks con-
sist of different castes, religions and ethnicities. This model also provides an insight
on good candidates to select as seeds. If a policymaker can persuade individuals to
spread the correct information and he cares about the speed of transmission, then
individuals with higher eigenvector centrality would be better candidates to act as
seeds.

Reference [16] generalizes the DeGroot model to merge both diffusion and aggre-
gation. Initially, the chosen seeds transmit information to inactive neighbors through
the diffusion process. In each subsequent period, this process continues as active
nodes spread information to their inactive neighbors. Simultaneously, the process of
aggregation takes place in each period as individuals update their beliefs as in the
DeGroot model. Therefore, this model leads to the existence of domains of influ-
ence, where an individual is influenced more by seeds which are closer to him (in a
network sense).

Other models also discuss the role of strategic interactions in the process of infor-
mation transmission. Reference [129] explores the presence of strategic complemen-
tarities in networks. These can accelerate diffusion. For example, a person who hears
about Whatsapp for the first time is more likely to use it if he knows that his friends
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and relatives use it as well. Reference [79] study strategic substitutes, where adoption
is less likely if more people in one’s network are adopting.

4.3 Risk Sharing

In communities where formal insurance is not prevalent, the role of social networks is
important to reduce risk through informal insurance channels. This is seen inmultiple
countries, as documented in References [19, 50, 128], among others.

Informal insurance allows risk-averse individuals with uncertain future incomes
to opt for state-contingent monetary transfers which leads to a Pareto improvement.
In the benchmark model [147], individuals are uncertain about their future incomes,
there is perfect information about individuals’ characteristics, and all agents can
commit to contracts. In this case, the equilibrium consumption is distributed with
the aim of maximizing expected utilitarian welfare along with Pareto weights to
account for the heterogeneity among people. Therefore, this model fully insures
agents against all diversifiable risks.

One extension of the benchmark model focuses on understanding how a given
risk-sharing network is formed. If maintaining links between agents entails a social
cost, then the efficient network is one which satisfies full risk sharing and in which
every individual forms connections in a cost-minimizing way. It is possible that the
equilibrium network is different from the efficient one. The equilibrium network
is said to be stable [96] if no agent wants to deviate from the existing network by
removing one of his links. Reference [36] give an alternate definition of stability by
requiring that no pair of agents should profit by creating a link between themselves.
Stable networks are usually smaller than the efficient network as individual agents do
not consider the positive externality of a better diversification of risk in the network
when they form links.

Another possible network structure is the bargainingmodel studied in Ref. [11]. In
this model, agents with existing links can renegotiate between themselves by threat-
ening to break the connection if their demands are not met. In case the connection
is broken, it would have a significant adverse impact on the agent who is less well
connected in the network, thus reducing his risk-sharing prospects. Therefore well-
connected individuals are in a better position to negotiate and get a higher surplus.
This implies that individuals tend to over-invest in the formation of links, to allow for
better prospects of renegotiation with others. As costs of link formation increase, the
star network is the only stable network structure left, where one central individual is
connected to all other individuals, and no other link is present. Therefore high costs
would imply high inequality in relationship patterns as well.

Adifferent extension of the benchmarkmodel relaxes the commitment assumption
and looks at limited commitment risk sharing. Reference [33] study such a model,
where the network is given exogenously. In this model the same network structure is
used for risk sharing as well as the transmission of information about the deviation of
agents. They find that the stability of the network first decreases, and then increases
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with the density of the network. In sparse networks, deviation is less likely as agents
have fewconnections, so the breaking of a link leaves less opportunities for a person to
undertake risk sharing. On the other hand, there are ample risk-sharing opportunities
in dense networks, but information about deviations travels fast as well, leading to
reduced incentives for an agent to deviate.

5 Econometric Modeling of Networks

In this section, we discuss the framework described in Ref. [63], a method developed
by Diebold and Yilmaz in a series of articles to study the interdependence between
multivariate time series.

5.1 Variance Decomposition and Connectedness Measures

TheDiebold–Yilmaz (DY) approach tries tomeasure volatility spillovers in the econ-
omy given by the impact of an idiosyncratic shock to a firm on the rest of the firms.
The main question that this framework seeks to answer is this:Howmuch of an entity
i ′s future uncertainty at horizon H can be explained by shocks arising with entity
j? The foundation of this approach lies in the concept of Variance Decomposition.
Given a Vector Autoregression (VAR) model, the variance decomposition matrix
measures the proportion of forecast error variance explained by idiosyncratic shocks
to other variables.

Formally, suppose we define an N -variable p lag VAR model as

xt =
p∑

i=1

φi xt−i + εt , (18)

where εt ∼ (0,Σ). The equivalent moving average representation of this model is
given by xt = ∑∞

i=0 Aiεt−i . It is assumed that the matrices satisfy the recursive rela-
tionship: Ai = φ1Ai−1 + φ2Ai−2 + · · · + φp Ai−p, where A0 is an identity matrix.

In general, the shocks to entities in the economy can be correlated. To account
for the correlation while calculating the Variance Decomposition matrix, the DY
approach discusses two methods which allow us to work with correlated shocks.
Reference [61] uses Cholesky Factorization to orthogonalize the shocks. One partic-
ular disadvantage of this approach is that itmay give different results if the ordering of
variables changes. To deal with this issue, later papers use the Generalized Variance
Decomposition (GVD) framework for orthogonalization. This approach accounts for
correlated shocks, assuming that the shocks follow a normal distribution. The GVD
approach is described as follows: Suppose an element in the i th row and j th column
of the Variance Decomposition matrix is given by θ

g
i j (H), where H specifies the
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horizon for which the forecast is made. Following the GVD approach, the Variance
Decomposition matrix is given by

θ
g
i j (H) = σ j j−1

∑H−1
h=0 (e′

i AhΣe j )2∑H−1
h=0 (e′

i AhΣ A′
he j )

, H = 1, 2, . . . (19)

whereΣ denotes the covariancematrix of ε, the standard deviation of the disturbance
in the j th equation is given by σ j j , and ei is a vector of zeros with a one in the i th
entry.

Usually,
∑N

j=1 θ
g
i j (H) 	= 1. So each entry is normalized by the row sum to deter-

mine pairwise directional connectedness from firm j to firm i :

θ̃
g
i j (H) = θ

g
i j (H)

∑N
j=1 θ

g
i j (H)

. (20)

Let θ̃
g
i j (H) be written as CH

i← j . Then we say that CH
i← j gives us the pair-

wise directional connectedness from firm j to firm i . Additionally, the value
CH
i j = CH

i← j − CH
j←i gives us the net pairwise directional connectedness between

i and j . Henceforth, we call the Variance Decomposition matrix as the Connected-
ness matrix. The Connectedness matrix allows us to answer other relevant questions
as well. Suppose we wanted to know the impact of exogenous shocks to other firms
on firm i’s forecast error variance. This can be calculated from the Connectedness
matrix by adding all non-diagonal entries in the i th row of the matrix, which gives
us the Total directional connectedness to firm i from all other firms j

CH
i←· =

∑N
j=1
j 	=i

θ̃
g
i j (H)

∑N
i, j=1 θ̃

g
i j (H)

=
∑N

j=1
j 	=i

θ̃
g
i j (H)

N
. (21)

On the other hand, if we wanted to calculate the impact of an exogenous shock
on i to other firms in the economy, we can take the sum of all non-diagonal entries
in the i th column of the Connectedness matrix. This gives us the Total directional
connectedness from firm i to all other firms j :

CH
·←i =

∑N
j=1
j 	=i

θ̃
g
j i (H)

∑N
i, j=1 θ̃

g
j i (H)

=
∑N

j=1
j 	=i

θ̃
g
j i (H)

N
. (22)

As before, net Total directional connectedness is given by CH
i = CH

i←· − CH
·←i .

Finally, the Total Connectedness can be calculated as

CH =
∑N

i, j=1
i 	= j

θ̃
g
i j (H)

∑N
i, j=1 θ̃

g
i j (H)

=
∑N

i, j=1
i 	= j

θ̃
g
i j (H)

N
. (23)
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Total Connectedness can be calculated as the ratio of the sum of the non-diagonal
entries of the connectedness matrix to the sum of all the entries of the matrix. The
Variance Decomposition matrix is a useful tool to analyze the impact of shocks on
the entities in an economy. It allows us to measure not only the impact of an entity’s
own shock, but also the spillover from a shock affecting some other entity in the
economy. Similarly, the Variance Decomposition matrix also helps us to estimate
the transmission of shocks between a firm and the rest of the economy as whole.
Moreover, it gives us the degree of connectedness in the economy, which can be very
useful for policymakers.

5.1.1 Variance Decomposition Matrices as Networks

The Connectedness Matrix is a network adjacency matrix with some modifications.
First, the elements of the Connectednessmatrix are not restricted to 0 or 1, but instead
can take any value between these 2 numbers. This implies that the links areweighted,
i.e., they show the strength of the bonds between two entities. Secondly, the matrix
is directed. Lastly, the entries of the Connectedness matrix are dynamic, so that they
may change over time. The observation that the Connectedness matrix can be defined
as a network means that the total directional connectedness measures are equivalent
to node in-degree and out-degree. Similarly, total connectedness is given by themean
degree of the network.

5.2 Empirical Results

In this section we will discuss a few recent applications of the Diebold–Yilmaz
approach. For each application, we will state the dataset used, explain the method-
ology and then discuss the important results.

5.2.1 Global Bank Networks

Reference [57] uses data for 96 banks across 29 countries provided by Thomson–
Reuters for the period September 12, 2003–February 7, 2014. These banks are among
the world’s largest 150 banks (by assets) which were publicly traded during the given
time period. These banks include all the “globally systemically important banks”
which were publicly traded in this time period.

To measure volatility from returns, daily range-based realized volatility is cal-
culated using the data on stock returns. Using the methodology introduced by Ref.
[81], this is measured as
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σ̂2
i t =0.511(Hit − Lit )

2 − 0.019[(Cit − Oit )(Hit + Lit − 2Oit )

− 2(Hit − Oit )(Lit − Oit )] − 0.383(Cit − Oit )
2,

(24)

where Hit , Lit , Oit andCit are the log values of daily high, low, opening, and closing
prices for bank stock i on day t . The high dimensionality of global bank networks can
lead to difficulties in estimating the connectedness in these networks. Tomitigate this
problem, the paper uses LASSOmethods [138] which allows for both shrinkage and
selection of variables, thus reducing the dimensionality of the problem. Formally, a
penalized estimation problem is given as

β̂ = argmin
β

[ T∑

t=1

(
yt −

∑

i

βi xit

)2

+ λ

K∑

i=1

|βi |q
]
. (25)

This problem puts a penalty on the calculated β, depending on the value of q. For
LASSO methods, q = 1, which leads to both selection and shrinkage of parameters.
This paper uses a variant of the LASSO, called the adaptive elastic net [148]. This
method has the “oracle property”, whichmeans that the generatedmodel is consistent
for the best KullbackLiebler approximation to the true data generating process. It is
given as

β̂AENet = argmin
β

[ T∑

t=1

(
yt −

∑

i

βi xit

)2

+ λ

K∑

i=1
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(
1

2
|βi | + 1

2
β2
i

)]
, (26)

where wi = 1/|β̂i,OLS| and λ is selected using tenfold cross validation. The weights
allow the shrinking of the smallest OLS coefficients toward 0. The paper then pro-
ceeds as follows. The adaptive elastic net method is used to estimate the VAR model
for log volatilities at horizon H = 10. This provides us with the Variance Decom-
position matrix through which the different connectedness measures are calculated.

We first discuss the full sample static analysis. The main result is that the network
graph shows strong clusters within and across countries. This is an important obser-
vation as it is not entirely obvious that location (rather than other factors like bank
size) would be a dominant factor in the formation of the network. Another important
observation from the Connectedness matrix is that North America and Europe are net
transmitters of future volatility uncertainty. Moreover, looking at the country bank
network (where each node denotes a particular country), it is seen that USA is highly
connected, with links showing a strong connection from USA to Canada, Australia,
and UK.

For dynamic analysis, the paper uses rolling estimation, analyzing the data for a
150-day window at a time. Analyzing the impact of the collapse of Lehman Brothers
on the US banks, we see a sharp increase in the connectedness of these banks with
others. This could explain the global spread of volatility, leading to a crisisworldwide.
A similar observation is seen for the European Debt Crisis in 2011. Taking the static
analysis network as a benchmark, the network for October 7, 2011 shows a marked



350 A. S. Chakrabarti et al.

difference. This network is much more tightly clustered, indicating a rise in volatility
connectedness compared to the full sample benchmark.

The paper then discusses system-wide connectedness. First, we decompose the
connectedness measures into its trend and cyclical variation. The cycles show a sharp
increase in connectedness during the 2008 Recession and 2011 European Debt Cri-
sis. The trend line first increases, hitting its peak during the Lehman bankruptcy, and
then decreases, although at a slower rate. Alternatively, decomposing the connect-
edness measures into cross-country and within-country variation, it is observed that
cross-country variation dominates the movements in system-wide connectedness.
The authors also try to observe the relation between bank size and eigenvector cen-
trality. Using a rank regression, it is seen that bank eigenvector centrality is highly
correlated with bank size. But this relation weakens during the 2008 financial crisis
and 2011 European debt crisis. This implies that during bad times, smaller banks
can become central to the network, leading to idiosyncratic volatilities generating
system-wide fluctuations.

5.2.2 Equity Volatility Network

Reference [64] uses stock return data for 35 major financial institutions for the time
period January 2004–June 2014. 17 financial institutions are from USA and include
7 commercial banks, 2 investment banks, and 1 credit card company. The other
institutions are those which were either acquired, went bankrupt, or were taken in
government custody after the 2008 Financial Crisis. Commercial banks located in
Europe form the rest of the sample. First, the full sample analysis shows the formation
of 2 clusters based on whether the banks are located in USA or Europe. This means
that location has an important role to play in volatility transmissions between banks.
At the national level, the highest pairwise connectedness is observed between USA
and UK, probably because these countries are home to the London Stock Exchange
and theNewYorkStockExchange.Comparingnet connectednessmeasures,Belgium
has the highest negative net connectedness, while France and USA have the highest
positive net connectedness.

For dynamic analysis, a 200-day rolling sample was used for estimating connect-
edness measures. Plotting the values for total connectedness over the given time
period, we see sharp increases in connectedness during the 2008 Financial Crisis
and 2011 European Debt Crisis. The most important result of this paper is based
on Total Directional Connectedness. Before Lehman Brothers collapsed, US finan-
cial institutions were net transmitters of volatility to European financial institutions.
After a full-blown global crisis emerged due to the collapse of Lehman Brothers, net
connectedness from USA to Europe declined. Finally, net connectedness from US to
Europe went below zero as the European Debt Crisis intensified. The paper further
analyses connectedness at the country and institution level, specifically comparing
volatility transmissions to and from nodes at different periods of time.
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5.2.3 Commodity Network

Reference [60] studies 19 different sub-indices provided by the Bloomberg Com-
modity Price Index. These sub-indices are for the following commodities: precious
metals (silver, gold), livestock commodities (lean hogs, live cattle), energy (natural
gas, heating oil, unleaded gasoline, crude oil), grains (soybeans, wheat, soybean oil,
corn), industrial metals (nickel, copper, zinc, aluminum) and “softs” (sugar, cotton,
coffee). Data is collected daily (except for weekends and holidays) from May 11,
2006 to January 25, 2016. Ordering the commodities from largest to smallest (first
according to to-degrees and then according to from-degrees), it is observed that the
rankings are almost similar, implying that the commodities transmitting significant
volatility to others also receive significant volatility from others. The network itself
shows low system-wide connectedness, but clusters are formed according to the tra-
ditional industry groupings. These clusters show high within-group connectedness.
At the industry level, industrialmetals, energy, and preciousmetals are close together,
and energy has a high value of total directional connectedness to the other groupings
in the network.

A dynamic analysis of connectedness measures is also conducted using a rolling
window of 150 days. It is observed that commodity return volatilities have a lower
connectedness compared to global stock market returns, global bank returns, and
bond yield volatilities. There is a sharp rise in total connectedness during the 2008
Financial Crisis. This also led to a fall in commodity prices till 2009. Post—2009,
connectedness dropped as markets recovered. It is also seen that system-wide con-
nectedness was heavily affected by oil price volatility. This volatility was largely
due to demand and supply shocks over the world. The paper also analyzes the total
directional connectedness of each commodity over the specified time period. It is
again confirmed that energy commodities (especially oil) are major transmitters of
volatilities to others.

5.2.4 Global Business Cycle Network

Reference [62] studies business cycle connectedness using monthly seasonally—
adjusted industrial production (IP) for G-7 countries excluding Canada. the time
period for which data is considered is January 1958–December 2011. Firstly, the
data is tested for any possible cointegration. Testing for unit roots using augmented
Dickey–Fuller tests, there was no evidence against the unit root in any log IP series,
and substantial evidence against the unit root in every differenced log IP series.
To test for cointegration status, Johansen’s maximum eigenvalue and trace tests
are conducted. These show the possibility of at most one cointegrating relationship
among the IP series. Therefore, a vector error-correction (VEC) model is used for
approximation purposes.

Calculating the connectedness measures from the VEC model, the total connect-
edness is found to be 29.1 percent. Japan and USA are found to be the largest net
transmitters of industrial production shocks. Similarly, Italy and Germany are the
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largest recipients of business cycle shocks. Using 5-year rolling windows to analyze
dynamic connectedness, the paper shows that almost all US recessions were related
to an increase in connectedness. The same is observed for recessions in Germany,
France, Japan, and Italy ending in 1993–94. Late 1980s onwards, the rise of glob-
alization led to an increase in connectivity among all countries. This also led to the
upwardmovement of the bandwithin which the connectedness index fluctuates. Dur-
ing this period, each subsequent cycle was longer and had a larger bandwidth than
the previous one, showing that the business cycles have become more synchronized
due to globalization. This behavior culminated with a sharp rise in connectedness
during the 2008 Financial Crisis. Finally, it is shown that trade balance can be used
to determine if a country is a net transmitter or receiver of business cycle volatility.
If a country has a trade surplus, then it would have a tendency to be a net receiver
of shocks. On the other hand, countries with trade deficits are more likely to be net
transmitters.

5.3 Ripples on Financial Networks

Reference [102] analyzes the impact a volatility shock may have across a financial
network by providing an algorithm characterizing ripples on financial networks.
In the discussion below, we briefly discuss the algorithm. The paper uses data for
the largest N = 100 stocks based on market capitalization at the New York Stock
Exchange over the time period 2002–2017. The stocks were selected so that data was
available for them throughout the given time period. The paper divides this period
into four equal length intervals—2002–05, 2006–09, 2010–13, and 2014–17. During
the first window, the US economy was experiencing a boom, the second windowwas
marked by the 2008 financial crisis, the third period contains the phase of recovery
after the crash, and the fourth period was marked by a period of relative stability.

The paper then constructs the return series using the first difference of log price
series for each stock. To construct the conditional volatility series from returns, the
paper uses the GARCH framework. The paper then aims to construct the maximally
connected component of the network. Using the adaptive Lasso technique developed
by Ref. [148], the maximally connected component is constructed by removing
those stocks for which in-degree and out-degree is less than 10 percent. Hierarchical
networks are then constructed using sample correlation matrices calculated using
return and volatility series. Since correlations can be negative, distance matrices
are calculated instead using the metric di j = √

2(1 − ρi j discussed by Ref. [109],
where ρ denotes the correlation between firms i and j . Minimal Spanning Trees
are filtered out from the network to provide maximum information from a minimal
sized network. Using eigenvector centrality as an exogeneity criterion over the return
correlation matrix, the stocks are ordered so that Cholesky decomposition can be
used to derive orthogonalized impulse response functions from a VAR model for
the volatility series. These impulse response functions are then used to study shocks
across the network.
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This approach is different from theDiebold–Yilmaz approachwhere they useGen-
eralized Variance Decomposition (GVD) instead. Since GVD requires the assump-
tion of normality, it could be a strong and incorrect assumption in many settings.
Therefore, this paper gives an alternative approach to analyze spillovers.

6 Non-parametric Approaches

Finally, we briefly summarize findings from some recent works on non-parametric
approaches to economic and financial networks that have mainly originated from the
“econophysics” literature [35, 47, 109, 136].

6.1 Correlation-Based Networks

In order to gain insight about the co-movements among price returns in a stock
market, correlation-based networks are constructed from the empirical correlation
matrix. Such networks provide a visual representation of the co-movements as well
as information about the underlying market dynamics [126]. By continuously moni-
toring the structure of the correlation-based network, one can find different patterns
that appear time and again, and reveal the underlying trends in the system. Multiple
methods have been proposed to construct networks [13, 142–144] from the empirical
correlationmatrices, such as theminimum spanning tree [34, 46, 103, 117, 119–122,
139], planar maximally filtered graph [141], threshold network [49], etc.

To initiate the discussion, below we describe the network construction algorithm
and a standard filteringmethod. Readers are requested to consult [123] for a very nice
detailed exposition of this methodology. Consider N number of daily return series
being constructed from N asset prices for T days: rit = log(pit ) − log pi,t−1 for the
i th series where i = 1 , . . . , N and t th day where t = 1, . . . , T . From these N
number of return series, one can construct a correlation matrix of size N × N that
we denote by ΣN×N where σi j is the correlation coefficient between assets i and j .
One can conduct an eigendecomposition of this typically large-dimensional matrix
to analyze the corresponding eigenspectra:

Σ =
N∑

i=1

λi ei e
′
i , (27)

where λi denotes the i th eigenvalue and ei is the corresponding eigenvector (e′
i is the

transpose of ei ). Then the correlation matrix can be decomposed into three parts:

Σ = Σmarket + Σgroup + Σrandom, (28)
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where the market mode corresponds to the top eigenvalue, group mode corresponds
to all deviating eigenvalues except the top one, and the random mode corresponds
to the remaining eigenvalues. A natural question arises as to how to find the devi-
ating eigenvalues? The method popularized by [126] is to apply Marcenko–Pastur
distribution to decide the cut-off. Essentially, all eigenvalues above the cut-off given
by Marchenko–Pastur distribution are statistically significant and can be taken as
deviating eigenvalues. In practice, the top eigenvalue seems to capture the market
dynamics quite well, and the ones in the group mode seems to represent sectoral
dynamics [123]. However, some recent work shows that one needs to look further
deep into the core-periphery structure of the implied networks for sectoral dynamics
[104].

An important consideration in computational finance is the time period overwhich
the computation of empirical cross-correlation matrix takes place. In general, incor-
rect choices of time periods could lead to non-stationarity issues or too much noise
in the correlation matrices. Reference [124] applies random matrix theory in finan-
cial markets to address this problem. Random matrix theory is used to analyze the
eigenvalues derived from randommatrices, and had its original application in nuclear
physics. Pharasi et al. [124] use the power mapping method where short epoch cor-
relation matrices are subjected to non-linear distortions. Following the literature
[126], this paper also conducts an eigenvalue decomposition of the empirical cross-
correlation matrix. Resultant modes can be classified as the market mode, group
mode, and random mode; the bulk of the eigenvalues constitute the random modes
and is described by a Marcenko–Pastur distribution. In another paper, Pharasi et al.
[125] utilized randommatrix theory to find correlation patterns that may emerge dur-
ing times of crisis vis-a-vis relatively stable periods. They attempted to categorize
different “market states” and to find evidence for long-term precursors to the market
crashes (see also, [104]).

Whilemost research on network properties typically focus on individual networks
in isolation from the rest of the world, there are many large-scale networks which
show interdependence [55, 146]. In [146], the authors analyzed the foreign exchange
and stock market networks for 48 countries based on complex Hilbert principal
component analysis to quantify lead-lag relationships across the markets. They also
constructed a coupled synchronization network to identify the formation of stable
network communities.

6.2 Mesoscopic Networks

This paper [134] analyzes the economy at the mesoscopic (sectoral) level. An impor-
tant finding of this paper is that the core of the return networks mainly consists of
sectors of the economy which are relatively large. On the other hand, the periphery
of such networks mostly consists of sectors which are relatively smaller in size. This
observation hints at a connection between sector-level nominal return dynamics and
the real size effect. Data for sectoral price indices collected for 65 sectors across
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27 countries is analyzed over the time periods: Jan. 08–Dec. 09, Oct. 12–Sept. 13,
and Oct. 14–Sept. 16. Data for the real variables (such as number of employees in
each sector, revenue , and market capitalization) are available at the company level.
Therefore, these are aggregated to get sectoral level data.

Return series is constructed using the first difference of log price series for each
sector. The return series is first used to calculate the pairwise Pearson correlation
coefficients which are then used to construct the distance matrix using the transfor-
mation di j = √

2(1 − ρi j ), where ρ denotes the correlation between firms i and j .
Clustering algorithms ofMulti-Dimensional Scaling (MDS) andMinimumSpanning
Tree (MST) are used to study the network structure in all the countries considered in
the sample. Both methods indicate that the network is in the form of a core-periphery
structure.

This paper shows that the structure of the network derived from the return cor-
relation matrix has a robust relationship with the measures of sectoral size. For this
exercise, the eigenvector centrality is regressed on sized, where size is defined by
either market capitalization, revenue, or employment, aggregated across all firms
within a sector. On analyzing the results from twenty-seven countries, there is an
indication that the variation in the dispersion of sectoral centralities in the sectoral
return a correlation matrix can be explained by the dispersion in economic size.

6.3 Multi-layered Economic and Financial Networks

Reference [133] studies the empirical connections between financial networks and
macroeconomic networks using the concept of multi-layered networks. This paper
finds that the different network structures considered here take the form of a core-
periphery structure, where the core consists of similar countries in each network.
The paper also shows that if a country has high trade connectivity, it is more likely
to have higher financial return correlations as well.

Moreover, the paper shows that the Economic Complexity Index is positively
related to the equity markets. To reveal the dynamics and structure of the global
market indices, the paper studies minimum spanning tree. It is observed that geo-
graphical proximity is an important factor in determining the correlation structure
across different markets.

7 Concluding Remarks

In this article, we have reviewed a number of different approaches to describe, ana-
lyze, and study economic and financial networks. Future developments in the digital
economy will usher in further interconnectedness in our existing economic system,
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leading to creative destructions and disruptions in the economic and financial net-
works along with new forms of networks being formed. Probably, theory of networks
is going to take the center stage in economic analysis in such a world.
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