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1 Introduction

Our nation’s critical infrastructure is crucial to the functioning of the American
economy...(It) is increasingly connected and interdependent and protecting it and
enhancing its resilience is an economic and national security imperative [15].

Infrastructure networks—highways, aviation, shipping, pipelines, train systems,
and posts—are a vital part of the modern economy. These networks face a variety of
threats ranging from natural disasters to human attacks. The latter may take a violent
form (guerrilla attacks, attacks by an enemy country, and terrorism) or a nonviolent
form (as in political protest that blocks transport services).1 A network can be made
robust to such threats through additional investments in equipment and in personnel.
As networks are pervasive, the investments needed could be very large; thismotivates
the study of targeted defense. What are the “key” parts of the network that should
be protected to ensure maximal functionality? As defense is often a choice made by
individual actors, we also wish to understand the relation between network structure
and decentralized incentives. This paper develops a model to study these questions.

Consider a given infrastructure network consisting of nodes and links. The
defender chooses to protect “nodes” of the network against damage/attacks; pro-
tecting a node is costly. Protection includes investments in security personnel, in
training, in equipment, and in cybersecurity. These protection measures typically
take time to implement and so we focus on ex ante investments in protection. We

1For an introduction to network based conflict, see [3, 37]; for news coverage of the effects of
natural disasters and human attacks on infrastructure networks, see [18, 28, 31, 32].
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suppose that a defended node is immune to attack whereas an undefended node is
eliminated by attack (along with all its links). The initial network, the defense, and
the attack together yield a set of surviving nodes and links—the residual network.
The defender chooses a defense strategy that maximizes the value of the residual
network, net of the costs of defense.

Our model covers two scenarios. The first is that of an intelligent adversary who
seeks to damage components and disrupt the flows in the network. The second is
that of a natural threat: facing such a threat, the defender focuses on the worst case
scenario. In both cases, the defender looks for the “maximin” solution. For ex-
positional simplicity, we use the language of an intelligent adversary throughout. We
study a game between a defender and an adversary and analyze the subgame perfect
equilibrium of this game.

We consider network payoff functions in which the value to the defender of a
network is component additive, and the payoff from each component is increasing
and convex in the size of the component.2 The convexity of value in component size
is key to the appeal of connectivity in networks.

We begin with a study of optimal defense. Proposition 2 characterizes optimal
defense and attack. Optimal attack targets two types of nodes: those that fragment
the network into distinct components (the separators) and those that simply reduce
the size of components (the reducing attacks). As payoffs are convex in component
size, separators are particularly attractive targets for attack (as their elimination dis-
connects components). Anticipating this attack, optimal defense targets nodes that
block the separators and reduce attacks. A set of nodes that block a collection of
separators is referred to as a transversal. We prove that optimal defense either targets
a minimal transversal or protects all nodes. Figures3 and 4 illustrate these concepts.3

This characterization result allows us to study the relation between networks and
conflict more closely. We find that the size of defense and attack are both nonmono-
tonic in the cost of attack; even more surprisingly, the size of defense and the payoff
of the defender may fall with the addition of links in the network (Proposition 3).

We then turn to the intensity of conflict: this is the sum of expenditures of defense
and attack. For a given configuration of costs of defense and attack, we derive the
minimal intensity of conflict and then describe the networks that sustain it (Proposi-
tion 4).We then demonstrate that network architecture can create very large variations
in the intensity of conflict. A feature of minimal conflict is that there is a single active
player. We next discuss circumstances under which both players devote resources to
conflict in equilibrium.

An important insight of the analysis is the optimality of strategic exposure: the
defender may find it optimal to leave unprotected a key node (the elimination of

2 This specification is consistent with Metcalfe’s law (network value is proportional to the square
of the number of nodes) and Reed’s law (network value is exponentially increasing in the number
of nodes). It is also in line with the large theoretical literature on network externalities [19, 27]
and network economics [6, 26]. One way to define network value is the number of pairs of nodes
connected (directly or indirectly) in the network. This is a special case of our value function.
3 Appendix C provides a detailed application of the concepts to well-known families of networks
(trees, core–periphery, interlinked stars).
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which disconnects the network) and instead to protect an alternative, larger, set of
nodes. We refer to this as the queen sacrifice. This leads us to identify a class of
networks—windmill graphs—that minimize conflict and are also attractive for the
defender. Figure7 presents these networks.

In many situations, security decisions are made at the local level, e.g., individual
airports choose their own security checks. This motivates the study of decentralized
security.4 Individual nodes care about surviving an attack and about being part of
a large connected network. Observe that to block a separator it is sufficient for one
node in the separator to protect itself. So, in the game among the nodes, defense
choices within a separator are strategic substitutes. But for the network to remain
connected, all separators must be blocked. Therefore, a node will protect itself only
if other separators are being blocked: thus, defense choices also exhibit strategic
complementarity. Proposition 5 shows that decentralized security choices can be
characterized in terms of separators and transversals of the network. Finally, we
demonstrate that a combination of incentive and coordination issues may lead to
very large costs of decentralization.

Our paper contributes to the economic study of networks. The research on net-
works has been concerned with the formation, structure, and functioning of social
and economic networks [22, 25, 35] The problem of key players has traditionally
been studied in terms of Bonacich centrality, betweenness, eigenvectors, and degree
centrality; see, e.g., [6, 7, 11, 14, 17, 20, 21]. Our paper suggests that for the problem
of attack and defense, the key players are nodes that lie in separators and transver-
sals. These nodes are typically distinct from nodes that maximize familiar notions of
centrality. Appendix B discusses this distinction in detail. Thus, the principal con-
tribution of our paper is to introduce two classical concepts from graph theory into
economics and show how they address a problem of practical importance.

Individual defense is a public good, and so this conceptual contribution is also
relevant for the study of games on networks more generally. Bramoullé and Kranton
[9] draw attention to maximal independent sets. By contrast, our work brings out the
role of minimal transversal of the separators. These sets are generally different from
maximal independent sets.5

Our paper also contributes to the literature on network defense; see, e.g., [1, 5, 8,
12, 16, 23, 29]. To the best of our knowledge, our results on the role of separators
and transversals in network conflict are novel, relative to the existing body of work.
In particular, we note that the earlier work by [16, 23] focuses on optimal design and
defense. In these papers, the optimal network takes on a very simple form—it is a
star—and so the optimal defense takes on a correspondingly simple structure: protect
the central hub node. By contrast, in the present paper the network is exogenous and
arbitrary: this is a much broader problem and requires new conceptual tools.

4 For an early contribution on interdependent security, see [30].
5 For example, in a core–periphery network, all the core nodes are essential separators, while the
maximal independent set can include at most one core node and must include peripheral nodes. See
Appendix C for details on this.
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We note that the problem of network defense has traditionally been studied in
operations research, electrical engineering, and computer science; see, e.g., [2, 4,
24, 33]. In an early paper, Cunningham [13] looks at the problem of network design
and defense with conflict on links. Relative to this literature, the novelty of our paper
lies in the study of intensity of conflict and the externalities that arise in decentralized
defense.

The rest of the paper is organized as follows. Section2 presents the model of
defense and attack. Section3 introduces the main concepts and provides a character-
ization of equilibrium defense and attack. It also contains the study of comparative
statics, active conflict, and conflict intensity. Section4 takes up the case of decentral-
ized defense. Section5 concludes. All proofs are presented in Appendix A. Appendix
B analyzes the relation between key nodes to attack and defend and other notions of
centrality. Appendix C illustrates the notions of separators and transversals in well-
known families of networks such as core–periphery networks, trees, interlinked stars,
and bipartite graphs. In Appendix D, we discuss the role of sequentiality of moves
and perfect defense in the results obtained in the paper.

2 The Model

We start with a given network and consider a two-player sequential move game with
a defender and an adversary. In the first stage, the defender chooses an allocation
of defense resources. In the second stage, given a defended network, the adversary
chooses the nodes to attack. Successfully attacked nodes (and their links) are removed
from thenetwork, yielding a residual network.Thegoal of the defender is tomaximize
the value of the residual network, while the goal of the adversary is to minimize this
value.6

Let N = {1, . . . , n}, with n ≥ 3, be a finite set of nodes. A link is a two element
subset of N . The set of all possible links over P ⊆ N is gP = {i j : i, j ∈ P, i �= j}
(where i j is an abbreviation for {i, j}. A network is set of links. Given set of nodes
P ⊆ N ,G(P) = 2g

P
is the set of all networks over P. The set G =

⋃

P⊆N

G(P) is the

set of all networks that can be formed over any subset of notes fromN. Every network
g ∈ G has a value Φ(g) associated with it : Φ : G → R is called a value function.

The set of nodes X ⊆ N chosen by adversary is called an attack. The set X = Φ

is called the empty attack. A defense is set of nodes Δ ⊆ N ; node i ∈ N is defended
under Δ if and only if i ∈ Δ. We assume that the defense is perfect a protected node
cannot be removed by an attack, while any attacked unprotected node is removed
with certainty. Given defense Δ and attack X , set Y = X \ Δ will be removed from
the network. Removing a set of nodes Y ⊆ N from a network creates a residual
network g − Y = {i j ∈ g : i, j ∈ N \ Y }.

6 The sequential move game formulation appears to be appropriate for the large-scale and time-
consuming protection investments discussed in the Introduction. This two-stage model with observ-
ability of first-stage actions is consistent with the approach in the large literature on security and
networks; see, e.g., [2, 34].
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Defense resources are costly: the cost of defending a node is cD > 0. Given net-
work g, the defender’s payoff from strategyΔ ⊆ N , when faced with the adversary’s
strategy X ⊆ N , is

Π D(Δ, X; g, cD) = Φ(g − (X \ Δ)) − cD|Δ|

Attack resources are costly: the cost of attacking a node is given by cA > 0. Given
defended network (g,Δ), the payoff to the adversary from strategy X ⊆ N is

Π A(Δ, X; g, cA) = −Φ(g − (X \ Δ)) − cA|X | (1)

We study the (subgame perfect) equilibria of this game.
Two nodes i and j are connected in network g if there is a sequence of nodes

io, . . . , im such that i = i0, j = jm , and for all 0 < k ≤ m, ik−1ik ∈ g. A component
of network g is a maximal and nonempty set of nodes C ⊆ N such that any two
distinct nodes i, j ∈ C are connected in g. The set of components of g is denoted by
C(g).

We assume that Φ is component additive. Given network g,

Φ(g) =
∑

C∈C(g)

f (|C |)

where f satisfies the following assumption:

Assumption 1 We have that f : R+ → R+ is strictly increasing, strictly convex,
and f (0) = 0.

2.1 Remarks on Model

Wehaveassumedsequentialmoves; this ismainly for exposition. It is possible to show
that our main results on characterization of conflict in terms of certain properties of
the graph carries over with simultaneousmoves. Perfect defense is a more substantial
assumption. Smoother models of conflict such as the Tullock contest function would
lead to modifications in parts of the main characterization results below. Appendix D
discusses these points in greater detail. Finally, we have assumed that payoffs depend
onlyon the sizesof thenetworks (or their components): soweabstract fromother topo-
logicaldetailsofthenetwork.Thissimplificationallowsustomakeprogressandshould
be seen as a first step in the study of network defense.

Since the game is finite and sequential, standard results guarantee the existence of
(subgame perfect) equilibria. These equilibria are usually not unique, but generically,
equilibrium outcomes are equivalent with respect to player’s payoffs, sizes of defense
and attack, and the value of residual network. This is the content of the following
result.



284 M. Dziubiński and S. Goyal

Proposition 1 For any network g and costs cD and cA, there exists a subgame perfect
equilibrium. For generic values of cA and cD and generic f , the equilibrium attack
and defense size and the payoffs of the players are unique.

3 The Analysis

This section develops our main results for the two-person game between the defender
and the adversary. Optimal attack focuses on sets of nodes that fragment the network
(the separators), while optimal defense targets sets of nodes that block these separa-
tors (the transversals). The interest then moves on to the relation between network
architecture and the intensity of conflict (the sum of resources allocated to attack and
defense) and the prospects of active conflict (when the adversary eliminates some
nodes while the defender protects others).

We begin with a study of a simple example that helps illustrate a number of
interesting phenomena.

Example 1 (Defense and attack on the star) Consider the star network with n = 4
and {a} as the central node (as in Fig. 1). The value function is f (x) = x2.

As is standard, we solve the game by working backward. For every defended
network (g,Δ) we characterize the optimal response of the adversary. We then
compare the payoffs to the defender from different profiles, (g,Δ), and compute
the optimal defense strategy. Equilibrium outcomes are summarized in Fig. 2. A
number of points are worth noting.

(i) Observe that removing node a disconnects the network; this node is a separator.
Moreover, there is a threshold level of cost of attack such that the adversary
either attacks a or does not attack at all when cA > 7. Protecting this node is
also central to network defense.

(ii) The intensity of conflict exhibits rich patterns: when the cost of attack is very
large there is no threat to the network and no need for defense. If the cost of
attack is small, the intensity of conflict hinges on the level of defense costs.
When they are low, all nodes are protected and there is no attack (the costs of
conflict are ncD); if they are high, then there is no defense but all nodes are
eliminated (the costs of conflict are ncA). For intermediate cost of attack and
defense, both defense and attack are seen in equilibrium.

(iii) The size of defense may be nonmonotonic in the cost of attack. Fix the cost of
defense at cD = 3.5. At a low cost of attack (cA < 1) the defender protects all
nodes, in the range cA ∈ (1, 5) he protects 0 nodes, in the range cA ∈ (5, 13)
he protects a, and then in the range cA > 13, he stops all protection activity.
Similarly, the size of the attack strategy may be nonmonotonic in the cost of
attack.

The starting point of the general analysis is the nature of optimal attack. Given
the convexity in the value function of networks, disconnecting a network is espe-
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Fig. 1 Star network (n = 4)

Fig. 2 Equilibrium outcomes: star network (n = 4) and f (x) = x2

Fig. 3 Essential separators

cially damaging. A set X ⊆ N is a separator if |C(g)| < |C(g − X)|. In other words,
a separator is a set of nodes the removal of which strictly increases the number of
components in the network. A network will normally possess multiple separators
and the adversary should target the most effective ones. A separator S ⊆ N is essen-
tial for network g ∈ G(N ), if for every separator S′ ⊆ S, |C(g − S)| > |C(g − S′)|,
i.e., a strict subset of eliminated nodes would lead to a strictly smaller number of
components. The set of all essential separators of a network g is denoted by E(g).
Figure 3 illustrates essential separators in an example.
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The second element is the level of costs. As illustrated by Example 1, the network
defense problem can be divided into two parts, depending on the cost of attack.
Given x ∈ N ,Δ f (x) = f (x + 1) − f (x) is the marginal increase in the value of a
component of size x when a single node is added to it. Under Assumption 1, Δ f (x)
is strictly increasing. It is useful to separate two levels of costs: one, high costs with
cA > Δ f (n − 1), and two, low costs with cA < Δ f (n − 1).

We start with the case of high cost as it brings out some of the main general
insights in a straightforward way. Facing a high cost, the adversary must disconnect
the network, i.e., choose a separator or not attack the network at all. Clearly, the
adversary would never use an essential separator that yields a lower payoff than the
empty attack. Given the cost of attack cA and network g, the set of individually
rational separators is ε(g, cA) = X ∈ E(g) : Φ(g) − Φ(g − X) ≥ cA|X |.

When the cost of attack is low, it may be profitable for the adversary to use attacks
that merely remove nodes from the network, without disconnecting it. A set R ⊆ N
is a reducing attack for a network g if there is no X ⊆ R such that X is a separator
for g. The set of all reducing attacks for a given network gis denoted by R(g).

The following lemma characterizes all the possible attacks of the adversary in
terms of essential separators and reducing attacks. In addition, it provides a charac-
terization of the attacks that are best responses in the adversary’s sub game.

Lemma 1 Fix a connected network g. Let Δ ⊆ N be a defense selected by the
defender in the first stage. Any attack X ⊆ N can be decomposed into two disjoint
sets: a set E and a reminder set R such that the following statements hold:

(i) The set E is either empty or E ∈ E(g).
(ii) The set R is a reducing attack for g − E.

Moreover, if X is a best response to Δ, then E is either empty or E ∈ E(g ∈ cA).

The first part of the lemma says that any attack of the adversary can be seen as
consisting of two phases. In one of the phases, the adversary fragments the network
by removing a minimal set of nodes needed to obtain the desired components after
the attack. This set is an essential separator of the network. In the other phase, the
adversary reduces the size of the components (but without disconnecting any of
them). Thus, the notion of essential separator captures exactly the attacks that serve
the function of fragmenting the network. The characterization of attacks obtained
in the first part of the lemma is useful in understanding the best responses of the
adversary. If X is a best response to some strategy of the defender, then applying
an essential separator phase of X after the reducing attack phase is applied must be
worthwhile. But then, by convexity of f, it must be worthwhile evenmore to apply the
essential separator phase before the reducing attack phase. Therefore, the essential
separator phase must be individually rational.

We now turn to the equilibrium strategies of the defender. Again, it is instructive
to start with the setting where the cost of attack is high. An optimal strategy of the
defender should block a subset of individually rational essential separators in the
most economical way. Given a family of sets of nodes, H, and a set of nodes, M ,
D(M,H) = {X ∈ H : X ∩ M �= φ} are the sets in H that are blocked (or covered)
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by M . The set M is called a transversal of H if D(M,H) = H. The set of all
transversals of H is denoted by T (H). Elements of T (H) that are minimal with
respect to inclusion are called minimal transversals ofH. Elements of T (H)with the
smallest size are called minimum transversals ofH. Let τ(H) denote the transversal
number of H, i.e., the size of a minimum transversal of H. Given a family of sets
F ∈ H, the set M is called a transversal of F in H if D(M,H) = F . The set of all
transversals ofF inH is denoted by T (F |H). Elements of T (F |H)with the smallest
size are called minimum transversals of F inH. Let τ(F |H) denote the transversal
number of F in H, i.e., the size of a minimum transversal of F in H. Notice that
τ(F |H) ≥ τ(F). In other words, avoiding blocking some of the potential attacks
of the adversary, and hence strategically exposing some parts of the network, may
entail an additional cost. As we show below, strategic exposure may be a part of a
rational defense strategy.

Let g be the network in Fig. 3. Let H = E(g) = {{a}, {a, b}, {a, c}} be the set
of all essential separators of g and let F = {{a, b}, {a, c}} be its subset. Figure 4
illustrates the unique minimum (and, at the same time, minimal) transversal of H,
{a}. The unique minimum transversal of F in H is {b, c}. Thus, the most economic
way to block exactly the separators from F out of all the separators from H is by
blocking nodes b and c.

We provide more examples and a discussion of essential separators and their
transversals in some well-known families of networks (trees, core–periphery, inter-
linked stars) in Appendix C.

We are now ready to state our first main result on optimal defense and attack.

Proposition 2 Consider a connected network g ∈ G(N ). Let (Δ∗, X∗) be an equi-
librium.

(i) If cA < Δ f (n − 1), then the following statements hold:

• The variable Δ∗ = N or Δ∗ is a minimal transversal of D(Δ∗, E(g, cA)).
• We have X∗(Δ) = E ∪ R, where E ∈ E(g, cA) and R ∈ R(g − E), with

X∗(Δ) ∩ Δ = φ.

(ii) If cA > Δ f (n − 1), then the following statements hold:

Fig. 4 Minimum
transversal,{a}, of essential
separators {{a},{a,b},{a,c}}
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• We have |Δ∗| ≤ τ(E(g, cA)) and Δ∗ is a minimum transversal of D(Δ∗, E
(g, cA)) in E(g, cA).

• We have X∗(Δ) = φ if Δ ∈ T (E(g, cA)); X∗(Δ) ∈ E(g, cA) with X∗(Δ) ∩
Δ = φ, otherwise.

The proposition brings out the economic tradeoffs in the network conflict. Essen-
tial separators—that are effective at fragmenting the network—are key to optimal
attack and economical transversals that block these separators are key to optimal
defense. Moreover, if the defender wishes to go beyond blocking the separator and
protect nodes that merely expand the size of a component, then, due to convex char-
acter of network value function, it is optimal for him to protect all the nodes in the
network.

More formally, optimal defense is defined in terms of the minimal transversal
of the appropriate set of essential separators or defense must cover all nodes. If the
cost of attack is such that elimination of single nodes is not worthwhile, optimal
attack is bounded from above by the set of essential separators of the network. In
this case, optimal defense can never exceed the size of the minimum transversal of
the set of individually rational essential separators. If, alternatively, the cost of attack
justifies the elimination of single nodes, optimal attack is constituted of nodes that
comprise reducing attacks and essential separators. In this case, an interesting feature
of optimal defense is that it may be larger than the smallest possible transversal (even
when it does not cover all the nodes).

We now briefly describe the arguments underlying the proof. By Lemma 1, we
know that any attack may be decomposed into two disjoint parts that comprise an
essential separator and a reducing attack.

In the range of costs covered by part (ii), the adversary will not use reducing
attacks. So, an optimal attack must be either empty or an individually rational essen-
tial separator. Next consider the optimal defense strategy, Δ∗. Clearly, Δ∗ cannot be
larger than the size of the minimum transversal of E(g, cA), as that would be wasteful
for the defender. If |Δ∗| = τ(E(g, cA)), then Δ∗ must be a minimum transversal of
E(g, cA); choosing a defense other than a minimum transversal would simply lower
payoffs. If |Δ∗| < τ(E(g, cA)), thenΔ∗ is aminimum transversal ofD(Δ∗, E(g, cA))
in E(g, cA).

We turn next to part (i) of Proposition 1. The proof proceeds by showing that a
defense that exceeds a minimal transversal (of covered essential separators) must
include some node that is being protected purely to prevent it from removal. Hence,
the role of such a defense is to ensure the size of the component. This must mean that,
in the absence of defense, the node would be eliminated in the subsequent optimal
attack. We then exploit the convexity of f and the linearity of costs of defense
and attack to establish that the adversary must find it optimal to eliminate all other
unprotected nodes in the surviving component. Extrapolating from this, we establish
that this must apply to all essential separators and then, by convexity, to single nodes
in those components as well. In other words, if the defender finds it optimal to go
beyond a minimal transversal of blocked essential separators, then he must protect
all nodes.
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We now consider the general comparative statics with respect to the costs and
the network. It is worth noting some patterns in Example 1 above. Figure2 suggests
that defense size is falling in defense costs and is nonmonotonic in attack costs. The
attack size is nonmonotonic in both attack cost and defense cost. These patterns are
truemore generally. They have payoff implications. The following result summarizes
our analysis.

Proposition 3 The equilibrium comparative statics are as follows.

(i) The size of defense and the defender’s payoff are both decreasing in the cost of
defense. The defender’s payoff increases in the cost of attack. However, depend-
ing on the costs and the network, the size of defense may increase or decrease
when the cost of attack increases.

(ii) Depending on the costs and the network, the size of attack and adversary’s payoff
may increase or decrease when the cost of attack increases. The adversary’s
payoff increases in the cost of defense. However, depending on the costs and the
network, the size of attack may increase or decrease when the cost of defense
increases.

(iii) Depending on the costs and the network, adding links may increase or decrease
the size of the optimal defense as well as the defender’s payoff.

We note that the effect of defense cost on the size of attack may be nonmonotonic.
This is becausewith a higher cost of defense, the defendermayuncover someessential
separators to which the adversary could switch. Their size might be smaller or larger
than the size of separators chosen by the adversary under the lower cost of defense.
As an example, consider the network g in Fig. 5 and suppose that f (x) = x2, cA ∈
(31, 54), and cD ∈ (108, 121). Under these parameters, in every equilibrium the
defender defends node a and the adversary responds with essential separator {b, c}.
When the cost of defense rises to 122, equilibrium defense of the defender is φ to
which the adversary responds with essential separator {a}. Alternatively, Example 1
illustrates that the size of attack might rise when the cost of defense is rising (cf. the
case of cA ∈ (7, 13) in Fig. 2). Despite this nonmonotonic behavior of equilibrium
attack size, the payoff to the adversary increases when the cost of defense rises. A
similar observation also holds for the effect of attack cost on defense size and on
payoffs.

An increase in attack cost has nonmonotonic effects on attack size and the adver-
sary’s payoff. This is illustrated by Example 1, e.g., when the cost of defense is in

Fig. 5 Network where a rise
in the cost of defense reduces
the size of attack
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the range (3.25, 4). The reason for these nonmonotonicities is as follows. When the
cost of attack rises, some of the attacks stop being individually rational. This creates
an opportunity for the defender to reduce defense, possibly at the expense of some
value of the network. This, in turn, allows the adversary to execute attacks that were
blocked when the cost of attack was lower. In the example, when cA ∈ (0, 1), it is
individually rational for the adversary to remove any unprotected node. Therefore,
with cD ∈ (3.25, 4), the defender defends all the nodes. When cA ∈ (1, 5), it is not
individually rational for the adversary to remove single unprotected nodes. With the
costs of defense in (3.25, 4), the defender prefers to leave the network undefended
and loose the central node, saving on the cost of defense and loosing some value of
the network. Such an attack is better for the adversary than not removing any node.
The size of attack rises from 0 to 1 and the payoff of the adversary rises from −16 to
−3 − cA ∈ (−9,−4). When cA > 7, the size of attack falls back to 0 and the payoff
to the adversary falls back to −16.

Finally, consider the effects of adding links.Afirst conjecturewould be that adding
links should always be good for the defender, as it creates more routes for connection
and this should make the network easier to defend. The next example shows that this
intuition is false: a denser network may induce a larger optimal defense with lower
defender payoffs!

Example 2 (Adding links may increase defense size and lower defender payoffs)
We consider the network given in Fig. 6. Suppose that payoff from a component of
size x is f (x) = x2.

Assume the cost of attack cA ∈ (23, 31) and the cost of defense cD ∈ (43, 85).
The unique equilibrium outcome is Δ� = {c}, X � = {d}. The equilibrium payoff to
the defender is 101 − cD .

Now consider a network g′ = g ∪ {e f }, with a link added between the nodes e and
f .With this additional link, the separator {d} is replaced by separator {d, e}. Suppose
that the cost of defense is cD ∈ (43, 62). Observe that with defense Δ� = {c}, there
exists an attack d, e that is optimal for the adversary and yields only 82 − cD to the
defender. Thus, the addition of a link, and retaining the same defense, may actually
lower the defender’s payoffs.

In the newnetwork g′, the unique equilibriumoutcome isΔ� = {d, e} and X � = φ.
The equilibrium payoff to the defender is 144 − 2cD < 101 − cD . So, the optimal
defense size increases and the defender’s payoff falls as the network becomes denser.

Alternatively, it is clear that as we keep adding links and arrive at the complete
network, the optimal attack is empty (as cA > 23) and so optimal defense is also the

Fig. 6 Example 2. a
Original network. b Network
with added link
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empty set. The defender’s payoff is 144, which is the maximal attainable. Thus, the
effects of adding links are nonmonotonic. �

This nonmonotonicity is not an artefact of the specifics of the network and the
costs of attack and defense. It reflects a general feature of conflict in networks. To
see this consider the case of the complete network. The first thought would be that
a network that contains the most connections is the hardest to disrupt and always
leads to the best outcomes for the defender. This is not true. The following example
clarifies this point.

Example 3 (Complete network vs. core–periphery network) Suppose that n is large
and that the cost of attack satisfies

f (n − 2) − f (n − 3) < cA < f (n − 1) − f (n − 2)

With this cost of attack, the adversary removes two nodes from the complete
network over n nodes, one node from the complete network containing n − 1 nodes,
and does not remove any nodes from the complete network containing n − 2 or less
nodes. Finally, suppose that the cost of defense satisfies

f (n) − f (n − 2) − f (1)

n
< cD <

f (n) − f (n − 2)

n

With this cost of defense the defender protects all the nodes in a complete network
with n nodes, because f (n) − ncD > f (n − 2) (and we know that in a complete
network the defender either protects all or no nodes, in equilibrium).

Now consider a network with n − 1 nodes in a clique with one node linked to a
single element of the core (let us call it i). This is a type of core–periphery network. If
such a network is not protected, the adversary will remove node i only, disconnecting
the network into a clique of size n − 2 and a single isolated node. Now, we know that
the defender is either inactive, protects i , or protects all the nodes in equilibrium.With
the above cost of defense, the defender is inactive. First, note that f (n) − ncD <

f (n − 2) + f (1), so protecting everything is worse than being inactive. It can be
checked that protecting i is worse, because in response the adversary would remove
two nodes from the core of the network.

Thus, in the core–periphery network the equilibrium payoff to the defender is

f (n − 2) + f (1) > f (n) − ncD

So it is better than the complete network. ♦
This example illustrates the attractiveness of the queen sacrifice strategy: it is better

to leave i unprotected because there is greater loss in value if it is protected! The
idea of queen sacrifice and the suboptimality of the complete network will resurface
in other contexts below.
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3.1 Networks and Conflict

This section examines the relation between the network architecture and the nature
of conflict more closely.We define the intensity of conflict as the sum of expenditures
of defense and attack. Our analysis shows that for given costs of conflict, differences
in network structure can lead to very large differences in conflict.

Proposition 1 tells us that the size of equilibrium attack and defense are generically
unique.We start by defining theminimum intensity of conflict for given costs of attack
and defense. Define minimal costs of conflict for given costs and f as

CC(cA, cD, f ) = min
g∈G(N )

cD|Δ�(g, cA, cD, f )| + cA|X �(g, cA, cD, f )|

Example 1 illustrates some of the forces at work. Observe that when the cost
of attack is very large, cA > 13 = f (n) − (n − 1) f (1), no attack is profitable, and,
anticipating this, the defender abstains from defense. The intensity of conflict is 0.
This lack of conflict for large costs of attack is independent of the architecture of the
network.

Fig. 7 Windmill graphs
(hmn ) : n = 13,m = 6, 4, 3

Turning to the lower cost of attack, an inspection of Fig. 1 in Example 1 tells us
that the intensity of conflict also depends on the cost of defense. It will be useful to
define a special class of networks, windmill graphs. These graphs are denoted by hmn ,
where n ≥ 2 andm ∈ {1, . . . , n − 1}. There is one critical node that, when removed,
disconnects the network. The remaining nodes are partitioned into cliques of size m
and, possibly, one clique of smaller size (this implies that there are (n − 1)/m such
cliques). Every member of a clique is connected to the critical node. We now define
a key cost threshold for defense that equates the payoff from full defense with the
payoff from an unprotected hmn network:

c(m.n) = f (n) − 
 n−1
m � f (m) − f ((n − 1)mod m)

n

Figure7 illustrates windmill graphs.
We are now ready to prove a general characterization of minimal conflict levels.

Proposition 4 (i) If cA > f (n) − (n − 1) f (1), then CC(cA, cD, f ) = 0. It is
attained on any connected network.

(ii) If cA ∈ ( f (n − 1), f (n) − (n − 1) f (1)), thenCC(cA, cD, f ) = 0. It is attained
on any connected network g with E(g, cA) = 0.
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(iii) If cA ∈ (Δ f (m − 1),Δ f (m)) with m ∈ {1, . . . , n − 1}, one of the following
statements holds:

(iv) If cD > c(m, n), then CC(cA, cD, f ) = cA. It is attained on a windmill
network, hmn .

(v) If cD < c(m, n) with m ∈ {1, . . . , n − 1}, then CC(cA, cD, f ) = ncD. It is
attained on any connected network.

In case (ii), when the cost of attack is high, cA > Δ f (n − 1), the minimal costs
of conflict are 0, as it is not profitable for the adversary to attack any network
with E(g, cA) = φ. Such networks include the complete network, as well as net-
works that are robust to node removal in the sense that they require a large num-
ber of nodes to be removed to get disconnected. More generally, for any integer
t ≥ 1, a network is t-connected if it can be disconnected by removing t nodes and
cannot be disconnected by removing less than t nodes. Any t-connected network
with t ≥ ( f (n) − n f (1)/(cA − f (1)) has empty E(g, cA). Menger (1927) provides
a characterization of such networks: a network is at least t-connected if and only if any
two nodes that are not neighbors are connected through at least t node independent
paths.7 Thus, such networks have many redundant connections between nodes.

The last case, with lower attack costs cA < Δ f (n − 1), is much richer. Suppose
that cA ∈ (Δ f (m − 1),Δ f (m)), where m ∈ {1, . . . , n − 1}. Now it is profitable to
the adversary to attack any undefended node in a component of size greater than m.
Hence, the lower bound on costs of conflict ismin(cA, ncD). If the cost of defense is
sufficiently low, cD < c(m, n), then complete defense is better than any other defense
and the minimal costs of conflict are ncD . If cD > c(m, n), then complete defense
has higher costs as compared to the outcome with no defense and one attacked node.
This leads to total costs of conflict of cA. To sustain an equilibrium with such costs
of conflict, we need a network that has a separator of size 1 and that all components
in the residual network have size at most m. The windmill graph possesses exactly
this characteristic. This motivates the windmill network: for m ∈ {1, . . . , n − 2},
the windmill network hmn has such an equilibrium and yields the minimal costs of
conflict, cA.

We now turn to the role of networks in shaping the intensity of conflict. Proposi-
tion 4 tells us that network architecture matters only if the costs are as in cases (ii)
or (iii).

Consider case (ii). Proposition 1 tells us that CC(cA, cD, f ) = 0 in this range. To
see the impact of network architecture, consider a star network. If cD < f (n) − (n −
1) f (1), then in equilibrium the defender protects the center of the star and the costs
of conflict are cD . Alternatively, if cD > f (n) − (n − 1) f (1), then in equilibrium
the defender chooses the empty defense, the adversary attacks the center of the star,
and the costs of conflict are cA. So, when the costs of attack and defense reach their
upper bound, the difference in the costs of conflict between the star network and the

7 Two paths are node independent if the only nodes they have in common are the starting and the
ending nodes.
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minimal attainable is f (n) − (n − 1) f (1). It is easy to see that this can growwithout
bound as n gets large.

Next consider case (iii), with m ∈ {1, . . . , n − 2}. Proposition 4 tells us that
the minimum conflict, attained on network hmn (for example) is cA. Suppose cD ∈
(c(m, n), ( f (n) − f (m))/n) and consider a complete network. The unique equilib-
rium outcome is full protection and so the costs of conflict are ncD . When the cost
of defense reaches its upper bound and the cost of attack reaches its lower bound,
the difference in costs between this minimum and the complete network reaches
f (n) + f (m − 1) − 2 f (m), which is maximal, f (n) − 2 f (1), for m = 1. Again,
the network architecture can have very large effects on the intensity of conflict.

Active conflict In Proposition 4, minimal conflict is associated with a single active
player. An inspection of Fig. 3, in Example 1 above, shows us that both players can
be active in equilibrium. This motivates the study of circumstances under which we
should expect to see active conflict. Example 1 draws attention to the role of costs:
neither the attack nor the defense costs can be too high. Here we briefly discuss the
role of the network architecture and the network value function.

We start with an observation that draws upon Proposition 2: for active conflict
to arise there must exist an individually rational essential separator. If such a sep-
arator does not exist, then convexity of function f together with linearity of costs
implies that either none or all nodes are defended. In particular, if g is a complete
network, then for all costs and all functions f (satisfying our assumptions), there is
no equilibrium with active conflict.

Are there any other (connected) networks with the same property as complete
networks? If the marginal value of f is growing sufficiently fast, then no active
conflict is possible. Let f satisfy the property, for x ≥ 0,

Δ f (x) > x f (x) (2)

where Δ f (x) = f (x + 1) − f (x).
The property is satisfied by functions f (x) = (x + 1)! − 1 and (x + 1)x − 1, for

example. Marginal value in these functions grows so rapidly that adding a single
node to a component of size m increases its value more than m times. In effect, the
returns fromprotectingm < n nodes are smaller than average returns fromprotecting
additional m − n nodes. Thus, if the defender prefers protecting the first m nodes to
no protection, he is even more willing to protect the whole network. Formally, let

Φ�(m; g, cA) = max
Δ⊆N ,|Δ|≤m

min
X∈BR(Δ;g,cA)

Φ(g − X (Δ) \ Δ)

be a function that gives the maximum value of the residual network that can be
attained from network g when up tom units of defense are used and the cost of attack
is cA (BR(Δ; g, cA) denotes the set of best responses of the adversary to Δ, given
g and cA ). Suppose that there is an equilibrium, (Δ�, X �), featuring active conflict.
Let |Δ�| = m. Since there is active conflict, so 1 ≤ m ≤ n − 1 and |X �(Δ�)| ≥ 1.
Since Δ� is better than φ, so cD ≤ (Φ�(m; g, cA) − Φ�(0; g, cA))/m ≤ f (n − 1).
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Alternatively, sinceΔ� is better than N , so cD ≥ ( f (n) − Φ�(m; g, cA))/(n − m) ≥
( f (n) − f (n − 1))/(n − 1). Combiningboth the inequalitiesweget f (n) ≤ n f (n −
1), which contradicts (2).

4 Decentralized Defense

In many applications, security decisions are made at the individual node level. This
section studies decentralized security choices in a network that is under attack. We
begin by showing that the equilibrium choices of the nodes and the adversary can
be characterized in terms of transversals and separators of the underlying network.
We then show that the welfare gap between decentralized equilibrium and first best
outcomes is unbounded: interestingly, individual choice may lead to too little and to
too much protection, relative to the choice of a single (centralized) defender.

We consider a two-stage game. In the first stage, each of the nodes in the network
decides whether to protect itself or to stay unprotected. These choices are observed
by the adversary who then chooses the nodes to attack.

Let N = {1.2, . . . , n}, where n ≥ 3 is the set of players, and let Si = {0, 1} denote
the strategy set of node i ∈ N . Here si = 1 means that the node chooses to defend
itself and si = 0 refers to the case of no defense. These choices are made simultane-
ously. There is a one-to-one correspondence between a strategy profile of the nodes,
s ∈ {0, 1}N , and the resulting set of defended nodes Δ ⊆ N . So we will use Δ to
refer to the strategy profile of the nodes in the first stage.

In the second stage the adversary observes the defended network (g,Δ) and
chooses an attack X ⊆ N , which leads to a residual network g − (X \ Δ). The payoff
to the adversary remains as in the case of the centralized defense and is defined in
(1). The payoff to a node depends on whether the node is removed by the attack. A
removed node receives payoff 0. Each of the surviving nodes receives an equal share
of the value of its component in the residual network,

Π i (Δ, X; g, cD) =
{
0 if i ∈ X \ Δ
f (|C(i)|)
|C(i)| − si cD otherwise,

where C(i) is the component in the residual network g − (X \ Δ) that contains i .
This completes the description of the decentralized defense game. We study the

subgame perfect equilibria of this game, restricting attention to those without active
conflict.

Let us solve the game starting from the second stage. As in the two-player game,
the adversary chooses either the empty attack or an attack that is a combination of
an essential separator and a reducing attack. If the cost of attack is low and there is
no active conflict, then either the adversary removes all the nodes or all nodes are
protected. In any other outcome the adversary must remove at least one node. If the
cost of attack is high and there is no active conflict, then either none of the nodes
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protects or, anticipating the strategy of the adversary, the nodes choose a defense
configuration that blocks all the individually rational essential separators. Therefore,
in equilibrium, they must choose a minimal transversal of E(g, cA). We build on
these observations to provide the following characterization of equilibria with no
active conflict in the decentralized defense game.8

Proposition 5 Consider a connected network g ∈ G(N ). Let Δ� be the equilibrium
defense.

(i) If cD > f (n)/n, then Δ� = φ is the unique equilibrium defense.
(ii) If cD ≤ f (n)/n, one of the following statements holds.

(a) If cA < f (n) − f (n − 1), then Δ� = N is an equilibrium defense.
(b) If cA > f (n) − f (n − 1), then any minimal transversal of E(g, cA) is an

equilibrium defense.

The equilibrium strategy of the adversary is as in Proposition 2.

We now turn to discussing inefficiencies that may arise due to decentralized pro-
tection, as well as their sources.We compare the aggregate welfare of the nodes in the
equilibrium of the two-player game with the aggregate welfare in the decentralized
defense game. Let Π D�

(g, cA, cD) denote the equilibrium payoff in the two-player
game on network g with cost of defense cD and cost of attack cA. Aggregate welfare
in the two-player game, starting from network g, and costs cA and cD , are defined as

WF (g, cA, cD) = Π D�

(g, cA, cD)

Aggregate welfare under defense profileΔ and attack X , of the n + 1-player game
starting from network g, and given cost of defense cD , is defined as

WD(Δ, X; g, cD) =
∑

i∈N
Π i (Δ, X; g, cD)

Following Koutsoupias and Papadimitriou (1999), we study the cost of decentral-
ization in terms of the price of anarchy (PoA): the ratio of welfare in the two-player
game to the welfare in the worst equilibrium of the decentralized defense game. Let
E(g, cA, cD) denote the set of equilibria of the n + 1-player game on network g with
cost of attack cA and cost of defense cD . Let

PoA = max
g,cA,cD

( WF (g, cA, cD)

min(Δ,X)∈E(g,cA,cD) WD(Δ, X (Δ); g, cD)

)

8 We concentrate on equilibria with no active conflict, because, on one hand, it allows for providing
a clean characterization and, on the other hand, it provides a sufficiently rich platform for discussing
the sources of inefficiencies when defense decisions are decentralized. All other equilibria in decen-
tralized defense game could be characterized in the same spirit as the characterization provided in
Proposition 2 for the centralized defense game.
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Our analysis highlights externalities and points to sources of inefficiency in decen-
tralized defense. The first source is the familiar one of positive externalities: an indi-
vidual’s protection decision creates benefits for other nodes, which she does not
take into account. Consider a star network and suppose that cost of attack is high,
cA > f (n) − f (n − 1), and cD ∈ ( f (n)/n, f (n)). In the equilibrium of the two-
player game, the aggregate welfare is f (n) − cD . However, in the equilibrium of the
decentralized game, the central player does not find it profitable to defend itself, as
cD > f (n)/n. So aggregate welfare in equilibrium of the n + 1-player game is 0.
The ratio of the two is unbounded for cD ∈ ( f (n)/n, f (n)).

Protection choices exhibit a threshold property: for a node to find it profitable to
protect it is necessary that other nodes belonging to the same minimal transversal
protect. Thus, protection decisions are strategic complements. This can generate
coordination failures, resulting in large welfare losses. To see this, consider a tree
with two hubs each of which is linked to (n − 2)/2 distinct nodes. Suppose that

f (n) − f (n − 1) < cA < f
(n
2

)
− (n − 2) f (1)

2

Fig. 8 Network with
essential separators of size 2
having two minimal
transversals: one of size 1
and one of size 5

so the adversary will only attack hub nodes. If 2 f (n/2)/n < cD < f (n)/n, then the
first best outcome is to defend the two hubs. One hub protecting itself gives incentives
to the other hub to protect: two protected hubs is an equilibrium outcome. However,
a hub node does not have unilateral incentives to protect: zero protection is also an
equilibrium outcome. In this equilibrium the aggregate payoffs are (n − 2) f (1) as
compared to first best outcome of f (n) − 2cD . The cost of decentralization can be
unbounded.

Third, at the local level, the game is clearly one of strategic substitutes. A node
in a separator has incentives to protect only if no other node in the separator protects
itself. Like public good games on networks (cf. [9]), the network protection game
therefore displays multiple equilibria. This can generate very large efficiency losses.
As an example consider network g depicted in Fig. 8.

Suppose that f (x) = x2, cA ∈ (21, 28), and cD < 11. Since the cost of attack is
high, the adversary will not remove a node without disconnecting the network. The
set of individually rational essential separators is a combination of sets as depicted
in Fig. 8. Notice that the minimum transversal of E(g, cA) is the node belonging to
each of the separators, while the largest minimal transversal consists of one distinct
node from each of the two element separators. Hence, the modified PoA in this case
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is |E(g, cA)| and as the example in Fig. 8 suggests, it is possible to have a graph g
such that |E(g, cA)| ≥ (n − 1)/2. Again, the cost of decentralization is unbounded.

The idea that personal security exhibits positive externalities is well known in
the economic epidemiology literature (and has been noted in the recent research in
this area; see, e.g., [1, 10, 36]. Moreover, in the standard disease setting security
choices are strategic substitutes. Our model departs from this standard setting in
two important ways: one, we have an intelligent adversary, and two, agents in our
model care about the size of the component (not just about survival). This means that
security choices exhibit features of both complements and substitutes. In addition
due to the role of size effects, security choices can exhibit large coordination failures.
These features of the model distinguish it from the existing literature and call for
new methods of analysis and yield fresh insights.

5 Concluding Remarks

Infrastructure networks are a key feature of an economy. These networks face a
variety of threats ranging from natural disasters to intelligent attacks. This paper
develops a strategic model of defense and attack in networks.

We provide a characterization of equilibrium attack and defense in terms of two
classical concepts in graph theory: separators and transversals. We show that the
intensity of conflict (the resources spent on attack and defense) and the possibility
of active conflict (when both adversary and defender target nodes for action) are
both intimately related to the architecture of the network. Finally, we show that the
welfare costs of decentralized defense can be very large.

We have assumed that the defender moves first and is followed by the attacker,
and that the defense is perfect: it would be more natural to allow for outcomes of
conflict to vary with resources of attack and defense allocated to a node. Appendix
D presents a preliminary analysis of models where we relax these assumptions. A
general analysis remains an important problem for future research.

Finally, we have assumed that payoffs depend only on the sizes of the networks
(or their components). In future work, it would be important to study a model where
payoffs depend on the details of the architecture of the components.

6 Appendix A: Proofs

We start with proving Proposition 1 that states generic equivalence of equilibrium
outcomes of the defender adversary game in terms of payoffs, size of defense, and
size of attack. We start with the following auxiliary lemmata.
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Lemma 2 Let g be a network over set of nodes N and letΔ ⊆ N be a set of defended
nodes. Generically, for any best responses X � and X �� to defense Δ, Φ(g − X �) =
Φ(g − X ��) and |X �| = |X ��|.
Proof Let g be a network and let Δ be a defense, as stated in the lemma. Let X � and
X �� be best responses to (g,Δ). Then we have

−Φ(g − X �) − |X �|cD = −Φ(g − X ��) − |X ��|cD
If |X �| = |X ��|, then it follows that Φ(g − X �) = Φ(g − X ��) and we are done.
Otherwise, the equality is equivalent to

cD = Φ(g − X �) − Φ(g − X ��)

|X ��| − |X �|
The set of values on the right-hand side of the equality is finite (there are at most
2n+1 − 1 values there). Hence, the equality can be satisfied for a finite number of
values of cD ∈ R++. This completes the proof. �

Lemma 3 Let g be a network over the set of nodes N. Generically, for any
two equilibria (Δ�, X �) and (Δ��, X ��), Φ(g − X �(Δ�)) = Φ(g − X ��(Δ��)) and
|Δ�| = |Δ��|.
Proof Let g,Δ�,Δ��.X �, X ��be as stated in the lemma. Since Δ� is a best response
to X �, so

Φ(g − X �(Δ�)) − |Δ�|cD ≥ Φ(g − X �(Δ��)) − |Δ��|cD (3)

and since Δ�� is a best response to X ��, so

Φ(g − X ��(Δ��)) − |Δ��|cD ≥ Φ(g − X ��(Δ�)) − |Δ�|cD (4)

By Lemma 2, generically, Φ(g − X ��(Δ�)) = Φ(g − X �(Δ�)) (as both X ��(Δ�)

and X �(Δ�) are best responses to Δ�). This together with (3) and (4) implies

Φ(g − X ��(Δ��)) − |Δ��|cD ≥ Φ(g − X �(Δ�)) − |Δ�|cD
Similarly, by Lemma 2, generically, Φ(g − X �(Δ�)) = Φ(g − X ��(Δ�)). This

together with (3) and (4) implies

Φ(g − X ��(Δ��)) − |Δ��|cD = Φ(g − X �(Δ�)) − |Δ�|cD (5)

If |Δ�| = |Δ��|, thenΦ(g − X �(Δ�)) = Φ(g − X ��(Δ��)) and we are done. Oth-
erwise, (5) can be rewritten as

cD = Φ(g − X �(Δ�)) − Φ(g − X ��(Δ��))

|Δ�| − |Δ��|



300 M. Dziubiński and S. Goyal

Since the number of values on the right-hand side is finite, for almost every
value of cD ∈ R++ this equality is not satisfied. Hence, generically, |Δ�| = |Δ��|
and Φ(g − X �(Δ�)) = Φ(g − X ��(Δ��)). �

Lemma 4 Let g be a network over set of nodes N and let X,Y ⊆ N be two attacks
such that |X | �= |Y |. Generically, Φ(g − X) �= Φ(g − Y ).

Proof Let g, X , and Y be as stated in the lemma. Suppose that Φ(g − X) = Φ(g −
Y ). This equality can be rewritten as

∑

C∈C(g−X)

f (|C |) =
∑

C∈C(g−Y )

f (|C |)

Since X �= Y so there exists s > 0 such that g − X has a component of size s and
g − Y has not or g − Y has a component of such a size and g − X has not. Suppose
that Φ(g − X) = Φ(g − Y ). Hence, the equality above reduces to

f (s1) + · · · + f (sp) = f (z1) + · · · + f (zq) (6)

where s1, lcdots, sp and z1, . . . , zq are sizes of components such that {s1, . . . , sp} ∩
{z1, . . . , zq} = φ. Equation (6) puts very strict constraints on function f and per-
turbing it slightly (within the set of functions satisfying Assumption 1) destroys the
equality. Thus, Φ(g − X) �= Φ(g − Y ) for |X | �= |Y | is a nongeneric property of f .
�

With Lemmas 2, 3, and 4 in hand, we are ready to prove Proposition 1.

Proof of Proposition 1 Generic equivalence of defense size and of payoff to the
defender follow directly from Lemma 3. Consider equivalence of attack size and
of payoff to the adversary. By Lemmata 3 and 4, generically Φ(g − X �(Δ�)) =
Φ(g − X ��(Δ��)) and |X �(Δ�)| = |X ��(Δ��)|. Thus, the points follow as well. �

Proofs of Lemma 1 and Proposition 2 exploit some properties of graphs. The first
step is to establish these properties. Lemma 5 characterizes the essential separators
as those separators that are “thin”: every node of such separators is a neighbor of
at least two components of the residual network. Given a set of nodes X ⊆ N and
a network g over N , ∂g(X) = {k ∈ N \ X : there is j ∈ X such that jk ∈ g} is the
neighborhood of X in g. If X is a singleton, that is, X = { j}, then we will write
∂g( j) instead of ∂g({ j}) (∂g( j) is the set of neighbors of j in g). We will drop the
subscript g in the notation if network g is clear from the context.

Lemma 5 Let g ∈ G(N ) be a network over a set of nodes N. A set X ⊆ N is
an essential separator if and only if X �= φ and, for every i ∈ X, there exist two
distinct components C1,C2 ∈ C(g − X), C1 �= C2, such that ∂g−X (i) ∩ C1 �= φ and
∂g−X (i) ∩ C2 �= φ.
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Proof Let g ∈ G(N ) be a network over a set of nodes N and let X ⊆ N .
The necessary part. Assume that X is an essential separator. Since X is a separator,
so X �= φ. Assume, to the contrary, that there exists i ∈ X such that there is at most
one component C ∈ C(g − X) such that ∂g−X (i) ∩ C �= φ. Suppose first there is no
such component. Then the attack X ′ = X \ {i} results in the set of components C(g −
X ′) = C(g − X) ∪ {{i}}, larger thanC(g − X),which contradicts the assumption that
X is essential. Second, suppose that there is exactly one component C ∈ C(g − X)

such that ∂g−X (i) ∩ C �= φ. Taking attack X ′, as before, leads to a residual network
with set of components C(g − X ′) = (C(g − X) \ {C}) ∪ {C ∪ {i}}, which has the
same cardinality as C(g − X). Therefore, X is not essential, a contradiction.

Sufficiency part Assume that X �= φ, and for every i ∈ X , there exist two distinct
components C1,C2 ∈ C(g − X) such that C1 ∩ ∂g−X (i) �= φ and C2 ∩ ∂g−X (i) �=
φ. Then there exist two nodes, j1 ∈ C1 ∩ ∂g−X (i) and j2 ∈ C2 ∩ ∂g−X (i), that are
connected in g and not connected in g − X . Hence, X is a separator and we have
to show that it is essential. Suppose X ′

� X , so there is some i such that i ∈ X but
i /∈ X ′. Given the definition of i ∈ X it follows that |C(X ′)| ≤ |C(X)| − 1. Since X ′
was arbitrary, the claim is established. �

Wenowdevelop a characterization of optimal attack strategies in terms of essential
(individually rational) separators and reducing attacks.

Proof of Lemma 1 The proof of the first part is by induction on the number of nodes
in X that violate the condition from Lemma 5. For the induction basis consider the
set of all X ⊆ N for which there are no nodes that violate the condition. Then, by
Lemma 5, X is essential and so the remainder is φ and E = X (in particular, it may
be that E = X = φ). The claim holds.

For the induction step, take any X ⊆ N for which there are exactly m nodes that
violate the condition from Lemma 5. Suppose that the claim holds for any Y ⊆ N
for which there are l < m nodes that violate the condition. Let i ∈ X be a node that
violates the condition and let Y = X \ {i}. Since the condition is violated for i ∈ X ,
so g − Y either contains one component more than g − X (namely, component {i})
or it has the same number of components with one component C in g − X replaced
with C ∪ {i} in g − Y . Hence, the condition is violated for l < m nodes from Y in
g − Y . Thus, by the induction hypothesis, Y can be decomposed into two disjoint
sets E and R as claimed. Since, as we argued above, adding i to Y does not increase
the number of components in the residual network, so R ∪ {i} does not contain a
separator of g − E and so the decomposition of X into E and R ∪ {i} satisfies the
conditions from the claim. Thus, points (i) and (ii) are shown.

Now we show that if g is connected and X is a best response to some defense
Δ ⊆ N , then either E = φ or E ∈ E(g, cA).

We show first, for any attack X and any decomposition of X into two disjoint sets
E and R satisfying points (i) and (ii), that

Φ(g − E) − Φ(g − X) ≤ Φ(g) − Φ(g − R) (7)
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We use induction on R. For the induction basis, let R = φ. Then (7) trivially holds.
For the induction step, suppose that (7) holds for any T � R. Take any i ∈ R, and
let T = R \ {i} and Y = X \ {i}. Let C ∈ C(g − Y ) be the component with i ∈ C .
Since R does not contain an essential separator of g − X so C(g − X) and C(g − Y )

differ at component C only: either C \ {i} ∈ C(g − X) or C \ {i} = φ. Hence

Φ(g − X) = Φ(g − Y ) − (
f (|C |) − f (|C | − 1)

)
(8)

Now let C ′ ∈ C(g − T ) be the component with i ∈ C ′. Applying attack {i} to
g − T replaces C ′ with components C ′

1, . . . ,C
′
m such that ∪m

i=1C
′
i = C ′ \ {i}. Hence

Φ(g − R) = Φ(g − T ) −
(
f (|C ′|) −

m∑

i=1

f (|C ′
i |)

)
(9)

≤ Φ(g − T ) − (
f (|C ′|) − f (|C ′| − 1)

)

(by the fact that f is strictly convex). By the induction hypothesis,

Φ(g − E) − Φ(g − Y ) + ( f (|C |) − f (|C | − 1)) ≤ Φ(g) − Φ(g − T ) + ( f (|C |) − f (|C | − 1))

and, by the fact that C ⊆ C ′ and by convexity of f ,

Φ(g − E) − Φ(g − Y ) + ( f (|C |) − f (|C | − 1)) ≤ Φ(g) − Φ(g − T ) + ( f (|C ′|) − f (|C ′| − 1))

Thus, by (8) and (9),

Φ(g − E) − Φ(g − X) ≤ Φ(g) − Φ(g − R)

This shows the induction step. Hence, we have shown (7).
Now, letΔ ⊆ N be a defense chosen in the first stage and suppose that X is a best

response to Δ. Whereas X is a better response to Δ than R, so

−Φ(g − X) − cA|X | ≥ −Φ(g − R) − cA|R|

and, consequently,

Φ(g − R) ≥ Φ(g − X) + cA(|X | − |R|) = Φ(g − X) + cA|E |

From (7), we have

Φ(g − X) ≥ Φ(g − E) + Φ(g − R) − Φ(g)

Putting the last two inequalities together, we arrive at
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Φ(g − R) ≥ Φ(g − E) + Φ(g − R) − Φ(g) + cA|E |

Simplifying this yields

−Φ(g − E) − cA|E | ≥ −Φ(g)

In other words, E ∈ E(g, cA) �

The proof of part (ii) of Proposition 2 now follows from the lemmata above and
the arguments in the main text. We turn next to proving part (i) of Proposition 2.

To simplify some parts of the argument, we will make a tie-breaking assumption
on the behavior of the adversary. It says that if two strategies yield equal payoffs
to the adversary, then he will choose the strategy that yields a lower payoff to the
defender.

Assumption 2 Given a network g and defense Δ, if two strategies X ⊆ N and
X ′ ⊆ N yield the same payoff to the adversary, then he chooses the strategy that
results in a residual network of lower value.

The first step here is to state and prove the following lemma.

Lemma 6 Let g ∈ G(N ) be a connected network over N, and let cD and cA be
the costs of defense and attack, respectively. Suppose that Δ ⊆ N is an equilibrium
defense and X ⊆ N is a best response to it. Suppose that there exists i ∈ Δ such that
D(Δ, E(g, cA)) = D(Δ \ {i}, E(g, cA)). Let X ′ ⊆ N be a best response to Δ′ =
Δ \ {i}.

Then there exists a component C ∈ C(g − X) such that C ⊆ Δ and either C = {i}
or C \ {i} ∈ C(g − X ′). Moreover,

Π D(Δ, X; g) = Π D(Δ′, X ′; g) + f (|C |) − f (|C | − 1) − cD (10)

and
cA ≤ f (|C |) − f (|C | − 1) (11)

Proof Let Δ ⊆ N be a defense, i ∈ Δ and Δ′ = Δ \ {i}. Let X be a best response
to Δ and let X ′ be a best response to Δ′.

Since X is a best response toΔ, so X ∩ Δ = φ andΦ(g − (X \ Δ)) = Φ(g − X),
and analogously with X ′ and Δ′. We prove the lemma in the seven steps below.

(i) We have Φ(g − X) > Φ(g − X ′). Since Δ is an equilibrium strategy of the
defender, so Π D(Δ, X; g) ≥ Π D(Δ′, X ′; g), that is, Φ(g − X) − cD|Δ| ≥
Φ(g − X ′) − cD(|Δ| − 1). Hence, Φ(g − X) > Φ(g − X ′).

(ii) We have i ∈ X ′. Assume, to the contrary, that i /∈ X ′. Then X ′ ∩ Δ = X ′ ∩
Δ′ = φ. Similarly, since X ∩ Δ = φ, so X ∩ Δ′ = φ. Hence,Π A(Δ′, X ′; g) =
Π A(Δ, X ′; g) and Π A(Δ′, X; g) = Π A(Δ, X; g). By the fact that Π A(Δ′,
X ′; g) ≥ Π A(Δ′, X; g), as X ′ is a best response toΔ′, this yieldsΠ A(Δ, X ′; g)
≥ Π A(Δ, X; g). Additionally, by point (i), Φ(g − X) > Φ(g − X ′), so X ′
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results in a residual network of lower value than in the case of X . Hence, by the
tie-breaking Assumption 2, X ′ is an equilibrium response toΔ, a contradiction.
Thus, it must be that i ∈ X ′.
Take any decomposition E ∪ R of Y , as described in Lemma 1. It cannot
be that i ∈ E , as otherwise we would have E ∈ D(Δ, E(g, cA)), while E /∈
D(Δ′, E(g, cA)), as Y ∩ Δ′ = φ, and we would have a contradiction with the
assumption that D(Δ, E(g, cA)) = D(Δ′, E(g, cA)). Hence, i ∈ R and there
exists a component C ∈ C(g − E) such that i ∈ C . Let C = C̃ \ R be what
remains of C after the remainder R of Y is applied to g − E . Therefore, either
C = φ (i.e., it is completely removed by R) or C ∈ C(g − Y ) (i.e., it is a
component in g − Y ). Suppose thatC = φ, that is,C ⊆ R. Then ∂g−E (i) ⊆ R
and ∂g(i) ⊆ E ∪ R = Y . Since i ∈ Y , so {i} ∪ ∂g(i) ⊆ Y . Suppose now that
C is a component in C(g − Y ). We will show that i ∈ ∂g−E (C). Assume the
opposite. Then ∂g−E (C) must be a separator in g − E , as it separates C from
a component containing i . But then ∂g−E (C) contains an essential separator
for g − E . Since ∂g−E (C) ⊆ R, this contradicts the assumption that R is a
remainder and does not contain any essential separators of g − E . Hence, it
must be that i ∈ ∂g−E (C) and, consequently, i ∈ ∂g(C).

(iii) For all C ′ ∈ C(g − X ′) with i ∈ ∂g(C ′), C ′ ⊆ Δ. Assume the opposite. Then
there exists C ′ ∈ C(g − X ′) with i ∈ ∂g(C ′) (and consequently i /∈ C ′) such
that i ′ ∈ C ′ \ Δ. Consider a strategy X ′′ = (X ′ \ {i}) ∪ {i ′}. Since X ∩ Δ = φ

and i ′ /∈ Δ, soX ′′ ∩ Δ′ = φ. Notice that Φ(g − X ′′) ≤ Φ(g − X ′), as both the
residual networks agree at all the components apart from what remains of
C ′ ∪ {i} after i ′ is removed (at the least it is one component of the same size
as C ′ ). Since |X ′| = |X ′′| so Π A(Δ′, X ′′; g) ≥ Π A(Δ′, X ′; g) and so X ′′ is a
best response to Δ′. But then we get a contradiction with point (i i), as i /∈ X ′′.
Hence, it must be that C ′ ⊆ Δ.

(iv) There exists C ′ ∈ C(g − X ′) ∪ {φ} such that C = C ′ ∪ {i} ∈ C(g − X) and
C ⊆ Δ. Let C ′ = φ if {i} ∪ ∂g(i) ⊆ X ′ or let C ′ be the unique C ′ ∈ C(g − X ′)
with i ∈ ∂g(C ′), otherwise. By point (i i i) such C ′ exists. By point (iv) and
by the fact that i ∈ Δ, C ⊆ Δ. Thus, there exists a component C ′′ ∈ C(g − X)

such thatC ⊆ C ′′. Suppose thatC � C ′′. Wewill show that in this case X ∪ {i}
is a better response to Δ′ than X ′, a contradiction.
Notice that since X ∩ Δ = φ andΔ′ = Δ \ {i} so (X ∪ {i}) ∩ Δ′ = φ. Bypoint
(i i i) either {i} ∪ ∂g(i) ⊆ X ∪ {i} or there exists exactly one component C ′′′ ∈
C(g − (X ∪ {i})) such that i ∈ ∂g(C ′′′). Hence, C ′′ = C ′′′ ∪ {i} and C ′′ must
be unique in C(g − X) with i ∈ ∂g(C ′′). The residual network g − (X ∪ {i})
differs from g − X at one component only: instead of C ′′ it has C ′′ \ {i}. Thus,
the value of residual network g − (X ∪ {i}) is

g − (X ∪ {i}) = Φ(g − X) − f (|C ′′|) − f (|C ′′| − 1) (12)

Similarly, since eitherC ′ = φ or i ∈ ∂g(C ′), so the residual networkwhen using
X ′ \ {i} against Δ′, g − (X ′ \ {i}), differs from g − X ′ by one component: it
has C instead of C ′. Additionally, since Δ = Δ′ ∪ {i} and X ′ ∩ Δ′ = φ so
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X ′ \ {i} = X ′ \ Δ. Thus, the value of the residual network g − (X ′ \ {i}) can
be written as

Φ(g − (X ′ \ {i}) = Φ(g − X ′) + f (|C |) − f (|C | − 1) (13)

Since X is a best response to Δ, it is not worse than X ′ \ {i}. Hence

−Φ(g − X) − cA|X | ≥ −Φ(g − (X ′ \ {i}) − cA(|X ′| − 1)

This, together with (13), implies

Φ(g − X) ≤ Φ(g − X ′) + f (|C |) − f (|C | − 1) − cA(|X | − |X ′| + 1)
(14)

Similarly, since X ′ is a best response to Δ′, it is not worse than X ∪ {i}. Hence

−Φ(g − X ′) − cA|X ′| ≥ −Φ(g − (X ∪ {i}) − cA(|X | + 1)

This, together with (12), implies

Φ(g − X) ≥ Φ(g − X ′) + f (|C ′′|) − f (|C ′′| − 1) − cA(|X | − |X ′| + 1) (15)

From (14) and (15) we get

f (|C ′′|) − f (|C ′′| − 1) − (
f (|C |)− f (|C | − 1)

)

≤ cA(|X | + 1) − cA|X | − (
cA|X ′| − cA(|X ′| − 1) = 0

If C � C ′′, then |C | < |C ′′|, and, by strict convexity of f , the left-hand side
is greater than 0, a contradiction. Thus, it must be that C ′′ = C .

(v) We have Π D(Δ, X; g) = Π D(Δ′, X ′; g) + f (|C |) − f (|C | − 1) − cD . Since
X is a best response to Δ, it is not worse than X ′ \ {i}. Hence

−Φ(g − X) − cA|X | ≥ −Φ
(
g − (X ′ \ {i})) − cA(|X ′| − 1)

Adding f (|C |) − f (|C | − 1) to both sides we get

−(
Φ(g − X) − (

f (|C |) − f (|C | − 1)
)) − cA|X | (16)

≥ (
Φ(g − X ′ \ {i}) − (

f (|C |) − f (|C | − 1)
)) − cA(|X ′| − 1)

As we observed in the proof of point (v) ((12) and (13) and the fact that
C ′′ = C),

Φ
(
g − (X ∪ {i})) = Φ(g − X) − (

f (|C |) − f (|C | − 1)
)

(17)
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Φ(g − X ′) = Φ
(
g − (X ′ \ {i})) − (

f (|C |) − f (|C | − 1)
)

(18)

Hence, from (16), we get

−Φ
(
g − (X ∪ {i})) − cA(|X | + 1) ≥ −Φ(g − X ′) − cA|X ′|

Alternatively, since X ′ is a best response to Δ′, so

−Φ
(
g − (X ∪ {i})) − cA(|X | + 1) ≤ −Φ(g − X ′) − cA|X ′|

Combining these two inequalities we get

− Φ
(
g − (X ∪ {i})) − cA(|X | + 1) = −Φ(g − X ′) − cA|X ′| (19)

Since X ′ is the equilibrium response to Δ′, by tie-breaking Assumption 2,

Φ(g − X ′) ≤ Φ
(
g − (X ∪ {i}))

Additionally this, together with (17) and (18), implies

Φ
(
g − (X ′ \ {i})) ≤ Φ(g − X) (20)

From (19), (17), and (18) we get

−Φ(g − X) − cA|X | = −Φ
(
g − (X ′ \ {i})) − cA(|X ′| − 1)

Again, since X is the equilibrium response toΔ, by tie-breaking Assumption 2,

Φ(g − X) ≤ Φ
(
g − (X ′ \ {i}))

and, by (17), (18), and (20),

Φ(g − X) = Φ
(
g − (X ′ \ {i}))

Φ
(
g − (X ∪ {i})) = Φ(g − X ′)

Thus, both X and X ′ \ {i} are best responses to Δ and both X ′ and X ∪ {i} are
best responses to Δ′. This, together with (18), implies

Π D(Δ, X; g) = Π D(Δ′, X ′; g) + f (|C |) − f (|C | − 1) − cD

(vi) We have cA ≤ f (|C |) − f (|C | − 1). Since X ′ is a better response to Δ′ than
X ′ \ {i}, so



How Do You Defend a Network? 307

−Φ(g − X ′) − cA|X ′| ≥ −Φ
(
g − (X ′ \ {i})) − cA(|X ′| − 1)

and, consequently,

cA ≤ Φ
(
g − (X ′ \ {i})) − Φ(g − X ′)

By (17),
cA ≤ f (|C |) − f (|C | − 1)

�

Proof Proof of part (I) of Proposition 2 Characterization of the optimal strategies of
the adversary follows directly from Lemma 1. Thus, in what follows we concentrate
on the equilibrium defense.

Let Δ be an equilibrium defense. We will show first that if Δ � N , then Δ must
be a minimal transversal of D(Δ, E(g, cA)).

Assume the opposite. Then there exists i ∈ Δ such that D(Δ \ {i}, E(g, cA)) =
D(Δ, E(g, cA)). Let X be the equilibrium response toΔ and let X ′ be the equilibrium
response to Δ′ = Δ′ \ {i}. Clearly X ∩ Δ = φ and X ′ ∩ Δ′ = φ.

Recall that C(g − X ′) is the set of components in the residual network when the
strategies Δ′ and X ′ are used by the players, and C(g − X) is the set of components
in the residual network whenΔ and X are used. By the assumption thatΔ � N , both
these sets are nonempty. We will show that either Δ′ or Δ′′ (described below) is a
better strategy for the defender than Δ, which will contradict the assumption that Δ
is an equilibrium strategy.

Let C ∈ C(g − X) be a component such that C ⊆ Δ and either C = {i} or C \
{i} ∈ C(g − X ′). By Lemma 6 such C exists.

Since for all j ∈ ∂g(C), D(Δ, E(g, cA)) � D(Δ ∪ { j}, E(g, cA)), any such j
belongs to an essential separator not covered by Δ. Take any j ∈ ∂g(C) and let
{C1, . . . ,Cm} ⊆ C(g − X) be all the components in g − X such that j ∈ ∂g(Cl)

for all l ∈ {1, . . . ,m} (assume, without loss of generality, that C1 = C ; notice that
in particular it may be that m = 1 and the argument below works for that case as
well). Consider defenses Δ′ = Δ \ {i} and Δ′′ = Δ ∪ { j}v ∪m

l=2 Cl . We will show
that either Δ′ or Δ′′ is a better strategy for the defender than Δ.

Let X ′′ be the equilibrium response of the adversary to Δ′′ and let C ′′ =
{ j} ∪m

l=1 Cl . We show first that C ′′ ∈ C(g − X ′′). Since Δ′′ protects C ′′, there is
component C ′′′ ∈ C(g − X ′′) such that C ′′ ⊆ C ′′′. Suppose that C ′′

� C ′′′. Then
there exists v ∈ C ′′′ such that v /∈ C ′′. We will show that v /∈ Δ′′. If v ∈ ∂g(Cl)

for some l ∈ {1, . . . ,m}, then it cannot be that v ∈ Δ (because these components
are separated by X used as an equilibrium response to Δ). Thus, the only pos-
sibility is that v ∈ ∂g({ j}). But then v would be one of the components Cl cre-
ated by applying X to g and, consequently, it would be v ∈ C ′′, a contradiction
with the assumption that v /∈ C ′′. Since v /∈ Δ and v /∈ C ′′, then v /∈ Δ′′. Now
consider a response X ′′ ∪ {v} to Δ′′. At the very least it removes a node from
component C ′′′ (it may additionally disconnect the component). Hence, Φ

(
g −
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(X ′′ ∪ {v})) ≤ Φ(g − X ′′) − f (|C ′′′|) + f (|C ′′′| − 1). Alternatively, by Lemma 6,
(11), cA ≤ f (|C |) − f (|C | − 1) < f (|C ′′′| − f (|C ′′′| − 1)) (by convexity of f and
|C ′′′| ≤ |C | + 1). Thus, it follows that

−Φ
(
g − (X ′′ ∪ {v})) − cA(|X ′′| + 1) > −Φ(g − X ′′) − cA|X ′′|,

which contradicts the assumption that X ′′ is a best response toΔ′′. Therefore, it must
be C ′′′ = C ′′

As we have shown above, C ′′ = { j}∪m
l=1 ∈ C(g − X). After attack X ∪ { j} is

applied to g, component C ′′ is replaced with components C1, . . . ,Cm . Hence

Φ(g − X ′′) = Φ
(
g − (X ′′ ∪ { j})) + f

(
1 +

m∑

l=1

|Cl |
)

−
( m∑

l=1

f (|Cl |)
)

(21)

Alternatively, since C is a component in g − X , every node in ∂g(C) is removed
by X . Thus, when nodes in Δ ∪ { j} ∪m

l=2 Cl are defended, the residual network
g − (X \ { j}) differs from g − X by having component C ′′ instead of components
C1, . . . ,Cm . Hence

(
g − (X \ { j})) = Φ

(
g − (X \ { j})) + f

(
1 +

m∑

l=1

|Cl |
)

−
( m∑

l=1

f (|Cl |)
)

(22)

Since X ′′ is a better response to Δ′′ than X \ { j},

− Φ(g − X ′′) − cA|X ′′| ≥ −Φ
(
g − (X \ { j})) − cA(|X | − 1) (23)

and Φ(g − X ′′) ≤ Φ
(
g − (X \ { j})) in the case of equality (notice that (X \

{ j}) ∩ Δ′′ = φ as X ∩ Cl = φ for all l ∈ {1, . . . ,m} and X ∩ Δ = φ).
Equations (21), (22), and (23) imply

−Φ
(
g − (X \ { j})) − cA|X ′′| ≥ −Φ(g − X) − cA(|X | − 1)

Subtracting c A from both sides we get

− Φ
(
g − X ′′ ∪ { j}) − cA(|X ′′| + 1) ≥ −Φ(g − X) − cA|X | (24)

Alternatively, since X is a best response to Δ than is X ′′ ∪ { j}, we have

− Φ(g − X) − cA|X | ≥ −Φ
(
g − (X ′′ ∪ { j})) − cA(|X ′′| + 1) (25)

and Φ(g − X) ≤ Φ
(
g − (X \ { j})), in the case of equality.

By (24) and (25), X ′′ ∪ { j} is a best response toΔ as well, and since X is an equi-
librium response to Δ, it must be that Φ(g − X) ≤ Φ

(
g − (X ′′ ∪ { j})). Combining

this with (21) we get
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Φ(g − X ′′) ≥ Φ(g − X) + f
(
1 +

m∑

l=1

|Cl |
)

−
( m∑

l=1

f (|Cl |)
)

(26)

and from (10) and (26) it follows that

Π D(Δ, X; g) = Π D(Δ′, X ′; g) + f (|C |) − f (|C | − 1) − cD

Π D(Δ′′, X ′′; g) ≥ Π D(Δ, X; g) + f
(
1 +

m∑

l=1

|Cl |
)

−
( m∑

l=1

f (|Cl |)
)

− cD

Since Δ is a better strategy than Δ′, then f (|C |) − f (|C | − 1) ≥ cD . Alternatively
since Δ is a better strategy than Δ′′, then cD ≥ f (1 + ∑m

l=1 |Cl |) − (
∑m

l=1 f (|Cl |)).
Hence, f (|C |) − f (|C | − 1) ≥ f (1 + ∑m

l=1 |Cl |) − (
∑m

l=1 f (|Cl |)), which contra-
dicts the convexity of f .

Thus, we have shown that Δ � N , and then Δ must be a minimal transversal of
D(Δ, E(g, cA)). �

Proof Proof of proposition 3: The nonmonotonicities have been established in the
text. Here we establish monotonicity of the defender’s payoff in cost of attack and
monotonicity of the adversary’s payoff in cost of defense.We start withmonotonicity
of payoff to the defender in cost of attack. The argument here is straightforward in
the generic case, where equilibrium payoffs are unique: suppose (Δ∗, X∗) is an
equilibrium with network g and costs (cA, cD). Let c

′
A > cA. If the defender retains

defense strategyΔ∗, it must be the case that the attack strategywill be weakly smaller
under high cost cA ′. This in turn implies that the defender’s payoff must be weakly
larger if he maintains the original strategy Δ∗. So, in equilibrium under (c′

a, cD), he
must also dobetter.However, themonotonicity holds for any values of the parameters.
The problem here is the nonuniqueness of equilibrium payoffs. However, this is not
a concern, because if this was the case, the more costly attacks would cease being
equally good for the adversary as the less costly ones. The precise argument is as
follows. Let cA and c′

A be the costs of attack such that c′
A > cA. Let (Δ∗, X∗) be an

equilibrium under cA and let (Δ∗∗, X∗∗) be an equilibrium under c′
A. Since X∗(Δ∗)

is a best response to Δ∗ under cA, it is not worse than X∗∗(Δ∗); hence

−Φ(g − X∗(Δ∗)) − cA|X∗(Δ∗)| ≥ −Φ(g − X∗∗(Δ∗)) − cA|X∗∗(Δ∗)|

Which yields

Φ(g − X∗(Δ∗)) − Φ(g − X∗∗(Δ∗)) ≤ cA
(|X∗∗(Δ∗)| − |X∗(Δ∗)|) (27)

Similarly,Since X∗∗(Δ∗) is a best response to Δ∗ under c
′
A, it is not worse than

X∗(Δ∗). This yields

Φ(g − X∗(Δ∗)) − Φ(g − X∗∗(Δ∗)) ≥ c
′
A

(|X∗∗(Δ∗)| − |X∗(Δ∗)|) (28)
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Equations (27) and (28) imply cA (|X∗∗(Δ∗)| − |X∗(Δ∗)|) ≥ c
′
A (|X∗∗(Δ∗)| − |X∗(Δ∗)|).

By c
′
A > cA it follows that

|X∗∗(Δ∗)| ≤ |X∗(Δ∗) (29)

Now assume to the contrary that

Π D(Δ∗, X∗(Δ∗); g, cD) > Π D(Δ∗∗, X∗(Δ∗∗); g, cD)

Since Δ∗∗ is an equilibrium defence under c
′
A,

Π D(Δ∗∗, X∗∗(Δ∗∗); g, cD) ≥ Π D(Δ∗, X∗∗(Δ∗); g, cD)

The two equations above imply

Π D(Δ∗, X∗(Δ∗); g, cD) > Π D(Δ∗, X∗∗(Δ∗); g, cD)

that is,

Φ(g − X∗(Δ∗)) − cD|Δ∗| > Φ(g − X∗∗(Δ∗)) − cD|Δ∗|

and, consequently,

Φ(g − X∗(Δ∗)) − Φ(g − X∗∗(Δ∗)) > 0 (30)

Equations (27) and (30) imply cA(|X∗∗(Δ∗)| − |X∗(Δ∗)|) > 0. By cA > 0, it fol-
lows that |X∗∗(Δ∗)| > |X∗(Δ∗)|, a contradiction with (29). Thus, it must be that
Π D(Δ∗, X∗(Δ∗); g, cD) ≤ Π D(Δ∗∗, X∗∗(Δ∗∗); g, cD). Notice that this argument
holds for any parameters of the model, not only in the generic case.

We now turn to the monotonicity of payoff to the adversary in cost of defense. Let
cD and c′

D be the costs of defense such that c′
D > cD . Let (Δ∗, X∗) be an equilibrium

under cD and let (Δ∗∗, X∗∗) be an equilibrium under c′
D . Since X∗(Δ∗) is a best

response to Δ∗ and X∗∗(Δ∗) is a best response to Δ∗ in the adversary’s subgame,

−Φ(g − X∗(Δ∗)) − |X∗(Δ∗)|cA = −Φ(g − X∗∗(Δ∗)) − |X∗∗(Δ∗)|cA
Thus, another equilibrium under cD is (Δ∗, X ′), where X ′ equals X∗ at all defense
profiles butΔ∗, where it is equal toΔ∗∗. ByLemma3, generically,Φ(g − X∗(Δ∗)) =
Φ(g − X∗∗(Δ∗)). By analogous arguments,Φ(g − X∗∗(Δ∗∗)) = Φ(g − X∗(Δ∗∗)).
SinceΔ∗ is an equilibrium defense under cD andΔ∗∗ is an equilibrium defense under
c′
D ,

Φ(g − X∗(Δ∗)) − |Δ∗|cD ≥ Φ(g − X∗(Δ∗∗)) − |Δ∗∗|cD
Φ(g − X∗∗(Δ∗∗)) − |Δ∗∗|c′

D ≥ Φ(g − X∗∗(Δ∗)) − |Δ∗|c′
D
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which can be rewritten as

Φ(g − X∗(Δ∗∗)) − Φ(g − X∗(Δ∗)) ≤ (|Δ∗∗| − |Δ∗|)cD
Φ(g − X∗∗(Δ∗∗)) − Φ(g − X∗∗(Δ∗)) ≥ (|Δ∗∗| − |Δ∗|)c′

D

Since c′
D > cD , these inequalities imply

Φ(g − X∗∗(Δ∗∗)) − Φ(g − X∗∗(Δ∗)) > Φ(g − X∗(Δ∗∗)) − Φ(g − X∗(Δ∗))

This, combined withΦ(g − X∗(Δ∗)) = Φ(g − X∗∗(Δ∗)) and Φ(g − X∗∗(Δ∗∗)) =
Φ(g − X∗(Δ∗∗)), leads to contradiction. Hence, it must be that the payoff to the
adversary increases when the cost of defense increases. Notice that this argument
holds for generic values of the parameters of the model. There are nongeneric exam-
ples where the payoff to the adversary decreases when the cost of defense increases.

Before proving Proposition 4, we need the following auxiliary lemma, stating a
useful property of a convex function.

Lemma 7 Let f : R −→ R be a strictly convex and differentiable function. Then
function

g(x, y) = y f (x) − x f (y)

x − y

is strictly increasing in both arguments as long as x > y.

Proof To show the result we compute partial derivatives of h:

gx(x, y) =
(

y

x − y

)(
f ′(x) − f (x) − f (y)

x − y

)

gy(x, y) =
(

x

x − y

)(
f (x) − f (y)

x − y
− f ′(y)

)

By strict convexity of f, f ′(y) <
(

f (x)− f (y)
x−y

)
< f ′(x) as long as x > y; hence,

gx , gy > 0 and g is strictly increasing in x and in y. This completes the proof.
�

Now we are ready to prove Proposition 4.

Proof of Proposition 4 Point (i) follows directly and we omit the proof. For point
(i i) observe, from Proposition 2, that with cA ∈ (Δ f (n − 1), f (n) − (n − 1) f (1))
and g ∈ E(g, cA) = 0, the optimal attack targets no nodes. So the optimal defense
also consists of defending no nodes. Thus, the costs of conflict are 0.

For point (i i i), assume that cA ∈ (Δ f (m − 1),Δ f (m))withm ∈ {1, . . . , n − 1}.
With such a cost of attack, on any connected network, the adversary best responds to
any incomplete defense by removing at least one node. Therefore, the lower bound
for the costs of conflict are min(cA, ncD) in this case.



312 M. Dziubiński and S. Goyal

Part 1. Suppose that cD > c(n,m). We show first that in every equilibrium on hmn
the defender chooses the empty defense and the adversary responds to it with attack
{1}(the separator of hmn ). By Proposition 2, an equilibrium defense must be either
empty, or complete, or equal to {1}. Moreover, the best response of the adversary to
the empty defense either contains {1}, in which case the reducing attack part of it
must be empty (because components of hmn − {1} have sizes at most m), or does not
contain {1}, in which case it must be a reducing attack leaving a residual network
consisting of a single component of size m. It is easy to check that the former is the
best response to the empty defense and the latter is the best response to defense {1}.
Hence, empty defense is better than {1}. The payoff to the defender from using the
empty defense is

Π D(φ, {1}; hmn , cD) = Φ(hmn − {1}) =
⌊
n − 1

m

⌋
f (m) + f ((n − 1) mod m)

With cost of defense cD > c(m, n), the payoff to the defender from the complete
defense,

Π D(N , φ; hmn , cD) = f (n) − ncD,

is lower than the payoff from the empty defense. Hence, on the equilibrium path the
defender chooses φ and the adversary responds with {1}.

Second, we show that for the ranges of costs in question, ncD > cA. Since cD >

c(n,m),

ncD > f (n) −
⌊
n − 1

m

⌋
f (m) − f ((n − 1) mod m)

The right-hand side of this inequality can be rewritten as

f (n) − n − 1 − (n − 1) mod m

m
· f (m) − f ((n − 1) mod m)

Since f is strictly convex and (n − 1) mod m < m, then ((n − 1) mod m) f (m)

> m f ((n − 1) mod n). Therefore,

cD > f (n) −
(n − 1

m

)
f (m)

The right-hand side can be rewritten as

f (n) −
(n − 1

m

)
f (m) =

n−1∑

j=m

Δ f ( j) − (n − m − 1)
( f (m)

m

)

= Δ f (m) +
n−1∑

j=m+1

(
Δ f ( j) − f (m)

m

)
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By convexity of f , for all j > m, Δ f ( j) > f (m)/m. Thus, ncD > Δ f (m) and,
since cA ∈ (Δ f (m − 1), δ f (m)), ncD > cA. Hence, the minimal costs of conflict
are cA.

Part 2. Suppose that cD < c(n,m). We will show that with such a cost of defense,
in any equilibrium on a connected network the defender chooses the complete
defense. Notice that with cD < c(n,m), on any connected network g, any defense Δ

of size |Δ| ≤ m is worse for the defender than the complete defense. This is because
the residual network after the adversary best responding to Δ consists of compo-
nents of sizes at most m and the upper bound on the value of such residual networks
is 
(n − 1)/m� f (m) + f ((n − 1) mod m) (this upper bound is attained by hmn ).
With cD < c(n,m) the defender prefers complete defense to Δ.

Consider defenseΔ of size d = |Δ| such thatm < d < n. Let X be a best response
to Δ. The payoff to the defender from Δ and X is

Π D(Δ, X; g, cD) = Φ(g − X) − dcD

≥ f (d) +
⌊
n − d − 1

m

⌋
+ f ((n − d − 1) mod m) − dcD

The upper bound on the value of the residual network above comes from the following
observation. With cA ∈ (Δ f (m − 1),Δ f (m)), in any best response the adversary
removes unprotected nodes from any component of size greater than m. Therefore,
in the best case the adversary removes one node and the only component of size
greater than m in the residual network is a fully protected component of size d (by
convexity of f it is better to have one fully protected component of size d than several
fully protected and smaller ones summing up to d). Thus, if

cD <

f (n) − f (d) −
⌊
n − d − 1

m

⌋
− f ((n − d − 1) mod m)

n − d

then the complete defense is better to Δ for the defender. We will show that c(n,m)

is lower than the right-hand side of the inequality above, which will imply that for the
costs of defense under consideration, the complete defense is better for the defender.

The inequality

c(n,m) =
f (n) −

⌊
n − 1

m

⌋
− f ((n − 1) mod m)

n

<

f (n) − f (d) −
⌊
n − d − 1

m

⌋
− f ((n − d − 1) mod m)

n − d

can be rewritten as
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Fig. 9 Core–periphery
networks cp2, cp4, and cp6

d f (n) − n f (d) −
(n − d

m

)
(r1 f (m) − m f (r1)) +

( n

m

)
(r2 f (m) − m f (r2)) > 0,

where r1 = (n − 1) mod m and r2 = (n − d − 1) mod m.9 Since r2 < m and f
is convex, then r2 f (m) − m f (r2) > 0, and to show that the inequality above holds
it suffices to show that

d f (n) − n f (d) −
(n − d

m

)
(r1 f (m) − m f (r1)) > 0 (31)

Since d < n and f is convex, d f (n) − n f (d) > 0. Moreover, by Lemma 7,

d f (n) − n f (d)

n − d
>

r1 f (m) − m f (r1)

m − r1

(as n > d > m > r1 ). Hence

d f (n) − n f (d)

n − d
−

(m − r1
m

)(r1 f (m) − m f (r1)

m − r1

)

which implies (31), by multiplying both sides by (n − d). Hence, any equilibrium
defense is complete and the costs of conflict are ncD . �

6.1 Examples of No Conflict Networks

Even if the marginals of f do not grow very rapidly, there may exist networks
(other than complete network) that do not feature active conflict. Take f (x) = x2,
for example. Consider a family of core–periphery networks, {cpk}k∈N. Given k ∈ N,
network cpk has 2k nodes: a fully connected core of k nodes, and a periphery of
k nodes. Each core node is connected to exactly one, unique, periphery node (cf.
Fig. 9).

When the cost of attack is high, cA > 4m − 1, then it is easy to verify that in
equilibrium the defenderwill either defend all the core nodes or use an empty defense.
When the cost of attack is low, cA < 4m − 1, then, again, there are two types of

9 Recall that for integer x and y, 
x/y� = (x − x mod y)/y.
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Fig. 10 Network that allows
for active conflict (under
f (x) = x2 )

equilibrium defense: either no node is defended or all nodes are defended. It is easy
to verify that three types of defense would be candidates for equilibrium defense
here: empty defense, complete defense, and defense with all core nodes protected.
To rule out the last one, suppose that 2(2m − k) − 1 ≤ cA < 2(2m − k) + 1, where
1 ≤ k ≤ m − 1. Notice, in the example above, that if each core node was connected
to a higher number of periphery nodes, active conflictwould be possible (as illustrated
by Example 1). With more periphery nodes per core node (and with suitable costs
of defense and attack), protecting the separators may create enough value for such
a defense to be attractive. Increasing the value of the residual network requires
defending all the nodes, which is too high an investment and too low a gain to be
profitable. This illustrates one reason for the possibility of active conflict in themodel:
blocking all the individually rational essential separators may secure a high value of
the residual network at a relatively low cost, while increasing the value further may
require a much higher cost.

To get more insight into why active conflict is possible, despite the convexity of
f and the linearity of costs, consider the network in Fig. 10. Figure11 illustrates
function Φ�(m; g, cA) under different ranges of costs of attack. The dotted line is
an upper convex hull of that function. The optimal size of defense is at a point
of that hull adjacent to a line with slope cD . In the case of low cost of attack, if
the convex hull contains any points of Φ�(m; g, cA) for 0 < m < n, then active
conflict is possible for some suitable range of costs of defense. In the case of high
cost of attack, active conflict is possible if the convex hull contains any points of
Φ�(m; g, cA) for 0 < m < τ(E(g, cA)).

In Fig. 11, low cost of attack is cA < 9 and cA > 9 is high cost of attack. Active
conflict is possible for cA ∈ (5, 9). When cA ∈ (5, 7) and cD ∈ (3.75, 4), then the
unique equilibrium defense isΔ� = {b}, and the best response to it in the adversary’s
subgame is X �(Δ�) = {a}. When cA ∈ (7, 9) and cD ∈ (5, 9), then the unique equi-
librium defense isΔ� = {a, b} and removing any unprotected node is a best response
to it in the adversary’s subgame. When cA ∈ (9, 15), τ (E(g, cA)) = 2 and there is
no equilibrium outcome with active conflict.

Proof Proof of Proposition 5: For point (i), suppose that cD >
f (n)

n . We will show
that in this case the equilibrium defenseΔ = φ. Assume, to the contrary, thatΔ �= φ

and let X be the equilibrium response to Δ. Pick any i ∈ Δ and let C(i) be the
component of i in the residual network g − X . The payoff to i is

Π i (Δ, X; g, cd) = f (|C(i)|)
|C(i)| − cD
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Fig. 11 Optimal defenses of
different sizes for network in
Fig. 10

By the fact that f is strictly increasing and strictly convex, f (x)/x is increasing.
Hence Π i (Δ, X; g, cd) ≤ f (n)/n − cD < 0. Thus, i is better off by not protecting,
a contradiction to the assumption that Δ is an equilibrium defense. Hence, it must
be that Δ = φ.

Fig. 12 Separators and
other centrality measures

For point (ii), suppose that cD <
f (n)

n . Assume that cA < f (n) − f (n − 1). We
will show that Δ = N is an equilibrium defense. Assume otherwise. Then there
exists i ∈ Δ that is better off by deviating and choosing no protection. Since cA <

f (n) − f (n − 1), the best response to Δ \ {i} is X = {i}, and so the deviating node
gets removed, obtaining payoff 0 instead of f (n)/n − cD ≥ 0. Hence, i is not better
off by deviating and so Δ = N is an equilibrium defense. This proves point (a).

Assume that cA > f (n) − f (n − 1). Let Δ be minimal transversal of E(g, cA).
We will show that Δ is an equilibrium defense. By Lemma 1, the best response to
Δ is the empty attack X = φ. Assume, to the contrary, that Δ is not an equilibrium
defense. Then there exists i ∈ Δ that is better off by choosing no protection instead of
protection. Since Δ is a minimal transversal, it must be that there exists an essential
separator E ∈ E(g, cA) such that Δ \ {i} ∩ E = φ. Moreover, any such separator
contains i . Since any such separator is better than the empty attack, the adversary
responds toΔ \ {i}with one of these separators, removing i . But then i gets payoff 0
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Fig. 13 Table 1. Centralities
of nodes 1 and 2 in the
network from Fig.12

instead of f (n)/n − cD ≥ 0. Hence, it is not better of by deviating, a contradiction.
Therefore, Δ must be an equilibrium defense. This proves point (b).

Since the adversary’s subgame remains as in the centralized defense game, an
equilibrium response X � is as described in Proposition 2. �

7 Appendix B: Key Players and Centrality

Essential separators and their transversals determine the key nodes in our study of
attack and defense. These key groups of nodes give rise to new notions of centrality
distinct from other notions such as closeness, betweenness, or eigenvector central-
ities. To see how these notions are different, consider the network in Fig. 12 (for
simplicity the example is based on individual, rather than group, notions of central-
ity). Assume that the network value is based on function f (x) = x2 and suppose
that the cost of attack is cA ∈ (25, 89), so that the adversary attacks only the nodes
that separate the network and so that removing node 2 is better than not attacking at
all. Suppose also that cD ∈ (0, 89), so that defending node 2 constitutes an optimal
defense as well. However, this node is less central than node 1 in the sense of degree,
closeness, betweenness, eigenvector, Bonacich, and intercentrality measures.10 The
numerical values for these centralities are summarized in Fig. 13. For Bonacich cen-
trality, we consider three values of the parameters: high (α = 0.237), intermediate
(α = 0.1), and low (α = 0.01).

10 Following [7], we define for a parameter α ∈ R, b(g, α) = M(g, α)1, where M(g, α) = (I −
α1G)−1, I is the identity matrix, and G is the adjacency matrix of the network. We require α to
be relatively small so that M(g, α) is well defined and nonnegative. The intercentrality measure
we consider, also defined in that paper, is ci (g, α) = bi (g, α)2/Mii (g, α). We define closeness as
cli (g) = (n − 1)/

∑
j �=i d(i, j; g), where d(i, j; g) is the length of the shortest path between i and

j in g.
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Fig. 14 Separators and
transversals in interlinked
stars (n = 12)

8 Appendix C: Separators and Transversals in Families of
Networks

8.1 Interlinked Stars

Interlinked stars are networks with two disjoint nonempty sets of nodes: the set of
centers C and the set of periphery nodes P . The centers are fully connected, forming
a clique. Each of the periphery nodes is connected to all the centers. Interlinked
stars have one essential separator: the set of all the centers, E(g) = {C}. All minimal
transversals of E(g) are singleton sets consisting of one central node. The essential
separator and a minimal transversal for an interlinked star are illustrated in Fig. 14.

8.2 Complete Bipartite Networks

In a complete bipartite network the set of nodes, N , can be partitioned into two
disjoint sets, N1 and N2, N1 ∩ N2 = φ, such that the set of links is the set of all
possible links connecting nodes from N1 and nodes from N2. There are two essential
separators in these networks, E(g) = N1, N2. Every transversal consists of one node
from N1 and one node from N2. Minimal essential separators and transversals for
complete bipartite networks are illustrated in Fig. 15.

8.3 Trees

In any tree network, every nonempty set of internal nodes (nodes that are not leaves)
constitutes a separator. Essential separators are sets of internal nodes such that no
two of them are neighbors. Transversals of essential separators are subsets of internal
nodes. In particular, there is a unique transversal of the set of all essential separators:
the set of all internal nodes. Minimal essential separators and transversal for tree
networks are illustrated in Fig. 16.
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Fig. 15 Separators and
transversals in complete
bipartite networks (n = 12)

Fig. 16 Separators and
transversals in trees (n = 12)

8.4 Core–Periphery Networks

Nodes are divided in two disjoint sets: the core and the periphery. Each node of
the periphery is connected to exactly one node of the core, while the nodes of the
core are connected with periphery nodes and the core constitutes a clique. Essential
separators are subsets of the core. There is a unique transversal: the set of all core
nodes. Minimal essential separators and transversals for core–periphery networks
are illustrated in Fig. 17.

Fig. 17 Separators and
transversals in
core–periphery networks (n
= 12)

9 Appendix D: Order of Moves and Nature of Conflict

This section explores the role of sequential choice and perfect defense.

9.1 Simultaneous Moves

Consider a variant of the model studied in the paper where the players make their
choice simultaneously. In this case the set of strategies of the defender remains
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unchanged. A pure strategy of the adversary is now a set of nodes, X ⊆ N , chosen to
attack. It is important to note that the timing ofmoves does not affect Lemma 1,which
remains unchanged. Suppose that the cost of attack is high. Any strategy, X , in the
support of the equilibrium strategy of the adversary must be an individually rational
essential separator, i.e., X ∈ E(g, cA). Similarly, any strategy, Δ, in the support of
the equilibrium strategy of the defender must be a minimum transversal of the set of
essential separators it blocks, D(Δ, E(g, cA)), in E(g, cA).

The secondobservation is that, dependingon the network, the playersmayuse pure
ormixed strategies in equilibrium. This is a departure fromour existing results, where
equilibrium always exists in pure strategies. But note that the use of mixed strategies
is sensitive to the network. In particular, if the network is such that one unit of defense
is sufficient to block all the individually rational essential separators of the adversary,
then in equilibrium both players use pure strategies and equilibrium outcomes are
the same as in the sequential model studied in the paper. When τ(E(g, cA)) > 1,
the defender may choose to block more individually rational essential separators by
mixing across several transversals.

9.2 The Model of Conflict

We have assumed perfect defense. A more natural way to proceed would be to
suppose that the number of resources assigned by each player to a node determines the
probability of winning/losing the node. Following Tullock (1980), suppose that the
probability of successfully attacking the node is given by a contest success function
(CSF)

π(a, d) =
{
0 if a = 0

dγ

aγ +dγ otherwise,

where γ ∈ R+, and a and d are resources assigned by the adversary and defender,
respectively. The probability of successfully defending the node is π(d, a) = 1 −
π(a, d).11

A strategy of the defender is a vector d ∈ N
N such that di is the number of defense

resources assigned to node i . A strategy of the adversary is a function X : N
N such

that, given vector of defense allocation d, it maps to a vector of attack allocation
a = X (d) such that ai is the number of attack resources assigned to node i . We will
call the set of nodes that receive a positive number of defense resources the defended
nodes and the set of nodes that receive a positive number of attack resources the
attacked nodes. Given defense and attack allocations, (d, a), the probability that set
M ⊆ N of nodes is won by the adversary and removed from g is

11 The perfect defense model studied in the paper can be seen as a limiting case of the general
contest model: the probability of successful attack is given by αaγ /(δdγ + αaγ ) with α = 1 and
δ −→ +∞.
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w(M |a, d) = Π j∈Mπ(ai , di )

The expected payoffs to the defender and the adversary from defense and attack
allocations, (a, d), are

Π A(a, d|g, cA) = −
∑

M⊆N

w(M |a, d)(1 − w(N \ M |a, d))Φ(g − M) − cA
∑

j∈N
ai

Π D(a, d|g, cA) =
∑

M⊆N

w(M |a, d)(1 − w(N \ M |a, d))Φ(g − M) − cD
∑

j∈N
di

Lemma 1 still obtains. The set of attacked nodes can be decomposed into an
essential separator and a reducing attack. In what follows we restrict attention to
high costs of attack and we focus on the benchmark model of linear contests: γ = 1.
The main point we wish to make is that with Tullock contests, optimal defense
will extend beyond minimal transversals and may cover multiple nodes in the same
separator.

Consider an interlinked star with two core nodes: 1, 2, and n − 2 periphery nodes
(n ≥ 4). Suppose that the cost of attack is high, cA > Δ f (n − 1). The unique essen-
tial separator of g is the set of core nodes, {1, 2}. Let a1, a2 be the amount of resources
assigned by the adversary to the two core nodes and let d1, d2 be the defense resources
assigned by the defender to the two core nodes. Expected payoff to the adversary
from assignment (a1, a2, d1, d2) is

Π A(d, a|g, cA) = −π(a1, d2)π(a2, d2)(n − 2) f (1)

− (π(a1, d1) + π(d2, a2) − 2π(d1, a1)π(a2, d2)) f (n − 1)

− (1 − π(a1, d1) − π(d2, a2) + π(d1, a1)π(a2, d2)) f (n)

− cA(a1 + a2)

= − f (n) + π(a1, d1)π(a2, d2)V1(n)

+ (π(a1, d1) + π(a2, d2) − π(a1, d1)π(a2, d2))V2(n)

− cA(a1 + a2),

where V1(n) = f (n − 1) − (n − 2) f (1) and V2(n) = f (n) − f (n − 1). Notice
that V2(n) is the gain from removing the first node of the core, and V1(n) is the
gain from removing the second node of the core. Since the cost of attack is high,
V2(n) < cA. Hence, if V1(n) ≤ V2(n), then it is not profitable for the adversary to
attack, and both players assign no resources to the nodes in equilibrium. Consider
now the more interesting case where V1(n) > V2(n).

The expected payoff to the defender is
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ΠD(d, a|g, cA) = f (n) − π(a1, d1)π(a2, d2)V1(n)

− (π(a1, d1) + π(a2, d2) − π(a1, d1)π(a2, d2))V2(n)

− cD(d1 + d2)

The defender chooses (d1, d2) to maximize his expected payoff subject to the
constraints that d1, d2 ≥ 0 and that the adversary chooses (a1, a2) to maximize his
expected payoff subject to a1, a2 ≥ 0.

It is simpler to begin with the case where the defender is given 2d ≥ 0 defense
resources and the adversary is given 2a ≥ 0 attack resources. This turns the opti-
mization problem above into a zero-sum bilevel optimization problem, where the
defender chooses an allocation of 2d to maximize

π(a1, d1)π(a2, d2)V1(n) + (π(a1, d1) + π(a2, d2) − π(a1, d1)π(a2, d2))V2(n)

It is possible to show that the partition (d, d) is a maximizer of both π(a1, d1)
π(a2, d2)V1(n) and (π(a1, d1) + π(a2, d2) − π(a1, d1)π(a2, d2))V2(n), and hence
of the whole expression above. In response, the adversary chooses the partition
(a, a). Thus, (d, d) and (a, a) are the equilibrium defense and the attack strategies
as well.

When both players distribute their resources evenly, the payoff to the adversary
is

Π A(d, a|g, cA) = − f (n) + π(a, d)2V1(n) + (2π(a, d) − π(a, d)2)V2(n) − 2cAa

If d ≥ V2(n)/cA, it is not profitable for the adversary to attack. Thus, with suffi-
ciently low ratio cD/cA, the defender distributes his resources evenly and the adver-
sary does not attack. Otherwise, both players compete, choosing optimal levels of
attack and defense resources and distributing them evenly.
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