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Abstract When Lie developed symmetry analysis, he took the equations to be
defined in the complex domain but did not explicitly use the entailed complex ana-
lyticity. Making it explicit necessitates the incorporation of the Cauchy–Riemann
equations into the original system of equations, which modifies the symmetries of
the system. This point was followed up by us, and some of our students, in a series
of papers (and theses). It was found that complex methods, when they are applica-
ble, provide more powerful tools for obtaining solutions and integrals of differential
equations, even enabling us to find solutions of systems of differential equations
that possess no symmetries. In this chapter we review the methods developed and
then pose the crucial question that was begged in saying “when they are applicable.”
When would they be applicable and why, or how, does the complex method work?
We indicate some lines to pursue to try to find the answers, or at least partial answers,
to these questions.
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1 Introduction

Before Lie, the usual method to solve differential equations (DEs) was by ad hoc
approaches or by approximating it by a linear DE and solving the linear version.
In general, the approximation will work well enough in some regime and become
arbitrarily bad in other regimes. As such, it would be necessary to prove the existence
of a solution and to determine the domain inwhich the approximation is good enough.
Since these will be different for each DE, one is reduced to solving one DE at
a time and not rely on any method for whole classes of DEs. Lie had wanted to
do for DEs what Galois had done for polynomial equations, wherein he used the
manifest symmetries of the roots of the equation to determine when the polynomial
equation could be solved bymeans of radicals.Among themethods that had been used
for solving some of the simpler DEs, there was the transformation of independent
and dependent variables. Lie conceived of the idea of looking for invariance of the
DE under such transformations [1–4] so that it could be determined when the DEs
could be solved/reduced or transformed and then one can proceed to solve/reduce or
transform the DEs. Lie used not only the groups of symmetries, but the algebra of
the corresponding infinitesimal symmetry generators. The DEs are not necessarily
single but could be systems (or we could say that they are vector DEs). Further, he
did not restrict the domain of the DEs to be real, but allowed them to be complex.

Symmetry generators, inter alia, can be used to reduce the order of scalar ordinary
differential equations (ODEs) or reduce the number of independent variables in
partial differential equations (PDEs). Alternatively, the symmetries can be used to
construct quantities that remain invariant under the transformation, thereby enabling
a reduction of order or the number of independent variables [5, 6] by treating that
combination as a new variable. If there are enough independent symmetries they
can be used to fully solve the equation for scalar ODEs in the sense of providing
an algebraic equation that constitutes an implicit solution, modulo quadratures or in
the case of PDEs to construct invariant solutions. If the invariants contain derivatives
in them, they are called differential invariants. If they depend only on dependent
and/or independent variables, they are simply called “invariants.” In effect, what Lie
had done was to take the space of independent variables on which the dependent
variables were defined and extended, or enlarged, it to include also the dependent
variables. In this new, extended space, we could perform the equivalent of coordinate
transformations called point transformations. In this way of looking at it, it is natural
to require invariance in the higher dimensionalmanifold under point transformations.
What Lie wanted was that the DEs remain invariant under these transformations, thus
visualizing them as “living on the manifold.”

To deal with DEs, we need to treat the derivatives as if they were independent
variables and then constrain them in such a way that the DE is satisfied. The enlarged,
or prolonged space of all the variables and their derivatives is also called the jet space.
In this space, we restrict the transformations to be performed only in the original,
non-prolonged, space. However, we could include any number of derivatives from
the prolonged space that we choose. Thus, if we prolong to include the first derivative
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in our transformations but nomore, we have “contact transformations.” If we prolong
further, we have “higher-order transformations,” but there are no separate names for
them. The name “contact” comes from the tangency requirement for the derivative
to be met. Lie mainly restricted his analysis to point and contact transformations but
subsequently others extended the Lie methods to higher order transformations. As
such, the original transformations are called “Lie point transformations.”

Among the various methods of using symmetries to solve DEs is the transfor-
mation of the DE to linear form, which is of special interest. The classic example
for this is the Bernoulli equation, a first-order ODE in which the dependent vari-
able appears to the nth power. However, there was no general procedure available
for nonlinear DEs, especially higher order ones. If one can tell when a DE can, in
principle, can be transformed to linear form, even without finding the required trans-
formations and converting to linear form, we can say a lot about the solutions of the
DE. For example, if it is an ODE, we know how many independent solutions there
are, without having obtained the solutions. By requiring that the given DE transform
to a chosen canonical form of a linear DE, we can arrive at conditions that the given
DEmust satisfy. Lie did this for second-order scalar ODEs [5] and demonstrated that
the ODE must have eight infinitesimal symmetry generators that would constitute a
Lie algebra as well as conditions on the DE. Then he looked at the maximal algebra
admitted. He did not go further but others carried the work forward for higher order
ODEs and for vector ODEs, using contact transformations and even Lie’s original
method. Equations that can be transformed to linear form are called linearizable and
the process of transforming a DE to linear form by transformations of the dependent
and independent variables is called linearization via point transformation. Note that
this is not an approximation of the DE by a linear one, but a transformation that gives
the exact solution of the DE. If it is a linearizable PDE, it has infinitely many linearly
independent solutions. Consequently, there is no way that we can make the type of
general statement that we could for ODEs. We then need boundary conditions to be
able to arrive at ameaningful, unique, solution, or other invariant criteria. This entails
that the conditions satisfy the symmetries of the PDE. Thus, for PDEs, invariants are
especially useful although these needed further generalizations.

In this chapter we review work on a line that Lie did not take, namely making
explicit use of complex analyticity. Recall that if a complex function of a complex
variable is once differentiable in an open domain it is analytic in that domain, which
entails infinite differentiability. This would not hold for real functions of real vari-
ables. While this fact simplifies statements of Lie’s requirements for the DEs to be
amenable to his symmetry methods, it is not obvious that it can make a fundamental
difference to the procedures used to solve the equations. We demonstrate that it does
so, provided certain additional conditions are met. Though there are explicit checks
for when these complex methods can be used, there is no complete understanding of
when they would be useful.

The plan of the chapter is as follows. In the next section, we give the preliminary
background for Lie symmetry analysis and some basic geometry used in it, including
contact and higher order symmetries. In section three, we review the fundamentals
of the complex method. In the subsequent sections, we review its application for
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linearization and for Noether symmetries and their integrals. It is shown that the
complex methods extend the applicability of symmetry analysis beyond the usual
methods. In section seven, we present insights regarding the working of the complex
methods obtained by iterative splitting of a scalar ODE. In the concluding section,
we summarize the work reviewed and present the fundamental questions that need
to be addressed so as to understand why complex methods work.

2 Preliminaries

For completeness, we give basic definitions despite the likelihood that the reader
already knows them, in the hope that he/she will bear with us. At least they will
be useful to establish notation. If there are l independent variables represented as a
vector x and m dependent variables represented by y, a Lie point symmetry generator
is the operator

X = A(x, y).∇x + B(x, y).∇y , (1)

or using indices a for the independent variables and i for the dependent variables

X = Aa(xb, yi )
∂

∂xa
+ Bi (xa, y j )

∂

∂yi
, (2)

where we have used the Einstein summation convention that repeated indices are
summed over. Further, if the DE is of order n, we need to prolong the space and the
generators to incorporate all the derivatives of the dependent variables with respect
to the independent variables. For ODEs,

X[n] = A(x, yi )
∂

∂x
+ Bi (x, y j )

∂

∂yi
+ Bi [1](x, y j , y j ′)

∂

∂yi ′ + · · · , (3)

where
Bi [p] = Dx Bi [p−1] − yi ′ Dx A , (4)

Bi [0] simply being Bi and Dx is the total derivative in the prolonged space,

Dx = ∂

∂x
+ yi ′ ∂

∂yi
+ · · · + yi (p) ∂

∂yi (p−1)
. (5)

For PDEs, the A would have to be replaced by A and the partial derivative with
respect to x by ∇x. While the former can be easily converted to index notation as
Ai , the latter becomes somewhat involved in converting. The real problem in writing
is for the yi [p], which would be a partial derivative with respect to xa to all orders
up to p. The set of all prolonged symmetry generators forms a Lie algebra and the
symmetry group determines what reduction of the DE there can be. A system of
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m ODEs of order n, Ei (x, y j ; y j ′, . . . , y j [n]) = 0, is said to be symmetric under
the transformation generated by X if X[n]Ei = 0, when restricted to the solutions of
Ei = 0.This is denoted byputting “|E=0” after the above equation. The generalization
to PDEs is as before, with the corresponding complications.

Amajor activity arose of classifying theLie point symmetry algebras of all second-
order scalar ODEs. This was called the “classification problem for scalar second-
order ODEs.” The classification problem for higher order scalar ODEs rapidly
becomes extremely difficult on account of the proliferation of possible cases and
sub-cases of the allowed Lie algebras. Similarly, the classification problem for higher
dimensional systems becomes even more complicated as the number of sub-cases
proliferates even more. Increasing the order and dimension simultaneously makes
the problem well high intractable. We do not go into this further here as the complex
methods were not used for this purpose.

Since much of the complex work is motivated by considerations of linearization,
it is necessary to very briefly review the key features of Lie’s linearization procedure.
By requiring that a scalar second-order semilinear ODE

y′′ = f (x, y; y′) , (6)

be transformed under p = p(x, y), q = q(x, y) to

q ′′ + A(p)q ′ + B(p)q + C(p) = 0 , (7)

he showed that (6) would have to be of the form

y′′ + a(x, y)y′ 3 + b(x, y)y′ 2 + c(x, y)y′ + h(x, y) = 0 , (8)

and would have to satisfy a system of four first-order conditions that the coefficients
a, b, c, h and two auxiliary functions would have to satisfy. This is not as bad as
it may sound, since one is not solving the coupled system of equations but merely
verifying them. Nevertheless, the auxiliary functions complicate matters as they are
arbitrary and would have to be guessed. Tressé [7] invariants eliminates the auxiliary
functions via compatibility by taking derivatives and one obtains two second-order
conditions to be satisfied by the coefficients, viz.

3(ac)x + hay − 2bbx − cby − 3axx − 2bxy − cyy = 0 , (9)

3(hb)y + abx − 2aay − hax − 3hyy − 2cxy − bxx = 0 . (10)

Tressé’s formulation makes the application of the Lie conditions much easier.
Chern [8] did not use the Lie point transformations to linearize third-order scalar

ODEs but incorporated the first derivative of the dependent variable in the coeffi-
cients of the operator, A = A(x, y; y′) and B = B(x, y; y′) in the scalar case for
(2), to solve the problem. One must now ensure that under the transformation, the
“derivative” used here corresponds to the derivative of the dependent variable by dif-
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ferentiation. Writing the transformation as (x, y) → (x, y), the contact or tangency
condition is

d y − y′dx = λ(x, y; y′)(dy − y′dx) , (11)

where λ is an undetermined multiplier [5]. The contact transformations of Chern can
be extended to systems of equations for several independent variables by re-inserting
the indices, so that the condition becomes

d yi − yi
,adxa = λ(x, y; yi

,a)(dyi − yi
,adxa) . (12)

Lie had managed to prove that the second-order scalar ODE is linearizable if,
and only if, it has eight Lie point symmetry generators. The Lie point symmetry
algebra for order n scalar ODEs was obtained much later [9] and it was shown that
Lie’s theorem does not hold there, as there are three linearizable classes with (n + 1),
(n + 2)or (n + 4)generators. For the third-order case, the canonical forms associated
with those symmetries were made explicit [10]. The classes of linearizable second-
order systems was also achieved at around the same time, first for two-dimensional
systems and then for arbitrary m [11]. The linear classes for the two-dimensional
system have 5, 6, 7, 8, or 15 generators and for arbitrary m, 2m + 1, . . . , (2m)2 − 1
symmetry generators [12, 13].

A question arises here, why is the n = 2 case special? The answer may lie in
the geometric methods that had been developed and were used to linearize ODEs
to which we now turn. To explain it, we need to establish the notation and concepts
used there. For our purposes, we will be using a manifold with a metric tensor, gab,
and inverse metric tensor, gab, defined on it, and assume that it is torsion-free so that
the connection symbol is the Christoffel symbol in a coordinated basis (see Chaps.
2 and 3 of [14]),

Γ a
bc = 1

2
gad(gbd,c + gcd,b − gbc,d) , (13)

where “,c” stands for the partial derivative relative to xc. This object comes from the
differentiation of the basis vectors relating the tensor quantity in the manifold to its
components in the coordinate system chosen. As such this is not a tensor quantity
or a fully coordinate quantity but hangs between the two. The covariant derivative
of a contravariant vector, V a , is V a

;b = V a
,b + Γ a

bcV c and of a covariant vector Wa is
Wa;b = Wa,b − WcΓ

c
ab. The difference of the second derivative obtained by going

first in one direction and then in another, or vice versa, gives a measure of the
curvature of the space, measured by the Riemann–Christoffel curvature tensor

Ra
bcd = Γ a

bd,c − Γ a
bc,d + Γ e

bdΓ
a

ce − Γ e
bcΓ

a
de . (14)

The trace of the curvature tensor is the Ricci tensor, Rbd = Ra
bad , whose trace R =

gbd Rbd is the Ricci scalar. The Ricci tensor is symmetric and the curvature tensor is
symmetric in thefirst and secondpairs of indices and symmetric under the interchange
of the two pairs of indices. Further, the skew part for any three of the indices is zero.
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This reduces the number of linearly independent components. In m-dimensions, for
Ra

bcd , there are m2(m2 − 1), for Rbd , there are m(m + 1), and for R obviously just
one.

As in flat spaces, so in curved spaces the “straightest” available path between two
points is also the shortest. Such curves are called geodesics and satisfy the geodesic
equation

yi ′′ + Γ i
jk y j ′yk ′ = 0 . (15)

The above procedure relies on the differentiation of the basis vector, so how
can it tell us about the curvature of the manifold? The point is that we define the
vector on the manifold as a mapping of a point to a nearby point on the manifold,
without reference to the coordinate system. Nowwemap the vector to the coordinate
system and differentiate there using the covariant derivative as explained above and
then map the quantity back to the manifold. This defines the derivative operator
on the manifold without the coordinate system being involved, though an arbitrary
coordinate system was used to be able to get the definition. The covariant and partial
derivatives are identical for scalars and only differ for vectors or tensors. One is still
left with the differentiation of the basis vector being “carried back” to the manifold.
To eliminate this extra term, we can use one vector to move another on the manifold,
which is called the Lie derivative of the vector moved, say p relative to the one along
which it is moved, say t. Going back to the covariant derivative, this is [L tp]a =
tb pa

;b − pbta
;b. Since the Christoffel symbol is symmetric in the lower indices the two

Christoffel symbols cancel and only the partial derivatives, tb pa
,b − pbta

,b, are left in
the expression. What has happened is that the derivatives of the basis vectors have
cancelled out and so the worrying term is no longer present in the Lie derivative.
We can transport one vector along the geodesic given by the other on the manifold
by using the Taylor series, to obtain the other vector at the new point. Thus, if the
geodesic lies between points P and Q on the manifold, and t : P → Q, then p|Q is
given in terms of p|P by

p|Q = exp[Lt]p|P . (16)

Requiring that p be left invariant as it goes along t, amounts to requiring thatLtp be
zero. Consequently, the metric tensor, and hence the geometry, will be left invariant
under Lie transport will if the Lie derivative of the metric tensor is zero. Such a
direction is called an isometry, and is a generator of the symmetry implicit in the
geometry.

Using the above definitions, in component form the equations for an isometric
direction, ka become,

gab,ckc = gackc
,b + gbckc

,a . (17)

These are called Killing’s equations and a vector satisfying this equation is called a
Killing vector, or an isometry. Notice that (15) depends on the metric coefficients,
which are functions of the dependent variable but do not depend explicitly on the
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independent variable. Thus the geodesic equations possess a translational symmetry
along the independent variable.

It was noted by Aminova and Aminov [15], and independently, but later, by [16]
that there is a direct connection between the symmetries of a system of geodesic
equations and the isometries of the underlying manifold on which the solutions live.
Aminova and Aminov further noted that projecting the geodesic equations down
along x , one obtains a cubically semilinear system of second-order ODEs. We inde-
pendently arrived at the same point [17]. We further noted that these are similar in
the case of scalar ODE to the original Lie linearizable ODE. The projected equations
then have the coefficients given as functions of the Christoffel symbols for the higher
dimensional system. It turns out that the Lie conditions correspond exactly to the
requirement that the curvature tensor constructed from those Christoffel symbols be
zero, i.e., the space is flat. Further, there is a redundancy in the Christoffel symbols
due to the freedom of choice of coordinates. When we project from two down to one-
dimensional systems (i.e., the scalar equation) the redundancy is of two. These are the
two arbitrary functions that Lie needed for his equations. As such, we have obtained
the Lie linearization purely from Geometry. This is the sense in which Geometry
explains what is special about order two. The requirement of flatness is natural as the
shortest path between two points in a flat space is a straight line. We know the metric
tensor in Cartesian coordinates and the equation of the straight line. It is possible
to find the coordinate transformation that converts a flat metric locally to any given
metric [18]. The coordinate transformation to get the metric tensor required to give
the coefficients yields the linearizing transformation and one obtains the solution of
the linearizable system in terms of the the original variables as a nonlinear superposi-
tion for the general solution. A more complete analysis of this linearization followed
later [19]. A code was developed to determine if the system of second-order ODEs
corresponds to a system of geodesics, and if it does to determine the metric tensor
[20]. Put together, we could, in principle, feed in any system of the Lie type, check
if it is a projected system of geodesics and then obtain the solution. It is this power
of Geometry that we use at much of the base for the complex methods.

3 Complex Symmetry Analysis

Themaximal Lie algebra form-dimensional system of second-order ODEs is sl(m +
2), which is sl(m + 2, IR ) for real and sl(m + 2, IC ) for complex variables, with
[(m + 2)2 − 1] real or complex generators. Now, to obtain ODEs after splitting,
the independent variable must be real and the dependent variables complex. In that
case, to each generator containing the dependent variables in the complex ODE,
there will be two after splitting. Thus, for m = 1 there should be 8 generators in the
real case and 16 in the complex. However, splitting the scalar ODE into its real and
imaginary parts yields a two-dimensional real system, which has an sl(4, IR )with 15
generators. This demonstrates that going from the real to the complex is non-trivial.
The complication arises due to the fact that the complex ODE is not just the two-
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dimensional real system written explicitly but also the implicit Cauchy–Riemann
conditions, which are two first-order equations. Thus the complex system regarded
as a higher dimensional real system is constrained. This causes the reduction of
symmetry of the complex system. Complex symmetry analysis follows up on the
non-trivial consequences emerging from the constraints [21, 22].

To be more concrete, if the real independent variable is x and the complex depen-
dent variable for a scalar ODE is w = (u + ιv), the complex translation operator,W1

splits as

W1 = ∂/∂w = 1

2
(∂/∂u − ι∂/∂v) = U1 + ιV1 , (18)

so that W1w = 1 and W1w = 0. Hence the complex translation splits into two real
orthogonal translations. Now there are no rotations for a single complex variable but
there is a scaling symmetry W2,

W2 = w∂/∂w = 1

2
[(u∂/∂u + v∂/∂v) + ι(v∂/∂u − u∂/∂v)] = U2 + ιV2 . (19)

Thus we get a real scaling, U2 and a rotation in two-dimensional, V2. In the context
of our focus on “why complex methods are so effective” notice that, by definition,
translations leave vector lengths invariant while scalings change lengths. The odd
feature is that the complex scaling yields a rotation under the splitting, apart from
the expected scaling. How did the complex scaling “know” that a real rotation was
needed and had to be coded into the complex scaling?

The natural next step is to go to two complex dimensional systems, with the
complex translation and rotation symmetry generators

W1 = ∂/∂w1 , W2 = ∂/∂w2 , R = w2∂/∂w1 − w1∂/∂w2 , (20)

which split into

1

2
(∂/∂u1 − ι∂/∂v1) = U1 − ιV1 , (21)

1

2
(∂/∂u2 − ι∂/∂v2) = U2 − ιV2 , (22)

1

2
[(u2∂/∂u1 − u1∂/∂u2) + (v2∂/∂v1 − v1∂/∂v2)

+ι{(u1∂/∂v2 + v1∂/∂u2) − (u2∂/∂v1 + v2∂/∂v1)}]
= (R1 + R2) + ι(L1 − L2) , (23)

whereR1 andR2 are the expected rotations andL1 andL2 are two “Lorentz transfor-
mations,” i.e., rotations through an imaginary angle. Notice that the rotations were
arbitrarily identified. Instead of rotating between two u’s and two v’s, we could have
“mixed” them to get rotations between the u’s and v’s, or broken the two Lorentz
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transformations differently to obtain two more cross rotations. Is this at the heart of
the “unexpected effectiveness of the complex methods?”

What has happened is that we actually have the sixteen “quasi-scalings,” which
we can write, using the notation k1 = u1, k2 = u2, k3 = v1, k4 = v2, as ki∂/∂k j . To
see the full significance of this point, let us proceed to the m complex dimensional
system split into 2m real variables, ki . Write the 2m translations as Xi and the 4m2

quasi-scalings as Yi j . Then the Lie algebra satisfied by these generators is:

[Xi ,X j ] = 0 , [Xi ,Y jk] = δi jXk , [Yi j ,Ykl] = δikY jl − δ jlYik . (24)

Thuswe have 2m translations,Xi ,m(2m − 1) rotationsRi j given by the commutators
of the quasi-scalings, 2m genuine scalings Si = ki∂/∂ki and the remaining m(2m −
1) are proper “partial scaling.” Somehow the Cauchy–Riemann (CR) conditions
constrain the symmetries so that the quasi-scalings provide no new generators, and
we are left with just the geometrically expected symmetries. The question remains,
“How do the CR conditions get rid of the extra symmetries?”

For application to DEs, the prolongation of the generators proceeds in the usual
way and the CR conditions do not need any further prolongation. Symmetry methods
are used by enumerating all possible algebras of a given dimension. One-dimensional
algebras are not in general sufficient for “group methods” to work. As such, we
need at least a two-dimensional algebra. In the simpler cases of lower order and
lower-dimensional systems, there are few higher dimensional algebras available and
the classification problem is easy. For lower dimensions one gets whole classes of
possible ODEs associated with each algebra of the given dimension. Thus, for the
scalar ODE for two-dimensional algebras, there are four possible algebras, each
with an ODE associated with it. On splitting the complex scalar ODE there is a much
richer structure as one gets a two-dimensional, three three-dimensional and three
four-dimensional algebras, each with its associated class of systems of two ODEs.

For every complex scalar ODE there is a system of two ODEs. However, the
converse is obviously not true. Consequently there must be some compatibility con-
ditions that the system satisfies for the correspondence to hold. The way they are
obtained is to take the general relevant order complex scalar ODE and split it. The
general form of the system corresponding to the general complex ODE is, thereby,
obtained. What general form? This depends on the class of systems that is to be
converted. The symmetries of the complex scalar ODE and the corresponding real
system have been shown to be inequivalent [23, 24]. The procedure can, equally well,
be applied to systems of complex ODEs being converted to systems of real ODEs
of twice the dimension. A serious problem arises of being able to apply complex
methods to odd-dimensional systems. The method used was to introduce an alge-
braic constraint, but that changes the system. Another method that could be explored
would be to adjoin a real DE to a complex system, but it would entail additional
complications, and may not be workable or worthwhile.
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4 Complex Linearization

Every first-order complex scalar ODE

y′(x) = ω(x, y) , (25)

is linearizable [1, 4], where y = f + ιg and ω = φ + ιγ . Thus the system

f ′(x) = φ(x, f (x), g(x)) , g′(x) = γ (x, f (x), g(x)) , (26)

is linearizable, provided the CR equations

∂φ

∂ f
= ∂γ

∂g
,

∂φ

∂g
= −∂γ

∂ f
, (27)

hold. We see that not every two-dimensional system of first-order ODEs is lineariz-
able, but only those that satisfy the CR-equations as the linearization constraint
equations. Notice that here the role of the CR-equations as a pair of first-order inte-
grability conditions is obvious.

We now come to the general semilinear second-order complex scalar ODE,

y′′(x) = ω(x, y; y′) . (28)

Since it is not true that all second-order ODEs are linearizable, when we split the
ODE, the CR-equations do not give linearization conditions, but only compatibility
conditions,

f ′′(x) = φ(x, f, g; f ′, g′) , g′′(x) = γ (x, f, g; f ′, g′) (29)
∂φ

∂ f
= ∂γ

∂g
,

∂φ

∂g
= −∂γ

∂ f
,

∂φ

∂ f ′ = ∂γ

∂g′ ,
∂φ

∂g′ = − ∂γ

∂ f ′ . (30)

For linearization there are further requirements that must be met. Lie’s linearizable
scalar second-order ODE, given by (8), can be split into its real and imaginary
parts, bearing in mind that the four coefficients are also complex. The resulting
two-dimensional system must be of the form

f ′′ + (a1 f ′ 3 − 3a2 f ′ 2g′ − 3a1 f ′g′ 2 + a2g′ 3)
+(b1 f ′ 2 − 2b2 f ′g′ − b1g′ 2) + (c1 f ′ − c2g′) + h1 = 0,

g′′(x) + (a2 f ′ 3 + 3a1 f ′ 2g′ − 3a2 f ′g′ 2 − a1g′ 3)
+(b2 f ′ 2 + 2b1 f ′g′ − b2g′ 2) + (c2 f ′ + c1g′) + h2 = 0, (31)

subject not only to the CR-equations (30) written out explicitly for φ and γ but also
to the CR-equations for each of the four complex coefficients, a, b, c, h. This is a
system of two second-order real ODEs involving eight real functions to bring the
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system into the Lie form, which must satisfy a system of four first-order constraints
that ensure integrability. We call such a system “complex linearizable.”

It was proved by Goringe and Leach [12] that for a system of two second-order
ODEs linear with constant coefficients there are 7, 8 or 15 symmetries. When
extended to the fully general case 5 and 6 generators were added [13]. It may be
recalled that the geometrically linearizable systemhas a Lie algebra of sl(m + 2, IR ),
which yields 15 generators for m = 2. As such, only in the maximal symmetry case
can we use the power of geometry at present to directly obtain the linearizing trans-
formation and hence the solution. What is more disturbing is that the geometrical
arguments for linearization are somehowbypassed in general –we are getting straight
lines in a curved space. How can that be? Could it be that the space corresponding
to the system of geodesics for 5, 6, 7 and 8 generators is like a higher dimensional
cylinder, with some flat sections? It would be worth exploring this possibility.

The general second-order linear complex scalar equation

y′′(z) + A(z)y′(z) + B(z)y(z) = 0 , (32)

where z is a complex variable, can be transformed to the form,

y′′(w) + α(w)y(w) = 0 , (33)

by re-scaling the dependent variable by a position dependent function or, equivalently,
by transforming the independent variable, z, appropriately to an independent variable,
w, to get rid of the first derivative term. This can then be split to

f ′′(x) + α1(x) f (x) − α2(x)g(x) = 0 , g′′(x) + α2(x) f (x) + α1(x)g(x) = 0 ,

(34)
whereα = α1 + ια2.When thiswas applied to the free particle equation (withα = 0)
[23, 25], the 15 generator Lie algebra case was recovered, which is amenable to
geometric linearization. For the constant and the variable cases, the 7 and 6 generator
algebras were also obtained. Though the system is not geometrically linearizable,
the complex equation is and hence its power can be used to solve the scalar ODE
and then convert to the system to get the solution of the system.

It is wonderful that that two more of the five classes of linearizable systems
can be accessed by complex linearization, making them amenable to the geometric
procedure that more-or-less writes down the solution for us, but now the question
arises: “where did the other two go?” If the complex method works, “why does it
work partially and not fully?” The answer may lie in a step that was glossed over. The
scalar ODE was first transformed with the complex independent variable to obtain
the simpler form (33) and then it was restricted to the real form. This procedure will
not commute in general. If the independent variable is first restricted and then used,
the reduction will not occur. There seems to be no good reason to take the reduced
form (33) instead of the complete homogeneous liner form. Throwing away the first
derivative term in the system may “throw the baby out with the bath-water.” Can one
not apply the Lie linearization procedure to the full (homogeneous) linear form to
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obtain the two-dimensional system? Perhaps that would provide the missing cases
of 5 and 8 symmetry generators.

Notice that the second-order complex scalar ODE has eight complex symmetries
to be linearizable but needs only two to be solvable by Lie’s method. On the other
hand the two-dimensional systemneeds at least five real symmetries to be linearizable
and four to be solvable. Thus the minimum number of real symmetries required in
both cases is four. We see that starting with linearizable second-order complex scalar
ODEs, we can end up with two-dimensional systems with fewer symmetries. Is it
possible to get a system with only four symmetries that is solvable? In that case, by
the easy linearization of a complex ODE the more complicated process of solving
the associated system can be bypassed. It was found that this could be done [23, 25–
27]. In fact, not only could non-linearizable systems be solved by linearization (of a
complex scalar ODE) but one could go further and find complex linearizable scalar
ODEs corresponding to systems with less symmetries. Thus systems not solvable by
symmetry methods in the usual way, could be solved by complex linearization. How
much lower can one go? It turned out that there is an example with no symmetry. We
cite the examples of four, one and zero here:

(a) Four symmetry case

f ′′ − f ′ 3 + 3 f ′g′ 2 = 0 , g′′ − 3 f ′ 2g′ + g′ 3 = 0 , (35)

with the solution

f (x) = c1 ± (
√

(a − x)2 + b2 + a − x)1/2,

g(x) = c2 ± (
√

(a − x)2 + b2 − a + x)1/2; (36)

(b) One symmetry case

f ′′ − x f f ′ 3 + 3xg f ′ 2g′ + 3x f f ′g′ 2 − xgg′ 3 = 0 ,

g′′ − xg f ′ 3 − 3x f f ′ 2g′ + 3xg f ′g′ 2 + x f g′ 3 = 0 , (37)

with the implicit solution

R[c1Ai(− f − ιg) + c2Bi(− f − ιg)] = x ,

I [c1Ai(− f − ιg) + c2Bi(− f − ιg)] = 0 , (38)

where R,I are the real and imaginary parts of the arguments and Ai, Bi are the
two Airy functions;

(c) No symmetry case

f ′′ + ( f 2 − g2 − x2)( f ′ 3 − 3 f ′g′ 2) − 2 f g(3 f ′ 2g′ − g′ 3) = 0 ,

g′′ + ( f 2 − g2 − x2)(3 f ′ 2g′ − g′ 3) + 2 f g( f ′ 3 − 3 f ′g′ 2) = 0 , (39)
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which corresponds to the complex scalar ODE

y′′ − xy2y′ 3 = 0, (40)

which is linearizable to Y ′′ = 0, yielding the solution directly.

5 Complex Noether Symmetries and Integrals

Noether’s theorem [28] forms a basis of the use of symmetries in Mechanics and
through it in all of Physics. It essentially generalizes Hamilton’s principle of least
action, which can be reformulated as saying that if there is time-translational invari-
ance, energywill be conserved.The action, S, is a functional of aLagrangian function,
L [t, qi (t), ˙qi (t)], where qi are the coordinates of a system of particles in the higher
dimension and t is the time. If there is no explicit dependence on the time the action
is minimized and a quantity associated with the Lagrangian, called the Hamiltonian,
H is a conserved quantity. More generally, the theorem says that for every contin-
uous symmetry, there is a conserved quantity. It was further generalized to extend
to a continuum of “particles,” i.e., a field, and thence to relativistic fields and further
to quantum fields [29]. Hamilton’s original method, used also by Noether, is to use
the calculus of variations and require that the variation of the action be zero. This
provides the necessary conditions for minimization. The sufficient condition, that
the second variation be positive, is generally ignored or glossed over, but should be
used to avoid getting spurious solutions.

Noether symmetries, as opposed to the usual symmetries, yield double reduc-
tion of the DEs for which they apply [30, 31], serving like two of the symmetries.
Thus, if there is time translational invariance in an ODE (as for the time independent
Schrödinger equation or the steady state heat equation) one can replace the derivative
operator by a constant. Further, the energy conservation yields an invariant combi-
nation of the generalized coordinates and their derivatives, getting rid of another
variable. Formally, X[1], given by (3) for a single independent variable, is a Noether
symmetry if there exists an appropriate (gauge) function, G, such that

X[1]L + L
d A

dx
= dG

dx
, (41)

where d/dx is the total derivative. This can be extended to PDEs by using several
independent variables, xa and the corresponding total derivatives with respect to each
independent variable as well as introducing a vector gauge function, Ga .

An obvious problem of extending the variational principle to the complex domain
arises: functionals map the space of functions into the reals, IR . Obviously the
Lagrangian must be real for the action to be real, so that a minimum can be defined
on it. This problem was “swept under the rug” at the time in [21, 32]. In defining dis-
tributions for complex arguments, the problem of defining functionals is addressed
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[33–35] but not the problem of defining a minimum for a complex action. What is
required is that the variations of the real and imaginary parts be separately zero and
the minimum for both together requires that the magnitude of the action, |S|, be
minimum. It is worth mentioning that on purely physical considerations Bender and
Boettcher had also proposed complex Hamiltonians [36].

Let us now proceed with the complex Lagrangian [21, 32]. LetL = L1 + ιL2.
Then the Euler–Lagrange equation splits into the pair of coupled equations:

∂L1

∂ f
+ ∂L2

∂g
− d

dx

(∂L1

∂ f ′ + ∂L2

∂g′
)

= 0 ,

∂L2

∂ f
− ∂L1

∂g
− d

dx

(∂L2

∂ f ′ − ∂L1

∂g′
)

= 0 , (42)

which is not a pair of Euler–Lagrange equations. Thesewere called “Euler–Lagrange-
like” equations, but perhaps a better namewould have been “complex-EL” equations.

The Noether operators, X[1]
1 ,X[1]

2 corresponding to the Lagrangians L1,L2

X[1]
1 = ξ1∂x + 1

2
(η1∂ f + η2∂g + η′

1∂ f ′ + η′
2∂g′) ,

X[1]
2 = ξ2∂x + 1

2
(η2∂ f − η1∂g + η′

2∂ f ′ − η′
1∂ f ′) , (43)

must satisfy the equation

X1
[1]L1 − X2

[1]L2 + (Dξ1)L1 − (Dξ2)L2 = DG1 ,

X1
[1]L2 + X2

[1]L1 + (Dξ1)L2 + (Dξ2)L1 = DG2 , (44)

for some gauge functions G1, G2, where D = d/dx . It might seem that the arbitrari-
ness of the gauge functions allows infinitely many solutions and hence the “must
satisfy” says nothing. This is not the case. In the scalar case one is requiring that
the left side of the equation be an exact differential. For the coupled system, one is
demanding that both left sides be total differentials, albeit of different “potentials.”
The resulting invariants are:

I1 = ξL1 − ξ2L2 + 1

2
(η1 − f ′ξ1 + g′ξ2)

(∂L1

∂ f ′ + L2

∂g′
)

− 1

2
(η2 − f ′ξ2 − g′ξ1)

(∂L2

∂ f ′ − L1

∂g′
)

− B1 ,

I2 = ξL2 + ξ2L1 + 1

2
(η1 − f ′ξ1 + g′ξ2)

(∂L2

∂ f ′ − L1

∂g′
)

+ 1

2
(η2 − f ′ξ2 − g′ξ1)

(∂L1

∂ f ′ + L2

∂g′
)

− B2 . (45)
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The invariants of complex scalar second-orderODEs are often easier to obtain than
those of a two-dimensional real system [37]. The question arises, as with complex
linearization so with invariants, are they found for systems that could not be obtained
for the two-dimensional system? With the question in mind of why the complex
method is providing results that the real system did not, it is necessary to pursue the
matter further.

In the simplest case, y′′ = xy′, the complex method merely reproduces the results
for the real system, albeit more simply. In the case of the complex simple harmonic
oscillator it correctly gives a coupled systemof harmonic oscillators [38] andprovides
the expression for the energy transferring back and forth between the two. As was put
there, one sees the energy in the field by putting on complex glasses. It is found that
new invariants arise for the complex Lagrangian in some cases. Unfortunately it was
expressed in [37] in a way that misleadingly suggests that there are two Lagrangians
for real two-dimensional systems arising from a variational principle. We present an
example.

Example Consider the system of two second-order semi-linear ODEs

f ′′ + 3 f f ′ − 3gg′ + f 3 − 3 f g2 = 0 ,

g′′ + 3 f g′ + 3g f ′ + 3 f 2g − g3 = 0 . (46)

It is not clear that it has any Lagrangian. If there is no ordinary conservation law
arising from a variational principle, one can still get a conserved quantity (the gen-
eralization of the Hamiltonian) from what are called partial Lagrangians [39] or
there may be nothing like a Lagrangian. It would be worth exploring which of the
alternatives applies in this example and in general. This system corresponds to the
complex ODE

y′′ + 3yy′ + y3 = 0 , (47)

which has five infinitesimal Noether symmetry generators and the corresponding five
invariants which split into ten real invariants for the system. It is noted in [37] that
the two parts of the Lagrangian are equivalent Lagrangians for the system, which
yields only one invariant. It would be interesting to explore if this spew of invariants
is related to the spew of infinitesimal generators spawned by the split translation
generator of the complex line.

6 Iterative Splitting of a Complex Scalar ODE

The idea of iterative splitting [40] is a strange one: (a) start with a complex (say)
scalar ODE and obtain the split two-dimensional system of ODEs; (b) now get hit
on the head and develop amnesia, so you forget where the split system came from
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and use the splitting procedure on it to get a four-dimensional system of ODEs; or
(c) get a four-dimensional system of PDEs if you forgot that you intended to restrict
yourself to ODEs. Why is the idea strange? To see this we have to get into what was
not discussed before: the range of functions to which the procedures are applicable.

When we proceed for the splitting, we assume that the dependent variables are
complex analytic functions and that the functions in the split system are real analytic
functions. Now the ratio of the cardinality of the set of all complex analytic functions
to the set of all complex functions is a second infinitesimal. Similarly, for the real
analytic to all real functions. However, it does not appear that in going complex we
have restricted our space “any more” than we have done for the real. In fact one
feels that we have somehow made it “more general.” This vague feeling lulls us
into a false sense of security, as we see when we require the CR-equations. When
we repeat the step of splitting we have required that the two dependent variables
be complex analytic functions themselves. This obviously significantly restricts the
space of permissible functions after the split. This will appear in the emergence of
a second set of CR-equations. Obviously, there will be infinitely many functions
that satisfy the requirement but the restriction on the space of permissible functions
will make a big difference for what can be used in DEs. In our amnesia we have
wandered into a cave with a narrow opening containing a magic lamp. To get out of
the cave we may have to leave our magic lamp of splitting behind. The trick will be
to bring a more constrained genie out without the lamp. Let us be more concrete. For
complex symmetry analysis for ODEs, we need that f and g be n times differentiable
functions of x andw for a complex analytic function ( f, g, f ′, g′, . . . , f (n), g(n)) and
for PDEs that y = f + ιg be a complex analytic function of z = u + ιv and w be a
complex analytic function of (z, y, y′, . . . , y(n)).

One might have thought of generalizing the complexification of the DE to the
quaternions, q = 1 + ai + bj + ck, subject to the requirements that i2 = j2 = k2 =
−1 and i j = k = − j i, jk = i = −k j, ki = j = −ik. It is easily verified that the
requirements that dq/dq = 1 and dq2/dq = 2q are incompatible. Thus we cannot
bound up the steps from one to four in a single leap and need to look elsewhere for a
generalization. Why generalize? Apart from the search for simpler ways to get more
powerful results, one wants to obtain insights into the working of the first step by
going beyond. As mentioned earlier, the idea is to complexify twice over. In view of
the important role of the CR-equations for double splitting, it is worthwhile to state
them explicitly for the first splitting. For the initial complex scalar ODE (28), taking
z = x and proceeding with the split y = f + ιg, we obtain a pair of ODEs as given
before. Now we must also write

ω(x; f, g; f ′, g′) = wr (x; f, g; f ′, g′) + ιwi (x; f, g; f ′, g′) . (48)

Then the CR-equations are:

wr
f = wi

g , wr
g = −wi

f ; wr
f ′ = f i

g′ ; wr
g′ = −wi

f ′ . (49)
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It is easier to obtain four-dimensional systems of ODEs or PDEs by double split-
ting than a three-dimensional system because the number of equations would natu-
rally be even. One can retain one of the functions of the split to be real and the other
to be complex, so as to get the desired three-dimensional system, but the number of
functions still remains even. To circumvent this problem, retain f as it is but split
g = h + ιk in (28) and take all real terms that do not contain g or its derivative in
one term and the rest in a second, complex, term

ω(x, y, y′) = w(x; f ; f ′) + W (x; f, g; f ′, g′) . (50)

Now split W to write

W (x; f, g; f ′, g′) = U (x; f, h, k; f ′, h′, k ′) + ι V (x; f, h, k; f ′, h′, k ′) , (51)

so that we obtain the three-dimensional second-order system:

f ′′ = w(x; f ; f ′) ,

h′′ = U (x; f, h, k; f ′, h′, k ′) ,

k ′′ = V (x; f, h, k; f ′, h′, k ′) , (52)

subject to the CR-equations

Uh = Vk , Uk = −Vh ; Uh′ = Vk ′ , Uk ′ = −Vh′ . (53)

Notice that the system of three coupled ODEs does not seem very general, as the first
of (53) is independent of the other two dependent variables. However, it is not entirely
clear how much of a restriction this is. We could try to take linear combinations of
the three dependent variables so that in one equation we eliminate the other two.
The problem is reminiscent of finding the Jordan canonical form and may need the
symmetry structure of the system to be examined for the purpose. Incidentally, the
second split given in [40] causes confusion by using ιW instead of W in (50) but is
entirely equivalent to the one presented here.

We present an illustrative example here:

Example The system of generalized Emden–Fowler ODEs:

f ′′ = −2x−5hk , h′′ = −2sx−5 f k , k ′′ = 2x−5 f h , (54)

corresponds to the completely integrable [41] scalar Emden–Fowler ODE

y′′ = x−5y2 , (55)

subject to the algebraic constraint
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f 2 + h2 = k2 , (56)

which has the symmetry generators

X1 = x
∂

∂x
+ 3y

∂

∂y
, X2 = x2 ∂

∂x
+ xy

∂

∂y
(57)

and is completely integrable.Double-splitting these symmetry generators yields eight
Lie-like operators and no symmetries of the system. These are

Y1 = x∂x + 3

2
f ∂ f + 3

4
h∂h + 3

4
k∂k , Y2 = 3

4
k∂h − 3

4
h∂k ,

Y3 = 3

2
k∂ f + 3

4
f ∂k , Y4 = 3

2
h∂ f − 3

4
f ∂h,

Y5 = x2∂x + 1

2
x f ∂ f + 1

4
xh∂h + 1

4
xk∂k , Y6 = 1

4
xk∂h − 1

4
xh∂k ,

Y7 = 1

2
xk∂ f + 1

4
x f ∂k , Y8 = 1

2
xh∂ f − 1

4
x f ∂h .

Our system (54) is completely integrable despite having too few symmetries.
Cases with no symmetry were already seen above [26], but the first example of a
two-dimensional integrable system with no symmetry was given in [42]. Here we
have an integrable system of threeODEswith only two symmetries. The first integral
of (55) is given by

I = 1

2
x2y′ 2 + 1

2
y2 − 1

3
x−3y3 − xyy′ ,

which has the symmetry X2 [43]. The invariant obtained from it, v = y/x reduces
the equation to a simple quadrature as

x2v′ = ±
√

c + 2

3
v3,

yielding the solution of (54). It is worth noting that the Lie-like operators have
proliferated on double splitting and are likely to increase still more for further splits.
The Lie symmetries seem lost in the abundance of Lie-like operators.

Put f (x) = k(x) + ι l(x) and g(x) = m(x) + ι n(x) in (48) to obtain the four-
dimensional system of ODEs by double-splitting,

wr (x; f, g; f ′, g′) = ur (x;k;k′) + ιvr (x;k;k′) ,

wi (x; f, g; f ′, g′) = ui (x;k;k′) + ιvi (x;k;k′) , (58)
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where k := (k, l, m, n), yielding the system of four ODEs

k ′′(x) = ur (x;k;k′) , l ′′(x) = ui (x;k;k′) ,

m ′′(x) = vr (x;k;k′) , n′′(x) = vi (x;k;k′) , (59)

subject to the CR-conditions

ur
k + vr

l = ui
m + vi

n , ur
l − vr

k = ui
n − vi

m ,

ur
m + vr

n = −ui
n − vi

l , ur
n − vr

m = −ui
l + vi

k ,

ur
k ′ + vr

l ′ = ui
m ′ + vi

n′ , ur
l ′ − vr

k ′ = ui
n′ − vi

m ′ ,

ur
m ′ + vr

n′ = −ui
k ′ − vi

l ′ , ur
n′ − vr

m ′ = −ui
l ′ + vi

n′ . (60)

The prolonged symmetry generator can now be written as

X = ξ(x,k)
∂

∂x
+ η(x,k).∇k + η[1](x;k,k′).∇k′ . (61)

Writing this equation out in detail makes it too unwieldy to convey much wisdom.
Let us now come to the system of four PDEs. This is the most straightforward of

the various possibilities considered. At the first step we regard both the independent
and the dependent variables of (28) as complex, so that we take z instead of x there
and do the usual split with z = s + ιt , so that both the independent and dependent
variables are split. This gives a system of two second-order PDEs for two functions
of two variables. This is the standard complex symmetry analysis talked of earlier
for PDEs. The double split repeats the process and yields a system of four PDEs of
four variables. Due to the number of variables involved in the double split it becomes
impossible to follow our notation above here and we copy the equations as given in
[40], including the CR-conditions and the prolonged generator.

wss − wtt + 2xst − wuu + wvv − 2xuv + 2ysu − 2ytv

+2zsv + 2ztv = 4g(s;w,∇sw);
xss − xtt − 2wst − xuu + xvv + 2wuv + 2zsu − 2ztv

−2ysv − 2ytv = 4h(s;w,∇sw);
yss − ytt + 2zst − yuu + yvv − 2zuv + 2wsu − 2wtv

+2xsv + 2xtv = 4k(s;w,∇sw);
zss − ztt − 2yst − zuu + zvv + 2yuv + 2xsu − 2xtv

−2wsv − 2wtv = 4l(s;w,∇sw); (62)

subject to the CR-conditions
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ws + xt = yu + zv , wt − xs = yv − zu ,

wu + xv = −ys − zt , wv − xu = −yt + zs ;
gs + ht = ku + lv , gt − hs = kv − lu ,

gu + hv = −ks − lt , gv − hu = −kt + ls ;
gw + hx = ky + lz , gx − hw = kz − ly ,

gy + hz = −kw − lx , gz − hy = −kx + lw . (63)

The derivatives in the rest of the CR-conditions can be written in more familiar form
using the variables

α = ws + xt + yu + zv , β = wt − xs + yv − zu ;
γ = wu + xv − ys − zt , δ = wv − xu − yt + zs , (64)

so that the rest of the CR-conditions are

gα − hβ = kγ − lδ , gβ + hα = kδ + lγ ;
gγ − hδ = −kα + lβ , gδ + hγ = −kβ − lα . (65)

The prolonged symmetry generator for the system is

X[1] = ξ(s, g).∇s + η(s, g).∇g + η[1](s, g,∇sg).∇∇sg . (66)

We again rely on an example to illustrate our system.

Example The free-particle system of equations is given by (62), with the right side
set equal to zero. The CR-conditions are trivial. There are now 32 Lie-like operators,
of which only 24 are symmetry generators. As before the local projective symmetries
(eight in all) are lost, but the dilations are not lost. The generic problem of PDEs of an
infinity of symmetry generators, persists but the 24 symmetries do form aLie algebra,
A 24 say, which serves as a “core” for the system of PDEs, in that one could write the
full Lie algebraA = A∞

⊕
A 24 and “throw away” the infinite dimensional algebra

A∞, to be left with a solution with 24 arbitrary constants.

Notice that for the three-dimensional system of ODEs, one could reverse the order
of taking the split into two and one, to get a “dual” system. This would not be so
simple for the split into a four-dimensional system, and there would be no obvious
“dual.” One could do the split first and then two “singles” after that; a “single,” a split
and a “single”; or two “singles” and a split. All would yield four ODEs for functions
of one variable, but they would all be different. The first and third would, in some
sense, be “duals.” The same applies for the PDEs. In fact, the complex method for
ODEs is not unique. Instead of first restricting the complex independent variable to
be real, we could have first split and then restricted. The results would not be the
same.
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7 Discussion and Conclusion

In this chapter we reviewed the developments in Lie symmetry analysis that made
explicit use of the complex analyticity of the solutions of complex differential equa-
tions. It might be recalled that Lie, himself, had assumed that the functions were
complex analytic, but had not made the requirement explicit. So long as one remains
entirely in the complex domain nothing new can emerge from the discussion. It
is only when one splits the dependent and independent variables into their real and
imaginary parts that the new features arise. In that case, a complex scalar ODE yields
a pair of PDEs for two real functions of two real variables. As could be expected,
the really new features arise when the independent variable is restricted to the real
domain, which is needed to obtain ODEs. The areas where we particularly explored
the consequences of the complex methods were linearization and Noether invariants.
This is not to say that there are no consequences for more general situations, or that
they would turn out to be less interesting, novel or useful. It is simply that these
were the easiest to tackle, and hence provided a quick check on whether anything
new would arise. In fact, there is reason to expect, as we shall discuss shortly, that
the more general cases will lead to even more unexpected results. After all, if the
complex linearizable ODE leads to the solution of ODEs not amenable to solution
by symmetry methods, how many more may become solvable if the complex ODE
is solvable, even if it is not linearizable?

In the applications to linearization, we discussed only the complex scalar ODE
split to get a pair of real ODEs. By geometric methods one obtains the maximum
symmetry case of linearizable systems. Using complex methods, two more of the
five classes were accessed. Here, we have indicated that it should be possible to
access the remaining two classes by not using the optimal canonical forms for the
complex scalar ODE, as the restriction to the real independent variable (required for
obtaining ODEs rather than PDEs by splitting) does not commute with the splitting
procedure. This would be worth pursuing. However, the entire discussion is limited
to a two-dimensional system. For higher (even) dimensional systems, we can split
a higher, say m, dimensional complex system to a 2m-dimensional system. This
has been done for a two-dimensional system split to a four-dimensional system in
[44]. It would be important to investigate if all the linearizable classes for the four-
dimensional system are obtainable by complex methods, using the same point of
avoiding the use of the optimal canonical form. More generally, if the m-d system
split to the 2m-d system covers all linearizable classes of the 2m-d system. Further,
one would need to see whether the double splitting of a scalar ODE yields the same
results as the single split of the two-dimensional system. If not, is one of them more
restrictive than the other, or is it that both methods give different extensions with
some overlap? For odd dimensional systems, we have seen that one can appeal to
iterative methods. However, it is worth exploring if direct algebraic constraints could
also provide the desired linearization. Again, it would be fascinating to look for the
connection between the two methods of enlarging the systems to which it is applied.
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Complex methods have also been applied to the linearization of scalar third-
order ODEs to deal with a two-dimensional system of third-order ODEs [45, 46]
and a classification of two-dimensional linearizable systems of third-order ODEs
has been obtained. This is a much harder problem as the ODEs and systems are not
apparently connected to geodesic equations and hence to the geometrical methods. A
method was developed to reduce the order of the ODE by defining a derivative of the
dependent variable as a newdependent variable [47–49], thereby providing a possible
connection with a system of geodesic equations, provided it satisfies the required
criteria. Going one step further, one could ask if the second-order two-dimensional
system could be obtained from a complex scalar ODE, so that the third-order ODE
could be treated related to a second-order scalar ODE that could correspond to a
geodesic equation? It is by no means clear that this could be done, but it seems very
interesting to pursue this line of inquiry further. The procedure mentioned here was
also used to reduce fourth-order ODEs to two-dimensional systems of second-order
ODEs, albeit there is no classification for them. Of course, the above question would
be as interesting for these equations as well. It was noted that the above procedure
amounted to using contact transformations for third- or fourth-order ODEs and this
provided the first classification for linearization by contact symmetries. It would
be most interesting to see what would happen if one used complex methods for
the contact transformations. The further ramifications involving iterative splitting
may help provide insights into how the various methods, including contact and Lie–
Bäcklund transformations are interconnected.

So far we have concentrated on reviewing the developments arising from complex
methods that were useful but not really discussed the odd features, that turn up when
we use themethods. This happensmarginally in the first split, where the Lie operators
are lost and what were called “Lie-like” which we called “complex-Lie,” operators,
replace them. Similarly for the Noether symmetries and integrals. This occurs more
dramatically when iterative splitting is used. It is worthwhile to pursue this odd
feature further. In this chapter we suggested that there may be a connection with
the enormous proliferation of symmetry generators for the simple symmetries of
the complex line: translation and scaling. It is worth pursuing precisely how much
the proliferation is. Consider a complex scalar ODE, the translation splits into two
and the rotation into four, giving a total of six. Now, at the second iteration, the
two translations split into four and the four scaling-type operators split into sixteen,
giving a total of twenty. In general, for n iterations we get the total number N = 2n +
(2n)2 = 2n(2n + 1). Thus for n = 3, N = 72 and for n = 4, N = 272. Following
the same logic, starting with an m-d complex system of ODEs, there will be initially
m translations and m2 scaling-type generators, which gives the general formula N =
2nm(2nm + 1) after n iterations. Hence for a starting two-dimensional system, the
effect is simply like increasing the number of iterations by one. Startingwithm = 3 at
two iterations, already N = 156. This is the extent to which the generators proliferate
after n iterations. But the question then is “what difference does this proliferation
make?” We will now consider the possibility that this may provide a clue to answer
the big question thatwasmentioned at the start of this chapter: “Why does the complex
method work?”
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Take the case of linearization. Without the use of complex methods the geometric
methods only give the maximal symmetry case. Complex methods have already pro-
vided two of the five linearizable classes for two-dimensional second-order systems
and there is good reason to expect that the other two will also be found. To this
extent, it is not all that strange that they work. After all, they only give what had been
obtained by classical methods, albeit very much more explicitly. However, when
complex linearization provides solutions for systems that are not linearizable, one
really needs to explain how that could ever happen. Even stranger, where the number
of symmetry generators of the system are inadequate to solve by symmetry methods,
how on Earth can the complex methods work their magic there? The answer may lie
in the much larger space of these “quasi-symmetry generators.” One starts with the
inadequately symmetric real system and “lifts” it as a lower-dimensional complex
system, where the lifted equation is adequately symmetric and solves it there. How-
ever, the linearizing transformation that yields the solution changes the restricted real
variable to a complex one, so that it cannot be used to linearize the system. So far it
seems reasonable. The question now is, “why is it that there is at least one solution
that is retained when one restricts the variable to be real? Why is it not that there is
no solution for the real system?” An associated question is, “we have brought down
one solution, but how do we know that we have not missed other solutions that could
have been found?” For a 2m-d real system of second-order ODEs, we need criteria
that tell us precisely how many of the 2m complex solutions can be “brought down
to the real world.” No such criteria are available and they are crucial for using the
complex methods to their full potential.

Now let us discuss the odd features of the complex variational principle. It has
been noted that the real and imaginary parts of the complex Lagrangian are not the
same but are equivalent, in that they satisfy the same Euler–Lagrange equations.
Why should that be so? The final quantity that is minimized is the magnitude of the
Lagrangian and not its real and imaginary parts. How is it that the two separately
“know” that they must satisfy the same equations? Presumably it is because, apart
from a constant value, the sum of the squares of the two parts has to become zero
and that can only be if each is separately zero. However, the question then is “If they
have to satisfy the same equations, why do they differ?”Again, theNoether invariants
obtained from complex Lagrangians are many more than would have been expected
at first sight. Essentially this must come from the tremendous enlargement of the
quasi-symmetry operator space. The same point of obtaining many more invariants
for the real system than should be possible, appears for the invariants. As such, the
same questions as for linearization need to be answered. Again the explicit criteria
are needed.

We have not discussed complex methods for PDEs. It is not that they cannot be
used there. They are so used. They can be used to obtain systems of PDEs from
ODEs. Nor is it that they are not useful. They pick out a “core” finite-dimensional
symmetry algebra from an infinite dimensional Lie-algebra. The thing is that it is not
so clear what relevance the PDEs would have for the big question asked here.
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