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Abstract The chapter considers one-dimensional flows of a polytropic gas in the
Lagrangian coordinates in three cases: plain one-dimensional flows, radially symmet-
ric flows, and spherically symmetric flows. The one-dimensional flow of a polytropic
gas is described by one second-order partial differential equation in the Lagrangian
variables. The Lie group classification of this PDE is performed. Its variational struc-
ture allows to construct conservation laws with the help of Noether’s theorem. These
conservation laws are also recalculated for the gas dynamics variables in the Eulerian
andmass Lagrangian coordinates.Additionally, invariant and conservative difference
schemes are provided.

1 Introduction

Symmetries of the differential equations ofmathematical physics are their fundamen-
tal features. They reflect the geometric structure of solutions and physical principles
of the considered models. We recall that the Lie group symmetries yield a number
of useful properties of differential equations (see [1–6]):

• A group action transforms the complete set of solutions into itself; so it is possible
to obtain new solutions from a given one;
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• There exists a standard procedure to obtain the whole set of invariants of a sym-
metry group of transformations; it yields the forms of invariant solutions in which
they could be found (symmetry reduction of PDEs);

• For ODEs the known symmetry yields the reduction of the order;
• The invariance of ODEs and PDEs is a necessary condition for the application
of Noether’s theorem to variational problems to obtain conservation laws (first
integrals for ODEs).

The symmetry properties of the gas dynamics equations were studied both in
the Eulerian coordinates [1, 7] and in the Lagrangian coordinates [8–10]. Exten-
sive group analysis of the one-dimensional gas dynamics equations in the mass
Lagrangian coordinates was given in [8–10]. Here, it should be also mentioned that
nonlocal conservation laws of the one-dimensional gas dynamics equations in the
mass Lagrangian coordinates were found in [11]. The authors of [12, 13] analyzed
the Euler–Lagrange equations corresponding to the one-dimensional gas dynamics
equations in the mass Lagrangian coordinates: extensions of the known conserva-
tion laws were derived. These conservation laws correspond to special forms of the
entropy. The group nature of these conservation laws is given in the present chapter.

As mentioned above, besides assisting with the construction of exact solutions,
the knowledge of an admitted Lie group allows one to derive conservation laws. Con-
servation laws provide information on the basic properties of solutions of differential
equations. They are also needed in the analyses of stability and global behavior of
solutions. Noether’s theorem [14] is the tool that relates symmetries and conserva-
tion laws. However, an application of Noether’s theorem depends on the following
condition: the differential equations under consideration need to be presented as the
Euler–Lagrange equations with an appropriate Lagrangian, i.e., Noether’s theorem
requires variational structure. There are also other approaches to find conservation
laws, which try to avoid this requirement [15–18].

The application of symmetries to difference and discrete equations is a more
recent field of research [19–22]. One of its directions is the discretization of differ-
ential equations with the preservation of the Lie point symmetries. It is relevant to the
construction of numerical schemes which inherit qualitative properties of the under-
lying differential equations. This approach was a base for a series of publications
[19, 23–27], which are summarized in the book [22]. The method is based on finding
finite-difference invariants which correspond to the chosen mesh stencil and using
them to construct invariant difference equations and meshes. Recently, this approach
was applied to shallow water systems, wave equations, and the Green–Naghdi sys-
tem [28–30].

The recent paper [31] was devoted to the Lie group classification, conservation
laws, and invariant difference schemes of plain one-dimensional flows of a polytropic
gas. Here, we extend these results to radially symmetric flows in two-dimensional
space and spherically symmetric flows in three-dimensional space. We refer to all
such flows as one-dimensional flows. The results of [31] stand as a particular case
in this chapter.
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There are two distinct ways to model phenomena in gas dynamics (see, e.g.,
[32–34]). The typical approach uses the Eulerian coordinates, where flow quantities
(at each instant of time) are described in fixed points. Alternatively, the Lagrangian
description is used: the particles are identified by the positions which they occupy at
some initial time. In the Lagrangian description, there are also two ways to analyze
the processes occurring in a gas. One of them uses a system of first-order PDEs
for the gas dynamics variables. The other approach uses a scalar second-order PDE
to which this system can be reduced. The latter way allows one to use variational
approach for the analysis of the gas dynamics equations.

The purpose of the chapter is to present an overview of the authors’ results con-
cerning the analysis of the gas dynamics equations of a polytropic gas. It is devoted
to symmetries, conservation laws, and construction of numerical schemes, which
preserve qualitative properties of the gas dynamics equations.

The article is organized as follows. In the forthcoming section, we recall Noether’s
theorem. Section3 describes the gas dynamics equations, their reduction to a single
second-order PDE, and the Lie point symmetries of this PDE. In Sects. 4 and 5, we
consider the general case and the three special cases of the Lie group classification.
Invariance and conservative properties of difference schemes are discussed in Sect. 6.
Finally, Sect. 7 presents concluding remarks.

2 Symmetries and Noether’s Theorem

We briefly remind Noether’s theorem [14], which will be used to find conservation
laws with the help of symmetries. In the general case, we have several independent
variables and dependent variables, which are denoted as x = (x1, x2, . . . , xn) and
u = (u1, u2, . . . , um), respectively. All derivatives of order k are denoted as uk .

A point symmetry operator has the form

X = ξ i ∂

∂xi
+ ηk ∂

∂uk
+ ηk

i

∂

∂uki
+ · · · , (1)

whereweassume that ξ i = ξ i (x, u),ηk = ηk(x, u), and that the operator is prolonged
to all derivatives uki1...il we need to consider. We denote the considered function as
F(x, u, u1, . . . , uk). It involves derivatives up to some finite order k.

Noether’s theorem is based on the identity [2, 14]

XF + FDiξ
i = (ηk − ξ i uki )

δF

δuk
+ Di (N

i F), (2)

where
δ

δuk
=

∞∑

s=0

(−1)s Di1 . . . Dis
∂

∂uki1i2...is
, k = 1, 2, . . . ,m, (3)
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are variational operators, and

Ni = ξ i +
∞∑

s=0

Di1 . . . Dis (η
k − ξ i uki )

δ

δukii1i2...is
, i = 1, 2, . . . , n. (4)

The higher variational operators
δ

δuki1i2...is
are obtained from the variational opera-

tors (3) by replacing uk with the corresponding derivatives uki1i2...is .

Theorem 1 (E. Noether) Let the Lagrangian function L(x, u, u1, . . . , uk) satisfy
equation

XL + LDiξ
i = Di B

i (5)

with a vector B = (B1, B2, . . . , Bn) and a group generator

X = ξ i (x, u)
∂

∂xi
+ ηk(x, u)

∂

∂uk
,

then the generator X is an admitted symmetry of the system of the Euler–Lagrange
equations

δL

δuk
= 0, k = 1, 2, . . . ,m, (6)

and the vector
(N 1L − B1, N 2L − B2, . . . , NnL − Bn) (7)

is a conserved vector.

In the case B = (B1, B2, . . . , Bn) = 0, we call the symmetry X variational; oth-
erwise, we say that the symmetry X is divergent.

It is well known that variational and divergent symmetries are also symmetries
of the Euler–Lagrange equations [1–3]. For the Lie point symmetries, i.e., sym-
metries with coefficients ξ i = ξ i (x, u), ηk = ηk(x, u), and first-order Lagragians
L = L(x, u, u1), it easily follows from the identities [35]

δ

δu j

(
XL + LDiξ

i − Di B
i
) = X

( δL

δu j

) + ( ∂ηk

∂u j
− ∂ξ i

∂u j
uki + δk j Diξ

i
) δL

δuk
,

j = 1, 2, . . . ,m,

where δk j is the Kronecker symbol.
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3 Equations of Gas Dynamics for One-Dimensional Flows

Weconsider three types of gasflows, namely, flows inone-dimensional space, radially
symmetric flows in two-dimensional space, and spherically symmetric flows in three-
dimensional space. We will refer to these flows as one-dimensional flows.

The gas is assumed to be polytropic [34, 36–38]. For a polytropic gas, the pressure
p and the density ρ are related as

p = Sργ , (8)

where variable S is the function of the entropy S̃

S = e(S̃−S̃0)/cv , cv = R

γ − 1
.

Here, R is the gas constant, cv is the specific heat capacity at constant volume, and
S̃0 is constant. The adiabatic constant is given as

γ = 1 + R

cv
> 1.

We will also need the equation of state for the polytropic gas, i.e., equation for
the specific internal energy

ε = ε(ρ, p). (9)

It has the form
ε = p

(γ − 1)ρ
. (10)

The gas dynamics equations will be given in the Eulerian and Lagrangian coordi-
nates. Eventually, they will be reduced to one scalar PDE of the second order, which
will be analyzed for the admitted Lie point symmetries.

3.1 Eulerian Coordinates

In the Eulerian coordinates (t, r), the gas dynamics equation can be written as (see,
e.g., [32–34])

ρt + uρr + ρ

rn (r
nu)r = 0, (11a)

ut + uur + 1
ρ
pr = 0, (11b)

St + uSr = 0. (11c)
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Here, we distinguish the case n = 0 with coordinate −∞ < r < ∞ and velocity
u from the cases n = 1, 2 with radial distance from the origin 0 < r < ∞ and the
radial velocity u.

We have n = 0, 1, 2 for the plain one-dimensional flows, the radially symmet-
ric two-dimensional flows, and the spherically symmetric three-dimensional flows,
respectively. Note that for these cases n = d − 1, where d = 1, 2, 3 is the space
dimension.

We also use other representations of Eq. (11c)

pt + upr + γ p

rn
(rnu)r = 0 (12)

or
εt + uεr + p

rnρ
(rnu)r = 0. (13)

3.2 Lagrangian Coordinates

As well known [32–34], the mass Lagrangian coordinate s and the Eulerian coordi-
nate r of the particle s are related by the formulas

u = ϕt , ρ = 1

ϕnϕs
, (14)

where r = ϕ(t, s) defines the motion of a particle s.
In the Eulerian coordinates (t, r), we can introduce the mass Lagrangian coordi-

nate s as a potential by the system

sr = rnρ, st = −rnρu, (15)

which is equivalent to the 1-form

ds = rnρdr − rnρudt.

Here, we rely on the possibility to rewrite the Eq. (11a) as the conservation law

(rnρ)t + (rnρu)r = 0,

representing conservation of mass.
In the mass Lagrangian coordinates (t, s), which we will call the Lagrangian

coordinates, the time derivative stands for the differentiation along the pathlines. It
is called the material derivative. Total derivatives in the Lagrangian coordinates DL

t
and Ds are related to those in the Eulerian coordinates DE

t and Dr as
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DL
t = DE

t + uDr , Ds = 1

rnρ
Dr . (16)

We rewrite the gas dynamics equations (11) in the Lagrangian coordinates (t, s)
as

ρt + ρ2(rnu)s = 0, (17a)

ut + rn ps = 0, (17b)

St = 0. (17c)

We remark that here the gas dynamics variables ρ, u, p, and S are functions of the
Lagrangian coordinates t and s while in the system (11), they are functions of the
Eulerian coordinates t and r .

The Eulerian spatial coordinate ϕ = r is a dependent variable in the mass
Lagrangian coordinates. Equations (14) can be rewritten in the form

rt = u, rs = 1

rnρ
. (18)

It is also possible to use the 1-form

dr = ds

rnρ
+ udt.

Notice that as for Eq. (11c), we also use other representations of Eq. (17c)

pt + γρp(rnu)s = 0 (19)

or
εt + p(rnu)s = 0. (20)

Equation (17c) can be solved
S = S(s), (21)

where S(s) is an arbitrary function.
Using these results, it is possible to rewrite the last remaining Eq. (17b), as a

partial differential equation of the second order

ϕt t + ϕn(1−γ )ϕ−γ
s

(
S′ − nγ S

ϕs

ϕ
− γ S

ϕss

ϕs

) = 0. (22)

This PDE is called the gas dynamics equation in the Lagrangian coordinates
[34, 36].
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PDE (22) has a variational formulation, namely, it is the Euler–Lagrange equation

δL

δϕ
= ∂L

∂ϕ
− DL

t

( ∂L

∂ϕt

) − Ds
( ∂L

∂ϕs

) = 0 (23)

for the Lagrangian

L = 1

2
ϕ2
t − S(s)

γ − 1
ϕ(1−γ )nϕ1−γ

s . (24)

3.3 Conservation Laws

We specify Noether’s theorem, given in Sect. 2, for PDE (22). We consider the Lie
point symmetries of the form

X = ξ t (t, s, ϕ)
∂

∂t
+ ξ s(t, s, ϕ)

∂

∂s
+ ηϕ(t, s, ϕ)

∂

∂ϕ
. (25)

Such symmetries of the PDE (22) can be used to compute conservation laws if they
are also variational or divergence symmetries of the Lagrangian (24).We require that
they satisfy the condition of the elementary action invariance [2]

XL + L(DL
t ξ t + Dsξ

s) = DL
t B1 + Ds B2 (26)

for some functions B1(t, s, ϕ) and B2(t, s, ϕ). If this condition holds with B1 =
B2 = 0, then the symmetry (25) is called variational. We refer to both variational
and divergent symmetries as the Noether symmetries.

Given a variational or divergent symmetry, we can find the corresponding conser-
vation law

DL
t [T t ] + Ds[T s] = 0, (27)

where the densities are given by the formulas

T t = ξ t L + (ηϕ − ξ tϕt − ξ sϕs)
∂L
∂ϕt

− B1,

T s = ξ s L + (ηϕ − ξ tϕt − ξ sϕs)
∂L
∂ϕs

− B2.

(28)

Conservation laws (27) can be rewritten for the Eulerian coordinates as

DE
t [eT t ] + Dr [eT r ] = 0. (29)

The relation between two above forms of conservation laws can be proved by direct
verification
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DL
t T

t + DsT
s = ϕs

(
DE

t (rnρT t ) + Dr (r
nρuT t + T s)

)
.

Therefore, if we have densities T t and T s of a conservation law in the Lagrangian
coordinates, we can find the corresponding densities in the Eulerian coordinates as

eT t = rnρT t , eT r = rnρuT t + T s . (30)

3.4 Equivalence Transformations

PDE (22) contains an arbitrary function S(s). Thus, we need the group classification
with respect to it. The generators of the equivalence Lie group has the form

Xe = ξ t ∂

∂t
+ ξ s ∂

∂s
+ ηϕ ∂

∂ϕ
+ ηS ∂

∂S
, (31)

where generators coefficients ξ t , ξ s, ηϕandηSdependon(t, s, ϕ, S).
Computation gives the generators of the equivalence group. There are five gen-

erators

Xe
1 = ∂

∂t
, Xe

2 = ∂

∂s
, Xe

3 = t
∂

∂t
− 2S

∂

∂S
,

Xe
4 = s

∂

∂s
+ (1 − γ )S

∂

∂S
, Xe

5 = ϕ
∂

∂ϕ
+ ((n + 1)γ − n + 1)S

∂

∂S
(32)

for the general case. For n = 0, there are two additional equivalence transformations
given by

Xe
∗,n = ∂

∂ϕ
and Xe

∗∗,n = t
∂

∂ϕ
. (33)

For the special values of the adiabatic exponent γ∗ = n+3
n+1 , we obtain one additional

generator

Xe
∗,γ = t2

∂

∂t
+ tϕ

∂

∂ϕ
. (34)

3.5 Group Classification of the Gas Dynamics Equation

The Lie algebra of the admitted transformations is given by the generators

X =
8∑

i=1

kiYi , (35)
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where

Y1 = ∂

∂t
, Y2 = ∂

∂s
, Y3 = ∂

∂ϕ
,

Y4 = t
∂

∂t
, Y5 = s

∂

∂s
, Y6 = ϕ

∂

∂ϕ
,

Y7 = t
∂

∂ϕ
, Y8 = t2

∂

∂t
+ tϕ

∂

∂ϕ
. (36)

The coefficients ki satisfy the system

(k5s + k2)Ss = (−2k4 + (1 − γ )k5 + ((n + 1)γ − n + 1)k6)S, (37a)

((n + 1)γ − n − 3)k8 = 0, (37b)

nk3 = 0, (37c)

nk7 = 0. (37d)

For the general case, we get two admitted symmetries

X1 = Y1 = ∂

∂t
, X2 = ((n + 1)γ − n + 1)Y4 + 2Y6

= ((n + 1)γ − n + 1)t
∂

∂t
+ 2ϕ

∂

∂ϕ
. (38)

For n = 0, there are two additional symmetries

X∗,n = Y3 = ∂

∂ϕ
and X∗∗,n = Y7 = t

∂

∂ϕ
. (39)

For the special values γ∗ = n+3
n+1 , there is one additional symmetry

X∗,γ = Y8 = t2
∂

∂t
+ tϕ

∂

∂ϕ
. (40)

The condition (37a) is the classifying equation for function S(s). It can be rewritten
as

(α1s + α0)Ss = βS (41)

for some constants α0, α1, and β. This classifying equation was studied in [39]. It
was shown that one need to consider four cases of the entropy function S(s), the
general case and three special cases:

• arbitrary S(s);
• S(s) = A0, A0 = const;
• S(s) = A0sq , q �= 0, A0 = const;
• S(s) = A0eqs , q �= 0, A0 = const.
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The same four cases were obtained for plain one-dimensional flows in [31]. Let
us note that the equivalence transformations can be used to simplify these cases to
A0 = 1.

4 Arbitrary Entropy S(s)

Equation (17a) can be rewritten in the form of a conservation law as

[
1

ρ

]

t

− [rnu]s = 0.

Thus, conservation of mass is included into the equations of the gas dynamics sys-
tem (17). In the Eulerian coordinates, it has the form

[rnρ]t + [rnρu]r = 0.

Equation (17c) gives the conservation of the entropy along pathlines as the conser-
vation law

St = 0.

Let us examine the symmetries of the kernel of admitted Lie algebras (38), (39),
and (40) for being variational or divergent symmetries, which provide conservation
laws.

4.1 General Case n �= 0, γ �= n+3
n+1

In the general cases, the admitted symmetries (38) provide us with one variational
symmetry

Z1 = X1 = ∂

∂t
. (42)

It leads to the conservation of energy with densities

T t
1 = ϕ2

t

2
+ S

γ − 1
ϕn(1−γ )ϕ1−γ

s , T s
1 = Sϕn(1−γ )ϕtϕ

−γ
s . (43)

For the gas dynamics variables, this conservation law gets rewritten as

T t
1 = u2

2
+ S

γ − 1
ργ−1, T s

1 = rn Sργ u. (44)
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In the Eulerian coordinates, it has the densities

eT t
1 = rn

(ρu2

2
+ S

γ − 1
ργ

)
, eT r

1 = rn
(ρu2

2
+ γ S

γ − 1
ργ

)
u.

4.2 Case n = 0, γ �= n+3
n+1

We get one more variational symmetry

Z∗,n = X∗,n = ∂

∂ϕ
, (45)

and one divergent symmetry

Z∗∗,n = X∗∗,n = t
∂

∂ϕ
with (B1, B2) = (ϕ, 0). (46)

These symmetries provide conservation laws

T t
∗,n = ϕt , T s

∗,n = Sϕ−γ
s ; (47)

T t
∗∗,n = ϕ − ϕt t, T s

∗∗,n = −t Sϕ−γ
s , (48)

representing the conservation of momentum and the motion of the center of mass,
respectively.

In gas dynamics variables, we can rewrite these conservation laws as

T t
∗,n = u, T s

∗,n = Sργ ; (49)

T t
∗∗,n = r − tu, T s

∗∗,n = −t Sργ . (50)

Notice that the conserved vector (T t∗∗,n, T
s∗∗,n) contains the function ϕ ≡ r. In the

Eulerian coordinates, we get

eT t
∗,n = ρu, eT r

∗,n = ρu2 + Sργ ;
eT t

∗∗,n = ρ(r − tu), eT r
∗∗,n = ρu(r − tu) − t Sργ .
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4.3 Case n �= 0, γ∗ = n+3
n+1

For γ = γ∗, the symmetries (38) and (40) lead to two variational symmetries: (42)
and

Z∗,γ = 1

2
X2 = 2t

∂

∂t
+ ϕ

∂

∂ϕ
(51)

and one divergence symmetry

Z∗∗,γ = X∗,γ = t2
∂

∂t
+ tϕ

∂

∂ϕ
with (B1, B2) =

(
ϕ2

2
, 0

)
. (52)

In addition to the conservation of energy, given in point Sect. 4.1, there are conser-
vation laws with densities

T t
∗,γ = 2t

(ϕ2
t

2
+ S

γ − 1
ϕn(1−γ )ϕ1−γ

s

)
− ϕϕt ,

T s
∗,γ = (2tϕt − ϕ)Sϕn(1−γ )ϕ−γ

s ;
(53)

T t∗∗,γ = t2
(ϕ2

t

2
+ S

γ − 1
ϕn(1−γ )ϕ

1−γ
s

)
− tϕϕt + ϕ2

2
,

T s∗∗,γ = (t2ϕt − tϕ)Sϕn(1−γ )ϕ
−γ
s . (54)

We can rewrite these conservation laws for the gas dynamics variables

T t
∗,γ = 2t

(u2

2
+ S

γ − 1
ργ−1

)
− ru, T s

∗,γ = rn(2tu − r)Sργ ; (55)

T t
∗∗,γ = t2

(u2

2
+ S

γ − 1
ργ−1

)
− tru + r2

2
, T s

∗∗,γ = rn(t2u − tr)Sργ (56)

as well as in the Eulerian coordinates

eT t
∗,γ =rn

(
2t

(ρu2

2
+ S

γ − 1
ργ

) − rρu
)
,

eT r
∗,γ = rn

(
2t

(ρu2

2
+ γ S

γ − 1
ργ

)
u − r(ρu2 + Sργ )

);

eT t∗∗,γ = rn
(
t2

(ρu2

2
+ S

γ − 1
ργ

) − trρu + r2ρ

2

)
,

eT r∗∗,γ = rn
(
t2

(ρu2

2
+ γ S

γ − 1
ργ

)
u − tr(ρu2 + Sργ ) + r2ρu

2

)
.
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4.4 Case n = 0, γ∗ = 3

In this case, the conservation law of the general case get extended by both the
conservation laws given in point Sect. 4.2 and by the conservation laws given in
point Sect. 4.3.

5 Special Cases of Entropy

Group classification of the PDE (22) gives three special cases of the entropy function.
They are examined in this section. These cases inherit the symmetries and conser-
vation laws of the arbitrary entropy S(s), given in the preceding section. We present
only additional symmetries and conservation laws.

5.1 Isentropic Case S(s) = A0

In the Eulerian coordinates, this case is presented as

S(r) = A0 or Sr = 0. (57)

For all cases (the case of general n and γ , the case n = 0, and the case of special
values γ = γ∗), there are two additional symmetries

X3 = Y2 = ∂

∂s
, X4 = (γ − 1)Y4 − 2Y5 = (γ − 1)t

∂

∂t
− 2s

∂

∂s
. (58)

5.1.1 General Case n �= 0, γ �= n+3
n+1

In the general case, there are two additional variational symmetries

Z2 = X3 = ∂

∂s
,

Z3 = γ + 1

2
X2 + n + 3 − (n + 1)γ

2
X4

= ((n + 3)γ − n − 1)t
∂

∂t
+ ((n + 1)γ − n − 3)s

∂

∂s
+ (γ + 1)ϕ

∂

∂ϕ
. (59)

The conservation laws of this case consist of the conservation law given in
point Sect. 4.1 (for arbitrary S(s)) and the two additional ones, given by densities

T t
2 = ϕsϕt , T s

2 = −ϕ2
t

2
+ γ S

γ − 1
ϕn(1−γ )ϕ1−γ

s ; (60)



One-Dimensional Flows of a Polytropic Gas: Lie Group Classification, Conservation … 75

T t
3 = ((n + 3)γ − n − 1)t

(ϕ2
t
2

+ S

γ − 1
ϕn(1−γ )ϕ

1−γ
s

) + ((n + 1)γ − n − 3)sϕsϕt

− (γ + 1)ϕϕt ,

T s
3 = ((n + 3)γ − n − 1)t Sϕn(1−γ )ϕtϕ

−γ
s + ((n + 1)γ − n − 3)s

(
−ϕ2

t
2

+ γ S

γ − 1
ϕn(1−γ )ϕ

1−γ
s

)
− (γ + 1)Sϕn(1−γ )+1ϕ

−γ
s . (61)

If rewritten for the gas dynamics variables, they take the form

T t
2 = u

rnρ
, T s

2 = −u2

2
+ γ S

γ − 1
ργ−1; (62)

T t
3 = ((n + 3)γ − n − 1)t

(u2

2
+ S

γ − 1
ργ−1) + ((n + 1)γ − n − 3)s

u

rnρ
− (γ + 1)ru,

T s
3 = ((n + 3)γ − n − 1)t Srnργ u + ((n + 1)γ − n − 3)s

( − u2

2
+ γ S

γ − 1
ργ−1)

− (γ + 1)Srn+1ργ . (63)

In the Eulerian coordinates, these conservation laws have densities

eT t
2 = u, eT r

2 = u2

2
+ γ S

γ − 1
ργ−1;

T t
3 = ((n + 3)γ − n − 1)trn

(ρu2

2
+ S

γ − 1
ργ

) + ((n + 1)γ − n − 3)su − (γ + 1)rn+1ρu,

T s
3 = ((n + 3)γ − n − 1)trn

(ρu2

2
+ γ S

γ − 1
ργ

)
u

+ ((n + 1)γ − n − 3)s
(u2

2
+ γ S

γ − 1
ργ−1) − (γ + 1)rn+1(ρu2 + Sργ ),

where S(s), and s is defined by system (15).

5.1.2 Special Cases

For all special cases, namely case n = 0, γ �= n+3
n+1 ; case n �= 0, γ∗ = n+3

n+1 ; and case
n = 0, γ∗ = 3, we get conservation laws of the arbitrary entropy S(s), which were
described in Sect. 4, supplemented by the conservation laws given in point Sect. 5.1.1.

Note that

Z3|γ=γ∗ = 2
n + 2

n + 1
Z∗,γ ,
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in other words for γ = γ∗, only the conservation law corresponding to Z2 in
point Sect. 5.1.1 is new.

5.2 Entropy Case S(s) = A0sq

In theEulerian coordinates, this entropy case is describedby thedifferential constraint

Srr =
(

ρr

ρ
+ n

r

)
Sr + q − 1

q

S2r
S

. (64)

For such S(s), there is one additional symmetry

X3 = (γ + q − 1)Y4 − 2Y5 = (γ + q − 1)t
∂

∂t
− 2s

∂

∂s
. (65)

5.2.1 General Case n �= 0, γ �= n+3
n+1

For the general case, there is one additional variational symmetry

Z2 = γ + q + 1

2
X2 + n + 3 − (n + 1)γ

2
X3

= ((n + 3)γ + 2q − n − 1)t
∂

∂t
+ ((n + 1)γ − n − 3)s

∂

∂s

+ (γ + q + 1)ϕ
∂

∂ϕ
. (66)

Thus, in addition to the conservation of energy given in Sect. 4.1, we obtain the
conservation law

T t
2 = ((n + 3)γ + 2q − n − 1)t

(ϕ2
t
2

+ S

γ − 1
ϕn(1−γ )ϕ

1−γ
s

)

+ ((n + 1)γ − n − 3)sϕsϕt − (γ + q + 1)ϕϕt ,

T s
2 = ((n + 3)γ + 2q − n − 1)t Sϕn(1−γ )ϕtϕ

−γ
s + ((n + 1)γ − n − 3)s

(
− ϕ2

t
2

+ γ S

γ − 1
ϕn(1−γ )ϕ

1−γ
s

)
− (γ + q + 1)Sϕn(1−γ )+1ϕ

−γ
s . (67)

For the gas dynamics variables, it takes the form
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T t
2 = ((n + 3)γ + 2q − n − 1)t

(u2

2
+ S

γ − 1
ργ−1) + ((n + 1)γ − n − 3)s

u

rnρ

− (γ + q + 1)ru,

T s
2 = ((n + 3)γ + 2q − n − 1)t Srnργ u + ((n + 1)γ − n − 3)s

( − u2

2
+ γ S

γ − 1
ργ−1)

− (γ + q + 1)Srn+1ργ . (68)

To rewrite this conservation laws in the Eulerian coordinates, we use the relation

s = qrnρ
S

Sr
(69)

to present the Lagrangian coordinate s. This relation allows to write down the den-
sities of the conservation law as follows:

eT t
2 = ((n + 3)γ + 2q − n − 1)trn

(ρu2

2
+ S

γ − 1
ργ

) + ((n + 1)γ − n − 3)qrnρu
S

Sr

− (γ + q + 1)rn+1ρu,

eT r
2 = ((n + 3)γ + 2q − n − 1)trn

(ρu2

2
+ γ S

γ − 1
ργ

)
u + ((n + 1)γ − n − 3)qrnρ

S

Sr
(u2

2
+ γ S

γ − 1
ργ−1) − (γ + q + 1)rn+1(ρu2 + Sργ ).

5.2.2 Case n = 0, γ �= n+3
n+1

For n = 0, the additional Noether symmetries are the same as in the general case.
Therefore, we get conservation laws given in points Sects. 4.1, 4.2, and 5.2.1.

5.2.3 Case n �= 0, γ∗ = n+3
n+1

The special case of γ∗ splits for values of q. For general q, we get the same Noether
symmetries as in the case of arbitrary S(s). Therefore, we obtain the same conser-
vation laws as given in points Sects. 4.1 and 4.3.

For the particular case q∗ = −2 n+2
n+1 , there is one additional variational symmetry

Z∗,q = −1

2
X3 = t

∂

∂t
+ s

∂

∂s
. (70)
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It provides with the following conservation law:

T t
∗,q = t

(ϕ2
t

2
+ S

γ − 1
ϕn(1−γ )ϕ1−γ

s

) + sϕsϕt ,

T s
∗,q = t Sϕn(1−γ )ϕtϕ

−γ
s + s

(
− ϕ2

t

2
+ γ S

γ − 1
ϕn(1−γ )ϕ1−γ

s

)
. (71)

It is also possible to present this conservation laws for the gas dynamics variables

T t∗,q = t
(u2

2
+ S

γ − 1
ργ−1

)
+ s

u

rnρ
,

T s∗,q = t Srnργ u + s
(

− u2

2
+ γ S

γ − 1
ργ−1

)
. (72)

To rewrite these densities in the Eulerian coordinates, we employ the relation (69)
and obtain densities

eT t
∗,q = rn

(
t
(ρu2

2
+ S

γ − 1
ργ

) + qρu
S

Sr

)
,

eT r
∗,q = rn

(
tρu + qρ

S

Sr

)(u2

2
+ γ S

γ − 1
ργ−1

)
.

5.2.4 Case n = 0, γ∗ = 3

We get the same conservation laws as described in the previous point. Note that
n = 0 leads to q∗ = −4.

5.3 Entropy Case S(s) = A0eqs

Let us note that this special case can be given in the Eulerian coordinates by the
differential constraint

Sr = qrnρS. (73)

For all cases of Sect. 4, there is one additional symmetry

X3 = −2Y2 + qY4 = qt
∂

∂t
− 2

∂

∂s
. (74)
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5.3.1 General Case n �= 0, γ �= n+3
n+1

For the general case, there is one additional variational symmetry

Z2 = q

2
X2 + n + 3 − (n + 1)γ

2
X3

= 2qt
∂

∂t
+ ((n + 1)γ − n − 3)

∂

∂s
+ qϕ

∂

∂ϕ
. (75)

The supplementary conservation law has densities

T t
2 = 2qt

(ϕ2
t

2
+ S

γ − 1
ϕn(1−γ )ϕ1−γ

s

) + ((n + 1)γ − n − 3)ϕsϕt − qϕϕt ,

T s
2 = 2qt Sϕn(1−γ )ϕtϕ

−γ
s + ((n + 1)γ − n − 3)

( − ϕ2
t

2
+ γ S

γ − 1
ϕn(1−γ )ϕ1−γ

s

)

− qSϕn(1−γ )+1ϕ−γ
s . (76)

For the gas dynamics variables, we get

T t
2 = 2qt

(u2

2
+ S

γ − 1
ργ−1) + ((n + 1)γ − n − 3)

u

rnρ
− qru,

T s
2 = 2qt Srnργ u + ((n + 1)γ − n − 3)

( − u2

2
+ γ S

γ − 1
ργ−1

) − qSrn+1ργ .

(77)

Finally, we rewrite these densities in the Eulerian coordinates

eT t
2 = 2qtrn

(ρu2

2
+ S

γ − 1
ργ

) + ((n + 1)γ − n − 3)u − qrn+1ρu,

eT r
2 = 2qtrn

(ρu2

2
+ γ S

γ − 1
ργ

)
u + ((n + 1)γ − n − 3)

(u2

2
+ γ S

γ − 1
ργ−1

)

− qrn+1(ρu2 + Sργ ).

5.3.2 Special Cases

For all special cases, we get the same additional conservation law as in the general
case of n and γ . We remark that because of

Z2|γ=γ∗ = qZ∗,γ

the corresponding conservation law, given in point Sect. 5.3.1, is not new for the
special values γ = γ∗.



80 V. A. Dorodnitsyn et al.

5.4 Discussion

The complete Lie group classification of the gas dynamics equation in the Lagrangian
coordinates (22) allows us to find all conservation laws which can be found using
Noether’s theorem and admitted symmetries. The group classification has three cases
of the entropy for which there exist additional symmetries. In the Eulerian coordi-
nates, these three cases are defined by differential constraints of first or second order.
Notice that the overdetermined systems which consist of the gas dynamics equations
and one of the considered differential constraints are involutive. The authors of [12,
13] also found conservation laws corresponding to special forms of the entropy. Here,
the symmetry nature of these conservation laws is explained.

In contrast to [11], the conservation laws, obtained in this chapter, are local. It
should be also noted that these conservation laws are naturally derived: their counter-
parts in the Lagrangian coordinates were derived directly using Noether’s theorem
without any additional assumptions. In contrast to the two-dimensional Lagrangian
gas dynamics, the special cases of the entropy in the Lagrangian coordinates are given
explicitly. In the two-dimensional case [40], the entropy is arbitrary, but the admit-
ted symmetry operators contain functions satisfying quasilinear partial differential
equations.

In a conservative form, the one-dimensional gas dynamics equations (11) are [33]

[rnρ]t + [rnρu]r = 0, (78a)

[rnρu]t + [
rn(ρu2 + p)

]
r = nrn−1 p, (78b)

[
rn

(
ρε + ρu2

2

)]
t + [

rn
(
ρε + ρu2

2 + p
)
u
]
r = 0, (78c)

where [. . .]t and [. . .]t denote total derivatives with respect to time t and the Eule-
rian coordinate r . One notes that the equation corresponding to the conservation
law of momentum is not homogeneous. However, most methods for constructing
conservation laws can only construct homogeneous conservation laws.

Consider inhomogeneous conservation laws of the one-dimensional gas dynamics
equations

Dt
[
f t

] + Dr
[
f r

] = f, (79)

where Dt and Dr are the total derivatives and the functions f t , f r , and f depend on
(t, r, ρ, u, p). The method which is used to derive such conservation laws consists of
obtaining an overdetermined system of partial differential equations for the functions
f t , f r , and f and finding its general solution. The overdetermined system is derived
by substituting the main derivatives ρt , ut , and pt found from the gas dynamics
equations into (79) and splitting it with respect to the parametric derivatives.

Calculations show that the general solution of this system provides the conserva-
tion laws

[ρF]t + [ρuF]r = ρ
(
Ft + u

(
Fr − n

r
F

))
, (80)
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[hρu]t + [
h(ρu2 + p)

]
r = htρu + hr (ρu

2 + p) − n

r
hρu2, (81)

[
h
(
ρ
u2

2
+ p

γ − 1

)]
t + [

h
(
ρ
u2

2
+ γ p

γ − 1

)
u
]
r

= ht
(
ρ
u2

2
+ p

γ − 1

) + (
hr − n

r
h
)(

ρ
u2

2
+ γ p

γ − 1

)
u, (82)

where h(t, r) and F(t, r, pρ−γ ) are arbitrary functions.
Equation (80) becomes a homogeneous conservation law if and only if

F(t, r, z) = rng(z), z = p

ργ
,

which for g ≡ 1 gives Eq. (78a).
Equation (81) can be a homogeneous conservation law only if n = 0. Notice that

for h = rn , this equation becomes (78b). Equation (82) provides a homogeneous
conservation law; only for h = rn , it gives Eq. (78c).

It should be also noted here that if the overdetermined system defined above is
extended by the condition f = 0, then one obtains all possible homogeneous zero-
order conservation laws of the one-dimensional gas dynamics equations.

6 Difference Models Preserving Symmetries

The first problem in discretization of differential equations is the choice of a differ-
ence mesh. The peculiarity of our approach is that we add mesh equation(s) into the
difference model:

Fi (z) = 0, i = 1, . . . , I ; (83a)

� j (z) = 0, j = 1, . . . , J. (83b)

Here, the first set of equations approximates the underlying differential system and
the second set of equations describes the difference mesh; z is a set of difference
variables needed for approximation. As it was shown in [19, 22], the invariance
of the mesh structure is a necessary condition for the invariance of the difference
model. The mesh equations can be presented with the help of difference invariants
or, alternatively, one can check the invariance of any chosen mesh by means of a
certain criterium (see [19, 22]).

Symmetries of difference schemes allow one to construct difference counterparts
of the differential conservation laws. The latter provides the absence of fake sources
of energy, momentum, etc. in differencemodels which play an important role in solu-
tions with high gradients. Moreover, the presence of (local) difference conservation



82 V. A. Dorodnitsyn et al.

lawsgives a possibility to apply thedifference counterpart of theGauss–Ostrogradskii
theorem [41] that leads to global conservation properties of the numerical solutions.

For discretization of the gas dynamics system (11a), (11b), (12), which is given
in the Eulerian coordinates, the simplest choice seems to be an orthogonal mesh in
(t, r) plane. As it will be shown below, this mesh is not invariant with respect to
symmetries which we aim to preserve in the difference models. This noninvariance
destroys the invariance of difference equations considered on such a mesh. We will
choose another coordinate system in which one can preserve mesh geometry and,
hence, the invariance of the whole difference model.

6.1 The Gas Dynamics Equations

In Sect. 3, we considered entropy as one of the dependent variables. Since the entropy
is conserved along pathlines only for smooth solutions, it is appropriate to choose
another form of the gas dynamics equations for numerical modeling.

6.1.1 Eulerian Coordinates

We start with the equations for the gas dynamics variables ρ, u, and p:

ρt + uρr + ρ

rn
(rnu)r = 0, (84a)

ut + uur + 1

ρ
pr = 0, (84b)

pt + upr + γ p

rn
(rnu)r = 0, (84c)

which admits four symmetries for any n and γ

X1 = ∂

∂t
, X2 = t

∂

∂t
+ r

∂

∂r
,

X3 = 2t
∂

∂t
+ r

∂

∂r
− u

∂

∂u
+ 2ρ

∂

∂ρ
, X4 = ρ

∂

∂ρ
+ p

∂

∂p
. (85)

For n = 0, there are two additional symmetries

X∗,n = ∂

∂r
and X∗∗,n = t

∂

∂r
+ ∂

∂u
. (86)

For the special values γ∗ = n+3
n+1 , there is one additional symmetry

X∗,γ = t2
∂

∂t
+ tr

∂

∂r
+ (r − tu)

∂

∂u
− (n + 1)tρ

∂

∂ρ
− (n + 3)tp

∂

∂p
. (87)
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6.1.2 Conservation Laws

System (84) possesses the following conservation laws.

1. General case of n and γ

In the general case, we get

• Conservation of mass [
rnρ

]
t + [

rnρu
]
r = 0; (88)

• Conservation of energy

[
rn

(
ρε + ρu2

2

)]
t + [

rn
(
ρε + ρu2

2
+ p

)
u
]
r = 0; (89)

• Conservation law

[
rnρF

( p

ργ

)]
t + [

rnρuF
( p

ργ

)]
r = 0, (90)

where F is a differentiable function. It holds due to the conservation of mass
(88) and conservation of entropy along the pathlines, given by

( p

ργ

)
t
+ u

( p

ργ

)
r

= 0.

2. Case n = 0

For the particular case n = 0 (plain one-dimensional flows), we obtain two addi-
tional conservation laws:

• Momentum
[ρu]t + [

ρu2 + p
]
r = 0; (91)

• Motion of the center of mass

[ρ(r − tu)]t + [ρu(r − tu) − tp]r = 0. (92)

3. Special values of γ∗ = n+3
n+1

For γ = γ∗, there are two additional conservation laws
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{
rn

[
2t

(
ρε + ρu2

2

) − rρu
]}

t

+ {
rn

[
2t

(
ρε + ρu2

2
+ p

)
u − r(ρu2 + p)

]}
r

= 0 (93)

and

{
rn

[
t2

(
ρε + ρu2

2

) − trρu + r2

2
ρ
]}

t

+ {
rn

[
t2

(
ρε + ρu2

2
+ p

)
u − tr(ρu2 + p) + r2

2
ρu

]}
r = 0. (94)

One can find conservation laws by direct computation or by an appropriate
reduction of the three-dimensional conservation laws. Conservation laws of three-
dimensional gas dynamics were obtained in [42] (see also [2]) with the help of a
variational formulation andNoether’s theorem (it requires some assumptions) and by
direct computation in [43]. Among the 13 conservation laws of the three-dimensional
case, all but one can be integrated over discontinuities [43]. The only conservation
law which cannot be integrated over discontinuities gets reduced to (90) in the case
of one-dimensional flows. It cannot be integrated over discontinuities because the
entropy is not conserved for the discontinuous solutions [37, 44]. In [2, 42], one
can find a symmetry interpretation of the conservation laws, i.e., the correspondence
between the conservation laws and the Lie point symmetries of the three-dimensional
gas dynamics equations.

6.1.3 Lagrangian Coordinates

We rewrite the gas dynamics equations (84) in the Lagrangian coordinates (t, s) as

(
1
ρ

)
t = (rnu)s, (95a)

ut + rn ps = 0, (95b)

εt = −p(rnu)s, (95c)

rt = u. (95d)

Note that in the Lagrangian coordinates, variable r is dependent. It is given by
Eq. (95d), which is included in the system of the gas dynamics equations, and the
relation

rs = 1

rnρ
. (96)
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From Eq. (95), it is easy to see that

εt = −p

(
1

ρ

)

t

. (97)

This relation is important for the balance between the specific internal energy and
the specific kinetic energy.

We rewrite symmetries (85) and additional symmetries (86) and (87) in the
Lagrangian coordinates. There are four symmetries in the general case

X1 = ∂

∂t
, X2 = t

∂

∂t
+ (n + 1)s

∂

∂s
+ r

∂

∂r
,

X3 = 2t
∂

∂t
+ (n + 3)s

∂

∂s
− u

∂

∂u
+ 2ρ

∂

∂ρ
+ r

∂

∂r
,

X4 = s
∂

∂s
+ ρ

∂

∂ρ
+ p

∂

∂p
; (98)

two additional symmetries for the particular case n = 0

X∗,n = ∂

∂r
and X∗∗,n = t

∂

∂r
+ ∂

∂u
; (99)

and one additional symmetry for the special case γ∗

X∗,γ = t2
∂

∂t
+ (r − tu)

∂

∂u
− (n + 1)tρ

∂

∂ρ
− (n + 3)tp

∂

∂p
+ tr

∂

∂r
. (100)

We also include the translation symmetry for themassLagrange coordinate,which
is given by the generator

X0 = ∂

∂s
. (101)

6.1.4 Conservation Laws

Let us rewrite the conservation laws for the Lagrangian coordinates. We obtain

1. General case of n and γ

There hold

• Conservation of mass [ 1
ρ

]
t − [rnu]s = 0; (102)

• Conservation of energy
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[
ε + 1

2
u2

]
t + [rn pu]s = 0; (103)

• Conservation of entropy along pathlines

[ p

ργ

]
t = 0. (104)

2. Case n = 0

There are additional

• Conservation of momentum

[u]t + [p]s = 0; (105)

• Motion of the center of mass

[r − tu]t − [tp]s = 0. (106)

3. Special values of γ∗ = n+3
n+1

For γ = γ∗, there are two additional conservation laws

[
2t

(
ε + 1

2
u2

) − ru
]
t + [rn p(2tu − r)]s = 0 (107)

and
[
t2

(
ε + 1

2
u2

) − tru + r2

2

]
t + [rn p(t2u − tr)]s = 0. (108)

6.2 The Numerical Schemes

In this section, we consider numerical schemes and their symmetries. Besides, our
goal is to construct schemes that have difference conservation laws analogous to the
conservation laws of the underlying differential system. We restrict ourselves by the
homogenous conservation laws.

6.2.1 Invariance and Eulerian Coordinates for n = 0

For discretization of the gas dynamics system (84), which is given in the Eulerian
coordinates, the simplest choice seems to be an orthogonal mesh in (t, r) plane.
However, this mesh is not invariant that destroys invariance of difference equations
considered on suchmesh. Indeed, as it was shown in [19, 22], the necessary condition
for a mesh to preserve its orthogonality under a group transformation generated by
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the operator

X = ξ t ∂

∂t
+ ξ r ∂

∂r
+ · · · (109)

is the following:
D+h(ξ

t ) = −D+τ (ξ
x), (110)

where D+h and D+τ are the operators of difference differentiation in r and t direc-
tions, respectively.

System (84) admits the 6-parameter Lie symmetry group of point transformations
that corresponds to the Lie algebra of infinitesimal operators (85) and (86). In the
special case γ∗ = 3, there is one more symmetry (87).

It is easy to see that the Galilean transformation given by the operator X∗∗,n does
not satisfy the criterion (110). The same is true for X∗,γ . It means that one should
look for an invariant moving mesh in the Eulerian coordinates.

To obtain an invariant moving mesh, we chose the following difference stencil
with two time layers:

• independent variables:

t = t j , t̂ = t j+1; r = r j
i , r+ = r j

i+1, r̂ = r j+1
i , r̂+ = r j+1

i+1 ;

• dependent variables in the nodes of the mesh (the same notation as for r ):

u, u+, û, û+; ρ, ρ−, ρ̂, ρ̂−; p, p−, p̂, p̂−.

Then,wefind thefinite-difference invariants for symmetries (85) and (86) as solutions
of the system of linear equations

Xi I (t, t̂, r, r+, r̂ , r̂+, . . . , p, p−, p̂, p̂−) = 0 (111)

for the considered symmetries. Here, we assume that the operator is prolonged for
all variables of the stencil [22]. There are 12 functionally independent invariants

ĥ+
h+

,
τ

h+

√
p

ρ
,

√
ρ

p

( r̂ − r

τ
− u

)
,

√
ρ

p
(u+ − u),

√
ρ

p
(û − u),

√
ρ

p
(û+ − û),

p+
p

,
p̂

p
,

p̂+
p̂

,
ρ̂

ρ
,

ρ̂+
ρ̂

,
ρ+
ρ̂

,

where τ = t̂ − t , h+ = r+ − r , and ĥ+ = r̂+ − r̂ .
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Notice that the only one difference invariant contains the value r̂ . This invariant
suggests, for example, an invariant moving mesh given by

√
ρ

p

( r̂ − r

τ
− u

) = 0

or, equivalently,
r̂ − r

τ
= u. (112)

In the continuous limit, it corresponds to the evolution of the spacial variable r given
as

dr

dt
= u. (113)

Thus, we arrive at choosing the mass Lagrangian coordinates with the operator of
differentiation with respect to t

DL
t = DE

t + uDr .

6.2.2 Notations

We introduce the mesh for the mass Lagrangian coordinate s:

hs = si+1 − si and hs− = si − si−1. (114)

Generally, the spacing can be nonuniform. For simplicity, we use a uniform mesh
hs = hs−.

For time, we consider themeshwith points t j . Since we consider the schemes with
two time layers, we denote the time step as τ . Of course, we can consider nonuniform
time meshes with steplengths τ j = t j+1 − t j .

Now the operators have the form

X = ξ t ∂

∂t
+ ξ s ∂

∂s
+ · · · (115)

and the criterium of invariant orthogonality

D+hs (ξ
t) = −D+τ (ξ

s) (116)

holds for all considered symmetries (98), (99), (100), and (101). Here, D+hs and D+τ

are the operators of difference differentiation in s and t directions, respectively.
We split the dependent variables into kinematic and thermodynamic. The kine-

matic variables u and r are prescribed to the nodes. For example, for u, we have
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u = u j
i , u+ = u j

i+1, û = u j+1
i , û+ = u j+1

i+1 .

The thermodynamic variables ρ and p are taken in the midpoints as

ρ− = ρ
j
i−1/2, ρ = ρ

j
i+1/2, ρ+ = ρ

j
i+3/2,

ρ̂− = ρ
j+1
i−1/2, ρ̂ = ρ

j+1
i+1/2, ρ̂+ = ρ

j+1
i+3/2.

To describe the scheme, we need the time and spatial derivatives

ut = û − u

τ
, us = u j

i+1 − u j
i

si+1 − si
= u+ − u

hs
. ps̄ = p j

i+1/2 − p j
i−1/2

1
2 (si+1 − si−1)

= p − p−
hs

and weighted values defined as

y(α) = α ŷ + (1 − α)y, 0 ≤ α ≤ 1.

6.2.3 The Samarskii–Popov Scheme

In [45] (see also [32]), the authors introduced a conservative scheme for plain one-
dimensional flows (n = 0). It was generalized to the other one-dimensional flows
(n = 1, 2) in [32]. This scheme is a discretization of Eq. (95)

(
1
ρ

)

t
= (Ru(0.5))s, (117a)

ut = −Rp(α)
s̄ , (117b)

εt = −p(α)(Ru(0.5))s, (117c)

rt = u(0.5), (117d)

where R is a discretization of rn chosen as

R = r̂ n+1 − rn+1

(n + 1)(r̂ − r)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, n = 0;
r̂ + r

2
, n = 1;

r̂2 + r̂r + r2

3
, n = 2.

Scheme (117) has four equations for five variables ρ, u, ε, r , and p. It should be
supplemented by a discrete equation of state, a discrete analog of (9). For example,
it can be taken in the same form that means

ε
j
i+1/2 = ε(ρ

j
i+1/2, p

j
i+1/2). (118)
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6.2.4 Properties of the Samarskii–Popov Scheme

For a polytropic gas scheme (117), (118) is invariant with respect to the symme-
tries (98) and (101) corresponding to the general case. For n = 0, it is also invariant
to symmetries (99). The scheme is not invariant for the additional symmetry (100),
which exists for the special values γ∗.

Let us review important properties of the scheme. It possesses many qualitative
properties of the underlying differential equations. For any equation of state ε =
ε(ρ, p), i.e., not only for the polytropic gas (10), this scheme has the following
conservation laws:

• Conservation of mass [
1

ρ

]

t

− [Ru(0.5)]s = 0; (119)

• Conservation of energy

[
ε + u2 + u2+

4

]

t

+ [Rp(α)
∗ u(0.5)]s = 0, (120)

where

p(α)
∗ = (p∗)(α)

i = p(α)
i−1/2 + p(α)

i+1/2

2
.

For n = 0, there are two additional conservation laws:

• Conservation of momentum

[u]t + [p(α)]s = 0; (121)

• Motion of the center of mass

[r − tu]t − [t (0.5) p(α)]s = 0. (122)

These conservation laws correspond to (102), (103), (105), and (106). There are
no discrete conservation laws corresponding to (107) and (108), which hold for the
special values of γ∗.

Remark 1 Modifying the equation of state (10), it is possible to achieve conser-
vation of the conservation laws (107) and (108), which hold for γ∗ = n+3

n+1 , under
discretization. We refer to [46] for the case n = 0 and to [47] for the generalization
to n = 1, 2.

Scheme (117) consists of four equations for five variables ρ, u, p, ε, and r .Wewill
not impose the discrete equation of state (118). The freedom to choose a discretization
of the equation of state will be used to impose one additional conservation law. Let
us look for an equation of state which gives us the following difference analog of the
additional conservation law (107):
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[
2t

(
ε + < u2 >

2

)
− < ru >

]

t

+ [Rp(α)
∗ (2t (0.5)u(0.5) − r (0.5))]s = 0, (123)

where we use a special notation for the average value of two function values taken
in the neighboring nodes of the same time layer

< f (u, r) >= f (u, r) + f (u+, r+)

2
.

It leads to the following specific internal energy equation:

ε(0.5) = p(α)

γ − 1

(
1

ρ

)(0.5)

− τ 2

8
< (ut )

2 > +1

2
p(α)

[
r (0.5)R − (rn+1)(0.5)

]
s . (124)

We will take it as the discrete equation of state, which approximates (10).
In this case, we also get a difference analog of the second additional conservation

law (108) as

[
t2

(
ε + < u2 >

2

)
− t < ru > +< r2 >

2
+ τ2

8
< u2 >

]

t

+ [Rp(α)∗ ((t2)(0.5)u(0.5) − t(0.5)r (0.5))]s = 0. (125)

Note that it has a correcting term τ 2

8 < u2 >, which disappears in the continuous
limit.

Thus, we obtained difference scheme (117) supplemented by discrete state equa-
tion (124). In this scheme, the pressure values p and p̂ appear only as a weighted
value p(α), i.e., α has no longer meaning of a parameter. We can consider this value
as the pressure in the midpoint of the cell (t j+1/2, si+1/2), i.e., for α = 0.5.

The scheme holds a discrete counterpart of the relation (97), namely

εt = −p(α)

(
1

ρ

)

t

. (126)

This is an important supplement to the conservation of total energy (120), which
provides the balance of the specific internal energy and the specific kinematic energy.

In the case of a polytropic gas, the equations of gas dynamics hold the conservation
of entropy (104) along pathlines (for smooth solutions). There is no such property
for the scheme (117). However, the scheme holds the relation

Δp

p(α)
= γ

Δρ

ρ(α)
, Δp = p̂ − p, Δρ = ρ̂ − ρ (127)
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that approximates (104) presented with the help of differentials

dp

p
= γ

dρ

ρ
.

6.3 Invariance of Difference Schemes

In this point, we show how to construct invariant schemes with the help of finite-
difference invariants. Scheme (117) can be expressed in terms of invariants for the
general case of γ . Its modification described in Remark 1 possesses the additional
conservation laws which hold for the special values γ∗. However, it is not invariant
with respect to the additional symmetry X∗,γ which exists for these special values.
For the special values γ∗, invariant schemes are constructed. The case n = 0 was
reported in [31].

6.3.1 General Case n �= 0, γ �= n+3
n+1

We chose an orthogonal mesh in the Lagrangian coordinates and a stencil with the
following variables:

• independent variables:

t = t j , t̂ = t j+1, s = si , s+ = si+1, s− = si−1;

• kinematic variables in the nodes:

u = u j
i , u+ = u j

i+1, û = u j+1
i , û+ = u j+1

i+1 , r, r+, r̂ , r̂+;

• thermodynamic variables in the midpoints:

ρ = ρ
j
i , ρ− = ρ

j
i−1, ρ̂ = ρ

j+1
i , ρ̂− = ρ

j+1
i−1 , p, p−, p̂, p̂−.

For these 21 stencil variables, we find 16 = 21 − 5 invariants of the symmetries (98)
and (101):

I1 = hs−
hs

, I2 = ρrn+1

hs
, I3 = τ

hs
rn

√
ρp, I4 = τu

r
,

I5 = u+
u

, I6 = û

u
, I7 = û+

û
, I8 = r+

r
, I9 = r̂

r
, I10 = r̂+

r̂
,

I11 = ρ−
ρ

, I12 = ρ̂

ρ
, I13 = ρ̂−

ρ̂
, I14 = p−

p
, I15 = p̂

p
, I16 = p̂−

p̂
.
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The scheme (117) is invariant with respect to the considered symmetries and can be
expressed in terms of the invariants as

1

I12
− 1 = I2 I4

( (I9 I10)
n+1 − I n+1

8
(n + 1)(I9 I10 − I8)

I6 I7 + I5
2

− I n+1
9 − 1

(n + 1)(I9 − 1)

I6 + 1

2

)
, (128a)

I6 − 1 = − I 23
I2 I4

I n+1
9 − 1

(n + 1)(I9 − 1)
(α I15(1 − I16) + (1 − α)(1 − I14)) , (128b)

1

γ − 1

( I15
I12

− 1
) = −I2 I4 (α I15 + (1 − α))

×( (I9 I10)
n+1 − I n+1

8
(n + 1)(I9 I10 − I8)

I6 I7 + I5
2

− I n+1
9 − 1

(n + 1)(I9 − 1)

I6 + 1

2

)
,

(128c)

I9 − 1 = 1

2
I4(1 + I7). (128d)

6.3.2 Special Case n = 0, γ �= n+3
n+1

In the space of 21 stencil variables, there are 14 invariants for 7 symmetries (98),
(99), (101):

I1 = hs−
hs

, I2 = τ

hs
√

ρp, I3 =
√

ρ

p

( r̂ − r

τ
− u

)
, I4 =

√
ρ

p

( r̂ − r

τ
− û

)
,

I5 =
√

ρ

p
(u+ − u), I6 =

√
ρ

p
(û+ − û), I7 = ρ(r+ − r)

hs
, I8 = ρ̂(r̂+ − r̂)

hs
,

I9 = ρ−
ρ

, I10 = ρ̂

ρ
, I11 = ρ̂−

ρ̂
, I12 = p−

p
, I13 = p̂

p
, I14 = p̂−

p̂
.

One can find the scheme (117) for n = 0 approximating the gas dynamics system
(95) with the help of these invariants as

1

I10
− 1 = I2

I5 + I6
2

, (129a)

I3 − I4 = −I2 (α (I13 − I13 I14) + (1 − α)(1 − I12)) , (129b)
1

γ − 1

( I13
I10

− 1
) = −I2(α I13 + (1 − α))

I5 + I6
2

, (129c)

I3 + I4 = 0. (129d)
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6.3.3 Special Case n �= 0, γ∗ = n+3
n+1

We use the same mesh and stencil as for the general case of γ . Due to the additional
symmetry (100), we get one invariant less. We obtain the following finite-difference
invariants:

J1 = hs−
hs

, J2 = ρrn+1

hs
, J3 = ρ̂r̂ n+1

hs
, J4 = τrn

hs
ρ

1
2 − 1

n+1 ρ̂
1

n+1 p
1
2 , J5 = p̂

p

(
ρ

ρ̂

) n+3
n+1

,

J6 = r + τu

r̂
J7 = r+ + τu+

r̂+
, J8 = r̂ − τ û

r
, J9 = r̂+ − τ û+

r+
,

J10 = r+
r

J11 = r̂+
r̂

, J12 = ρ−
ρ

, J13 = ρ̂−
ρ̂

, J14 = p−
p

, J15 = p̂−
p̂

.

Using these invariants, we suggest an invariant scheme

ρ̂(r̂ n+1
+ − r̂ n+1) = ρ(rn+1

+ − rn+1), (130a)

û − u

τ
= −

(
ρ̂

ρ

) 2
n+1

rn
p − p−
hs

, (130b)

p̂

ρ̂
n+3
n+1

= p

ρ
n+3
n+1

, (130c)

r̂ − r

τ
= u, (130d)

which allows explicit computations. It is expressed in terms of the invariants as

J3(J
n+1
11 − 1) = J2(J

n+1
10 − 1), (131a)

J8 − 1 = J 2
4

J2
(1 − J14), (131b)

J5 = 1, (131c)

J6 = 1. (131d)

In addition to the invariance, the scheme (130) possesses conservation of mass,
given by Eq. (130a), and conservation of the entropy along pathlines, given by (130c).

We remark that the conservation of mass property can be rewritten as

1

τ

( 1
ρ̂

− 1

ρ

) = R+u+ − Ru

hs
or

[
1

ρ

]

t

− [Ru]s = 0 (132)

with

hs = ρ̂
r̂ n+1
+ − r̂ n+1

n + 1
= ρ

rn+1
+ − rn+1

n + 1
.
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6.3.4 Special Case n = 0, γ∗ = 3

In comparison to the case n = 0, γ �= 3, we have one more symmetry, namely (100).
Therefore, we get one invariant less. There are 13 invariants:

J1 = hs−
hs

, J2 = τ

hs
(ρpρ̂ p̂)

1
4 , J3 =

√
ρ

p

( r̂ − r

τ
− u

)
, J4 =

√
ρ̂

p̂

( r̂ − r

τ
− û

)
,

J5 =
√

ρ

p

(h+
τ

+ u+ − u
)
, J6 =

√
ρ̂

p̂

( − ĥ+
τ

+ û+ − û
)
, J7 = ρ(r+ − r)

hs
,

J8 = ρ̂(r̂+ − r̂)

hs
, J9 = p̂

p

(ρ

ρ̂

)3
, J10 = ρ−

ρ
, J11 = ρ̂−

ρ̂
, J12 = p−

p
, J13 = p̂−

p̂
.

There are many possibilities to approximate the gas dynamics system (95a), (95b),
(104), (95d) with the help of these invariants. We propose the following explicit
invariant scheme:

ρ̂(r̂+ − r̂) = ρ(r+ − r), (133a)

û−u
τ

= −
(

ρ̂

ρ

)2
p−p−
hs , (133b)

p̂
ρ̂3 = p

ρ3 , (133c)

r̂−r
τ

= u. (133d)

In term of the invariants, this scheme is written as

J7 = J8, (134a)

J4 = J2 J
−3/4
9 (1 − J12), (134b)

J9 = 1, (134c)

J3 = 0. (134d)

The scheme conserves the entropy, or S, along the pathlines and possesses conser-
vation of mass (133a). Note that the first equation can be rewritten as

1

τ

( 1
ρ̂

− 1

ρ

) = u+ − u

hs
or

[
1

ρ

]

t

− [u]s = 0 (135)

with
hs = ρ̂(r̂+ − r̂) = ρ(r+ − r).

We remark that implicit invariant schemes are also possible.
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7 Conclusion

In the chapter, we examined one-dimensional flows of a polytropic gas and their
Lie point symmetry properties. By the one-dimensional flows we mean plain one-
dimensional flows, the gas dynamics flows with radial symmetry, and the gas dynam-
ics flows with spherical symmetry. There was performed the Lie group classifica-
tion of the gas dynamics equations reduced to a single second-order PDE in the
Lagrangian coordinates. The entropy function was a parameter of the classification.
Four cases were identified. In the general case, there are conservation laws of mass
and energy. For the special cases, there were found additional conservation laws. The
conservation laws obtained for the second-order PDE were later rewritten for the gas
dynamics variables. They were also transformed from the Lagrangian coordinates to
the Eulerian ones.

Difference models were discussed for different cases of n and γ . It is shown that
the Samarskii–Popov scheme is invariant for the symmetries of the general case of
γ , but not for the additional symmetry of the special case γ∗ = n+3

n+1 . This scheme
possesses conservationofmass and energy, forn = 0 also conservationofmomentum
and motion of the center of mass. It does not have conservation of the entropy along
the pathlines. For the special values γ∗, we suggest invariant schemes, which have
conservation of mass and conservation of the entropy along the pathlines.

Acknowledgements The research was supported by Russian Science Foundation Grant no. 18-
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