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Preface

Professor Nail H. Ibragimov loved mathematics passionately. “It gives you a whole
new window on the world,” he used to say on his favorite subject. His work was
focused on modern group analysis, “a very attractive area.” This research is based on
the results and ideas of Sophus Lie, who Ibragimov described as “one of the greatest
mathematicians of the 19th century.” According to Ibragimov, the importance of Lie
group analysis cannot be overemphasized—it helps to solve very important differ-
ential equations used in mathematical models in many and diverse fields. He also
believed that it was essential that education in this field be expanded.

Nail H. Ibragimov was born on January 18, 1939, in the village of Urussu, in
Tatarstan, Russia. School years fell on the difficult post-war years, but it was then

vii



viii Preface

that the interest in physics and mathematics appeared. A lot of this was facilitated
by the excellent teachers of secondary school in the town of Urussu, located 5 km
from his village. Nail had always been grateful to his mathematics teacher Larisa
Petrovna Barkhat, to whom he dedicated the first volume of his selected works.

While serving in the army in 1958–1961, he began to prepare for studies at
university: he independently studied mathematical analysis using textbooks of N.
N. Luzin, physics according to the multivolume course of O. D. Khvolson. He also
studied foreign languages. He got admitted to the Moscow Institute of Physics and
Technology and after the first year he moved to newly created Academgorodok and
transferred to Novosibirsk University. Outstanding scientists such as M. A. Lavren-
tiev, S. L. Sobolev, B.Yu. Rumer, D. V. Shirkov, and A. D. Aleksandrov worked there
at that time and influenced the formation of Nail as a scientist.

Ibragimov combined his studies at the university with work at the Institute of
Hydrodynamics in the scientific group of his teacher Lev Vasilievich Ovsyannikov,
where the methods of group analysis were actively developed in those years. The
creative atmosphere that prevailed in the institutes of Academgorodok, the high
efficiency, and talent of N. H. Ibragimov led to early graduation from the university,
defending a Ph.D. thesis in 1967 only 2 years after graduation, and defending the
Doctor of Science dissertation already in 1973. The main results obtained in those
years by Nail Ibragimov were:

• theory of generalizedmotions inRiemannian space, including theKilling equation
as a special case (1969);

• extension of the Pauli group for the Dirac equations (1969);
• differential–algebraic approach to conservation laws and proof of Noether’s

converse theorem (1969);
• the discovery of the group-theoretical nature of theHuygens principle in the theory

of wave propagation and the solution of the Hadamard problem in spaces with a
nontrivial conformal group (1970);

• new conservation laws in hydrodynamics (1973);
• construction of the theory of Lie–Bäcklund transformation groups (1979).

In 1980, N. H. Ibragimovmoved to Ufa, where he headed the Laboratory ofMath-
ematical Physics at the Physics and Mathematics Department of the Bashkir Branch
of the USSR Academy of Sciences. Ibragimov combined work at the Academy of
Sciences with work at Ufa Aviation Institute where he first was a professor of the
Department ofHigherMathematics, and then, after 1984, theHead of theDepartment
of Applied Mathematics. During this period, he, his followers, and Ph.D. students
developed:

• methods for constructing nonlocal symmetries of the equations of mechanics
(1985);

• foundations of the theory of approximate transformation groups and approximate
symmetries of equations with a small parameter (1987);

• completed work on the book “Transformation Groups in Mathematical Physics”
(Moscow: Nauka, 1983), which was distinguished by the USSR State Prize for
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Science and Technology (1987) together with L. V. Ovsyannikov’s book “Group
Analysis of Differential Equations” (Moscow: Nauka, 1978).

In 1987, Nail Ibragimov moved to Moscow to work at the M. V. Keldysh Institute
of Applied Mathematics by the invitation of A. A. Samarsky, member of the USSR
Academy of Sciences. Themain direction of his scientific interests at the institutewas
the symmetry approach to the fundamental solution and the invariance principle in
the problems with initial conditions (1992). At the same time, N. H. Ibragimov began
to teach the course “Equations of Mathematical Physics” at the Moscow Institute of
Physics and Technology. It was within the framework of this course that his course
in differential equations, based on the symmetry approach, began to emerge. This
activity resulted in two popular brochures “Primer on group analysis” (1989) and
“Essay on the group analysis of ordinary differential equations,” Znanie, Moscow
(1991).

Since 1976, he lectured intensely all over the world, e.g., at Georgia Tech in the
USA,Collége deFrance, theUniversity ofWitwatersrand inSouthAfrica, theUniver-
sity of Catania in Italy, etc. In 1993–1994, N.H. Ibragimov worked as a professor of
the Department of Engineering Sciences at Istanbul Technical University (Turkey),
in 1994–2000 as professor of the Department of Computational and Applied Math-
ematics at the University of Witswatersrand (Johannesburg) (until 1997) and the
Department of Mathematics at the North-West University (Mmabatho) in South
Africa. It is interesting to note that Ibragimov’s scientific achievements were highly
appreciated in South Africa: he was awarded the highest scientific rating by the
National Research Foundation (before him, only one mathematician in the country
had such a rating in applied mathematics).

Since 2000, N. H. Ibragimov lived and worked in Sweden: he was a professor
at the Department of Mathematics and Natural Sciences at Blekinge Institute of
Technology (Karlskrona) and director of the International Center ALGA (Advances
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in Lie Group Analysis) which he created. The main scientific results obtained by him
in recent years are:

• construction of Laplace-type invariants for a parabolic equation (2000);
• solution of the Laplace problem on the invariants of the hyperbolic equation

(2004), for which he was awarded the prize, Researcher of the year by Blekinge
Research Society, Sweden;

• generalization of Euler’s method for solving hyperbolic equations to parabolic
equations (2008).

In recent years, Prof.N.H. Ibragimovdevoted himself to popularizing themethods
of group analysis. Nail H. Ibragimov published about 30 books including 2 graduate
textbooks, Elementary Lie group analysis and ordinary differential equations (1999)
and A practical course in differential equations and mathematical modelling (2005).
The last textbook was also translated into Russian, Swedish, Chinese, and German.

At the research center ALGA, Ibragimov started the journal “Archives of ALGA,”
which published both new and little-known (or forgotten) results on group analysis
of differential equations. Nail Ibragimov was a member of the editorial board of
two international journals, Nonlinear Dynamics (since 1987) and Communications
in nonlinear sciences and numerical modeling (since 2002), and a member of the
editorial board of the Ufa mathematical journal.

N. H. Ibragimov stood at the origins of group analysis and, under his direct leader-
ship, the theory and applications of modern group analysis continued to develop. To a
large extent, this was facilitated by the international research conference MOGRAN
“Modern Group Analysis” organized by him and held in many universities all over
the world.

In 2011, N. H. Ibragimov won a mega-grant of the Ministry of Education and
Science of the Russian Federation. He organized research laboratory group analysis
of mathematical models in natural and engineering sciences at Ufa State Aviation
Technical University, Ufa, Russia (2011–2015).

Since April 2012, he also was the Professor Emeritus in the Department of Math-
ematics and Natural Sciences, School of Engineering at Blekinge Institute of Tech-
nology, Karlskrona, Sweden. A friendly attitude toward people, decency, and scrupu-
lousness both in scientific and in life matters have always distinguished Nail H.
Ibragimov. This allowed him to find friends and associates around the world and to
spread the idea of invariance in scientific and teaching circles.
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Ibragimov’s classmate, Edward Kissin (United Kingdom), wrote about him: “He
was an amazingly cheerful and positive person. I was always amazed how this guy
from a remote village who did not know Russian until 10–12 years old, then joined
the army, was able to enroll to the Moscow Institute of Physics and Technology,
defend his dissertation in mathematics, and become a professor. Huge willpower and
determination!”

Professor Ibragimov passed away on 4 November 2018.

Ufa, Bashkortostan, Russia
April 2021

Rafail K. Gazizov
R. S. Khamitova
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Approximate Symmetry in Nonlinear
Physics Problems

V. F. Kovalev

Abstract About 30years ago, the notion of approximate transformation groups was
introduced in modern group analysis by Nail H. Ibragimov with coauthors [1, 2].
Since that moment, the concept of approximate symmetries has been widely used for
solving different problems of mathematical physics based on equations with a small
parameter. The concept of approximate groups turned out to be in great demand in
constructing renormalization-group symmetries used in nonlinear physics since the
90s of the last century. Combining the ideas of an approximate group theory and
renormalization-group approach [3, 4] made it possible to construct solutions to a
number of boundary value problems in mathematical physics. The chapter presents
a review of numerous examples from plasma dynamics and nonlinear optics and
acoustics that demonstrate the potentiality of approximate symmetries in constructing
approximate analytical solutions.

1 Approximate Transformation Groups and Renormgroup
Symmetries

Thematerial presented here is a brief introduction to the theory of approximate trans-
formation groups and symmetries and themethod based on renormgroup symmetries.
A more detailed discussion of the problem as well as the theory of multi-parameter
approximate groups can be found in [1, 2, 4, 5].

V. F. Kovalev (B)
Keldsyh Institute of Applied Mathematics, Miusskaya sq., 4, Moscow 125047, Russia
e-mail: vfkvvfkv@gmail.com

© Higher Education Press 2021
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2 V. F. Kovalev

1.1 Approximate Transformation Groups

1.1.1 Notation and Definitions

In what follows, functions f (x, ε) of n variables x = (x1, . . . , xn) and a parameter
ε are considered locally in a neighborhood of ε = 0. These functions are continuous
in the x’s and ε. This is also true for the derivatives of these functions of such a high
order, which is encounted in the subsequent discussion.

If a function f (x, ε) satisfies the condition

lim
ε→0

f (x, ε)

ε p
= 0,

it is written f (x, ε) = o(ε p) and f is said to be of order less than ε p. If

f (x, ε) − g(x, ε) = o(ε p),

the functions f and g are said to be approximately equal (with an error o(ε p)) and
written

f (x, ε) = g(x, ε) + o(ε p),

or, briefly f ≈ g when there is no ambiguity.
The approximate equality defines an equivalence relation and we join functions

into equivalence classes by letting f (x, ε) and g(x, ε) to be members of the same
class if and only if f ≈ g.

Given a function f (x, ε), let

f0(x) + ε f1(x) + · · · + ε p f p(x)

be the approximating polynomial of degree p in ε obtained via the Taylor series
expansion of f (x, ε) in powers of ε about ε = 0. Then any function g ≈ f (in
particular, the function f itself) has the form

g(x, ε) ≈ f0(x) + ε f1(x) + · · · + ε p f p(x) + o(ε p).

Consequently the function

f0(x) + ε f1(x) + · · · + ε p f p(x)

is called a canonical representativeof the equivalence class of functions containing f .
Thus, the equivalence class of functions g(x, ε) ≈ f (x, ε) is determined by the

ordered set of p + 1 functions

f0(x), f1(x), . . . , f p(x).
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In the theory of approximate transformation groups, one considers ordered sets of
smooth vector-functions depending on x’s and a group parameter a :

f0(x, a), f1(x, a), . . . , f p(x, a)

with coordinates

f i0 (x, a), f i1 (x, a), . . . , f ip(x, a), i = 1, . . . , n.

Let us define the one-parameter family G of approximate transformations

x̄ i ≈ f i0 (x, a) + ε f i1 (x, a) + · · · + ε p f ip(x, a), i = 1, . . . , n, (1)

of points x = (x1, . . . , xn) ∈ IRn into points x̄ = (x̄1, . . . , x̄ n) ∈ IRn as the class of
invertible transformations

x̄ = f (x, a, ε) (2)

with vector–functions f = ( f 1, . . . , f n) such that

f i (x, a, ε) ≈ f i0 (x, a) + ε f i1 (x, a) + · · · + ε p f ip(x, a).

Here a is a real parameter, and the following condition is imposed:

f (x, 0, ε) ≈ x .

Furthermore, it is assumed that the transformation (2) is defined for any value of a
from a small neighborhood of a = 0, and that, in this neighborhood, the equation
f (x, a, ε) ≈ x yields a = 0.

Definition 1.1 The set of transformations (1) is called a one-parameter approximate
transformation group if

f ( f (x, a, ε), b, ε) ≈ f (x, a + b, ε)

for all transformations (2).

Remark 1.1 Here, unlike the classical Lie group theory, f does not necessarily
denote the same function at each occurrence. It can be replaced by any function
g ≈ f (see the next example).

Example 1.1 Let us take n = 1 and consider the functions

f (x, a, ε) = x + a
(
1 + εx + 1

2
εa

)
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and

g(x, a, ε) = x + a(1 + εx)
(
1 + 1

2
εa

)
.

They are equal in the first order of precision, namely:

g(x, a, ε) = f (x, a, ε) + ε2ϕ(x, a), ϕ(x, a) = 1

2
a2x,

and satisfy the approximate group property. Indeed,

f (g(x, a, ε), b, ε) = f (x, a + b, ε) + ε2φ(x, a, b, ε),

where

φ(x, a, b, ε) = 1

2
a(ax + ab + 2bx + εabx).

The generator of an approximate transformation group G given by (2) is the class
of first-order linear differential operators

X = ξ i (x, ε)
∂

∂xi
(3)

such that
ξ i (x, ε) ≈ ξ i

0(x) + εξ i
1(x) + · · · + ε pξ i

p(x),

where the vector fields ξ0, ξ1, . . . , ξp are given by

ξ i
ν(x) = ∂ f iν (x, a)

∂a

∣∣
a=0, ν = 0, . . . , p; i = 1, . . . , n.

In what follows, an approximate group generator

X ≈ (
ξ i
0(x) + εξ i

1(x) + . . . + ε pξ i
p(x)

) ∂

∂xi

is written simply

X = (
ξ i
0(x) + εξ i

1(x) + · · · + ε pξ i
p(x)

) ∂

∂xi
· (4)

In theoretical discussions, approximate equalities are considered with an error
o(ε p) of an arbitrary order p ≥ 1. However, in most of the applications, the theory
is simplified by letting p = 1.
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1.1.2 Approximate Lie Equations

Consider one-parameter approximate transformation groups in the first order of pre-
cision, i.e., Eqs. (1) of the form

x̄ i ≈ f i0 (x, a) + ε f i1 (x, a), i = 1, . . . , n. (5)

Let
X = X0 + εX1 (6)

be a given approximate operator, where

X0 = ξ i
0(x)

∂

∂xi
, X1 = ξ i

1(x)
∂

∂xi
·

The corresponding approximate transformation (5) of points x into points x̄ = x̄0 +
εx̄1 with the coordinates

x̄ i = x̄ i0 + εx̄ i1, (7)

where
x̄ i = f i0 (x, a), x̄ i1 = f i1 (x, a),

is determined by the following equations:

dx̄ i0
da

= ξ i
0(x̄0), x̄ i0

∣∣
a=0 = xi , i = 1, . . . , n, (8)

dx̄ i1
da

=
n∑

k=1

∂ξ i
0(x)

∂xk

∣∣∣∣
x=x̄0

x̄ k1 + ξ i
1(x̄0), x̄ i1

∣∣
a=0 = 0. (9)

The equations (8)–(9) are called the approximate Lie equations.

Example 1.2 Let n = 1 and let

X = (1 + εx)
∂

∂x
·

Here ξ0(x) = 1, ξ1(x) = x, and Eqs. (8)–(9) are written:

dx̄0
da

= 1, x̄0
∣∣
a=0 = x,

dx̄1
da

= x̄0, x̄1
∣∣
a=0 = 0.

Its solution has the form
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x̄0 = x + a, x̄1 = ax + a2

2
·

Hence, the approximate transformation group is given by

x̄ ≈ x + a + ε
(
ax + a2

2

)
.

1.2 Approximate Symmetries

In this section, we will carry over the infinitesimal method [6, Vol.3] to approximate
symmetries, i.e., approximate transformation groups admitted by differential equa-
tions with a small parameter ε. We will consider the approximation in the first order
of precision in ε.

1.2.1 Definition of Approximate Symmetries

Definition 1.2 Let G be a one-parameter approximate transformation group

z̄i ≈ f (z, a, ε) ≡ f i0 (z, a) + ε f i1 (z, a), i = 1, . . . , N . (10)

An approximate equation

F(z, ε) ≡ F0(z) + εF1(z) ≈ 0 (11)

is said to be approximately invariant with respect to G, or admits G if

F(z̄, ε) ≈ (F( f (z, a, ε), ε) = o(ε)

whenever z = (z1, . . . , zN ) satisfies equation (11).

If z = (x, u, u(1), . . . , u(k)), then (11) becomes an approximate differential equa-
tion of order k, and G is an approximate symmetry group of the differential equation.

1.2.2 Determining Equations. Stable Symmetries

Theorem 1.1 Equation (11) is approximately invariant under the approximate
transformation group (10) with the generator

X = X0 + εX1 ≡ ξ i
0(z)

∂

∂zi
+ εξ i

1(z)
∂

∂zi
, (12)
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if and only if [
XF(z, ε)

]
F≈0 = o(ε),

or [
X0F0(z) + ε

(
X1F0(z) + X0F1(z)

)]
(11)

= o(ε). (13)

The proof can be found in [5].
The operator (12) satisfying Eq. (13) is called an infinitesimal approximate sym-

metry of, or an approximate operator admitted by Eq. (11). Accordingly, Eq. (13) is
termed the determining equation for approximate symmetries.

Remark 1.2 The determining equation (13) can be written as follows:

X0F0(z) = λ(z)F0(z), (14)

X1F0(z) + X0F1(z) = λ(z)F1(z). (15)

The factor λ(z) is determined by Eq. (14) and then substituted in Eq. (15). The latter
equation must hold for all solutions of F0(z) = 0.

Comparing Eq. (14)with the determining equation of exact symmetries, we obtain
the following statement.

Theorem 1.2 If Eq. (11) admits an approximate transformation group with the gen-
erator X = X0 + εX1, where X0 �= 0, then the operator

X0 = ξ i
0(z)

∂

∂zi
(16)

is an exact symmetry of the equation

F0(z) = 0. (17)

Remark 1.3 It is manifest from Eqs. (14), (15) that if X0 is an exact symmetry of
Eq. (17) then X = εX0 is an approximate symmetry of Eq. (11).

Definition 1.3 Equations (17) and (11) are termed an unperturbed equation and a
perturbed equation, respectively. Under the conditions of Theorem 1.2, the operator
X0 is called a stable symmetry of the unperturbed equation (17). The corresponding
approximate symmetry generator X = X0 + εX1 for the perturbed equation (16) is
called a deformation of the infinitesimal symmetry X0 of Eq. (17) caused by the
perturbation εF1(z). In particular, if the most general symmetry Lie algebra of Eq.
(17) is stable, we say that the perturbed equation (11) inherits the symmetries of the
unperturbed equation.
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1.2.3 Calculation of Approximate Symmetries

Remark 1.2 and Theorem 1.2 provide an infinitesimal method for calculating approx-
imate symmetries (12) for differential equations with a small parameter. Implemen-
tation of the method requires the following three steps:

1st step.Calculation of the exact symmetries X0 of the unperturbed equation (17),
e.g., by solving the determining equation

X0F0(z)
∣∣∣
F0(z)=0

= 0. (18)

2nd step. Determination of the auxiliary function H by virtue of Eqs. (14), (15),
and (11), i.e., by the equation

H = 1

ε

[
X0(F0(z) + εF1(z))

∣∣∣
F0(z)+εF1(z)=0

]
(19)

with known X0 and F1(z).
3rd step. Calculation of the operators X1 by solving the determining equation

for deformations

X1F0(z)
∣∣∣
F0(z)=0

+ H = 0. (20)

Note that equation (20) unlike the determining equation (18) for exact symmetries
is inhomogeneous.

1.3 Introduction to Renormgroup Symmetries

The Lie transformation group structure discovered by Stueckelberg and Petermann
in the early 1950s in calculation results in renormalized quantum field theory and the
exact symmetry of solutions related to this structure were used in 1955 by Bogoli-
ubov and Shirkov to develop a regular method for improving approximate solutions
of quantum field problems, the renormalization-group (RG) method. This method is
based on the use of the infinitesimal form of the exact group property of a solution to
improve a perturbative (that is, obtained by means of the perturbation theory) repre-
sentation of this solution. The improvement of the approximation properties of a solu-
tion turns out to be most efficient in the presence of a singularity because the correct
structure of the singularity is then recovered. Extending the RG concepts in quantum
field theory to boundary value problems of classical mathematical physics led to the
development of a regular algorithm for finding symmetries of the RG type by means
of the modern theory of transformation groups. It is notable that the algorithm for
the construction of renormalization-group (or renormgroup) symmetries proposed in
[3, 4, 8] can be applied to problems involving differential and integral equations, as
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well as linear functionals of the solution. The use of the group property (the symme-
try) of a solution underlies both the renormalization-group method in quantum field
theory and its analog, the new renormgroup symmetry algorithm in mathematical
physics. This section is motivated by a desire to draw attention to this fairly general
algorithm based on applying symmetry to an approximate solution for enhancing its
approximation power. Searching for renormgroup symmetries in most cases is based
on the theory of approximate transformation groups.

1.3.1 The Renormalization-Group Algorithm in Mathematical Physics

Wepreface the description of theRGalgorithmwith the following simple argument. It
is known that if we treat all the variables (independent or dependent in the standard
sense) involved in a differential equation and their derivatives (called differential
variables in group analysis) as independent, then the differential equation can be
regarded as an algebraic relation for these variables. In the case of one equation, this
relation describes a ‘surface’ in the extended space of all the variables involved in
the equation (if there are several equations, then we speak of a manifold), and each
solution of the equation defines a ‘line’ on this surface. The projection onto the {x, u}
‘plane’ defines a family of curves, one of which passes through the ‘point’ {x0, u0}
corresponding to the boundary condition of the BVP in question.

Transformations of the group G move points on the surface (the manifold) along
this surface, and therefore, the equationpreserves its form in the transformedvariables
and each solution of the equation is taken into another solution. A transformation
Ta from the group G maps a point on the plane {x, u} ∈ R

n+m into a point {x̄, ū},
and the geometrical locus of these points is a continuous curve (a trajectory of the
group G) passing through {x, u}. The locus of images Ta({x, u}) is also called the
G-orbit of the point {x, u}. In the general case, the motion along a group trajectory
corresponds to the transition from one curve in the family to another, that is, to a
‘multiplication’ of solutions.

Returning to the renormalization-group point of view, we consider only the group
transformations under which points on the curve passing through {x0, u0} are moved
along this curve. This means that the solution of the BVP is the RG orbit of the
point {x0, u0} (of the boundary manifold in the general case) and is an invariant RG
manifold (similarly to the invariant charge in quantum field theory [9]). We use the
infinitesimal version of this property in our construction of the RG symmetry.

The group property of a solution of a BVP manifests itself as follows: instead of
the boundary point {x0, u0} parameterizing the solution, we can take another point
in this curve related to it by an RG transformation. This ‘universality’ of the solution
of a BVP under a change of the way of parameterization is called ‘functional self-
similarity’ [10]. To find RG transformations that map a solution of a BVP into a
solution of the same BVP, we use the fact that a physical problem is formulated in
terms of differential (integrodifferential) equations whose symmetries can be found
by the techniques of group analysis.
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RG Symmetry: An Idea of Construction and Its Simple Realization
We now illustrate the characteristic features of the algorithm for constructing an RG
symmetry by an example of a BVP for the Hopf equation [11], which is widely used
in physics for the description of the initial perturbations at the nonlinear stage of
their evolution

∂t v + v∂xv = 0 , v(0, x) = εU (x) , (21)

where U is an invertible function of x and the parameter ε defines the ‘amplitude’
of the initial perturbation ‘at the boundary’ t = 0. For a very small distance t � 1/ε
from the boundary, the solution of problem (21) given by the perturbation theory is
a segment of a power series

v = εU − ε2tU∂xU + O
(
t2

)
, (22)

but this form becomes inapplicable for large t . The RG symmetry allows improv-
ing the perturbative result and recovering the correct behavior of the solution in a
neighborhood of a singularity (when such a singularity occurs for some values of t).

In constructing an RG symmetry, the algorithm uses the symmetry group of the
BVP equations. The boundary data defining a particular solution are involved in
RG transformations by extending the space of the variables on which the group
acts. In the case of BVP (21), this space involves three independent variables, x =
{t, x, ε}. It is convenient to write differential equation (21) for the function u = v/ε
introduced such that the ‘amplitude’ ε is carried over from the boundary condition
to the differential equation

∂t u + εu∂xu = 0 , u(0, x) = U (x) . (23)

Thegeneral element of the transformationgroupG forEq. (23) (for the basicmanifold
in the general case) can be found by means of the standard Lie techniques (see, e.g.,
[12]); it is given by a combination of four infinitesimal operators

X =
∑
i

Xi , X1 = ψ1 (∂t + εu∂x ) , X2 = ψ2∂x ,

X3 = ψ3 (x∂x + u∂u) , X4 = ψ4 (ε∂ε + x∂x ) ,

(24)

where ψ i (i = 2, 3, 4) are arbitrary functions of ε, u and x − εut and ψ1 is an
arbitrary function of all the group variables {t, x, ε, u}.We nowuse theRG invariance
condition for a particular solution of BVP (23) defined by the relation

S ≡ u − W (t, x, ε) = 0 (25)

with the function W that is unknown at this point; in other words, we check that
the RG transformation maps the solution of the BVP into the same solution. In the
infinitesimal form, this condition can be written as
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XS∣∣[S] ≡ ψ3(W − x∂xW ) − ψ2∂xW − ψ4(ε∂εW + x∂xW ) = 0 , (26)

where |[S] means that the result of the action of the operator is taken on the mani-
fold defined by the equation S = 0 and all its differential consequences. The term
containing ψ1 is absent in (26) because it is proportional to ∂tW + εW∂xW , which
vanishes identically on solutions of Eq. (23). Condition (26) holds for all t , and for
t → 0 in particular, when W is replaced by the approximate solution

W = U − εtU∂xU + O
(
t2

)
(27)

obtained in the framework of perturbation theory (22). In this limit, Eq. (26) yields
a relation for the functions ψ i (i = 2, 3, 4), which extends in the obvious fashion to
t �= 0

ψ2 = −χ(ψ3 + ψ4) + (u/∂χU )ψ3 , χ = x − εut , (28)

where the derivative ∂χU must be expressed in terms of χ or u in accordance with the
boundary conditions. Using (28) in (24), we arrive at a group of a smaller dimension
with the infinitesimal operators

R =
∑
i

Ri , R1 = ψ1 (∂t + εu∂x ) ,

R2 = uψ3
[(

εt + 1/∂χU
)
∂x + ∂u

]
, R3 = εψ4 (tu∂x + ∂ε) .

(29)

The above procedure reducing (24)–(29) is the restriction of group (24) on a particu-
lar solution, and the set of operators Ri in (29) describes the required RG symmetry.
We obtain the solution of the BVP with the use of the corresponding Lie equations
for any generator in (29). Without loss of generality, we can take the generator R3

with εψ4 = 1 to obtain the finite RG transformations

x ′ = x + atu , ε′ = ε + a , t ′ = t , u′ = u , (30)

where a is the group parameter, t and u are invariants, and the transformations of ε

and x are translations, which in addition depend on t and u for the x variable. For
ε = 0, in view of (23), the variables x and u are related by x = H(u), where H(u)

is the function inverse to U (x). Eliminating a, t , and u from (30) and dropping the
dashes in our notation for the variables, we obtain the required solution of BVP (23)
in implicit form

x − εtu = H(u) . (31)

In effect, this is the improved perturbation theory solution (22), which can be used not
only for small t � 1/ε provided that (31) defines u uniquely. Depending on H(u),
this solution either indicates the correct asymptotic behavior as t → ∞ or gives the
correct description of the solution in the neighborhood of finite values t → tsing . One
example of the first option is the solution of theBVP for the linear functionU (x) = x .
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This yields the expression v = εx(1 + εt)−1, which remains finite as t → ∞. For
the second option, we can select, for instance, a sine wave U (x) = − sin x at the
boundary. Then solution (31) describes thewell-known distortion of the initial profile
of a sinewave, transforming it into a saw-tooth shape [13, Ch.6, §1],with a singularity
forming at a finite distance tsing = 1/ε from the boundary. We note that for finding
solution (31) of the BVP, we use only the known symmetry of the solution and the
corresponding perturbation theory (PT).

1.3.2 RG Algorithm: Four Steps Scheme

The above example of the construction of RG symmetries illustrates the general
algorithm whose detailed description in relation to BVPs for differential equations
can be found, e.g., in reviews [3, 8], and whose generalization to nonlocal problems
is presented in [11, 14]. We can schematically express the implementation of the RG
algorithm as a sequence of four steps (for details, see [4]):

(I) Constructing the Basic Manifold RM
The initial issue is to construct the RG symmetry and appropriate transformations
that involve the parameters of partial solution. Therefore, the purpose of step I is to
include all the parameters, both from the equations and from the boundary conditions
on which a particular solution depends, in group transformations in one or another
way. This purpose is achieved by constructing a special manifold RM given by a
system that consists of s kth-order differential equations and q nonlocal relations

Fσ (z, u, u(1), . . . , u(k)) = 0 , σ = 1, . . . , s , (32)

Fσ (z, u, u(1), . . . , u(r), J (u)) = 0 , σ = 1 + s, . . . , q + s . (33)

The nonlocal variables J (u) here are introduced by integral objects

J (u) =
∫

F (u(z)) dz . (34)

(II) Finding a Symmetry Group G Admitted by RM
Step II is to calculate thewidest admitted groupG for system (32), (33). In application
to anRM defined only by system of differential equations (32), the question is about
a local group of transformations in a space of differential functions A , for which,
system (32) remains unchanged. This group is defined by the generator of form (24)
prolonged on all higher-order derivatives

X = ξ i ∂

∂zi
+ ηα ∂

∂uα
+ ζ α

i

∂

∂uα
i

+ ζ α
i1i2

∂

∂uα
i1i2

+ · · · , (35)
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where ξ i ([z, u]), ηα([z, u]) ∈ A and

ζ α
i = Di (κ

α) + ξ j uα
i j , ζ α

i1i2 = Di1Di2(η
α − ξ i uα

i ) + ξ j uα
j i1i2 .

The generalization of the second step of the algorithm to the case where RM is an
integral or integrodifferential manifold is described in [4, 14].

(III) Restricting the Symmetry Group G on a Particular Solution of the BVP
The group G found in step II and determined by operators (35) is generally wider
than the RG of interest, which is related to a particular solution of a boundary value
problem. Hence, to obtain the RG symmetry, we need step III, restricting the group
G on a manifold determined by this particular solution. From the mathematical
standpoint, this procedure consists of checking the vanishing conditions for a linear
combination of coordinates κ

α
j of a canonical operator equivalent to (35) on some

particular boundary value problem solution Uα(z)

{ ∑
j

A j
κ

α
j ≡

∑
j

A j
(
ηα
j − ξ i

j u
α
i

) }
∣∣uα = Uα(z)

= 0 . (36)

The form of the condition set by relation (36) is common for any solution of the
boundary value problem, but how the restriction procedure of a group is realizedmay
differ in each partial case. In calculating combination (36) on a particular solution
Uα(z), the latter is transformed from a system of differential equations for group
invariants to algebraic relations. Note the two consequences of step III. First, the
restriction procedure results in a set of relations between A j and thus ‘links’ the
coordinates of various group operators X j admitted by RM (32), (33). Second, it
(partially or completely) eliminates an arbitrariness that can arise in the values of the
coordinates ξ i and ηα in the case of an infinite group G .

As a rule, the procedure of restricting the group G reduces its dimension. After
performing this procedure, a general element (35) of a new groupRG is represented
by a linear combination of new generators Ri with coordinates ξ̂ i and η̂α and arbitrary
constants B j

X ⇒ R =
∑
j

B j R j , R j = ξ̂ i
j

∂

∂xi
+ η̂α

j

∂

∂uα
. (37)

The set of operators R j , each containing the required solution of a problem in
the invariant manifold, defines a group of transformations RG , which we also call
RenormGroup.

(IV) Finding RG Invariant Solutions Corresponding to the RG Symmetry The
three steps described above completely form the regular algorithm for constructing
the RG symmetry, but to finish, a final step is needed. This step IV uses the RG
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symmetry operators to find analytic expressions for new, improved boundary value
problem solutions (compared with the input perturbative solution).

From the mathematical standpoint, realizing this step involves the use of RG-in-
variance conditions set by a joint system of Eqs. (32) and (33) and the vanishing
conditions for a linear combination of the coordinates κ̂

α
j of the canonical operator

equivalent to (37) ∑
j

R j
κ̂

α
j ≡

∑
j

B j (η̂α
j − ξ̂ i

j u
α
i ) = 0 . (38)

Specification of step IV concludes the description of the regular algorithm of RG
symmetries construction for models with differential and integrodifferential equa-
tions.

2 Nonlinear Acoustic Waves in Channels with Variable
Cross Sections

In this section, the approximate point symmetry group is studied for the generalized
Webster-type equation describing nonlinear acoustic waves in lossy channels with
variable cross sections. Approximate analytic solutions to the generalized Webster
equation are derived for channels with smoothly varying cross sections and arbitrary
initial conditions. A more detailed discussion of the problem can be found in [15].

2.1 Generalized Webster Equation in Nonlinear Acoustics

ThegeneralizedWebster-type equation appears in problemsonpropagationof intense
sound in pipes, horns, concentrators, and otherwaveguides characterized by a varying
cross section S(x) [16, 17] and in hemodynamics for describing the nonlinear pulse
waves [18]

∂2 p

∂t2
− c2

∂2 p

∂x2
= c2

∂ ln S(x)

∂x

∂p

∂x
+ ε

c2ρ

∂2 p2

∂t2
+ b

ρ

∂3 p

∂x∂t2
. (39)

Here, p is the sound pressure, c is the velocity of sound, x is the coordinate measured
along the waveguide axis, ε and b are the nonlinearity and dissipation parameters
and ρ is the density of the medium. Equation (39) is applicable to pipes whose
characteristic width is small compared to the wavelength. In addition, the cross
section is assumed to vary slowly along the x-axis: the area S(x) varies only slightly
as x varies by a quantity on the order of the pipe width [19].
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In the situation where each of the terms appearing on the right-hand side of the
equation is small compared to the terms appearing on the left-hand side, a traveling
wave canbe considered. In this case, using themethodof a slowly varying profile [20],
it is possible to reduce the order of nonlinear equation (39). Following the standard
procedure [21], we change from the variables x and t involved in Eq. (39) to new
independent variables: the ‘slow’ coordinate x1 = δx (where δ is the small parameter
of the problem) and the time τ = t − x/c in the coordinate system traveling with the
velocity of sound. Ignoring small terms on the order of δn , where n � 2, we arrive
at the evolution equation

∂p

∂x
− ap

∂p

∂τ
− ν

∂2 p

∂τ 2
+ p

2

∂

∂x
(ln S(x)) = 0 , p(0, τ ) = P(τ ) . (40)

Unlike the equations discussed above, Eq. (40) is expressed in dimensionless form.
The change from the physical variables involved in Eq. (39) to the more conve-
nient normalized variables appearing in Eq. (40) is performed through the following
substitution:

x → c

ω
x , τ → τ

ω
, p → p0 p .

Here, the normalizing constants ω and p0 have the meaning of the characteristic
frequency and signal amplitude values, respectively. The two parameters involved in
Eq. (40) are determined by the following dimensionless combinations of constants:

a = εp0
c2ρ

, ν = bω

2c2ρ
.

Their ratio a/ν is called the acoustic Reynolds number [20]. It characterizes the
relative contributions of nonlinear and dissipative effects to the distortion of the
wave profile. When a/ν is large, nonlinear effects predominate; when this quantity
is small, dissipative effects are dominant. Without loss of generality, in Eq. (40), we
set S(0) = 1.

Although solutions to the GWE simultaneously allowing for the effects of non-
linearity, absorption, and inhomogeneity are important for describing the behavior
of sound waves in nonlinear absorbing media, their analytic derivation is a difficult
problem even in the case of using approximate methods. The standard practice is
either to neglect dissipation, which makes it possible, by changing the independent
variable to reduce the initial equation to the Hopf equation [17], or to assume that
the nonlinearity is small and to solve the sound wave equation by the method of
successive approximations; the latter approach has been used to analyze the sec-
ond harmonic behavior in a sound channel with a variable cross section [22]. On
the other hand, it is evident that, as the cross section of the channel decreases, the
second harmonic amplitude grows faster than the fundamental harmonic amplitude,
which necessitates analyzing the generalizedWebster equation for a finite-amplitude
sound wave. This section is devoted to finding an analytic solution to the generalized
Webster equation under these conditions using the modern group analysis technique.
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We can eliminate the last term from Eq. (40) by changing the variable x and
introducing the absorption as a function μ of the coordinate along the channel

ζ =
∫

dx/
√
S(x) , p

√
S = u , μ = ν

√
S(x(ζ )) , (41)

Then, in terms of the new variables, Eq. (40) takes the form

∂u

∂ζ
− au

∂u

∂τ
− μ

∂2u

∂τ 2
= 0 , u(0, τ ) = P(τ ) . (42)

Introducing the new variable q related to u by the formula u = 2(∂q/∂τ), we replace
Eq. (40) by the modified generalized Webster equation (MGWE)

∂q

∂ζ
− a

(
∂q

∂τ

)2

− μ
∂2q

∂τ 2
= 0 , q(0, τ ) = W (τ ) . (43)

The change to the new variable q in Eq. (42) increases the order of this equation.
However, its single integration with respect to τ yields evolutional equation (43)
for q. This procedure determines q accurate to the function C(ζ ) (in Eq. (43), this
function is omitted), whose choice is fairly arbitrary. For example, for solutions to
Eq. (43) that are periodic in τ , this function can be chosen so as to make the period
average value of q zero for any values of ζ . At the same time, it is evident that the
choice of C(ζ ) does not affect the physical meaning of u.

2.2 Approximate Symmetry Group and Solutions to the
Modified Generalized Webster Equation

For Eq. (43) in the case of an arbitrary inhomogeneity profile μ(ζ ), the admitted
point transformation group is given by three infinitesimal operators:

X1 = ∂

∂τ
, X2 = ∂

∂q
, X3 = ζ

∂

∂τ
− τ

2a

∂

∂q
. (44)

The first two of them represent the translation operators with respect to the variables
τ and q, which are evident from the physical point of view; the third operator cor-
responds to the Galilean transformation group. Transformation group (44) can be
extended for the cross section profiles of a specific type

M(
d

dζ
ln(μ(ζ )))−1 = b(ζ ) , b(ζ ) = β0 + β1ζ + β2ζ

2 , M = const �= 0 . (45)
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Condition (45) plays the role of the classifying relation separating the specific profile
types for which transformation group (44) is extended by the additional operator X4

X4 = b
∂

∂ζ
+ τ

2

(
M + db

dζ

) ∂

∂τ
+ (

Mq − (τ 2 + 2
∫
dζμ)

8a

d2b

dζ 2

) ∂

∂q
. (46)

Classifying relation (45) is a first-order differential equation for the function μ(ζ );
being explicitly integrated, this equation determines a three-parameter (the parame-
ters are β0, β1, and β2) family of curves in the {ζ, μ} space

ln(μ/ν) = d(ζ ) ≡ M

0∫

ζ

dy

b(y)
, (47)

where the formof the functiond(ζ )depends on the relative values of the parametersβi

d(ζ ) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2M√
4β0β2−β2

1

[
arctan β1+2β2ζ√

4β0β2−β2
1

− arctan β1√
4β0β2−β2

1

]
, β2

1 < 4β0β2 ,

M√
β0β2

z
z+√

β0/β2
, β2

1 = 4β0β2 ,

M√
β2
1−4β0β2

ln
(
√

β2
1−4β0β2−β1−2β2ζ )(

√
β2
1−4β0β2+β1)

(
√

β2
1−4β0β2+β1+2β2ζ )(

√
β2
1−4β0β2−β1)

, β2
1 > 4β0β2 .

(48)
The choice of M = 0 corresponds to a channel with a constant cross section,
dμ(ζ )/dζ = 0; then, classifying relation (45) is automatically satisfied for any βi .
In this case, the following three operators appear instead of the operator X4:

X41 = ∂

∂ζ
, X42 = ζ

∂

∂ζ
+ τ

2

∂

∂τ
, X43 = ζ 2 ∂

∂ζ
+ τζ

∂

∂τ
− (τ 2 + 2ζν)

4a

∂

∂q
.

(49)
The first of them, X41, is the translation operator along the ζ axis; the second operator,
X42, represents the dilation transformation; and X43 corresponds to the projective
transformation group. In addition to operators (49), for a channel with a constant
cross section, μ ≡ ν, the MGWE also allows the infinite subgroup operator

X∞ = k(ζ, τ ) exp

(
−aq

μ

)
∂

∂q
,

∂k

∂ζ
− μ

∂2k

∂τ 2
= 0 . (50)

Here, the linear parabolic equation, which is satisfied by the function of two variables
k(ζ, τ ), can be represented in terms of the variables {x, τ }:

∂k

∂x
− ν

∂2k

∂τ 2
= 0 .
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The latter fact will be used by us in constructing the approximate point symmetry for
the MGWE. We note that the symmetry group given by Eqs. (44), (49), and (50) is
well known in the theory of the modified Burgers equation [6], to which the MGWE
is reduced in the case under consideration.

Different examples of invariant solutions to the MGWE based on the symmetries
(44)–(49) can be found in [15–17, 22, 23]. These invariant solutions to the MGWE
have the following drawback: being exact, they can only be obtained for certain
specific channel profiles and initial conditions,which are given by classifying relation
(45). Here, we present alternative solutions, namely, approximate analytic solutions
to nonlinear boundary value problem (43), and these solutions can be constructed
for arbitrary initial conditions. An instrument for constructing such solutions is the
approximate symmetry group, and the condition for the existence of the latter is the
presence of the small parameter related to the relative slowness of variation in the
cross-sectional area along the waveguide axis; i.e., the smallness of the derivative
d(lnμ(ζ ))/dζ ≡ μζ/μ � 1 (here, the subscript denotes the derivative with respect
to the corresponding argument). In this case, the symmetry of the boundary value
problem under study is represented by a series expansion in powers of the small
parameter, which allows us to obtain approximate analytic solutions to the problem
with an acceptable accuracy.

To construct an approximate analytic solution for a channel with a slowly varying
cross section, we use the renormalization-group symmetry algorithm described in
Sect. 1.1 for boundary value problem (43). This algorithm allows us to extend the
perturbation theory solutions obtained for small values of the nonlinearity parameter
a to the region of finite values of this parameter. To take into account the transfor-
mation of parameter a, we include the latter in the list of independent variables and
represent the infinitesimal operator of this transformation as

X5 = ξ(a)

(
∂

∂a
− q

a

∂

∂q

)
. (51)

The desired renormalization-group symmetry operator is obtained as a linear com-
bination of operator (51) with ξ(a) = 1 and infinite subgroup operator (50), which
(as we have shown in the previous section), in the zero order in μζ /μ, is allowed by
boundary value problem (43)

R = ∂

∂a
+

(
k(0)(ζ, τ, a) exp

(
− aq

μ

)
− q

a

) ∂

∂q
. (52)

Here, the function of three variables k(0)(ζ, τ, a) obeys linear parabolic equation
(50) with the initial condition k(0)(0, τ, a) = W (τ )/a determined by invariance of
the solution at a → 0 with respect to the renormalization-group symmetry operator
(52). As a result, we arrive at the expression
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k(0) = ν

a
Ka , K (a, x, τ ) =

∞∫

−∞
dξe

aW (ξ)

ν G(x, τ − ξ) , G(x, τ ) = 1√
4πνx

e− τ2

4νx .

(53)
Here, the subscript marking function K denotes the partial derivative with respect to
the corresponding argument, Ka ≡ ∂K/∂a.

Finite transformations of the continuous group are related to the infinitesimal
transformation in a one-to-one manner by the Lie equations, i.e., equations of the
characteristics for the first-order partial differential equation conjugate to the oper-
ator (52), (53). The solution of the Lie equations for operator (52), (53) yields the
following approximate analytic solution to initial problem (43):

q(0) = μ

a
ln

[
1 + ν

μ
(K − 1)

]
, (54)

which is valid in a medium with a slowly varying cross section, μζ/μ � 1. In fact,
the derivation of solution (54) from the solution obtained for a channelwith a constant
cross section consists of the presence of a factor ν/μ other than unity.

The advantage of the renormalization-group method is the possibility of sequen-
tially refining the resulting analytic approximations. As applied to the problem
under study, such a refinement (in the next, i.e., first-order approximation in μζ /μ)
is achieved as follows: the function k(0)(ζ, τ, a) in generator (52) is replaced by
k(1)(ζ, τ, a), for which, instead of using the solution to the parabolic equation (50),
we use the solution to the inhomogeneous parabolic equation

∂k(1)

∂ζ
− μ

∂2k(1)

∂τ 2
= −A . (55)

Here right-hand side is proportional to the gradient of the channel cross section
μζ/μ � 1 and linearly depends on the function q(0) of the zero-order approximation
in this gradient

A = ak(0)q(0)μζ /μ
2 = (μζ /μ)(ν/a)Ka ln [1 + (ν/μ)(K − 1)] . (56)

Equation (55) is obtained at the stage of calculating the renormalization-group sym-
metry operator (52) from the so-called group determining equation, where the contri-
butions proportional toμζ /μ (whichwere omitted at the previous step) are calculated
using the zero approximation results (53) and (54). The solution to Eq. (55) yields a
modified (due to the contribution with the cross section gradient) expression for the
function k(0)(a, x, τ ) ⇒ k(1)(a, x, τ )
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k(1) = ν

a
Ka −

0∫

x

dx ′
−∞∫

∞
dτ ′G(x − x ′, τ − τ ′)

νμ′
x ′

aμ′ K
′
a ln

(
1 + ν

μ′
(
K ′ − 1

) )
,

μ′ ≡ μ(x ′) , K ′ ≡ K (a, x ′, τ ′) .

(57)
The substitutionof k(1) insteadof k(0) in infinitesimal operator (52) and the subsequent
solution of the Lie equations lead to a refined approximation for the desired solution

q(1) = μ

a
ln

{
1 + ν

μ
(K − 1) − ν

μ

0∫

x

dx ′ μ
′
x ′

μ′

−∞∫

∞
dτ ′G(x − x ′, τ − τ ′)

×
[
1 − K ′ +

(
K ′ − 1 + μ′

ν

)
ln

(
1 + ν

μ′
(
K ′ − 1

) )]}
.

(58)

For small values of the nonlinearity parameter a, the first two terms of the expansion
of solution (58) in powers of the nonlinearity parameter have the form

q pt = νK (0)
a + νa

2

[
K (0)

aa − ν

μ
(K (0)

a )2

−
x∫

0

dx ′ νμ′
x ′

(μ′)2

−∞∫

∞
dτ ′G(x − x ′, τ − τ ′)((K ′)(0)a )2

]
+ O(a2) ,

(59)

where K (0)
a and K (0)

a represent the values of the partial derivatives of function K
calculated in the limit a a → 0. By substituting the periodic initial conditionW (ξ) =
cos ξ in K and calculating the resulting integrals, it is possible to verify that the
expression for q pt agrees well with the result obtained in [22] for a harmonic initial
perturbation.

In closing this section, we present the form of the solution to problem (43) for
a periodic initial condition W (ξ) = cos ξ : it is given by Eq. (58) with function K
determined by the expression

K = I0(a/ν) + 2
∞∑
k=1

Ik(a/ν) cos kτ e−νk2x . (60)

The use of Eqs. (58) and (60) allows us to calculate the nonlinear distortion of the
spectrumof an acousticwavepropagating in awaveguidewith a varying cross section.
This opens up better possibilities for diagnostics of acoustic propagation paths as
compared to the weakly nonlinear limit [22]. As an example, in Fig. 1, we represent
the solutions to the MGWE, q ≡ q(1), versus τ , the solutions being obtained from
Eqs. (58) and (60) for different values of the x coordinate along the axis of a channel
with an exponentially varying cross-sectional area, μ/ν = exp(αx).
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Fig. 1 Curves representing the solution to modified generalized Webster equation (43) versus
quantity τ . The curves are obtained from Eqs. (58) and (60) for the periodic initial condition
W (ξ) = cos ξ for different values of the x coordinate along the axis of the channel whose cross-
sectional area varies according to the exponential lawμ(x)/ν = exp(αx). The left-hand plot shows
the curves for νx = 0, 0.5, 1, and 2 (the increase in νx corresponds to the passage from the upper
curves to the lower ones at the axis τ = 0) and for α/ν = −0.1 and a/ν = 1. The right-hand plot
shows the curves for νx = 0, 0.2, 0.5, and 1 (the increase in νx corresponds to the passage from
the upper curves to the lower ones at the axis τ = 0) and for α/ν = −0.1 and a/ν = 10

To estimate the accuracy of the approximate analytic solutions obtained by us,
we numerically solved initial equation (43). Comparison of the curves plotted with
the use of analytic results (58) and (60) with the curves obtained from the numerical
solution of initial equation (43) shows good agreement between the numerical and
analytic results for the case of a moderate nonlinearity a/ν = 1 with an accuracy
of up to fractions of percent. The results of calculating q ≡ q(1) for a greater non-
linearity a/ν = 10 show a difference between the results of numerical and analytic
calculations; the difference increases with increasing distance along the pipe, as one
can see from the comparison of the curves shown in Fig. 2 at the left. However, the
value of the difference is relatively small and, even for x = 2, it is of the order of
seven percent. We also note that the strongest effect of nonlinearity, which makes
the wave profile steeper, manifests itself as early as in the region of x where the
difference between numerical and analytic results is small: for example under con-
sideration with a/ν = 10, the corresponding value of the νx coordinate proves to be
in the order of 0.08. To illustrate the possibility of increasing the accuracy of analytic
calculations with the use of approximate symmetry, in Fig. 2 (right), we present the
curves showing the difference between the zero-approximation solution q(0) and the
solution q obtained from numerical simulation. One can see that the change from q(0)

to q(1) already considerably improves the agreement between the numerical results
and the approximate analytic ones. Summarizing the results, we note that the appli-
cation of renormalization-group symmetries allowed us to determine approximate
analytic solutions for arbitrary initial conditions and sufficiently smooth profiles of
variation in the waveguide cross section and to demonstrate the way of refining the
approximate solutions.
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Fig. 2 Comparison between obtained solutions q to modified generalized Webster equation (43)
by numerically solving Eq. (43) (dashed curves) and the approximate analytic solutions q ≡ q(1)

(solid curves in the left-hand plot) and q ≡ q(0) (solid curves in the right-hand plot) for α/ν = −0.1
and a/ν = 10, and for different values of the coordinate: νx = 0.5 and 1. The increase in the νx
coordinate along the pipe axis corresponds to the passage from the upper plots to the lower ones

3 Acceleration of Ions in a Plasma Channel

In this section, the approximate analytic solution of the Cauchy problem is con-
structed for a system of kinetic equations of an electron–ion plasma that describe the
acceleration of ions and the collisionless heating of electrons caused by the radial
ponderomotive force of a laser beam that propagates in the transparent plasma of a
gas or other low density target. Under conditions where the Debye radius, rDe, of the
electrons is considerably smaller than the characteristic localization scale, L , of the
laser beam along the radius, ε = rDe/L � 1, this solution is found by a group trans-
formation that is specified by the operator of approximate renormalization-group
symmetries over small parameters, ε and μ = √

Zm/M , of the initial distribution
functions of particles. For an axially symmetric geometry of the laser beam, the tem-
poral and spatial dependencies of the distribution functions of particles are obtained
and their integral characteristics, such as the density, mean velocity, temperature,
and energy spectrum, are found. The formation of a cylindrical density cusp and the
localized heating of electrons at the laser channel boundary are analytically described.

The acceleration dynamics of ions in a low density plasma is mainly determined
by the force (ponderomotive) action of the laser pulse on plasma electrons. A typical
example is the radial acceleration of particles from the laser channel (the tradi-
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tionally studied rarefied gas plasma [25, 26] or the plasma of new generation low
density targets such as aerogels and porous nanocarbon), which are considered in
this section. The analytic description of the acceleration of particles by a laser pulse
from a plasma channel that is produced via self focusing is not a simple problem even
for approximate approaches. That is the reason that the spatiotemporal distributions
of laser accelerated particles are studied, as a rule, using kinetic numerical particle
in cell (PIC) simulation [27–29]. Some simplification is achieved by using a one-
dimensional electrostatic ponderomotive model that describes the plasma expansion
dynamics under the action of a radial distribution of pulsed laser radiation [25, 26]
along the plasma channel radius. In this case, only the slow dynamics of plasma elec-
trons is taken into account, corresponding to averaging over their fast oscillations in
the laser field. Despite the simplicity of such a description, the main results that are
obtained in the electrostatic ponderomotive model are also based on numerical PIC
simulations, which makes the prediction of the dependencies of the spatiotemporal
and spectral characteristics of accelerated particles on arbitrary laser and plasma
parameters difficult. Numerical simulations have revealed two distinct effects: (1)
The acceleration of ions by a ponderomotive force caused the formation of a cylin-
drical density cusp at the laser channel boundary [25, 26], where (2) the strong local
heating of electrons occurs [26]. Here, we propose an analytic theory using approx-
imate RG symmetries to find the solutions of kinetic equations for the distribution
functions of plasma electrons and ions in the electrostatic ponderomotive model and
present the analytic description of these effects. The model of radial ponderomotive
acceleration of particles from a laser channel considers, alongwith the self-consistent
electric field of plasma in the kinetic equation for electrons that is averaged over fast
laser oscillations, the ‘outside’ electric field that determines the action of the radial
ponderomotive force of the laser beam on plasma electrons. The plasma is assumed
to be of low density and transparent for the laser beam; the reverse action of plasma
fields on the laser beam is neglected.

3.1 The Approximate Renormgroup Symmetry for Solution
of the Cauchy Problem for Plasma Equations

We consider the propagation of a cylindrically symmetric laser beam in a transparent
plasma. The inhomogeneity of the electric field of laser radiation along the radius
results in the displacement of plasma electrons from the region of a strong electric
field, producing inhomogeneity of the electron density, which, in turn, causes the
redistribution of the ion density and the acceleration of ions to high energies. The
dynamics of this process can be described by kinetic equations for the distribution
function of plasma particles, in which the influence of a laser’s electric field is taken
into account in the kinetic equation for electrons in the form of an additional elec-
trostatic term that determines the action of a ponderomotive force averaged over the
high laser frequency [30, 31]. Taking the symmetry of the laser beam that propagates
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along the zaxis into account, we will consider kinetic equations for the distribution
functions of particles that are integrated over the longitudinal and axial velocity com-
ponents in the cylindrical coordinate system {r, ϕ, z}, including their dependencies
only on time, t , the radial coordinate, r , and the radial component, ve(i)r , of the velocity
of particles of the corresponding type. As a result, we obtain initial kinetic equations
for the electron and ion distribution functions of plasma particles,1 g(τ, x, u) and
f (τ, x,w),

μ∂τ g + εu (∂x g + g/x) − (p + q − ε/x) ∂ug = 0 ,

∂τ f + εw (∂x f + f/x) + (
p + εΓ 2/x

)
∂w f = 0 .

(61)

Here, m and M are the electron and ion masses with charges ee = −e and ei = Ze,
where Z is the charge number of ions; μ = √

Zm/M � 1 and Γ 2 = Ti0/ZTe0.
In Eqs. (61), dimensionless variables are used: the dimensionless time τ = ωLi t ,
where ωLi is the Langmuir ion frequency; the dimensionless coordinate x = r/L ,
where L is the localization scale of the laser beam along the radius; the dimen-
sionless electron velocity u = ver /VTe, where VTe = √

Te0/m; the dimensionless
ion velocity w = vir/cs , where cs = √

ZTe0/M ; the dimensionless electric field
p = ε(eEL/Te0) , where ε = rDe/L � 1; the dimensionless distribution functions
f e = (ne0/VTe)g and f i = (ne0/(Zcs)) f , where ne(i)0 is the unperturbed elec-
tron (ion) density; q = α∂xγ , where α = ε(c2/V 2

T e), c is the speed of light, γ =√
1 + a2(τ, x)/2, a2(τ, x) = A(τ )a20 I0(x) is the dimensionless laser radiation inten-

sity, a0 = 0.85 × 10−9λ
√
I , where λ [μm] is the laser wavelength, I [W/cm2] is the

maximum intensity of the laser pulse, and the function A(τ )determines the laser pulse
shape. The function I0(x) characterizes the radial distribution of the laser pulse inten-
sity. For example, in [26] the distribution I0(x) = exp(−x2) was analyzed. Kinetic
equations (61) should be used together with equations for the self-consistent electric
field p

ε (∂x p + p/x) =
∫

dw f −
∫

dug , μ∂τ p = −μ

∫
dww f +

∫
duug .

(62)
Equations (61) and (62) are known as the Vlasov–Maxwell system of equations for
a collisionless plasma. We are interested in the solution of the Cauchy problem for
kinetic equations (61) with initial conditions

g|τ=0 = g0(x, u) , f |τ=0 = f0(x,w) , (63)

which are determined by the formulation of a particular physical problem. Below, we
will analyze the evolution of plasma particles for which the initial distribution func-
tions of particles are assumed to be sufficiently smooth (for example, Maxwellian),

1 For definiteness, we assume that the distributions of particles over the velocities ve,iϕ and ve,iz are
Maxwellian, with the electron and ion temperatures Te and Ti , respectively. In the absence of the
distribution over the velocities ve,iϕ , the contributions that are proportional to ∝ ε∂ug and ε∂w f in
(61) should be omitted.
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with the spatially homogeneous initial electron and ion temperatures Te0 and Ti0
and initial electron and ion densities ne0(x) = ∫

dug0 and ni0(x) = ∫
dw f0 with the

characteristic spatial scale, L . We consider the typical situation where L consid-
erably exceeds the Debye electron radius rDe = √

Te0/(4πne0e2), i.e., rDe/L � 1.
Note that the physical formulation of the problem consists of the specification of the
finite initial temperature of particles because a propagating high power laser pulse is
always preceded by a long prepulse that heats the plasma prior to the arrival of the
main pulse.

Equations of type (61) are usually studied by the method of characteristics (see,
for example, [32]). The equations of characteristics for (61) contain the electric field,
which is expressed in terms of integrals from the velocity distribution functions via
Eqs. (62), which makes the analytic study of these equations difficult and compels
us to use numerical methods. Here, the Cauchy problem (61)–(63) is solved using
point symmetry groups (exact and approximate) that are admitted by Eqs. (61) and
(62) and constructing invariant solutions with their use. The approximate solution of
Cauchy problem (61)–(63) is constructed using the possibility of the continuation of
this solution written in a small vicinity τ → 0 as a perturbation power series in τ to a
region of considerably longer times τ �= 0 with the use of a special renormalization-
group symmetry. Such a continuation is performed using finite transformations of the
group connecting initial distribution functions (63) with the values of these functions
at moments τ �= 0. The required renormalization-group symmetry is found as a
subgroup that is admitted by the system (61), (62) of the group of approximate Lie
point transformations.

To find an admissible point transformation group, the system of equations (61),
(62) should be supplemented with four equalities

∂wg = 0 , ∂u f = 0 , ∂u p = 0 , ∂w p = 0 , (64)

that have a trivial physical meaning, but are obviously needed for calculating the
group of admissible transformations. The Lie point transformation group that is
admitted by the system of equations (61), (62) and (64) is defined by an infinitesimal
group operator (generator)

X = ξ 1∂τ + ξ 2∂x + ξ 3∂u + ξ 4∂w + η1∂g + η2∂p + η3∂ f . (65)

This operator in the canonical form is

Y = κ1∂g + κ2∂p + κ3∂ f , (66)

κ1 = η1 − ξ 1∂τ g − ξ 2∂x g − ξ 3∂ug ,

κ2 = η2 − ξ 1∂τ p − ξ 2∂x p ,

κ3 = η3 − ξ 1∂τ f − ξ 2∂x f − ξ 4∂w f .
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By acting with group operator (98) on (61), (62), and (64), we arrive at the system
of defining equations for the coordinates ξ i , ηi of operator (65)

μDτ κ
1 + εu

(
Dxκ

1 + κ1/x
) − (p + q − ε/x) Duκ

1 − κ2∂ug = 0 ,

Dτ κ
3 + εw

(
Dxκ

3 + κ3/x
) + (

p + εΓ 2/x
)
Dwκ3 − κ2∂w f = 0 ,

Dwκ1 = 0 , Duκ
3 = 0 , Duκ

2 = 0 , Dwκ2 = 0 ,

(67)

ε
(
Dxκ

2 + κ2/x
) −

∫
dwκ3 +

∫
duκ1 = 0 ,

μDτ κ
2 + μ

∫
dwwκ3 −

∫
duuκ1 = 0 .

(68)

Equations (67) and (68) should be solved taking the initial equations and all their
differential corollaries into account. Here, Dτ , Dx , Du , and Dw are the operators of
total differentiation over the corresponding variable in the form of a subscript

Dτ = ∂τ + gτ ∂g + fτ ∂ f + pτ ∂p + gττ ∂gτ
+ gτ x∂gx + gτu∂gu

+ fττ ∂ fτ + fτ x∂ fx + fτw∂ fw + pττ ∂pτ
+ pτ x∂px ,

Dx = ∂x + gx∂g + fx∂ f + px∂p + gτ x∂gτ
+ gxx∂gx + gxu∂gu

+ fτ x∂ fτ + fxx∂ fx + fxw∂ fw + pτ x∂pτ
+ pxx∂px ,

Du = ∂u + gu∂g + gτu∂gτ
+ gxu∂gx + guu∂gu ,

Dw = ∂w + fw∂ f + fτw∂ fτ + fxw∂ fx + fww∂ fw .

(69)

For compactness, we use the subscripts to denote partial derivatives g, f , and p over
the corresponding variables.

We will find the coordinates ξ i and ηi from the system of defining questions by
using the approach that was developed in [33] (see also [14, Chap. 4]). By apply-
ing this approach, we separate the determining equations for ξ i and ηi into local
determining Eqs. (67) that appearing from the invariance condition for (61) and (64)
and nonlocal determining Eqs. (68) that follow from the invariance conditions for
(62). The solution of the local determining equations gives the so-called intermediate
symmetry.

By omitting detailed calculations, we will write, after some simplification, the
determining equations that specify the intermediate symmetry
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μ∂τη
1 + εu∂xη

1 − (
p + q − ε

x

)
∂uη

1 − εu

x
g∂gη

1

+ εug

x

(
∂τ ξ

1 + εu

μ
∂xξ

1 + η1

g
+ ξ 3

u
− ξ 2

x

) = 0 ,

∂τ η
3 + εw∂xη

3 + (
p + εΓ 2

x

)
∂wη3 − εw

x
f ∂ f η

3

+ εu f

x

(
∂τ ξ

1 + εw∂xξ
1 + η3

f
+ ξ 4

w
− ξ 2

x

) = 0 ,

εu
(
∂τ ξ

1 + εu

μ
∂xξ

1
) − μ∂τ ξ

2 − εu∂xξ
2 + εξ 3 = 0 ,

εw
(
∂τ ξ

1 + εw∂xξ
1
) − ∂τ ξ

2 − εw∂xξ
2 + εξ 4 = 0 ,

η2 + (
p + q − ε

x

)(
∂τ ξ

1 + εu

μ
∂xξ

1 − ∂uξ
3
)

+ μ∂τ ξ
3 + εu∂xξ

3 + ξ 1∂t q + ξ 2∂xq + εξ 2

x2
= 0 ,

η2 + (
p + εΓ 2

x

)(
∂τ ξ

1 + εw∂xξ
1 − ∂wξ 4

) − ∂τ ξ
4 − εw∂xξ

4 − ε

x2
Γ 2ξ 2 = 0 .

(70)
Here, the coordinates ξ i and ηi are characterized by the following dependence of
variables:

ξ1 = ξ1(τ, x), ξ2 = ξ2(τ, x), ξ3 = ξ30 (τ, x) + uξ31 (τ, x), ξ4 = ξ40 (τ, x) + wξ41 (τ, x),

η1 = η1(τ, x, u, g) , η2 = η2(τ, x, p) , η3 = η3(τ, x,w, f ) .

(71)
For arbitrary values of ε and μ formulas (68), (70) and (71) yield three operators of
the exact point symmetry group of Eqs. (61), (62), and (64), which correspond to the
time translations and dilations [34]. Invariant solutions with the use of these exact
symmetries can be found in [34]. However, a disadvantage of these solutions is that
they do not allow us to arbitrarily specify the initial distribution of plasma particles
and the spatial distribution of the electric field of the laser beam. This proves to be
possible with the use of approximate symmetries. They appear if one consider small
parameters ε and μ in (61) and (62) and, as accepted in the theory of approximate
transformation groups [1], represent coordinates of the group operator as power series
in these parameters

ξ i =
∞∑

k,l=0

εkμlξ i(k,l) , ηi =
∞∑

k,l=0

εkμlηi(k,l) . (72)

By using the linear dependence of coordinates ξ 3 and ξ 4 on velocities u and w,
respectively, substituting (72) into (70) and retaining only contributions linear in ε

and μ, we obtain the expressions
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ξ 1 = 1 + 2ε
∫

dτ ′
∫

dτ ′′∂x (ζ − q) , ξ 2 = ε

∫
dτ ′(ζ − q) , ζ = ζ(x) ,

ξ 3 = μ(ζ − q) − εμ
[
2q

∫
dτ ′

∫
dτ ′′∂x (ζ − q) + ∂x

∫
dτ ′

∫
dτ ′′(ζ − q)

]

+ εu
∫

dτ ′∂x (ζ − q) ,

ξ 4 = ζ − q − ε
[
2q

∫
dτ ′

∫
dτ ′′∂x (ζ − q) + ∂x

∫
dτ ′

∫
dτ ′′(ζ − q)

]

+ εw
∫

dτ ′∂x (ζ − q) ,

η2 = ∂τ (ζ − q) − ε
[
2∂τ

(
q

∫
dτ ′

∫
dτ ′′∂x (ζ − q)

)
+ ∂x

∫
dτ ′(ζ − q)

]

− 3εp
∫

dτ ′∂x (ζ − q) ,

η1 = εgC2 − (εg/x)
∫

dτ ′(ζ − q) , η3 = ε f C2 − (ε f/x)
∫

dτ ′(ζ − q) .

(73)

for the coordinates of operator (65). By using the approximate intermediate symmetry
(73) in nonlocal determining equations (68) and solving them by using variational
differentiation, we can see that these equations are satisfied with the chosen accuracy
if the electric field changes slowly enough, ∂τq � O(ε).

To construct the solutions of the initial problem (61)–(63), it is necessary to know,
rather than all of the operators of the admissible group, only their linear combination
that preserves the invariance of the solution of the problem by the perturbation theory
in powers of τ , in other words, renormgroup symmetries [4]. Therefore, we should
specify the form of the initial distribution functions, f0 and g0. We assume that the
velocity distributions of particles at the initial instant are Maxwellian

g0 = ne0(x)√
2π

exp(−u2/2) , f0 = ni0(x)√
2πΓ

exp(−w2/2Γ 2) , (74)

with the initial densities ne0(x) and ni0(x) and zero mean velocities. These initial
distribution functions correspond to the initial electric field distribution that obeys
the first equation in (62)

ε
(
∂x p

0(x) + p0(x)/x
) = ni0(x) − ne0(x) . (75)

The perturbative expansion of the solutions of the Cauchy problem as a power series
in τ gives terms that are proportional to ∝ O(τ ) for the electron and ion distribution
functions andproportional to∝ O(τ 2) for the electric field. The invariance conditions
for these solutions are specifiedby coordinates (65) of the groupgenerator (73),which
give the form of the function ζ and connect the initial electron and ion densities
with the spatial structure of the electric laser field for τ = 0, i.e., with the quantity
q0(x) = q0(0, x)
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ζ(x) = −ε

(
∂xne0
ne0

+ Γ 2 ∂xni0
ni0

)
, p0 = −q0 − ε

∂xne0
ne0

. (76)

For the specified initial distribution of the ion density, ni0, Eq. (75) and the second
equation in (76) form the system of equations for finding ne0. If the laser radiation
intensity is not low, q0 � ε∂xne0/n

e
0, then can be ne0 approximately written in the

form
ne0(x) ≈ ni0 + ε

(
∂xq

0 + q0/x
)

. (77)

In the next section, we use the obtained symmetry groups for solving problem (61),
(62), and (63).

3.2 Finite Group Transformations and Invariant Solutions of
Kinetic Equations

The approximate solutions of the initial problem (61)–(63) are expressed in a standard
way in terms of invariants of the group (65), (72), which occur from the solutions of
Lie equations for the generator of group (65) with coordinates (73) after the exclusion
of the group parameter from these solutions. We will write these invariants in the
case that corresponds to a constant electric field, q = q(x), independent of time, τ .
For the laser pulse of finite duration the analogous result was considered in [34].

We consider a laser pulse with a steep enough leading edge so that plasma ions, in
fact, have no time to be displaced during the rise of the pulse intensity to itsmaximum.
Further, we will assume that the laser intensity is constant and will use expressions
(72) in which the intensity q is independent of time. Then, group invariants that are
generated by the operator (65) with coordinates (72) have the form

I1 = x f ≡ x ′ f ′ , I2 = xg ≡ x ′g ′ , I3 = (p + q)(ζ − q)3 ≡ (p ′ + q ′)(ζ ′ − q ′)3 ,

I4 = τ2

2(ζ − q)2
− Z(y) ≡ −Z(y′) , Z(y) =

∫ y

y′
dξ/(ζ(ξ) − q(ξ)) 3 , y = x/ε ,

I5 = (ζ − q)u + (μ/3)(4q − ζ )(ζ − q)2
√
Z(y)/2 − μ

2

∫ y

y ′
dξ

[
(1/3)

√
2/Z(ξ)

− √
2Z(ξ)ζ(ζ − q)∂ξ (ζ − q) + ζ/(

√
2Z(ξ)(ζ − q))

] = (ζ ′ − q ′)u ′ ,

I6 = (ζ − q)w + (1/3)(4q − ζ )(ζ − q)2
√
Z(y)/2 − 1

2

∫ y

y ′
dξ

[
(1/3)

√
2/Z(ξ)

− √
2Z(ξ)ζ(ζ − q)∂ξ (ζ − q) + ζ/(

√
2Z(ξ)(ζ − q))

] = (ζ ′ − q ′)w ′ .
(78)

Here, primed variables correspond to the values of quantities for τ → 0

f ′ = f 0(x ′,w ′) , g ′ = g0(x ′, u ′) , p ′ = p0(x ′) , q ′ = q0(x ′) . (79)
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The first three invariants, I1, I2, and I3, define substantially the required approximate
analytic solution of the initial problem

f = (x ′/x) f 0(x ′,w ′) , g = (x ′/x)g0(x ′, u ′) , p = −q + (p ′ + q ′)(ζ ′ − q ′)3(ζ − q)−3 ,

(80)
where the primed variables x ′, u ′, and w ′ are expressed in terms of τ , x , u, and w
using the invariants I4, I5, and I6. For the initial distributions f0, g0, and p0, which
are described by expressions (74) and (76), the solution of (80) is written in the form

f = x ′ni0(x ′)
x
√
2πΓ

exp
( − (ζ ′ − q ′)2(w − W )2

2(ζ − q)2Γ 2

)
, p = −q − ε

(ζ ′ − q ′)3
(ζ − q)3

∂x ′(ne0(x
′))

ne0(x
′) ,

g = x ′ne0(x ′)
x
√
2π

exp
( − (ζ ′ − q ′)2(u −U )2

2(ζ − q)2

)
.

(81)
Here,

W = −(1/3)(4q − ζ )(ζ − q)
√
Z(y)/2 + 1

2(ζ − q)

∫ y

y ′
dξ

[
(1/3)

√
2/Z(ξ)

− √
2Z(ξ)ζ(ζ − q)∂ξ (ζ − q) + ζ/(

√
2Z(ξ)(ζ − q))

]
, U = μW .

(82)

The knowledge of the distribution function (81) of particles allows us to calculate the
global characteristics of plasma ions, such as their average velocity, viav, and density,
niav, as well as the ion and electron temperatures, T i and T e

viav = W , niav = ni0(x
′)
x ′(ζ ′ − q ′)
x(ζ − q)

, T i(e) = T i(e)
0

(ζ ′ − q ′)2

(ζ − q)2
. (83)

Aside from expressions (83), that describes the spatial distribution of the average ion
velocity and density, the expressions that determine the energy spectrum, Nε , of the
accelerated ions are also of interest. This spectrum is specified so that the integral
of Nε over all of the admissible ion energies 0 < ε < ∞ coincides with the total
number of plasma ions

Nε = π

∞∫

0

dxx

√
2

ε

[
f (x,

√
2ε) + f (x,−√

2ε)
]
. (84)

By substituting solution (81) into (84), we obtain the spectral density of the ion
energy



Approximate Symmetry in Nonlinear Physics Problems 31

Nε =
√

π

ε

1

Γ

0∫

∞
dxx ′ni0(x

′)
[
exp

( − (ζ ′ − q ′)2(
√
2ε − W )2

2(ζ − q)2Γ 2

)

+ exp
( − (ζ ′ − q ′)2(

√
2ε + W )2

2(ζ − q)2Γ 2

)]
.

(85)

At low ion temperatures, Γ 2 � 1, the ion spectrum (85) can be found by using
simpler expressions based on asymptotic approaches to the calculations of integrals.
As a result, integration in (85) is replaced by summation over contributions from
individual ‘stationary’ points determined from the condition W (xk) = √

2ε

Nε � π

√
2

ε

∑
k

x ′
kn

i
0(x

′
k) | ∂xW|x=xk |−1

(ζ ′ − q ′

ζ − q

)
|x=xk

, ∂xW|x=xk �= 0 .

(86)
According to (86), the spectral density of the ion energy has a singularity at the point
x = xm , where ∂xW|x=xm → 0 (generally speaking, there can be several such points);
it should be replaced by the expression

Nm
ε �

√
π

εΓ

Γ (1/4)

21/4
x ′
mn

i
0(x

′
m)√| ∂xxW|x=xm |

(ζ ′ − q ′

ζ − q

)1/2
|x=xm

,

∂xW|x=xm = 0 , ∂xxW|x=xm �= 0 .

(87)

Outside the region 0 < ε < εm ≡ W (xm)2/2, the quantity Nε proves to be exponen-
tially small, i.e., εm determines the upper boundary of the spectrum. The quantity εm
is defined by a pair of equations

W (τ, xm) − √
2εm = 0 , ∂xW|x=xm = 0 , (88)

which have the explicit form

{√
2εm − τ(ζ − q) + 1

2(ζ − q)

∫ y

y ′
dξ

√
2Z(ξ)(ζ − q)

[
3(2ζ − q)∂ξ ζ

+ (2q − 5ζ )∂ξq
]}

|y=ym
= 0 , ym = xm

ε
,

{
τ∂y(ζ − q) + ∂y(ζ − q)

2(ζ − q)2

∫ y

y ′
dξ

√
2Z(ξ)(ζ − q)

[
3(2ζ − q)∂ξ ζ + (2q − 5ζ )∂ξq

]

+ 1

2(ζ − q)4

(
1 + τ2∂y(ζ − q)

) ∫ y

y ′
dξ

(ζ − q)√
2Z(ξ)

[
3(2ζ − q)∂ξ ζ

− τ

2(ζ − q)
+ (2q − 5ζ )∂ξq

][
3(2ζ − q)∂yζ + (2q − 5ζ )∂yq

]}
|y=ym

= 0 .

(89)
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Fig. 3 The spatial distributions of the normalized average density (a) and velocity (b) of ions,
the electron temperature (c), and the ion spectrum (d) over the dimensionless coordinate r for a
stationary laser beam for different τ = 2; 3; 4; 5; 6. The value of τ increases for curves from top
to bottom (for r → 0) for (a), (c), from bottom to top for (b), and from left to right for spectral
distribution curves. Z = 2, A = 4, a20 = 50, α = 1, ε = 0.01, μ = √

1/4000, nc/ne0 = 100 (nc is
the critical density), ne0 = 1; ni0 = 0.5; Γ = 0.001

Figure3 shows the spatial distributions of the average ion velocity and density at
different instants under the action of stationary laser radiation when A(τ ) = 1. One
can see that the spatial distributions of ion density and velocity change with time,
τ , under the action of the electric field of the laser beam. The acceleration of ions
is followed by the formation of an ion density cusp with a minimum at the laser
beam center and a maximum at its periphery. Similar behavior is also typical for
the electron temperature of the plasma, which is lower at the central part of the laser
beam and increases at its periphery. The dashed curves for τ = 6 are formally located
outside the region of applicability of our theory based on the approximate symmetry;
therefore, they demonstrate only a trend in the change in the ion density and velocity
and the electron temperature rather than their accurate quantitative values. Because,
according to expressions (83), the product (ζ − q)−3(ζ ′ − q ′)3 is proportional to
(x/x ′) T eniav, the increase in the plasma density and electron temperature at the
external boundary of the laser beam can lead, with increasing τ , to a difference of
the electric field in this plasma region from the laser beam field. For plasma and
beam parameters in Fig. 3, the difference of p from −q for τ = 6 and r ≈ 1.95 is
4%. A greater difference, namely, a decrease in p more than by one-half (compared
to −q) is observed for τ = 7 and r ≈ 2.155, although this value of τ lies outside the
region of applicability of the theory.
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To conclude, in this Section the theory of approximate transformation groups was
successfully used to study the spatiotemporal structure of the accelerated plasma
particles and analyze the acceleration of ions in an inhomogeneous cylindrical low
density plasma caused by laser radiation that propagates along the axis of a cylinder.

4 Approximate Symmetry in Multi-scale Plasma Dynamics

In this section, an application of approximate transformation groups to study dynam-
ics of a system with distinct time scales is discussed. The utilization of the Krylov-
Bogoliubov-Mitropolsky method of averaging to find solutions of the Lie equations
is considered. Physical illustrations from the plasma kinetic theory demonstrate the
potentialities of the suggested approach.

In analyzing various physical systems, we frequently deal with a situation when
a complicated dynamics of different systems appears as a superposition of ‘fast’ and
‘slow’ motions with incommensurable characteristic scales, for example, slow evo-
lution of ‘background’ system characteristics accompanied by fast oscillations in the
vicinity of a background state. This type of behavior seems typical for various linear
and nonlinear problems (numerous examples are found in [35, 36]), e.g., for celestial
mechanics in studies of a motion of planets, for mechanics when treating oscilla-
tory regimes of systems with slowly varying parameters, and for various nonlinear
problems of multi-component plasma.

The availability of different scales (though the origin of these scales depends upon
the particular system of interest) allows to simplify the analysis of the complicated
dynamics by treating ‘fast’ and ‘slow’ motions separately. These ideas underlie an
essence of asymptotic analytical approaches, the method of averaging [37, 38], the
method of multiple scales [35], and other asymptotic methods (see, e.g., [35, 36]).

As to relation of modern group analysis to nonlinear dynamics, here we will point
to an interpenetration of ideas from both fields: on one hand the use of the Lie group
theory in asymptotic methods for integration of nonlinear differential equations gives
(in combination with the Hausdorff formula) the theoretical basis for the method of
averaging [37] and provides a regular procedure for calculating the asymptotic series
in this method [36, 39, 40]. On the other hand, an introduction of multiple-scales
approach to modern group analysis [41] enhances the potentiality of approximate
transformation groups [1].

In the present section, we demonstarte the Krylov-Bogoliubov-Mitropolsky
method (KBM-method) of averaging in group analysis of the systemof equations that
describes the evolution of plasma particles in multi-component plasma. The linearity
of the group determining equations plays the decisive role in separating fast and slow
terms in coordinates of a group generator and in successive use of the KBM-method
for constructing the asymptotic solutions of the Lie group equations.
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4.1 Lie Symmetry Group for Multi-scale Plasma Dynamics

We start with kinetic equations for distribution functions, f e and f i

∂t f
e + ve∂x f

e − (e/m)E∂ve f
e = 0 , ∂t f

i + vi∂x f
i + (Ze/M)E∂vi f

i = 0 ,

(90)
for both species of two-component plasma consisting of electrons and ions with
mass m and M and charges ee = −e and ei = Ze, where Z is a charge number and
equations for a self-consistent electric field E

∂x E = 4πρ , ∂t E = −4π j , ∂tρ + ∂x j = 0 . (91)

Here charge ρ and current j densities are related to moments of the distribution
functions via nonlocal material relations

ρ = e
[
Z

∫
dvi f i −

∫
dve f e

]
, j = e

[
Z

∫
dvi vi f i −

∫
dveve f e

]
. (92)

Equations (90)–(92) are known as a system of the Vlasov-Maxwell equations for a
collisionless plasma. We are interested in the solution of the Cauchy problem for
kinetic equations (90) with the initial conditions

f e|t=0 = f e0 (x, ve) , f i |t=0 = f i0 (x, v
i ) , (93)

which depend on a particular physical problem. In what follows, we consider an evo-
lution of localized plasmabunches and assume sufficiently smooth (e.g.,Maxwellian)
initial distribution functions with electron Te and ion Ti temperatures and initial
densities of electrons ne(x) = ∫

dve f e0 and ions ni (x) = ∫
dvi f i0 with the char-

acteristic scale L . Below we consider a typical situation when L is much greater
than the Debye radius of electrons rDe = √

Te/(4πne0e
2). The difference in mass

of plasma particles specifies two different time scales, namely dimensionless time
ωLet for ‘fast’ electron motions and τ = μt for ‘slow’ motions,μ = √

Zm/M � 1.
It is natural that electrons are involved in both fast and slow motions, hence the
electron distribution function depends on both t and τ . On the contrary, we con-
sider ions not involved in fast motions. It means that the ion distribution func-
tion does not depend upon fast time t , but only upon slow time τ . It also means
that averaging upon fast time eliminates the fast component Ẽ of the electric
field E = Ẽ + Ē in the ion kinetic equation that contains only the slow electric
field Ē . Then introducing dimensionless variables, electron velocity u = ve/VTe,
VTe = √

Te/m, dimensionless ion velocity w = vi/cs , cs = √
ZTe/M , dimension-

less electric field p = ε(eEL/Te) , ε = rDe/L � 1, and dimensionless distribution
functions f e = (ne0/VTe)g, f i = (ne0/(Zcs)) f , n

e(i)
0 = ne(i)(0), we come to the fol-

lowing system of basic equations in dimensionless variables
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∂t g + μ∂τ g + εu∂x g − p∂ug = 0 , ∂τ f + εw∂x f + p̄∂w f = 0 , (94)

ε∂x p =
∫

dw f −
∫

dug , ∂t p + μ∂τ p = −μ

∫
dww f +

∫
duug . (95)

This system of equations should be supplemented by the four additional equalities

∂wg = 0 , ∂u f = 0 , ∂u p = 0 , ∂w p = 0 , (96)

which are evident from the physical point of view.
The Lie point symmetry group admitted by the system (94) and (95) is defined

by a symmetry group generator

X = ξ 1∂t + ξ 2∂x + ξ 3∂u + ξ 4∂w + ξ 5∂τ + η1∂g + η2∂p + η3∂ f . (97)

In the canonical form this generator is written as

Y = κ1∂g + κ2∂p + κ3∂ f , (98)

κ1 = η1 − ξ 1∂t g − ξ 2∂x g − ξ 3∂ug − ξ 5∂τ g ,

κ2 = η2 − ξ 1∂t p − ξ 2∂x p − ξ 5∂τ p ,

κ3 = η3 − ξ 2∂x f − ξ 4∂w f − ξ 5∂τ f .

When applying group generator (98) to (94), (95) and (96) we get a system of
determining equations for coordinates ξ i , ηi of the generator (97)

Dtκ
1 + μDτ κ

1 + εuDxκ
1 − pDuκ

1 − κ2∂ug = 0 ,

Dτ κ
3 + εwDxκ

3 + p̄Dwκ3 − κ̄2∂w f = 0 ,

Dwκ1 = 0 , Duκ
3 = 0 , Duκ

2 = 0 , Dwκ2 = 0 ,

(99)

εDxκ
2 −

∫
dwκ3 +

∫
duκ1 = 0 ,

Dtκ
2 + μDτ κ

2 + μ

∫
dwwκ3 −

∫
duuκ1 = 0 ,

(100)

which should be solved in view of the basic equations (94)–(96) and all their dif-
ferential consequences. Here Dt , Dτ , Dx , Du , and Dw are total differentiations with
respect to the variable denoted by lower index

Dt = ∂t + (∂t g) ∂g + (∂t p) ∂p ,

Dτ = ∂τ + (∂τ g) ∂g + (∂τ f ) ∂ f + (∂τ p) ∂p ,

Dx = ∂x + (∂x g) ∂g + (∂x f ) ∂ f + (∂x p) ∂p ,

Du = ∂u + (∂ug) ∂g , Dw = ∂w + (∂w f ) ∂ f .

(101)
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To find coordinates ξ i , ηi from the system of determining equations, we use the
approach described in [14, Chap. 4]. Following this technique, we separate the deter-
mining equations for ξ i and ηi into local determining equations, (99), which arise
from invariance of (94), (96), and nonlocal determining equations, (100), which fol-
low from invariance conditions for (95). Solutions of local determining equations
give the so-called intermediate symmetry.

Two distinct moments should be taken into account here: first, in view of multi-
scale dynamics, we outline in coordinates ξ 1, ξ 2, ξ 3, and η2, entering local determin-
ing equations the fast terms denoted by variables with tilde and slow terms denoted
by variables with bar

ξ i = ξ̃ i + ξ̄ i , i = 1, 2, 3 , η2 = η̃2 + η̄2 . (102)

Due to the fact that both local and nonlocal determining equations are linear in ξ and
η, we thus can separate terms of different characteristic scales. Then omitting trivial
tedious computations, we rewrite fast

η̃2 + p
(
∂t ξ̃

1 + μ∂τ ξ̃
1 − ∂u ξ̃

3
) + ∂t ξ̃

3 + μ∂τ ξ̃
3 + εup∂x ξ̃

1 + εu∂x ξ̃
3 = 0 ,

εξ̃ 3 − ∂t ξ̃
2 − μ∂τ ξ̃

2 + εu
(
∂t ξ̃

1 + μ∂τ ξ̃
1 − ∂x ξ̃

2
) + ε2u2∂x ξ̃

1 = 0 ,
(103)

and slow local determining equations

η̄2 + p
(
∂τ ξ

5 + εw∂xξ
5 − ∂wξ 4

) − ∂τ ξ
4 − εw∂xξ

4 = 0 ,

η̄2 + p
(
μ∂τ ξ̄

1 − ∂u ξ̄
3
) + μ∂τ ξ̄

3 + εup∂x ξ̄
1 + εu∂x ξ̄

3 = 0 ,

εξ̄ 3 − μ∂τ ξ̄
2 + εu

(
μ∂τ ξ̄

1 − ∂x ξ̄
2
) + ε2u2∂x ξ̄

1 = 0 ,

εξ 4 − ∂τ ξ̄
2 + εw

(
∂τ ξ

5 − ∂x ξ̄
2
) + ε2w2∂xξ

5 = 0 .

(104)

Here, in (103) and (104) the dependencies of ξ̃ i , ξ̄ i , and η̃i , η̄i upon group variables
are given by

ξ̃ 1 = ξ̃ 1(t, τ, x), ξ̃ 2 = ξ̃ 2(t, τ, x), ξ̃ 3 = ξ̃ 3(t, τ, x, u), η̃2 = η̃2(t, τ, x, p),

ξ̄ 1 = ξ̄ 1(τ, x), ξ̄ 2 = ξ̄ 2(τ, x), ξ̄ 3 = ξ̄ 3(τ, x, u), ξ̄ 4 = ξ̄ 4(τ, x, u),

ξ̄ 5 = μξ̄ 1, η̄2 = η̄2(τ, x, p), η1 = η1(g), η3 = η3( f ).
(105)

Second, we shall take an advantage of small parameters in (94), (95) and, as is
customary in the approximate group analysis technique [1], express the coordinates
of the group generator as power series in ε and μ

ξ i =
∞∑

k,l=0

εkμlξ i(k,l) , ηi =
∞∑

k,l=0

εkμlηi(k,l) . (106)
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Collecting terms of the same order, we come to the following infinite set of equations
that relate coordinates of different orders for the fast

η̃2(k,l) + p
(
∂t ξ̃

1(k,l) + (1 − δl,0)∂τ ξ̃
1(k,l−1) − ∂u ξ̃

3(k,l)
)

+ ∂t ξ̃
3(k,l) + (1 − δl,0)∂τ ξ̃

3(k,l−1) + up(1 − δk,0)∂x ξ̃
1(k−1,l)

+ u(1 − δk,0)∂x ξ̃
3(k−1,l) = 0 , k, l � 0,

−∂t ξ̃
2(k,l) + (1 − δk,0)ξ̃

3(k−1,l) − (1 − δl,0)∂τ ξ̃
2(k,l−1)

+ u(1 − δk,0)
(
∂t ξ̃

1(k−1,l) + (1 − δl,0)∂τ ξ̃
1(k−1,l−1) − ∂x ξ̃

2(k−1,l)
)

+ (1 − δk,0)(1 − δk,1)u
2∂x ξ̃

1(k−2,l) = 0 ,

(107)

and the slow terms

η̄2(k,l) + p
(
∂τ ξ

5(k,l) + (1 − δk,0)w∂xξ
5(k−1,l) − ∂wξ 4(k,l)

)

− ∂τ ξ
4(k,l) − (1 − δk,0)w∂xξ

4(k−1,l) = 0 ,

η̄2(k,l) + p
(
(1 − δl,0)∂τ ξ̄

1(k,l−1) − ∂u ξ̄
3(k,l)

) + (1 − δl,0)∂τ ξ̄
3(k,l−1)

+ (1 − δk,0)up ∂x ξ̄
1(k−1,l) + (1 − δk,0)u∂x ξ̄

3(k−1,l) = 0 ,

(1 − δk,0)ξ̄
3(k−1,l) + (1 − δk,0)u

(
(1 − δl,0)∂τ ξ̄

1(k−1,l−1) − ∂x ξ̄
2(k−1,l))

− (1 − δl,0)∂τ ξ̄
2(k,l−1) + (1 − δk,0)(1 − δk,1)u

2∂x ξ̄
1(k−2,l) = 0 ,

(1 − δk,0)ξ
4(k−1,l) − ∂τ ξ̄

2(k,l) + (1 − δk,0)w
(
∂τ ξ

5(k−1,l) − ∂x ξ̄
2(k,l)

)

+ (1 − δk,0)(1 − δk,1)w
2∂xξ

5(k−2,l) = 0 .

(108)
Using approximate intermediate symmetry, which follows from solutions of equa-
tions (107)–(108), in nonlocal determining equations (100), we find a solution of the
latter using variational differentiation (see [14, Chap. 4] for details) and obtain the
symmetry of the complete system (94)–(96).

In constructing the solution of the b.v.p. (93)–(95), we need not require the entire
set of generators, but rather such a combination of group generators that leaves invari-
ant the perturbation theory solution in powers of t and τ , the so-called renormgroup
symmetries [4]. Hence, we should specify the initial particle distribution functions
f 0 = f|t=0, g0 = g|t=0. For concreteness, we assume the initial velocity distribution
functions to be maxwellian

g0 = ne0(x) exp(−u2/2) , f 0 = ni0(x) exp(−w2/2Γ 2) , (109)

with the initial densities ne0(x) and ni0(x) and the initial zero average velocities. In
account of these initial distribution functions, we have the following initial electric
field

p0(x) = (1/ε)
∫ x

0
dx

(
ni0(x) − ne0(x)

)
. (110)
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Perturbation expansion of the Cauchy problem solutions in powers of t and τ gives
terms ∝ O(t) and ∝ O(τ ) for the electron distribution function and ∝ O(τ ) for the
ion distribution function, and ∝ O(t2) and ∝ O(τ 2) for the electric field. Invariance
conditions for these solutions specify the coordinates (106) of the group generator
(97). Leaving only terms that are linear in ε and μ, we write these coordinates as
follows:

ξ 1 = 1 + ετ 2∂xξ , ξ 2 = ε ((δ/Ω) sinΩt + μτξ) ,

ξ 3 = δ cosΩt − εμτu∂xξ , ξ 4 = μ (ξ − ετw∂xξ) ,

η2 = δΩ sinΩt − 3μετp∂xξ , ξ 5 = μξ 1 ,

η1 = η3 = 0 , Ω2 = ni (τ, x) ≡
∫

dw f .

(111)

The dependence of functions ξ(x) and δ(x) upon x is expressed in terms of the initial
densities distributions ne,i0 and the initial electric field p0

ξ = −ε
(
(∂xn

e
0/n

e
0) + Γ 2(∂xn

i
0/n

i
0)

)
, δ = −p0 − ε(∂xn

e
0/n

e
0) , Γ = VTi/cs .

(112)
For arbitrary parameters ε and μ and arbitrary initial density distributions ne,i0 for-
mulas (111) describe the approximate symmetry. However, in two limiting cases,
infinite series (106) terminate and we get the exact symmetry group. The first case is
referred to electron plasma with neutralizing homogeneous ion background (μ = 0,
Ω2 = ni0 = const) [42–44], which gives the generator

X = ∂t + ε (δ/Ω) sinΩt∂x + δ cosΩt∂u + δΩ sinΩt∂p . (113)

The second case is referred to quasi-neutral approximation for electron-ion plasma
with zero current and charge densities j = ρ = 0 [45] that is realized for δ = 0 and
the initial gaussian densities distribution, ξ ∝ βx

X = (
1 + βετ 2

)
∂τ + εβτ x∂x + β (μx − ετu) ∂u + β (x − ετw) ∂w − 3εβτp∂p .

(114)
The additional term in ξ 3 in (114) that refers to acceleration of electrons is omitted
in (111) as it is of the higher order O(μ2) as compared to that included in (111).

4.2 Slow and Fast Dynamics of Plasma Particles

To construct group invariant solution for the b.v.p. (93)–(95), we should find solutions
of the Lie equations for the group generator (97) with coordinates (106)
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dt

da
= 1 + ετ 2∂xξ , t|a=0 = t ′ ,

dx

da
= ε ((δ/Ω) sinΩt + μτξ) , x|a=0 = x ′ ,

du

da
= δ cosΩt − εμτu∂xξ , u|a=0 = u′ ,

dw

da
= μ (ξ − ετw∂xξ) , w|a=0 = w′ ,

dτ

da
= μ

(
1 + ετ 2∂xξ

)
, τ|a=0 = τ ′ ,

dp

da
= δΩ sinΩt − 3μετp∂xξ , p|a=0 = p′ ,

d f

da
= dg

da
= 0 , g|a=0 = g′ , f|a=0 = f ′ .

(115)

Solution of the b.v.p. (93)–(95) are expressed as usual in terms of invariants of
the group (97), (106) that result from solutions of (115) after excluding the group
parameter a. Due to a difference in characteristic time scales, we can separate ‘fast’
and ‘slow’ group invariants by applying the averaging procedure to Lie equations.

In fact, at small time t > 0, 1/μ � t � 1/Ω , the‘ion’terms that are ∝ μ can be
omitted and we come to simplified Lie equations (equations for group invariants f ,
g, τ , w are omitted here)

dt

da
= 1 , t|a=0 = t ′ ; dx

da
= ε (δ/Ω) sinΩt , x|a=0 = x ′ ;

du

da
= δ cosΩt , u|a=0 = u′ ; dp

da
= δΩ sinΩt , p|a=0 = p′ ,

(116)

the solutions of which define invariants of ‘fast’ motions at small time t � 1/μ:

J1 = p + δ cosΩt ≡ −ε(∂xn
e
0/n

e
0)|x=x ′ ,

J2 = x + (εδ/Ω2) cosΩt ≡ x ′ + (εδ(x ′)/Ω2(x ′)) ,

J3 = u − (δ/Ω) sinΩt ≡ u′ ,

J4 = g ≡ g0(x ′, u′) .

(117)

On the contrary, averaging the complete Lie equations on a large time scale T � 1/μ,
we come to Lie equations defining ‘slow’ motions (equations for group invariants
are again omitted)

dτ

da
= 1 + ετ 2∂x̄ ξ̄ ,

dx̄

da
= ετ ξ̄ ,

d p̄

da
= −3ετ p̄∂x̄ ξ̄ ,

dū

da
= −ετ ū∂x̄ ξ̄ ,

dw

da
= ξ̄ − ετw∂x̄ ξ̄ ,

(118)
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with the corresponding ‘slow’ invariants

I1 = f̄ ≡ f ′ , I2 = ḡ ≡ g ′ , I3 = p̄ξ̄3 ≡ p ′ξ ′3 ,

I4 = ετ2

2ξ̄2
−

∫ x̄
dz/ξ 3 ≡ ετ ′2

2ξ ′2 −
∫ x ′

dz/ξ 3 , I5 = ξ̄ ū ≡ ξ ′u ′ ,

I6 = ξ̄ w̄ − 1√
2ε

∫ x̄
dy

(∫ y
dz/ξ 3

)−1/2
≡ ξ ′w ′ − 1√

2ε

∫ s
dy

(∫ y
dz/ξ 3

)−1/2
.

(119)
Here the primed variables are related to values at τ → 0

f ′ = f 0(s,w ′) , g ′ = g0(s, u ′) , p ′ = −ε∂sϕ , s = x ′ + εδ(x ′)
Ω2(x ′)

,

ε2∂xxϕ + ni0(x) − eϕ = 0 , ∂xϕ|x=0 = ∂xϕ|x→∞ = 0 , ϕ|x=0 = C < ∞.

(120)

In what follows, we use the fast and slow invariants to construct analytical solutions
of the Cauchy problem for the kinetic equations (93)–(95).

4.2.1 Slow Dynamics of Particles

Let we consider the slow dynamics of plasma particles under simplifying assump-
tions, small value of p0 < 1, and low ion temperature, γ → 0. Then, following
(119)–(120), s ≈ x ′ and ξ coincides with p′ = p̄|τ=0, and we come to simplified
expressions, which define dynamics of plasma ions

f̄ = f 0(x ′,w ′) , ḡ = g0(x ′,w ′) , p̄ = (
ξ ′/ξ̄

)3 p ′(x ′) , ετ2 = 2ξ̄2
∫ x̄

x ′
dz/ξ 3 ,

w̄ = (
ξ ′/ξ̄

)
w ′ + 1

ξ̄
√
2ε

∫ x̄

x ′
dy

(∫ y

x ′
dz/ξ 3

)−1/2
, ū = (

ξ ′/ξ̄
)
u ′.

(121)
For completeness,we also present global characteristics for plasma ions, their average
velocity viav, density niav and temperature T i

viav = 1

ξ̄
√
2ε

∫ x̄

x ′
dy

(∫ y

x ′

dz

ξ 3

)−1/2

, niav = ni0(x
′)

ξ ′

ξ̄
, T i = T i

0

(
ξ ′

ξ̄

)2

.

(122)
In exemplification of the results, these formulas are analyzed below for the distinct
initial electric field and density distribution. We consider the case when there is very
slight difference between p0 and ξ and the initial electric field practically concises
with the initial ‘slow’ electric field p̄ and the amplitude of the ‘fast’ electric field is
small. This is realized, for example, for the Lorentz-type initial density distribution

n0e(x) = (1/π(1 + x2)) , n0i (x) = (b/π(1 + b2x2)) , | b − 1 | � 1 . (123)
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Substitution of (123) into (110) gives the following formulas for the spatial distribu-
tion of the initial electric field and the function ξ

p0l (x) = 1

πε
(arctan bx − arctan x) , ξl = 2εx

( 1

1 + x2
+ γ 2b2

1 + b2x2
)
. (124)

The left panel of Fig. 4 demonstrates the difference between p0l and ξl , and the right
panel shows the spatial distribution of the ‘slow’ electric field p̄ at different moments
of time τ . As for the average ion density, temperature and velocity they are given by
the formulas

niav = b

π(1 + b2x ′2)
ξ ′
l

ξ̄l
, T i = T i

0

(
ξ ′
l

ξ̄l

)2

, viav = 1

ξ̄l
√
2ε

∫ x̄

x ′
dy

(∫ y

x ′
dz/ξ 3

l

)−1/2

.

(125)
and are plotted on the Fig. 5. The opposite situation when the oscillating electric
field is of the order of the average electric field that accelerates ions is explained in
detail in [46].
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4.2.2 Fast Dynamics of Particles

In this subsection, we use slow invariants to restore the complete dynamics of fast
particles, electrons. For clarity sake, we consider the case of small values of δε � 1,
whichmeans that x is identical to x̄ , and rewrite theLie equations (115) in a simplified
form

dt

da
= 1 + ετ 2∂xξ ,

d(ξu)

da
= δξ cosΩt ,

d(ξ 3 p)

da
= δΩξ 3 cosΩt . (126)

According to the procedure of averaging [37], we canwrite the solutions of equations
(126) by integrating over fast time t and taking into account the dependence upon
slow time by including the dependence upon x̄ and τ into δ and ξ . However, the
enhanced precision is achieved by direct integration of the Lie equations (126) in
account of the slow dependence of τ upon x̄ as given by slow motion invariants

p = ξ ′3

ξ̄ 3
p̄ ′ + 1

ξ̄ 3

x ′∫

x

dx ′′ δ̄Ω̄ξ 2(x ′′)
εμτ(x ′′)

sin(Ω̄t (x ′′)) ,

u = ξ ′

ξ̄
ū ′ + 1

ξ̄

x ′∫

x

dx ′′ δ̄

εμτ(x ′′)
cos(Ω̄t (x ′′)) .

(127)

Electron distribution function g = g′ ≡ g0(x ′, u′) is the invariant of group transfor-
mations. Thus, substituting x = x̄ and u′ from (127) in g0 and integrating over the
velocity u gives the integral characteristic, the average electron velocity and density

neav = ne0(x
′)

(
ξ ′/ξ̄

)
, ueav = 1

ξ ′

x ′∫

x

dx ′′ δ̄

εμτ(x ′′)
cos(Ω̄t (x ′′)) . (128)

To illustrate these formulas, we employ results of the previous section and consider
the Lorentz-type initial densities profiles (123) with the function ξ = ξl defined by
(124). Substituting ξl in (127)–(128), we obtain the formulas for the spatial distri-
bution of the electric field and the average electron velocity that are presented on
the figures below for three different time moments. Figure6 corresponds to moder-
ate values of τ = 4, when the ion density is concentrated mainly in the center of the
bunch, thus leading to small-scale spatial oscillations primarily in this region. As the
bunch spreads with growth of τ , the small-scale spatial oscillations moves outward
as shown in Fig. 7 for τ = 10, The figures also show that the ‘complete’ electric field
p in this case oscillates with the same spatial period as the mean electron velocity
and only slightly differs from the average electric field p̄ (compare with Fig. 4).

To conclude in the above analysis of a particular physical problem, expansion
of a plasma bunch, a new promising tool for analyzing nonlinear multi-scale sys-
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Fig. 6 Electric field and average electron velocity distributions at τ = 4 for a = 1.0, b = 1.0661,
ε = 0.1, μ = √
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Fig. 7 Electric field and average electron velocity distributions at τ = 10 for a = 1.0, b = 1.0661,
ε = 0.1, μ = √

1/2000 and γ = 0.001

tems was considered. The main idea consists of employing the Krylov-Bogoliubov-
Mitropolskii procedure of averaging to construct solutions of Lie equations. The
procedure of separating ‘fast’ and ‘slow’ terms in coordinates of group generator
naturally occurs in determining equations while constructing the symmetry for non-
linear equations that describe multi-scale behavior of any physical system. In our
consideration, we use the averaging procedure in combination with a perturbation
technique of group analysis [1] that gives approximate symmetries for the analyzed
problem and helps to construct approximateRG-invariant solution for arbitrary initial
distribution functions of particles.

The use of the averaging procedure in modern group analysis naturally separates
invariant manifolds related to slow and fast Lie equations into slow and fast invariant
manifolds. This separation is in the root of the theorem of invariant representation
[12, §18]: averaging the fast invariant solution that appears as an oscillating curve on
fast manifold yields a smooth curve on the slow invariant manifold as shown in the
previous section (compare to the method of slow invariant manifold for describing
kinetics of dissipative systems [47]). The merits of the approach with different scales
that simplifies both the procedure of finding the admitted group and construction of
the group invariant solutions point to the quest for future potential applications.
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5 Approximate Symmetries in the Theory of Light-Beam
Self-focusing

In this section, a method of approximate renormgroup symmetries is applied for ana-
lytical solution to the nonlinear Schrödinger equation (NLSE) which describes the
electromagnetic beam self-focusing in a plasma with cubic, saturating, and relativis-
tic nonlinearities. Different stationary self-focused waveguide propagation modes
with respect to controlling laser-plasma parameters for a Gaussian radial intensity
distribution at the plasma boundary are presented that describe self-trapping, self-
focusing on the axis, and tubular self-focusing solutions.

The problem of self-focusing of a high power light beam [48–52] plays an impor-
tant role in nonlinear electrodynamics since early sixties. For example, self-guiding
of an intense laser pulse in an underdense plasma for many Rayleigh lengths with-
out significant losses has been demonstrated many times both experimentally and in
numerical simulations [53–55]. The need for parametric scaling for the laser beam
power trapped in a self-focused channel gave an impulse to a search for effective
ways of its analytic description.

The studies of stationary light beam self-focusing via rigorous analytical theories
include the inverse scattering method [56] and the classical group analysis [57–60].
Here, a large variety of exact solutions to the NLSE in 1D, 2D, and 3D geometry
for cubic and quintic nonlinearity and with additional linear inhomogeneous terms
have been obtained. A common disadvantage of rigorous mathematical methods
is that they consider some special solution for a specific boundary value problem.
However, boundary conditions for these solutions do not correspond to a localized
electromagnetic beam at the entry plane. Hence, a natural advance in the theory of
self-focusing would be to solve the corresponding Cauchy problem for an intense
laser beam that modifies the plasma dielectric permittivity and is characterized by
a given intensity distribution at the plasma boundary. Below we draw attention to
this problem with the help of the analytical method based on the use of approximate
symmetries.

A mathematical model of wave self-focusing is based on the NLSE

2ik∂z E + �⊥E + k2
εnl

ε0
E = 0, E(0, r) = E0(r), (129)

for the complex electric field amplitude E(z, r) of an electromagnetic wave with the
frequency ω slowly varying in the propagation direction z. Equation (129) corre-
sponds to a paraxial (quasioptical) approximation describing the stationary structure
of the wave beam. Here, k = (ω/c)

√
ε0 is the wave number of the electromagnetic

wave, �⊥ is the Laplace operator in the plane r perpendicular to the beam axis z,
ε0 = 1 − 4πe2ne0/(m0ω

2) is the linear dielectric permittivity of the plasma, and εnl
is the real part of the nonlinear permittivity of the plasma.

The use of quasioptical approximation (129) establishes the applicability con-
ditions for our theory, which are determined by the following constraints on the
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characteristic longitudinal and transverse scales Λ‖ and Λ⊥ of the complex ampli-
tude E (also see [62])

kΛ‖, kpΛ‖ � 1, kΛ2
⊥ ≈ Λ‖ max

{
1; (kΛ⊥)2

εnl

ε0

}
. (130)

The inequality in Eq. (130) means that the laser pulse length substantially exceeds
the wavelengths of the corresponding electromagnetic and plasma fields. It allows
neglecting the contribution of the term with the second derivative of the electric field
with respect to the longitudinal coordinate z (along the beam axis) compared with the
first term contribution to Eq. (129) when deriving the NLSE from more complicated
equations. The approximate equality in Eq. (130) relates the characteristic transverse
and longitudinal scales of the electric field caused by diffraction and nonlinearity.
Using NLSE (129) involves considering only the electromagnetic wave propagating
forward into the nonlinear medium and the absence of backward waves that could
arise in the presence of sharp gradients of the dielectric constant of the medium in the
longitudinal direction (see, e.g., p. 432 in Sec. 17.12 in [61]). Conditions (130) can be
violated if the solution singularity appears where the characteristic longitudinal scale
of the complex field amplitude sharply decreases. Hence, the analytic solution thatwe
obtain characterizes the behavior of the beam in some finite spatial domain from the
entrance up to the singularity point. This restriction follows from the mathematical
model used based on the NLSE (also see the discussion of this question in Sect. 9.2
in [62]).

Using the standard representation for the complexfield amplitude E = A exp(iks)
and introducing w ≡ A2 = |E |2 and the derivative v = {v, 0} = ∇⊥s of the eikonal
s along the radius, we reduce NLSE (129) to the two equations

∂zv + v∂r v − 1

2
∂r

( 1√
w

(�⊥
√
w ) + ρ2F

) = 0,

∂zw + w∂r v + v∂rw + w
v

r
= 0 .

(131)

In Eq. (131), we use the following dimensionless variables for the coordinates and
complex field amplitude:

z → √
2β

z

d
, r → r

d
, w → w

w0
, v → v√

2β
, (132)

where β = 1/2k2d2, d is the characteristic transverse dimension of the light beam,
and w0 is the maximum value of w at the boundary of the medium. The contributions
proportional to ρ2 = ω2

ped
2/c2 determine the role of the effects of the relativistic and

charge-displacement nonlinearity given by the function F = (εnl/ε0)(k/kp)2.
Equations (131) should be supplemented by the boundary conditions that deter-

mine the structure of the beam at the entrance z = 0 of the nonlinear medium. Below,
we consider a cylindrically symmetric beamwith a plane initial phase front, i.e., with
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the zero eikonal derivative, v(0, r) = 0, and a smooth distribution function for the
square of the modulus of the electric field, w(0, r) ≡ J (r). The case with a focused
beam with a curved initial phase front, v(0, r) �= 0, was analyzed in a similar way
for cubic nonlinearity in [5, 63].

5.1 Approximate Solution of NLSE by the Renormgroup
Symmetry Method

We here describe the construction of approximate solutions of NLSE (131) with
plasma nonlinearity using the method of renormgroup symmetries [4], described in
Sect. 1.3. This method consists in finding symmetries of a special kind under which
approximate solutions of (131) constructed by perturbation theory for small distances
from the boundary of a nonlinear medium are invariant and then applying these sym-
metries to extend the approximate solutions to the bulk of the nonlinear medium.
Such a procedure is based on the property of a renormgroup symmetry operator to
transform a solution of a boundary value problem with given boundary data into a
solution of the same boundary value problem. To construct the renormgroup sym-
metry operator, following the general algorithm [4, 63], we use the Lie–Bäcklund
symmetries admitted by the original differential equations (131) and determined by
the canonical group operator

X = f ∂v + g ∂w. (133)

The coordinates f and g of this operator are found by solving the corresponding
determining equations expressing the invariance conditions for system (131) with
respect to the group with operator (133)

Dz f + vDr f + f v1 − ∂w(B)g − ∂w1(B)Drg − ∂w2(B)D2
r g − ∂w3(B)D3

r g = 0,

Dzg + wDr f + vDr g + gv1 + f w1 + vg

r
+ f w

r
= 0.

(134)
Here,

B = 1

2
Dr

(Dr (r Dr
√
w)

r
√
w

) + 1

2
Dr (ρ

2F), vs ≡ ∂sv

∂r s
, ws ≡ ∂sw

∂r s
,

Dr = ∂r +
∞∑
s=0

(vs+1∂vs + ws+1∂ws ),

(135)

and Dz is represented as Dz = D0
z + D1

z , where
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D0
z = ∂z −

∞∑
s=0

{
Ds

r (vv1)∂vs + [
Ds+1

r (wv) + Ds
r

(wv
r

)]
∂ws

}
,

D1
z =

∞∑
s=0

Ds
r (B)∂vs .

(136)

Because the terms originating from B in the first equation in (131) in the case of a
slowly varying electric field amplitude are considered small compared with the first
and the second terms, we seek f and g in the form of a series expansion in powers
of the ‘dimensionless relative amplitude’ b of the contributions from B

f =
∞∑
i=0

f i , g =
∞∑
i=0

gi . (137)

We restrict ourselves to only the first-order corrections

f = f 0 + f 1 + o(b), g = g0 + g1 + o(b), (138)

where f 0 ∝ O(1), g0 ∝ O(1), f 1 ∝ O(b), and g1 ∝ O(b). We substitute (138) in
the determining Eq. (134) and collect the zeroth- and first-order terms, obtaining

M0 f
0 = 0, M1g

0 + M2 f
0 = 0,

M0 f
1 + D1

z f
0 − ∂w(B)g0 − ∂w1(B)Drg

0 − ∂w2(B)D2
r g

0 − ∂w3(B)D3
r g

0 = 0,

M1g
1 + D1

z g
0 + M2 f

1 = 0,
(139)

where
M0 = D0

z + vDr + v1,

M1 = D0
z + vDr + v1 + v/r,

M2 = wDr + w1 + w/r.

(140)

We now set

f 0 = 1

2
Dr (v

2), g0 = 1

r
Dr (wvr), (141)

following [63]. This choice obviously satisfies zeroth-order equations (139) and the
invariance conditions f 0 = 0 and g0 = 0 at the boundary. We can then find f 1 from
the first of the first-order equations in (139), which we rewrite as

M0( f
1 + B) = 0. (142)

The solution of this equation is expressed in terms of invariants of the operator M0

f 1 = 1

2
Dr

(
S(χ) − ρ2F − 1√

w
(�⊥

√
w )

)
, χ = r − vz, (143)



48 V. F. Kovalev

where

S(χ) = ρ2 F(J ) + 1

χ
√
J (χ)

∂χ [χ∂χ(
√
J (χ) )], F(J ) = F(J (χ)). (144)

Substituting this result in the second first-order equation in (139) leads to an equation
for the function g1

M1g
1 + 1

2r
Dr [wzDr S(χ)] = 0. (145)

It is easy to show by direct substitution that Eq. (145) can be rewritten as

M0(rg
1) + 1

2
Dr [wzDr S(χ)] = 0.

This equation can be integrated similarly to Eq. (142). We then obtain

rg1 = −1

2
Dr (rwz∂χ S).

Finally, up to the first order in the small parameter b, the Lie–Bäcklund symmetry
operators in the canonical form are

f = vv1 + 1

2
Dr

(
S(χ) − ρ2F − 1√

w
(�⊥

√
w )

)
, (146)

g = v
(
w1 + w

r

) + wv1 − z

2

[
w(1 − zv1)∂χχ S + (

w1 + w

r

)
∂χ S

]
. (147)

In view of (131), we can rewrite (146) as

f = −∂zv + (1 − zv1)
∂χ S

2
.

Together with Eq. (147), the last equation leads to the two relations

v = z
∂χ S

2
, (148)

∂zv = (1 − zv1)
∂χ S

2
, (149)

which must be satisfied to preserve the invariance requirement f = 0 and g = 0.
Keeping inmind the relation between the canonical formof the symmetry operator

and the point symmetry group operator [6], we can now write the group symmetry
operator
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R = (
1 + z2

2
∂χχ S

)
∂z + ∂χ S

2
∂v + 1

2
(z∂χ S + vz2∂χχ S)∂r

− wz

2

[(
1 + vz

r

)
∂χχ S + 1

r
∂χ S

]
∂w. (150)

Operator (150) is similar to the one previously obtained in [63] for a collimated
beam except that S(χ) now contains the function F , which describes the laser beam
in plasmawith arbitrary saturating or relativistic nonlinearities. Operator (150) yields
a system of characteristic equations

dz

1 + z2∂χχ S/2
= dv

∂χ S/2
= dχ

−v
= d ln(wr)

−z∂χχ S/2
. (151)

This system of equations can be easily integrated after Eq. (148) is taken into account.
The second and third equations in (151) give

S + (∂χ S)2
z2

4
= S(μ), (152)

whereμ corresponds to the value ofχ at the boundary. The third and fourth equations
in (151) yield another invariant rw/∂χ S, which gives the dependence of w as

w = J (μ)
χ

r

∂χ2 S

∂μ2 S
(153)

in terms of its initial profile J (χ). Correspondingly, r and χ are related as

r = χ(1 + z2∂χ2 S). (154)

In summary, the solutions are represented by the equations

v(r, z) = z

2
∂χ S, w(r, z) = J (μ)

χ

r

∂χ2 S

∂μ2 S
, (155)

where χ and μ are defined as functions of z and r by the relations

r = χ(1 + z2∂χ2 S), S(μ) = S(χ) + z2

4
(∂χ S)2. (156)

These solutions are discussed in detail in the next sections for particular dependencies
of F upon J .
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5.2 NLSE Solution for Plasma with Saturating Nonlinearity

In this Section, we consider a plasma whose nonlinearity is due to the ponderomo-
tive force with saturation [64], which corresponds to F ≡ Fsat = 1 − exp(−νw).
The constant ν = w0/16πncTe define the saturation strength of nonlinearity in the
Schrödinger equationwith the nonlinearity Fsat = 1 − exp(−νw2), Te and nc are the
electron temperature and the critical density of the plasma, respectively. This type
of nonlinearity corresponds to the propagation of a laser beam of non-relativistic
intensity in a fully ionized plasma. For νw � 1, this function Fsat corresponds to a
medium with cubic nonlinearity, lim

νw→0
Fsat = Fcub = νw.

Using formulas (155), we consider in greater detail the evolution of a beam with
the Gaussian initial intensity profile J (r) = exp(−r2); for this beam, the function
Ssat (χ) is rewritten, after the introduction of a new variable η = χ2, as

Ssat (p) = ρ2
[
1 − exp (−νp)

] + ln(1/p) − 2 , p = exp(−η) . (157)

It follows from formulas (155) and (156) that a necessary condition for the exis-
tence of rays that deviate toward the beam axis (i.e., rays for which v < 0) is given
by ∂ηSsat < 0, where

∂ηS
sat = 1 − νρ2 pe−νp . (158)

The derivative ∂ηSsat attains its minimum value, equal to

(∂ηS
sat )min = 1 − ρ2

e
, (159)

at the point p = pmin = (1/ν).
Hence, forρ2 < e the derivative of Ssatη is everywhere positive; i.e., all rays deviate

away from the axis. Asρ2 increases, when the opposite condition,ρ2 > e, is satisfied,
there arise domains with v < 0, where the rays deviate toward the beam axis. Taking
into account the natural constraint 0 � p � 1, we can easily find out that the value
(∂ηSsat )min is not attained for ν < 1: the function (∂ηSsat ) monotonically decreases
and attains its minimum value (∂ηSsat )axis for p = 1, i.e., on the beam axis r = 0

(∂ηS
sat )axis = 1 − νρ2 exp(−ν) . (160)

Equality (160) shows that, for ν < 1, the boundary of the domain with v < 0 lies
below the straight line ρ2 = e and is defined by the condition (∂ηSsat )axis = 0. For
(∂ηSsat )axis < 0, i.e., in a paraxial domain, the rays are directed toward the axis of
the beam, and when the beam propagates into the bulk of the plasma, the profile
v(z, r) becomes steeper: the derivative ∂r v(z, r) on the beam axis

(∂r v(z, r))|r→0 ≡ [ (z/2)
(
∂χχ Ssat

)

1 + (z2/2)
(
∂χχ Ssat

) ]
|r→0 = z

(
1 − νρ2 e−ν

)

1 + z2
(
1 − νρ2 e−ν

) (161)
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increases in absolute value as the coordinate z increases, and, at a distance of zaxis
from the boundary

zaxis = [
νρ2 e−ν − 1

]−1/2
, (162)

the profile v(z, r) breaks. The limit ν → 0 corresponds to the well-known result
obtained for a medium with cubic nonlinearity [65]; namely, it describes a blow up
of intensity on the beam axis when the effect of the nonlinear term turns out to be
more significant than the diffraction term.

When ν > 1, the point pmin at which the derivative ∂ηS attains its minimum lies
inside the admissible interval, pmin ∈ [0, 1], and one may expect that the wave front
will experience the strongest distortion for the radius defined by the quantity pmin .
The increase in the distortions of the wave front with increasing coordinate z leads to
its breaking away from the beam axis as well. The breaking condition corresponds
to the instant, defined by the conditions ∂χr = ∂χχr = 0, when the function r(χ)

ceases to be single valued. As a result, we obtain a pair of relations that define the
radial coordinate of the breaking point, rbr = √

ln 1/pbr (1 + z2br (1 − ρ2νpbre−νpbr ))

and the corresponding coordinate on the beam axis, zbr

3(1 − γ pbr ) − 2 ln pbr (3νpbr − 1 − (νpbr )
2) = 0 ,

zbr = [
νpbrρ

2e−νpbr (1 + 2(1 − νpbr ) ln pbr ) − 1
]−1/2

.
(163)

To verify the analytical results obtained and to determine their applicability domain,
we present the comparison of the numerical and analytical results for two variants
of laser-plasma parameters. The most obvious difference and similarity between
numerical and analytical results can be demonstrated by the direct comparison of the
spatial distributions of intensity and the derivative of the beam eikonal.

As the first example, consider the curves of spatial distribution of the eikonal
derivative and the intensity of a beam for the parameters ν = 0.1 and ρ2 = 1000.
These curves are shown in Fig. 8. As regards the distribution of intensity, the spatial
evolution pattern of a beam in a medium with saturating nonlinearity, shown in
Fig. 8a, is similar to the typical pattern of beam evolution in a medium with cubic
nonlinearitywhen the effects of saturation of nonlinearity are inessential. However, in
contrast to the variant when there is no saturation of nonlinearity and the intensity on
the beam axis tends to infinity, here, for ν �= 0, the intensity on the beam axis remains
constant when approaching the breaking point and behind this point, as it follows
from the intensity distribution obtained in the numerical experiment shown in Fig. 8c
and in the inset of this figure. This fact suggests that it is necessary to correct the
analytical consideration in the neighborhood of the breaking point. A comparison
of the curves presented in Fig. 8 shows that the analytical and numerical results
are in good agreement up to the point z ≈ 0.75 zaxis . For larger z, the agreement
is only qualitative (the oscillations of the radial intensity distribution, which are
observed in the numerical calculations, are not confirmed by analytical calculations);
the theory predicts the breaking of the profile v(z, r) for z = zaxis . There is also a
good agreement between the numerical and analytical results for the boundary rw
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Fig. 8 Spatial distribution of (a), (c) the intensity I = w and (b), (d) the eikonal derivative v of a
laser beam in a plasma for ρ2 = 1000 and ν = 0.1 at different distances from the plasma boundary:
(1) z/zaxis= 0.9, (2) 0.75, (3) 0.6, and (4) 0; (a), (b) analytical results and (c), (d) results of
numerical simulation

of the waveguiding configuration (cf. the points of intersection of the curves of the
eikonal derivative with the axis in Fig. 8b, d).

As the second example, we take the case corresponding to ν = 8.5, ρ2 = 200.
The analytic curves of the distribution of intensity and eikonal derivative for these
parameters are shown in Fig. 9. The maximum beam intensity is formed inside
a tubular waveguide at a finite distance from the waveguide axis near the point
rbr ≈ 0.8983, and the intensity on the beam axis falls off, although insignificantly.
A comparison of Fig. 9a, b with Fig. 9c, d shows that, in the numerical calculation,
a ring structure is formed slightly later than that in the analytical calculation, and
the formation of the ring itself is accompanied by the emergence of secondary local
maxima for larger r . Nevertheless, here we can also speak of a good agreement
between the results of analytic and numerical approaches.

5.3 NLSE Solution for Plasma with Relativistic
Nonlinearities

In this section, we consider another type of the nonlinearity in NLSE (129) that is
determined by the nonlinear refraction of the light beam given by the function εnl
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Fig. 9 Spatial distribution of a, c the intensity I = w and b, d the eikonal derivative v of a laser
beam in a plasma for ρ2 = 200 and ν = 8.5 at different distances from the plasma boundary: (1)
z/zbr= 0.998, (2) 0.925, (3) 0.8 for a, b, and (1) z/zbr= 1.45, (2) 1.25, (3) 1.0 for c, d; a, b analytical
results and c, d results of numerical simulation

εnl = ε0
k2p
k2

(
1 − ne

γ ne0

)
, k2p = 4πe2ne0

m0c2
. (164)

It is due to two factors: (1) the relativistic nonlinearity of the electron mass, deter-
mined by the value of the relativistic factor γ = √

1 + |E/Erel|2, where E2
rel =

(ωcm0/e)2, and (2) the charge-displacement nonlinearity, which determines the non-
linear deformation of the electron density ne = ne0Ne(γ ), proportional to �⊥γ .
Usually, the well-known standard formula

Ne = max{0, 1 + k−2
p �⊥γ } (165)

is used for Ne, whichwe followalso taking the standard condition of the nonnegativity
of the electron density, ne ≥ 0, into account, which allows describing a strong density
modulation including the electron cavitation effect [66]. The modification of the
piecewise smooth function (165) to obtain a smoothed transition from a vanishingly
low electron density, Ne → 0, to a linear dependence on �⊥γ by taking a weak
thermal motion of electrons into account was discussed in [67, 68]. As a possible
example of such a modification, we can also use the smooth approximation

Ne = 1 + k−2
p �⊥γ

1 − exp[−α0(1 + k−2
p �⊥γ )] , (166)
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where the value of the positive parameter α0 � 1 determines the transition from the
linear dependence of Ne ∝ �⊥γ to the exponentially decreasing Ne → 0 with the
intensity gradient change. Relying on arguments akin to those used in [67],we believe
that there is no need for a concrete identification of the mechanism responsible for
α0 if the results for different α0 � 1 differ very little.

Using Ne in εnl and then in F ≡ Frel = 1 − Ne(γ )/γ , where γ = √
1 + i0w, we

obtain the formula for the functions Srel and Frel , defining the solution (155), (156)

Srel(χ) = ρ2F(J ) + 1

χ
√
J (χ)

∂χ [χ∂χ(
√
J (χ))],

Frel(J ) = 1 − Ne{γ [J (χ)]}
γ [J (χ)] ,

(167)

and accounting for the effects of the relativistic and charge-displacement nonlin-
earity of the medium. Here, the parameter i0 can be written as the ratio of the
maximum beam intensity I0 = (c/4π)w0 to the characteristic relativistic intensity
Ir = ω2m2

0c
3/(4πe2), i.e., i0 = I0/Ir . In the limit i0w � 1, the function Frel corre-

sponds to a medium with cubic nonlinearity, limi0w→0 Frel = Fcub = (i0/2)w.
Using Eqs. (155), we analyze the evolution of the laser beam with the initial

Gaussian profile J (r) = exp(−r2) and assume that the effect of electron cavitation
does not appear at the boundary of the nonlinear medium. We can then even use
in Eq. (167) the simplest expression for Ne, Eq. (165), which is itself a smooth
function and does not require smoothing approximation, Eq. (166). The function
Frel in Eq. (167) is determined only by the initial distribution of the square of the
amplitude of the electric field of the beam at z = 0. We rewrite the expression for
Srel(χ) after introducing the variable p = exp(−χ2) in the form

Srel(p) = ρ2
(
1 − 1√

1 + i0 p

) − 2

1 + i0 p
− ln p

(1 + i0 p)2
. (168)

We recall that the applicability of Eq. (168) is limited only by distributions of electron
densities that correspond to the condition that there is no effect of electron cavitation
at the boundary of the nonlinear medium z = 0, i.e., cavitation does not occur when
the inequality

ρ ≥ ρcav, where ρ2
cav = 2i0(1 + i0)

−1/2, (169)

is satisfied. A characteristic feature of the solution given by Eqs. (155)–(156) and
Eq. (168) is the possibility of the growth of distortions of the wavefront of the beam
with the coordinate z, up to breaking the profile v(z, r). This happens when a single-
valued dependence of r on χ is violated, i.e., when two conditions are met, ∂χχr = 0
and ∂χr = 0. The first condition defines the radial coordinate of the breaking point
rbr = √

ln 1/pbr(1 − z2br{p∂pS}|p=pbr ) written in terms of pbr, and the second gives
the corresponding coordinate zbr along the beam axis. In the variables {z, p}, the
conditions for the appearance of the solution singularity can be written as



Approximate Symmetry in Nonlinear Physics Problems 55

{
p

√
ln

1

p
[3(∂p Srel + p∂pp S

rel ) + 2 ln p(∂p S
rel + 3p ∂pp S

rel + p2∂ppp S
rel )]

}

|p=pbr

= 0,

(170)

z2br = {[p ∂p S
rel + 2 ln p(p ∂p S

rel + p2∂pp S
rel )]−1}|p=pbr . (171)

Solutions of the equation for pbr in Eq. (171) correspond to either of its two factors
vanishing, i.e., either (a) ln(1/pbr) = 0, which corresponds to the appearance of
the axial singularity pbr = 1 or (b) the expression in square brackets in Eq. (171)
vanishes, which corresponds to the off-axis singularity pbr �= 0. We analyze these
two cases separately.

a. The appearance of the axial singularity pbr = 1.
The simplest form of Eqs. (171) is obtained at pbr = 1, when a singularity appears

on the beam axis at the point {zbr }p=1 ≡ zaxis defined by the equality

z2axis =
[
ρ2i0
2

1

(1 + i0)3/2
+ 2i0 − 1

(1 + i0)2

]−1

. (172)

The positivity condition z2axis > 0 determines the range of parameters ρ2 and i0 for
which there exists an axial singularity

ρ > ρaxis, where ρ2
axis = 2

i0
(1 − 2i0)(1 + i0)

−1/2, i0 ≤ √
2 − 1. (173)

The minimum beam radius ρaxis depending on i0 above which an axial singularity
appears corresponds to the limit z2axis → ∞ in (172). The upper limit of i0 in Eq. (173)
is given by the condition of the absence of the electron cavitation effect at z = 0
and corresponds to ρaxis ≥ ρcav. For a higher laser beam intensity i0 >

√
2 − 1, the

allowable range of the beam radius is cut from the side of small values by the condition
ρ > ρcav.

b. The appearance of an off-axis singularity pbr �= 1.
The off-axis singularity corresponds to a nonzero value pbr �= 1 given by the

condition ∂χχr = 0, which in this case becomes

[3(∂pS
rel + p ∂ppS

rel) + 2 ln p(∂pS
rel + 3p ∂ppS

rel + p2∂pppS
rel)]|p=pbr = 0.

(174)
The boundary of the domain of parameters for which there exists an off-axis singu-
larity is determined by the equation

ρ = ρoff , where ρ2
off = 8(3 − i0)

(i0 − 2)
√
1 + i0

, (175)

for 2 < i0 ≤ √
13 − 1. For greater beam intensity values i0 >

√
13 − 1, the lower

boundary of the beam radius is given, as in case a, by the condition ρ > ρcav. Com-
paring Eqs. (173) and (175) shows that the boundary of the domain for the solution
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Fig. 10 The spatial distribution of the eikonal derivative v (left image) and the square of the
amplitudew of the electric field of the light beam (right image) for different values of the longitudinal
coordinate z along the beam axis for i0 = 0.1 and ρ = 3.99: the different curves correspond to the
transition from z = 0 to z = 0.6; 0.8; 0.9; 1.0; 1.2. An increase of z is accompanied by a clearly
discernible decrease of w in the region of small r → 0

with the off-axis singularity is at greater beam intensities than the domain for the
solution with the axial singularity.

Combining the above conditions on the beam-plasma parameters given by Eqs.
(169), (173), and (175), we obtain the partitioning of the controlling parameter plane
into several domains. A graphical representation on the parameter plane {i0, ρ} in
terms of the domain boundaries as well as their detailed analysis can be found in [70].
Knowing the boundaries of the domains in the parameter plane {ρ, i0}makes it much
easier to analyze the type of solutions and the conditions for the appearance of the
solution singularities. This is an important new finding in the theory of relativistic
self-focusing.

To illustrate the results obtained above, we now present plots of the spatial dis-
tributions of the eikonal derivative, the square of the amplitude of the light beam
electric field, and the electron density obtained above using approximate analytic
solution (155) for the three sets of parameters i0 and ρ.

The first example correspond to those values of i0 and ρ for which the nonlinearity
partially compensates the diffraction spreading of the beam as the z increases but
not so much as to lead to the formation of a singularity. Such a regime in which the
beam intensity in the near-axis region is preserved at distances exceeding the length
at which the beam diffraction divergence occurs in a linear medium is called the
self-trapping mode of the wave beam. This mode is illustrated in Fig. 10, where the
spatial distribution of the eikonal derivative v and the square of the amplitude w of
light beam electric field are shown for i0 = 0.1, ρ = 3.99 for different values of the
coordinate z along the beam axis.

The next example corresponds to values of the parameters i0 and ρ for which
a solution singularity can arise, developing on the beam axis. The illustration of
this focusing on the axis regime is presented for the parameter values i0 = 0.2 and
ρ = 5. The plots of the spatial distributions of the eikonal derivative v and the square
of the amplitude w of the electric field of the light beam for different values of the
coordinate z are shown in Fig. 11.
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Fig. 11 The spatial distribution of the eikonal derivative v (left image) and the square of the
amplitudew of the electric field of the light beam (right image) for different values of the longitudinal
coordinate z along the beam axis for i0 = 0.2 and ρ = 5: the value of the longitudinal coordinate
of the axial singularity for the chosen parameter values i0 = 0.2 and ρ = 5, given by condition
(172), is equal to zaxis = 0.82. The different curves correspond to the transition from z = 0 to
z = 0.6zaxis; 0.7zaxis; 0.8zaxis; 0.9zaxis; 0.95zaxis from the top down for curves in the left image
and from the bottom up in the right image (for small r → 0)
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Fig. 12 The spatial distribution of the eikonal derivative v (left image) and the square of the
amplitude w of the electric field of the light beam (right image) for different values of the
longitudinal coordinate z along the beam axis for i0 = 5 and ρ = 3: the values of the longi-
tudinal coordinates of the on- and off-axis singularities for the chosen parameter values are
zaxis ≈ 0.564 and zbr ≈ 0.454. The different curves correspond to the transition from z = 0 to
z = 0.6zbr; 0.7zbr; 0.8zbr; 0.85zbr; 0.92zbr from the top down for curves in the left image and from
the bottom up in the right image (for small r → 0)

Finally, the last example corresponds to values of the parameters i0 andρ forwhich
there is a possibility to develop both off- and on-axis solution singularities, which for
the parameter values i0 = 5, ρ = 3 appear at zbr ≈ 0.686 (off-axis singularity) and
at zaxis ≈ 0.749 (for the on-axis singularity). The plots of the spatial distributions
of the eikonal derivative v and the square of the amplitude w of the electric field of
the light beam for this example are shown for different values of the coordinate z in
Fig. 12.

Because the zaxis value exceeds zbr, the off-axis feature appears more explicitly in
the form of a ring structure shown in Fig. 12, although the square of the amplitude
of the electric field on the beam axis also increases.
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To conclude, we have demonstrated here the effictiveness of using approxi-
mate renormgroup symmetries in constructing analytical solutions to the nonlin-
ear Shrödinger equation which describes self-focusing of a laser beam in a plasma
with saturating and relativistic nonlinearities. Detailed discussion of these results in
applications can be found in [63, 69, 70].
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One-Dimensional Flows of a Polytropic
Gas: Lie Group Classification,
Conservation Laws, Invariant and
Conservative Difference Schemes

V. A. Dorodnitsyn, R. Kozlov, and S. V. Meleshko

Abstract The chapter considers one-dimensional flows of a polytropic gas in the
Lagrangian coordinates in three cases: plain one-dimensional flows, radially symmet-
ric flows, and spherically symmetric flows. The one-dimensional flow of a polytropic
gas is described by one second-order partial differential equation in the Lagrangian
variables. The Lie group classification of this PDE is performed. Its variational struc-
ture allows to construct conservation laws with the help of Noether’s theorem. These
conservation laws are also recalculated for the gas dynamics variables in the Eulerian
andmass Lagrangian coordinates.Additionally, invariant and conservative difference
schemes are provided.

1 Introduction

Symmetries of the differential equations ofmathematical physics are their fundamen-
tal features. They reflect the geometric structure of solutions and physical principles
of the considered models. We recall that the Lie group symmetries yield a number
of useful properties of differential equations (see [1–6]):

• A group action transforms the complete set of solutions into itself; so it is possible
to obtain new solutions from a given one;
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• There exists a standard procedure to obtain the whole set of invariants of a sym-
metry group of transformations; it yields the forms of invariant solutions in which
they could be found (symmetry reduction of PDEs);

• For ODEs the known symmetry yields the reduction of the order;
• The invariance of ODEs and PDEs is a necessary condition for the application
of Noether’s theorem to variational problems to obtain conservation laws (first
integrals for ODEs).

The symmetry properties of the gas dynamics equations were studied both in
the Eulerian coordinates [1, 7] and in the Lagrangian coordinates [8–10]. Exten-
sive group analysis of the one-dimensional gas dynamics equations in the mass
Lagrangian coordinates was given in [8–10]. Here, it should be also mentioned that
nonlocal conservation laws of the one-dimensional gas dynamics equations in the
mass Lagrangian coordinates were found in [11]. The authors of [12, 13] analyzed
the Euler–Lagrange equations corresponding to the one-dimensional gas dynamics
equations in the mass Lagrangian coordinates: extensions of the known conserva-
tion laws were derived. These conservation laws correspond to special forms of the
entropy. The group nature of these conservation laws is given in the present chapter.

As mentioned above, besides assisting with the construction of exact solutions,
the knowledge of an admitted Lie group allows one to derive conservation laws. Con-
servation laws provide information on the basic properties of solutions of differential
equations. They are also needed in the analyses of stability and global behavior of
solutions. Noether’s theorem [14] is the tool that relates symmetries and conserva-
tion laws. However, an application of Noether’s theorem depends on the following
condition: the differential equations under consideration need to be presented as the
Euler–Lagrange equations with an appropriate Lagrangian, i.e., Noether’s theorem
requires variational structure. There are also other approaches to find conservation
laws, which try to avoid this requirement [15–18].

The application of symmetries to difference and discrete equations is a more
recent field of research [19–22]. One of its directions is the discretization of differ-
ential equations with the preservation of the Lie point symmetries. It is relevant to the
construction of numerical schemes which inherit qualitative properties of the under-
lying differential equations. This approach was a base for a series of publications
[19, 23–27], which are summarized in the book [22]. The method is based on finding
finite-difference invariants which correspond to the chosen mesh stencil and using
them to construct invariant difference equations and meshes. Recently, this approach
was applied to shallow water systems, wave equations, and the Green–Naghdi sys-
tem [28–30].

The recent paper [31] was devoted to the Lie group classification, conservation
laws, and invariant difference schemes of plain one-dimensional flows of a polytropic
gas. Here, we extend these results to radially symmetric flows in two-dimensional
space and spherically symmetric flows in three-dimensional space. We refer to all
such flows as one-dimensional flows. The results of [31] stand as a particular case
in this chapter.
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There are two distinct ways to model phenomena in gas dynamics (see, e.g.,
[32–34]). The typical approach uses the Eulerian coordinates, where flow quantities
(at each instant of time) are described in fixed points. Alternatively, the Lagrangian
description is used: the particles are identified by the positions which they occupy at
some initial time. In the Lagrangian description, there are also two ways to analyze
the processes occurring in a gas. One of them uses a system of first-order PDEs
for the gas dynamics variables. The other approach uses a scalar second-order PDE
to which this system can be reduced. The latter way allows one to use variational
approach for the analysis of the gas dynamics equations.

The purpose of the chapter is to present an overview of the authors’ results con-
cerning the analysis of the gas dynamics equations of a polytropic gas. It is devoted
to symmetries, conservation laws, and construction of numerical schemes, which
preserve qualitative properties of the gas dynamics equations.

The article is organized as follows. In the forthcoming section, we recall Noether’s
theorem. Section3 describes the gas dynamics equations, their reduction to a single
second-order PDE, and the Lie point symmetries of this PDE. In Sects. 4 and 5, we
consider the general case and the three special cases of the Lie group classification.
Invariance and conservative properties of difference schemes are discussed in Sect. 6.
Finally, Sect. 7 presents concluding remarks.

2 Symmetries and Noether’s Theorem

We briefly remind Noether’s theorem [14], which will be used to find conservation
laws with the help of symmetries. In the general case, we have several independent
variables and dependent variables, which are denoted as x = (x1, x2, . . . , xn) and
u = (u1, u2, . . . , um), respectively. All derivatives of order k are denoted as uk .

A point symmetry operator has the form

X = ξ i ∂

∂xi
+ ηk ∂

∂uk
+ ηk

i

∂

∂uki
+ · · · , (1)

whereweassume that ξ i = ξ i (x, u),ηk = ηk(x, u), and that the operator is prolonged
to all derivatives uki1...il we need to consider. We denote the considered function as
F(x, u, u1, . . . , uk). It involves derivatives up to some finite order k.

Noether’s theorem is based on the identity [2, 14]

XF + FDiξ
i = (ηk − ξ i uki )

δF

δuk
+ Di (N

i F), (2)

where
δ

δuk
=

∞∑

s=0

(−1)s Di1 . . . Dis
∂

∂uki1i2...is
, k = 1, 2, . . . ,m, (3)
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are variational operators, and

Ni = ξ i +
∞∑

s=0

Di1 . . . Dis (η
k − ξ i uki )

δ

δukii1i2...is
, i = 1, 2, . . . , n. (4)

The higher variational operators
δ

δuki1i2...is
are obtained from the variational opera-

tors (3) by replacing uk with the corresponding derivatives uki1i2...is .

Theorem 1 (E. Noether) Let the Lagrangian function L(x, u, u1, . . . , uk) satisfy
equation

XL + LDiξ
i = Di B

i (5)

with a vector B = (B1, B2, . . . , Bn) and a group generator

X = ξ i (x, u)
∂

∂xi
+ ηk(x, u)

∂

∂uk
,

then the generator X is an admitted symmetry of the system of the Euler–Lagrange
equations

δL

δuk
= 0, k = 1, 2, . . . ,m, (6)

and the vector
(N 1L − B1, N 2L − B2, . . . , NnL − Bn) (7)

is a conserved vector.

In the case B = (B1, B2, . . . , Bn) = 0, we call the symmetry X variational; oth-
erwise, we say that the symmetry X is divergent.

It is well known that variational and divergent symmetries are also symmetries
of the Euler–Lagrange equations [1–3]. For the Lie point symmetries, i.e., sym-
metries with coefficients ξ i = ξ i (x, u), ηk = ηk(x, u), and first-order Lagragians
L = L(x, u, u1), it easily follows from the identities [35]

δ

δu j

(
XL + LDiξ

i − Di B
i
) = X

( δL

δu j

) + ( ∂ηk

∂u j
− ∂ξ i

∂u j
uki + δk j Diξ

i
) δL

δuk
,

j = 1, 2, . . . ,m,

where δk j is the Kronecker symbol.
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3 Equations of Gas Dynamics for One-Dimensional Flows

Weconsider three types of gasflows, namely, flows inone-dimensional space, radially
symmetric flows in two-dimensional space, and spherically symmetric flows in three-
dimensional space. We will refer to these flows as one-dimensional flows.

The gas is assumed to be polytropic [34, 36–38]. For a polytropic gas, the pressure
p and the density ρ are related as

p = Sργ , (8)

where variable S is the function of the entropy S̃

S = e(S̃−S̃0)/cv , cv = R

γ − 1
.

Here, R is the gas constant, cv is the specific heat capacity at constant volume, and
S̃0 is constant. The adiabatic constant is given as

γ = 1 + R

cv
> 1.

We will also need the equation of state for the polytropic gas, i.e., equation for
the specific internal energy

ε = ε(ρ, p). (9)

It has the form
ε = p

(γ − 1)ρ
. (10)

The gas dynamics equations will be given in the Eulerian and Lagrangian coordi-
nates. Eventually, they will be reduced to one scalar PDE of the second order, which
will be analyzed for the admitted Lie point symmetries.

3.1 Eulerian Coordinates

In the Eulerian coordinates (t, r), the gas dynamics equation can be written as (see,
e.g., [32–34])

ρt + uρr + ρ

rn (r
nu)r = 0, (11a)

ut + uur + 1
ρ
pr = 0, (11b)

St + uSr = 0. (11c)
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Here, we distinguish the case n = 0 with coordinate −∞ < r < ∞ and velocity
u from the cases n = 1, 2 with radial distance from the origin 0 < r < ∞ and the
radial velocity u.

We have n = 0, 1, 2 for the plain one-dimensional flows, the radially symmet-
ric two-dimensional flows, and the spherically symmetric three-dimensional flows,
respectively. Note that for these cases n = d − 1, where d = 1, 2, 3 is the space
dimension.

We also use other representations of Eq. (11c)

pt + upr + γ p

rn
(rnu)r = 0 (12)

or
εt + uεr + p

rnρ
(rnu)r = 0. (13)

3.2 Lagrangian Coordinates

As well known [32–34], the mass Lagrangian coordinate s and the Eulerian coordi-
nate r of the particle s are related by the formulas

u = ϕt , ρ = 1

ϕnϕs
, (14)

where r = ϕ(t, s) defines the motion of a particle s.
In the Eulerian coordinates (t, r), we can introduce the mass Lagrangian coordi-

nate s as a potential by the system

sr = rnρ, st = −rnρu, (15)

which is equivalent to the 1-form

ds = rnρdr − rnρudt.

Here, we rely on the possibility to rewrite the Eq. (11a) as the conservation law

(rnρ)t + (rnρu)r = 0,

representing conservation of mass.
In the mass Lagrangian coordinates (t, s), which we will call the Lagrangian

coordinates, the time derivative stands for the differentiation along the pathlines. It
is called the material derivative. Total derivatives in the Lagrangian coordinates DL

t
and Ds are related to those in the Eulerian coordinates DE

t and Dr as
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DL
t = DE

t + uDr , Ds = 1

rnρ
Dr . (16)

We rewrite the gas dynamics equations (11) in the Lagrangian coordinates (t, s)
as

ρt + ρ2(rnu)s = 0, (17a)

ut + rn ps = 0, (17b)

St = 0. (17c)

We remark that here the gas dynamics variables ρ, u, p, and S are functions of the
Lagrangian coordinates t and s while in the system (11), they are functions of the
Eulerian coordinates t and r .

The Eulerian spatial coordinate ϕ = r is a dependent variable in the mass
Lagrangian coordinates. Equations (14) can be rewritten in the form

rt = u, rs = 1

rnρ
. (18)

It is also possible to use the 1-form

dr = ds

rnρ
+ udt.

Notice that as for Eq. (11c), we also use other representations of Eq. (17c)

pt + γρp(rnu)s = 0 (19)

or
εt + p(rnu)s = 0. (20)

Equation (17c) can be solved
S = S(s), (21)

where S(s) is an arbitrary function.
Using these results, it is possible to rewrite the last remaining Eq. (17b), as a

partial differential equation of the second order

ϕt t + ϕn(1−γ )ϕ−γ
s

(
S′ − nγ S

ϕs

ϕ
− γ S

ϕss

ϕs

) = 0. (22)

This PDE is called the gas dynamics equation in the Lagrangian coordinates
[34, 36].



68 V. A. Dorodnitsyn et al.

PDE (22) has a variational formulation, namely, it is the Euler–Lagrange equation

δL

δϕ
= ∂L

∂ϕ
− DL

t

( ∂L

∂ϕt

) − Ds
( ∂L

∂ϕs

) = 0 (23)

for the Lagrangian

L = 1

2
ϕ2
t − S(s)

γ − 1
ϕ(1−γ )nϕ1−γ

s . (24)

3.3 Conservation Laws

We specify Noether’s theorem, given in Sect. 2, for PDE (22). We consider the Lie
point symmetries of the form

X = ξ t (t, s, ϕ)
∂

∂t
+ ξ s(t, s, ϕ)

∂

∂s
+ ηϕ(t, s, ϕ)

∂

∂ϕ
. (25)

Such symmetries of the PDE (22) can be used to compute conservation laws if they
are also variational or divergence symmetries of the Lagrangian (24).We require that
they satisfy the condition of the elementary action invariance [2]

XL + L(DL
t ξ t + Dsξ

s) = DL
t B1 + Ds B2 (26)

for some functions B1(t, s, ϕ) and B2(t, s, ϕ). If this condition holds with B1 =
B2 = 0, then the symmetry (25) is called variational. We refer to both variational
and divergent symmetries as the Noether symmetries.

Given a variational or divergent symmetry, we can find the corresponding conser-
vation law

DL
t [T t ] + Ds[T s] = 0, (27)

where the densities are given by the formulas

T t = ξ t L + (ηϕ − ξ tϕt − ξ sϕs)
∂L
∂ϕt

− B1,

T s = ξ s L + (ηϕ − ξ tϕt − ξ sϕs)
∂L
∂ϕs

− B2.

(28)

Conservation laws (27) can be rewritten for the Eulerian coordinates as

DE
t [eT t ] + Dr [eT r ] = 0. (29)

The relation between two above forms of conservation laws can be proved by direct
verification
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DL
t T

t + DsT
s = ϕs

(
DE

t (rnρT t ) + Dr (r
nρuT t + T s)

)
.

Therefore, if we have densities T t and T s of a conservation law in the Lagrangian
coordinates, we can find the corresponding densities in the Eulerian coordinates as

eT t = rnρT t , eT r = rnρuT t + T s . (30)

3.4 Equivalence Transformations

PDE (22) contains an arbitrary function S(s). Thus, we need the group classification
with respect to it. The generators of the equivalence Lie group has the form

Xe = ξ t ∂

∂t
+ ξ s ∂

∂s
+ ηϕ ∂

∂ϕ
+ ηS ∂

∂S
, (31)

where generators coefficients ξ t , ξ s, ηϕandηSdependon(t, s, ϕ, S).
Computation gives the generators of the equivalence group. There are five gen-

erators

Xe
1 = ∂

∂t
, Xe

2 = ∂

∂s
, Xe

3 = t
∂

∂t
− 2S

∂

∂S
,

Xe
4 = s

∂

∂s
+ (1 − γ )S

∂

∂S
, Xe

5 = ϕ
∂

∂ϕ
+ ((n + 1)γ − n + 1)S

∂

∂S
(32)

for the general case. For n = 0, there are two additional equivalence transformations
given by

Xe
∗,n = ∂

∂ϕ
and Xe

∗∗,n = t
∂

∂ϕ
. (33)

For the special values of the adiabatic exponent γ∗ = n+3
n+1 , we obtain one additional

generator

Xe
∗,γ = t2

∂

∂t
+ tϕ

∂

∂ϕ
. (34)

3.5 Group Classification of the Gas Dynamics Equation

The Lie algebra of the admitted transformations is given by the generators

X =
8∑

i=1

kiYi , (35)
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where

Y1 = ∂

∂t
, Y2 = ∂

∂s
, Y3 = ∂

∂ϕ
,

Y4 = t
∂

∂t
, Y5 = s

∂

∂s
, Y6 = ϕ

∂

∂ϕ
,

Y7 = t
∂

∂ϕ
, Y8 = t2

∂

∂t
+ tϕ

∂

∂ϕ
. (36)

The coefficients ki satisfy the system

(k5s + k2)Ss = (−2k4 + (1 − γ )k5 + ((n + 1)γ − n + 1)k6)S, (37a)

((n + 1)γ − n − 3)k8 = 0, (37b)

nk3 = 0, (37c)

nk7 = 0. (37d)

For the general case, we get two admitted symmetries

X1 = Y1 = ∂

∂t
, X2 = ((n + 1)γ − n + 1)Y4 + 2Y6

= ((n + 1)γ − n + 1)t
∂

∂t
+ 2ϕ

∂

∂ϕ
. (38)

For n = 0, there are two additional symmetries

X∗,n = Y3 = ∂

∂ϕ
and X∗∗,n = Y7 = t

∂

∂ϕ
. (39)

For the special values γ∗ = n+3
n+1 , there is one additional symmetry

X∗,γ = Y8 = t2
∂

∂t
+ tϕ

∂

∂ϕ
. (40)

The condition (37a) is the classifying equation for function S(s). It can be rewritten
as

(α1s + α0)Ss = βS (41)

for some constants α0, α1, and β. This classifying equation was studied in [39]. It
was shown that one need to consider four cases of the entropy function S(s), the
general case and three special cases:

• arbitrary S(s);
• S(s) = A0, A0 = const;
• S(s) = A0sq , q �= 0, A0 = const;
• S(s) = A0eqs , q �= 0, A0 = const.
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The same four cases were obtained for plain one-dimensional flows in [31]. Let
us note that the equivalence transformations can be used to simplify these cases to
A0 = 1.

4 Arbitrary Entropy S(s)

Equation (17a) can be rewritten in the form of a conservation law as

[
1

ρ

]

t

− [rnu]s = 0.

Thus, conservation of mass is included into the equations of the gas dynamics sys-
tem (17). In the Eulerian coordinates, it has the form

[rnρ]t + [rnρu]r = 0.

Equation (17c) gives the conservation of the entropy along pathlines as the conser-
vation law

St = 0.

Let us examine the symmetries of the kernel of admitted Lie algebras (38), (39),
and (40) for being variational or divergent symmetries, which provide conservation
laws.

4.1 General Case n �= 0, γ �= n+3
n+1

In the general cases, the admitted symmetries (38) provide us with one variational
symmetry

Z1 = X1 = ∂

∂t
. (42)

It leads to the conservation of energy with densities

T t
1 = ϕ2

t

2
+ S

γ − 1
ϕn(1−γ )ϕ1−γ

s , T s
1 = Sϕn(1−γ )ϕtϕ

−γ
s . (43)

For the gas dynamics variables, this conservation law gets rewritten as

T t
1 = u2

2
+ S

γ − 1
ργ−1, T s

1 = rn Sργ u. (44)
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In the Eulerian coordinates, it has the densities

eT t
1 = rn

(ρu2

2
+ S

γ − 1
ργ

)
, eT r

1 = rn
(ρu2

2
+ γ S

γ − 1
ργ

)
u.

4.2 Case n = 0, γ �= n+3
n+1

We get one more variational symmetry

Z∗,n = X∗,n = ∂

∂ϕ
, (45)

and one divergent symmetry

Z∗∗,n = X∗∗,n = t
∂

∂ϕ
with (B1, B2) = (ϕ, 0). (46)

These symmetries provide conservation laws

T t
∗,n = ϕt , T s

∗,n = Sϕ−γ
s ; (47)

T t
∗∗,n = ϕ − ϕt t, T s

∗∗,n = −t Sϕ−γ
s , (48)

representing the conservation of momentum and the motion of the center of mass,
respectively.

In gas dynamics variables, we can rewrite these conservation laws as

T t
∗,n = u, T s

∗,n = Sργ ; (49)

T t
∗∗,n = r − tu, T s

∗∗,n = −t Sργ . (50)

Notice that the conserved vector (T t∗∗,n, T
s∗∗,n) contains the function ϕ ≡ r. In the

Eulerian coordinates, we get

eT t
∗,n = ρu, eT r

∗,n = ρu2 + Sργ ;
eT t

∗∗,n = ρ(r − tu), eT r
∗∗,n = ρu(r − tu) − t Sργ .
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4.3 Case n �= 0, γ∗ = n+3
n+1

For γ = γ∗, the symmetries (38) and (40) lead to two variational symmetries: (42)
and

Z∗,γ = 1

2
X2 = 2t

∂

∂t
+ ϕ

∂

∂ϕ
(51)

and one divergence symmetry

Z∗∗,γ = X∗,γ = t2
∂

∂t
+ tϕ

∂

∂ϕ
with (B1, B2) =

(
ϕ2

2
, 0

)
. (52)

In addition to the conservation of energy, given in point Sect. 4.1, there are conser-
vation laws with densities

T t
∗,γ = 2t

(ϕ2
t

2
+ S

γ − 1
ϕn(1−γ )ϕ1−γ

s

)
− ϕϕt ,

T s
∗,γ = (2tϕt − ϕ)Sϕn(1−γ )ϕ−γ

s ;
(53)

T t∗∗,γ = t2
(ϕ2

t

2
+ S

γ − 1
ϕn(1−γ )ϕ

1−γ
s

)
− tϕϕt + ϕ2

2
,

T s∗∗,γ = (t2ϕt − tϕ)Sϕn(1−γ )ϕ
−γ
s . (54)

We can rewrite these conservation laws for the gas dynamics variables

T t
∗,γ = 2t

(u2

2
+ S

γ − 1
ργ−1

)
− ru, T s

∗,γ = rn(2tu − r)Sργ ; (55)

T t
∗∗,γ = t2

(u2

2
+ S

γ − 1
ργ−1

)
− tru + r2

2
, T s

∗∗,γ = rn(t2u − tr)Sργ (56)

as well as in the Eulerian coordinates

eT t
∗,γ =rn

(
2t

(ρu2

2
+ S

γ − 1
ργ

) − rρu
)
,

eT r
∗,γ = rn

(
2t

(ρu2

2
+ γ S

γ − 1
ργ

)
u − r(ρu2 + Sργ )

);

eT t∗∗,γ = rn
(
t2

(ρu2

2
+ S

γ − 1
ργ

) − trρu + r2ρ

2

)
,

eT r∗∗,γ = rn
(
t2

(ρu2

2
+ γ S

γ − 1
ργ

)
u − tr(ρu2 + Sργ ) + r2ρu

2

)
.
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4.4 Case n = 0, γ∗ = 3

In this case, the conservation law of the general case get extended by both the
conservation laws given in point Sect. 4.2 and by the conservation laws given in
point Sect. 4.3.

5 Special Cases of Entropy

Group classification of the PDE (22) gives three special cases of the entropy function.
They are examined in this section. These cases inherit the symmetries and conser-
vation laws of the arbitrary entropy S(s), given in the preceding section. We present
only additional symmetries and conservation laws.

5.1 Isentropic Case S(s) = A0

In the Eulerian coordinates, this case is presented as

S(r) = A0 or Sr = 0. (57)

For all cases (the case of general n and γ , the case n = 0, and the case of special
values γ = γ∗), there are two additional symmetries

X3 = Y2 = ∂

∂s
, X4 = (γ − 1)Y4 − 2Y5 = (γ − 1)t

∂

∂t
− 2s

∂

∂s
. (58)

5.1.1 General Case n �= 0, γ �= n+3
n+1

In the general case, there are two additional variational symmetries

Z2 = X3 = ∂

∂s
,

Z3 = γ + 1

2
X2 + n + 3 − (n + 1)γ

2
X4

= ((n + 3)γ − n − 1)t
∂

∂t
+ ((n + 1)γ − n − 3)s

∂

∂s
+ (γ + 1)ϕ

∂

∂ϕ
. (59)

The conservation laws of this case consist of the conservation law given in
point Sect. 4.1 (for arbitrary S(s)) and the two additional ones, given by densities

T t
2 = ϕsϕt , T s

2 = −ϕ2
t

2
+ γ S

γ − 1
ϕn(1−γ )ϕ1−γ

s ; (60)
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T t
3 = ((n + 3)γ − n − 1)t

(ϕ2
t
2

+ S

γ − 1
ϕn(1−γ )ϕ

1−γ
s

) + ((n + 1)γ − n − 3)sϕsϕt

− (γ + 1)ϕϕt ,

T s
3 = ((n + 3)γ − n − 1)t Sϕn(1−γ )ϕtϕ

−γ
s + ((n + 1)γ − n − 3)s

(
−ϕ2

t
2

+ γ S

γ − 1
ϕn(1−γ )ϕ

1−γ
s

)
− (γ + 1)Sϕn(1−γ )+1ϕ

−γ
s . (61)

If rewritten for the gas dynamics variables, they take the form

T t
2 = u

rnρ
, T s

2 = −u2

2
+ γ S

γ − 1
ργ−1; (62)

T t
3 = ((n + 3)γ − n − 1)t

(u2

2
+ S

γ − 1
ργ−1) + ((n + 1)γ − n − 3)s

u

rnρ
− (γ + 1)ru,

T s
3 = ((n + 3)γ − n − 1)t Srnργ u + ((n + 1)γ − n − 3)s

( − u2

2
+ γ S

γ − 1
ργ−1)

− (γ + 1)Srn+1ργ . (63)

In the Eulerian coordinates, these conservation laws have densities

eT t
2 = u, eT r

2 = u2

2
+ γ S

γ − 1
ργ−1;

T t
3 = ((n + 3)γ − n − 1)trn

(ρu2

2
+ S

γ − 1
ργ

) + ((n + 1)γ − n − 3)su − (γ + 1)rn+1ρu,

T s
3 = ((n + 3)γ − n − 1)trn

(ρu2

2
+ γ S

γ − 1
ργ

)
u

+ ((n + 1)γ − n − 3)s
(u2

2
+ γ S

γ − 1
ργ−1) − (γ + 1)rn+1(ρu2 + Sργ ),

where S(s), and s is defined by system (15).

5.1.2 Special Cases

For all special cases, namely case n = 0, γ �= n+3
n+1 ; case n �= 0, γ∗ = n+3

n+1 ; and case
n = 0, γ∗ = 3, we get conservation laws of the arbitrary entropy S(s), which were
described in Sect. 4, supplemented by the conservation laws given in point Sect. 5.1.1.

Note that

Z3|γ=γ∗ = 2
n + 2

n + 1
Z∗,γ ,
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in other words for γ = γ∗, only the conservation law corresponding to Z2 in
point Sect. 5.1.1 is new.

5.2 Entropy Case S(s) = A0sq

In theEulerian coordinates, this entropy case is describedby thedifferential constraint

Srr =
(

ρr

ρ
+ n

r

)
Sr + q − 1

q

S2r
S

. (64)

For such S(s), there is one additional symmetry

X3 = (γ + q − 1)Y4 − 2Y5 = (γ + q − 1)t
∂

∂t
− 2s

∂

∂s
. (65)

5.2.1 General Case n �= 0, γ �= n+3
n+1

For the general case, there is one additional variational symmetry

Z2 = γ + q + 1

2
X2 + n + 3 − (n + 1)γ

2
X3

= ((n + 3)γ + 2q − n − 1)t
∂

∂t
+ ((n + 1)γ − n − 3)s

∂

∂s

+ (γ + q + 1)ϕ
∂

∂ϕ
. (66)

Thus, in addition to the conservation of energy given in Sect. 4.1, we obtain the
conservation law

T t
2 = ((n + 3)γ + 2q − n − 1)t

(ϕ2
t
2

+ S

γ − 1
ϕn(1−γ )ϕ

1−γ
s

)

+ ((n + 1)γ − n − 3)sϕsϕt − (γ + q + 1)ϕϕt ,

T s
2 = ((n + 3)γ + 2q − n − 1)t Sϕn(1−γ )ϕtϕ

−γ
s + ((n + 1)γ − n − 3)s

(
− ϕ2

t
2

+ γ S

γ − 1
ϕn(1−γ )ϕ

1−γ
s

)
− (γ + q + 1)Sϕn(1−γ )+1ϕ

−γ
s . (67)

For the gas dynamics variables, it takes the form
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T t
2 = ((n + 3)γ + 2q − n − 1)t

(u2

2
+ S

γ − 1
ργ−1) + ((n + 1)γ − n − 3)s

u

rnρ

− (γ + q + 1)ru,

T s
2 = ((n + 3)γ + 2q − n − 1)t Srnργ u + ((n + 1)γ − n − 3)s

( − u2

2
+ γ S

γ − 1
ργ−1)

− (γ + q + 1)Srn+1ργ . (68)

To rewrite this conservation laws in the Eulerian coordinates, we use the relation

s = qrnρ
S

Sr
(69)

to present the Lagrangian coordinate s. This relation allows to write down the den-
sities of the conservation law as follows:

eT t
2 = ((n + 3)γ + 2q − n − 1)trn

(ρu2

2
+ S

γ − 1
ργ

) + ((n + 1)γ − n − 3)qrnρu
S

Sr

− (γ + q + 1)rn+1ρu,

eT r
2 = ((n + 3)γ + 2q − n − 1)trn

(ρu2

2
+ γ S

γ − 1
ργ

)
u + ((n + 1)γ − n − 3)qrnρ

S

Sr
(u2

2
+ γ S

γ − 1
ργ−1) − (γ + q + 1)rn+1(ρu2 + Sργ ).

5.2.2 Case n = 0, γ �= n+3
n+1

For n = 0, the additional Noether symmetries are the same as in the general case.
Therefore, we get conservation laws given in points Sects. 4.1, 4.2, and 5.2.1.

5.2.3 Case n �= 0, γ∗ = n+3
n+1

The special case of γ∗ splits for values of q. For general q, we get the same Noether
symmetries as in the case of arbitrary S(s). Therefore, we obtain the same conser-
vation laws as given in points Sects. 4.1 and 4.3.

For the particular case q∗ = −2 n+2
n+1 , there is one additional variational symmetry

Z∗,q = −1

2
X3 = t

∂

∂t
+ s

∂

∂s
. (70)
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It provides with the following conservation law:

T t
∗,q = t

(ϕ2
t

2
+ S

γ − 1
ϕn(1−γ )ϕ1−γ

s

) + sϕsϕt ,

T s
∗,q = t Sϕn(1−γ )ϕtϕ

−γ
s + s

(
− ϕ2

t

2
+ γ S

γ − 1
ϕn(1−γ )ϕ1−γ

s

)
. (71)

It is also possible to present this conservation laws for the gas dynamics variables

T t∗,q = t
(u2

2
+ S

γ − 1
ργ−1

)
+ s

u

rnρ
,

T s∗,q = t Srnργ u + s
(

− u2

2
+ γ S

γ − 1
ργ−1

)
. (72)

To rewrite these densities in the Eulerian coordinates, we employ the relation (69)
and obtain densities

eT t
∗,q = rn

(
t
(ρu2

2
+ S

γ − 1
ργ

) + qρu
S

Sr

)
,

eT r
∗,q = rn

(
tρu + qρ

S

Sr

)(u2

2
+ γ S

γ − 1
ργ−1

)
.

5.2.4 Case n = 0, γ∗ = 3

We get the same conservation laws as described in the previous point. Note that
n = 0 leads to q∗ = −4.

5.3 Entropy Case S(s) = A0eqs

Let us note that this special case can be given in the Eulerian coordinates by the
differential constraint

Sr = qrnρS. (73)

For all cases of Sect. 4, there is one additional symmetry

X3 = −2Y2 + qY4 = qt
∂

∂t
− 2

∂

∂s
. (74)
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5.3.1 General Case n �= 0, γ �= n+3
n+1

For the general case, there is one additional variational symmetry

Z2 = q

2
X2 + n + 3 − (n + 1)γ

2
X3

= 2qt
∂

∂t
+ ((n + 1)γ − n − 3)

∂

∂s
+ qϕ

∂

∂ϕ
. (75)

The supplementary conservation law has densities

T t
2 = 2qt

(ϕ2
t

2
+ S

γ − 1
ϕn(1−γ )ϕ1−γ

s

) + ((n + 1)γ − n − 3)ϕsϕt − qϕϕt ,

T s
2 = 2qt Sϕn(1−γ )ϕtϕ

−γ
s + ((n + 1)γ − n − 3)

( − ϕ2
t

2
+ γ S

γ − 1
ϕn(1−γ )ϕ1−γ

s

)

− qSϕn(1−γ )+1ϕ−γ
s . (76)

For the gas dynamics variables, we get

T t
2 = 2qt

(u2

2
+ S

γ − 1
ργ−1) + ((n + 1)γ − n − 3)

u

rnρ
− qru,

T s
2 = 2qt Srnργ u + ((n + 1)γ − n − 3)

( − u2

2
+ γ S

γ − 1
ργ−1

) − qSrn+1ργ .

(77)

Finally, we rewrite these densities in the Eulerian coordinates

eT t
2 = 2qtrn

(ρu2

2
+ S

γ − 1
ργ

) + ((n + 1)γ − n − 3)u − qrn+1ρu,

eT r
2 = 2qtrn

(ρu2

2
+ γ S

γ − 1
ργ

)
u + ((n + 1)γ − n − 3)

(u2

2
+ γ S

γ − 1
ργ−1

)

− qrn+1(ρu2 + Sργ ).

5.3.2 Special Cases

For all special cases, we get the same additional conservation law as in the general
case of n and γ . We remark that because of

Z2|γ=γ∗ = qZ∗,γ

the corresponding conservation law, given in point Sect. 5.3.1, is not new for the
special values γ = γ∗.
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5.4 Discussion

The complete Lie group classification of the gas dynamics equation in the Lagrangian
coordinates (22) allows us to find all conservation laws which can be found using
Noether’s theorem and admitted symmetries. The group classification has three cases
of the entropy for which there exist additional symmetries. In the Eulerian coordi-
nates, these three cases are defined by differential constraints of first or second order.
Notice that the overdetermined systems which consist of the gas dynamics equations
and one of the considered differential constraints are involutive. The authors of [12,
13] also found conservation laws corresponding to special forms of the entropy. Here,
the symmetry nature of these conservation laws is explained.

In contrast to [11], the conservation laws, obtained in this chapter, are local. It
should be also noted that these conservation laws are naturally derived: their counter-
parts in the Lagrangian coordinates were derived directly using Noether’s theorem
without any additional assumptions. In contrast to the two-dimensional Lagrangian
gas dynamics, the special cases of the entropy in the Lagrangian coordinates are given
explicitly. In the two-dimensional case [40], the entropy is arbitrary, but the admit-
ted symmetry operators contain functions satisfying quasilinear partial differential
equations.

In a conservative form, the one-dimensional gas dynamics equations (11) are [33]

[rnρ]t + [rnρu]r = 0, (78a)

[rnρu]t + [
rn(ρu2 + p)

]
r = nrn−1 p, (78b)

[
rn

(
ρε + ρu2

2

)]
t + [

rn
(
ρε + ρu2

2 + p
)
u
]
r = 0, (78c)

where [. . .]t and [. . .]t denote total derivatives with respect to time t and the Eule-
rian coordinate r . One notes that the equation corresponding to the conservation
law of momentum is not homogeneous. However, most methods for constructing
conservation laws can only construct homogeneous conservation laws.

Consider inhomogeneous conservation laws of the one-dimensional gas dynamics
equations

Dt
[
f t

] + Dr
[
f r

] = f, (79)

where Dt and Dr are the total derivatives and the functions f t , f r , and f depend on
(t, r, ρ, u, p). The method which is used to derive such conservation laws consists of
obtaining an overdetermined system of partial differential equations for the functions
f t , f r , and f and finding its general solution. The overdetermined system is derived
by substituting the main derivatives ρt , ut , and pt found from the gas dynamics
equations into (79) and splitting it with respect to the parametric derivatives.

Calculations show that the general solution of this system provides the conserva-
tion laws

[ρF]t + [ρuF]r = ρ
(
Ft + u

(
Fr − n

r
F

))
, (80)
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[hρu]t + [
h(ρu2 + p)

]
r = htρu + hr (ρu

2 + p) − n

r
hρu2, (81)

[
h
(
ρ
u2

2
+ p

γ − 1

)]
t + [

h
(
ρ
u2

2
+ γ p

γ − 1

)
u
]
r

= ht
(
ρ
u2

2
+ p

γ − 1

) + (
hr − n

r
h
)(

ρ
u2

2
+ γ p

γ − 1

)
u, (82)

where h(t, r) and F(t, r, pρ−γ ) are arbitrary functions.
Equation (80) becomes a homogeneous conservation law if and only if

F(t, r, z) = rng(z), z = p

ργ
,

which for g ≡ 1 gives Eq. (78a).
Equation (81) can be a homogeneous conservation law only if n = 0. Notice that

for h = rn , this equation becomes (78b). Equation (82) provides a homogeneous
conservation law; only for h = rn , it gives Eq. (78c).

It should be also noted here that if the overdetermined system defined above is
extended by the condition f = 0, then one obtains all possible homogeneous zero-
order conservation laws of the one-dimensional gas dynamics equations.

6 Difference Models Preserving Symmetries

The first problem in discretization of differential equations is the choice of a differ-
ence mesh. The peculiarity of our approach is that we add mesh equation(s) into the
difference model:

Fi (z) = 0, i = 1, . . . , I ; (83a)

� j (z) = 0, j = 1, . . . , J. (83b)

Here, the first set of equations approximates the underlying differential system and
the second set of equations describes the difference mesh; z is a set of difference
variables needed for approximation. As it was shown in [19, 22], the invariance
of the mesh structure is a necessary condition for the invariance of the difference
model. The mesh equations can be presented with the help of difference invariants
or, alternatively, one can check the invariance of any chosen mesh by means of a
certain criterium (see [19, 22]).

Symmetries of difference schemes allow one to construct difference counterparts
of the differential conservation laws. The latter provides the absence of fake sources
of energy, momentum, etc. in differencemodels which play an important role in solu-
tions with high gradients. Moreover, the presence of (local) difference conservation
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lawsgives a possibility to apply thedifference counterpart of theGauss–Ostrogradskii
theorem [41] that leads to global conservation properties of the numerical solutions.

For discretization of the gas dynamics system (11a), (11b), (12), which is given
in the Eulerian coordinates, the simplest choice seems to be an orthogonal mesh in
(t, r) plane. As it will be shown below, this mesh is not invariant with respect to
symmetries which we aim to preserve in the difference models. This noninvariance
destroys the invariance of difference equations considered on such a mesh. We will
choose another coordinate system in which one can preserve mesh geometry and,
hence, the invariance of the whole difference model.

6.1 The Gas Dynamics Equations

In Sect. 3, we considered entropy as one of the dependent variables. Since the entropy
is conserved along pathlines only for smooth solutions, it is appropriate to choose
another form of the gas dynamics equations for numerical modeling.

6.1.1 Eulerian Coordinates

We start with the equations for the gas dynamics variables ρ, u, and p:

ρt + uρr + ρ

rn
(rnu)r = 0, (84a)

ut + uur + 1

ρ
pr = 0, (84b)

pt + upr + γ p

rn
(rnu)r = 0, (84c)

which admits four symmetries for any n and γ

X1 = ∂

∂t
, X2 = t

∂

∂t
+ r

∂

∂r
,

X3 = 2t
∂

∂t
+ r

∂

∂r
− u

∂

∂u
+ 2ρ

∂

∂ρ
, X4 = ρ

∂

∂ρ
+ p

∂

∂p
. (85)

For n = 0, there are two additional symmetries

X∗,n = ∂

∂r
and X∗∗,n = t

∂

∂r
+ ∂

∂u
. (86)

For the special values γ∗ = n+3
n+1 , there is one additional symmetry

X∗,γ = t2
∂

∂t
+ tr

∂

∂r
+ (r − tu)

∂

∂u
− (n + 1)tρ

∂

∂ρ
− (n + 3)tp

∂

∂p
. (87)
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6.1.2 Conservation Laws

System (84) possesses the following conservation laws.

1. General case of n and γ

In the general case, we get

• Conservation of mass [
rnρ

]
t + [

rnρu
]
r = 0; (88)

• Conservation of energy

[
rn

(
ρε + ρu2

2

)]
t + [

rn
(
ρε + ρu2

2
+ p

)
u
]
r = 0; (89)

• Conservation law

[
rnρF

( p

ργ

)]
t + [

rnρuF
( p

ργ

)]
r = 0, (90)

where F is a differentiable function. It holds due to the conservation of mass
(88) and conservation of entropy along the pathlines, given by

( p

ργ

)
t
+ u

( p

ργ

)
r

= 0.

2. Case n = 0

For the particular case n = 0 (plain one-dimensional flows), we obtain two addi-
tional conservation laws:

• Momentum
[ρu]t + [

ρu2 + p
]
r = 0; (91)

• Motion of the center of mass

[ρ(r − tu)]t + [ρu(r − tu) − tp]r = 0. (92)

3. Special values of γ∗ = n+3
n+1

For γ = γ∗, there are two additional conservation laws
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{
rn

[
2t

(
ρε + ρu2

2

) − rρu
]}

t

+ {
rn

[
2t

(
ρε + ρu2

2
+ p

)
u − r(ρu2 + p)

]}
r

= 0 (93)

and

{
rn

[
t2

(
ρε + ρu2

2

) − trρu + r2

2
ρ
]}

t

+ {
rn

[
t2

(
ρε + ρu2

2
+ p

)
u − tr(ρu2 + p) + r2

2
ρu

]}
r = 0. (94)

One can find conservation laws by direct computation or by an appropriate
reduction of the three-dimensional conservation laws. Conservation laws of three-
dimensional gas dynamics were obtained in [42] (see also [2]) with the help of a
variational formulation andNoether’s theorem (it requires some assumptions) and by
direct computation in [43]. Among the 13 conservation laws of the three-dimensional
case, all but one can be integrated over discontinuities [43]. The only conservation
law which cannot be integrated over discontinuities gets reduced to (90) in the case
of one-dimensional flows. It cannot be integrated over discontinuities because the
entropy is not conserved for the discontinuous solutions [37, 44]. In [2, 42], one
can find a symmetry interpretation of the conservation laws, i.e., the correspondence
between the conservation laws and the Lie point symmetries of the three-dimensional
gas dynamics equations.

6.1.3 Lagrangian Coordinates

We rewrite the gas dynamics equations (84) in the Lagrangian coordinates (t, s) as

(
1
ρ

)
t = (rnu)s, (95a)

ut + rn ps = 0, (95b)

εt = −p(rnu)s, (95c)

rt = u. (95d)

Note that in the Lagrangian coordinates, variable r is dependent. It is given by
Eq. (95d), which is included in the system of the gas dynamics equations, and the
relation

rs = 1

rnρ
. (96)
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From Eq. (95), it is easy to see that

εt = −p

(
1

ρ

)

t

. (97)

This relation is important for the balance between the specific internal energy and
the specific kinetic energy.

We rewrite symmetries (85) and additional symmetries (86) and (87) in the
Lagrangian coordinates. There are four symmetries in the general case

X1 = ∂

∂t
, X2 = t

∂

∂t
+ (n + 1)s

∂

∂s
+ r

∂

∂r
,

X3 = 2t
∂

∂t
+ (n + 3)s

∂

∂s
− u

∂

∂u
+ 2ρ

∂

∂ρ
+ r

∂

∂r
,

X4 = s
∂

∂s
+ ρ

∂

∂ρ
+ p

∂

∂p
; (98)

two additional symmetries for the particular case n = 0

X∗,n = ∂

∂r
and X∗∗,n = t

∂

∂r
+ ∂

∂u
; (99)

and one additional symmetry for the special case γ∗

X∗,γ = t2
∂

∂t
+ (r − tu)

∂

∂u
− (n + 1)tρ

∂

∂ρ
− (n + 3)tp

∂

∂p
+ tr

∂

∂r
. (100)

We also include the translation symmetry for themassLagrange coordinate,which
is given by the generator

X0 = ∂

∂s
. (101)

6.1.4 Conservation Laws

Let us rewrite the conservation laws for the Lagrangian coordinates. We obtain

1. General case of n and γ

There hold

• Conservation of mass [ 1
ρ

]
t − [rnu]s = 0; (102)

• Conservation of energy
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[
ε + 1

2
u2

]
t + [rn pu]s = 0; (103)

• Conservation of entropy along pathlines

[ p

ργ

]
t = 0. (104)

2. Case n = 0

There are additional

• Conservation of momentum

[u]t + [p]s = 0; (105)

• Motion of the center of mass

[r − tu]t − [tp]s = 0. (106)

3. Special values of γ∗ = n+3
n+1

For γ = γ∗, there are two additional conservation laws

[
2t

(
ε + 1

2
u2

) − ru
]
t + [rn p(2tu − r)]s = 0 (107)

and
[
t2

(
ε + 1

2
u2

) − tru + r2

2

]
t + [rn p(t2u − tr)]s = 0. (108)

6.2 The Numerical Schemes

In this section, we consider numerical schemes and their symmetries. Besides, our
goal is to construct schemes that have difference conservation laws analogous to the
conservation laws of the underlying differential system. We restrict ourselves by the
homogenous conservation laws.

6.2.1 Invariance and Eulerian Coordinates for n = 0

For discretization of the gas dynamics system (84), which is given in the Eulerian
coordinates, the simplest choice seems to be an orthogonal mesh in (t, r) plane.
However, this mesh is not invariant that destroys invariance of difference equations
considered on suchmesh. Indeed, as it was shown in [19, 22], the necessary condition
for a mesh to preserve its orthogonality under a group transformation generated by
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the operator

X = ξ t ∂

∂t
+ ξ r ∂

∂r
+ · · · (109)

is the following:
D+h(ξ

t ) = −D+τ (ξ
x), (110)

where D+h and D+τ are the operators of difference differentiation in r and t direc-
tions, respectively.

System (84) admits the 6-parameter Lie symmetry group of point transformations
that corresponds to the Lie algebra of infinitesimal operators (85) and (86). In the
special case γ∗ = 3, there is one more symmetry (87).

It is easy to see that the Galilean transformation given by the operator X∗∗,n does
not satisfy the criterion (110). The same is true for X∗,γ . It means that one should
look for an invariant moving mesh in the Eulerian coordinates.

To obtain an invariant moving mesh, we chose the following difference stencil
with two time layers:

• independent variables:

t = t j , t̂ = t j+1; r = r j
i , r+ = r j

i+1, r̂ = r j+1
i , r̂+ = r j+1

i+1 ;

• dependent variables in the nodes of the mesh (the same notation as for r ):

u, u+, û, û+; ρ, ρ−, ρ̂, ρ̂−; p, p−, p̂, p̂−.

Then,wefind thefinite-difference invariants for symmetries (85) and (86) as solutions
of the system of linear equations

Xi I (t, t̂, r, r+, r̂ , r̂+, . . . , p, p−, p̂, p̂−) = 0 (111)

for the considered symmetries. Here, we assume that the operator is prolonged for
all variables of the stencil [22]. There are 12 functionally independent invariants

ĥ+
h+

,
τ

h+

√
p

ρ
,

√
ρ

p

( r̂ − r

τ
− u

)
,

√
ρ

p
(u+ − u),

√
ρ

p
(û − u),

√
ρ

p
(û+ − û),

p+
p

,
p̂

p
,

p̂+
p̂

,
ρ̂

ρ
,

ρ̂+
ρ̂

,
ρ+
ρ̂

,

where τ = t̂ − t , h+ = r+ − r , and ĥ+ = r̂+ − r̂ .
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Notice that the only one difference invariant contains the value r̂ . This invariant
suggests, for example, an invariant moving mesh given by

√
ρ

p

( r̂ − r

τ
− u

) = 0

or, equivalently,
r̂ − r

τ
= u. (112)

In the continuous limit, it corresponds to the evolution of the spacial variable r given
as

dr

dt
= u. (113)

Thus, we arrive at choosing the mass Lagrangian coordinates with the operator of
differentiation with respect to t

DL
t = DE

t + uDr .

6.2.2 Notations

We introduce the mesh for the mass Lagrangian coordinate s:

hs = si+1 − si and hs− = si − si−1. (114)

Generally, the spacing can be nonuniform. For simplicity, we use a uniform mesh
hs = hs−.

For time, we consider themeshwith points t j . Since we consider the schemes with
two time layers, we denote the time step as τ . Of course, we can consider nonuniform
time meshes with steplengths τ j = t j+1 − t j .

Now the operators have the form

X = ξ t ∂

∂t
+ ξ s ∂

∂s
+ · · · (115)

and the criterium of invariant orthogonality

D+hs (ξ
t) = −D+τ (ξ

s) (116)

holds for all considered symmetries (98), (99), (100), and (101). Here, D+hs and D+τ

are the operators of difference differentiation in s and t directions, respectively.
We split the dependent variables into kinematic and thermodynamic. The kine-

matic variables u and r are prescribed to the nodes. For example, for u, we have
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u = u j
i , u+ = u j

i+1, û = u j+1
i , û+ = u j+1

i+1 .

The thermodynamic variables ρ and p are taken in the midpoints as

ρ− = ρ
j
i−1/2, ρ = ρ

j
i+1/2, ρ+ = ρ

j
i+3/2,

ρ̂− = ρ
j+1
i−1/2, ρ̂ = ρ

j+1
i+1/2, ρ̂+ = ρ

j+1
i+3/2.

To describe the scheme, we need the time and spatial derivatives

ut = û − u

τ
, us = u j

i+1 − u j
i

si+1 − si
= u+ − u

hs
. ps̄ = p j

i+1/2 − p j
i−1/2

1
2 (si+1 − si−1)

= p − p−
hs

and weighted values defined as

y(α) = α ŷ + (1 − α)y, 0 ≤ α ≤ 1.

6.2.3 The Samarskii–Popov Scheme

In [45] (see also [32]), the authors introduced a conservative scheme for plain one-
dimensional flows (n = 0). It was generalized to the other one-dimensional flows
(n = 1, 2) in [32]. This scheme is a discretization of Eq. (95)

(
1
ρ

)

t
= (Ru(0.5))s, (117a)

ut = −Rp(α)
s̄ , (117b)

εt = −p(α)(Ru(0.5))s, (117c)

rt = u(0.5), (117d)

where R is a discretization of rn chosen as

R = r̂ n+1 − rn+1

(n + 1)(r̂ − r)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, n = 0;
r̂ + r

2
, n = 1;

r̂2 + r̂r + r2

3
, n = 2.

Scheme (117) has four equations for five variables ρ, u, ε, r , and p. It should be
supplemented by a discrete equation of state, a discrete analog of (9). For example,
it can be taken in the same form that means

ε
j
i+1/2 = ε(ρ

j
i+1/2, p

j
i+1/2). (118)
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6.2.4 Properties of the Samarskii–Popov Scheme

For a polytropic gas scheme (117), (118) is invariant with respect to the symme-
tries (98) and (101) corresponding to the general case. For n = 0, it is also invariant
to symmetries (99). The scheme is not invariant for the additional symmetry (100),
which exists for the special values γ∗.

Let us review important properties of the scheme. It possesses many qualitative
properties of the underlying differential equations. For any equation of state ε =
ε(ρ, p), i.e., not only for the polytropic gas (10), this scheme has the following
conservation laws:

• Conservation of mass [
1

ρ

]

t

− [Ru(0.5)]s = 0; (119)

• Conservation of energy

[
ε + u2 + u2+

4

]

t

+ [Rp(α)
∗ u(0.5)]s = 0, (120)

where

p(α)
∗ = (p∗)(α)

i = p(α)
i−1/2 + p(α)

i+1/2

2
.

For n = 0, there are two additional conservation laws:

• Conservation of momentum

[u]t + [p(α)]s = 0; (121)

• Motion of the center of mass

[r − tu]t − [t (0.5) p(α)]s = 0. (122)

These conservation laws correspond to (102), (103), (105), and (106). There are
no discrete conservation laws corresponding to (107) and (108), which hold for the
special values of γ∗.

Remark 1 Modifying the equation of state (10), it is possible to achieve conser-
vation of the conservation laws (107) and (108), which hold for γ∗ = n+3

n+1 , under
discretization. We refer to [46] for the case n = 0 and to [47] for the generalization
to n = 1, 2.

Scheme (117) consists of four equations for five variables ρ, u, p, ε, and r .Wewill
not impose the discrete equation of state (118). The freedom to choose a discretization
of the equation of state will be used to impose one additional conservation law. Let
us look for an equation of state which gives us the following difference analog of the
additional conservation law (107):
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[
2t

(
ε + < u2 >

2

)
− < ru >

]

t

+ [Rp(α)
∗ (2t (0.5)u(0.5) − r (0.5))]s = 0, (123)

where we use a special notation for the average value of two function values taken
in the neighboring nodes of the same time layer

< f (u, r) >= f (u, r) + f (u+, r+)

2
.

It leads to the following specific internal energy equation:

ε(0.5) = p(α)

γ − 1

(
1

ρ

)(0.5)

− τ 2

8
< (ut )

2 > +1

2
p(α)

[
r (0.5)R − (rn+1)(0.5)

]
s . (124)

We will take it as the discrete equation of state, which approximates (10).
In this case, we also get a difference analog of the second additional conservation

law (108) as

[
t2

(
ε + < u2 >

2

)
− t < ru > +< r2 >

2
+ τ2

8
< u2 >

]

t

+ [Rp(α)∗ ((t2)(0.5)u(0.5) − t(0.5)r (0.5))]s = 0. (125)

Note that it has a correcting term τ 2

8 < u2 >, which disappears in the continuous
limit.

Thus, we obtained difference scheme (117) supplemented by discrete state equa-
tion (124). In this scheme, the pressure values p and p̂ appear only as a weighted
value p(α), i.e., α has no longer meaning of a parameter. We can consider this value
as the pressure in the midpoint of the cell (t j+1/2, si+1/2), i.e., for α = 0.5.

The scheme holds a discrete counterpart of the relation (97), namely

εt = −p(α)

(
1

ρ

)

t

. (126)

This is an important supplement to the conservation of total energy (120), which
provides the balance of the specific internal energy and the specific kinematic energy.

In the case of a polytropic gas, the equations of gas dynamics hold the conservation
of entropy (104) along pathlines (for smooth solutions). There is no such property
for the scheme (117). However, the scheme holds the relation

Δp

p(α)
= γ

Δρ

ρ(α)
, Δp = p̂ − p, Δρ = ρ̂ − ρ (127)
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that approximates (104) presented with the help of differentials

dp

p
= γ

dρ

ρ
.

6.3 Invariance of Difference Schemes

In this point, we show how to construct invariant schemes with the help of finite-
difference invariants. Scheme (117) can be expressed in terms of invariants for the
general case of γ . Its modification described in Remark 1 possesses the additional
conservation laws which hold for the special values γ∗. However, it is not invariant
with respect to the additional symmetry X∗,γ which exists for these special values.
For the special values γ∗, invariant schemes are constructed. The case n = 0 was
reported in [31].

6.3.1 General Case n �= 0, γ �= n+3
n+1

We chose an orthogonal mesh in the Lagrangian coordinates and a stencil with the
following variables:

• independent variables:

t = t j , t̂ = t j+1, s = si , s+ = si+1, s− = si−1;

• kinematic variables in the nodes:

u = u j
i , u+ = u j

i+1, û = u j+1
i , û+ = u j+1

i+1 , r, r+, r̂ , r̂+;

• thermodynamic variables in the midpoints:

ρ = ρ
j
i , ρ− = ρ

j
i−1, ρ̂ = ρ

j+1
i , ρ̂− = ρ

j+1
i−1 , p, p−, p̂, p̂−.

For these 21 stencil variables, we find 16 = 21 − 5 invariants of the symmetries (98)
and (101):

I1 = hs−
hs

, I2 = ρrn+1

hs
, I3 = τ

hs
rn

√
ρp, I4 = τu

r
,

I5 = u+
u

, I6 = û

u
, I7 = û+

û
, I8 = r+

r
, I9 = r̂

r
, I10 = r̂+

r̂
,

I11 = ρ−
ρ

, I12 = ρ̂

ρ
, I13 = ρ̂−

ρ̂
, I14 = p−

p
, I15 = p̂

p
, I16 = p̂−

p̂
.
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The scheme (117) is invariant with respect to the considered symmetries and can be
expressed in terms of the invariants as

1

I12
− 1 = I2 I4

( (I9 I10)
n+1 − I n+1

8
(n + 1)(I9 I10 − I8)

I6 I7 + I5
2

− I n+1
9 − 1

(n + 1)(I9 − 1)

I6 + 1

2

)
, (128a)

I6 − 1 = − I 23
I2 I4

I n+1
9 − 1

(n + 1)(I9 − 1)
(α I15(1 − I16) + (1 − α)(1 − I14)) , (128b)

1

γ − 1

( I15
I12

− 1
) = −I2 I4 (α I15 + (1 − α))

×( (I9 I10)
n+1 − I n+1

8
(n + 1)(I9 I10 − I8)

I6 I7 + I5
2

− I n+1
9 − 1

(n + 1)(I9 − 1)

I6 + 1

2

)
,

(128c)

I9 − 1 = 1

2
I4(1 + I7). (128d)

6.3.2 Special Case n = 0, γ �= n+3
n+1

In the space of 21 stencil variables, there are 14 invariants for 7 symmetries (98),
(99), (101):

I1 = hs−
hs

, I2 = τ

hs
√

ρp, I3 =
√

ρ

p

( r̂ − r

τ
− u

)
, I4 =

√
ρ

p

( r̂ − r

τ
− û

)
,

I5 =
√

ρ

p
(u+ − u), I6 =

√
ρ

p
(û+ − û), I7 = ρ(r+ − r)

hs
, I8 = ρ̂(r̂+ − r̂)

hs
,

I9 = ρ−
ρ

, I10 = ρ̂

ρ
, I11 = ρ̂−

ρ̂
, I12 = p−

p
, I13 = p̂

p
, I14 = p̂−

p̂
.

One can find the scheme (117) for n = 0 approximating the gas dynamics system
(95) with the help of these invariants as

1

I10
− 1 = I2

I5 + I6
2

, (129a)

I3 − I4 = −I2 (α (I13 − I13 I14) + (1 − α)(1 − I12)) , (129b)
1

γ − 1

( I13
I10

− 1
) = −I2(α I13 + (1 − α))

I5 + I6
2

, (129c)

I3 + I4 = 0. (129d)
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6.3.3 Special Case n �= 0, γ∗ = n+3
n+1

We use the same mesh and stencil as for the general case of γ . Due to the additional
symmetry (100), we get one invariant less. We obtain the following finite-difference
invariants:

J1 = hs−
hs

, J2 = ρrn+1

hs
, J3 = ρ̂r̂ n+1

hs
, J4 = τrn

hs
ρ

1
2 − 1

n+1 ρ̂
1

n+1 p
1
2 , J5 = p̂

p

(
ρ

ρ̂

) n+3
n+1

,

J6 = r + τu

r̂
J7 = r+ + τu+

r̂+
, J8 = r̂ − τ û

r
, J9 = r̂+ − τ û+

r+
,

J10 = r+
r

J11 = r̂+
r̂

, J12 = ρ−
ρ

, J13 = ρ̂−
ρ̂

, J14 = p−
p

, J15 = p̂−
p̂

.

Using these invariants, we suggest an invariant scheme

ρ̂(r̂ n+1
+ − r̂ n+1) = ρ(rn+1

+ − rn+1), (130a)

û − u

τ
= −

(
ρ̂

ρ

) 2
n+1

rn
p − p−
hs

, (130b)

p̂

ρ̂
n+3
n+1

= p

ρ
n+3
n+1

, (130c)

r̂ − r

τ
= u, (130d)

which allows explicit computations. It is expressed in terms of the invariants as

J3(J
n+1
11 − 1) = J2(J

n+1
10 − 1), (131a)

J8 − 1 = J 2
4

J2
(1 − J14), (131b)

J5 = 1, (131c)

J6 = 1. (131d)

In addition to the invariance, the scheme (130) possesses conservation of mass,
given by Eq. (130a), and conservation of the entropy along pathlines, given by (130c).

We remark that the conservation of mass property can be rewritten as

1

τ

( 1
ρ̂

− 1

ρ

) = R+u+ − Ru

hs
or

[
1

ρ

]

t

− [Ru]s = 0 (132)

with

hs = ρ̂
r̂ n+1
+ − r̂ n+1

n + 1
= ρ

rn+1
+ − rn+1

n + 1
.
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6.3.4 Special Case n = 0, γ∗ = 3

In comparison to the case n = 0, γ �= 3, we have one more symmetry, namely (100).
Therefore, we get one invariant less. There are 13 invariants:

J1 = hs−
hs

, J2 = τ

hs
(ρpρ̂ p̂)

1
4 , J3 =

√
ρ

p

( r̂ − r

τ
− u

)
, J4 =

√
ρ̂

p̂

( r̂ − r

τ
− û

)
,

J5 =
√

ρ

p

(h+
τ

+ u+ − u
)
, J6 =

√
ρ̂

p̂

( − ĥ+
τ

+ û+ − û
)
, J7 = ρ(r+ − r)

hs
,

J8 = ρ̂(r̂+ − r̂)

hs
, J9 = p̂

p

(ρ

ρ̂

)3
, J10 = ρ−

ρ
, J11 = ρ̂−

ρ̂
, J12 = p−

p
, J13 = p̂−

p̂
.

There are many possibilities to approximate the gas dynamics system (95a), (95b),
(104), (95d) with the help of these invariants. We propose the following explicit
invariant scheme:

ρ̂(r̂+ − r̂) = ρ(r+ − r), (133a)

û−u
τ

= −
(

ρ̂

ρ

)2
p−p−
hs , (133b)

p̂
ρ̂3 = p

ρ3 , (133c)

r̂−r
τ

= u. (133d)

In term of the invariants, this scheme is written as

J7 = J8, (134a)

J4 = J2 J
−3/4
9 (1 − J12), (134b)

J9 = 1, (134c)

J3 = 0. (134d)

The scheme conserves the entropy, or S, along the pathlines and possesses conser-
vation of mass (133a). Note that the first equation can be rewritten as

1

τ

( 1
ρ̂

− 1

ρ

) = u+ − u

hs
or

[
1

ρ

]

t

− [u]s = 0 (135)

with
hs = ρ̂(r̂+ − r̂) = ρ(r+ − r).

We remark that implicit invariant schemes are also possible.
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7 Conclusion

In the chapter, we examined one-dimensional flows of a polytropic gas and their
Lie point symmetry properties. By the one-dimensional flows we mean plain one-
dimensional flows, the gas dynamics flows with radial symmetry, and the gas dynam-
ics flows with spherical symmetry. There was performed the Lie group classifica-
tion of the gas dynamics equations reduced to a single second-order PDE in the
Lagrangian coordinates. The entropy function was a parameter of the classification.
Four cases were identified. In the general case, there are conservation laws of mass
and energy. For the special cases, there were found additional conservation laws. The
conservation laws obtained for the second-order PDE were later rewritten for the gas
dynamics variables. They were also transformed from the Lagrangian coordinates to
the Eulerian ones.

Difference models were discussed for different cases of n and γ . It is shown that
the Samarskii–Popov scheme is invariant for the symmetries of the general case of
γ , but not for the additional symmetry of the special case γ∗ = n+3

n+1 . This scheme
possesses conservationofmass and energy, forn = 0 also conservationofmomentum
and motion of the center of mass. It does not have conservation of the entropy along
the pathlines. For the special values γ∗, we suggest invariant schemes, which have
conservation of mass and conservation of the entropy along the pathlines.

Acknowledgements The research was supported by Russian Science Foundation Grant no. 18-
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schemes”.
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Hamiltonian Structure and Conservation
Laws of Three-Dimensional Linear
Elasticity Theory

D. O. Bykov, V. N. Grebenev, and S. B. Medvedev

Abstract This is a continuation of the paper [5] wherein the Hamiltonian structure
together with the non-canonical singular Poisson bracket and Casimir functionals
were established for two-dimensional linear elasticity model. The aim of the present
work is the extension of the above-mentioned results to the three-dimension case.

1 Introduction

A three-dimensional, linear-elastic model is widely exploited in studying the small
deformations of a medium [1–3]. This model can be considered in various variables
referee frames and forms [4]. In the present contribution, the corresponding equa-
tions of the model are written in terms of the velocity vector [4]. We establish that
this model admits a Hamiltonian structure that presents the extension to the three-
dimensional case of the results obtained in [5]. We find the form of Poisson bracket
for these equations and demonstrate that this is a singular non-canonical Poisson
bracket. Notice that the investigation of Hamiltonian structures of linear equations
has a sense since such models are usually derived without using Hamiltonian struc-
tures of the original nonlinear models. It is interesting that the existence of a non-
canonical form of Poisson bracket enables us to calculate Casimir functionals which
are conserved for the Hamiltonian derived. In comparison with the two-dimensional
case, we also demonstrate that the three-dimensional Poisson bracket gives more
complicated Casimir functionals. We find all zero-order conservation laws and show
by the direct calculations that only a unique quadratic conservation law exists which
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actually coincides with the energy functional. This is similar to the case of the three-
dimensional Navier–Stokes equations. Finally, we investigate the linear terms of the
density of conservation laws obtained in details using the symmetric form of the
equations.

The chapter is structured as follows. In Sect. 2, we present the three-dimensional
linear equations of elasticity for the isentropic medium. The Hamiltonian form of
this model is derived in Sect. 3. Section4 is devoted to studying the properties of a
Hamiltonian structure admitted by the originalmodel. Casimir functionals associated
with this system are found in Sect. 5. In Sect. 6, we find all zero-order conservation
laws admitted by this model. A discussion and summary of the results obtained are
given in Sect. 7. The appendix contains several well-known formulas from the linear
theory of elasticity.

2 System of Equations

A three-dimensional, linear-elastic model for the isentropic medium is considered in
the following form [4]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂εi j

∂t
= 1

2

( ∂ui
∂x j

+ ∂u j

∂xi

)
,

ρ0
∂ui
∂t

= ∂σi j

∂x j
,

σi j = λδi j (ε11 + ε22 + ε33) + 2μεi j ,

(1)

where ρ0 > 0 is the density of medium, λ denotes the Lamé parameter,μ is the shear
modulus, σ denotes the stress tensor and ε is the tensor of small deformations. The
system (1) in the variables u1, u2, u3, σ11, σ22, σ33, σ12, σ13, σ23 reads

ρ0
∂u1
∂t

= ∂σ11

∂x1
+ ∂σ12

∂x2
+ ∂σ13

∂x3
, (2)

ρ0
∂u2
∂t

= ∂σ21

∂x1
+ ∂σ22

∂x2
+ ∂σ23

∂x3
, (3)

ρ0
∂u3
∂t

= ∂σ31

∂x1
+ ∂σ32

∂x2
+ ∂σ33

∂x3
, (4)

∂σ11

∂t
= (λ + 2μ)

∂u1
∂x1

+ λ
∂u2
∂x2

+ λ
∂u3
∂x3

, (5)

∂σ22

∂t
= λ

∂u1
∂x1

+ (λ + 2μ)
∂u2
∂x2

+ λ
∂u3
∂x3

, (6)
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∂σ33

∂t
= λ

∂u1
∂x1

+ λ
∂u2
∂x2

+ (λ + 2μ)
∂u3
∂x3

, (7)

∂σ12

∂t
= μ

(∂u2
∂x1

+ ∂u1
∂x2

)
, (8)

∂σ13

∂t
= μ

(∂u3
∂x1

+ ∂u1
∂x3

)
, (9)

∂σ23

∂t
= μ

(∂u3
∂x2

+ ∂u2
∂x3

)
, (10)

σ21 = σ12, σ31 = σ13, σ32 = σ23. (11)

For convenience, it is used the followingnotation of the dependent variablesu4 = σ11,
u5 = σ22, u6 = σ33, u7 = σ12, u8 = σ13, u9 = σ23 and u = (u1, . . . , u9)T. With this,
the system (2)–(11) can be written in the operator form

ut = L̂u, (12)

where the matrix operator L̂ is

L̂ =
⎛

⎝
Θ L̂12 L̂13

L̂21 Θ Θ

L̂31 Θ Θ

⎞

⎠ (13)

or explicitly

L̂12 = 1

ρ0

⎛

⎝
∂x1 0 0
0 ∂x2 0
0 0 ∂x3

⎞

⎠ , L̂13 = 1

ρ0

⎛

⎝
∂x2 ∂x3 0
∂x1 0 ∂x3
0 ∂x1 ∂x2

⎞

⎠ , (14)

L̂21 =
⎛

⎝
(λ + 2μ) ∂x1 λ∂x2 λ∂x3

λ∂x1 (λ + 2μ) ∂x2 λ∂x3
λ∂x1 λ∂x2 (λ + 2μ) ∂x3

⎞

⎠ , (15)

L̂31 = μ

⎛

⎝
∂x2 ∂x1 0
∂x3 0 ∂x1
0 ∂x3 ∂x2

⎞

⎠ , Θ =
⎛

⎝
0 0 0
0 0 0
0 0 0

⎞

⎠ . (16)
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3 Hamiltonian Structure

The system of Eqs. (2)–(11) is linear, the dissipative-free and has the quadratic con-
servation law [4], i.e. with the energy functional, see Appendix. Therefore (2)–(11)
has to be a Hamiltonian system [6]. The aim is to explicitly present a Hamiltonian
structure [7, 8] of the original model, that is, to find the representation of Eq. (12) in
a Hamiltonian form:

ut = Ĵu
δH [u]

δu
= ĴuAuu. (17)

Here Ĵu is a skew-symmetric operator which defines a local Poisson bracket [7, 8],
where the index u in (17) means that the operator acts with respect to the variable u.
As usually, δH [u]

δu denotes the variational derivative of the Hamiltonian

H [u] = 1

2

∫

uTAuu dx1dx2dx3, (18)

where Au is a symmetric matrix or an operator. In the two-dimensional case, the
operators Ĵu and Au have been constructed in [5].

Notice also that all blocks of the operator L̂ , excepting L̂21, can be presented as a
differential operator multiplied by a parameter. Also the operator L̂21 can be written
in a matrix form together with the operator of differentiating:

L̂21 =
⎛

⎝
(λ + 2μ) λ λ

λ (λ + 2μ) λ

λ λ (λ + 2μ)

⎞

⎠

⎛

⎝
∂x1 0 0
0 ∂x2 0
0 0 ∂x3

⎞

⎠ . (19)

Using these properties, we can write L̂ in the factor-form, i.e. L̂ = S Î , where Î reads

Î =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 ∂x1 0 0 ∂x2 ∂x3 0
0 0 0 0 ∂x2 0 ∂x1 0 ∂x3
0 0 0 0 0 ∂x3 0 ∂x1 ∂x2
∂x1 0 0 0 0 0 0 0 0
0 ∂x2 0 0 0 0 0 0 0
0 0 ∂x3 0 0 0 0 0 0
∂x2 ∂x1 0 0 0 0 0 0 0
∂x3 0 ∂x1 0 0 0 0 0 0
0 ∂x3 ∂x2 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(20)

=
⎛

⎝
Θ Î12 Î13
Î21 Θ Θ

Î31 Θ Θ

⎞

⎠ .

The symmetric matrix S is of the following block-diagonal form
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S =
⎛

⎝
S11 Θ Θ

Θ S22 Θ

Θ Θ S33

⎞

⎠ . (21)

Here

S11 = 1

ρ0
E, S22 =

⎛

⎝
(λ + 2μ) λ λ

λ (λ + 2μ) λ

λ λ (λ + 2μ)

⎞

⎠ , S33 = μE,

where E is the identity matrix. With this, the original system takes the form

ut =
(
S Î S

)
S−1u, (22)

for the nonsingular matrix S. Comparing (22) with (17) and taking into account
that Î is a skew-symmetric operator and S is a symmetric matrix, we can see that
the operator of Poisson bracket equals a skew-symmetric operator Ĵu = Ĵ = S Î S.
Therefore, the Hamiltonian (18) is given by the symmetric matrix Au = S−1.
Notice that the inverse matrix S−1 = Au exists provided that det S11 = ρ−3

0 �= 0,
det S22 = 4μ2(3λ + 2μ) �= 0 and det S33 = μ3 �= 0. As a result, we get the follow-
ing conditions1

μ �= 0, ρ0 �= 0, 3λ + 2μ �= 0. (23)

Summarising, we explicitly write the operators Au = S−1 and Ĵu in the following
block-matrix forms:

Au = S−1 =
⎛

⎝
A11 Θ Θ

Θ A22 Θ

Θ Θ A33

⎞

⎠ , Ĵ =
⎛

⎝
Θ Ĵ12 Ĵ13
Ĵ21 Θ Θ

Ĵ31 Θ Θ

⎞

⎠ , (24)

where A11 = ρ0E , A33 = μ−1E ,

A22 =
⎛

⎜
⎝

λ+μ

μ(3λ+2μ)
− λ

2μ(3λ+2μ)
− λ

2μ(3λ+2μ)

− λ
2μ(3λ+2μ)

λ+μ

μ(3λ+2μ)
− λ

2μ(3λ+2μ)

− λ
2μ(3λ+2μ)

− λ
2μ(3λ+2μ)

λ+μ

μ(3λ+2μ)

⎞

⎟
⎠ , (25)

Ĵ21 = ĴT
12 = 1

ρ0

⎛

⎝
(λ + 2μ)∂x1 λ∂x2 λ∂x3

λ∂x1 (λ + 2μ)∂x2 λ∂x3
λ∂x1 λ∂x2 (λ + 2μ)∂x3

⎞

⎠ = 1

ρ0
S22 Î21, (26)

1 In the two-dimensional case, the similar condition reads λ + μ �= 0 [5].



104 D. O. Bykov et al.

Ĵ31 = ĴT
13 = μ

ρ0

⎛

⎝
∂x2 ∂x1 0
∂x3 0 ∂x1
0 ∂x3 ∂x2

⎞

⎠ = μ

ρ0
Î31. (27)

4 Linear Transformations

To simplify or change the form of the equations under considerations, we can perform
linear transformations of the variables by a nonsingular matrix D

v = Du. (28)

First of all,we clear uphow theHamiltonian structure is transformedunder the change
of variables. Using the transformation (28), we get a new form of the system (17)

vt = Ĵv
δH [v]

δv
= ĴvAvv, H [v] = 1

2

∫

vTAvv dx1dx2dx3, (29)

where the elements of Hamiltonian are transformed as follows

Ĵv = DĴuD
T, Av = (D−1)TAuD

−1. (30)

It is possible to simplify theHamiltonian structure either by a reduction to the simplest
form of the operator of Poisson bracket or by a transformation of the matrix which
defines this Hamiltonian. First, we perform this procedure for the operator Ĵv which
defines the corresponding Poisson bracket. This form can be achieved by changing
the variables

v = Auu, (31)

i.e. by setting D = Au. Then the system takes the form

vt = Î
δH [v]

δv
= Î Sv, (32)

where

Sv = δH [v]
δv

=
⎛

⎜
⎝

δH [v]
δv1
...

δH [v]
δv9

⎞

⎟
⎠ . (33)

As a result, the Hamiltonian reads

H [v] = 1

2

∫

vTSvdx1dx2dx3 (34)
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and the components of v can be written as follows

(v1, v2, v3) = ρ0(u1, u2, u3), (v4, v5, v6) = (ε11, ε22, ε33) , (35)

(v7, v8, v9) = 2 (ε12, ε13, ε23) . (36)

The formula (32)means that now thePoissonbracket is independent of the parameters
but the Hamiltonian depends linearly on the Lamé parameters λ and μ.

4.1 Positive Definiteness

The existence of Hamiltonian for the system (2)–(11) does not guarantee the stability
of solutions to this system. In the norm given by (18), this property takes place
provided that this quadratic integral is positive definite. For this, it is necessary and
sufficient to show that Au (or S in (34)) obeys the same property, that is, Au is a
positive definite matrix. This is occur under the following conditions

μ > 0, ρ0 > 0, 3λ + 2μ > 0. (37)

With this, the conditions (23) follow from positiveness of the quantities in (37).

4.2 Simplification of the Hamiltonian

The Poisson bracket has been reduced above to the simplest form by changing the
variables. The transformation of theHamiltonian can be preformed by reducing to the
principal axes that presents the simplest form of positive quadratic forms. Namely,
since S is a positive definite matrix then the operator S1/2 is defined and we can
perform the change of variables

w = S1/2v, S1/2 = diag
(
ρ

−1/2
0 E, S1/222 , μ1/2E

)
, (38)

where

S1/222 =
√
3λ + 2μ

3

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠ +
√
2μ

3

⎛

⎝
2 −1 −1

−1 2 −1
−1 −1 2

⎞

⎠ . (39)

Then the system (32) takes the form

wt = Ĵw
δH [w]

δw
= Ĵww, (40)
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with the Hamiltonian (after reducing to the principal axes)

H [w] = 1

2

∫

wTwdx1dx2dx3 (41)

and the operator of Poisson bracket

Ĵw = S1/2 Î S1/2. (42)

The system (40) is relevant for numerical modelling by using finite-difference
methods which conserve the Hamiltonian (41). In particular, the Crank–Nicolson
scheme can be applied for the numerical integrating:

ψ j+1 − ψ j

τ
= K

ψ j+1 + ψ j

2
, (43)

where ψ j is a finite-dimensional approximation of the function w, K is a skew-
symmetric approximation of the operator Ĵw. It is well-known that the Crank–
Nicolson scheme conserves the quadratic integral

H = 1

2
(ψ j , ψ j )

for all moments of discrete time j . Other finite-difference approximations which
conserve the Hamiltonian structure can be found in [9].

4.3 Symmetric Form

If we multiply from left the system ut = L̂u on the matrix Au, then we get

Auut = Îu, (44)

which can be presented as a linear symmetric hyperbolic system in the sense of
Friedrichs [4]

Au
∂u
∂t

+ B1
∂u
∂x1

+ B2
∂u
∂x2

+ B3
∂u
∂x3

= 0. (45)

Here Au is a symmetric positive definite matrix but B1, B2 and B3 are symmetric
matrixes in general. These matrixes can be easily calculated by exploited the form
of (20) and using the decomposition

Î = −B1∂x1 − B2∂x2 − B3∂x3 . (46)
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The forms of these matrixes are omitted in view of their large size.
Let us consider the Hamiltonian structure (45) and prove the following general

assertion: any linear hyperbolic system of the form

A
∂u
∂t

+ B1
∂u
∂x1

+ B2
∂u
∂x2

+ B3
∂u
∂x3

+ Cu = 0, (47)

where A is a symmetric positive definitematrix, B1, B2 and B3 are symmetricmatrixes
and C is a skew-symmetric matrix, admits the Hamiltonian structure (17) with the
operator

Ĵ = −A−1B1A
−1 ∂

∂x1
− A−1B2A

−1 ∂

∂x2
− A−1B3A

−1 ∂

∂x3
− A−1CA−1, (48)

and the Hamiltonian equals

H [u] = 1

2

∫

uTAu dx1dx2dx3. (49)

The proof is based on algebraic manipulations. Namely, multiplying equation (47)
on A−1, we rewrite the system in the form

∂u
∂t

= −(
A−1B1A

−1 ∂

∂x1
+ A−1B2A

−1 ∂

∂x2
+ A−1B3A

−1 ∂

∂x3
+ A−1CA−1

)
Au,

(50)
where the terms in bracket present a differential operator which acts on Au. Actually,
this is the desired skew-symmetric operator Ĵ which is independent of the variables
u. Therefore, this operator defines a Poisson bracket. Further, it follows immediately
from the equality

δH [u]
δu

= Au, (51)

that (50) is a Hamiltonian system.

5 Casimir Functionals

Except for the Hamiltonian admitted, the system (32) may conserve different func-
tionals due to the singularity of Î . Notice that both the operators M̂=M̂ i (∂x1 , ∂x2 , ∂x3)

and some vector-functions N(x1, x2, x3) may vanish the operator Î .
In order to find these functions, we consider the following operator equation
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Î M̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 ∂x1 0 0 ∂x2 ∂x3 0
0 0 0 0 ∂x2 0 ∂x1 0 ∂x3
0 0 0 0 0 ∂x3 0 ∂x1 ∂x2
∂x1 0 0 0 0 0 0 0 0
0 ∂x2 0 0 0 0 0 0 0
0 0 ∂x3 0 0 0 0 0 0
∂x2 ∂x1 0 0 0 0 0 0 0
∂x3 0 ∂x1 0 0 0 0 0 0
0 ∂x3 ∂x2 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m̂1

m̂2

m̂3

m̂4

m̂5

m̂6

m̂7

m̂8

m̂9

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0, (52)

where m̂l = m̂l(∂x1 , ∂x2 , ∂x3) are differential operators with constant coefficients. To
resolve this equation, we apply the Fourier transformation to (52). Then instead of
the operator Eq. (52), we get the algebraic system

IM =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 ik1 0 0 ik2 ik3 0
0 0 0 0 ik2 0 ik1 0 ik3
0 0 0 0 0 ik3 0 ik1 ik2
ik1 0 0 0 0 0 0 0 0
0 ik2 0 0 0 0 0 0 0
0 0 ik3 0 0 0 0 0 0
ik2 ik1 0 0 0 0 0 0 0
ik3 0 ik1 0 0 0 0 0 0
0 ik3 ik2 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m1

m2

m3

m4

m5

m6

m7

m8

m9

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0, (53)

where kn is the wave number of the differential operator ∂xn , n = 1, 2, 3 and ml =
ml(ik1, ik2, ik3) denotes the symbol of the operator m̂l . The rank of the matrix I
equals 6 for nonzero wave numbers kn . Therefore, the system (53) admits only three
independent solutions. Further, it follows from the fourth, fifth and sixth equations
of (53) that m1 = m2 = m3 = 0. By the quantities m7, m8, m9 we can find m4, m5,
m6. Hence, the general solution of (53) looks like a three-parametric vector-function

M = (
0, 0, 0,−k2m7 + k3m8

k1
,−k1m7 + k3m9

k2
,−k1m8 + k2m9

k3
,m7,m8,m9

)T
.

(54)
Recall that we look for a solution of (52) in the class of differential operators. It
means that each component of M is a polynomial of kn , n = 1, 2, 3 because in the
opposite case the vector M will contain the divisors kn that leads to arising the
integral operator. In view of this argument, we also assume that m7, m8 and m9 are
polynomials of kn .

We start with the consideration of the fourth component of (54). It will be a
polynomial if we have (0) k2m7 + k3m8 = 0; (1)m7 andm8 has the common divisor
k1. The same holds for the fifth and sixth components of (54). Therefore, we get in
total the eight different variants which are denoted by (h1, h2, h3) where hi equals 0
or 1.
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Let us consider the variant (1, 1, 1) and assume that the property (1) holds for the
fourth component of (54). Then we get thatm7 = k1 p7,m8 = k1 p8 where p7 and p8
are polynomials of kn . With this, the fifth component of (54) reads

− k21 p7 + k3m9

k2
. (55)

The property (1) also holds for the expression (55), i.e. p7 and m9 has the common
divisor k2. It means that p7 = k2q7, m9 = k2q9 where q7 and q9 are polynomials of
kn too. The sixth component of (54) takes the form

− k21 p8 + k22q9
k3

. (56)

It is again the property (1) is satisfied for the expression (56), i.e. p8 and q9 has
the common divisor k3. Therefore, we have the representation p8 = k3r8, q9 = k3r9
where r8, r9 are polynomials. As a result, we obtain for the variant (1, 1, 1) the
following form of M

M(1,1,1) = (
0, 0, 0,−(k22q7 + k23r8),−(k21q7 + k23r9), (57)

−(k21r8 + k22r9), k1k2q7, k1k3r8, k2k3r9
)T

.

Since q7, r8, r9 are independent quantities then we can derive from (57) the following
independent functions

M1 = (
0, 0, 0,−k22,−k21, 0, k1k2, 0, 0

)T
, (58)

M2 = (
0, 0, 0,−k23, 0,−k21, 0, k1k3, 0

)T
, (59)

M3 = (
0, 0, 0, 0,−k23,−k22, 0, 0, k2k3

)T
. (60)

The variants (1, 0, 0), (0, 1, 0), (0, 0, 1) give the following solutions

M4 = (
0, 0, 0,−2k2k3, 0, 0, k1k3, k1k2,−k21

)T
, (61)

M5 = (
0, 0, 0, 0,−2k1k3, 0, k2k3,−k22, k1k2

)T
, (62)

M6 = (
0, 0, 0, 0, 0,−2k1k2,−k23, k2k3, k1k3

)T
. (63)

Consider now the variant (1, 1, 0). The first two steps for constructing the func-
tions required completely repeat the previous procedure. The third step leads to
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the case (0), i.e. k1m8 + k2m9 = k21 p8 + k22q9 = 0. Hence, we get that p8 = k22s,
q9 = −k21s where s is a polynomial. Therefore, we obtain for the variant (1, 1, 0) the
following form of M

M(1,1,0) =
(
0, 0, 0,−(k22q7 + k22k3s),−(k21q7 − k21k3s), 0, k1k2q7, k1k

2
2s,−k21k2s

)T
.

(64)
It enables us to derive more solutions. Specifically, we get

M7 = (
0, 0, 0,−k22k3, k

2
1k3, 0, 0, k1k

2
2,−k21k2

)T
. (65)

The variants (1, 0, 1) and (0, 1, 1) are investigated similarly and give in addition
the new solutions:

M8 = (
0, 0, 0,−k2k

2
3, 0, k

2
1k2, k1k

2
3, 0,−k21k3

)T
, (66)

M9 = (
0, 0, 0, 0,−k1k

2
3, k1k

2
2, k2k

2
3,−k22k3, 0

)T
. (67)

Notice that not all solutions obtained are linearly independent. In order to show
it, we consider the following matrixes

R1 = (M1, M2, M3) , R2 = (M4, M5, M6) , R3 = (M7, M8, M9) . (68)

By the direct verification, we can obtain that the following relationships hold

R2

⎛

⎝
k2 k3 0
k1 0 k3
0 k1 k2

⎞

⎠ = 2R1

⎛

⎝
k3 0 0
0 k2 0
0 0 k1

⎞

⎠ , (69)

R2

⎛

⎝
k2 k3 0

−k1 0 k3
0 −k1 −k2

⎞

⎠ = 2R3. (70)

The first equality means that R1 and R2 are linked by a differential constraint which
contains the first-order derivatives. Therefore R1 and R2 are linear independent in
the class of differential operators. It follows from the second equality that R3 is a
differential consequence of R2. Thus, we proved that the equation IM = 0 has 6
linearly independent solutions M1, . . . , M6.

Linearly independent solutions of the equation in the space of differential opera-
tors read
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M̂1 = (0, 0, 0, ∂2
x2 , ∂

2
x1 , 0,−∂x1∂x2 , 0, 0)

T,

M̂2 = (0, 0, 0, ∂2
x3 , 0, ∂

2
x1 , 0,−∂x1∂x3 , 0)

T,

M̂3 = (0, 0, 0, 0, ∂2
x3 , ∂

2
x2 , 0, 0,−∂x2∂x3)

T,

M̂4 = (
0, 0, 0, 2∂x2∂x3 , 0, 0,−∂x1∂x3 ,−∂x1∂x2 , ∂

2
x1

)T
, (71)

M̂5 = (
0, 0, 0, 0, 2∂x1∂x3 , 0,−∂x2∂x3 , ∂

2
x2 ,−∂x1∂x2

)T
,

M̂6 = (
0, 0, 0, 0, 0, 2∂x1∂x2 , ∂

2
x3 ,−∂x2∂x3 ,−∂x1∂x3

)T
.

In view of the symmetric form of Î , the conjugate operators M̂
∗
i = M̂

T
i are solu-

tions of the equation

− M̂
∗
i Î = Î M̂ i = 0. (72)

The left action of the conjugate operators M̂
T
i on the system (32) gives the following

identities

M̂
T
i vt = M̂

T
i Î

δH [v]
δv

≡ 0, i = 1, 2, 3. (73)

Then for an arbitrary Hamiltonian H [v] the following relationships hold

∂tψ1 ≡ 0, ψ1 = ∂2
x2v4 + ∂2

x1v5 − ∂x1∂x2v7,

∂tψ2 ≡ 0, ψ2 = ∂2
x3v4 + ∂2

x1v6 − ∂x1∂x3v8,

∂tψ3 ≡ 0, ψ3 = ∂2
x3v5 + ∂2

x2v6 − ∂x2∂x3v9,

∂tψ4 ≡ 0, ψ4 = 2∂x2∂x3v4 − ∂x1∂x3v7 − ∂x1∂x2v8 + ∂2
x1v9, (74)

∂tψ5 ≡ 0, ψ5 = 2∂x1∂x3v5 − ∂x2∂x3v7 + ∂2
x2v8 − ∂x1∂x2v9,

∂tψ6 ≡ 0, ψ6 = 2∂x1∂x2v6 + ∂2
x3v7 − ∂x2∂x3v8 − ∂x1∂x3v9.

Thus for an arbitrary function Ψ (x1, x2, x3, ψ1, ψ2, ψ3, ψ4, ψ5, ψ6) and Hamilto-
nian H [v], the system (32) conserves the following Casimir functional

CΨ =
∫

Ψ (x1, x2, x3, ψ1, ψ2, ψ3, ψ4, ψ5, ψ6) dx1dx2dx3. (75)

The operator Î can also be vanished yet on some function N(x1, x2, x3) which is
defined by solving the system



112 D. O. Bykov et al.

ÎN i =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 ∂x1 0 0 ∂x2 ∂x3 0
0 0 0 0 ∂x2 0 ∂x1 0 ∂x3
0 0 0 0 0 ∂x3 0 ∂x1 ∂x2
∂x1 0 0 0 0 0 0 0 0
0 ∂x2 0 0 0 0 0 0 0
0 0 ∂x3 0 0 0 0 0 0
∂x2 ∂x1 0 0 0 0 0 0 0
∂x3 0 ∂x1 0 0 0 0 0 0
0 ∂x3 ∂x2 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n1
n2
n3
n4
n5
n6
n7
n8
n9

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0. (76)

To solve this system, we observe that (76) is decomposed into two subsystems with
respect to the variables n1–n3 and n4–n9. Besides constant solutions, this system
admits nontrivial solutions

N1 = (0, x3,−x2, 0, 0, 0, 0, 0, 0)
T ,

N2 = (−x3, 0, x1, 0, 0, 0, 0, 0, 0)
T , (77)

N3 = (x2,−x1, 0, 0, 0, 0, 0, 0, 0)
T ,

and

N f
1 = (0, 0, 0, fx2x2 , fx1x1 , 0,− fx1x2 , 0, 0)

T,

N f
2 = (0, 0, 0, fx3x3 , 0, fx1x1 , 0,− fx1x3 , 0)

T, (78)

N f
3 = (0, 0, 0, 0, fx3x3 , fx2x2 , 0, 0,− fx2x3)

T

for an arbitrary function f = f (x1, x2, x3). Multiplying now (32) by the vector NT
i

and taking into account the form of variational derivative of the Hamiltonian (33),
we get the equations

∂t (x3v2 − x2v3) = ∂x1

(
x3

δH

δv7
− x2

δH

δv8

)
+ ∂x2

(
x3

δH

δv5
− x2

δH

δv9

)

+∂x3

(
x3

δH

δv9
− x2

δH

δv6

)

= ∂x2

(
x3

δH

δv5

)
− ∂x3

(
x2

δH

δv6

)
+ ∂x1

(
x3

δH

δv7

)
(79)

−∂x1

(
x2

δH

δv8

)
+ x3∂x3

δH

δv9
− x2∂x2

δH

δv9
,

∂t (x1v3 − x3v1) = −∂x1

(
x3

δH

δv4

)
+ ∂x3

(
x1

δH

δv6

)
− ∂x2

(
x3

δH

δv7

)

+∂x2

(
x1

δH

δv9

)
− x3∂x3

δH

δv8
+ x1∂x1

δH

δv8
, (80)

∂t (x2v1 − x1v2) = ∂x1

(
x2

δH

δv4

)
− ∂x2

(
x1

δH

δv5

)
+ ∂x3

(
x2

δH

δv8

)
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−∂x3

(
x1

δH

δv9

)
+ x2∂x2

δH

δv7
− x1∂x1

δH

δv7
. (81)

The following differential identities were applied for deriving (79)–(81):

xi∂xi F − x j∂x j F = ∂xi (xi F) − ∂x j

(
x j F

)
. (82)

If we integrate these equations over the spatial variables, we can see that the right-
hand sides of the corresponding expressions obtained will be vanished under suitable
boundary conditions which are independent of the form of Hamiltonian. As a result,
we get the Casimir functionals

C1 =
∫

(x3v2 − x2v3)dx1dx2dx3, (83)

C2 =
∫

(x1v3 − x3v1)dx1dx2dx3, (84)

C3 =
∫

(x2v1 − x1v2)dx1dx2dx3. (85)

Applying this procedure to N f
i , we can find more Casimir functionals. Specifically,

these are of the form

C f
1 =

∫

( fx2x2v4 + fx1x1v5 − fx1x2v7)dx1dx2dx3, (86)

C f
2 =

∫

( fx3x3v4 + fx1x1v6 − fx1x3v8)dx1dx2dx3, (87)

C f
3 =

∫

( fx3x3v5 + fx2x2v6 − fx2x3v9)dx1dx2dx3 (88)

for an arbitrary function f depending on the spatial variables. Integrating by parts
in (86)–(88), we see that the Casimir functionals C f

i can be derived from the func-
tionals (75). Exemplarily, the Casimir functional (86) corresponds to the case which
has been considered in (75) for

Ψ = f (x1, x2, x3)ψ1 (89)

using that

∫

( fx2x2v4 + fx1x1v5 − fx1x2v7)dx1dx2dx3 (90)

=
∫

f (x1, x2, x3)
(
∂2
x2v4 + ∂2

x1v5 − ∂x1∂x2v7
)
dx1dx2dx3.

Therefore, we found all Casimir functionals for the Poisson bracket defined by the
operator Î . Moreover, the Casimir functionals C1, C2, C3 coincide with the conser-
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vation laws of the momentum vector of the hydrodynamic equations for the constant
density ρ0, see, e.g. [10]. Notice that the conservation laws linked with the Casimir
functionals obtained are not associated with the rotation symmetries in the frame
of the Noether theorems [8, 10] since these functionals were resulted for arbitrary
Hamiltonians.

6 Zero-Order Conservation Laws

The system (1) is written in the form of conservation laws. Furthermore, the system
conserves the energy functional or the corresponding Hamiltonian (34). Besides we
found for (1) the conservation laws presented by the Casimir functionals. Neverthe-
less, the question about the existence of additional conservation laws admitted is still
open.

We are interested in finding zero-order conservation laws for the system (1),
i.e. the conservation laws with the density which is independent of the derivatives of
the dependent variables. We will seek conservation laws in the differential form

S ≡ ∂F

∂t
+ ∂G1

∂x1
+ ∂G2

∂x2
+ ∂G3

∂x3
= 0, (91)

where F = F(t, x1, x2, x3, u) is the density of the conservation law and Gi =
Gi (t, x1, x2, x3, u) denotes the flow of one. Let us substitute these expressions
into (91) and differentiate with respect to the variables t and xi . Then changing
the derivative with respect to t and taking into account the original system of equa-
tions, we get a system of 28 equations for the coefficients Si j under the derivatives
∂ui
∂x j

. The coefficients under the derivative with respect to x1 read

S11 = (λ + 2μ)
∂F

∂u4
+ λ

( ∂F

∂u5
+ ∂F

∂u6

)
+ ∂G1

∂u1
= 0, (92)

S21 = μ
∂F

∂u7
+ ∂G1

∂u2
= 0, S31 = μ

∂F

∂u8
+ ∂G1

∂u3
= 0, (93)

S41 = 1

ρ0

∂F

∂u1
+ ∂G1

∂u4
= 0, S51 = ∂G1

∂u5
= 0, (94)

S61 = ∂G1

∂u6
= 0, S71 = 1

ρ0

∂F

∂u2
+ ∂G1

∂u7
= 0, (95)

S81 = 1

ρ0

∂F

∂u3
+ ∂G1

∂u8
= 0, S91 = ∂G1

∂u9
= 0. (96)
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Repeating the calculations, we find the following coefficients under the derivative
with respect to x2

S12 = μ
∂F

∂u7
+ ∂G2

∂u1
= 0, (97)

S22 = (λ + 2μ)
∂F

∂u5
+ λ

( ∂F

∂u4
+ ∂F

∂u6

)
+ ∂G2

∂u2
= 0, (98)

S32 = μ
∂F

∂u9
+ ∂G2

∂u3
= 0, S42 = ∂G2

∂u4
= 0, (99)

S52 = 1

ρ0

∂F

∂u2
+ ∂G2

∂u5
= 0, S62 = ∂G2

∂u6
= 0, (100)

S72 = 1

ρ0

∂F

∂u1
+ ∂G2

∂u7
= 0, S82 = ∂G2

∂u8
= 0, (101)

S92 = 1

ρ0

∂F

∂u3
+ ∂G2

∂u9
= 0. (102)

The third group of equations is derived for the coefficients under the derivative with
respect to x3 correspondingly:

S13 = μ
∂F

∂u8
+ ∂G3

∂u1
= 0, S23 = μ

∂F

∂u9
+ ∂G3

∂u2
= 0, (103)

S33 = (λ + 2μ)
∂F

∂u6
+ λ

( ∂F

∂u4
+ ∂F

∂u5

)
+ ∂G3

∂u3
= 0, (104)

S43 = ∂G3

∂u4
= 0, S53 = ∂G3

∂u5
= 0, (105)

S63 = 1

ρ0

∂F

∂u3
+ ∂G3

∂u6
= 0, S73 = ∂G3

∂u7
= 0, (106)

S83 = 1

ρ0

∂F

∂u1
+ ∂G3

∂u8
= 0, S93 = 1

ρ0

∂F

∂u2
+ ∂G3

∂u9
= 0. (107)

The last equation establishes a connection between terms which are independent of
the derivatives:

S0 = ∂F

∂t
+ ∂G1

∂x1
+ ∂G2

∂x2
+ ∂G3

∂x3
= 0. (108)

Excepting the variables G1, G2, G3 from the corresponding subsystems by the cross
differentiation, we get 108 equations for the function F . Further, we use the notation
Fi j = ∂2F

∂ui ∂u j
. The first group equations, which consists of 36 equations, is obtained
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by excepting G1:

(λ + 2μ)F24 + λ (F25 + F26) − μF17 = 0, (109)

(λ + 2μ)F34 + λ (F35 + F36) − μF18 = 0, (110)

(λ + 2μ)F44 + λ (F45 + F46) − 1

ρ0
F11 = 0, (111)

(λ + 2μ)F45 + λ (F55 + F56) = 0, (λ + 2μ)F46 + λ (F56 + F66) = 0, (112)

(λ + 2μ)F47 + λ (F57 + F67) − 1

ρ0
F12 = 0, (113)

(λ + 2μ)F48 + λ (F58 + F68) − 1

ρ0
F13 = 0, (114)

(λ + 2μ)F49 + λ (F59 + F69) = 0, μ (F37 − F28) = 0, (115)

μF47 − 1

ρ0
F12 = 0, μF57 = 0, μF67 = 0, (116)

μF77 − 1

ρ0
F22 = 0, μF78 − 1

ρ0
F23 = 0, μF79 = 0, (117)

μF48 − 1

ρ0
F13 = 0, μF58 = 0, μF68 = 0, (118)

μF78 − 1

ρ0
F23 = 0, μF88 − 1

ρ0
F33 = 0, μF89 = 0, (119)

1

ρ0
F15 = 0,

1

ρ0
F16 = 0,

1

ρ0
(F17 − F24) = 0, (120)

1

ρ0
(F18 − F34) = 0,

1

ρ0
F19 = 0, 0 = 0, (121)

− 1

ρ0
F25 = 0, − 1

ρ0
F35 = 0, 0 = 0, − 1

ρ0
F26 = 0, (122)

− 1

ρ0
F36 = 0, 0 = 0,

1

ρ0
(F28 − F37) = 0, (123)

1

ρ0
F29 = 0,

1

ρ0
F39 = 0. (124)
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The exception of G2 gives the following equations:

μF27 − (λ + 2μ)F15 − λ (F14 + F16) = 0, (125)

μ (F37 − F19) = 0, μF47 = 0, μF57 − 1

ρ0
F12 = 0, (126)

μF67 = 0, μF77 − 1

ρ0
F11 = 0, μF78 = 0, μF79 − 1

ρ0
F13 = 0, (127)

(λ + 2μ)F35 + λ (F34 + F36) − μF29 = 0, (128)

(λ + 2μ)F45 + λ (F44 + F46) = 0, (129)

(λ + 2μ)F55 + λ (F45 + F56) − 1

ρ0
F22 = 0, (130)

(λ + 2μ)F56 + λ (F46 + F66) = 0, (131)

(λ + 2μ)F57 + λ (F47 + F67) − 1

ρ0
F12 = 0, (132)

(λ + 2μ)F58 + λ (F48 + F68) = 0, (133)

(λ + 2μ)F59 + λ (F49 + F69) − 1

ρ0
F23 = 0, (134)

μF49 = 0, μF59 − 1

ρ0
F23 = 0, μF69 = 0, (135)

μF79 − 1

ρ0
F13 = 0, μF89 = 0, μF99 − 1

ρ0
F33 = 0, (136)

− 1

ρ0
F24 = 0, 0 = 0, − 1

ρ0
F14 = 0, 0 = 0, (137)

− 1

ρ0
F34 = 0,

1

ρ0
F26 = 0,

1

ρ0
(F27 − F15) = 0,

1

ρ0
F28 = 0, (138)

1

ρ0
(F29 − F35) = 0, − 1

ρ0
F16 = 0, 0 = 0, − 1

ρ0
F36 = 0, (139)

1

ρ0
F18 = 0,

1

ρ0
(F19 − F37) = 0, − 1

ρ0
F38 = 0. (140)

The exception of G3 gives the third group of equations:
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μ (F28 − F19) = 0, (141)

μF38 − (λ + 2μ)F16 − λ (F14 + F15) = 0, (142)

μF48 = 0, μF58 = 0, μF68 − 1

ρ0
F13 = 0, (143)

μF78 = 0, μF88 − 1

ρ0
F11 = 0, μF89 − 1

ρ0
F12 = 0, (144)

μF39 − (λ + 2μ)F26 − λ (F24 + F25) = 0, (145)

μF49 = 0, μF59 = 0, μF69 − 1

ρ0
F23 = 0, (146)

μF79 = 0, μF89 − 1

ρ0
F12 = 0, μF99 − 1

ρ0
F22 = 0, (147)

(λ + 2μ)F46 + λ (F44 + F45) = 0, (148)

(λ + 2μ)F56 + λ (F45 + F55) = 0, (149)

(λ + 2μ)F66 + λ (F46 + F56) − 1

ρ0
F33 = 0, (150)

(λ + 2μ)F67 + λ (F47 + F57) = 0, (151)

(λ + 2μ)F68 + λ (F48 + F58) − 1

ρ0
F13 = 0, (152)

(λ + 2μ)F69 + λ (F49 + F59) − 1

ρ0
F23 = 0, (153)

0 = 0, − 1

ρ0
F34 = 0, 0 = 0, − 1

ρ0
F14 = 0, (154)

− 1

ρ0
F24 = 0, − 1

ρ0
F35 = 0, 0 = 0, − 1

ρ0
F15 = 0, (155)

− 1

ρ0
F25 = 0,

1

ρ0
F37 = 0,

1

ρ0
(F38 − F16) = 0,

1

ρ0
(F39 − F26) = 0,

(156)

− 1

ρ0
F17 = 0, − 1

ρ0
F27 = 0,

1

ρ0
(F19 − F28) = 0. (157)

Finally, excepting now G1, G2 and G3 from S0, we get 9 equations as yet:
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Ft1 = (λ + 2μ)Fx14 + λ
(
Fx15 + Fx16

) + μ
(
Fx27 + Fx38

)
, (158)

Ft2 = (λ + 2μ)Fx25 + λ
(
Fx24 + Fx26

) + μ
(
Fx17 + Fx39

)
, (159)

Ft3 = (λ + 2μ)Fx36 + λ
(
Fx34 + Fx35

) + μ
(
Fx18 + Fx29

)
, (160)

Ft4 = 1

ρ0
Fx11, Ft5 = 1

ρ0
Fx22, Ft6 = 1

ρ0
Fx33, (161)

Ft7 = 1

ρ0

(
Fx12 + Fx21

)
, Ft8 = 1

ρ0

(
Fx13 + Fx31

)
, Ft9 = 1

ρ0

(
Fx23 + Fx32

)
, (162)

where Fyi = ∂2F
∂y∂ui

for y = t, x1, x2, x3.
From the system obtained, which consists of 117 equations, follows that

F14 = F15 = F16 = F17 = F18 = F19 = F24 = F25

= F26 = F27 = F28 = F29 = F34 = F35 = F36 = F37

= F38 = F39 = F47 = F48 = F49 = F57 = F58 = F59

= F67 = F68 = F69 = F78 = F79 = F89 = 0. (163)

With the relationships obtained (163), we additionally obtain

F12 = F13 = F23 = 0 (164)

and the following equations

μF77 − 1

ρ0
F11 = 0, μF77 − 1

ρ0
F22 = 0, μF88 − 1

ρ0
F11 = 0, (165)

μF88 − 1

ρ0
F33 = 0, μF99 − 1

ρ0
F22 = 0, μF99 − 1

ρ0
F33 = 0, (166)

(λ + 2μ)F45 + λ (F55 + F56) = 0, (λ + 2μ)F46 + λ (F56 + F66) = 0, (167)

(λ + 2μ)F45 + λ (F44 + F46) = 0, (λ + 2μ)F56 + λ (F46 + F66) = 0, (168)

(λ + 2μ)F46 + λ (F44 + F45) = 0, (λ + 2μ)F56 + λ (F45 + F55) = 0, (169)

(λ + 2μ)F44 + λ (F45 + F46) − 1

ρ0
F11 = 0, (170)

(λ + 2μ)F55 + λ (F45 + F56) − 1

ρ0
F22 = 0, (171)
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(λ + 2μ)F66 + λ (F46 + F56) − 1

ρ0
F33 = 0. (172)

We also derive from Eqs. (165)–(166) that

F11 = F22 = F33, F77 = F88 = F99,
1

ρ0
F11 = μF77. (173)

The remaining Eqs. (167)–(169) give

F45 = F46 = F56, F44 = F55 = F66. (174)

The last equations in (174) are derived for λ �= 0. With the relationships obtained,
we can conclude that Eqs. (167)–(169) and (170)–(172) consist of only two different
equations:

λF44 + 2(λ + μ)F45 = 0,
1

ρ0
F11 = (λ + 2μ)F44 + 2λF45. (175)

Summarising, we get that, besides vanishing second-order partial derivatives (163)–
(164), there exists nontrivial relationships (173)–(175) for differential quantities.

It follows from Eqs. (163) to (164) that

F = f1(t, x1, x2, x3, u1) + f2(t, x1, x2, x3, u2) + f3(t, x1, x2, x3, u3)

+ f7(t, x1, x2, x3, u7) + f8(t, x1, x2, x3, u8) + f9(t, x1, x2, x3, u9) (176)

+ f456(t, x1, x2, x3, u4, u5, u6),

where f1, f2, f3, f7, f8 and f456 are arbitrary functions. To specify the above-
mentioned functions, we consider at first the last equation in (173). Substituting (176)
into this equation, we get the equation wherein the variables are separated since the
functions f7 and f1 are independent of the variables u1 and u7 correspondingly:

μ
∂2 f7
∂u27

= 1

ρ0

∂2 f1
∂u21

. (177)

Integrating equation (177), we find that

f1 = ρ0C(t, x1, x2, x3)u
2
1 + B1(t, x1, x2, x3)u1 + C13(t, x1, x2, x3), (178)

f7 = 1

μ
C(t, x1, x2, x3)u

2
7 + B7(t, x1, x2, x3)u7 + C73(t, x1, x2, x3). (179)

We put C13 and C73 equal zero since they are not included into the density of con-
servation laws. Further, using that F11 = 2ρ0Cu21, we get the following expression
for the function F :



Hamiltonian Structure and Conservation Laws of Three-Dimensional … 121

F = C(t, x1, x2, x3)
{ρ0

2
(u21 + u22 + u23) + (3τ)2

6(3λ + 2μ)

+ 1

4μ

[
(u4 − τ)2 + (u5 − τ)2 + (u6 − τ)2 + 2(u27 + u28 + u29)

] }

+B(t, x1, x2, x3, u),

where τ = (1/3)(u4 + u5 + u6) and B is of the form

B(t, x1, x2, x3, u) =
9∑

i=1

bi (t, x1, x2, x3)ui = b · u. (180)

The linear form of B is a consequence of the form of the equations under consider-
ation. Substituting now F into (162), we conclude that C(t, x1, x2, x3) is a constant
function. Notice that the quadratic part of the function F in (180) coincides with
uTAuu, where the operator Au is defined in (24). Finally, the substitution of the
linear function B into (158)–(162) gives the following system

bt = −L̂∗ b, b = (b1, . . . , b9)
T, (181)

where the symbol ∗ means the operation of conjugation. For any solution of (181)
the following representation holds

b = Auu, (182)

where u is a solution of the system (12).
Summarising the calculations performed, we put together the results obtained.

Theorem 1 Zero-order conservation laws for the three-dimensional, linear-elastic
model consist of only unique quadratic conservation law which coincides with the
Hamiltonian admitted by the system (1) and linear conservation laws with the coef-
ficients determined by solving Eq. (181).

7 Concluding Remarks

The question about the existence of Hamiltonian structures (17) for the three-
dimensional, linear-elastic model (2)–(11) was completely considered. We showed
that this model admits the so-called non-canonical singular Poisson bracket and
Casimir functionals. We presented two approaches to simplify the form of Eq. (17).
The first one consists of performing the transformation of the Poisson bracket to
the form (20). It follows from this that Casimir functionals are admitted by the
system (2)–(11) and these functionals are independent of the form of Hamiltonian.
Moreover,we found allCasimir functionals and showed that they are of the form (83)–
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(88). In the three-dimensional case, the Casimir functional depends on 6 differential
expressions, whereas in the two-dimensional case the Casimir functional depends on
only one differential expression. The second approach was resulted in reducing the
quadratic Hamiltonian obtained to the principal axes.

Notice that the existence of a Hamiltonian for the system (2)–(11) does not guar-
antee the stability of solutions to this system. In the norm given by the quadratic
Hamiltonian obtained or the energy functional such property takes place provided
that this Hamiltonian is a positive definite quadratic form. It was proven that the pos-
itive definiteness of the Hamiltonian occurs when the conditions (37) are fulfilled.

We found all zero-order conservation laws for the model wherein the derivatives
are excluded from the list of variables. We used the direct method to derive these
conservation laws and established that there is only unique quadratic conservation law
with the density defined by (180)which actually coincideswith the energy functional.
Linear conservation laws were resulted with the density B(t, x1, x2, x3, u) defined
by (180) where bi (t, x1, x2, x3) for i = 1, . . . , 9 or the vector b = (b1, . . . , b9)T

satisfies the system (181) which can be presented in the form (182).

Appendix: The Energy Conservation Law

For the system (1) the energy conservation law reads [4]

∂Π0

∂t
+ ∂Π1

∂x1
+ ∂Π2

∂x2
+ ∂Π3

∂x3
= 0, (183)

where

Π0 = λ

2
(ε11 + ε22 + ε33)

2 + μεi jε j i + ρ0
u21 + u22 + u23

2
(184)

= ρ0E + ρ0
u21 + u22 + u23

2
(185)

is the density of the conservation law and

Πi = −u1σ1i − u2σ2i − u3σ3i (186)

denotes the components of the energy flow vector.
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Abstract When Lie developed symmetry analysis, he took the equations to be
defined in the complex domain but did not explicitly use the entailed complex ana-
lyticity. Making it explicit necessitates the incorporation of the Cauchy–Riemann
equations into the original system of equations, which modifies the symmetries of
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equations, even enabling us to find solutions of systems of differential equations
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1 Introduction

Before Lie, the usual method to solve differential equations (DEs) was by ad hoc
approaches or by approximating it by a linear DE and solving the linear version.
In general, the approximation will work well enough in some regime and become
arbitrarily bad in other regimes. As such, it would be necessary to prove the existence
of a solution and to determine the domain inwhich the approximation is good enough.
Since these will be different for each DE, one is reduced to solving one DE at
a time and not rely on any method for whole classes of DEs. Lie had wanted to
do for DEs what Galois had done for polynomial equations, wherein he used the
manifest symmetries of the roots of the equation to determine when the polynomial
equation could be solved bymeans of radicals.Among themethods that had been used
for solving some of the simpler DEs, there was the transformation of independent
and dependent variables. Lie conceived of the idea of looking for invariance of the
DE under such transformations [1–4] so that it could be determined when the DEs
could be solved/reduced or transformed and then one can proceed to solve/reduce or
transform the DEs. Lie used not only the groups of symmetries, but the algebra of
the corresponding infinitesimal symmetry generators. The DEs are not necessarily
single but could be systems (or we could say that they are vector DEs). Further, he
did not restrict the domain of the DEs to be real, but allowed them to be complex.

Symmetry generators, inter alia, can be used to reduce the order of scalar ordinary
differential equations (ODEs) or reduce the number of independent variables in
partial differential equations (PDEs). Alternatively, the symmetries can be used to
construct quantities that remain invariant under the transformation, thereby enabling
a reduction of order or the number of independent variables [5, 6] by treating that
combination as a new variable. If there are enough independent symmetries they
can be used to fully solve the equation for scalar ODEs in the sense of providing
an algebraic equation that constitutes an implicit solution, modulo quadratures or in
the case of PDEs to construct invariant solutions. If the invariants contain derivatives
in them, they are called differential invariants. If they depend only on dependent
and/or independent variables, they are simply called “invariants.” In effect, what Lie
had done was to take the space of independent variables on which the dependent
variables were defined and extended, or enlarged, it to include also the dependent
variables. In this new, extended space, we could perform the equivalent of coordinate
transformations called point transformations. In this way of looking at it, it is natural
to require invariance in the higher dimensionalmanifold under point transformations.
What Lie wanted was that the DEs remain invariant under these transformations, thus
visualizing them as “living on the manifold.”

To deal with DEs, we need to treat the derivatives as if they were independent
variables and then constrain them in such a way that the DE is satisfied. The enlarged,
or prolonged space of all the variables and their derivatives is also called the jet space.
In this space, we restrict the transformations to be performed only in the original,
non-prolonged, space. However, we could include any number of derivatives from
the prolonged space that we choose. Thus, if we prolong to include the first derivative
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in our transformations but nomore, we have “contact transformations.” If we prolong
further, we have “higher-order transformations,” but there are no separate names for
them. The name “contact” comes from the tangency requirement for the derivative
to be met. Lie mainly restricted his analysis to point and contact transformations but
subsequently others extended the Lie methods to higher order transformations. As
such, the original transformations are called “Lie point transformations.”

Among the various methods of using symmetries to solve DEs is the transfor-
mation of the DE to linear form, which is of special interest. The classic example
for this is the Bernoulli equation, a first-order ODE in which the dependent vari-
able appears to the nth power. However, there was no general procedure available
for nonlinear DEs, especially higher order ones. If one can tell when a DE can, in
principle, can be transformed to linear form, even without finding the required trans-
formations and converting to linear form, we can say a lot about the solutions of the
DE. For example, if it is an ODE, we know how many independent solutions there
are, without having obtained the solutions. By requiring that the given DE transform
to a chosen canonical form of a linear DE, we can arrive at conditions that the given
DEmust satisfy. Lie did this for second-order scalar ODEs [5] and demonstrated that
the ODE must have eight infinitesimal symmetry generators that would constitute a
Lie algebra as well as conditions on the DE. Then he looked at the maximal algebra
admitted. He did not go further but others carried the work forward for higher order
ODEs and for vector ODEs, using contact transformations and even Lie’s original
method. Equations that can be transformed to linear form are called linearizable and
the process of transforming a DE to linear form by transformations of the dependent
and independent variables is called linearization via point transformation. Note that
this is not an approximation of the DE by a linear one, but a transformation that gives
the exact solution of the DE. If it is a linearizable PDE, it has infinitely many linearly
independent solutions. Consequently, there is no way that we can make the type of
general statement that we could for ODEs. We then need boundary conditions to be
able to arrive at ameaningful, unique, solution, or other invariant criteria. This entails
that the conditions satisfy the symmetries of the PDE. Thus, for PDEs, invariants are
especially useful although these needed further generalizations.

In this chapter we review work on a line that Lie did not take, namely making
explicit use of complex analyticity. Recall that if a complex function of a complex
variable is once differentiable in an open domain it is analytic in that domain, which
entails infinite differentiability. This would not hold for real functions of real vari-
ables. While this fact simplifies statements of Lie’s requirements for the DEs to be
amenable to his symmetry methods, it is not obvious that it can make a fundamental
difference to the procedures used to solve the equations. We demonstrate that it does
so, provided certain additional conditions are met. Though there are explicit checks
for when these complex methods can be used, there is no complete understanding of
when they would be useful.

The plan of the chapter is as follows. In the next section, we give the preliminary
background for Lie symmetry analysis and some basic geometry used in it, including
contact and higher order symmetries. In section three, we review the fundamentals
of the complex method. In the subsequent sections, we review its application for
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linearization and for Noether symmetries and their integrals. It is shown that the
complex methods extend the applicability of symmetry analysis beyond the usual
methods. In section seven, we present insights regarding the working of the complex
methods obtained by iterative splitting of a scalar ODE. In the concluding section,
we summarize the work reviewed and present the fundamental questions that need
to be addressed so as to understand why complex methods work.

2 Preliminaries

For completeness, we give basic definitions despite the likelihood that the reader
already knows them, in the hope that he/she will bear with us. At least they will
be useful to establish notation. If there are l independent variables represented as a
vector x and m dependent variables represented by y, a Lie point symmetry generator
is the operator

X = A(x, y).∇x + B(x, y).∇y , (1)

or using indices a for the independent variables and i for the dependent variables

X = Aa(xb, yi )
∂

∂xa
+ Bi (xa, y j )

∂

∂yi
, (2)

where we have used the Einstein summation convention that repeated indices are
summed over. Further, if the DE is of order n, we need to prolong the space and the
generators to incorporate all the derivatives of the dependent variables with respect
to the independent variables. For ODEs,

X[n] = A(x, yi )
∂

∂x
+ Bi (x, y j )

∂

∂yi
+ Bi [1](x, y j , y j ′)

∂

∂yi ′ + · · · , (3)

where
Bi [p] = Dx Bi [p−1] − yi ′ Dx A , (4)

Bi [0] simply being Bi and Dx is the total derivative in the prolonged space,

Dx = ∂

∂x
+ yi ′ ∂

∂yi
+ · · · + yi (p) ∂

∂yi (p−1)
. (5)

For PDEs, the A would have to be replaced by A and the partial derivative with
respect to x by ∇x. While the former can be easily converted to index notation as
Ai , the latter becomes somewhat involved in converting. The real problem in writing
is for the yi [p], which would be a partial derivative with respect to xa to all orders
up to p. The set of all prolonged symmetry generators forms a Lie algebra and the
symmetry group determines what reduction of the DE there can be. A system of
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m ODEs of order n, Ei (x, y j ; y j ′, . . . , y j [n]) = 0, is said to be symmetric under
the transformation generated by X if X[n]Ei = 0, when restricted to the solutions of
Ei = 0.This is denoted byputting “|E=0” after the above equation. The generalization
to PDEs is as before, with the corresponding complications.

Amajor activity arose of classifying theLie point symmetry algebras of all second-
order scalar ODEs. This was called the “classification problem for scalar second-
order ODEs.” The classification problem for higher order scalar ODEs rapidly
becomes extremely difficult on account of the proliferation of possible cases and
sub-cases of the allowed Lie algebras. Similarly, the classification problem for higher
dimensional systems becomes even more complicated as the number of sub-cases
proliferates even more. Increasing the order and dimension simultaneously makes
the problem well high intractable. We do not go into this further here as the complex
methods were not used for this purpose.

Since much of the complex work is motivated by considerations of linearization,
it is necessary to very briefly review the key features of Lie’s linearization procedure.
By requiring that a scalar second-order semilinear ODE

y′′ = f (x, y; y′) , (6)

be transformed under p = p(x, y), q = q(x, y) to

q ′′ + A(p)q ′ + B(p)q + C(p) = 0 , (7)

he showed that (6) would have to be of the form

y′′ + a(x, y)y′ 3 + b(x, y)y′ 2 + c(x, y)y′ + h(x, y) = 0 , (8)

and would have to satisfy a system of four first-order conditions that the coefficients
a, b, c, h and two auxiliary functions would have to satisfy. This is not as bad as
it may sound, since one is not solving the coupled system of equations but merely
verifying them. Nevertheless, the auxiliary functions complicate matters as they are
arbitrary and would have to be guessed. Tressé [7] invariants eliminates the auxiliary
functions via compatibility by taking derivatives and one obtains two second-order
conditions to be satisfied by the coefficients, viz.

3(ac)x + hay − 2bbx − cby − 3axx − 2bxy − cyy = 0 , (9)

3(hb)y + abx − 2aay − hax − 3hyy − 2cxy − bxx = 0 . (10)

Tressé’s formulation makes the application of the Lie conditions much easier.
Chern [8] did not use the Lie point transformations to linearize third-order scalar

ODEs but incorporated the first derivative of the dependent variable in the coeffi-
cients of the operator, A = A(x, y; y′) and B = B(x, y; y′) in the scalar case for
(2), to solve the problem. One must now ensure that under the transformation, the
“derivative” used here corresponds to the derivative of the dependent variable by dif-
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ferentiation. Writing the transformation as (x, y) → (x, y), the contact or tangency
condition is

d y − y′dx = λ(x, y; y′)(dy − y′dx) , (11)

where λ is an undetermined multiplier [5]. The contact transformations of Chern can
be extended to systems of equations for several independent variables by re-inserting
the indices, so that the condition becomes

d yi − yi
,adxa = λ(x, y; yi

,a)(dyi − yi
,adxa) . (12)

Lie had managed to prove that the second-order scalar ODE is linearizable if,
and only if, it has eight Lie point symmetry generators. The Lie point symmetry
algebra for order n scalar ODEs was obtained much later [9] and it was shown that
Lie’s theorem does not hold there, as there are three linearizable classes with (n + 1),
(n + 2)or (n + 4)generators. For the third-order case, the canonical forms associated
with those symmetries were made explicit [10]. The classes of linearizable second-
order systems was also achieved at around the same time, first for two-dimensional
systems and then for arbitrary m [11]. The linear classes for the two-dimensional
system have 5, 6, 7, 8, or 15 generators and for arbitrary m, 2m + 1, . . . , (2m)2 − 1
symmetry generators [12, 13].

A question arises here, why is the n = 2 case special? The answer may lie in
the geometric methods that had been developed and were used to linearize ODEs
to which we now turn. To explain it, we need to establish the notation and concepts
used there. For our purposes, we will be using a manifold with a metric tensor, gab,
and inverse metric tensor, gab, defined on it, and assume that it is torsion-free so that
the connection symbol is the Christoffel symbol in a coordinated basis (see Chaps.
2 and 3 of [14]),

Γ a
bc = 1

2
gad(gbd,c + gcd,b − gbc,d) , (13)

where “,c” stands for the partial derivative relative to xc. This object comes from the
differentiation of the basis vectors relating the tensor quantity in the manifold to its
components in the coordinate system chosen. As such this is not a tensor quantity
or a fully coordinate quantity but hangs between the two. The covariant derivative
of a contravariant vector, V a , is V a

;b = V a
,b + Γ a

bcV c and of a covariant vector Wa is
Wa;b = Wa,b − WcΓ

c
ab. The difference of the second derivative obtained by going

first in one direction and then in another, or vice versa, gives a measure of the
curvature of the space, measured by the Riemann–Christoffel curvature tensor

Ra
bcd = Γ a

bd,c − Γ a
bc,d + Γ e

bdΓ
a

ce − Γ e
bcΓ

a
de . (14)

The trace of the curvature tensor is the Ricci tensor, Rbd = Ra
bad , whose trace R =

gbd Rbd is the Ricci scalar. The Ricci tensor is symmetric and the curvature tensor is
symmetric in thefirst and secondpairs of indices and symmetric under the interchange
of the two pairs of indices. Further, the skew part for any three of the indices is zero.
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This reduces the number of linearly independent components. In m-dimensions, for
Ra

bcd , there are m2(m2 − 1), for Rbd , there are m(m + 1), and for R obviously just
one.

As in flat spaces, so in curved spaces the “straightest” available path between two
points is also the shortest. Such curves are called geodesics and satisfy the geodesic
equation

yi ′′ + Γ i
jk y j ′yk ′ = 0 . (15)

The above procedure relies on the differentiation of the basis vector, so how
can it tell us about the curvature of the manifold? The point is that we define the
vector on the manifold as a mapping of a point to a nearby point on the manifold,
without reference to the coordinate system. Nowwemap the vector to the coordinate
system and differentiate there using the covariant derivative as explained above and
then map the quantity back to the manifold. This defines the derivative operator
on the manifold without the coordinate system being involved, though an arbitrary
coordinate system was used to be able to get the definition. The covariant and partial
derivatives are identical for scalars and only differ for vectors or tensors. One is still
left with the differentiation of the basis vector being “carried back” to the manifold.
To eliminate this extra term, we can use one vector to move another on the manifold,
which is called the Lie derivative of the vector moved, say p relative to the one along
which it is moved, say t. Going back to the covariant derivative, this is [L tp]a =
tb pa

;b − pbta
;b. Since the Christoffel symbol is symmetric in the lower indices the two

Christoffel symbols cancel and only the partial derivatives, tb pa
,b − pbta

,b, are left in
the expression. What has happened is that the derivatives of the basis vectors have
cancelled out and so the worrying term is no longer present in the Lie derivative.
We can transport one vector along the geodesic given by the other on the manifold
by using the Taylor series, to obtain the other vector at the new point. Thus, if the
geodesic lies between points P and Q on the manifold, and t : P → Q, then p|Q is
given in terms of p|P by

p|Q = exp[Lt]p|P . (16)

Requiring that p be left invariant as it goes along t, amounts to requiring thatLtp be
zero. Consequently, the metric tensor, and hence the geometry, will be left invariant
under Lie transport will if the Lie derivative of the metric tensor is zero. Such a
direction is called an isometry, and is a generator of the symmetry implicit in the
geometry.

Using the above definitions, in component form the equations for an isometric
direction, ka become,

gab,ckc = gackc
,b + gbckc

,a . (17)

These are called Killing’s equations and a vector satisfying this equation is called a
Killing vector, or an isometry. Notice that (15) depends on the metric coefficients,
which are functions of the dependent variable but do not depend explicitly on the
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independent variable. Thus the geodesic equations possess a translational symmetry
along the independent variable.

It was noted by Aminova and Aminov [15], and independently, but later, by [16]
that there is a direct connection between the symmetries of a system of geodesic
equations and the isometries of the underlying manifold on which the solutions live.
Aminova and Aminov further noted that projecting the geodesic equations down
along x , one obtains a cubically semilinear system of second-order ODEs. We inde-
pendently arrived at the same point [17]. We further noted that these are similar in
the case of scalar ODE to the original Lie linearizable ODE. The projected equations
then have the coefficients given as functions of the Christoffel symbols for the higher
dimensional system. It turns out that the Lie conditions correspond exactly to the
requirement that the curvature tensor constructed from those Christoffel symbols be
zero, i.e., the space is flat. Further, there is a redundancy in the Christoffel symbols
due to the freedom of choice of coordinates. When we project from two down to one-
dimensional systems (i.e., the scalar equation) the redundancy is of two. These are the
two arbitrary functions that Lie needed for his equations. As such, we have obtained
the Lie linearization purely from Geometry. This is the sense in which Geometry
explains what is special about order two. The requirement of flatness is natural as the
shortest path between two points in a flat space is a straight line. We know the metric
tensor in Cartesian coordinates and the equation of the straight line. It is possible
to find the coordinate transformation that converts a flat metric locally to any given
metric [18]. The coordinate transformation to get the metric tensor required to give
the coefficients yields the linearizing transformation and one obtains the solution of
the linearizable system in terms of the the original variables as a nonlinear superposi-
tion for the general solution. A more complete analysis of this linearization followed
later [19]. A code was developed to determine if the system of second-order ODEs
corresponds to a system of geodesics, and if it does to determine the metric tensor
[20]. Put together, we could, in principle, feed in any system of the Lie type, check
if it is a projected system of geodesics and then obtain the solution. It is this power
of Geometry that we use at much of the base for the complex methods.

3 Complex Symmetry Analysis

Themaximal Lie algebra form-dimensional system of second-order ODEs is sl(m +
2), which is sl(m + 2, IR ) for real and sl(m + 2, IC ) for complex variables, with
[(m + 2)2 − 1] real or complex generators. Now, to obtain ODEs after splitting,
the independent variable must be real and the dependent variables complex. In that
case, to each generator containing the dependent variables in the complex ODE,
there will be two after splitting. Thus, for m = 1 there should be 8 generators in the
real case and 16 in the complex. However, splitting the scalar ODE into its real and
imaginary parts yields a two-dimensional real system, which has an sl(4, IR )with 15
generators. This demonstrates that going from the real to the complex is non-trivial.
The complication arises due to the fact that the complex ODE is not just the two-
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dimensional real system written explicitly but also the implicit Cauchy–Riemann
conditions, which are two first-order equations. Thus the complex system regarded
as a higher dimensional real system is constrained. This causes the reduction of
symmetry of the complex system. Complex symmetry analysis follows up on the
non-trivial consequences emerging from the constraints [21, 22].

To be more concrete, if the real independent variable is x and the complex depen-
dent variable for a scalar ODE is w = (u + ιv), the complex translation operator,W1

splits as

W1 = ∂/∂w = 1

2
(∂/∂u − ι∂/∂v) = U1 + ιV1 , (18)

so that W1w = 1 and W1w = 0. Hence the complex translation splits into two real
orthogonal translations. Now there are no rotations for a single complex variable but
there is a scaling symmetry W2,

W2 = w∂/∂w = 1

2
[(u∂/∂u + v∂/∂v) + ι(v∂/∂u − u∂/∂v)] = U2 + ιV2 . (19)

Thus we get a real scaling, U2 and a rotation in two-dimensional, V2. In the context
of our focus on “why complex methods are so effective” notice that, by definition,
translations leave vector lengths invariant while scalings change lengths. The odd
feature is that the complex scaling yields a rotation under the splitting, apart from
the expected scaling. How did the complex scaling “know” that a real rotation was
needed and had to be coded into the complex scaling?

The natural next step is to go to two complex dimensional systems, with the
complex translation and rotation symmetry generators

W1 = ∂/∂w1 , W2 = ∂/∂w2 , R = w2∂/∂w1 − w1∂/∂w2 , (20)

which split into

1

2
(∂/∂u1 − ι∂/∂v1) = U1 − ιV1 , (21)

1

2
(∂/∂u2 − ι∂/∂v2) = U2 − ιV2 , (22)

1

2
[(u2∂/∂u1 − u1∂/∂u2) + (v2∂/∂v1 − v1∂/∂v2)

+ι{(u1∂/∂v2 + v1∂/∂u2) − (u2∂/∂v1 + v2∂/∂v1)}]
= (R1 + R2) + ι(L1 − L2) , (23)

whereR1 andR2 are the expected rotations andL1 andL2 are two “Lorentz transfor-
mations,” i.e., rotations through an imaginary angle. Notice that the rotations were
arbitrarily identified. Instead of rotating between two u’s and two v’s, we could have
“mixed” them to get rotations between the u’s and v’s, or broken the two Lorentz
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transformations differently to obtain two more cross rotations. Is this at the heart of
the “unexpected effectiveness of the complex methods?”

What has happened is that we actually have the sixteen “quasi-scalings,” which
we can write, using the notation k1 = u1, k2 = u2, k3 = v1, k4 = v2, as ki∂/∂k j . To
see the full significance of this point, let us proceed to the m complex dimensional
system split into 2m real variables, ki . Write the 2m translations as Xi and the 4m2

quasi-scalings as Yi j . Then the Lie algebra satisfied by these generators is:

[Xi ,X j ] = 0 , [Xi ,Y jk] = δi jXk , [Yi j ,Ykl] = δikY jl − δ jlYik . (24)

Thuswe have 2m translations,Xi ,m(2m − 1) rotationsRi j given by the commutators
of the quasi-scalings, 2m genuine scalings Si = ki∂/∂ki and the remaining m(2m −
1) are proper “partial scaling.” Somehow the Cauchy–Riemann (CR) conditions
constrain the symmetries so that the quasi-scalings provide no new generators, and
we are left with just the geometrically expected symmetries. The question remains,
“How do the CR conditions get rid of the extra symmetries?”

For application to DEs, the prolongation of the generators proceeds in the usual
way and the CR conditions do not need any further prolongation. Symmetry methods
are used by enumerating all possible algebras of a given dimension. One-dimensional
algebras are not in general sufficient for “group methods” to work. As such, we
need at least a two-dimensional algebra. In the simpler cases of lower order and
lower-dimensional systems, there are few higher dimensional algebras available and
the classification problem is easy. For lower dimensions one gets whole classes of
possible ODEs associated with each algebra of the given dimension. Thus, for the
scalar ODE for two-dimensional algebras, there are four possible algebras, each
with an ODE associated with it. On splitting the complex scalar ODE there is a much
richer structure as one gets a two-dimensional, three three-dimensional and three
four-dimensional algebras, each with its associated class of systems of two ODEs.

For every complex scalar ODE there is a system of two ODEs. However, the
converse is obviously not true. Consequently there must be some compatibility con-
ditions that the system satisfies for the correspondence to hold. The way they are
obtained is to take the general relevant order complex scalar ODE and split it. The
general form of the system corresponding to the general complex ODE is, thereby,
obtained. What general form? This depends on the class of systems that is to be
converted. The symmetries of the complex scalar ODE and the corresponding real
system have been shown to be inequivalent [23, 24]. The procedure can, equally well,
be applied to systems of complex ODEs being converted to systems of real ODEs
of twice the dimension. A serious problem arises of being able to apply complex
methods to odd-dimensional systems. The method used was to introduce an alge-
braic constraint, but that changes the system. Another method that could be explored
would be to adjoin a real DE to a complex system, but it would entail additional
complications, and may not be workable or worthwhile.
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4 Complex Linearization

Every first-order complex scalar ODE

y′(x) = ω(x, y) , (25)

is linearizable [1, 4], where y = f + ιg and ω = φ + ιγ . Thus the system

f ′(x) = φ(x, f (x), g(x)) , g′(x) = γ (x, f (x), g(x)) , (26)

is linearizable, provided the CR equations

∂φ

∂ f
= ∂γ

∂g
,

∂φ

∂g
= −∂γ

∂ f
, (27)

hold. We see that not every two-dimensional system of first-order ODEs is lineariz-
able, but only those that satisfy the CR-equations as the linearization constraint
equations. Notice that here the role of the CR-equations as a pair of first-order inte-
grability conditions is obvious.

We now come to the general semilinear second-order complex scalar ODE,

y′′(x) = ω(x, y; y′) . (28)

Since it is not true that all second-order ODEs are linearizable, when we split the
ODE, the CR-equations do not give linearization conditions, but only compatibility
conditions,

f ′′(x) = φ(x, f, g; f ′, g′) , g′′(x) = γ (x, f, g; f ′, g′) (29)
∂φ

∂ f
= ∂γ

∂g
,

∂φ

∂g
= −∂γ

∂ f
,

∂φ

∂ f ′ = ∂γ

∂g′ ,
∂φ

∂g′ = − ∂γ

∂ f ′ . (30)

For linearization there are further requirements that must be met. Lie’s linearizable
scalar second-order ODE, given by (8), can be split into its real and imaginary
parts, bearing in mind that the four coefficients are also complex. The resulting
two-dimensional system must be of the form

f ′′ + (a1 f ′ 3 − 3a2 f ′ 2g′ − 3a1 f ′g′ 2 + a2g′ 3)
+(b1 f ′ 2 − 2b2 f ′g′ − b1g′ 2) + (c1 f ′ − c2g′) + h1 = 0,

g′′(x) + (a2 f ′ 3 + 3a1 f ′ 2g′ − 3a2 f ′g′ 2 − a1g′ 3)
+(b2 f ′ 2 + 2b1 f ′g′ − b2g′ 2) + (c2 f ′ + c1g′) + h2 = 0, (31)

subject not only to the CR-equations (30) written out explicitly for φ and γ but also
to the CR-equations for each of the four complex coefficients, a, b, c, h. This is a
system of two second-order real ODEs involving eight real functions to bring the
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system into the Lie form, which must satisfy a system of four first-order constraints
that ensure integrability. We call such a system “complex linearizable.”

It was proved by Goringe and Leach [12] that for a system of two second-order
ODEs linear with constant coefficients there are 7, 8 or 15 symmetries. When
extended to the fully general case 5 and 6 generators were added [13]. It may be
recalled that the geometrically linearizable systemhas a Lie algebra of sl(m + 2, IR ),
which yields 15 generators for m = 2. As such, only in the maximal symmetry case
can we use the power of geometry at present to directly obtain the linearizing trans-
formation and hence the solution. What is more disturbing is that the geometrical
arguments for linearization are somehowbypassed in general –we are getting straight
lines in a curved space. How can that be? Could it be that the space corresponding
to the system of geodesics for 5, 6, 7 and 8 generators is like a higher dimensional
cylinder, with some flat sections? It would be worth exploring this possibility.

The general second-order linear complex scalar equation

y′′(z) + A(z)y′(z) + B(z)y(z) = 0 , (32)

where z is a complex variable, can be transformed to the form,

y′′(w) + α(w)y(w) = 0 , (33)

by re-scaling the dependent variable by a position dependent function or, equivalently,
by transforming the independent variable, z, appropriately to an independent variable,
w, to get rid of the first derivative term. This can then be split to

f ′′(x) + α1(x) f (x) − α2(x)g(x) = 0 , g′′(x) + α2(x) f (x) + α1(x)g(x) = 0 ,

(34)
whereα = α1 + ια2.When thiswas applied to the free particle equation (withα = 0)
[23, 25], the 15 generator Lie algebra case was recovered, which is amenable to
geometric linearization. For the constant and the variable cases, the 7 and 6 generator
algebras were also obtained. Though the system is not geometrically linearizable,
the complex equation is and hence its power can be used to solve the scalar ODE
and then convert to the system to get the solution of the system.

It is wonderful that that two more of the five classes of linearizable systems
can be accessed by complex linearization, making them amenable to the geometric
procedure that more-or-less writes down the solution for us, but now the question
arises: “where did the other two go?” If the complex method works, “why does it
work partially and not fully?” The answer may lie in a step that was glossed over. The
scalar ODE was first transformed with the complex independent variable to obtain
the simpler form (33) and then it was restricted to the real form. This procedure will
not commute in general. If the independent variable is first restricted and then used,
the reduction will not occur. There seems to be no good reason to take the reduced
form (33) instead of the complete homogeneous liner form. Throwing away the first
derivative term in the system may “throw the baby out with the bath-water.” Can one
not apply the Lie linearization procedure to the full (homogeneous) linear form to



Complex Methods for Lie Symmetry Analysis 137

obtain the two-dimensional system? Perhaps that would provide the missing cases
of 5 and 8 symmetry generators.

Notice that the second-order complex scalar ODE has eight complex symmetries
to be linearizable but needs only two to be solvable by Lie’s method. On the other
hand the two-dimensional systemneeds at least five real symmetries to be linearizable
and four to be solvable. Thus the minimum number of real symmetries required in
both cases is four. We see that starting with linearizable second-order complex scalar
ODEs, we can end up with two-dimensional systems with fewer symmetries. Is it
possible to get a system with only four symmetries that is solvable? In that case, by
the easy linearization of a complex ODE the more complicated process of solving
the associated system can be bypassed. It was found that this could be done [23, 25–
27]. In fact, not only could non-linearizable systems be solved by linearization (of a
complex scalar ODE) but one could go further and find complex linearizable scalar
ODEs corresponding to systems with less symmetries. Thus systems not solvable by
symmetry methods in the usual way, could be solved by complex linearization. How
much lower can one go? It turned out that there is an example with no symmetry. We
cite the examples of four, one and zero here:

(a) Four symmetry case

f ′′ − f ′ 3 + 3 f ′g′ 2 = 0 , g′′ − 3 f ′ 2g′ + g′ 3 = 0 , (35)

with the solution

f (x) = c1 ± (
√

(a − x)2 + b2 + a − x)1/2,

g(x) = c2 ± (
√

(a − x)2 + b2 − a + x)1/2; (36)

(b) One symmetry case

f ′′ − x f f ′ 3 + 3xg f ′ 2g′ + 3x f f ′g′ 2 − xgg′ 3 = 0 ,

g′′ − xg f ′ 3 − 3x f f ′ 2g′ + 3xg f ′g′ 2 + x f g′ 3 = 0 , (37)

with the implicit solution

R[c1Ai(− f − ιg) + c2Bi(− f − ιg)] = x ,

I [c1Ai(− f − ιg) + c2Bi(− f − ιg)] = 0 , (38)

where R,I are the real and imaginary parts of the arguments and Ai, Bi are the
two Airy functions;

(c) No symmetry case

f ′′ + ( f 2 − g2 − x2)( f ′ 3 − 3 f ′g′ 2) − 2 f g(3 f ′ 2g′ − g′ 3) = 0 ,

g′′ + ( f 2 − g2 − x2)(3 f ′ 2g′ − g′ 3) + 2 f g( f ′ 3 − 3 f ′g′ 2) = 0 , (39)
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which corresponds to the complex scalar ODE

y′′ − xy2y′ 3 = 0, (40)

which is linearizable to Y ′′ = 0, yielding the solution directly.

5 Complex Noether Symmetries and Integrals

Noether’s theorem [28] forms a basis of the use of symmetries in Mechanics and
through it in all of Physics. It essentially generalizes Hamilton’s principle of least
action, which can be reformulated as saying that if there is time-translational invari-
ance, energywill be conserved.The action, S, is a functional of aLagrangian function,
L [t, qi (t), ˙qi (t)], where qi are the coordinates of a system of particles in the higher
dimension and t is the time. If there is no explicit dependence on the time the action
is minimized and a quantity associated with the Lagrangian, called the Hamiltonian,
H is a conserved quantity. More generally, the theorem says that for every contin-
uous symmetry, there is a conserved quantity. It was further generalized to extend
to a continuum of “particles,” i.e., a field, and thence to relativistic fields and further
to quantum fields [29]. Hamilton’s original method, used also by Noether, is to use
the calculus of variations and require that the variation of the action be zero. This
provides the necessary conditions for minimization. The sufficient condition, that
the second variation be positive, is generally ignored or glossed over, but should be
used to avoid getting spurious solutions.

Noether symmetries, as opposed to the usual symmetries, yield double reduc-
tion of the DEs for which they apply [30, 31], serving like two of the symmetries.
Thus, if there is time translational invariance in an ODE (as for the time independent
Schrödinger equation or the steady state heat equation) one can replace the derivative
operator by a constant. Further, the energy conservation yields an invariant combi-
nation of the generalized coordinates and their derivatives, getting rid of another
variable. Formally, X[1], given by (3) for a single independent variable, is a Noether
symmetry if there exists an appropriate (gauge) function, G, such that

X[1]L + L
d A

dx
= dG

dx
, (41)

where d/dx is the total derivative. This can be extended to PDEs by using several
independent variables, xa and the corresponding total derivatives with respect to each
independent variable as well as introducing a vector gauge function, Ga .

An obvious problem of extending the variational principle to the complex domain
arises: functionals map the space of functions into the reals, IR . Obviously the
Lagrangian must be real for the action to be real, so that a minimum can be defined
on it. This problem was “swept under the rug” at the time in [21, 32]. In defining dis-
tributions for complex arguments, the problem of defining functionals is addressed



Complex Methods for Lie Symmetry Analysis 139

[33–35] but not the problem of defining a minimum for a complex action. What is
required is that the variations of the real and imaginary parts be separately zero and
the minimum for both together requires that the magnitude of the action, |S|, be
minimum. It is worth mentioning that on purely physical considerations Bender and
Boettcher had also proposed complex Hamiltonians [36].

Let us now proceed with the complex Lagrangian [21, 32]. LetL = L1 + ιL2.
Then the Euler–Lagrange equation splits into the pair of coupled equations:

∂L1

∂ f
+ ∂L2

∂g
− d

dx

(∂L1

∂ f ′ + ∂L2

∂g′
)

= 0 ,

∂L2

∂ f
− ∂L1

∂g
− d

dx

(∂L2

∂ f ′ − ∂L1

∂g′
)

= 0 , (42)

which is not a pair of Euler–Lagrange equations. Thesewere called “Euler–Lagrange-
like” equations, but perhaps a better namewould have been “complex-EL” equations.

The Noether operators, X[1]
1 ,X[1]

2 corresponding to the Lagrangians L1,L2

X[1]
1 = ξ1∂x + 1

2
(η1∂ f + η2∂g + η′

1∂ f ′ + η′
2∂g′) ,

X[1]
2 = ξ2∂x + 1

2
(η2∂ f − η1∂g + η′

2∂ f ′ − η′
1∂ f ′) , (43)

must satisfy the equation

X1
[1]L1 − X2

[1]L2 + (Dξ1)L1 − (Dξ2)L2 = DG1 ,

X1
[1]L2 + X2

[1]L1 + (Dξ1)L2 + (Dξ2)L1 = DG2 , (44)

for some gauge functions G1, G2, where D = d/dx . It might seem that the arbitrari-
ness of the gauge functions allows infinitely many solutions and hence the “must
satisfy” says nothing. This is not the case. In the scalar case one is requiring that
the left side of the equation be an exact differential. For the coupled system, one is
demanding that both left sides be total differentials, albeit of different “potentials.”
The resulting invariants are:

I1 = ξL1 − ξ2L2 + 1

2
(η1 − f ′ξ1 + g′ξ2)

(∂L1

∂ f ′ + L2

∂g′
)

− 1

2
(η2 − f ′ξ2 − g′ξ1)

(∂L2

∂ f ′ − L1

∂g′
)

− B1 ,

I2 = ξL2 + ξ2L1 + 1

2
(η1 − f ′ξ1 + g′ξ2)

(∂L2

∂ f ′ − L1

∂g′
)

+ 1

2
(η2 − f ′ξ2 − g′ξ1)

(∂L1

∂ f ′ + L2

∂g′
)

− B2 . (45)



140 A. Qadir and F. M. Mahomed

The invariants of complex scalar second-orderODEs are often easier to obtain than
those of a two-dimensional real system [37]. The question arises, as with complex
linearization so with invariants, are they found for systems that could not be obtained
for the two-dimensional system? With the question in mind of why the complex
method is providing results that the real system did not, it is necessary to pursue the
matter further.

In the simplest case, y′′ = xy′, the complex method merely reproduces the results
for the real system, albeit more simply. In the case of the complex simple harmonic
oscillator it correctly gives a coupled systemof harmonic oscillators [38] andprovides
the expression for the energy transferring back and forth between the two. As was put
there, one sees the energy in the field by putting on complex glasses. It is found that
new invariants arise for the complex Lagrangian in some cases. Unfortunately it was
expressed in [37] in a way that misleadingly suggests that there are two Lagrangians
for real two-dimensional systems arising from a variational principle. We present an
example.

Example Consider the system of two second-order semi-linear ODEs

f ′′ + 3 f f ′ − 3gg′ + f 3 − 3 f g2 = 0 ,

g′′ + 3 f g′ + 3g f ′ + 3 f 2g − g3 = 0 . (46)

It is not clear that it has any Lagrangian. If there is no ordinary conservation law
arising from a variational principle, one can still get a conserved quantity (the gen-
eralization of the Hamiltonian) from what are called partial Lagrangians [39] or
there may be nothing like a Lagrangian. It would be worth exploring which of the
alternatives applies in this example and in general. This system corresponds to the
complex ODE

y′′ + 3yy′ + y3 = 0 , (47)

which has five infinitesimal Noether symmetry generators and the corresponding five
invariants which split into ten real invariants for the system. It is noted in [37] that
the two parts of the Lagrangian are equivalent Lagrangians for the system, which
yields only one invariant. It would be interesting to explore if this spew of invariants
is related to the spew of infinitesimal generators spawned by the split translation
generator of the complex line.

6 Iterative Splitting of a Complex Scalar ODE

The idea of iterative splitting [40] is a strange one: (a) start with a complex (say)
scalar ODE and obtain the split two-dimensional system of ODEs; (b) now get hit
on the head and develop amnesia, so you forget where the split system came from
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and use the splitting procedure on it to get a four-dimensional system of ODEs; or
(c) get a four-dimensional system of PDEs if you forgot that you intended to restrict
yourself to ODEs. Why is the idea strange? To see this we have to get into what was
not discussed before: the range of functions to which the procedures are applicable.

When we proceed for the splitting, we assume that the dependent variables are
complex analytic functions and that the functions in the split system are real analytic
functions. Now the ratio of the cardinality of the set of all complex analytic functions
to the set of all complex functions is a second infinitesimal. Similarly, for the real
analytic to all real functions. However, it does not appear that in going complex we
have restricted our space “any more” than we have done for the real. In fact one
feels that we have somehow made it “more general.” This vague feeling lulls us
into a false sense of security, as we see when we require the CR-equations. When
we repeat the step of splitting we have required that the two dependent variables
be complex analytic functions themselves. This obviously significantly restricts the
space of permissible functions after the split. This will appear in the emergence of
a second set of CR-equations. Obviously, there will be infinitely many functions
that satisfy the requirement but the restriction on the space of permissible functions
will make a big difference for what can be used in DEs. In our amnesia we have
wandered into a cave with a narrow opening containing a magic lamp. To get out of
the cave we may have to leave our magic lamp of splitting behind. The trick will be
to bring a more constrained genie out without the lamp. Let us be more concrete. For
complex symmetry analysis for ODEs, we need that f and g be n times differentiable
functions of x andw for a complex analytic function ( f, g, f ′, g′, . . . , f (n), g(n)) and
for PDEs that y = f + ιg be a complex analytic function of z = u + ιv and w be a
complex analytic function of (z, y, y′, . . . , y(n)).

One might have thought of generalizing the complexification of the DE to the
quaternions, q = 1 + ai + bj + ck, subject to the requirements that i2 = j2 = k2 =
−1 and i j = k = − j i, jk = i = −k j, ki = j = −ik. It is easily verified that the
requirements that dq/dq = 1 and dq2/dq = 2q are incompatible. Thus we cannot
bound up the steps from one to four in a single leap and need to look elsewhere for a
generalization. Why generalize? Apart from the search for simpler ways to get more
powerful results, one wants to obtain insights into the working of the first step by
going beyond. As mentioned earlier, the idea is to complexify twice over. In view of
the important role of the CR-equations for double splitting, it is worthwhile to state
them explicitly for the first splitting. For the initial complex scalar ODE (28), taking
z = x and proceeding with the split y = f + ιg, we obtain a pair of ODEs as given
before. Now we must also write

ω(x; f, g; f ′, g′) = wr (x; f, g; f ′, g′) + ιwi (x; f, g; f ′, g′) . (48)

Then the CR-equations are:

wr
f = wi

g , wr
g = −wi

f ; wr
f ′ = f i

g′ ; wr
g′ = −wi

f ′ . (49)
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It is easier to obtain four-dimensional systems of ODEs or PDEs by double split-
ting than a three-dimensional system because the number of equations would natu-
rally be even. One can retain one of the functions of the split to be real and the other
to be complex, so as to get the desired three-dimensional system, but the number of
functions still remains even. To circumvent this problem, retain f as it is but split
g = h + ιk in (28) and take all real terms that do not contain g or its derivative in
one term and the rest in a second, complex, term

ω(x, y, y′) = w(x; f ; f ′) + W (x; f, g; f ′, g′) . (50)

Now split W to write

W (x; f, g; f ′, g′) = U (x; f, h, k; f ′, h′, k ′) + ι V (x; f, h, k; f ′, h′, k ′) , (51)

so that we obtain the three-dimensional second-order system:

f ′′ = w(x; f ; f ′) ,

h′′ = U (x; f, h, k; f ′, h′, k ′) ,

k ′′ = V (x; f, h, k; f ′, h′, k ′) , (52)

subject to the CR-equations

Uh = Vk , Uk = −Vh ; Uh′ = Vk ′ , Uk ′ = −Vh′ . (53)

Notice that the system of three coupled ODEs does not seem very general, as the first
of (53) is independent of the other two dependent variables. However, it is not entirely
clear how much of a restriction this is. We could try to take linear combinations of
the three dependent variables so that in one equation we eliminate the other two.
The problem is reminiscent of finding the Jordan canonical form and may need the
symmetry structure of the system to be examined for the purpose. Incidentally, the
second split given in [40] causes confusion by using ιW instead of W in (50) but is
entirely equivalent to the one presented here.

We present an illustrative example here:

Example The system of generalized Emden–Fowler ODEs:

f ′′ = −2x−5hk , h′′ = −2sx−5 f k , k ′′ = 2x−5 f h , (54)

corresponds to the completely integrable [41] scalar Emden–Fowler ODE

y′′ = x−5y2 , (55)

subject to the algebraic constraint
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f 2 + h2 = k2 , (56)

which has the symmetry generators

X1 = x
∂

∂x
+ 3y

∂

∂y
, X2 = x2 ∂

∂x
+ xy

∂

∂y
(57)

and is completely integrable.Double-splitting these symmetry generators yields eight
Lie-like operators and no symmetries of the system. These are

Y1 = x∂x + 3

2
f ∂ f + 3

4
h∂h + 3

4
k∂k , Y2 = 3

4
k∂h − 3

4
h∂k ,

Y3 = 3

2
k∂ f + 3

4
f ∂k , Y4 = 3

2
h∂ f − 3

4
f ∂h,

Y5 = x2∂x + 1

2
x f ∂ f + 1

4
xh∂h + 1

4
xk∂k , Y6 = 1

4
xk∂h − 1

4
xh∂k ,

Y7 = 1

2
xk∂ f + 1

4
x f ∂k , Y8 = 1

2
xh∂ f − 1

4
x f ∂h .

Our system (54) is completely integrable despite having too few symmetries.
Cases with no symmetry were already seen above [26], but the first example of a
two-dimensional integrable system with no symmetry was given in [42]. Here we
have an integrable system of threeODEswith only two symmetries. The first integral
of (55) is given by

I = 1

2
x2y′ 2 + 1

2
y2 − 1

3
x−3y3 − xyy′ ,

which has the symmetry X2 [43]. The invariant obtained from it, v = y/x reduces
the equation to a simple quadrature as

x2v′ = ±
√

c + 2

3
v3,

yielding the solution of (54). It is worth noting that the Lie-like operators have
proliferated on double splitting and are likely to increase still more for further splits.
The Lie symmetries seem lost in the abundance of Lie-like operators.

Put f (x) = k(x) + ι l(x) and g(x) = m(x) + ι n(x) in (48) to obtain the four-
dimensional system of ODEs by double-splitting,

wr (x; f, g; f ′, g′) = ur (x;k;k′) + ιvr (x;k;k′) ,

wi (x; f, g; f ′, g′) = ui (x;k;k′) + ιvi (x;k;k′) , (58)
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where k := (k, l, m, n), yielding the system of four ODEs

k ′′(x) = ur (x;k;k′) , l ′′(x) = ui (x;k;k′) ,

m ′′(x) = vr (x;k;k′) , n′′(x) = vi (x;k;k′) , (59)

subject to the CR-conditions

ur
k + vr

l = ui
m + vi

n , ur
l − vr

k = ui
n − vi

m ,

ur
m + vr

n = −ui
n − vi

l , ur
n − vr

m = −ui
l + vi

k ,

ur
k ′ + vr

l ′ = ui
m ′ + vi

n′ , ur
l ′ − vr

k ′ = ui
n′ − vi

m ′ ,

ur
m ′ + vr

n′ = −ui
k ′ − vi

l ′ , ur
n′ − vr

m ′ = −ui
l ′ + vi

n′ . (60)

The prolonged symmetry generator can now be written as

X = ξ(x,k)
∂

∂x
+ η(x,k).∇k + η[1](x;k,k′).∇k′ . (61)

Writing this equation out in detail makes it too unwieldy to convey much wisdom.
Let us now come to the system of four PDEs. This is the most straightforward of

the various possibilities considered. At the first step we regard both the independent
and the dependent variables of (28) as complex, so that we take z instead of x there
and do the usual split with z = s + ιt , so that both the independent and dependent
variables are split. This gives a system of two second-order PDEs for two functions
of two variables. This is the standard complex symmetry analysis talked of earlier
for PDEs. The double split repeats the process and yields a system of four PDEs of
four variables. Due to the number of variables involved in the double split it becomes
impossible to follow our notation above here and we copy the equations as given in
[40], including the CR-conditions and the prolonged generator.

wss − wtt + 2xst − wuu + wvv − 2xuv + 2ysu − 2ytv

+2zsv + 2ztv = 4g(s;w,∇sw);
xss − xtt − 2wst − xuu + xvv + 2wuv + 2zsu − 2ztv

−2ysv − 2ytv = 4h(s;w,∇sw);
yss − ytt + 2zst − yuu + yvv − 2zuv + 2wsu − 2wtv

+2xsv + 2xtv = 4k(s;w,∇sw);
zss − ztt − 2yst − zuu + zvv + 2yuv + 2xsu − 2xtv

−2wsv − 2wtv = 4l(s;w,∇sw); (62)

subject to the CR-conditions



Complex Methods for Lie Symmetry Analysis 145

ws + xt = yu + zv , wt − xs = yv − zu ,

wu + xv = −ys − zt , wv − xu = −yt + zs ;
gs + ht = ku + lv , gt − hs = kv − lu ,

gu + hv = −ks − lt , gv − hu = −kt + ls ;
gw + hx = ky + lz , gx − hw = kz − ly ,

gy + hz = −kw − lx , gz − hy = −kx + lw . (63)

The derivatives in the rest of the CR-conditions can be written in more familiar form
using the variables

α = ws + xt + yu + zv , β = wt − xs + yv − zu ;
γ = wu + xv − ys − zt , δ = wv − xu − yt + zs , (64)

so that the rest of the CR-conditions are

gα − hβ = kγ − lδ , gβ + hα = kδ + lγ ;
gγ − hδ = −kα + lβ , gδ + hγ = −kβ − lα . (65)

The prolonged symmetry generator for the system is

X[1] = ξ(s, g).∇s + η(s, g).∇g + η[1](s, g,∇sg).∇∇sg . (66)

We again rely on an example to illustrate our system.

Example The free-particle system of equations is given by (62), with the right side
set equal to zero. The CR-conditions are trivial. There are now 32 Lie-like operators,
of which only 24 are symmetry generators. As before the local projective symmetries
(eight in all) are lost, but the dilations are not lost. The generic problem of PDEs of an
infinity of symmetry generators, persists but the 24 symmetries do form aLie algebra,
A 24 say, which serves as a “core” for the system of PDEs, in that one could write the
full Lie algebraA = A∞

⊕
A 24 and “throw away” the infinite dimensional algebra

A∞, to be left with a solution with 24 arbitrary constants.

Notice that for the three-dimensional system of ODEs, one could reverse the order
of taking the split into two and one, to get a “dual” system. This would not be so
simple for the split into a four-dimensional system, and there would be no obvious
“dual.” One could do the split first and then two “singles” after that; a “single,” a split
and a “single”; or two “singles” and a split. All would yield four ODEs for functions
of one variable, but they would all be different. The first and third would, in some
sense, be “duals.” The same applies for the PDEs. In fact, the complex method for
ODEs is not unique. Instead of first restricting the complex independent variable to
be real, we could have first split and then restricted. The results would not be the
same.
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7 Discussion and Conclusion

In this chapter we reviewed the developments in Lie symmetry analysis that made
explicit use of the complex analyticity of the solutions of complex differential equa-
tions. It might be recalled that Lie, himself, had assumed that the functions were
complex analytic, but had not made the requirement explicit. So long as one remains
entirely in the complex domain nothing new can emerge from the discussion. It
is only when one splits the dependent and independent variables into their real and
imaginary parts that the new features arise. In that case, a complex scalar ODE yields
a pair of PDEs for two real functions of two real variables. As could be expected,
the really new features arise when the independent variable is restricted to the real
domain, which is needed to obtain ODEs. The areas where we particularly explored
the consequences of the complex methods were linearization and Noether invariants.
This is not to say that there are no consequences for more general situations, or that
they would turn out to be less interesting, novel or useful. It is simply that these
were the easiest to tackle, and hence provided a quick check on whether anything
new would arise. In fact, there is reason to expect, as we shall discuss shortly, that
the more general cases will lead to even more unexpected results. After all, if the
complex linearizable ODE leads to the solution of ODEs not amenable to solution
by symmetry methods, how many more may become solvable if the complex ODE
is solvable, even if it is not linearizable?

In the applications to linearization, we discussed only the complex scalar ODE
split to get a pair of real ODEs. By geometric methods one obtains the maximum
symmetry case of linearizable systems. Using complex methods, two more of the
five classes were accessed. Here, we have indicated that it should be possible to
access the remaining two classes by not using the optimal canonical forms for the
complex scalar ODE, as the restriction to the real independent variable (required for
obtaining ODEs rather than PDEs by splitting) does not commute with the splitting
procedure. This would be worth pursuing. However, the entire discussion is limited
to a two-dimensional system. For higher (even) dimensional systems, we can split
a higher, say m, dimensional complex system to a 2m-dimensional system. This
has been done for a two-dimensional system split to a four-dimensional system in
[44]. It would be important to investigate if all the linearizable classes for the four-
dimensional system are obtainable by complex methods, using the same point of
avoiding the use of the optimal canonical form. More generally, if the m-d system
split to the 2m-d system covers all linearizable classes of the 2m-d system. Further,
one would need to see whether the double splitting of a scalar ODE yields the same
results as the single split of the two-dimensional system. If not, is one of them more
restrictive than the other, or is it that both methods give different extensions with
some overlap? For odd dimensional systems, we have seen that one can appeal to
iterative methods. However, it is worth exploring if direct algebraic constraints could
also provide the desired linearization. Again, it would be fascinating to look for the
connection between the two methods of enlarging the systems to which it is applied.
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Complex methods have also been applied to the linearization of scalar third-
order ODEs to deal with a two-dimensional system of third-order ODEs [45, 46]
and a classification of two-dimensional linearizable systems of third-order ODEs
has been obtained. This is a much harder problem as the ODEs and systems are not
apparently connected to geodesic equations and hence to the geometrical methods. A
method was developed to reduce the order of the ODE by defining a derivative of the
dependent variable as a newdependent variable [47–49], thereby providing a possible
connection with a system of geodesic equations, provided it satisfies the required
criteria. Going one step further, one could ask if the second-order two-dimensional
system could be obtained from a complex scalar ODE, so that the third-order ODE
could be treated related to a second-order scalar ODE that could correspond to a
geodesic equation? It is by no means clear that this could be done, but it seems very
interesting to pursue this line of inquiry further. The procedure mentioned here was
also used to reduce fourth-order ODEs to two-dimensional systems of second-order
ODEs, albeit there is no classification for them. Of course, the above question would
be as interesting for these equations as well. It was noted that the above procedure
amounted to using contact transformations for third- or fourth-order ODEs and this
provided the first classification for linearization by contact symmetries. It would
be most interesting to see what would happen if one used complex methods for
the contact transformations. The further ramifications involving iterative splitting
may help provide insights into how the various methods, including contact and Lie–
Bäcklund transformations are interconnected.

So far we have concentrated on reviewing the developments arising from complex
methods that were useful but not really discussed the odd features, that turn up when
we use themethods. This happensmarginally in the first split, where the Lie operators
are lost and what were called “Lie-like” which we called “complex-Lie,” operators,
replace them. Similarly for the Noether symmetries and integrals. This occurs more
dramatically when iterative splitting is used. It is worthwhile to pursue this odd
feature further. In this chapter we suggested that there may be a connection with
the enormous proliferation of symmetry generators for the simple symmetries of
the complex line: translation and scaling. It is worth pursuing precisely how much
the proliferation is. Consider a complex scalar ODE, the translation splits into two
and the rotation into four, giving a total of six. Now, at the second iteration, the
two translations split into four and the four scaling-type operators split into sixteen,
giving a total of twenty. In general, for n iterations we get the total number N = 2n +
(2n)2 = 2n(2n + 1). Thus for n = 3, N = 72 and for n = 4, N = 272. Following
the same logic, starting with an m-d complex system of ODEs, there will be initially
m translations and m2 scaling-type generators, which gives the general formula N =
2nm(2nm + 1) after n iterations. Hence for a starting two-dimensional system, the
effect is simply like increasing the number of iterations by one. Startingwithm = 3 at
two iterations, already N = 156. This is the extent to which the generators proliferate
after n iterations. But the question then is “what difference does this proliferation
make?” We will now consider the possibility that this may provide a clue to answer
the big question thatwasmentioned at the start of this chapter: “Why does the complex
method work?”
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Take the case of linearization. Without the use of complex methods the geometric
methods only give the maximal symmetry case. Complex methods have already pro-
vided two of the five linearizable classes for two-dimensional second-order systems
and there is good reason to expect that the other two will also be found. To this
extent, it is not all that strange that they work. After all, they only give what had been
obtained by classical methods, albeit very much more explicitly. However, when
complex linearization provides solutions for systems that are not linearizable, one
really needs to explain how that could ever happen. Even stranger, where the number
of symmetry generators of the system are inadequate to solve by symmetry methods,
how on Earth can the complex methods work their magic there? The answer may lie
in the much larger space of these “quasi-symmetry generators.” One starts with the
inadequately symmetric real system and “lifts” it as a lower-dimensional complex
system, where the lifted equation is adequately symmetric and solves it there. How-
ever, the linearizing transformation that yields the solution changes the restricted real
variable to a complex one, so that it cannot be used to linearize the system. So far it
seems reasonable. The question now is, “why is it that there is at least one solution
that is retained when one restricts the variable to be real? Why is it not that there is
no solution for the real system?” An associated question is, “we have brought down
one solution, but how do we know that we have not missed other solutions that could
have been found?” For a 2m-d real system of second-order ODEs, we need criteria
that tell us precisely how many of the 2m complex solutions can be “brought down
to the real world.” No such criteria are available and they are crucial for using the
complex methods to their full potential.

Now let us discuss the odd features of the complex variational principle. It has
been noted that the real and imaginary parts of the complex Lagrangian are not the
same but are equivalent, in that they satisfy the same Euler–Lagrange equations.
Why should that be so? The final quantity that is minimized is the magnitude of the
Lagrangian and not its real and imaginary parts. How is it that the two separately
“know” that they must satisfy the same equations? Presumably it is because, apart
from a constant value, the sum of the squares of the two parts has to become zero
and that can only be if each is separately zero. However, the question then is “If they
have to satisfy the same equations, why do they differ?”Again, theNoether invariants
obtained from complex Lagrangians are many more than would have been expected
at first sight. Essentially this must come from the tremendous enlargement of the
quasi-symmetry operator space. The same point of obtaining many more invariants
for the real system than should be possible, appears for the invariants. As such, the
same questions as for linearization need to be answered. Again the explicit criteria
are needed.

We have not discussed complex methods for PDEs. It is not that they cannot be
used there. They are so used. They can be used to obtain systems of PDEs from
ODEs. Nor is it that they are not useful. They pick out a “core” finite-dimensional
symmetry algebra from an infinite dimensional Lie-algebra. The thing is that it is not
so clear what relevance the PDEs would have for the big question asked here.
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Symmetry Analysis and Conservation
Laws of a Family of Boussinesq
Equations

M. S. Bruzón and M. L. Gandarias

Abstract This chapter presents a generalization depending on an arbitrary function
f (u) of a sixth-orderBoussinesq equationwhich arises in shallowwaterwaves theory
from the point of view of the theory of symmetry reductions in partial differential
equations. The reductions to ordinary differential equations are derived from the
optimal system of subalgebras. In order to obtain exact solutions, we apply a direct
method: a catalogue of exact solutions are given and a set of solitons, kinks, antikinks,
and compactons are derived. Conservation laws for this equation are constructed.We
have obtained a triple reduction to a fourth-order autonomous equation by combining
first integrals, which are obtained from two of the conservation laws.

1 Introduction

In this chapter, we consider the sixth-order Boussinesq

utt − c20uxx − ( f ′(u) + b1utt − b2uxx + duxxxx )xx = 0 (1)

with f ′′(u) �= 0. This equation appeared in [16] where the authors agreed to call the
Boussinesq paradigm a set of equations that simultaneously contains the following
properties:

(i) bi-directionality of the wave solutions (propagation to the left and to the right;
presence of a d’Alembertian operator);

(ii) nonlinearity of any order;
(iii) dispersion of any order, the latter resulting in the presence of combined space

and time derivatives of the fourth order at least.
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Generally speaking, f ′(u) may be sought of as a polynomial in u, starting with
second degree. The original equation had a positive sign in front of the dispersion
connected with the fourth-order spatial derivative (b1 = 0, b2 < 0) and turned out
to be mathematically improper, being incorrect in the sense of Hadamard (the initial
value problem is ill-posed). The reason for this is that in the absence of nonlinear-
ity, small perturbations would amplify as frequency may become imaginary. The
equation, known nowadays as Boussinesq equation, is the incorrect equation (called
sometimes bad Boussinesq equation), while if a sufficient strong surface tension is
added in themodel (making the coefficient b2 positive), the equation is correct (called
good Boussinesq equation).

Equation (1) with c0 = 1, b1 = b2 = 0, d = −1, and− f ′(u) is f (u) has the form

utt − uxx + ( f (u) + uxx )xx = 0. (2)

In [21] Gandarias and Bruzón derived classical and nonclassical symmetries of
Eq. (2).

In [11, 12], Bruzón and Gandarias applied a new procedure for finding nonclas-
sical symmetries of the following Boussinesq equation:

utt − uuxx + u2x + uxxxx = 0. (3)

The authors extended the algorithm described by Bî lă and Niesen to determine the
nonclassical symmetries of a PDE. They observed that for any equation which can
be expressed in the form

ut = A (x, t, u), (4)

whereA is an arbitrary function depending on x , t , and u, the nonclassical determin-
ing equation can be derived by substituting the corresponding functions A into the
PDE. They applied the described algorithm to a Boussinesq equation and to a 2+1-
dimensional shallowwater wave equation. They proved that for the 2+1-dimensional
shallow water wave equation the method yields a new symmetry reduction which is
unobtainable by using Lie classical method.

In [13], Bruzón and Gandarias obtained a complete Lie group classification for
the family of Boussinesq equations

utt = auxx + (
um+1

)
xx + b

[
u

(
um

)
xx

]
xx

, (5)

where a and b are arbitrary constants. The authors made a full analysis of Eq. (5),
by using classical symmetries, nonclassical symmetries and nonclassical potential
symmetries, and they obtained new solutions. The authors also obtained someType-II
hidden symmetries [19] of Eq. (5) with m = 1 and a = λ2.

Equation
utt = cuxx + buxxxx + auxxxxxx + ( f (u))xx (6)
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admits a Hamiltonian formulation when it is written as an equivalent system. For this
equation, Recio, Gandarias, and Bruzón [37] established a point symmetry classifi-
cation in terms of the function f (u), determining the point symmetry group for all
possible nonlinear differentiable functions f (u). They also carried out an analogous
classification of conservation laws by employing the multiplier method.

In [24], Gandarias and Bruzón derived all the low-order conservation laws of
the Eq. (5) by using the multiplier method. Moreover, they considered potential and
nonclassical potential symmetries for some of the associated systems. Taking into
account the relationship between symmetries and conservation laws and applying the
multiplier method to a reduced ordinary differential equation (ODE), they obtained
a second-order ODE and two third-order ordinary differential equations.

Equation (1) with c0 = b1 = b2 = 0, d = −1, where − f ′(u) becomes f (u) and
with the additional second term responsible for strong internal damping

utt − utxx + uxxxx − ( f (u))xx = g(x) (7)

was studied by Gandarias and Rosa [23]. The authors gave the group classification
as well as corresponding reduced ODEs.

In this chapter, we study Eq. (1) from the standpoint of the theory of symmetry
reductions in PDEs. The fundamental basis of this method is that when a differential
equation is invariant under a Lie group of transformations a reduction transformation
does exist. This transformation reduces the number of independent variables of the
partial differential equation, in particular, we might reduce the partial differential
equation into ODEs. These ODEs may also have symmetries that allow us to reduce
the order of the equation, and we can integrate to find exact solutions [9, 27, 28, 36].

In [3, 4], an algorithmic method was presented for finding the local conservation
laws for partial differential equations with any number of independent and dependent
variables. The method does not require the use or existence of a variational princi-
ple and reduces the calculation of conservation laws to solving a system of linear
determining equations similar to that for finding symmetries, see [1–8]. Many papers
using this method have been published (see [21–24]).

In [30], (see also [29]) a theorem on conservation laws for an arbitrary differential
equation which does not require the existence of Lagrangian has been proved. This
theorem is based on the concept of adjoint equations for nonlinear equations. The self-
adjointness condition has been subsequently extended yielding to the nonlinear self-
adjointnes condition in [18–20, 25, 26, 29]. After Ibragimov’s results, several papers
appeared concerned with the nonlinear self-adjointnes condition and its applications
to PDEs [31–34].

In [14], Bruzón, Gandarias and Ibragimov by applying the algorithm of Ibragimov
obtained conservation laws of a family of generalized thin film equations. In [35],
Ibragimov et al. investigated the symmetries and conservation laws for the scalar
nonlinear anisotropic wave equations with specific external sources, which involves
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two arbitrary functions, when the equations in question are nonlinearly self-adjoint.
All conservation laws involving thefirst-order derivatives are constructed for the basic
equation using the conservation laws theorem for nonlinearly self-adjoint differential
equations.

Conservation laws that are symmetry invariant have some important applications.
It is well known that when a differential equation admits a Noether symmetry, a
conservation law is associated with this symmetry, and furthermore that a double
reduction can be achieved as a result of this association. A more general double
reduction method which applies to non-variational PDEs has been developed in
[38, 39]. Examples about the method are in [10, 15, 17]. De la rosa, Gandarias,
and Bruzón determined the subclasses of a generalized variable-coefficient Gard-
ner equation which are nonlinearly self-adjoint, as well as the multipliers, of Anco
and Bluman method. They derived conservation laws by using both methods. The
authors showed that some of these conservation laws yields conserved integrals with
physical meaning, such as mass and energy. As an example of another application of
the conserved vectors, they applied the double reduction method to get exact solu-
tions of the Gardner equation from solutions of a second-order reduced ODE. In
[22], Gandarias and Rosa for Eq. (7) derived some non-trivial conservation laws by
using the multipliers conservation laws method. Taking into account the relationship
between symmetries and conservation laws and by applying the double reduction
method, they derived a direct reduction of order of the ODEs and in particular they
found a kink solution.

In [2, 5], the relationship between symmetries and conservation laws has been
analyzed. By using the direct method of the multipliers, Anco developed symmetry
properties of conservation laws of PDEs. In particular, the author provided a theo-
retical framework to comprehend and generalize the method proposed by Sjöberg.
In this way, the author proved that conservation laws that are symmetry invariant
or symmetry homogeneous have at least one important application: any symmetry-
invariant conservation law will reduce to a first integral for the ODE obtained by
symmetry reduction of the given PDE when symmetry-invariant solutions u(x, t)
are investigated. This provides a direct reduction of order of the ODE.

In [7], Anco and Gandarias provided an explicit algorithmic method to find all
symmetry-invariant conservation laws that will reduce to first integrals for the ODE
describing symmetry-invariant solutions of the PDE. This significantly generalizes
the double reductionmethodknown in the literature. They also proved that if the space
of symmetry-invariant conservation laws has dimension m ≥ 1, then the method
yields m first integrals along with a check of which ones are non-trivial via their
multipliers. In this work, for Eq. (1), we derive conservation laws by using the direct
method of the multipliers. Moreover we will directly derive all the conservation laws
which are invariant under translations, then a set of first integrals are obtained which
allows for further reduction of the ODE. This method yields a direct triple reduction
from a single symmetry.

The structure of the chapter is as follows. In Sect. 2, we have applied the Lie group
method of infinitesimals transformations to the sixth-order Boussinesq (1) and we
have reported its reductions obtained from the optimal system of subalgebras. In
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Sect. 3 in order to obtain exact solutions, by applying a direct method we find the
functions f ′(u) forwhich Eq. (1) admits travelingwave solutions. For these functions
we obtain exact solutions of Eq. (1).Moreover, in Sect. 4 the double reductionmethod
have been applied and, of course, their conservation laws have been obtained.

2 Lie Symmetries

To apply the classical method to (1) we consider the one-parameter Lie group of
infinitesimal transformations in (x, t, u) given by

x∗ = x + εξ(x, t, u) + O(ε2), (8)

t∗ = t + ετ(x, t, u) + O(ε2),

u∗ = u + εη(x, t, u) + O(ε2),

where ε is the group parameter which is generated by the vector field

X = ξ(x, t, u)∂x + τ(x, t, u)∂t + η(x, t, u)∂u . (9)

By Criterion of Invariance [36] we require to leave invariant the solution space of
Eq. (1). This condition is given by

pr(6)X
(
utt − c20uxx − b1uttxx − b2uxxxx − duxxxxxx − ( f ′(u))xx

) = 0 (10)

when the equation is satisfied, where pr(6)X is the sixth-order prolongation of the
vector field (9). This yields to an overdetermined, linear system of equations for the
infinitesimals ξ(x, t, u), τ (x, t, u) and η(x, t, u), together with the function f ′(u)

and the parameters b1, b2, d, c0. Solving the system we obtain the point symmetries
admitted by Eq. (1) with d �= 0 and f ′(u), f ′′(u) �= 0. In Table1, we list the cases
for which (1) has symmetries.

In Table1, p �= 0, k �= 0, a and b are arbitrary constants. On the other hand,
symmetries X1 and X2 represent space and time-translations, which are admitted
for any nonlinearity f (u). The resulting form for invariant solutions is, in general, a
travelingwave. In cases 2, 3 and 4 there is an additional admitted symmetry consisting
of a scaling combined with a shift, where f (u) is power nonlinearity in terms of the
shift on u.

The corresponding symmetry transformation groups are given by
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Table 1 Point symmetry classification of Eq. (1)

Case F(u) = f ′(u) Conditions Symmetry generators

1. Arbitrary – X1 = ∂x , X2 = ∂t

2. k (a + u)p − b − c02u b1 = b2 = 0 X1 = ∂x ,X2 = ∂t ,

X3 = x∂x + 3t∂t
+ −4

p−1 (a + u)∂u

3. k epu − c02u + b b1 = b2 = 0 X1 = ∂x ,X2 = ∂t ,

X4 = x∂x + 3t∂t
− 4

p ∂u

4. ln
(
c02 + u

) −
c02 (u + b)

b1 = b2 = 0 X1 = ∂x ,X2 = ∂t ,

X5 = x∂x + 3t∂t
+ 4(c20 + u)∂u

(t, x, u)1 −→ (t + ε, x, u),

(t, x, u)2 −→ (t, x + ε, u),

(t, x, u)3 −→ (te3 ε, xeε, e−4 ε
p−1 u + ∫ ε

0 −4 a
p−1 e

4 z1
p−1 dz1e

−4 ε
p−1 ),

(t, x, u)4 −→ (te3 ε, xeε,−4 ε
p + u),

(t, x, u)5 −→ (te3 ε, xeε, e4 εu + ∫ ε

0 4 c0
2e−4 z1 dz1e4 ε),

with ε the group parameter.
Each admitted point symmetry can be used to reduce Eq. (1) to an ordinary differ-

ential equation (ODE) whose solutions correspond to invariant solutions u(x, t) of
Eq. (1) under the point symmetry. These invariant solutions are naturally expressed
in terms of similarity variables which are found by solving the invariance condition

η(t, x, u) − τ(t, x, u)ut − ξ(t, x, u)ux = 0. (11)

In Table2, we present the similarity variables and form of the similarity solutions
for an optimal set of point symmetry generators for each case in the symmetry
classification, where f ′(u) = F(u).

In Table3, we show the reduced equation.

3 Traveling Wave Solutions

In this section, we obtain traveling wave solutions of equation 1 of Table3 by using
a direct method. Integrating this equation twice with respect to z, we get

b1μ
2h′′′′ + (μ2b1 − λ2b2)h

′′ + (c20λ
2 − μ2)h + λ2F(h) + Az + B = 0, (12)
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Table 2 Form of similarity solutions of Eq. (1)

Case Optimal symmetry
generators

Similarity variable z Form of u(t, x)

1. λX1 + μX2 μx − λt h(z)

2. λX1 + μX2 μx − λt h(z)

X3 xt−1/3 t−
4

3(p−1) h(z) − a

3. λX1 + μX2 x − μ
λ
t h(z)

X4 xt−1/3 − 4
p ln x + h

4. λX1 + μX2 μx − λt h(z)

X5 xt−1/3 t4/3h(z) − c20

Table 3 Reduced equations of Eq. (1)

1. −F ′′(h)
(
h′)2 λ2 − c02

(
h′′) λ2 − F ′(h)h′′λ2

− dh′′′′′′λ2 − b1 h′′′′μ2 + b2 h′′′′λ2 + h′′μ2 = 0

2. −dh′′′′′′λ2 − kpλ2
(
h′)2 (p − 1) (a + h)−2+p

− h′′ ((a + h)p−1 kpλ2 − μ2
) = 0

h′ (−4 p2 + 4
)
z
7 p−3
p−1

+
(
9 d (p − 1)2 h′′′′′′ + 9 kp

(
h′)2 (p − 1)3 (h (z))−2+p

+9 kph′′ (p − 1)2 h p−1 + (−12 p − 4) h
)
z
6 p−2
p−1

− (p − 1)2 h′′z
8 p−4
p−1 = 0

3. −dλ2 (a + h)2 h′′′′′′ + h′′μ2 (a + h)2

− λ2 p
(
(a + h) h′′ + (

h′)2 (p − 1)
)
k (a + h)p = 0

h′′ pz8 + 4h′ pz7 − 9dh′′′′′′ pz6 − 9
(
h′)2 kp3ehpz2

− 9h′′kp2ehpz2d + 72h′kp2ehpz
−180kpehp − 4320 = 0

4.
(−dh2 − 2c02dh − c04d

)
h′′′′′′μ6

+
((−h − c02

)
h′′ + (

h′)2
)

μ2

+ (
λ2h2 + 2λ2c02h + λ2c04

)
h′′ = 0

h2h′′z2 − 4 h2h′z − 9 h2h′′′′′′d + 4 h3 − 9 hh′′
+ 9

(
h′)2 = 0

where A and B are integrating constants.
We consider Eq. (12) with A = B = 0

h′′′′ + (μ2b1 − λ2b2)

b1μ2
h′′ + (c20λ

2 − μ2)

b1μ2
h + λ2

b1μ2
F(h) = 0. (13)

Equation (13) can be written as

h′′′′ + bh′′ + G(h) = 0, (14)
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where b = μ2b1−λ2b2
b1μ2 and

G(h) = (c20λ
2 − μ2)

b1μ2
h + λ2

b1μ2
F(h). (15)

Equation (14) has solutions in the form

h = αHβ(z), (16)

where α and β are parameters and H(z) is a solution of the Jacobi equation

(H ′)2 = r + pH 2 + qH 4, (17)

with r , p, and q constants. Substituting (16) into (14) and by using the identities
which satisfy the standard Jacobi elliptic functions we can obtain an equation in h
and G(h). Since these equations are enormously long, we don’t include them. From
these equations, we can obtain the functions G(h) for the which H is solution of
Eq. (14):
Case (i): If H(z) = sn(z),

h(z) = α snβ(z). (18)

F(h) = α1h
4
β
+1 + α2h

2
β
+1 + α3h

− 4
β
+1 + α4h

− 2
β
+1 + α5h, (19)

where

α1 = −α
− 4

β

[
β4 m4 + (

6β3 + 8β2 + 4β
)
m3 + (

3β2 + 2 β
)
m2] , (20)

α2 = α
− 2

β

[(
2 β4 − 6β3 + 8β2 − 4 β

)
m4 + (

12 β3 − 6β2 + 8β
)
m3

+ (
2 β4 + (6 − b) β2

)
m2 + (

6β3 + 8β2 + (4 − b) β
)
m

]
, (21)

α3 = −α
4
β β4 + 6α

4
β β3 − 11α

4
β β2 + 6α

4
β β, (22)

α4 =
(
2α

2
β β4 − 12α

2
β β3 + 22α

2
β β2 − 12α

2
β β

)
m2

+
(
α

2
β b − 4α

2
β

)
β + 2α

2
β β4 − 6α

2
β β3 +

(
8α

2
β − α

2
β b

)
β2 (23)

+
(
6α

2
β β3 − 14α

2
β β2 + 8α

2
β β

)
m, (24)

α5 = (−β4 + 6β3 − 11β2 + 6β
)
m4 + (−6β3 + 14β2 − 8β

)
m3

+ (−4β4 + 12β3 + (b − 19) β2 + (10 − b) β
)
m2 (25)

+ (−12β3 + 6β2 + (b − 8) β
)
m − β4 + bβ2. (26)

Case (ii): If H(z) = cn(z),
h(z) = α cnβ(z). (27)



Symmetry Analysis and Conservation Laws of a Family … 161

F(h) = β1h
4
β
+1 + β2h

2
β
+1 + β3h

− 4
β
+1 + β4h

− 2
β
+1 + β5h, (28)

where

β1 = α
− 4

β βm2
(
β3m2 + 6β2m + 8βm + 4m + 3β + 2

)
, (29)

β2 = −α
− 2

β

[
βm

(
4β3m3 − 6β2m3 + 8βm3 − 4m3 + 18β2m2 + b

+2βm2 + 12m2 − 2β3m + bβm + 6βm − 6β2 − 8β − 4
)]

, (30)

β3 = α
4
β (β − 3) (β − 2) (β − 1) β (m − 1)2 (m + 1)2 , (31)

β4 = −α
2
β (β − 1) β (m − 1) (m + 1)

(
4β2m2 − 14βm2 + 16m2

+6βm − 8m − 2β2 + 4β + b − 4
)
, (32)

β5 = β
(
6β3m4 − 18β2m4 + 27βm4 − 14m4 + 18β2m3 − 20βm3

+16m3 − 6β3m2 + 12β2m2 + 2bβm2 − 13βm2 − bm2 + 6m2

−12β2m + 6βm + bm − 8m + β3 − bβ
)
. (33)

Case (iii): If H(z) = dn(z),
h(z) = α dnβ(z). (34)

F(h) = γ1h
− 2

q +1 + γ2h + γ3h
2
q +1 + γ4h

− 4
q +1 + γ5h

4
q +1

, (35)

where

γ1 = −α
− 4

β m−4β
(
8m3 + 28βm2 − 12m2 + 12β2m − 28βm

+16m + β3 − 6β2 + 11β − 6
)
, (36)

γ2 = −α
− 2

β m−4β
(
4m5 + 28βm4 − 12m4 + 18β2m3 − 42βm3

−2bm3 + 16m3 + 2β3m2 − 12β2m2 − bβm2 − 34βm2 + bm2 (37)

+12m2 − 36β2m + 84βm − 48m − 4β3 + 24β2 − 44β + 24
)

γ3 = −α
4
β m−4 (β − 3) (β − 2) (β − 1) β (m − 1)2 (m + 1)2 , (38)

γ4 = α
2
β m−4 (β − 1) β (m − 1) (m + 1)

(
6βm3 − 8m3 + 2β2m2 (39)

−10βm2 − bm2 + 12m2 − 12βm + 16m − 4β2 + 20β − 24
)

γ5 = −β
(
3βm6 − 2m6 + 6β2m5 − 14βm5 − bm5 + 8m5 + β3m4

−6β2m4 − bβm4 − 17βm4 + bm4 + 6m4 − 36β2m3 + 84βm3

+2bm3 − 48m3 − 6β3m2 + 36β2m2 + 2bβm2 − 38βm2 (40)

−2bm2 + 24m2 + 36β2m − 84βm + 48m + 6β3 − 36β2

+66β − 36)m−4. (41)
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Substituting (19), (28) and (35) into (15), we obtain the functions f (h) for which h
is solution of Eq. (13):
Case (i): Substituting (19) into (15), we obtain that

F(h) = α′
1h

4
β
+1 + α′

2h
2
β
+1 + α′

3h
− 4

β
+1 + α′

4h
− 2

β
+1 + α′

5h, (42)

whereα′
i = −μ2λ2αi , i = 1, . . . , 4,α′

5 = −μ2λ2α5 + μ2(λ2 − μ2),αi , i = 1, . . . , 5,
are given in (20)–(26) and a solution of Eq. (13) is

h(z) = α snβ(z|m).

Consequently, an exact solution of Eq. (1), where F(u) is obtained substituting h by
u in (42), is

u(x, t) = α snβ(μx − λt |m). (43)

In the following, we give some solutions with physical interest:

• For m = 0, μ = λ = 1
2

√
5
12 , α = 1 and β = 2, substituting in (42) we obtain

F(h) = − 5
288

(
12 c2 − 17

)
(2 h − 1) . (44)

and, as sn(z, 0) = sin(z), we can obtain the particular solution (Fig. 1)

h(z) = sin2(z).

Consequently, an exact solution of Eq. (1), where F(u) is obtained substituting h by
u in (56), is

u(x, t) =
{
sin2

[
1
2

√
5
12 (x − t)

]
|x − t | ≤ 2π

k ,

0 |x − t | > 2π
k ,

(45)

with k =
√

5
12 .

• For m = μ = β = 1, λ = 1
2 and α = 1

4 , substituting into (42), we obtain

F(h) = 1536h5 + 32c h3 − 168h3 +
(
15

4
− 2c

)
h, (46)

and, as sn(z|1) = tanh(z), a solution of Eq. (12) (Fig. 2) is

h(z) = 1

4
tanh(z).

Consequently, an exact solution of Eq. (1), where F(u) is obtained substituting h by
u in (46), is
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10 5 0 5 10 15 20
z

0.2

0.4

0.6

0.8

1.0
h

Fig. 1 Solution h(z) = sin2(z) of Eq. (13)

4 2 2 4 6
z

0.2

0.1

0.1

0.2

h

Fig. 2 Solution h(z) = 1
4 tanh(z) of Eq. (13)

u(x, t) = 1

4
tanh

(
x − t

2

)
. (47)

• For m = μ = α = 1, λ = 1
2 , and β = 3, substituting into (42), we obtain
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4 2 2 4
z

1.0

0.5

0.5

1.0

h

Fig. 3 Solution h(z) = tanh3(z) of Eq. (13)

F(h) = 90h
7
3 + 3

(
4c2 − 69

)
h

5
3 + 3

2

(
4c2 − 21

) 3
√
h − 3

4

(
24c2 − 197

)
h− 1

3 ,

(48)
and a solution of Eq. (12) is

h(z) = tanh3z.

Consequently, an exact solution of Eq. (1), where f (u) is obtained substituting h by
u in (48), is (Fig. 3)

u(x, t) = tanh3
(
x − t

2

)
. (49)

Case (ii): Substituting (28) into (15) we obtain that

F(h) = β ′
1h

4
β
+1 + β ′

2h
2
β
+1 + β ′

3h
− 4

β
+1 + β ′

4h
− 2

β
+1 + β ′

5h, (50)

where β ′
i = −μ2λ2βi , i = 1, . . . , 4, β ′

5 = −μ2λ2β5 + μ2(λ2 − μ2), βi , i = 1, . . . ,
5, are given in (29)–(33) and a solution of Eq. (13) is

h(z) = α cnβ(z|m).

Consequently, an exact solution of Eq. (1), where F(u) is obtained substituting h by
u in (50), is

u(x, t) = α cnβ(μx − λt |m). (51)

• For m = 0, μ = λ = 1
2

√
5
7 , α = 1 and β = 2, substituting in (50) we obtain
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10 5 0 5 10 15
z

0.2

0.4

0.6

0.8

1.0
h

Fig. 4 Solution h(z) = cos2(z) of Eq. (13)

F(h) = 5
288

(
12 c2 − 17

)
(2 h − 1) . (52)

Due that cn(z|0) = cos(z), we can obtain the particular solution Fig. 4

h(z) = cos2(z)

Consequently, an exact solution of Eq. (1), where F(u) is obtained substituting h
by u in (56), is

u(x, t) =
{
cos2(μx − λt) |x − t | ≤ 3π

k ,

0 |x − t | > 3π
k ,

(53)

with k =
√

5
7 .

Case (iii): Substituting (35) in (15), we obtain that

F(h) = γ ′
1h

4
β
+1 + γ ′

2h
2
β
+1 + γ ′

3h
− 4

β
+1 + γ ′

4h
− 2

β
+1 + γ ′

5h, (54)

whereγ ′
i = −μ2λ2γi , i = 1, . . . , 4,γ ′

5 = −μ2λ2γ5 + μ2(λ2 − μ2),γi , i = 1, . . . , 5,
are given in (36)–(41) and a solution of Eq. (13) is

h(z) = α dnβ(z|m).

Consequently, an exact solution of Eq. (1), where F(u) is obtained substituting h by
u in (54), is

u(x, t) = α dnβ(μx − λt |m). (55)
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4 2 0 2 4
x

0.2

0.4

0.6

0.8

1.0
u

Fig. 5 Solution h(z) = sech2(z) of Eq. (13)

• For m = λ = μ = α = 1 and β = 2, substituting into (54) we obtain

F(h) = 120 h3 − 6
(
c2 + 19

)
h2 + 4

(
c2 + 3

)
h. (56)

Due that dn(z, 1) = sech(z), we can obtain the particular solution (Fig. 5)

h(z) = sech2(z).

Consequently, an exact solution of Eq. (1), where F(u) is obtained substituting h
by u in (56), is

u(x, t) = sech2(x − t). (57)

4 Conservation Laws

One interesting applications of symmetry reduction is the reduction to a traveling
waveODE. It happens that inmost of the applications of double reduction to PDEs the
considered conservation laws are invariant under translations. In a recent paper, a new
method has been proposed and one of advantages is that we start from a symmetry to
be used for reduction of a PDE, and then find all conservation laws that are invariant
under the symmetry. Each one will be inherited by the reduced differential equation.
This extension is more interesting when a PDE in two independent variables, such as
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the Boussinesq equation, is being reduced to an ODE, as then a set of first integrals
can be obtained which allows for further reduction of the ODE.

A local conservation law of a scalar PDE G(t, x, u, ut , ux , . . .) = 0 for u(t, x) is
a continuity equation DtT + DxΦ

x = 0 holding on the space ε of solutions of the
PDE, where T is the conserved density and Φ = (Φx ) is the spatial flux, which are
functions of t, x, u, and derivatives of u. The conserved current is (T, Φ).

Every non-trivial conservation law of the PDEG = 0 arises from amultiplier, and
there is a one-to-one correspondence between non-trivial conserved currents (T, Φ)|ε
modulo trivial ones and non-zeromultipliers Q|ε, with QG = DtT + DxΦ

x holding
as an identity. Here Q is a function of t, x, u, and derivatives of u, such that Q|ε is
non-singular. All multipliers are given by the solutions of the determining equation.
For each solution Q, a conserved current (T, Φ)|ε can be obtained by several explicit
methods.

A traveling wave has the form

u(t, x) = U (x − νt) (58)

where ν =const.
Invariance of a PDE G(t, x, u, ut , ux , . . .) = 0 under the translation symmetry

X = ∂t + c∂x , (59)

gives rise to traveling wave solutions, with z = x − ct and u = U being the invari-
ants.

In this chapter,wewill focus on the conservation lawsofEq. (1)which are invariant
under the translation symmetry (59).

We will consider the following low-order multipliers:

Q(t, x, u, ux , ut ). (60)

The determining equations split into an over-determined linear system which is
straightforward to solve for Q f ′′ �= 0, with c0 �= 0, d <> 0 bi <> 0 i = 1, . . . , 2.

Proposition 1 The low-order multipliers (60) admitted by the generalized sixth-
order Boussinesq equation (1) with c0 �= 0, d <> 0, bi <> 0 i = 1 . . . 2. invariant
under the translations group with c0 �= 0, d <> 0, bi <> 0, i = 1, . . . , 2 are given
by
(i) c0 �= 0, d <> 0 bi <> 0 i = 1, . . . , 2, f ′′ <> 0

Q1 = 1,
Q2 = x − ct;
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(ii) f ′′′(u) = 0,
Q1 = 1,
Q2 = x − ct
Q3 = ut ,
Q4 = ux

These multipliers yield non-trivial conservation laws of low order, summarized as
follows.

Theorem 1 (i) The low-order conservation laws for the sixth-order Boussinesq
equation (1) with c0 �= 0, d <> 0, bi <> 0, i = 1 . . . 2 for f ′′ �= 0 f ′′′ = 0 are
given by (up to equivalence):

case 1:

T1 = ut
X1 = −dux,x,x,x,x + b2uxxx − b1uttx + (−c20 − f ′′)ux (61)

T2 = (−ct + x)ut + cu + utxxb1(ct − x)

X2 = −b2(ct − x)uxxx − b1cutx − b2uxx + (ct − x)(c20 + f ′′) f ′′ux + c20u

+d(ctuxxxxx − xuxxxxx + uxxxx ) + f ′ (62)

case2: c0 �= 0, d <> 0, bi <> 0 i = 1 . . . 2 for f (u) = (1/2)c1u2 + c2u + c3

T3 = (1/2)du2xxx + (1/2)b2u
2
xx + (1/2)b1u

2
t x + (1/2)u2t + (1/2)c20u

2
x + (1/2)c1u

2
x

X3 = (b2ut − dutxx )uxxx + (−b2uxx + duxxxx )utx
+(−duxxxxx + (−c20 − c1)ux − b1uttx )ut (63)

T4 = −b1uxutxx + utux

X4 = −(1/2)du2xxx + b2uxuxxx + (1/2)b1u
2
t x − (1/2)b2u

2
xx

+duxxuxxxx − (1/2)u2t + (−(1/2)c20 − (1/2)c1)u
2
x − duxuxxxxx (64)

A traveling wave has the form

u(t, x) = U (x − ct) (65)

where c =const.
Invariance of a PDE G(t, x, u, ut , ux , . . .) = 0 under the translation symmetry

X = ∂t + c∂x , (66)

gives rise to traveling wave solutions, with z = x − ct and u = U being the invari-
ants.

Substitution of the traveling wave expression
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u(t, x) = U (x − ct) (67)

into Eq. (1) yields a nonlinear sixth-order ODE

−dU ′′′′′′ + (−b1c
2 + b2)U

′′′′ −
(
U ′2c1(p − 1)(p − 2)U (z)−3+p(−c1(p − 1)U (z)p−2

+c2 − c02
)
U ′′ = 0 (68)

By using the two conservation laws (61), (62), we get the following two first
integrals

Ψ1 = (−(c − c0)(c + c0) + c1(p − 1)U (z)p−2U ′) +U ′′′)b1c2 −U ′′′b2 +U ′′′′′d
= C1 (69)

Ψ2 = (−z(c − c0)(c + c0) + zc1(p − 1)U (z)p−2U ′) + (c − c0)(c + c0)U

+U ′′′b1c2z − b1c
2U ′′

−U ′′′b2z +U ′′′′′dz −U ′′′′d + b2U
′′ − c2 −U p−1c1 = C2 (70)

By combining these first integrals, we have obtained a triple reduction to a fourth-
order autonomous equation

U ′′′′ = (1/d)(−U p−1c1 + ((−b1c
2 + b2)U

′′ + (c2 − c20)U
−1 + C1zU

−2 − (C2 − c2)U
−2

(71)
The remaining conservation laws are also invariant under the translation group yield-
ing first integrals, setting C1 = C2 = 0.

5 Conclusion

We have considered a nonlinearly generalized sixth-order Boussinesq equation (1),
depending on an arbitrary nonlinear differential function f (u) and the parameters
b1, b2, c0. By using a direct method we have derived traveling wave solutions for
Eq. (1). Among them, we found solitons, kinks, antikinks, and compactons.

We have established a point symmetry classification of Eq. (1)in terms of the
function f (u) and the parameters b1, b2, c0, determining the point symmetry group
for all possible nonlinear differential functions f (u) and the parameters b1, b2, c0.
Wehave also carried out an analogous classification of conservation laws of Eq. (1) by
employing the multiplier method. By using the two conservation laws, we construct
two first integrals. By combining these first integrals, we have obtained a triple
reduction to a fourth-order autonomous equation.

Acknowledgements The support of Junta de Andalucía FQM-201 group and University of Cádiz
is gratefully acknowledged.
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Group Analysis of the Guéant and Pu
Model of Option Pricing and Hedging

Khristofor V. Yadrikhinskiy, Vladimir E. Fedorov, and Mikhail M. Dyshaev

Abstract The Guéant and Pu model of option pricing and hedging with the exe-
cution costs and the market impact is analyzed with different stationary execution
costs functions. The group classification of the model with a nonlinear execution
costs functions is obtained. Symmetries of concrete models are used for invariant
solutions and invariant submodels search. The model with the linear execution costs
function is reduced to the heat equation. Known results on this equation are applied
to the study of the linear function case.

1 Introduction

Classical option pricing models are based on the perfect market hypothesis. Under
this hypothesis, there are no execution costs and market participants use only the
prevailing market prices and cannot influence the prices by their operations, either
temporarily, or permanently. These assumptions, despite the obvious contradiction
with the market practice, are quite widely used and the resulting models give useful
results when the underlying asset is liquid and the transaction amount is not too large
for the market.

However, in the case of options for an illiquid asset or large denominations relative
to the normally traded volume in the market, the market impact and execution costs
can no longer be excluded from the consideration.
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Perhaps one of the first works on the pricing of options was the thesis of Bachelier
[1] in 1900. L.Bachelier calculated the prices of stock options, assuming a change
in the price of the underlying asset (stock) according to the laws of the Brownian
motion, and compared them with the current prices.

In 1965, Samuelson [2] proposed to use the so-called geometric (economic) Brow-
nian motion to describe the dynamics of the stock price. The geometric Brownian
motion served as the basis for the Black–Scholes–Merton model (1973) [3–5] and
the well-known Black–Scholes formula.

Due to the fact that the Black–Scholes model does not take into account execution
costs and the impact ofmarket participants’ transactions on current prices, researchers
are actively studying changes in the model, which can be taken into account. There
are two approaches to account for the impact of transactions on prices.

Kyle [6] introduced the concept that trades made by market participants can influ-
ence the market price. The market impact is a direct consequence of the order size
effect. There is plenty of empirical evidence for this. As a rule, the main task when
executing orders is to have the least possible impact on the current prices.

The first approach is usually called the �supply curve� approach. It takes into
account the impact on the price of a traded asset of operations of high volume or
insufficient liquidity. This approach was created and further developed in the works
of Bank and Baum [7], Çetin, Jarrow and Protter [8, Sect. 4], Çetin and Rogers [9,
Sect. 6].

The second approach examines the situations observed in practice related to the
influence of delta hedging (dynamic hedging) on the dynamics of the underlying
asset and the resulting feedback effect on the option price. Grossman [10] wrote one
of the first works in this direction. There are also works, devoted to the study of this
approach, of Platen and Schweizer [11], Sircar and Papanicolaou [12], Schönbucher
and Wilmott [13].

The work of Magill and Constantinides [14] was one of the earliest studies to
investigate the effect of transaction costs on portfolio pricing. This article has shown a
number of fundamental qualitative changes that occur in the behavior of an investor’s
portfolio when trading opportunities must be paid in one form or another.

Leland [15] proposed one of the first models which took transactions into account
when determining the price of options. Themodel of Barles and Soner [16] takes into
account transaction costs and the risk aversion factor of hedgers, it was obtained using
the asymptotic analysis methods. In the work of Cvitanić and Karatzas [17] bymeans
of the martingale approach, a formula is obtained for calculating the minimum of the
initial capital required to hedge an arbitrary conditional claim in a continuous-time
model, taking into account proportional transaction costs.

In addition, an approach which takes into account transaction costs and is based
on “optimal execution theory” has been introduced recently. In this approach, Rogers
and Singh [18], Li and Almgren [19] considered execution costs that are not linear
relative to the executed volume, but convex to account for the impact of liquidity.

These models have been studied by many authors both numerically and analyti-
cally. Analytical study of the Black–Scholes equation by the group analysis methods
was carried out in the work of Ibragimov and Gazizov [20]. In the works of Bor-
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dag with co-authors [21–25], of Dyshaev and Fedorov [26–32] and other authors
group properties of various nonlinear Black–Scholes type models were studied, their
invariant solutions and submodels were calculated.

1.1 A Brief Description of the Guéant and Pu Model

In the work of Guéant and Pu [33] (see [34] also), devoted to the analysis of options
pricing taking into account transaction costs and the impact of operations on the
market, the problem of call option selling by a bank or trader in the market to a client
with a maturity of T is solved under the next assumptions:

(1) the constant risk-free rate r , the absolute risk aversion parameter γ and the
volatility σ are considered;

(2) the process of market trading volume Vt is considered deterministic, non-
negative, and bounded;

(3) trading is limited to the maximum degree of participation ρm and, therefore, pro-
cesses v are considered from the set of valid strategies A, which has a restriction
|vt | ≤ ρmVt almost everywhere on (0, T ) × �;

(4) the number of shares in the hedged portfolio is modeled as qt = q0 + ∫ t
0 vsds;

(5) the price process is modeled as dSt = μdt + σdWt + kvtdt , where μ is the
trend forecast, expected return of the underlying asset, and k linearly models the
permanentmarket impact; the authors considered the dynamics of the price of the
underlying asset, as in the Bachelier model instead of the classic Black–Scholes
model;

(6) to model execution costs a continuous non-negative function L : R → R+ is
used, which is even, increasing on R+, L(0) = 0, strictly convex and coercive,
i.e., limρ→+∞ L(ρ)

ρ
= +∞;

(7) for any v ∈ A the account X is changed as dXt = r Xt dt − vt St dt − Vt L(vt/Vt )dt;
(8) the penalty function L(q, q ′) models the liquidity price when moving from a

portfolio with q shares to a portfolio with q ′ shares. Its form is specified as
L(q, q ′) = l(|q − q ′|) + 1

2k(q − q ′)2, where l is a convex and increasing func-
tion (possible variants of its form are suggested in [33], note 4).

Under these conditions, the problem of optimal stochastic control is set

sup
v∈A

E
[− exp(−γ (XT + qT ST − �(qT , ST )))

]
,

where E is the mathematical expectation. The value function and the associated
Hamilton–Jacobi–Bellman equation are defined for it.

When k = 0 and, therefore, in the absence of a permanent market impact, the
function θ(t, S, q) is obtained, which models the price of indifference of a call



176 K. V. Yadrikhinskiy

option, and by introducing the function H(p) = sup
|ρ|≤ρm

[pρ − L(ρ)] the differential
equation associated with θ is derived

−θt + rθ + (μ − r S)q − μθS − 1

2
σ 2θSS − 1

2
γ σ 2er(T−t)(θS − q)2 + Vt H(θq) = 0.

In this chapter, the group classification of this equation with a constant Vt is obtained,
and for different specifications of the free element H from the classification invariant
solutions and submodels are found.

2 The Group Classification of the Model

In this section, we will obtain the group classification for the Guéant–Pu equation
with stationary nonlinear free element.

2.1 Continuous Groups of the Equivalence Transforms

Consider the Guéant–Pu equation with a constant market trading volume

θt = rθ + (μ − r S)q − μθS − 1

2
σ 2θSS − 1

2
γ σ 2er(T−t)(θS − q)2 + F, (1)

where θ = θ(t, S, q) is unknown function, F = F(θq) is so-called free element, i. e.,
it is a given function of an arbitrary form. Hereafter, as before,

θt = ∂θ

∂t
, θq = ∂θ

∂q
, θS = ∂θ

∂S
, θSS = ∂2θ

∂S2
.

For the search of equivalence transformations groups, we consider the free element
F and its derivatives as independent variables [35]. Generators of such groups will
be searched in the form Y = τ∂t + ξ∂S + α∂q + η∂θ + ζ∂F , where τ , ξ , α, η depend
on t , S, q, θ , and ζ depends on t , S, q, θ , F , θt , θS , θq . Additional equations

Ft = 0, Fq = 0, FS = 0, Fθ = 0, FθS = 0, Fθt = 0, (2)
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meaning the dependence of F on θq only, will be considered together with (1) as
a manifold M in the extended space of the corresponding variables. Let us act on
Eq. (1) by the prolonged operator

Y
2

= Y + ηt∂θt + ηS∂θS + ηq∂θq + ηSS∂θSS + ζ t∂Ft + ζ S∂FS + ζ q∂Fq + ζ θ∂Fθ

+ζ θt ∂Fθt
+ ζ θS∂FθS

+ ζ θq ∂Fθq

and after the restriction of the result on the manifold M obtain the equation by virtue
of the invariance criterion

− ηt + rη − r Sα − rqξ + (
μ + γ σ 2er(T−t)(θS − q)

)
(−ηS + α)

+ r

2
γ σ 2er(T−t)(θS − q)2τ + ζ − 1

2
σ 2ηSS|M = 0. (3)

Analogously from (2), we obtain

ζ t |M = 0, ζ q |M = 0, ζ S|M = 0, ζ θ |M = 0, ζ θS |M = 0, ζ θt |M = 0. (4)

The coefficients of the operator Y
2
are calculated through the full derivative oper-

ators, for example

DS = ∂

∂S
+ θS

∂

∂θ
+ θSS

∂

∂θS
+ · · · , D̃t = ∂

∂t
+ Ft

∂

∂F
+ · · · ,

D̃θ = ∂

∂θ
+ Fθ

∂

∂F
+ · · · , D̃θt = ∂

∂θt
+ Fθt

∂

∂F
+ · · · ,

and the prolongation formulas

ηt = Dtη − θt Dtτ − θSDtξ − θq Dtα,

ηS = DSη − θt DSτ − θSDSξ − θq DSα,

ηSS = DSη
S − θt S DSτ − θSSDSξ − θSq DSα, . . . ,

ζ q = D̃qζ − Ft D̃qτ − FS D̃qξ − Fq D̃qα − Fθ D̃qη − Fθt D̃qη
t

− FθS D̃qη
S − Fθq D̃qη

q ,

ζ θ = D̃θ ζ − Ft D̃θ τ − FS D̃θ ξ − Fq D̃θα − Fθ D̃θη − Fθt D̃θη
t

− FθS D̃θη
S − Fθq D̃θη

q ,

ζ θt = D̃θt ζθt − Ft D̃θt τ − FS D̃θt ξ − Fq D̃θtα − Fθ D̃θtη − Fθt D̃θtη
t

− FθS D̃θtη
S − Fθq D̃θtη

q , . . .
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We calculate them

ηt = ηt + θtηθ − θt (τt + θtτθ ) − θS(ξt + θtξθ ) − θq(αt + θtαθ),

ηS = ηS + θSηθ − θt (τS + θSτθ ) − θS(ξS + θSξθ ) − θq(αS + θSαθ),

ηq = ηq + θqηθ − θt (τq + θqτθ ) − θS(ξq + θqξθ ) − θq(αq + θqαθ),

ηSS = ηSS + 2θSηSθ + θ2
Sηθθ − 2θt S(τS + θSτθ )

+ θSS(ηθ − θtτθ − θqαθ − 2ξS − 3θSξθ ) − 2θSq(αS + θSαθ)

− θt (τSS + 2θSτSθ + θ2
Sτθθ ) − θS(ξSS + 2θSξSθ + θ2

Sξθθ )

− θq(αSS + 2θSαSθ + θ2
Sαθθ ),

substitute the coefficients into Eqs. (3), (4) and get the system

ζ t |M = ζt − Fθq (ηtq + θqηtθ − θS(ξtq + θqξtθ ) − θq (αtq + θqαtθ )

−
(

rθ + (μ − r S)q − μθS − 1

2
σ 2θSS − 1

2
γ σ 2er(T−t)(θS − q)2 + F

)

× (τtq + θqτtθ )) = 0, (5)

ζ S |M = ζS − Fθq (ηSq + θqηSθ − θS(ξSq + θqξSθ ) − θq (αSq + θqαSθ )

− (
rθ + (μ − r S)q − μθS − 1

2
σ 2θSS − 1

2
γ σ 2er(T−t)(θS − q)2 + F

)

× (τSq + θqτSθ )) = 0, (6)

ζq |M = ζq − Fθq (ηqq + θqηqθ − θS(ξqq + θqξqθ ) − θq (αqq + θqαqθ )

−
(

rθ + (μ − r S)q − μθS − 1

2
σ 2θSS − 1

2
γ σ 2er(T−t)(θS − q)2 + F

)

× (τqq + θqτqθ )) = 0, (7)

ζ θ |M = ζθ − Fθq (ηqθ + θqηθθ − θS(ξqθ + θqξθθ ) − θq (αqθ + θqαθθ )

− (
rθ + (μ − r S)q − μθS − 1

2
σ 2θSS − 1

2
γ σ 2er(T−t)(θS − q)2 + F

)

× (τqθ + θqτθθ )) = 0, (8)

ζ θt |M = ζθt + Fθq (τq + θqτθ ) = 0, (9)

ζ θS |M = ζθS + Fθq (ξq + θqξθ ) = 0, (10)

rη − r Sα − rqξ + r

2
γ σ 2er(T−t)(θS − q)2τ + (μ + γ σ 2er(T−t)(θS − q))

× (−ηS − θSηθ + θS(ξS + θSξθ ) + θq (αS + θSαθ ) + α) − ηt + θSξt

+ θqαt + ζ − 1

2
σ 2(ηSS + 2θSηSθ + θ2Sηθθ − 2θt S(τS + θSτθ )

+ θSS(ηθ − θqαθ − 2ξS − 3θSξθ ) − 2θSq (αS + θSαθ )

− θS(ξSS + 2θSξSθ + θ2Sξθθ ) − θq (αSS + 2θSαSθ + θ2Sαθθ ))

+ (
τt − ηθ + θSξθ + θqαθ + 1

2
σ 2(τSS + 2θSτSθ + θ2Sτθθ + θSSτθ )

+ (
μ + γ σ 2er(T−t)(θS − q)

)
(τS + θSτθ )

)
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× (
rθ + (μ − r S)q − μθS − 1

2
σ 2θSS − 1

2
γ σ 2er(T−t)(θS − q)2 + F

)

+ τθ
(
rθ + (μ − r S)q − μθS − 1

2
σ 2θSS − 1

2
γ σ 2er(T−t)(θS − q)2 + F

)2=0. (11)

Splitting the last equation with respect to the variables θt S , θSq we obtain that
τS = 0, τθ = 0, αS = 0, αθ = 0. By splitting with respect Fθq Eqs. (9) and (10) we
get the equalities τq = 0, ξq = 0, ξθ = 0. So, (5)–(10) will have the form

ζt − Fθq (ηtq + θqηtθ − θqαtq) = 0, (12)

ζS − Fθq (ηSq + θqηSθ ) = 0, (13)

ζq − Fθq (ηqq + θqηqθ − θqαqq) = 0, (14)

ζθ − Fθq (ηqθ + θqηθθ ) = 0, (15)

ζθt = 0, ζθS = 0. (16)

Split with respect to Fθq in (15) and obtain ηqθ = 0, then split with Fθq θq in (14)
and get αqq = 0. Thus, due to (12)–(16), we have

ηtθ = αtq , ηtq = ηSq = ηSθ = ηqq = ηqθ = ηθθ = αqq = 0, (17)

ζt = ζS = ζq = ζθ = ζθt = ζθS = 0. (18)

Hence, ζ = ζ(θq , F).
Substitute the obtained functions into (11)

rη − r Sα − rqξ + r

2
γ σ 2er(T−t)(θS − q)2τ

+ (μ + γ σ 2er(T−t)(θS − q))(−ηS − θSηθ + θSξS + α) − ηt + θSξt + θqαt

+ ζ − 1

2
σ 2(ηSS + θSS(ηθ − 2ξS) − θSξSS)

+ (τt − ηθ )
(
rθ + (μ − r S)q − μθS − 1

2
σ 2θSS − 1

2
γ σ 2er(T−t)(θS − q)2 + F

) = 0.

(19)

Split with respect to θSS

τt = 2ξS. (20)

Therefore, ξSS = 0.
Now split (19) with respect to θS and obtain due to (20)

rτ − ηθ = 0, (21)
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ξt + (μ − γ σ 2er(T−t)q)(ξS − τt ) + γ σ 2er(T−t)(−qrτ − ηS + α) = 0, (22)

ζ = γ σ 2er(T−t)q
( − r

2
qτ + α − ηS

) + rqξ − (μ − r S)α − θqαt − rη + ηt

+ μηS + 1

2
σ 2ηSS − (

rθ + (μ − r S)q − 1

2
γ σ 2er(T−t)q2 + F

)
(τt − ηθ ).

(23)

Differentiate (22) with respect to q, taking into account (17), then

αq = rτ + ξS − τt = rτ − τt/2. (24)

Differentiate the last equation by t and use (17) and (21), then rτt = rτt − τt t/2,
τt t = 0. Now differentiate (23) with respect to θq and q and obtain by virtue of
(24) αtq = 0 = rτt − τt t/2. Hence, τt = 0, αtq = 0. Therefore, due to (20) ξS = 0.
Differentiate (22) by S and get

ηSS = 0. (25)

Denote τ = A, ξ = B(t). Since αq = rτ = r A, we have α = r Aq + C(t). From
(17), (21), and (25), it follows that η = r Aθ + Dq + E(t)S + G(t).

Substitute them in (23) and obtain

ζ = γ σ 2er(T−t)q(C(t) − E(t)) + rqB(t) − (μ − r S)C(t) − θqC
′(t) − r Dq

− r E(t)S − rG(t) + E ′(t)S + G ′(t) + μE(t) + r AF = 0.

Differentiating the both sides of this equality by θq and t , we get that C ′′(t) = 0
due to (18), C = C0 + C1t . After differentiating with respect to S, we get E(t) =
C0 + C1t + C1

r + C2ert . The differentiation by q implies the equality

B(t) = D + γ

r
σ 2er(T−t)

(C1

r
+ C2e

rt
)

and after differentiation by t we have G ′′(t) − rG ′(t) = −C1
r − C2ert , therefore,

G(t) = (
C3 − μ

r
C2t

)
ert + μ

r2
C1t + C4.

After substitution of the obtained functions into (22) we get C1 = C2 = 0, there-
fore

τ = A, ξ = D, α = r Aq + C0,

η = r Aθ+Dq + C0S + C3e
rt + C4, ζ = r AF − rC4.

So, we have obtained the next result
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Theorem 1 The Lie algebra for the continuous group of equivalence transforms to
Eq. (1) is generated by the operators

Y1 = ert∂θ , Y2 = ∂S + q∂θ , Y3 = ∂q + S∂θ ,

Y4 = ∂θ − r∂F , Y5 = ∂t + rq∂q + rθ∂θ + r F∂F .

Consequently, all the equivalence transforms for the free element F and its argu-
ment θq have the form

F = kF + l, θq = kθq + m, k, l,m ∈ R.

2.2 The Defining System of Equations

Act on the equation

θt = rθ + (μ − r S)q − μθS − 1

2
σ 2θSS − 1

2
γ σ 2er(T−t)(θS − q)2 + F(θq) (26)

by the second prolongation of the operator X = τ∂t + ξ∂S + α∂q + η∂θ

X
2

= X + ηt∂θt + ηS∂θS + ηq∂θq + ηSS∂θSS .

Here the functions τ , ξ , α, η depend on t , S, q, θ . Then we have

− ηt + rη + (μ − r S)α − rqξ − μηS − 1

2
σ 2ηSS − γ σ 2er(T−t)(θS − q)ηS

+ γ σ 2er(T−t)(θS − q)α + r

2
γ σ 2er(T−t)(θS − q)2τ + F ′ηq |M

= −ηt + rη − r Sα − rqξ + (μ + γ σ 2er(T−t)(θS − q))(−ηS + α)

+ r

2
γ σ 2er(T−t)(θS − q)2τ + F ′ηq − 1

2
σ 2ηSS|M = 0.

The substitution of the prolongation formulas (5) implies the equality
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− (ηt + θtηθ − θt (τt + θtτθ ) − θS(ξt + θtξθ ) − θq(αt + θtαθ))

+ rη − r Sα − rqξ + (μ + γ σ 2er(T−t)(θS − q))

× (−(ηS + θSηθ − θt (τS + θSτθ ) − θS(ξS + θSξθ ) − θq(αS + θSαθ)) + α)

+ r

2
γ σ 2er(T−t)(θS − q)2τ

+ F ′(ηq + θqηθ − θt (τq + θqτθ ) − θS(ξq + θqξθ ) − θq(αq + θqαθ))

− 1

2
σ 2(ηSS + 2θSηSθ + θ2

Sηθθ − 2θSt (τS + θSτθ )

+ θSS(ηθ − θtτθ − θqαθ − 2ξS − 3θSξθ ) − 2θSq(αS + θSαθ)

− θt (τSS + 2θSτSθ + θ2
Sτθθ ) − θS(ξSS + 2ξSθ θS + θ2

Sξθθ )

− θq(αSS + 2θSαSθ + θ2
Sαθθ ))|M = 0.

(27)

Express θt from Eq. (26), substitute it in (27) and obtain

(
rθ + (μ − r S)q − μθS − 1

2
σ 2θSS − 1

2
γ σ 2er(T−t)(θS − q)2 + F

)2
τθ

+ (
rθ + (μ − r S)q − μθS − 1

2
σ 2θSS − 1

2
γ σ 2er(T−t)(θS − q)2 + F

)

× (
(μ + γ σ 2er(T−t)(θS − q))(τS + θSτθ ) − ηθ + τt + θSξθ + θqαθ

+ 1

2
σ 2(τSS + 2θSτSθ + θ2

Sτθθ + θSSτθ ) − F ′(τq + θqτθ )
)

+ rη − r Sα − rqξ + (μ + γ σ 2er(T−t)(θS − q))

× (−(ηS + θSηθ − θS(ξS + θSξθ ) − θq(αS + θSαθ)) + α)

− (ηt − θSξt − θqαt ) + r

2
γ σ 2er(T−t)(θS − q)2τ

+ F ′(ηq + θqηθ − θS(ξq + θqξθ ) − θq(αq + θqαθ))

− 1

2
σ 2(ηSS + 2θSηSθ + θ2

Sηθθ − 2θSt (τS + θSτθ )

+ θSS(ηθ − θqαθ − 2ξS − 3θSξθ ) − 2θSq(αS + θSαθ)

− θS(ξSS + 2ξSθ θS + θ2
Sξθθ ) − θq(αSS + 2θSαSθ + θ2

Sαθθ )) = 0.

(28)

By splitting with respect to θSq and θSt of Eq. (28), we obtain

τS = 0, τθ = 0, αS = 0, αθ = 0. (29)

Consequently, (28) has the form
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(
rθ + (μ − r S)q − μθS − 1

2
σ 2θSS − 1

2
γ σ 2er(T−t)(θS − q)2 + F

)

× (−ηθ + τt + θSξθ − F ′τq) + rη − r Sα − rqξ

+ (μ + γ σ 2er(T−t)(θS − q))(−(ηS + θSηθ − θS(ξS + θSξθ )) + α)

− (ηt − θSξt − θqαt ) + r

2
γ σ 2er(T−t)(θS − q)2τ

+ F ′(ηq + θqηθ − θS(ξq + θqξθ ) − θqαq)

− 1

2
σ 2(ηSS + 2θSηSθ + θ2

Sηθθ + θSS(ηθ − 2ξS − 3θSξθ )

− θS(ξSS + 2ξSθ θS + θ2
Sξθθ )) = 0.

(30)

Using the splitting of (30) by θSS , we obtain

τt − F ′τq − 2ξS − 2θSξθ = 0. (31)

Therefore, ξθ = 0. Differentiate (31) with respect to S and get ξSS = 0 due to (29),
hence

τt − F ′τq − 2ξS = 0, ξSS = 0, ξθ = 0. (32)

Taking into account these equalities in (30), we have

(
rθ + (μ − r S)q − μθS + 1

2
γ σ 2er(T−t)(2qθS − θ2

S − q2) + F
)

× (−ηθ + τt − F ′τq) + rη − r Sα − rqξ + μ(−ηS − θSηθ + θSξS + α)

+ γ σ 2er(T−t)(θ2
S (ξS − ηθ ) + θS(qηθ − qξS − ηS + α) + q(ηS − α))

− ηt + θSξt + θqαt + r

2
γ σ 2er(T−t)(−2qθS + θ2

S + q2)τ

+ F ′(ηq + θqηθ − θSξq − θqαq) − 1

2
σ 2(ηSS + 2θSηSθ + θ2

Sηθθ ) = 0.

Split it with respect to θS and get due to (32)

γ er(T−t)(−ηθ + rτ) − ηθθ = 0, (33)

ξt − μξS + γ σ 2er(T−t)(qξS − rqτ − ηS + α) − F ′ξq − σ 2ηSθ = 0, (34)

(
rθ + (μ − r S)q − 1

2
γ σ 2er(T−t)q2 + F

)
(−ηθ + 2ξS) + rη − r Sα

− rqξ + (μ − γ σ 2er(T−t)q)(−ηS + α) − ηt + θqαt + r

2
γ σ 2er(T−t)q2τ

+ F ′(ηq + θqηθ − θqαq) − 1

2
σ 2ηSS = 0. (35)
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From (32) and (33), it follows that

ξ = A(t, q)S + B(t, q),

η = rτθ+C(t, S, q)e−γ er(T−t)θ + D(t, S, q). (36)

Substitute it in (34) and obtain

At S + Bt − μA + γ σ 2er(T−t)(Aq − rqτ − DS + α) − F ′(Aq S + Bq) = 0,

hence, DSSS = 0,

D = D2(t, q)S2 + D1(t, q)S + D0(t, q), (37)

At S + Bt − μA + γ σ 2er(T−t)(Aq − rqτ − 2D2S − D1 + α) − F ′(Aq S + Bq ) = 0.

After splitting by S of this equality, we have

Bt − μA + γ σ 2er(T−t)(Aq − rqτ − D1 + α) − F ′Bq = 0, (38)

At − 2γ σ 2er(T−t)D2 − F ′Aq = 0. (39)

Now (35) has the form, taking into account (32),

(
(μ − r S)q − 1

2
γ σ 2er(T−t)q2 + F

)
(−rτ + γCer(T−t)e−γ er(T−t)θ + 2A)

+ r(Ce−γ er(T−t)θ + D2S
2 + D1S + D0) − r Sα

− rq(AS + B) + (μ − γ σ 2er(T−t)q)(−CSe
−γ er(T−t)θ − 2D2S − D1 + α)

− Cte
−γ er(T−t)θ − D2t S

2 − D1t S (40)

− D0t + θqαt + r

2
γ σ 2er(T−t)q2τ − 1

2
σ 2(CSSe

−γ er(T−t)θ + 2D2)

+ F ′(Cqe
−γ er(T−t)θ + D2q S

2 + D1q S + D0q

+ θq(rτ − γCer(T−t)e−γ er(T−t)θ ) − θqαq) = 0.

The differentiation by θ implies

(

(μ − r S)q − 1

2
γ σ 2er(T−t)q2 + F

)

γ er(T−t)C + rC

− (μ − γ σ 2er(T−t)q)CS − Ct + F ′(Cq − γ θqCer(T−t)) − 1

2
σ 2CSS = 0,

(41)

so, (40) has the form
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((μ − r S)q + F) (−rτ + 2A) + r(D2S
2 + D1S + D0)

− r Sα − rq(AS + B) + (μ − γ σ 2er(T−t)q)(−2D2S − D1 + α)

+ γ σ 2er(T−t)q2(rτ − A) − D2t S
2 − D1t S − D0t + θqαt − σ 2D2

+ F ′(D2q S
2 + D1q S + D0q + rθqτ − θqαq) = 0.

Split with respect to S and obtain the equations

r D2 − D2t + F ′D2q = 0, (42)

− rq(−rτ + 2A) + r D1 − rα − rq A (43)

− 2D2(μ − γ σ 2er(T−t)q) − D1t + F ′D1q = 0,

(μq + F)(−rτ + 2A) + r D0 − rqB + (μ − γ σ 2er(T−t)q)(−D1 + α) − D0t

+ θqαt + γ σ 2er(T−t)q2(rτ − A) + F ′(D0q + rθqτ − θqαq) − σ 2D2 = 0. (44)

Thus, we have the system of Eqs. (29), (32), (36), (37), (38), (39), (41), (42), (43),
(44).

2.3 The Case of a Nonlinear Function F

We will assume in further arguments that F ′′(θq) 	= 0.
Differentiate with respect to θq Eq. (41) and obtain

F ′′(Cq − γ θqCer(T−t)) = 0,

hence, C = 0. After the differentiation by θq of Eqs. (32), (38), (39), (42), (43), we
get that due to (32)

τq = Aq = Bq = D1q = D2q = 0, τt = 2A.

Differentiate (38) by q and obtain

αq = rτ − A, α = (rτ − A)q + G(t).

Equality (42) implies that D2 = Eert , therefore, due to (39), we have that At is
constant, A = A0 + A1t ,

D2 = er(t−T )A1

2γ σ 2
.
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The derivative of (43) with respect to q gives the equality−2r(A1t + A0) + A1 = 0.
Consequently, A1 = A0 = 0, A ≡ D2 ≡ 0, τ is constant.

Now differentiate (44) by θq and obtain G ′ − rτ F ′ + F ′′D0q = 0. Therefore,
D0qq = 0, D0 = H(t)q + J (t). Thus, ξ = B(t), α = rτq + G(t), η = rτθ +
D(t)S + H(t)q + J (t) after reassignment D1 := D. Now Eqs. (38), (43), (44) have
the form

B ′(t) + γ σ 2er(T−t)(G(t) − D(t)) = 0, (45)

r D(t) − D′(t) − rG(t) = 0, (46)

− rτ F + rqH + r J − rqB + (μ − γ σ 2er(T−t)q)(G − D)

− H ′q − J ′ + θqG
′ + F ′H = 0.

Split the last equation with respect to q and get

r H − r B − γ σ 2er(T−t)(G − D) − H ′ = 0, (47)

−rτ F + r J + μ(G − D) − J ′ + θqG
′ + F ′H = 0. (48)

Equations (45) and (47) imply that

r H − r B−H ′ + B ′ = r(H − B) − (H − B)′ = 0,

ξ(t) = B(t) = H(t) + Kert . (49)

From Eq. (47), it follows that

G(t) = − (H ′(t) + r Kert )er(t−T )

γ σ 2
+ D(t),

G ′(t) = −r
(H ′(t) + r Kert )er(t−T )

γ σ 2
− (H ′′(t) + r2Kert )er(t−T )

γ σ 2
+ D′(t). (50)

Due to (46) and (50), we have

D′(t) = r
(H ′(t) + r Kert )er(t−T )

γ σ 2
, G ′(t) = − (H ′′(t) + r2Kert )er(t−T )

γ σ 2
. (51)
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So, we have (48), (49), (50), (51). Equation (48) defines the function F , it has the
form

βF ′ + λF + δθq + ε = 0. (52)

1. Let β = λ = 0 in (52), then δ = ε = 0 and F may be arbitrary, hence, τ = 0,
H = G ′ = 0, hence, due to (51) K = 0, G(t) ≡ D(t) ≡ D0, J (t) = J0ert . Conse-
quently, ξ = 0, α ≡ D0, η = D0S + J0ert . So, we have the symmetries X1 = ert∂θ

and X2 = ∂q + S∂θ for arbitrary F .
2. If β = 0, λ 	= 0, then F does not satisfy the condition F ′′ 	= 0. Suppose β 	= 0,

λ = 0. Then due to (52)

F(θq) = − δ

2β
θ2
q − ε

β
θq + F0.

At δ = 0 we have the contradiction again, therefore, we allow that δ 	= 0. If ε 	= 0,
after the equivalence transform θq = θq + c, we obtain F = δ1θ

2
q + F0. Bymeans of

another equivalence transform F = aF + b, we get F = θ2
q . Substitute this function

into (48) and after splitting with respect to θq obtain τ = 0

H ′′ − 2γ σ 2H(t)er(T−t) = −r2Kert , (53)

r J (t) − J ′(t) − μ(H ′(t) + r Kert )er(t−T )

γ σ 2
= 0. (54)

3. Let β 	= 0, λ 	= 0, δ = 0. Using the equivalence transforms, we get F = erνθq ,
where ν 	= 0 can not be changed by such transforms. By splitting (48) with
respect to θq , we obtain that τ = νH(t), hence H ′ = 0, G ′ = 0, and K = 0,
G(t) ≡ D(t) ≡ D0, J = J0ert , ξ = const, τ = νξ , α = rνξq + D0, η = rνξθ +
D0S + ξq + J0ert . Thus, we obtain the symmetries X1 = ert∂θ , X2 = ∂q + S∂θ ,
and the third symmetry X3 = ν∂t + ∂S + rνq∂q + (rνθ + q)∂θ . The parameter ν

is the ratio of τ and ξ and may be arbitrary. For F = eνθq it will be X3 =
ν∂t + r∂S + rνq∂q + (rνθ + rq)∂θ .

4. At β 	= 0, λ 	= 0, δ 	= 0 by means of the equivalence transforms, we obtain the
equation F ′ − rνF + θq = 0, ν 	= 0, which has a unique solution

F(θq) = F1e
rνθq + θq

rν
+ 1

r2ν2
.

It can be transformed to the equivalent form F(θq) = erνθq + F0θq , ν 	= 0, F0 	= 0.
Substitute it into (48) and obtain τ = νH(t), H ′ = 0, G ′ = rτ F0, K = 0, hence
G ′ = 0 and F0. We get the contradiction.
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2.4 The Case of a Quadratic Function F

So, for the case F = θ2
q , we have the system of equations

τ = 0, ξ(t) = H(t) + Kert , (55)

α = G(t) = − (H ′(t) + r Kert )er(t−T )

γ σ 2
+ D(t),

η = D(t)S + H(t)q + J (t), (56)

D′(t) = r
(H ′(t) + r Kert )er(t−T )

γ σ 2
, (57)

H ′′(t) − 2γ σ 2er(T−t)H(t) = −r2Kert , (58)

r J (t) − J ′(t) − μ
(H ′(t) + r Kert )er(t−T )

γ σ 2
= 0. (59)

By integrating Eq. (57), we get

D(t) =
∫

r
(H ′(t) + r Kert )er(t−T )

γ σ 2
dt

= (H ′(t) + r Kert )er(t−T )

γ σ 2
−

∫
(H ′′(t) + r2Kert )er(t−T )

γ σ 2
dt

= (H ′(t) + r Kert )er(t−T )

γ σ 2
−

∫
2H(t)dt,

therefore, due to (56)

α = G(t) = −
∫

2H(t)ds. (60)

Multiply by e−r t the both sides of Eq. (59) and obtain

(e−r t J (t))′ = −μ
H ′(t) + r Kert

γ σ 2
e−rT ,

hence

J (t) = J0e
rt − μ

γσ 2
(H(t) + Kert )er(t−T ). (61)

Make the change of the unknown function H(t) = L(t) − Kert . Then Eq. (53)
can be rewritten as

L ′′(t) − 2γ σ 2er(T−t)L(t) = −2Kγ σ 2erT . (62)
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After the replacement x = 2
r

√
2γ σ 2er(T−t), e−r t = r2x2e−rT

8γ σ 2 , k := −8r−2Kγ σ 2erT ,
(62) has the form

x2Lxx + xLx − x2L = k, x > 0. (63)

It is the inhomogeneous modified Bessel equation of the index ν = 0. The funda-
mental system of solutions for such homogeneous equation consists of the modified
Bessel functions of the first kind I0(x) and of the second kind K0(x).

A partial solution of Eq. (63) has the form

Lp(x) = k I0(x)
∫

K0(x)

x
dx − kK0(x)

∫
I0(x)

x
dx .

Note that, for example,

∫
K0(x)

x
dx

∣
∣
∣
∣
x= 2

r

√
2γ σ 2er(T−t)

= − r

2

∫
K0

(2

r

√
2γ σ 2erT e−r t/2

)
dt,

∫
I0(x)

x
dx

∣
∣
∣
∣
x= 2

r

√
2γ σ 2er(T−t)

= − r

2

∫
I0

(2

r

√
2γ σ 2erT e−r t/2

)
dt,

hence the general form of a solution of (58) is

H(t) = α1ϕ1(t) + α2ϕ2(t) + Kψ(t) − Kert , (64)

where α1 and α2 are arbitrary constants and

ϕ1(t) =I0
(2

r

√
2γ σ 2erT e−r t/2

)
, ϕ2(t) = K0

(2

r

√
2γ σ 2erT e−r t/2

)
,

ψ(t) = 4γ σ 2erT

r

(
ϕ1(t)

∫
ϕ2(t)dt − ϕ2(t)

∫
ϕ1(t)dt

)
. (65)

Remark 1 Using the Meijer G-function [36], it can be shown that

ψ(t) = − 4γ σ 2erT

r2
K0

(2

r

√
2γ σ 2erT e−r t/2)G2,0

1,3

(

− 8

r2
γ σ 2er(T−t)

∣
∣
∣
∣

1
0, 0, 0

)

+ 2γ σ 2erT

r2
I0

(2

r

√
2γ σ 2erT e−r t/2

)
G3,0

1,3

(
8

r2
γ σ 2er(T−t)

∣
∣
∣
∣

1
0, 0, 0

)

. (66)

Then we have due to (55), (56), (60), (61), (64)
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ξ = α1ϕ1(t) + α2ϕ2(t) + Kψ(t),

α = −2
∫

(α1ϕ1(t) + α2ϕ2(t) + Kψ(t) − Kert )dt,

D(t) = (α1ϕ
′
1(t) + α2ϕ

′
2(t) + Kψ ′(t))er(t−T )

γ σ 2

− 2
∫

(α1ϕ1(t) + α2ϕ2(t) + Kψ(t) − Kert )dt,

J (t) = J0e
rt − μ

γσ 2
(α1ϕ1(t) + α2ϕ2(t) + Kψ(t))er(t−T ),

consequently

η = (α1ϕ
′
1(t) + α2ϕ

′
2(t) + Kψ ′(t))er(t−T )

γ σ 2
S

− 2S
∫

(α1ϕ1(t) + α2ϕ2(t) + Kψ(t) − Kert )dt

+ (α1ϕ1(t) + α2ϕ2(t) + Kψ(t) − Kert )q

+ J0e
rt − μ

γσ 2
(α1ϕ1(t) + α2ϕ2(t) + Kψ(t))er(t−T ).

2.5 Group Classification Theorem

Thus, the results of this section can be formulated as the next theorem on the group
classification.

Theorem 2 1. The principal Lie algebra of the equation

θt = rθ + (μ − r S)q − μθS − 1

2
σ 2θSS − 1

2
γ σ 2er(T−t)(θS − q)2 + F(θq),

where F ′′ 	= 0, is generated by the operators

X1 = ert∂θ , X2 = ∂q + S∂θ .

2. The algebra Lie of the equation

θt = rθ + (μ − r S)q − μθS − 1

2
σ 2θSS − 1

2
γ σ 2er(T−t)(θS − q)2 + eνθq , ν ∈ R,

is generated by the operators

X1 = ert∂θ , X2 = ∂q + S∂θ , X3 = ν∂t + r∂S + rνq∂q + (rνθ + rq)∂θ .
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3. The algebra Lie of the equation

θt = rθ + (μ − r S)q − μθS − 1

2
σ 2θSS − 1

2
γ σ 2er(T−t)(θS − q)2 + θ2

q

is generated by the operators

X1 = ert∂θ , X2 = ∂q + S∂θ ,

X3 = ϕ1(t)∂S − 2
∫

ϕ1(t)dt∂q

+ [ − μer(t−T )ϕ1(t)

γ σ 2 + ϕ1(t)q + (er(t−T )ϕ′
1(t)

γ σ 2 − 2
∫

ϕ1(t)dt
)
S
]
∂θ ,

X4 = ϕ2(t)∂S − 2
∫

ϕ2(t)dt∂q

+ [ − μer(t−T )ϕ2(t)

γ σ 2 + ϕ2(t)q + ( er(t−T )ϕ′
2(t)

γ σ 2 − 2
∫

ϕ2(t)dt
)
S
]
∂θ ,

X5 = ψ(t)∂S − 2
∫

(ψ(t) − ert )dt∂q + [ − μer(t−T )ψ(t)

γ σ 2 + (ψ(t) − ert )q

+ (er(t−T )ψ ′(t)
γ σ 2 − 2

∫
(ψ(t) − ert )dt

)
S
]
∂θ ,

where ϕ1, ϕ2 and ψ have form (65).

3 Invariant Submodels and Invariant Solutions

Now we will use the obtained symmetries for the search of non-equivalent invariant
solutions and invariant submodels of the equations.

3.1 General Case

The Lie algebra L2 with the basis X1 = ert∂θ , X2 = ∂q + S∂θ has no nonzero struc-
tural constants. Therefore, the optimal system of one-dimensional subalgebras for
L2 has the form �1 = {〈X1〉, 〈bX1 + X2〉, b ∈ R}.

It is obvious that the subalgebra 〈X1〉 and all algebra 〈X1, X2〉 have not invariant
submodels, the submodel

ϕt = rϕ − μϕS − 1

2
σ 2ϕSS − 1

2
γ σ 2er(T−t)ϕ2

S + F(S), θ = (bert + S)q + ϕ(t, S)

is invariant for the subalgebra 〈bX1 + X2〉.
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3.2 Invariant Solutions at F = eνθq

Consider the Lie algebra L3 with the basis

X1 = ert∂θ , X2 = ∂q + S∂θ , X3 = ν∂t + r∂S + rνq∂q + (rνθ + rq)∂θ . (67)

It has nonzero structural constants c223 = rν, c232 = −rν. So, the inner automorphisms
of L3 are E1 : ē2 = e2 + a1e3 and E2 : ē2 = ea2e2. Morover, we have the inner auto-
morphism E3 : ē1 = −e1. We will find the basis operators of one-dimensional sub-
algebras in the form X = e1X1 + e2X2 + e3X3.

1. If e3 	= 0, then by E1, we obtain e2 = 0 and (e1, e2, e3) = (b, 0, 1), X = bX1 +
X3, b ∈ R.

2. Let e3 = 0, e1 	= 0, e2 	= 0, then by the automorphism E3, we can make the
coefficients e1 and e2 positive, and by E2 get (1, 1, 0), or X = X1 + X2. Besides, at
e3 = 0, we have the cases X = X1 and X = X2.

Lemma 1 The optimal system of one-dimensional subalgebras for Lie algebra L3

with basis (67) has the form �1 = {〈X1〉, 〈X2〉, 〈X1 + X2〉, 〈bX1 + X3〉, b ∈ R}.
The subalgebras 〈X2〉, 〈X1 + X2〉 are the partial cases at b = 0 and b = 1 of the

considered above subalgebra.
Consider the subalgebra 〈bX1 + X3〉, where bX1 + X3 = ν∂t + r∂S + rνq∂q +

(rνθ + rq + bert )∂θ . Its invariants are r t − νS, qe−r t , θe−r t − ν−1(b + re−r tq)t .
Hence, we will find a solution in the form

θ = ν−1(bert + rq)t + ertϕ(r t − νS, qe−r t ).

Denote u = r t − νS, w = qe−r t , then we have the invariant submodel

1

2
σ 2ν2ϕuu + (

r − μν + 1

2
γ σ 2νerT

)
ϕu − rwϕw − eνϕw

+ ν−1r(1 − u)w + (1

2
γ σ 2erT − μ

)
w + ν−1b = 0.

Now we will find the optimal system of two-dimensional subalgebras.
1. For the basis vector X1 of the one-dimensional subalgebra 〈X1〉, the sec-

ond vector will be searched in the form c2X2 + c3X3, then we have the equality
[X1, c2X2 + c3X3] = 0, where [·, ·] is the commutator. Hence, we have the subalge-
bra 〈X1, c2X2 + c3X3〉 for arbitrary c2, c3 ∈ R. Using E1, wewill get the subalgebras
〈X1, X2〉, 〈X1, X3〉.

2. We have [X2, c1X1 + c3X3] = c3rνX2, therefore, we get the subalgebra
〈X2, c1X1 + c3X3〉 for every c1, c3 ∈ R. Consider the cases c3 = 0 and c3 	= 0, and
obtain the subalgebras 〈X2, X1〉 (it was obtained before), 〈X2, bX1 + X3〉, b ∈ R.

3. Calculate the commutator [X1 + X2, c2X2 + c3X3] = c3rνX2 = α1(X1 + X2)

+ α2(c2X2 + c3X3). Consequently, α1 = 0, α2c3 = 0, α2c2 = c3rν. If α2 = 0, then
c3 = 0 and the subalgebra coincides with 〈X1, X2〉. If α2 	= 0, then c2 = c3 = 0.
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4. Let [bX1 + X3, c1X1 + c2X2] = −c2rνX2 = α1(bX1 + X3) + α2(c1X1 +
c2X2). So, it will be c1 = 0 or c2 = 0 and there are no new subalgebras.

Lemma 2 The optimal system of two-dimensional subalgebras for Lie algebra L3

with basis (67) has the form �2 = {〈X1, X2〉, 〈X1, X3〉, 〈X2, bX1 + X3〉, b ∈ R}.
The subalgebras 〈X1, X2〉, 〈X1, X3〉 have no invariant submodels. Consider the

subalgebra 〈X2, bX1 + X3〉. The operator X2 has invariants J (t, S, θ − Sq), denote
z = θ − Sq and act on such function by the operator bX1 + X3:

ν Jt + r JS + (bert + rνz)Jz = 0.

Therefore, J1 = r t − νS, J2 = e−r t (θ − Sq) − bt/ν are invariants of the two-
dimensional algebra. Hence, invariants solutions will be searched in the form

θ = Sq + b

ν
tert + ertϕ(r t − νS).

Consequently,

θt = b

ν
ert + br

ν
tert + rertϕ + rertϕ′, θq = S, θS = q − νertϕ′, θSS = ν2ertϕ′′.

Substitite them into the equation and obtain

σ 2ν2ϕ′′ + 2(r − μν)ϕ′ + γ σ 2ν2erTϕ′2 − 2e−z + 2
b

ν
= 0, (68)

where ϕ = ϕ(z), z = r t − νS. Make the change of variables

ϕ = ln |y|
γ erT

+ μν − r

σ 2ν2γ erT
z, ϕ′ = y′

γ erT y
+ μν − r

σ 2ν2γ erT
, ϕ′′ = y′′

γ erT y
− y′2

γ erT y2
.

Then (68) has the form

y′′ − (
e−z 2γ e

rT

σ 2ν2
− 2

bγ erT

σ 2ν3
+ (μν − r)2

σ 4ν4

)
y = 0,

After the change of the independent variable

u = 2e−z/2

√
2γ erT

σν
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we have

u2yuu + uyu − (
u2 − 8bγ erT

σ 2ν3
+ 4(μν − r)2

σ 4ν4

)
y = 0,

It is the modified Bessel equation of the order

p =
√

−8bγ erT

σ 2ν3
+ 4(μν − r)2

σ 4ν4
.

Its solution has the form

y = α1 Ip(u) + α2Kp(u),

where Ip is the modified Bessel function of the first kind, and Kp is the modified
Bessel function of the second kind. So

θ =Sq + b

ν
tert + (μν − r)(r t − νS)er(t−T )

γ σ 2ν2

+ ln
∣
∣α1 Ip

(2
√
2γ erT

σν
e

νS−r t
2

) + α2Kp
(2

√
2γ erT

σν
e

νS−r t
2

)∣∣.

Act by the group, which is generated X1 and obtain a more general solution that is
invariant with respect to the entire algebra L3

θ =Sq + b

ν
tert + (μν − r)(r t − νS)er(t−T )

γ σ 2ν2

+ ln
∣
∣α1 Ip

(2
√
2γ erT

σν
e

νS−r t
2

) + α2Kp
(2

√
2γ erT

σν
e

νS−r t
2

)∣∣ + aert .

3.3 Invariant Submodels for F = θ2
q

Consider the Lie algebra L5 with the basis

X1 = ert∂θ , X2 = ∂q + S∂θ ,

X3 = ϕ1(t)∂S − 2
∫

ϕ1(t)dt∂q

+ [ − μer(t−T )ϕ1(t)

γ σ 2
+ ϕ1(t)q + (er(t−T )ϕ′

1(t)

γ σ 2
− 2

∫
ϕ1(t)dt

)
S
]
∂θ ,

X4 = ϕ2(t)∂S − 2
∫

ϕ2(t)dt∂q
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+ [ − μer(t−T )ϕ2(t)

γ σ 2
+ ϕ2(t)q + (er(t−T )ϕ′

2(t)

γ σ 2
− 2

∫
ϕ2(t)dt

)
S
]
∂θ ,

X5 = ψ(t)∂S − 2
∫

(ψ(t) − ert )dt∂q + [ − μψ(t)er(t−T )

γ σ 2
+ (ψ(t) − ert )q

+ (ψ ′er(t−T )

γ σ 2
− 2

∫
(ψ(t) − ert )dt

)
S
]
∂θ ,

where ϕ1, ϕ2 and ψ have form (66). It is the Lie algebra of

θt = rθ + (μ − r S)q − μθS − 1

2
σ 2θSS − 1

2
γ σ 2er(T−t)(θS − q)2 + θ2

q . (69)

Let us calculate the commutators of the basis elements. We have

[X1, X2] = [X1, X3] = [X1, X4] = [X1, X5] = [X2, X3] = [X2, X4] = 0,

[X2, X5] = −X1, [X3, X4] = er(t−T )

γ σ 2
(ϕ1ϕ

′
2 − ϕ2ϕ

′
1)∂θ = re−rT

2γ σ 2
X1,

since

ϕ′
1(t)ϕ2(t) − ϕ1(t)ϕ

′
2(t) = − r

2
x(I ′

0(x)K0(x) − I0(x)K
′
0(x)) = r

2
xW (x) = − r

2
,

where x = 2
r

√
2γ σ 2erT e−r t/2, theWronskianW (x) = I0(x)K ′

0(x) − I ′
0(x)K0(x) of

the modified Bessel functions I0(x) and K0(x) is equal to −1/x . Analogously

[X3, X5] = er(t−T )

γ σ 2
(ϕ1ψ

′ − ψϕ′
1)∂θ + 2ert

∫
ϕ1ds∂θ

= 4ert

r
(ϕ′

1ϕ2 − ϕ1ϕ
′
2)

∫
ϕ1(t)dt + 2ert

∫
ϕ1ds∂θ = 0,

[X4, X5] = er(t−T )

γ σ 2
(ϕ2ψ

′ − ψϕ′
2)∂θ + 2ert

∫
ϕ2ds∂θ = 0.

So, we have the nonzero structural constants

c134 = re−rT

2γ σ 2
, c143 = −re−rT

2γ σ 2
, c125 = −1, c152 = 1

and the inner automorphisms

E3 : ē1 = e1 + re−rT

2γ σ 2
e4a3, E4 : ē1 = e1 − re−rT

2γ σ 2
e3a4,

E2 : ē1 = e1 − e5a2, E5 : ē1 = e1 + e2a5.
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Using these automorphisms, it is easy to obtain the next assertion.

Lemma 3 An optimal system of one-dimensional subalgebras for L5 is �1 =
{〈X1〉, 〈X2〉, 〈bX2 + X3〉, 〈bX2 + cX3 + X4〉, 〈bX2 + cX3 + dX4 + X5〉, b, c, d ∈ R}.

The operator X2 has the invariant submodel

Ut = −σ 2

2
USS − γ σ 2

2
er(T−t)U 2

S − μUS + rU + S2, θ = U (t, S) + Sq.

Consider the operator X = bX2 + cX3 + dX4 + K X5. Denote

�(t) = cϕ1(t) + dϕ2(t) + Kψ(t), A(t) = b + 2
∫

(Kert − �(t))dt, C(t) = er(t−T )

γ σ 2 ,

then the operator

X = �(t)∂S + A(t)∂q + (−μC(t)�(t) + (�(t) − Kert )q + (A(t) + C(t)�′(t))S)∂θ

has the invariants J1 = t , J2 = u := A(t)S − �(t)q,

J3 = θ + μC(t)S + Kert − �(t)

�(t)
Sq + A(t)(�(t) − Kert )

2�(t)2
S2 − A(t) + C(t)�′(t)

2�(t)
S2.

So, we will search the invariant solution in the form

θ =U (t, A(t)S − �(t)q) − μC(t)S + �(t) − Kert

�(t)
Sq + A(t)(Kert − �(t))

2�(t)2
S2

− A(t) + C(t)�′(t)
2�(t)

S2.

Substitute it in (69) and obtain the invariant submodel

Ut = − σ 2A(t)2

2
Uuu + (

�(t)2 − γ σ 2er(T−t)A(t)2

2

)
U 2

u

− (�′(t)
�(t)

+ γ σ 2KerT A(t)

�(t)2
)
uUu + rU − γ σ 2K 2er(t+T )

2�(t)4
u2

− σ 2Kert A(t)

2�(t)2
− er(t−T )�′(t)

2γ�(t)
+ μ2er(t−T )

2γ σ 2
. (70)

If c = 1, d = K = 0, then �(t) ≡ ϕ1(t), A = b − 2
∫

ϕ1(t)dt := A1, and we
have the invariant submodel
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Ut = − σ 2A1(t)2

2
Uuu + (

ϕ1(t)
2 − γ σ 2er(T−t)A1(t)2

2

)
U 2

u

− ϕ′
1(t)

ϕ1(t)
uUu + rU − er(t−T )ϕ′

1(t)

2γ ϕ1(t)
+ μ2er(t−T )

2γ σ 2
.

For d = 1, K = 0, we have�(t) ≡ cϕ1(t) + ϕ2, A = b − 2
∫
(cϕ1(t) + ϕ2(t))dt :=

A2, and due to (70), we have the invariant submodel for bX2 + cX3 + X4

Ut = − σ 2A2(t)2

2
Uuu + (

(cϕ1(t) + ϕ2(t))
2 − γ σ 2er(T−t)A2(t)2

2

)
U 2

u

− cϕ′
1(t) + ϕ′

2(t)

cϕ1(t) + ϕ2(t)
uUu + rU − er(t−T )(cϕ′

1(t) + ϕ′
2(t))

2γ (cϕ1(t) + ϕ2(t))
+ μ2er(t−T )

2γ σ 2
.

Andat K = 1�(t) ≡ cϕ1(t) + dϕ2 + ψ := �3(t), A = b − 2
∫
(cϕ1(t) + dϕ2(t) +

ψ(t))dt := A3, and the invariant submodel for bX2 + cX3 + dX4 + X5 is

Ut = − σ 2A3(t)2

2
Uuu + (

�3(t)
2 − γ σ 2er(T−t)A3(t)2

2

)
U 2

u

− (�′
3(t)

�3(t)
+ γ σ 2erT A3(t)

�3(t)2
)
uUu + rU − γ σ 2er(t+T )

2�3(t)4
u2

− σ 2ert A3(t)

2�3(t)2
− er(t−T )�′

3(t)

2γ�3(t)
+ μ2er(t−T )

2γ σ 2

4 The Case of a Linear F

Now let F ′′ = 0, therefore, F = cθq + d. Taking into account the equivalence trans-
forms after Theorem 1, it is sufficient to consider the case F = cθq .

So, consider the equation

θt = rθ + (μ − r S)q − μθS − 1

2
σ 2θSS − 1

2
γ σ 2er(T−t)(θS − q)2 + cθq . (71)

Take the change of variables θ = Sq + ertϕ, then

θt = rertϕ + ertϕt , θq = S + ertϕq , θS = q + ertϕS, θSS = ertϕSS.

Substitute them into (71) and obtain

ϕt = −μϕS − 1

2
σ 2ϕSS − 1

2
γ σ 2erTϕ2

S + cSe−r t + cϕq .

After the substitution ϕ = ln y/(γ erT ), we have
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yt = −1

2
σ 2ySS − μyS + cyq + cSγ er(T−t)y.

Now use the change of variables v = q + ct , then

yt = −1

2
σ 2ySS − μyS + cSγ er(T−t)y.

Set

y(t, S, v) = z(t, S, v) exp
( − cγ er(T−t)

r

(
S + μ

r

) + c2γ 2σ 2

4r3
e2r(T−t)

)
,

then

zt = −1

2
σ 2zSS + (cγ σ 2

r
er(T−t) − μ

)
zS.

After the next change of the variables

u = −t, w =
√
2

σ

(
S − μt − cγ σ 2

r2
er(T−t)

)

we obtain the equation
ζu(u, v,w) = ζww(u, v,w), (72)

where

ζ(u,w, v) = z
( − u,

σ√
2
w − μu + cγ σ 2

r2
er(T+u), v

)
.

Thus, we can use the known symmetries of the heat equation for the group analysis
of (72), if to take into account the dependence of the unknown function on three
variables, including the additional variable v, which is absent in Eq. (72) in an explicit
form.

As a result, the replacement of variables has the form

t = −u, q = v + cu, S = σ√
2
w − μu + cγ σ 2

r2
er(T+u),

θ = e−r(T+u)

γ
ln z + (

v + cu − c

r

)( σ√
2
w − μu + cγ σ 2

r2
er(T+u)

)

− cμ

r2
+ c2γ σ 2

4r3
er(T+u);

and the inverse change of variables is

u = −t, v = ct + q, w =
√
2

σ

(
S − μt − cγ σ 2

r2
er(T−t)

)
,
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z = exp

{

γ er(T−t)
[
θ + (c

r
− q

)
S + cμ

r2

]
− c2γ 2σ 2

4r3
e2r(T−t)

}

.

Therefore, we have

∂u = − ∂t + c∂q + (cγ σ 2

r
er(T−t) − μ

)
∂S

+
[

−rθ + 2cμ

r
− c2γ σ 2

2r2
er(T−t) + q

(
r S + cγ σ 2

r
er(T−t) − μ

)
]

∂θ ,

∂v = ∂q + S∂θ , ∂w = σ√
2
∂S + σ√

2

(
q − c

r

)
∂θ ,

∂z = er(t−T )

γ
exp

{

−γ er(T−t)
[
θ + (c

r
− q

)
S − cμ

r2
] + c2γ 2σ 2

4r3
e2r(T−t)

}

∂θ .

Using the known symmetries of heat equation, we obtain the symmetries of
Eq. (72)

X1 = c1(v)∂u, X2 = c2(v)∂w, X3 = c3(v) (2u∂u + w∂w) ,

X4 = c4(v)z∂z, X5 = c5(v) (2u∂w − wz∂z) ,

X6 = c6(v)

[

u2∂u + uw∂w − (u

2
+ w2

4

)
z∂z

]

,

XZ = Z(u,w, v)∂z, XV = V (v)∂v,

where ci , i = 1, 2, . . . , 6, are functions depending on the implicit variable v, Z =
Z(u, v,w) is an arbitrary solution of (72) and V = V (v) is an arbitrary function. The
symmetry XV arises due to the presence of the implicit variable v. Using the system
of one-dimensional subalgebras of the Lie algebra L6 of the heat equation [37], we
can obtain non-equivalent invariant solutions for Eq. (71), for example,

z1 = A(v)w + B(v), z2 = eau(A(v)e
√
aw + B(v)e−√

a),

z3 = e
2
3 u

3−uw(A(v)Ai(u2 − w) + B(v)Bi(u2 − w)),

where A and B are arbitrary function on v; Ai, Bi are the Airy functions of the 1st
and the 2nd kind, respectively.

Returning to the original variables, we get the symmetries of Eq. (71)

Y1 = c1(ct + q)

{

−∂t + c∂q + (cγ σ 2

r
er(T−t) − μ

)
∂S
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+
[

−rθ + 2cμ

r
− c2γ σ 2

2r2
er(T−t) + q

(
r S + cγ σ 2

r
er(T−t) − μ

)
]

∂θ

}

,

Y2 = c2(ct + q)
[
∂S + (

q − c

r

)
∂θ

]
,

Y3 = c3(ct + q)

{

2t∂t − 2ct∂q + (
S + μt − (1 + 2r t)

cγ σ 2

r2
er(T−t)

)
∂S

+
[

2r tθ − 3cμt

r
+ (1 + r t)

c2γ σ 2

r3
er(T−t) − c

r
S

+(1 − 2r t)qS − (1 + 2r t)
cγ σ 2q

r2
er(T−t) + μtq

]

∂θ

}

,

Y4 = c4(ct + q)er(t−T )∂θ ,

Y5 = c5(ct + q)

{

σ t∂S + (
σ tq + er(t−T )(S − μt)

γ σ
− cσ

r2
(1 + r t)

)
∂θ

}

,

Y6 = c6(ct + q)

{

−t2∂t + ct2∂q +
[

(1 + r t)
cγ σ 2t

r2
er(T−t) − t S

]

∂S

+
[

−r t2θ + cμt2

r
− (2 + r t)

c2γ σ 2t

2r3
er(T−t) + ct S

r
+ (1 + r t)t Sq

+(1 + r t)
cγ σ 2tq

r2
er(T−t) + ter(t−T )

2γ
−

(
S − μt − cγ σ 2

r2
er(T−t)

)2
er(t−T )

2γ σ 2

⎤

⎥
⎦ ∂θ

⎫
⎪⎬

⎪⎭
,

Y� =�(t, S, q)
er(t−T )

γ
exp

{

−γ er(T−t)
[
θ + ( c

r
− q

)
S − cμ

r2

]
+ c2γ 2σ 2

4r3
e2r(T−t)

}

∂θ ,

YV = V (ct + q)
(
∂q + S∂θ

)
,

where�(t, S, q) = ζ
(
−t,

√
2

σ

[
S − μt − cγ σ 2

r2 er(T−t)
]
, ct + q

)
is an arbitrary solu-

tion of Eq. (71), and invariant solutions

θ1 =er(t−T )

γ
ln

[√
2A

σ

(
S − μt − cγ σ 2

r2
er(T−t)

) + B

]

+ c2γ σ 2

4r3
er(T−t) +

(
q − c

r

)
S − cμ

r2
,
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θ2 = er(t−T )

γ

{

−at + ln

[

Ae
√
2a
σ

(
S−μt− cγ σ2

r2
er(T−t)

)

+ Be
−√

2a
σ

(
S−μt− cγ σ2

r2
er(T−t)

)]}

+ c2γ σ 2

4r3
er(T−t) + (

q − c

r

)
S − cμ

r2
,

θ3 = er(t−T )

γ

[
√
2t

σ

(
S − μt − cγ σ 2

r2
er(T−t)

) − 2

3
t3

]

+ er(t−T )

γ
ln

{

A(ct + q)Ai

[

t2 −
√
2

σ

(
S − μt − cγ σ 2

r2
er(T−t)

)
]

+B(ct + q)Bi

[

t2 −
√
2

σ

(
S − μt − cγ σ 2

r2
er(T−t)

)
]}

+ c2γ σ 2

4r3
er(T−t) +

(
q − c

r

)
S − cμ

r2
,

where A, B are arbitrary functions on ct + q. Acting by the entire finite-dimensional
group of the heat equation, we can obtain more general multi-parameter invariant
with respect to L6 solutions.

A detailed study of the Lie algebra 〈X1, X2, . . . , X6, XZ , XV 〉 will yield other
invariant solutions of (71) by the same way.

5 Conclusion

The group classification is obtained for a class of the Guéant and Pu models. Three
specifications of the free element of the execution costs function represent the three
various classes of equations with non-equivalent Lie algebras. The algebras are used
for the search of invariant solutions and submodels of the Guéant and Pu models.

In the case of the linear execution costs function, the equation is reduced to the
heat equation with one implicit variable. Using the symmetries of such equation, we
obtain the algebra Lie and some invariant solutions of the Guéant and Pu equation.
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On Involutive Systems of Partial
Differential Equations

A. A. Talyshev

Abstract This chapter presents a criterion of involutive systems of partial differ-
ential equations. The criterion is based on the concept of formal extended Pfaffian
systems with fixed independent variables which introduced in this chapter. The sys-
tem is involutive if and only if the formal extended of the system coincides with the
usual extended. This criterion was proved that the order of nontrivial contact trans-
formations allowed by the involutive system of partial differential equations cannot
exceed the order of this system. This criterion can also be useful for constructing
computer algorithms for reducing a system of differential equations to an involutive
form.

1 Introduction

Compatibility theory of overdetermined systems and, in particular, the notion of
involutive systems of differential equations has many applications in theoretical and
applied researches. For example, in the method of differential constraints, when
constructing partially invariant solutions with respect to Lie groups and invariant
solutions with respect to Lie–Bäcklund algebras [6, 7].

The method of differential constraints is to build such differential equations (con-
straints), joining which to a given system gives an integrable or even involutive
system. The resulting overridden the system, as a rule, is easier to integrate, due
to reducing arbitrariness in building a solution. Method differential constraints was
proposed in the paper [18].

The concept of involutive systems of differential equations was introduced by
Cartan [1], studying systems with partial derivatives in the form of Pfaffian systems.
The presentation of Cartan’s method is also contained in the papers [2, 13].

A. A. Talyshev (B)
Novosibirsk State University, Pirogova st. 2, Novosibirsk, Russia
e-mail: tal@academ.org

© Higher Education Press 2021
A. C. J. Luo and R. K. Gazizov (eds.), Symmetries and Applications of Differential
Equations, Nonlinear Physical Science,
https://doi.org/10.1007/978-981-16-4683-6_7

205

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4683-6_7&domain=pdf
mailto:tal@academ.org
https://doi.org/10.1007/978-981-16-4683-6_7


206 A. A. Talyshev

Modern consistency theory on fiber manifolds developed in papers [3–5, 9, 10,
12, 14]. The advantage of this theory is geometric, invariant under of changes of vari-
ables, the presentation, although for practical goals naturally have to use coordinate
approach.

Condition of invariance or partial invariance solutionswith respect to theLie group
can bewritten as addition to the system additional equations. In this sense, themethod
of differential constraints can be considered more versatile, but the construction
invariant and partially invariant solutions by passing to the space of invariants much
easier.

To build solutions that are invariant or partially Lie–Bäcklund groups invariant,
until such a convenient theory has been developed as in the case of Lie groups.
This is, in particular, related to difficulties in determining the universal invariant
Lie–Bäcklund algebras. But the invariance condition solutions with respect to the
Lie–Bäcklund group immediately leads, as in the case of Lie groups, to the system
with differential constraints. In the paper [11] it is shown under certain conditions for
an admissible Lie–Bäcklund group existence of invariant regarding her decisions.

In the papers [8, 15, 16] the existence of nontrivial tangential transformations,
transformations which preserve the tangent structure on solutions of differential
equations.

This chapter presents a criterion of involutive systems of partial differential equa-
tions. In the paper [17] this criterion was proved that the order of nontrivial contact
transformations allowed by the involutive system of partial differential equations
cannot exceed the order of this system.

2 Preliminary Information

2.1 The Systems of Partial Differential Equations

The term manifold will mean a connected finite-dimensional manifold of class
C∞. Everything the mappings under consideration, unless otherwise stated, will
be assumed class C∞. Restriction mapping to submanifold, when it does not cause
confusion, will be denoted by the same symbol as the mapping itself. If aN is a man-
ifold, then by T (N), T ∗(N), Λp(N) will denote the tangent, cotangent, and external
forms of degree p of the vector bundle of N. Manifold chart N will be denoted by
(V, ψ), where V is the region in N and ψ is a homeomorphism of V to Rn .

The triple (M,N, ρ) is called fiber manifold ifM,N are manifolds and ρ : M →
N is surjective mapping of constant rank.

If m + n and n are the dimensions of the manifolds M and N, respectively, then
for each point ω ∈ M there is a chart (U, ϕ) of the manifolds M and chart (V, ψ)

of the manifolds N such that ω ∈ U , ρ(U ) ⊂ V and π ◦ ϕ = ψ ◦ ρ, where π is
canonical projection Rn+m onto Rn .



On Involutive Systems of Partial Differential Equations 207

The chart (U, ϕ) is called a fiber chart over the chart (V, ψ). The coordinates of
the points of the manifoldMwith respect to the fiber chart will be denoted by (x, y),
x ∈ Rn , y ∈ Rm , and the coordinates of the point ρ(ϕ−1(x, y)) relative to the chart
(V, ψ) through (x).

The mapping f of the open set V ⊂ N toM is called a cross-section of the fiber
manifold (M,N, ρ) if the mapping ρ ◦ f is the identity on V . V is called the domain
of the cross-section f . Coordinate representation cross-section f in the fiber chart
has the form x → (x, f̃ (x)), where f̃ = ϕ ◦ f ◦ ψ−1.

Let k � 0 be an integer. Two cross-sections f and g, whose domains contain the
point ω are called k-equivalent at the point ω if all partial derivatives at the point
ψ(ω) of the mappings f̃ and g̃ match up to order k inclusive. k-equivalence is an
equivalence relation and is invariant with respect to the choice of the fiber chart. A
class of this equivalence is called a k-jet at the point ω. k-jet containing the section
f is denoted by j kω( f ).
Set of all k-jets J k(M,N, ρ) has the structure manifolds of dimension n + m(k +

n)!/(k! n!). If a (U, ϕ) is a fiber chart over (V, ψ), then in J k(M,N, ρ) is introduced
as follows associated chart:

Φ( j kω ( f )) = (x0, f̃ (x0),
∂ f̃

∂x1
(x0), . . . ,

∂k f̃

∂xkn
(x0)) ,

where x0 = ψ(ω). Associated chart is a fiber chart over the chart (V, ψ). Coordinates
points of the manifold J k(M,N, ρ) in associated chart will be denoted by x , y, p
and variables p will be numbered with multi-indexes α (pα, 0 < |α| � k).

If through J 0(M,N, ρ), J−1(M,N, ρ) denote respectivelyM,N and maps ρk
l :

J k(M,N, ρ) → J l(M,N, ρ) is defined as follows formulas:

ρk
l ( j

k
ω( f )) = j lω( f ), 1 � l < k,

ρk
0 ( j

k
ω( f )) = f (ω), ρk

−1( j
k
ω( f )) = ω,

then (J k(M,N, ρ), J l(M,N, ρ), ρk
l ) are fiber manifolds for −1 � l < k.

For each cross-section f of the fiber manifold (M,N, ρ) mapping ω → j kω( f )
defines a section of the fiber manifold (J k(M,N, ρ),N, ρk

−1)which will be denoted
by j k( f ).

The mapping j k+1
ω ( f ) → j1ω( j k( f )) defines an embedding of the manifold

J k+1(M,N, ρ) in J 1(J k(M,N, ρ),N, ρk
−1).

The system of partial differential equations of the order k is called the submanifold
E ⊂ J k(M,N, ρ) such that

1. (E,N, ρk
−1) is fiber manifold.

2. J 1(E ∩ J l(M,N, ρ),N, ρl
−1) ∩ J l+1(M,N, ρ) ⊃ E ∩ J l+1(M,N, ρ), l = 1,

2, . . . , k − 1.

The solution of the system E is the cross-section f of the fibermanifold (M,N, ρ)

such that j kω ( f ) ∈ E for each point ω from the region definition of the section f .
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Locally, this definition coincides with the classical definition systems of differen-
tial equations. Condition (2) imposes the restriction only on the form of notation of
the classical system. It conditionmeans that together with any algebraic consequence
Φ = 0 of order l < k by algebraic consequences of the system are equations whose
left-hand sides are equal to all possible derivatives of Φ with respect to independent
variables to order k − l inclusive.

Prolongation of the order l of the system of differential equations E ⊂ J k(M,

N, ρ) called the manifold Pl(E) defined by the formula:

Pl(E) = J l(E,N, ρk
−1) ∩ J k+l(M,N, ρ).

System continuation E may not be system differential equations, since Pl(E) can
not be a fiber manifold over N with the projection ρk+l

−1 .

3 Systems of External Differential Equations

System external differential equations on a manifold M is called locally finitely
generated ideal Σ of the outer form algebra Λ(M). Local finite generation means
that for each points ω ∈ M there is such an open the set U 
 ω and a finite number
of forms on U , which generate the constraint Σ on U .

Themanifold F ⊂ M is called integral manifold of the systemΣ , if the restriction
of any forms from Σ to F is the zero form. An integral point of the Σ system is a
point in which all forms of degree zero from Σ become to zero.

Σ will denote the closure of the ideal Σ relative to external derivation. On any
integral manifold of the system Σ any form from ideal Σ vanishes.

A system of external differential equations with prescribed independent variables
are a pair (Σ, (M,N, ρ)), where (M,N, ρ) is a fiber manifold and Σ is system of
external differential equations to M.

The image of a cross section of the fiber manifold (M,N, ρ), which is the
integral manifold of the system Σ is called the integral manifold of the system
(Σ, (M,N, ρ)).

For each k > 0 there is a system (Σk, (J k(M,N, ρ),N, ρk
−1)), whose set of

integral manifolds coincides with the set of images of cross sections of the form
j k( f ), where f is cross-section (M,N, ρ). This system is generated by first-order
forms that in the associated fiber chart can be written as

dy −
n∑

i=1
pγi dxi ,

dpα −
n∑

i=1
pα+γi dxi , 0 < |α| < k,

(1)

where |γi | = 1, and the component with number i is equal to one.
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If in a fiber chart we write down the condition that the image cross-sections f of
the fiber manifold (M,N, ρ) is an integral manifold of the system (Σ, (M,N, ρ)),
then this condition will be the classical system differential equations for the mapping
f̃ . If this system is consistent in some regionU ∈ M, then it defines the submanifold
E0 ⊂ J 1(U, ρ(U ), ρ).

Sequence

Ei = J 1(Ei−1 ∩U, ρ(U ), ρ) ∩ Ei−1, i = 1, 2, . . .

stabilizes on some l, i.e., El = El+1 and if (El , ρ(U ), ρ) is a fiber manifold, then El

will be denoted by E(Σ). Thus, E(Σ) in this case is system of differential equations
equivalent to the system (Σ, (U, ρ(U ), ρ)).

Let E ⊂ J k(M,N, ρ) be the system differential equations. Limiting the Σk

system to the manifold E leads to a system of exterior differential equations
(Σ(E), (E,N, ρk

−1)), equivalent to the system E .
The use of the term equivalence here and above is justified in that for any solution

of the system E the image of this solution is an integral manifold of the system
(Σ(E), (E,N, ρk

−1)) and, conversely, for of each integral manifold of the system
(Σ(E), (E,N, ρk

−1)) the cross-section defining this manifold is a solution to the
system E .

The first prolongation of the system of external differential equations (Σ, (M,

N, ρ)) is called system limitation (Σ1, (J 1(M,N, ρ),N, ρ1−1))onmanifold E(Σ) ⊂
J 1(M,N, ρ), i.d. system (Σ(E(Σ)), (E(Σ),N, ρ1−1)). Thus, the first prolongation
of the system of external differential equations will be a Pfaffian system, i.d. the ideal
that is generated by the forms of the first order.

4 Involutive Systems

Let be G and F are finite-dimensional vector spaces, whose dimensions are equal to
m and n, respectively.

Prolongation of the space A ⊂ G ⊗ Sk F is called the space P(A), where

P(A) = (A ⊗ F) ∩ (G ⊗ Sk+1F).

Let be
τi = min dim(G ⊗ Sk(Fi ) ∩ A), i = 0, . . . , n − 1,

where the minimum is taken over all subspaces Fi ⊂ F dimension n − i . For any A

dim P(A) � τ0 + τ1 + · · · + τn−1.
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A space A is called involutive if

dim P(A) = τ0 + τ1 + · · · + τn−1. (2)

Let Tz(J l) be the layer over the point z ∈ J l(M,N, ρ) in the tangent vector bundle
T (J l(M,N, ρ)). Qz(J l) will denote the kernel of the mapping

dρl
l−1 : Tz(J l) → Tz′(J l−1),

where z′ = ρl
l−1(z). Qz(J l) is isomorphic to the space Ty(Mω) ⊗ Sl(T ∗

ωN), where
y = ρl

0(z),ω = ρl
−1(z) andMω = ρ−1(ω) is layer over pointω ∈ N in fibermanifold

(M,N, ρ).
System of differential equations E ⊂ J k(M,N, ρ) is called involutive at the

point z ∈ E if the subspace Cz(E) = Tz(E) ∩ Qz(J k) is involutive in Ty(Mω) ⊗
Sk(T ∗

ωN), where y = ρk
0 (z), ω = ρk

−1(z) and there exists a neighborhood U of z in
J k(M,N, ρ) that

ρk+1
k (P1(E)) ∩U ⊃ E ∩U. (3)

If the system E is involutive at the point z ∈ E , then it is involutive at each point
of some neighborhood of the point z.

System of external differential equations (Σ, (M,N, ρ)) is called involutive if
there exists and is involutive an equivalent system of differential equations E(Σ).

In what follows, we will often consider Pfaffian systems, therefore, the involutive
condition for them is useful to write in coordinate form.

Locally the forms generating the Pfaffian system (Σ, (M,N, ρ)) can always be
written as

dy − ϕ(x, y, y1)dx . (4)

Here the dimension M is n + m + m1, the dimension N equals n and y ∈ Rm ,
y1 ∈ Rm1 . Then the system S(Σ) in coordinates is

ux = ϕ(x, u, u1),

ϕi
x j

+ ϕi
yϕ

j + ϕi
y1u1x j = ϕ j

xi + ϕ j
yϕ

i + ϕ j
y1u1xi , (5)

i, j = 1, . . . , n,

where x → (x, u(x), u1(x)) is the coordinate representation of sections of a fiber
manifold (M,N, ρ).

Field components
L = η · ∂p + ζ · ∂p1

at every point z such that L(z) ∈ Cz satisfy the equations

η = 0,

ϕi
y1ζ j = ϕ j

y1ζi , i, j = 1, . . . , n, (6)
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where x, y, y1, p, p1 coordinates of points in the associated map. Whence it follows
that the dimension P(Cz) is m1n − N , where N is the rank of the system (6), and

τn−i = m1 − ρi−1, i = 1, . . . , n,

where ρ0 = 0

ρi = max
c∈L(Rn)

rank

⎛

⎝
ϕα
y1cα1

. . .

ϕα
y1cαi

⎞

⎠ . (7)

Thus, the condition (2) is rewritten here as

N = ρ1 + · · · + ρn−1, (8)

and the condition (3) means that in some neighborhood the rank of the linear system
(5) with respect to u1x is equal N .

5 Group Analysis of Differential Systems and External
Differential Equations

Classical group analysis of differential equations studies groups transformations of
the space of dependent and independent variables, which translate the solutions of
the system back into solutions. Group analysis relies on geometric interpretation
differential equations and their solutions as submanifolds in the corresponding jet
bundle. This approach combined with the locality of the considered transformations
reduces the task to the study of certain classes of vector fields on J k(M,N, ρ)

concerning systems of differential equations (submanifolds in J k(M,N, ρ)).
From the point of view of differential equations, represent only tangent transfor-

mations of the manifold are of interest J k(M,N, ρ), i.e., those who translate images
of cross sections of the form j k( f ) again into the images of such cross sections.

If the dimension of the manifold M is greater than n + 1, then tangent transfor-
mations of manifold J k(M,N, ρ) are always prolongation of point transformations,
i.e., transformations manifold M. In the case when m = 1 tangents transforming
manifold J k(M,N, ρ) are prolongations tangent transformations of the manifold
J 1(M,N, ρ) or dotted transformations.

The set of tangent transformations of a manifold J k(M,N, ρ) forms a group and
the system (Σk, (J k(M,N, ρ), η, ρk

1 ) is invariant under the action of this group.
Further, we consider local continuous Lie groups tangent transformations and the

Lie algebra of vector fields, corresponding to these groups.
Lie group of tangent transformations of a manifold J k(M,N, ρ) is called main

group for the system E ⊂ J k(M,N, ρ), if the manifold E is invariant under actions
of this group. The main group is denoted by GE . The corresponding Lie algebra of
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vector fields on J k(M,N, ρ) is denoted by LE . Vector fields from LE are tangent
to the manifold E . The coordinate representation of this fact gives a linear system of
differential equations for the components of vector fields. This system is called the
determinative system for LE .

Lie algebra of vector fields on J∞(M,N, ρ) under whose action the system Σ∞
is invariant is called the Lie–Bäcklund algebra [6, 7] and is denoted by LΣ∞.

Action of the vector field L on the form ω is defined by the following formulas

(L)ω = d(L �ω) + L � dω,

(L)dω = d(L � dω) = d((L)ω),

where the symbol � denotes the inner product, which is completely determined by
the following formulas:

(∂xi ) � dx j = δi j ,

L � (ω1 ∧ ω2) = (L �ω1) ∧ ω2 + (−1)i1ω1 ∧ (L �ω2),

L � (ω + ω′) = L �ω + L �ω′,
(L1 + L2) �ω = L1 �ω + L2 �ω.

Here i1 is the order of the form ω1.
Let be

L = ξ · ∂x +
∑

|α|�0

ζ α · ∂yα,

where each of the components ξ , ζ α depends on a finite number of coordinates. If
L ∈ LΣ∞, then

Σ∞ 
 (L)ωα = d(ζ α − yα+γβ
ξβ) − ζ α+γβdxβ + ξβdyα+γβ

.

Whence it follows that
(Dβ ζ̃ α − ζ̃ α+γβ )dxβ = 0

and thus
Dj ζ̃

α − ζ̃ α+γ j = 0, j = 1, . . . , n, |α| � 0, (9)

where
ζ̃ α = ζ α − yα+γβ

ξβ,

Dj = ∂x j + ∑

|α|�0
yα+γ j ∂yα

, j = 1, . . . , n.

Let L̃ = L − ξβDβ , then the condition (9) is rewritten as

[
L̃, Dj

]
= 0, j = 1, . . . , n. (10)
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Equations (9) or (10) are called determinative equations of the algebra LΣ∞.
From Eq. (9) it follows that every vector field from LΣ∞ is completely defined by
the components ξ and ζ . For all j = 1, . . . , n fields Dj ∈ LΣ∞ and generate ideal
JΣ∞ of LΣ∞. Usually instead of the algebra LΣ∞ consider factorization of the
algebra LΣ∞/JΣ∞. This is justified, in particular, the fact that for each cross section
f of the fiber manifold (M,N, ρ) ideal JΣ∞ touches the image of the cross section
j∞( f ).

6 Some Statements on Pfaffian Systems with Prescribed
Independent Variables

To the integration of Pfaffian systems with prescribed independent variables reduce
the integration of systems differential equations and the problem of constructing
integral manifolds of a given dimension of systems of external differential equations.

The definitions and statements in this chapter are used in the following section and,
in addition, are of independent interest, in particular, simplify specific calculations
associated with the study Pfaffian systems.

6.1 Canonical Form

Lemma 1 By transforming the variables x, y, y1 the form system (4) can be reduced
to the canonical form, in which

ϕi0(l)k0(l) ≡ y l
1 , l = 1, . . . , ρn,

where

(i0(l), k0(l)) =

⎧
⎪⎪⎨

⎪⎪⎩

(1,m − ρ1 + l), 0 < l � ρ1,

(2,m − ρ2 + l), ρ1 < l � ρ2,

· · ·
(n,m − ρn + l), ρn−1 < l � ρn.

(11)

Proof Due to the definition of the values ρ1, . . . , ρn by a linear change of variables
x , we can achieve that

rank

⎛

⎝
ϕ1
y1· · ·

ϕi
y1

⎞

⎠ = ρi , i = 1, . . . , n.

Let the variables x be chosen in the indicated way, then there is such a map-
ping k ′

0 : (1, . . . , ρn) → (1, . . . ,m) and such functions θ1(x, y, y1), . . . , θm1−ρn (x ,
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y, y1), that the lines ϕ
i0(l)k ′

0(l)
y1 , l = 1, . . . , ρn , θ1

y1 , . . . , θ
m1−ρn
y1 linear independent. If

the mapping k ′
0 is such that for each i = 1, . . . , n − 1

k ′
0(ρi + 1, . . . , ρi+1) ⊂ k ′

0(ρi−1 + 1, . . . , ρi ), (12)

then the transformation of variables

y1l1 = ϕi0(l)k ′
0(l), l = 1, . . . , ρn,

y1l1 = θ l−ρn , l = ρn + 1, . . . ,m1,
(13)

and the corresponding renumbering of the y variables results in system (4) to the
desired canonical form. It remains to prove that one can always choose k ′

0 satisfying
the condition (12). Let for some k ′

0 the transformation (13), i.e., the system satisfies
the condition:

ϕi0(l)k ′
0(l) ≡ yl1, l = 1, . . . , ρn . (14)

If for some j0 and l0 ∈ (ρ j0 + 1, . . . , ρ j0+1) k ′
0(l0) /∈ k ′

0(ρ j0−1 + 1, . . . , ρ j0), then
there is a p0 ∈ k ′

0(ρ j0−1 + 1, . . . , ρ j0), that ϕ
j0+1p0
y
l0
1

�= 0. Indeed, if ϕ j0+1p

y
l0
1

= 0 for all

p ∈ k ′
0(ρ j0−1 + 1, . . . , ρ j0), then there are numbers c1 and c2 such that

rank

⎛

⎜
⎜
⎝

ϕ1
y1· · ·

ϕ
j0−1
y1

c1ϕ
j0
y1 + c2ϕ

j0+1
y1

⎞

⎟
⎟
⎠ � ρ j0 + 1,

but this contradicts the definition of the quantitiesρ1, . . . , ρn . In thisway,ϕ
j0+1p0
y
l0
1

�= 0

for some p0 ∈ k ′
0(ρ j0−1 + 1, . . . , ρ j0) and as the new value k ′

0(l0) take p0. �

Remark 1 Coefficients of the system (4) in canonically form independent of the
variables yρn+1

1 , . . . , ym1
1 , so it makes sense confine ourselves to considering systems

with m1 = ρn .

Further on the system (4) it will always be assumed to be recorded in canonical
form and that m1 = ρn .

6.2 Formal Prolongation

The definition of a formal prolongation of the Pfaffian system is givenwith prescribed
independent variables,which in the case an involutive systemcoincideswith the usual
prolongation.
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In this section and in what follows, the following denotes:

0
ρi = ρi , i = 0, 1, . . . , n,

k
ρ0 = 0,

k
ρi = i

k−1
ρn − k−1

ρ0 − · · · − k−1
ρi−1, i = 1, . . . , n,

mk =k−1
ρn, k > 0,

(i p(l), kp(l)) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1,mp−
p
ρ1 +l), 0 < l �

p
ρ1,

(2,mp−
p
ρ2 +l),

p
ρ1< l �

p
ρ2,

· · ·
(n,mp−

p
ρn +l),

p
ρn−1< l �

p
ρn,

X = Rn, Yp = Rmp , Z p = X × Y0 × · · · × Z × Yp, p = 0, 1, 2, . . . .

(15)

Variables from Yp are denoted by yp.

Definition 1 Formal prolongation Ωk of order k of a system of forms (4) is called
the ideal generated by forms

p
ω= dyp−

p
ϕ (x, y0, . . . , yp+1)dx, p = 0, 1, . . . , k,

where the mappings
p
ϕ are defined sequentially in p = 0, 1, . . . , k. Formulas

p
ϕ i p(l)kp(l) ≡ ylp+1, l = 1, . . . ,mp+1

define the part of components of the map
p
ϕ. Other components, since i p−1(l) < i for

l � p−1
ρi−1, are determined sequentially by i = 2, . . . , n from the formulas:

p
ϕ il = p

Dip−1(l)

p−1
ϕ ikp−1(l), 0 < l �

p−1
ρi−1, (16)

where
p
D j= ∂x j +

0
ϕ j · ∂y0 + · · · + p

ϕ j · ∂yp , j = 1, . . . , n. (17)

Remark 2 In the same way, you can build a formal prolongation for a system that
satisfies condition (14) with mapping k ′

0 not satisfying condition (12). In this case,
the first and subsequent formal prolongations as well as in the case when the original
the system is presented in the canonical form will have canonical form.
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Along with the final prolongations, we will be considered infinite prolongations

of Pfaffian systems. Operators
∞
Dj will be denoted just Dj . Operators Dj will be

operated only on functions of a finite number of variables, therefore the infinite sum
in the definition of the operators Dj it is enough to understand it as a convenient
formal notation.

Theorem 1 The following statements are equivalent

1. The Ω0 system is involutive.

2. Di
0
ϕ j − Dj

0
ϕ i = 0, i, j = 1, . . . , n.

3. [Di , Dj ] = 0, i, j = 1, . . . , n.
4. dΩk ⊂ Ωk+1, k = 0, 1, 2, . . . .
5. For each k > 0 the systemΩk is an prolongation of the order k (informal) system

Ω0.

Proof 1 ⇒ 2.

System Eq. (5) with i < j and l > m0− 0
ρi are linearly independent and have the

form:

ul
′
1x j

= 0
ϕ jl

xi +
0
ϕ jl

y

0
ϕ i+ 0

ϕ jl
y1u1xi , l ′ = l + 0

ρi −m0. (18)

Since the systemΩ0 is involutive, equality (8), which means that all the equations
of the system (5) are expressed through equations of the system (18). Therefore the
formulas:

u1x j = 1
ϕ j , j = 1, . . . , n, (19)

determining the general solution of the system (18), vanish all equations of the system
(5). Substitution of values u1x j from (19) to the system (5) leads to the desired equality

Di
0
ϕ j − Dj

0
ϕ i = 0, i, j = 1, . . . , n.

2 ⇒ 3.

[Di , Dj ] =
∞∑

p=0

(Di

p
ϕ j − Dj

p
ϕ i ) · ∂ yp.

Therefore, it is required to prove that

p
Φ

l
i j = Di

p
ϕ jl − Dj

p
ϕ il,

i, j = 1, . . . , n, p = 1, 2, . . . , l = 1, . . . ,mp,
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given that
0
Φ

l
i j = 0, i, j = 1, . . . , n, l = 1, . . . ,mp.

p
Φ

l
i j=0 at i < j and l >

p−1
ρ i−1

strength of determination mappings
p
ϕ j . Let i < j l �

p−1
ρ i−1 then

p
Φ

l
i j = Di

p
ϕ jl − Dj

p
ϕ il = Di Dip−1(l)

p−1
ϕ jkp−1(l) − Dj Dip−1(l)

p−1
ϕ ikp−1(l) =

= Dip−1(l)
(
Di

p−1
ϕ jkp−1(l) − Dj

p−1
ϕ ikp−1(l)

) + [
Di , Dip−1(l)

] p−1
ϕ jkp−1(l)− (20)

− [
Dj , Dip−1(l)

] p−1
ϕ ikp−1(l) = Dip−1(l)

p−1
Φ

kp−1(l)
i j + p−1

ϕ
jkp−1(l)

yβ
α

α

Φ
β

i i p−1(l)
−

− p−1
ϕ

ikp−1(l)

yβ
α

α

Φ
β

j i p−1(l)
,

i.d.
p
Φ

l
i j at i < j and l �

p−1
ρ i−1 expressed through

p
Φ

l
i ′ j ′ = 0 with i ′ < i and j ′ � j .

Because
p
Φ

l
1 j = 0 for all j , l, then with repeated application of the formula (20)

p
Φ

l
i j with i < j and l �

p−1
ρ i−1 expressed through

0
Φ, . . .

p−1
Φ . Thus, the application

of mathematical induction on p completes the proof.
3 ⇒ 4.

d
p
ω l = −d

p
ϕ αl ∧ dxα = −( p

ϕ αl
xβ
dxβ+ p

ϕ αl
yγ
dyγ

)
dxα =

= −
p+1∑

γ=1

mγ∑

nu=1

( γ
ω ν ∧

n∑

α=1

p
ϕ yγ

νdxα

) − Dβ

p
ϕ αldxβ ∧ dxα,

where the last term is equal to zero due to condition 3.
4 ⇒ 5.
Statement 5 is a reformulation of Statement 4 and therefore, naturally, follows

from it.
5 ⇒ 1.
Statement 5 means that the formulas (18) give a general solution of the system

(5), i.d. the rank of the system (5) satisfies the condition (8), and therefore the system
Ω0 is involutive. �

Corollary 1 If the system Ω0 is involutive, then for each k > 0 the system Ωk also
involutive.

The proof is similar to the proof of the transition 5 ⇒ 1 of the previous theorem.
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6.3 Group Analysis

The Lie algebra of vector fields on Zk+1 with respect to which the invariant ideal Ωk

will be denoted by the symbol LΩk .
In this section it will be shown that in the case of an involutive system LΩk for

k < ∞ is an extension of LΩ0, and LΩ0 is a subalgebra of LΩ∞. The algebra LΩ∞
following [6] will be called the Lie–Bäcklund algebra.

So let L ∈ LΩk and

L = ξ · ∂x + ζ · ∂y + · · · + ζ k+1 · ∂yk+1 ,

then

(L)
p
ω= d(L � p

ω) + L � d p
ω= d(ζ p− p

ϕ ξ) −
(
p
ϕxα

ξα+ p
ϕ y0 ζ 0 + · · ·+ p

ϕ yk+1 ζ k+1)dx + d
p
ϕ ξ, (21)

p = 0, 1, . . . , k.

Since (L)
p
ω∈ Ωk , if and only if (L)

p
ω |Ωk=0 = 0, then from (21) for k < ∞ follows

k
D j (ζ p− p

ϕ ξ) − L
p
ϕ j+ k

D j

p
ϕ ξ = 0, j = 1, . . . , n,

(ζ p− p
ϕ ξ)yk+1+

p
ϕ yk+1 ξ = 0, (22)

p = 0, 1, . . . , k

and for k = ∞

Dj (ζ
p− p

ϕ ξ) − L
p
ϕ j + Dj

p
ϕ ξ = 0, j = 0, . . . , n,

j = 1, . . . , n, p = 0, 1, 2. . . .
(23)

With the notation

ζ̃ p = ζ p− p
ϕ ξ, p = 0, 1, 2, . . . ,

L̃k = ζ̃ 0 · ∂y0 + · · · + ζ̃ k · ∂yk ,

L̃ = ζ̃ 0 · ∂y0 + · · · = L − ξαDα

the system (22) is written as

k
D j ζ̃ p − L̃k

p
ϕ j− p

ϕ j
yk+1

+ ξα(
k
D j

p
ϕ α− k

Dα

p
ϕ j ), j = 1, . . . , n,

ζ̃ p
yk+1

+ p
ϕ yk+1 ξ = 0, (24)

p = 0, 1, . . . , k
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and the system (23) is written as

Dj ζ̃
p − L̃

p
ϕ j + ξα(Dj

p
ϕ α − Dα

p
ϕ j ) = 0,

j = 1, . . . , n, p = 0, 1, 2. . . .
(25)

Theorem 2 If the system Ω0 is involutive, then the algebra LΩ1 is a prolongation
of the algebra LΩ0.

Proof Let the field L ∈ LΩ1, then its coordinates satisfy the system (24) with k = 1,
which needs to be rewritten in more detail here.

0
Di ζ̃ 0 + ζ̃ 0

y1

1
ϕ i−

0

L̃
0
ϕ i− 0

ϕ i
y1ζ

1 + ξα
( 0
Di

0
ϕ α+ 0

ϕ i
y1

1
ϕ i− 0

Dα

0
ϕ i

) = 0,
i = 1, . . . , n,

(26)

Fl
i = 0

Di ζ̃ 1l−
1

L̃
1
ϕ il− 1

ϕ il
y2ζ

2 + ξα
( 1
Di

1
ϕ αl− 1

Dα

1
ϕ il

) = 0,
l = 1, . . . ,m1, i = 1, . . . , n,

(27)

ζ̃ 0
y2 = 0, (28)

ζ̃ 1
y2 + ξα

1
ϕ α

y2 = 0. (29)

Equation (26) can also be written as

D1
i ζ̃

0−
1

L̃
0
ϕ i = 0, i = 1, . . . , n.

Differentiating Eq. (26) with respect to y2 gives

ζ̃ 0
y2

1
ϕ i

y2−
0
ϕ i

y1 ζ̃
1
y2 = 0, i = 1, . . . , n,

whence given (29) it follows

ζ̃ 0
y1

1
ϕ i

y2−
0
ϕ i

y1

1
ϕ α

y2 = 0, i = 1, . . . , n. (30)

Formula differentiation

1
D j

0
ϕ i = 1

Di
0
ϕ j , i, j = 1, . . . , n,

by y2 gives
0
ϕ i

y1

1
ϕ j

y2 = 0
ϕ j

y1

1
ϕ i

y2 , i, j = 1, . . . , n,
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therefore from (30) it follows

(
ζ̃ 0
y1 + ξα

0
ϕ α

y1

) 1
ϕ i

y2 = 0, i = 1, . . . , n.

In particular, rank
( 1

ϕ 1
y2

) = m1 therefore

ζ̃ 0
y1 + ξα

0
ϕ α

y1 = 0. (31)

From (26) taking into account (31) it follows

0
Di ζ̃ 0−

0

L̃
0
ϕ i− 0

ϕ i
y1ζ

1 + ξα
( 0
Di

0
ϕ α− 0

Dα

0
ϕ i

) = 0, i = 1, . . . , n. (32)

Equations (31), (32) form the determinative system for algebra LΩ0. Thus, to prove
the assertion of the theorem it remains to show that Eqs. (27), (28) do not follows
additional equations for the coordinates ξ , ζ , ζ 1.

From (26) it follows

ζ̃ 1l = Di0(l)ζ̃
0k0(l), l = 1, . . . ,m1. (33)

Substitution of values ζ̃ 1 from (33) and
1
ϕ from (16) to (29) results in equality:

(
Di0(l)ζ̃

k0(l)
)

y2
+ ξα

(
Di0(l)

0
ϕ αk0(l)

)
y2

= (
ζ̃ 0k0(l)
y1 + ξα

0
ϕ αk0(l)

y1

) 1
ϕ i0(l) = 0.

Thus Eq. (29) is satisfied by virtue of Eqs. (31), (32).

Substitution of values ζ̃ 1 from (33) and
1
ϕ from (16) to (27) gives

Fl
i = 1

Di
1
Di0(l) ζ̃ 0k0(l)−

1

L̃
1
Di0(l)

0
ϕ ik0(l) − ( 1

Di0(l)
0
ϕ ik0(l)

)
y2

ζ 2 + ξα
( 1
Di

1
Di0(l)

0
ϕ αk0(l)− 1

Dα

1
Di0(l)

0
ϕ ik0(l)

)

= 1
Di0(l)

( 1
Di ζ̃ 0k0(l)−

1

L̃
0
ϕ ik0(l)

) + [ 1
Di ,

1
Di0(l)

]
ζ̃ 0k0(l) − [ 1

L̃,
1
Di0(l)

] 0
ϕ ik0(l)− 0

ϕ ik0(l)
y1

1
ϕ i0(l)

y2 ζ 2

+ ξα
( 1
Di0(l)

( 1
Di

0
ϕ αk0(l)− 1

Dα

0
ϕ ik0(l)

) + [ 1
Di ,

1
Di0(l)

] 0
ϕ αk0(l) − [ 1

Dα,
1
Di0(l)

] 0
ϕ ik0(l)

)

= ζ̃ 0k0(l)
y1

( 1
Di

1
ϕ i0(l)− 1

Di0(l)
1
ϕ i )− 0

ϕ ik0(l)
y1

( 1

L̃
1
ϕ i0(l)− 1

Di0(l) ζ̃ 1)− 0
ϕ ik0(l)

y1

1
ϕ i0(l)

y2 ζ 2

+ ξα
( 0

ϕ αk0(l)
y1

( 1
Di

1
ϕ i0(l)− 1

Di0(l)
0
ϕ i )− 0

ϕ ik0(l)
y1

( 1
Dα

1
ϕ i0(l)− 1

Di0(l)
0
ϕ α

))

= (
ζ̃ 0k0(l)
y1 + ξα

0
ϕ αk0(l)

y1

)( 1
Di

1
ϕ i0(l)− 1

Di0(l)
0
ϕ i )+ 0

ϕ ik0(l)
y1

( 1
Di0(l) ζ̃ 1−

1

L̃
0
ϕ i0(l)− 1

ϕ i0(l)
y2 ζ 2)

+ ξα
( 1
Di0(l)

1
ϕ α− 1

Dα

0
ϕ i0(l)

)
.
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Whence follows:

Fl
i = 0

ϕ ik0(l)

yβ

1

Fβ

i0(l)
, l = 1, . . . ,m1, i = 1, . . . , n. (34)

The part of Eq. (27) defines

ζ 2l = Di1(l)ζ̃
1k1(l) + ξαDi1(l)

1
ϕ αk1(l). (35)

The rest of Eq. (27) is satisfied due to (31), (32), and (35). Indeed, for each i =
1, . . . , n the equation Fl

i = 0 with l > ρ0
i−1 belongs to the part that defines ζ 2 and

Fl
i with l � ρ0

i−1 are expressed by the formula (34) through F j
i ′ with i ′ < i (for Fl

i

with l � ρ0
i−1 due to (15) i0(l) < i). Since

0
ρ0= 0, then by successive application

formulas (34) each Fl
i ,l = 1, . . . ,m1, i = 1, . . . , n can be expressed in terms of

those that define ζ 2. �

Corollary 2 If Ω0 is involutive, then for all k < ∞ the algebra LΩk is an prolon-
gation of the order k of the algebra LΩ0.

Proof Since for each k < ∞ the systemΩk has the same form as the systemΩ0 and
is involutive due to system Ω0 is involutive, then the application of mathematical
induction using the previous theorem proves the assertion. �

If the system Ω0 is involutive, then Eq. (25) is rewritten as

Di ζ̃
p − L̃

p
ϕ i , i = 1, . . . , n, p = 0, 1, 2, . . . , (36)

or

[
Di , L̃

] = 0, i = 1, . . . , n. (37)

From Eq. (36) follows:

ζ̃ p+1 l = Dip(l)ζ̃
pkp(l), l = 1, . . . ,mp+1, p = 0, 1, 2, . . . . (38)

Thus, all coordinates of the operator L̃ are expressed through ζ̃ 0.

Theorem 3 2. Equation (36) are satisfied due to Eq. (38) and equations

Di ζ̃
0 − L̃

0
ϕ i = 0, i = 1, . . . , n.

Proof Let

p
F
l

i≡ Di ζ̃
pl − L̃

p
ϕ
il

, i = 1, . . . , n, l = 1, . . . ,mp, p = 0, 1, 2, . . . .
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Then substitution of values ζ̃ p from (38) and
p
ϕ from (16) to (36) gives

p
F
l

i= Di Dip−1(l)ζ̃
p−1 kp−1(l) − L̃ Dip−1(l)

p−1
ϕ ikp−1(l)

= Dip−1(l)
(
Di ζ̃

p−1 kp−1(l) − L̃
p−1
ϕ ikp−1(l)

)
(39)

−[
L̃, Dip−1(l)

] p−1
ϕ ikp−1(l)

= Dip−1(l)

p−1
F

kp−1(l)
i − p−1

ϕ
ikp−1(l)

yβ
α

α

F
β

i p−1(l)
.

Thus, repeated application of the formula (39) and using the method of mathe-
matical induction proves required approval. �

From the formulas (37) it follows that the vector fields Di , i = 1, . . . , n belong
to the algebra LΩ and generate the ideal of this algebra, which will be denoted by
JΩ .

7 Involutive Pfaffian Systems with Finite Relations

A Pfaffian system with finite relations is involutive if involutive the restriction of the
Pfaffian system to the manifold defined by these relations. However, for applications
it is useful to have a criterion for the involutivity of such systems in the form of some
conditions on finite relations.

In this section, we consider the problem of constructing for a given the involutive
Pfaffian system of finite relations, together with which it forms again an involutive
system. Such a problem arises, for example, in connection with the implementation
of the method of differential constraints.

The system is considered:

Ω = dy − ϕ(x, y, y1) = 0,
x ∈ R n, y ∈ R m, y ∈ R m1 ,

(40)

Φ(x, y, y1) = 0, Φ : z1 → Rs, (41)

where the system (40) is involutive system and

rank

(
∂Φ

∂y1

)

= s.

The last condition allows, by solving Eq. (41) with respect to some of the variables
y1, write (41) as

ȳ1 = ψ(x, y, ỹ1), (42)
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where ȳ1 and ỹ1 together coincide with a set of variables y1.
Let Ω̃ denote the system restriction Ω on the manifold defined by Eq. (42),

obtained by excluding variables ȳ1 from Ω .
Without loss of generality, we can assume that the systems Ω = 0 and Ω̃ = 0

simultaneously satisfy the condition (11) and the system Ω = 0 is written in canon-
ical form. Indeed, by linear change of variables x it is possible to ensure that the
condition (11) will be satisfied simultaneously for both systems Ω = 0 and Ω̃ = 0.
Further, after transforming the variables y1 → y′

1 and the renumbering of variables
y′
1 described in the proof of the Lemma 1 relations (42) can be rewritten as

ȳ′
1 = ψ ′(x, y, ỹ′

1),

where ȳ′
1 and ỹ′

1 together coincide with the set variables y
′
1 and det(∂ ȳ′

1/∂y1) �= 0.
So let the systems Ω = 0 and Ω̃ = 0 simultaneously satisfy the condition (11)

and the numbers defined relations (7), for these systems are designated accordingly
via ρ1, . . . , ρn and ρ̃1, . . . , ρ̃n .

Equation (42) can be split into n groups

f 1 = 0,

. . . . . .

f n = 0

in such a way that the i th group contains those equations from (42), whose variable
numbers ȳ1 are greater than ρi−1 and is less than or equal to ρi .

Definition 2 Finite relations

Dj1 · · · Djl f
i = 0, i = 1, . . . , n,

l = 1, . . . , k, j1, . . . , jl � i
(43)

are called the formal prolongation of the order k of the finite relations (41) relative
to system (40).

The left-hand sides of Eq. (43) will be denoted by the symbol Φk . Formal pro-
longation of the order k of the system Ω̃ = 0 coincides with the restriction of the
formal prolongation of the order k of the system Ω = 0 onto the manifold defined
by the equations Φk = 0.

Theorem 4 The system (40), (41) is involutive system if and only if the vector fields
generating the ideal JΩ tangent to the manifold, defined by equations Φ∞ = 0.

Proof Necessity. If the system (40), (41) is involutive, then formal prolongation Ω̃k

for every k > 0 is a prolongation of the order k of the Ω̃ system. Therefore, the
equations dΦ∞ = 0 should not give new relations for the variables Z̃∞, but

dΦ∞ = DiΦ∞dxi .
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So DiΦ∞, i = 1, . . . , n must vanish by virtue of the equalities Φ∞ = 0.
Adequacy. Since the system (40) is involutive, then

Diϕ j − Djϕi = 0, i, j = 1, . . . , n,

and therefore
Diϕ j − Djϕi |Φ∞=0 = 0, i, j = 1, . . . , n.

Since D1, . . . , Dn touch the manifold Φ∞ = 0, then

Diϕ j |Φ∞=0 = (Di |Φ∞=0)(ϕ j |Φ∞=0) = D̃i ϕ̃i , i, j = 1, . . . , n

and thus,
D̃i ϕ̃ j − D̃ j ϕ̃i = 0, i, j = 1, . . . , n,

whence by Theorem1 it follows that system Ω̃ = 0 is involutive. �

Thus, the criterion for the involutive of the system (40), (41) is the condition

DiΦ∞|Φ∞=0 = 0, i = 1, . . . , n,

which can be rewritten as

DiΦk |Φk+1=0 = 0, i = 1, . . . , n, k = 0, 1, 2, . . . . (44)

From Theorem1 it follows that the condition (44) is satisfied if and only if

DiΦ0|Φ1=0 = 0, i = 1, . . . , n. (45)

Since for any f : Zk → R the expression Di f linearly depends in variables yk+1,
then there are linear operators Ai

αβ (matrix) that the condition (45) can be written in
the form

Di f l = ∑n
β=1

∑β

α=1 A
i
αβDα f β

∣
∣
∣
f 1=0,..., f n=0

= 0,

l = 1, . . . , n, i = l + 1, . . . , n.
(46)

In the case of a scalar finite relation, further simplification of the criterion of
involutivity.

Theorem 5 System (40) with finite relations

Φ(x, y, y1) = 0, Φ : Z1 → R

is involutive system if and only if there exist vector fields from JΩ such that the
manifold defined by the equation Φ = 0 is an invariant manifold under the action of
these vector fields.
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Proof Under the conditions of the theorem, the matrices Ai
αβ in (46) will be scalar

functions, so the sought vector fields will be

Di =
β∑

α=1

Ai
αDα, i = β + 1, . . . , n, (47)

where β is the number of the first of the numbers ρ1, . . . , ρn which will decrease by
one when joining the system (40) finite relation Φ = 0. �

Investigation of the system (40) with relations

Φ(x, y, y1, . . . , yk) = 0

reduces to studying the system Ωk = 0 with these relations, and the latter has the
same form as the system (40), (41). Therefore, all the statements in this section are
also true for this case.

Conditions (46) for Φ depending on (x, y, y1, . . . , yk) split in variables yk+1 and
in the case of scalar Φ mean that some collection of vector fields on Zk touches the
manifold defined by the equation Φ = 0.

Thus, this manifold is an invariant manifold of the group Lie algebra correspond-
ing to the Lie algebra generated by these vector fields. Therefore, the methods of
constructing invariant manifolds can be used here classical group analysis. In par-
ticular, when constructing non-singular invariant manifolds, it suffices to find all the
invariants of this group, which is an easier task.

Theuniversal invariant of this group coincideswith the set of invariants (depending
on variables x, y, y1, . . . , yk) vector fields (47).

Further, if there is a vector field L on Z∞ commuting with fields (47), then the
set of invariants of operators (47) is closed under the action of the field L .

The Lψ function forψ : Zk → R is usuallymapping Zk ′ → Rwith k ′ > k, there-
fore, the indicated fact allows, for example, in the method of differential constraints
to construct constraints higher order from bonds of lower order.

Example 1 Asystemof partial differential equationswith two independent variables

Wt + A(t, x,W )Wx = f (t, x,W ),

W : R2 → Rm, A : R2 × Rm → L(Rm, Rm)

is equivalent to the Pfaffian system

Ω = dy0 − y1dx − ( f − Ay1)dt = 0

with prescribed independent variables (x, t). The continuation of the order k of this
system is the system

dyl − yl+1dx − Dl
x ( f − Ay1)dt = 0, l = 0, 1, . . . , k,
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where
Dx = ∂x + y1 · ∂y0 + y2 · ∂y1 + · · ·

The ideal JΩ of the Lie–Bäcklund algebra LΩ is generated here vector fields

Dx , Dt = ∂t + ( f − Ay1) · ∂y0 + Dx( f − Ay1) · ∂y1 + · · ·

The operator (47) here has the form Dt + λDx , and its invariants ψ : Zk → R
are determined from the equation

(Dt + λDx)ψ = ψt + λψx + ψy0( f − Ay1 + λy1) + · · ·
+ ψyk (D

k
x ( f − Ay1) + λyk+1) = 0

(48)

whence, in particular, it follows

ψyk (λE − A) = 0.

Therefore, for the existence of nontrivial solutions, it is necessary so that λ is an
eigenvalue of the matrix A.

Example 2 The system of equations of one-dimensional gas dynamics

⎛

⎝
ρ

u
p

⎞

⎠

t

+
⎛

⎝
u ρ 0
0 u 1/ρ
0 γ p u

⎞

⎠

⎛

⎝
ρ

u
p

⎞

⎠

x

+ 1

x

⎛

⎝
νρu
0

νγ pu

⎞

⎠ = 0

is equivalent to the Pfaffian system

dρ − ρ1dx + (νρu

x
+ uρ1 + ρu1

)
dt = 0,

du − u1dx + (
uu1 + 1

ρ
p1

)
dt = 0, (49)

dp − p1dx + (
γ pu1 + up1 + νγ pu

x

)
dt = 0

with prescribed independent variables (x, t).
The correspondingmatrix here has eigenvalues u, u ± √

γ pρ−1. Equation (48) for
λ = u ± √

γ pρ−1 andψ : Zk → R for k = 0, 1, 2, 3 has no nontrivial solutions. For
λ = u Eq. (48) has solutionsψ : Zk → R for every k � 0. If k = 0, thenψ0 = pρ−γ .

The operator L = ρ−1x−νDx commutes with the operator Dt + uDx and there-
foreψk = Lk(pρ−γ ) for every k � 0 will be a solution to Eq. (48).Whence it follows
that the system (49) with finite relations

Φ(ψ0, ψ1, . . . , ψk) = 0

for every k � 0 forms an involutive system.
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Example 3 System (49) with finite relations 2pρ−1 = g and γ = 2, ν = 0 is
reduced to the system

dρ − ρ1dx + (uρ1 + ρu1)dt = 0,

du − u1dx + (uu1 + gρ1)dt = 0,

which is equivalent to the system of equations of motion of ’shallow water’ (ρ is
depth, u is speed). The solutions of Eq. (48) here are the functions

u ± 2
√
gρ, gρ1 ± √

gρ u1.

Example 4 Equation
utt − uxx = a(u)

is equivalent to the Pfaffian system

du − pdx − qdt = 0,

dp − p1dx − q1dt = 0, (50)

dq − q1dx − (p1 + a)dt = 0

with prescribed independent variables (x, t).
The operator (47) here has the form Dt + λDx , where

Dx = ∂x + p∂u + p1∂p + q1∂q + p2∂p1 + q2∂q1 + · · · ,

Dt = ∂t + q∂u + q1∂p + (p1 + a)∂q + q2∂p1 + Dx (p1 + a)∂q1 + · · ·

In order for Eq. (48) to have nontrivial solutions here, it is necessary that λ = ε,
where ε2 = 1.

Let ψ : Z2 →, then Eq. (48) here has the form

ψt + εψx + (p + εq)ψu + (p1 + εq1)ψp + (q1 + εp1 + a)ψq +
+ (p2 + εq2)ψp1 + (q2 + εp2 + a + a′ p)ψq1 = 0,

(51)

whence it follows that

L0ψ = (∂t + ε∂x + (p + εq)∂u + (p1 + εq1)∂p + (q1 + εp1 + a)∂q +
+ a′ p∂q1)ψ = 0

L1ψ = (∂p1 + ε∂q1)ψ = 0.

Further
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[L1, L0] = 2ε(∂p + ε∂q) = 2εL2,

[L2, L0] = 2ε∂u + a′∂q1 = L3,

[L3, L0] = a′∂p + (εa′ + 2εa′)∂q + 2εa′′ p∂q1 − (q + εp)a′′∂q1
= a′L2 + 2εa′∂q + a′′(εp − q)∂q1 = a′L2 + L4,

[L3, L4] = a′′∂q + 2εa′′′(εp − q)∂q1 = L5.

Whence it follows that for the existence of a nontrivial solution it is necessary so that

rank

(
L4

L5

)

= 1,

i.d.

det

(
2εa′ a′′(εp − q)

4a′′ 2εa′′′(εp − q)

)

= 0.

Thus, the function a must satisfy the equation

a′a′′′ − (a′′)2 = 0,

integration of which gives

a = c2
c1
ec1u + c3, (52)

where c1, c2, c3 are constants.
If a satisfies (52) then

[L1, L2] = [L1, L3] = [L1, L4] = [L1, L ′
0] = [L2, L3] = 0,

[L2, L4] = [L2, L ′
0] = [L3, L ′

0] = 0, [L3, L4] = 2εc1L4,

[L4, L ′
0] = c1c2c3ec1u∂q1 ,

where

L ′
0 = L0 − (q1 + εp1)L2 − 1

2
ε(q + εp)L3 − ε

2c1
L4 = ∂t + ε∂x + c3∂q .

Thus, Eq. (51) has a nontrivial solution if and only if a = c or a = ceu (constant
c1 eliminated by stretching u).

Let a = ceu , then

ψ = θ
(
q1 − εp1 + ε

4
(q − εp)2 − c

2ε
eu, x − εt

)
,

where θ is an arbitrary function of two arguments.
Since Dx commutes with Dt + εDx , the system (50) with finite relations
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Φ(ψ, Dxψ, . . . , Dk
xψ) = 0

is involutive system for each k � 0.

Example 5 Pfaffian system

dρ − ρxdx − ρydy − ρzdz + (uρx + vρy + wρz + ρ(ux + vy + wz))dt = 0,

du − uxdx − uydy − uzdz + (uux + vuy + wuz + 1

ρ
px )dt = 0,

dv − vxdx − vydy − vzdz + (uvx + vvy + wvz + 1

ρ
py)dt = 0, (53)

dw − wxdx − wydy − wzdz + (uwx + vwy + wwz + 1

ρ
pz)dt = 0,

dp − pxdx − pydy − pzdz + (upx + v py + wpz + γ p(ux + vy + wz))dt = 0

with prescribed independent variables (x, y, z, t) corresponds to the system of equa-
tions of gas dynamics. (Here ρx , . . . , pz denotes parametric variables y1, rather than
derivatives of functions, as in the rest of the work.)

The operator (47) here looks like:

L = Dt + λ1Dx + λ2Dy + λ3Dz .

Let ψ : Z0 → R then it follows from the equation Lψ = 0 that

(λ1 − u)ψρ = 0, (λ2 − v)ψρ = 0, (λ3 − w)ψρ = 0,

(λ1 − u)ψu − ρψρ − γ pψp = 0, (λ2 − v)ψu = 0, (λ3 − w)ψu = 0,

(λ1 − u)ψv = 0, (λ2 − v)ψv − ρψρ − γ pψp = 0, (λ3 − w)ψv = 0,

(λ1 − u)ψw = 0, (λ2 − v)ψw = 0, (λ3 − w)ψw − ρψρ − γ pψp = 0,

(λ1 − u)ψp − ρ−1ψu = 0, (λ2 − v)ψp − ρ−1ψv = 0,

(λ3 − w)ψp − ρ−1ψw = 0, ψt + λ1ψx + λ2ψy + λ3ψz = 0,

whence it follows thatλ1 = u, λ2 = v, λ3 = w, ψ = θ(pρ−γ ).
Further operator

M = (wy − vz)Dx + (uz − wx )Dy + (vx − uy)Dz

satisfies the relation

[L , M] = −(ux + vy + wz)M

+ 1

2
((ρy pz − ρz py)Dx − (ρx pz − ρz px )Dy + (ρx py − ρy px )Dz),

whence it follows that
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[L , M](pρ−γ ) = −(ux + vy + wz)M(pρ−γ ),

so

L(M(pρ−γ ))
∣
∣
M(pρ−γ )=0 = ML(pρ−γ ) − (ux + vy + wz)M(pρ−γ )

∣
∣
M(pρ−γ )=0 = 0,

i.d. system (53) with finite relations

Φ(pρ−γ , M(pρ−γ )) = 0

is involutive system.

8 Tangent Transformations

Tangent transformations are prolongations of point transformations in the case of
many dependent variables, or prolongations of tangent transformations of the first
order in the case of one dependent variable. However, when studying differential
equations, it is sufficient require transformations to preserve the tangent structure
only on solutions of these equations. With this approach, it is convenient to consider
instead of systems differential equations are equivalent to them Pfaffian systems.

This section describes some of the classes of systems differential equations that
admit nontrivial, thus defined tangent transformations.

8.1 Definition, General Statements

We consider an involutive system in partial derivatives E ⊂ J k(M,N, ρ). The con-
tinuation of the order l is here denoted by El .

System Σk in local coordinates (x,
0
y,

1
y, . . . ,

k
y),

i
y ∈ Rm⊗Si Rn , i = 1, . . . , k

written in the form

d
i
y − i+1

y dx = 0, i = 0, 1, . . . , k − 1. (54)

d
i
y − i+1

y dx = 0, i = 0, 1, . . . , k − 1.

Let the manifold E in these local coordinates is defined by equations

Φ(x,
0
y,

1
y, . . . ,

k
y) = 0. (55)
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Lie algebra of vector fields with respect to which the invariant system (54), (55)
will be denoted LE and the transformation group GE defined by this algebra, will
be called the group of tangent transformations of order k of system E .

Transformations of the GE group preserve the tangent structure of order k on
the manifold defined by the relations (55), i.e., on the manifold to which the any
integral manifold of the system (54), (55), and through each point of which, if Φ is
R-analytic, due to the involutive system E , passes at least one n-dimensional integral
manifold with independent variables x of the system (54), (55). Thus, the manifold
defined by the relations (55) is a minimal manifold containing ’graphs’ in the space
Zk of all solutions of the system E . It is in this sense that it will be said that the group
GE is the group of tangent transformations of order k on the solutions of the system
E and the restriction of the group GE on the manifold defined by the relations (55)
will be called the restriction of the group GE to the set solutions of the system E .

It will be shown below that for every l > 0 the groupGEl is an prolongation of the
groupGE and therefore it makes no sense to talk about tangent transformationsmore
higher order than the order of the system. In fact and group GE for most equations
of the mathematical physics is a prolongation of the group of point transformations.

Equation (55) is solvable with respect to different variables
i
y, i = 0, . . . , k, and

so that on the left side there is the maximum possible number of variables
k
y. Thus,

if the variables
i
y, i = 0, . . . , k − 1 and

k
y in the right-hand sides, denote ȳ and ȳ1,

respectively, and the remaining in the right-hand sides, respectively, y and y1, then
Eq. (55) takes the form:

ȳ = f (x, y),
ȳ1 = f 1(x, y, y1).

(56)

Equation (54) after substitution of values in them ȳ and ȳ1 take the form:

0
ω = dy− 0

ϕ (x, y, y1)dx = 0, (57)

since the left-hand sides of the equations d ȳ − · · · = 0 in this case, since the system
E is involutive system, become identically equal to zero.

A similarly constructed Pfaffian system equivalent to system E1, contains
Eqs. (56), (57) and additional equations that can be written as

ȳ2 = f 2(x, y, y1, y2), (58)

1
ω = dy1− 1

ϕ (x, y, y1, y2)dx = 0, (59)

where ȳ2 and y2 together coincide with the set variables
k+1
y . Mappings

1
ϕ = (

1
ϕ

1, . . . ,
1
ϕ n) satisfy the identities:
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c
0
ϕ i

x j
+ 0

ϕ i
y

0
ϕ j+ 0

ϕ i
y1

1
ϕ j = 0

ϕ j
xi +

0
ϕ j

y

0
ϕ i+ 0

ϕ j
y1

1
ϕ i ,

i, j = 1, . . . , n,

and the system (59) is an prolongation of the Pfaffian system (57).
Infinitesimal operator coordinates

L = ξ · ∂x + ζ · ∂y + ζ 1 · ∂y1 + ζ̄ · ∂ȳ + ζ̄ 1 · ∂ȳ1

for L ∈ LE on the manifold defined by the relations (56), satisfy the equations:

ζ̄ = fxξ + fyζ, ζ̄ 1 = f 1x ξ + f 1y ζ + f 1y1ζ
1,

ζ̃y1 + ζ̃ȳ1 f
1
y1+

0
ϕ α

y1ξ
α = 0,

ζ̃xi + ζ̃y
0
ϕ i + ζ̃ȳ( fxi + fy

0
ϕ i ) + ζ̃ȳ1( f

1
xi + f 1y

0
ϕ i )− 0

ϕ i
xα

ξα

− 0
ϕ i

yζ− 0
ϕ i

y1ζ
1 + ξα(

0
ϕ α

xi +
0
ϕ α

y

0
ϕ i ) = 0, i = 1, . . . , n,

where ζ̃ = ζ− 0
ϕ αξα . Coordinates of the restriction of the operator L

L̂ = ξ̂ · ∂x + ζ̂ · ∂y + ζ̂ 1 · ∂y1

on the manifold defined by the relations (56) satisfy equations:

˜̂
ζy1+

0
ϕ α

y1 ξ̂
α = 0,

˜̂
ζxi + ˜̂

ζy
0
ϕ i− 0

ϕ i
xα

ξ̂ α− 0
ϕ i

y ζ̂− 0
ϕ i

y1 ζ̂
1 + ξ̂ α(

0
ϕ α

xi +
0
ϕ α

y

0
ϕ i ) = 0, i = 1, . . . , n,

but these equations are the defining equations of the algebra L(
0
ω) vector fields, rela-

tive to actions which the Pfaffian system (57) is invariant. In this way, the restriction
of the algebra LE to the set of solutions of the system E , that is, on the mani-

fold defined by the relations (56) coincides with the algebra L(
0
ω). Similarly, the

restriction of the algebra LE1 onto the manifold defined by the relations (56), (58),

coincides with the algebra L(
0
ω,

1
ω). The same statement is true for the algebra LEl

for l > 1, but these equations are the defining equations of the algebra L(
0
ω) vector

fields, relative to actions which the Pfaffian system (57) is invariant. In this way, the
restriction of the algebra LE to the set of solutions of the system E , that is, on the

manifold defined by the relations (56) coincides with the algebra L(
0
ω). Similarly,

the restriction of the algebra LE1 onto the manifold defined by the relations (56),

(58), coincides with the algebra L(
0
ω,

1
ω). The same statement is true for the algebra

LEl for l > 1.
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Theorem 6 For every l > 0 the restriction of LEl to the set solutions of the system
El coincides with the continuation of the order l restrictions of the algebra LE to
the set of solutions of the system E.

The validity of the statement of the theorem follows from Theorem2.

Remark 3 For non-involutive systems, the statement of the theorem is false.
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Group Analysis of Some
Camassa–Holm-Type Equations

Igor Leite Freire and Júlio César Santos Sampaio

Abstract In this chapter, we consider symmetries and conservation laws for some
shallow water models including the Camassa–Holm equation.

1 Introduction

Consider the equation

ut − utxx + 3uux + λ(u − uxx)

= 2uxuxx + uuxxx + αux + βu2ux + γ u3ux + �uxxx , (1)

where α, β, γ , � and λ are constants. This equation, introduced in [15], encloses
several equations coming from hydrodynamics, such as

• The Camassa–Holm (CH) equation [3], whenever β = γ = � = λ = 0, and the
weakly dissipative CH equation [30, 31], if β = γ = � = 0 and λ > 0;

• The Dullin–Gottwald–Holm (DGH) equation [13], when β = γ = λ = 0. In case
β = γ = 0, but λ > 0, we have the weakly dissipative DGH equation [23, 24];

• The rotation-CH equation [4, 16, 17, 25], provided that λ = 0 and

ut − utxx + 3uux − β0

β
uxxx + ω1

α2
u2ux + ω2

α3
u3ux = 2uxuxx + uuxxx ,
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where

c =
√
1 + �2 − �, α = c2

1 + c2
, β0 = c(c4 + 6c2 − 1)

6(c2 + 1)2
,

β = 3c4 + 8c2 − 1

6(c2 + 1)2
, ω1 = −3c(c2 − 1)(c2 − 2)

2(1 + c2)3
, ω2 = (c2 − 1)2(c2 − 2)(8c2 − 1)

2(1 + c2)5
,

and � is a constant related to the speed of Earth’s rotation.

All of the aforementioned models come from the study of shallow water models
and they have been subject of intense studies in view of their rich mathematical and
physical features, see [9] and references therein for a wide discussion about these
properties.

Our main interest in Eq. (1) is its study from the point of view of Lie symmetries
and related topics, such as conservation laws and invariants obtained from them. To
celebrate Nail’s memory, in order to establish conservation laws, we use the approach
he developed around 15 years ago [18–20].

The problem considered in these notes was chosen influenced by some works by
Nail:

• firstly, the work by Ibragimov, Khamitova andValent [21], where they investigated
a Camassa–Holm-type equation. Such equation can be recovered from (1) taking
λ = β = γ = � = 0 and replacing utxx by εutxx , where ε is a constant;

• secondly, a joint work ofNail, the first author of the presentwork, andBozhkov [2],
in which they showed that the Novikov equation, discovered some years earlier,
is quasi self-adjoint.

We give now a picture of these notes: the next section is concerned with Lie
symmetries of Eq. (1), while in Sect. 3, we revisit Ibragimov theorem and related
topics to establish conservation laws for Eq. (1). In Sect. 4, we discuss some conse-
quences of the conservation laws we found using Ibragimov theorem, and explore
some consequences of the solutions of (1).

2 Lie Symmetries

Let us revisit some concepts about Lie symmetries. We begin with assuming that
we have n independent variables x := (x1, . . . , xn) and m dependent variables u :=
(u1, . . . , um). By u(k), we denote the set of kth order derivatives of u. Throughout
this section, we use the summation over repeated indices.

A function depending on (x, u) and derivatives of u up to a finite, but arbitrary,
order is called differential function, while the collection of all differential functions
is denoted byA. Note that we can sum differential functions and multiply members
of A by real numbers, which endows an algebraic structure in that set. Moreover,
given a positive integer 
, we can define the product space
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A
 := A × · · · × A︸ ︷︷ ︸

 copies

.

Given f ∈ A, we define the order of f , ord( f ) as being the highest derivative
appearing on f . In case f does not depend on any derivatives of u, then we say that
its order is 0. More generally, if F = ( f1, . . . , f
) ∈ A
, we can define the order of
F as ord(F) = max{ord( f1), . . . , ord( f
)}.
Example 1 Let f1 := ut − utxx + 3uux + λ(u − uxx ) − 2uxuxx − uuxxx − αux −
βu2ux − γ u3ux − �uxxx . Then ord( f1) = 3, since we have explicit dependence on
uxxx . We might also invoke the dependence on utxx to get the same result. Moreover,
note that f1 can be seen as a linear combination of the differential functions of order

• 0, given by u;
• 1, given by ut , ux , uux , u2ux and u3ux ;
• 2, given by uxx and uxuxx and
• 3, given by utxx and uxxx .

Example 2 Let us consider f1 from Example1 and f2 = vt − vtxx + 3uvx − λ(v −
vxx ) − uxxvx − uxvxx − (α + βu2 + γ u3)vx − uvxxx − �vxxx . Then f := ( f1, f2)
∈ A2 and it is easy to see that ord( f ) = 3.

Similarly as smooth functions, in which we have the derivatives mapping a func-
tion into another (possibly different) function, onA, we can define some operators,
that can be seen as generalisations of the ordinary derivatives. More precisely, we
have the total derivative operators

Di = ∂

∂xi
+ uα

i

∂

∂uα
+ uα

i j

∂

∂uα
j

+ uα
i jk

∂

∂uα
jk

+ · · · , 1 ≤ i ≤ n, 1 ≤ α ≤ m.

To our purposes, the total derivatives operators we are interested on are the one
with respect to t

Dt = ∂

∂t
+ uα

t

∂

∂uα
+ uα

t t

∂

∂uα
t

+ uα
t x

∂

∂uα
x

+ · · · , 1 ≤ α ≤ m, (2)

and the total derivative with respect to x

Dx = ∂

∂x
+ uα

x

∂

∂uα
+ uα

xt

∂

∂uα
t

+ uα
xx

∂

∂uα
x

+ · · · , 1 ≤ α ≤ m. (3)

Another important operators defined onA are the Euler–Lagrange operators

Euα = ∂

∂uα
− Di

∂

∂uα
i

+ Di Dj
∂

∂uα
i j

+ · · · , 1 ≤ α ≤ m. (4)
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Example 3 Consider the function L : A2 → A, given by

L = v
(
ut − utxx + uxtx + uxxt

3
+ 3uux + λ(u − uxx )

−2uxuxx − uuxxx − αux − βu2ux − γ u3ux − �uxxx

)
.

Then, we have

Ev(L) = ut − utxx + 3uux + λ(u − uxx ) − 2uxuxx − uuxxx

− (α + βu2 + γ u3)ux − �uxxx

and

Eu(L) = vt − vtxx + 3uvx − λ(v − vxx ) − uxx vx − uxvxx

− (α + βu2 + γ u3)vx − uvxxx − �vxxx .

Assume that in the space (x, u) we have a transformation, depending on a param-
eter ε, which we assume to be analytic in this variable. Also, at ε = 0 we assume
that the transformation is the identity. Let (x, u) �→ (x(x, u, ε), u(x, u, ε)) be a one-
parameter group of transformations that at ε = 0 corresponds to the identity. Making
a Maclaurin expansion, we have

xi = xi + εξ i (x, u) + O(ε2),

uα = uα + εζ α(x, u) + O(ε2).

(5)

The expansion above enables us to define the operator

X = ξ i (x, u)
∂

∂xi
+ ζ α(x, u)

∂

∂uα
(6)

which is the generator of the one-parameter group of transformations.

Example 4 Let us consider the transformation (t, x, u) �→ (t(t, x, u, ε), x(t, x, u,

ε), u(t, x, u, ε)) in R
3. Supposing that such transformation is analytic with respect

to the parameter ε, we have

t(t, x, u, ε) = t + ετ(t, x, u) + O(ε2),

x(t, x, u, ε) = x + εξ(t, x, u) + O(ε2),

u(t, x, u, ε) = u + εη(t, x, u) + O(ε2).

(7)
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The coefficients τ, ξ, η, which depend only on (t, x, u), define the infinitesimal
generator

X = τ(t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
, (8)

of the group of transformations.

Note that if we know the transformation, then the Maclaurin expansion gives
the generator of the transformation. On the opposite side, if we have the latter,
than the former can be recovered from the exponential eεX (x, u) := (eεX x1, . . . ,
eεX xn, eεXu1, . . . , eεXum).

Example 5 Consider the transformation (t, x, u) �→ (t + ε, x, u) =: (t, x, u) in
R

3. Then we have τ = 1, ξ = η = 0 and (8) gives X = ∂t .

So far we have seen transformations, but we have not connected them with Lie
symmetries of differential equations. It is time to overcome this gap. First we note that
a Lie symmetry is a transformation. But what kind of transformation? The transfor-
mations we call Lie symmetries of a differential equation are those transformations
mapping solutions of a given equation or system into another solution of the same
equation or system.

Very often we know the equation, but not necessarily its symmetries. They are
found in the following way:

• Let F = 0 be a system of differential equations, where F ∈ A
.
• Let us assume that any Lie symmetry of the equation has an expansion like (5),
and therefore, defines (and is defined by) the generator (6).

• Let k = ord(F) and, from (6), we construct the operator

X (k) := X + ζ α
i

∂

∂uα
i

+ ζ α
i j

∂

∂uα
i j

+ · · · ζ α
i1...i p

∂

∂uα
i1...i p

, (9)

and
ζ α
i = Diζ

α − (Diξ
j )ui j ,

ζ α
i1...i p

= Dipζ
α
i1...i p−1

− (Dipξ
j )uα

i1...i p−1 j
.

• We impose that
X (k)F = 0 when F = 0. (10)

Condition (10) is called invariance condition and it leads us to obtain a system of
linear partial differential equations for the coefficient functions of the generator
(6). Solving such system (which is always possible) and substituting the solution
into (6), we obtain a linear combination of generators, which gives us a basis to
the generators of the Lie symmetries of the equation.

Let us concretely apply the process mentioned above to find the symmetries of
the Eq. (1).
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Let us assume that (8) is a generator of a one-parameter group of transformation
(7) and that such transformation is a symmetry of (1). Since the equation is of third
order, we must then find the prolongation of the generator (8). Taking the structure
of the equation into account, we have

X (3) = X + ζ t ∂

∂ut
+ ζ x ∂

∂ux
+ ζ xx ∂

∂uxx
+ ζ xxx ∂

∂uxxx
+ ζ t xx ∂

∂utxx
, (11)

where
ζ t = Dt (η) − (Dtτ)ut − (Dtξ)ux , ζ x = Dx (η) − (Dxτ)ut − (Dxξ)ux ,

ζ xx = Dx (ζ
x ) − (Dxτ)uxt − (Dxξ)uxx ,

ζ xxx = Dx (ζ
xx ) − (Dxτ)uxxt − (Dxξ)uxxx ,

ζ t xx = Dt (ζ
xx ) − (Dtτ)uttx − (Dtξ)utxx .

Note that (1) does not have dependence on utx , utt , uttx and uttt and this is reflected
in (11), where we omitted these corresponding components because they will not
have any contribution in (10). The invariance condition is

X (3)(ut − utxx + λ(u − uxx ) − uuxxx − 2uxuxx + 3u2ux ) = 0, (12)

on the solutions of (1). This last sentence means that we calculate the left side of
(12), substitute utxx = ut + λ(u − uxx ) − uuxxx − 2uxuxx + 3u2ux and equates the
result to 0. This will give us a polynomial identity in the derivatives of u, which gives
us the following set of determining equations:

τx = 0, ηuu = 0, τu = 0, ξu = 0, 2ηxu − ξxx = 0, ξt + (� + u)ηu − η(x, t, u) = 0,

(� + u) (τt + ηu − ξx ) = 0, ξt − (� + u) (τt + ηxxu − 3ξx ) − η(x, t, u) = 0,

λη(x, t, u) − λξt − (� + u)
(
η, tu − 2ξxt + 3�ηxu + 3uηxu − 3uξxx − 3�ξxx

+2ηx + λξx ) = 0,

η(x, t, u)(α + 3� − 2γ u3 − u2(β + 3γ�) − 2β�u) − ξt (α + � + γ u3 + βu2 − 2u)

−(� + u)[ 2η, xtu − ξxxt + 2ξx (α + γ u3 + βu2 − 3u) + 3�ηxxu + 2ληxu

+3uηxxu − uξxxx − �ξxxx + 2ηxx − λξxx ] = 0,

�λη(x, t, u) + �ηt + uηt + λuξt − uηxxt − �ηxxt − γ u4ηx − βu3ηx − γ�u3ηx

−β�u2ηx + 3u2ηx − u2ηxxx + 3λu2ξx − λu(� + u)ηu − αuηx + 3�uηx − 2�uηxxx

+3�λuξx − λuηxx − α�ηx − �2ηxxx − �ληxx = 0.
(13)
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We would like to point out some observations.

Remark 1 A couple of lines above we mentioned that we should substitute the
relation utxx = ut + λ(u − uxx ) − uuxxx − 2uxuxx + 3u2ux into the condition (12).
It is not mandatory such a choice. Actually, we could use ut = utxx − λ(u − uxx ) +
uuxxx + 2uxuxx − 3u2ux .

Remark 2 Currently, we have at our disposal several packages for finding the deter-
mining equations and also solve them, which is the same to say that they find the
symmetries. Particularly, we used the ones developed by Dimas [11, 12] to find the
determining equations and also to find the Lie symmetries.

The solution of (14) proves the following result:

Theorem 1 Let (2) be a Lie point symmetry generator of the Eq. (1). Then X is
spanned by the generators

X1 = ∂

∂t
and X2 = ∂

∂x
. (14)

For some specific choices of the parameters α, β, γ and �, we have additional
generators. They are:

1. If β = γ = λ = � = 0 and α �= 0, then

X3 = 2t
∂

∂t
+ αt

∂

∂x
+ (α − 2u)

∂

∂u
; (15)

2. If β = γ = 0, � = −α and λ �= 0, then

X4 = eλ t ∂

∂t
+ �eλ t ∂

∂x
− λ eλ t u

∂

∂u
; (16)

3. If β = γ = λ = 0, then

X5 = 2t
∂

∂t
+ (α + 3�)t

∂

∂x
+ (α + � − 2u)

∂

∂u
. (17)

Theorem1 encloses some equations that have already been previously considered
in other papers, see [1, 5, 29] and references therein.

We note that the arbitrary case, that is, no restrictions on the parameters, gives
the Lie symmetries for the rotating Camassa–Holm equation, derived in [4, 17], see
also [9, 16, 25].

It is worth mentioning that the symmetries considered in this section are Lie point
symmetries, that is, symmetries coming from transformations of the form (5). There
are other symmetries whose coefficients of the generator (6), instead of depending
only on (x, u), also depends on the derivatives of u. Transformations depending
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of (x, u) and the first-order derivatives of u are often called tangent transforma-
tions, while those depending on higher order derivatives are referred as generalised
symmetries. For further details, see [26, Chap. 5].

3 Ibragimov Theorem and Conservation Laws

Let us consider a systemof differential equations,with independent variables x ∈ R
n ,

Fα = 0, α = 1, . . . ,m, (18)

for a certain positive integer m, where Fα ∈ A. Let vβ = vβ(x) be new functions.
We can define the formal Lagrangian

L := vαFα. (19)

The formal Lagrangian enables us to embed the system (18), which is not nec-
essarily variational (i.e., a system coming from the Euler–Lagrange equations), into
the following set Euler–Lagrange equations

⎧
⎨

⎩

Evα (L) = Fα = 0,

Euα (L) =: F∗
α = 0 α = 1, . . . ,m.

(20)

The set of equations F∗
α = 0, α = 1, . . .m, is called adjoint system to the system

(18).
Our main focus is on single differential equation and an example may be salutary

at this stage.

Example 6 Let us consider the Eq. (1). The corresponding formal Lagrangian is
given by

L = v
(
ut − utxx + uxtx + uxxt

3
+ 3uux + λ(u − uxx )

−2uxuxx − uuxxx − αux − βu2ux − γ u3ux − �uxxx
)
.

(21)

Let us find
F∗ = Euα (L)

where L is given by (21). We have
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F∗ = ∂L
∂u

− Dt
∂L
∂ut

− Dx
∂L
∂ux

+ D2
x

∂L
∂uxx

− Dt D
2
x

∂L
∂utxx

− D3
x

∂L
∂uxxx

= λ(v − vxx ) − vt + (α − 3u + βu2 + γ u3)vx + vtxx + uvxxx

+ uxxvx + uxvxx + �vxxx .

(22)

Therefore, the adjoint equation to (1) is

vt − vtxx − λ(v − vxx ) − (α − 3u + βu2 + γ u3)vx − uvxxx − uxx vx − uxvxx − �vxxx = 0.
(23)

Now we revisit the machinery developed by Ibragimov with respect to conserva-
tion laws. In [18] Ibragimov proved the following Noether-type theorem:

Theorem 2 (Ibragimov theorem, [18, Theorem 3.3]) Let

X = ξ i ∂

∂xi
+ ηα ∂

∂uα

beany symmetry ofEq. (18). Then the system (20)has the conservation law DiCi = 0,
where

Ci = ξ iL + W α
[ ∂L
∂uα

i

− Dj
( ∂L
∂uα

i j

) + Dj Dk
∂L

∂uα
i jk

− · · · ]

+Dj (W
α)

[ ∂L
∂uα

i j

− Dk
( ∂L
∂uα

i jk

) + · · · ]

+Dj Dk(W
α)

[ ∂L
∂uα

i jk

− · · · ] + · · ·

(24)

and W α = ηα − ξ i uα
i .

Let us consider Eq. (1). Application of Ibragimov theorem to such equation gives
the components

C0 = τL + W
[ ∂L
∂ut

+ D2
x
( ∂L
∂utxx

)] − Dx (W )Dx
( ∂L
∂utxx

) + D2
x (W )

∂L
∂utxx

,

C1 = ξL + W
[ ∂L
∂ux

− Dx
( ∂L
∂uxx

) + D2
x
( ∂L
∂uxxx

) + Dx Dt
( ∂L
∂uxxt

)

+ Dt Dx
( ∂L
∂uxtx

)] + Dx (W )Dx
[ ∂L
∂uxx

− Dx
( ∂L
∂uxxx

) − Dt
( ∂L
∂uxxt

)]

−Dt (W )Dx
( ∂L
∂uxtx

) + D2
x (W )

∂L
∂uxxx

+ Dt Dx (W )
∂L

∂uxtx
+ Dx Dt (W )

∂L
∂uxxt

,

(25)
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from each Lie point symmetry generator

X = τ
∂

∂t
+ ξ

∂

∂x
+ η

∂

∂u
.

We observe that (25) not only depends on u, but also of the new variable v. This
is more evident if we find the components (25) using (1). After some calculations,
we have

C0 = τL + [
W − 1

3
D2
x
(
W

)]
v + 1

3
Dx (W )vx − 1

3
Wvxx

C1 = ξL + W
[
(3u − α − βu2 − γ u3 − uxx )v + (λ − �)vx − 2

3
vtx − (� + u)vxx

]

Dx (W )
[ − (λ + ux )v + (� + u)vx + 1

3
vt

] + 1

3
vx Dt (W )

−2

3
Dx Dt (W )v − (u + �)D2

x (W )v.

(26)

Therefore, the conservation laws we are able to obtain are not really conservation
laws for the original Eq. (1), but to the system

⎧
⎪⎪⎨

⎪⎪⎩

ut − utxx + 3uux + λ(u − uxx)
= 2uxuxx + uuxxx + (α + βu2 + γ u3)ux + �uxxx ,
vt − vtxx + 3uvx − λ(v − vxx)
= uxxvx + uxvxx + (α + βu2 + γ u3)vx + uvxxx + �vxxx

(27)

in which (1) is embedded by construction.
Although we can establish a conservation law for (27), our intention is the con-

struction of conservation laws for (1), and not (27). In order to eliminate the variable
v in (27), we use the concept of equations nonlinearly self-adjoint [20]. For further
details, see [18, 19] and the review [28].

Definition 1 An equation F = 0, with one dependent variable u, is said to be non-
linearly self-adjoint if there exists a function v = φ(t, x, u), called substitution, and
a function λ ∈ A such that

F∗∣∣
v=φ

= λF. (28)

We note that if an equation is nonlinearly self-adjoint, then any solution of the
original equation provides a solution v = φ for the adjoint equation to the original
one.

Let us investigate if (1) is nonlinearly self-adjoint. To begin with, we assume that
v = φ(t, x, u) and find the derivatives of v appearing in (27), that is:
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vt = Dtφ = φt + φuut ,

vx = Dxφ = φx + φuux ,

vxx = D2
xφ = φxx + 2φxuux + φuuu2x + φuuxx ,

vtxx = Dt D
2
xφ = φt xx + 2φt xuux + φtuuu

2
x + φtuuxx + φxxuut + 2φxuuuxut

+2φxuutx + φuuuu
2
xut + φuuutuxx + 2φuuuxutx + φuutxx

vxxx = D3
xφ = φxxx + 3φxxuux + 3φxuuu

2
x + 3φxuuxx + 3φuuuxuxx

+φuuuu
3
x + φuuxxx .

Substituting these expressions into F∗, we have

F∗∣∣
v=φ

= −φu F +
[
λφ − λφxx − φt + φx (α − 3u + βu2 + γ u3) + λφuu + φt xx

+φxxxu + �φxxx

]
+ (2φt xu − 2λφxu + 3φxxuu + φxx + 3�φxxu)ux

(φtuu − λφuu + 3φxuuu + 2φxu + 3�φxuu)u2x + (φuuuu + φuu + �φuuu)u3x

φxxuut + 2φxuuuxut + φuuuu
2
xut + 2φxuutx + φuuut uxx + 2φuuuxutx

+(φtu − 2λφu + 3φxuu + φx + 3�φxu)uxx + (3φuuu + 3�φuu)uxuxx .

Substituting the expression above into (29), we conclude that λ = −φu , φxu =
φuu = 0, which implies that φ = A(t)u + B(t, x). The remaining equations read

βBx = γ Bx = Bxx = 0, λB + αBx − Bt = 0,

2λA − A′ − Bx = 0, 2λA − A′ − 3Bx = 0.
(29)

Solving the system (29), we prove our next result.

Theorem 3 Equation (1) is nonlinearly self-adjoint. Moreover, its substitution is a
linear combination of the functions φ1 = eλt and φ2 = e2λt u.

Let us now use the results in Theorem3 and the components (26). We observe that
the terms τL and ξL vanish on the solutions of (1). These featured terms are called
trivial conservation laws (see [26] for further details),meaning that bothmathematical
and physical relevance of a conservation law is retrieved only from the non-trivial
parts of the components.

If we use the translations in space or time in (26)wewill obtain componentswhose
divergence vanishes identically and, therefore, no relevant information is provided.
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From the remaining generators of symmetries of (1) (see Theorem1) we are able to
find the following conservation laws:

Dt (e
λt u) + Dx

[
eλt

(3
2
u2 − utx − uuxx − 1

2
u2x − αu − β

3
u3 − γ

4
u4 − �uxx

)] = 0

and

Dt
(
e2λt

u2 + u2x
2

) + Dx
[
e2λt

(
u3 − u2uxx − uutx + �

u2x
2

− �uuxx − α
u2

2
− β

u4

4
− γ

5
u5

)] = 0.

In the next section, we explore the consequences of the conservation laws and
how we can infer qualitative information about the solutions of the equation from
them.

4 Conserved Quantities and Its Consequences

Here,we explore some consequences of the conservation laws previously established.
First, we proceed a generic analysis, but focused on the Eq. (1). Although we focus
on a specific equation, our presentation is easily adapted for any equation/system
with time dependence.

Let us start from the divergence

DtC
0 + DxC

1 = 0, (30)

taken on the solutions of the Eq. (1). Such divergence is, as we have already men-
tioned, called conservation law for the Eq. (1). The vector field C = (C0,C1) is
called conserved current. Its first component, C0, is known as conserved density,
while C1 is its corresponding conserved flux.

Let us then define

H(t) =
∫

R

C0 dx . (31)

The functionH(t), actually, is a functional, associating to each solution u(t, ·) of
(1) a time function H(t), that is, we have the relation u(t, ·) �→ H(t).

It is also worth mentioning that we obtain the functional (31) by integrating the
conserved density over the real line R. However, it would be possible to consider
different domains of integration, e.g. over the circle S, which can be identified with
the internal [0, 1).

Under very mild conditions, the derivative with respect to t commutes with the
integral with respect to x , and then we can measure howH(t) varies with respect to
t , that is,
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d

dt
H(t) =

∫

R

DtC
0dx =︸︷︷︸

By (30)

−
∫

R

DxC
1dx = −C1

∣∣+∞
−∞ (32)

If we assume that the conserved flux vanishes as long as u and its derivatives
vanish, and supposing that this happens whenever |x | → ∞, from (32), we conclude
that

d

dt
H(t) = 0,

meaning thatH(·) is, in fact, constant. Therefore, if we know the solution at a given
value of t , then althoughwemay not know the solution for other values, the functional
(30) is known for each t as long as the solution exists.

From the results proved in the previous sections, we have the following conserved
quantities for (1):

H1(t) = eλt
∫

R

u(t, x)dx (33)

and

H2(t) = e2λt

2

∫

R

(
u(t, x)2 + ux (t, x)

2
)
dx = e2λt

2
‖u(t, ·)‖2H 1(R). (34)

The conserved quantity (34) is related with the Sobolev norm of the space H 1(R),
as shown in the last equality. For further details about this space, see [22, 27]. On the
other hand, if u is either non-negative or non-positive, that is, u(t, x) = σ |u(t, x)|,
whereσ = +1 if u is non-negative, orσ = −1 if u is non-positive, then the conserved
quantity (33) implies on the conservation of the L1(R)−norm of the solution u of
(1).

Suppose that we known a function u0(x) and that it belongs to Hs(R), with
s > 3/2. Then we can assure, at least at the local level, the existence and uniqueness
of solutions of the Eq. (1) satisfying u(x, 0) = u0(x), see [15]. For the particular case
λ = 0, see [9, 10] and references therein. In particular, since we known u0(x), then
we also know

H0 = 1

2

∫

R

(
u20 + (u′

0)
2)dx,

and H(t) as well, in view of the equality H(t) = H0.
We note that if we define m := u − uxx , then (33) is equivalent to

H1(t) =
∫

R

mdx .

We recall that ∂k
x maps a function u from Hs(R) into ∂k

x u ∈ Hs−k(R). Moreover,
if u0 ∈ H 3(R), then m0 := u0 − u′′

0 ∈ H 1(R). In addition, if we also assume that
m0 ∈ L1(R), and m0 does not change its sign, then the solutions of the Eq. (1), with
λ = α = β = γ = � = 0, exists for each t > 0, see [6–8, 14].
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On the other hand, for different values of the constants in (1), let us define κ =
max{|α|, |β|/3, |γ |/4, |�|}, θ0 = √

2/(1 + 12κ) and let us consider a function 0 �≡
u0 ∈ H 3(R) and define y(t) := inf

x∈R
ux (t, x).

If there exists θ ∈ (0, θ0] such that the inequality

0 < λ < − y(0)

4

θ2u′
0(x0)

2 − max{‖u0‖H 1(R), ‖u0‖4H 1(R)
}

θ2u′
0(x0)

2

is satisfied and we can find a point x0 ∈ R such that

θu′
0(x0) < min{−‖u0‖1/2H 1(R)

,−‖u0‖2H 1(R)},

then the corresponding solution of (1) subject to u(x, 0) = u0(x) develop a singu-
larity at a finite time, namely, its derivative with respect to x does not have any lower
bound, see [15]. Such phenomenon is better known as wave breaking. In the refer-
ences [6–8, 14] several wave breaking results for equations enclosed in (1) are also
reported and, actually, the ideas in [7] are the basic tools for proving blow-up results
for equations of the type (1). A common element in them is the fact that the wave
breaking appears provided that some relation between the slop of the initial data and
its H 1(R) is satisfied.

We close this chapter by giving some words about global solutions of (1). By
global, we mean a solution u defined on [0,∞) × R. Let us define u0(x) := u(0, x).
If u0 ∈ Hs(R), for s > 3/2, then we have granted the existence of a unique local
solution for (1) with initial data u0 conserving (34). Then, we have

‖u(t, ·)‖H 1(R) = e−2λt‖u0‖H 1(R). (35)

Let us suppose that such a local solution is global (eventually letting s being
larger than the value mentioned) and that λ > 0. It is a foregone conclusion from
(35) that u → 0 as long as t → +∞. On the other hand, in case λ = 0, if u0 �≡ 0,
then ‖u(t, ·)‖H 1(R) �= 0, showing how λ affects the qualitative behaviour of u.
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Partial Invariance and Problems
with Free Boundaries

V. V. Pukhnachev

Abstract The foundations of group analysis of differential equations were laid by
S. Lie. This theory was essentially developed in works of L. V. Ovsiannikov, N. H.
Ibragimov, their students, and followers. Notion of the partially invariant solution to
the system of differential equations (Ovsiannikov 1964) substantially extended pos-
sibilities of exact solutions construction for multidimensional systems of differential
equations admitting the Lie group. It is important to note that fundamental equations
of continuum mechanics and physics fall in this class a priori as invariance princi-
ple of space, time, and moving medium there with respect to some group (Galilei,
Lorenz, and others) are situated in the base of their derivation. It should be noticed
that classical group analysis of differential equations has a local character. To apply
this approach to initial boundary value problems, one need to provide the invariance
properties of initial and boundary conditions. Author (1973) studied these properties
for free boundary problems to the Navier–Stokes equations. Present chapter contains
an example of partially invariant solution of these equations describing the motion
of a rotating layer bounded by free surfaces.

1 Introduction

I had occasion to work with N. H. Ibragimov for 12 years before he moves from
Novosibirsk to Ufa. We are of the same age, and we both are pupils of L. V. Ovsyan-
nikov. Lev Vasil’evich supervised the theoretical department of our Institute, which
included several research aspects, such as the group analysis of differential equa-
tions, mathematical problems of gas dynamics, and theory of problems with free
boundaries. I managed to work in all these research fields, but the last one became
the main aspect for me.
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The Navier–Stokes equations are used as the basic mathematical model in fluid
dynamics. By 1970, themain boundary value and initial boundary value problems for
these equations with a fixed flow domain have been studied. However, there was not
a single result for problems where the domain boundary or some part of this bound-
ary is free. (Here, I mean problems with a free boundary in the exact formulation.
Approximate models of motions with free boundaries have been developed since
the paper published by Stokes in 1848. The problem of justification of approximate
models had also to be solved.)

Recognizing that my efforts were insufficient to develop a general theory for
three-dimensional problems, I decided to consider problems of smaller dimensions.
A helpful fact was that the Navier–Stokes equations admit a wide Lie group G∞.
Let the equation of the free boundary Γt have the form F(x, t) = 0. If Γt is an
invariant manifold of the group H ⊂ G∞, then the conditions on this surface are
written in terms of invariants of the group H . My proof of this theorem was rather
cumbersome, but Nail made it significantly simpler, and I am extremely grateful for
that. This statement allows one to construct invariant solutions of the Navier–Stokes
equations, which are preliminary matched with the conditions on the free boundary.

In early 1970s, N. Kh. Ibragimov and I worked on our doctor’s dissertations,
whereas V. M. Men’shchikov, one more pupil of L. V. Ovsyannikov, prepared his
candidate’s thesis. LevVasil’evich posed the following problem for him: Is it possible
to continue the invariant solution of gas-dynamic equations through the shock wave?
Men’shchikov answered this question positively under the condition that the equation
of the strong discontinuity surface is an invariantmanifold of the corresponding group
in the space x, t .

Now I return to the year 1964, when L. V. Ovsyannikov made one of his main
mathematical discoveries: he introduced the notion of a partially invariant solution
of a system of differential equations. This notion is specific for systems and arises
in a situation where the subgroup H of the group G admitted by the system has too
few invariants for the invariant H -solution to exist. The procedure of constructing
a partially invariant solution was described in detail in Ovsyannikov’s book entitled
Group Analysis of Differential Equations [1]. The procedure consists in splitting the
original system into the resolving and automorphic subsystems. The first one relates
only the invariants of the group H and contains a smaller number of independent
variables than the original system. If the solution of this system is known, then the
automorphic system is integrated in quadratures.

This discovery of L. V. Ovsyannikov significantly extended the possibility of
constructing exact solutions of multidimensional systems of differential equations
admitting the Lie group. It is important to note here than the fundamental equations
of mechanics and physics of continuous media are a priori included into this class
because their derivation is based on the principles of invariance of space and time
and the moving medium with respect to a certain group (Galileo, Lorentz, and other
groups).

The first examples of partially invariant solutions were obtained for gas-dynamic
equations, and it seemed that their existence is a privilege of hyperbolic systems.
In 1972, however, V. O. Bytev (our common pupil with L. V. Ovsyannikov) found
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an example of a partially invariant solution of unsteady two-dimensional Navier–
Stokes equations, which do not have any particular kind at all. Later on, partially
invariant solutions of systems of boundary layer equations, gravity-induced thermal
convection equations, and other equations were obtained.

In 1973, I found that the theorem of invariance of conditions on the free boundary
is also valid if the solution of the Navier–Stokes equations is only partially invariant.
It is sufficient that the unknown boundary with the equation F(x, t) = 0 defines an
invariantmanifold in the space x, t . This factmade it possible to obtain new solutions
of problems with a free boundary and with an interface of immiscible fluids.

2 Definition of the Partially Invariant Solution

The notion of a partially invariant solution of a system of differential equations was
introduced by Ovsyannikov [2, 3]. The theory of partial invariance is described in
Chap. VI of his monograph [1]. L. V. Ovsyannikov demonstrated that the possi-
bility of constructing partial solutions of differential equations can be extended by
eliminating the property of full invariance of the solution.

Let G = G ′( f ) be a local r -parameter Lie group of transformations of the n-
dimensional space X generated by the mapping f : V × O → X of the product of
the open set V ∈ X and the neighborhood of zero of the parametric space of this
group.

The orbit of the manifold Ψ ∈ V is understood as a set f (Ψ, O) of all possible
points x ∈ Ψ . In other words, the orbit f (Ψ, O) of the manifold Ψ is the sum of
the orbits of all points of this manifold. There is an alternative: the orbit f (Ψ, O)

either contains a certain open set of the space X , or is a manifold in this space with
a dimension smaller than dim X = n. If

dim f (Ψ, O) < n, (1)

then Ψ is called the proper subspace of the space X . If the manifold orbit satisfies
inequality (1), then the groupG is intransitive. The following inclusion is valid for any
invariant manifold Φ of the group G containing the manifold Ψ : f (Ψ, O). There-
fore, the orbit f (Ψ, O) is the smallest invariant manifold of the group G containing
Ψ . Clearly, if Ψ itself is an invariant manifold of the group G, then f (Ψ, O) = Ψ .

The rank of the manifold Ψ with respect to the group G is understood as the rank
of its orbit f (Ψ, O). This rank is considered as a function of the pair (Ψ,G) and is
denoted by ρ(Ψ,G). The defect of the manifold Ψ with respect to the group G is
the difference between the dimension of its orbit f (Ψ, O) and the dimension of the
manifold Ψ . Being considered as a function of the pair (Ψ,G), this defect is denoted
by δ(Ψ,G), so that

δ(Ψ,G) = dim f (Ψ, O) − dimΨ. (2)
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The number δ(Ψ,G) shows how far the manifold Ψ is from the invariant manifold.
The equality δ(Ψ,G) = 0 is a criterion of invariance of themanifoldΨ . Themanifold
Ψ for which δ(Ψ,G) > 0 is called a partially invariant manifold of the group G
with the invariance defect equal to δ(Ψ,G). It is inconvenient to use formula (2) for
calculating the defect because it implies that either the orbit dimension dim f (Ψ, O),
or the rank of this orbit is known. Ovsyannikov [1] derived a formula for defect
calculation, where the defect is expressed via the mapping ψ(x) = 0 defining the
manifold Ψ in the space X .

Let us consider a system of differential equations SE . The solution u ∈ SE is
called a partially invariant solution if the manifold U defined by the relations u =
u(x) is a partially invariant manifold of the group H admitted by the system SE . In
this case, the rank ρ = ρ(U, H) and the defect δ = δ(U, H) are called the rank and
defect (of invariance) of this partially invariant solution U , respectively .

The algorithm of constructing the partially invariant solution was described in [1].
It consists of constructing two systems (resolving and automorphic) based on the sys-
tem SE . The resolving system relates the invariants of the group H . It is simpler than
the original systembecause it contains a smaller number of independent variables and
sought functions. In turn, the automorphic system is a (consistent) overdetermined
system and can be easily solved in most cases. It should be emphasized that the con-
cept of a partially invariant solution is specific for system of differential equations.
Examples of partially invariant solutions of gas-dynamic equations can be found in
[1, 4, 5].

Let X = R2 (x, t) and let the variables t and x be treated as the time and dis-
tance, respectively. The solution u = v(x − ct), where c = const , is called a travel-
ing wave, and c is the traveling wave velocity. The existence of such solutions of the
system of gas-dynamic equations is caused by the group of translations in terms of
the variables and admitted by this system. Obviously, the traveling wave is an invari-
ant solution of these equations. In general three-dimensional case, the system of
gas-dynamic equations admits a group of translations along the coordinate axes and
time. The notion of a double wave is an extension of the notion of the traveling wave
to the case of two-dimensional motions. The system of equations of two-dimensional
isentropic motion of a gas relates its velocity components u(x, y, t), v(x, y, t) and
density ρ(x, y, t). The solution of this system is called a double wave if ρ = r(u, v).
This solution is a partially invariant solution of this system of equations of rank 2
and defect 1 with respect to the group of translations over the axes x, y, t . Finding
this solution is reduced to integrating the system of equations with two independent
variables u, v.

Yanenko [6] started systematic investigations of the notion of multiple, in particu-
lar, double and triple traveling waves. Such waves are described by partially invariant
solutions of gas-dynamic equations [1]. The theory of multiple waves is a significant
part of the monograph [7].



Partial Invariance and Problems with Free Boundaries 255

3 Equations of Hydrodynamics and Their Group
Properties

Themainmathematical model in hydrodynamics is theNavier–Stokes equations. For
an incompressible fluid moving in a potential field of external forces, these equations
have the following form [8, 9]:

vt + v · ∇v = −ρ−1∇ p + νΔ v, ∇ · v = 0. (3)

In system (3), v(x, t) = (v1, v2, v3) is the fluid velocity vector in the initial inertial
coordinate system, x = (x1, x2, x3), t is the time, and p(x, t) is amodified pressure
related to the true pressure pg by the equality p = pg − ρG(x, t), where G is
the potential of acceleration of external forces. It should be noted that the most
important fields from the viewpoint of applications, i.e., the gravity field and the
field of centrifugal forces, are potential fields. The fluid density ρ > 0 is assumed to
be constant, as well as the kinematic viscosity coefficient ν > 0. The gradient over
the variables x1, x2, x3 is denoted by ∇, so that ∇ v is the tensor with the elements
(∇v) jk = ∂vk/∂x j , and ∇ · v is the divergence of the vector v.

The widest group G∞ admitted by system (3) was calculated by Yu.A. Danilov
[10]. However, his paper was published as a preprint, which has limited access, and
the result obtained by Danilov was repeated twice [11, 12]. The Lie algebra L∞
corresponding to the group G∞ is generated by the infinitesimal operators

Z = 2t∂t +
3∑

i=1

(
xi∂xi − vi∂vi

) − 2p∂p, X0 = ∂t , (4)

Xkl = xk∂xl − xl∂xk + vk∂vl − vl∂vk ; k, l = 1, 2, 3; k < l,

Φ = ϕ∂p, Ψk = ψk∂xk + ψ̇k∂vk − ρxkψ̈k∂p; k = 1, 2, 3.

Here, ψi and ϕ are arbitrary (of class C∞) functions of time, and the dot means
differentiation with respect to t . Thus, the group admitted by system (3) is infinite-
dimensional.

Assuming that ν = 0 in system (3), we obtain a system of the Euler equations

vt + v · ∇v = −ρ−1∇ p, ∇ · v = 0, (5)

which describes the motion of an ideal incompressible fluid. The group Ĝ∞ admitted
by this system is a direct product of the group G∞ and the dilation group with the
operator

Ẑ = t∂t +
3∑

i=1

xi∂xi . (6)

The algebra corresponding to the group Ĝ∞ is denoted by L̂∞.



256 V. V. Pukhnachev

The presence of the dilation operator Z in the algebra L∞ means scaling invariance
of Eq. (3). This important property forms the basis of physical modeling of viscous
fluid flows. The set of three operators Xkl generates a group of consistent rotations
in the space of coordinates and in the space of velocities admitted by system (3).
This property reflects the absence of preferential directions in the spaces mentioned
above. It should be noted that the existence of axisymmetric solutions of the Navier–
Stokes equations is directly related to the fact that the algebra L∞ contains rotation
operators, as well as the existence of steady solutions of these equations is related to
the presence of the translation operator in terms of time X0 in L∞.

The operatorsΦ, Ψi are specific for equations of incompressible fluid dynamics.
The first of them implements the possibility of adding an arbitrary function of time
to the pressure without changing the equations of motion. This fact is consistent with
the statement that the pressure in an incompressible medium is not a thermodynamic
variable [8]. The operator Ψi (i = 1, 2, 3) corresponds to the transformation of the
transition to a new coordinate system (which is non-inertial, generally speaking),
which moves along the axis xi with a velocity ψ̇(t)with respect to the initial system.
In this case, there appears an additional term ψi in the i th momentum Eq. (3), i.e.,
acceleration of the inertia force,which is compensated by adding the function−ρxi ψ̈i

to the pressure.
Assuming if Ψi = 1 (i = 1, 2, 3) and Ψi = t in system (4), we obtain the opera-

tors
Xi = ∂xi , Yi = t∂xi + ∂vi (i = 1, 2, 3). (7)

The set of the operators X0, Xi , Yi , X jk forms a ten-parameter Lie algebra L10. The
corresponding group G10 is called the Galileo group. The presence of operators of
translations along the coordinates xi in the algebra L10 is a consequence of space
homogeneity. The presence of Galileo translation operators Yi reflects the fact that
the fluid motion laws are independent of the choice of the inertial coordinate system.
Supplementing the operators of L10 with the dilation operator Z , we obtain an eleven-
parameter Lie algebra L11. The corresponding Lie group G11 is called the extended
Galileo group. Supplementing the algebra L11 with the operator Ẑ (6), we obtain
a twelve-parameter group G12. The groups G10 and G11 (G10 and G12) play an
important role in studying invariant and partially invariant solutions of problems
with a free boundary for the Navier–Stokes (Euler) equations.

4 Problems with Free Boundaries

The notion of the free boundary of the fluid is an idealized interface of two immiscible
fluids if the density of one fluid is much smaller than the density of the other fluid. A
typical example of such a situation is the water-air interface. At small velocities of
air, it is possible to neglect its dynamic action on water, and the atmospheric pressure
pa can be imposed on the free surface Γt . The subscript t in Γt characterizes the
dependence of the free surface shape on time.
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Let the free boundary Γt be defined by the equation F(x, t) = 0. The conditions
for the Navier–Stokes equations (3) on this surface have the form

Ft + v · ∇F = 0 for F = 0, (8)

(pa − pg) n + 2ρνD · n = −2σK n for F = 0. (9)

Here, pg is the pressure in the fluid, D is the strain rate tensor, 2Di j = ∂vi/∂x j +
∂v j/∂xi j (i, j = 1, 2, 3), K is the mean curvature of the surface Γt , n is the
unit vector of the external normal to this surface, and σ ≥ 0 is the surface tension
coefficient. Condition (8) means that the surface Γt is a Lagrangian surface so that
the velocity of its motion in the direction n coincides with the normal component
of the fluid velocity. This condition is called the kinematic condition. Condition (9)
is called the dynamic condition. It reflects the fact that the shear stress on the free
surface of the fluid is equal to zero, and the difference between the normal stress and
atmospheric pressure is equal to the capillary pressure.

Then it is assumed thatσ = const . This assumption is valid for isothermalmotions
in the absence of surfactants. The conditions on the interface of immiscible fluids in
the case of their non-isothermal motion on the basis of thermodynamics of the Gibbs
surface were derived in [13, 14] (Chap. II). Conditions (8) and (9) are obtained from
the general conditions as a result of a limiting transition. In what follows, the motion
is assumed to be isothermal.

Let us now consider the system of the Euler equations (5). For this system, the
conditions on the free boundary have the form of Eq. (8) and

pg − pa = 2σK , x ∈ Γt . (10)

Nowwe pass to considering themotion of two immiscible viscous incompressible
fluids. The motion occurs in the domain Ωt ⊂ R3, which is divided by a smooth
surface Γt into two subdomains Ω1t and Ω2t . In each subdomain, let the functions
v1, p1 and v2, p2 satisfying Eq. (3) with replacement of the coefficients ν, ρ by
ν1, ρ1 and ν2, ρ2, respectively, be defined. At each point Γt at any time, we assume
that there exist the limiting values of the functions vi , pi and their first derivatives
with respect to all variables from the subdomains Ω1t and Ω2t It turns out that these
set of functions cannot be arbitrary: they have to be related by appropriate expressions
following from conservation laws and thermodynamic postulates.

The first relations have a kinematic character. They are based on the fact that the
surface Γt is the Lagrangian (or material) surface. Thus, we avoid considering such
processes as dissolving of one of the contacting fluids in the other, condensation, and
evaporation, i.e., mass transfer through the interface is prohibited.

Let us use n to denote the unit vector of the normal to the surface Γt directed
to the domain Ω2t and Vn to denote the velocity of motion of the surface Γt in the
direction of the normal n. The fact that this surface is material is expressed by the
following equalities [13, 14]:
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v 1 · n = v2 · n = Vn, x ∈ Γt . (11)

Equalities (11) and continuity equation (the second equation of system (3)) ensure the
validity of the integral law of mass conservation in an arbitrary material subdomain
of the domain Ω1t ∪ Ω2t .

The integral law of momentum conservation across the interface yields the fol-
lowing expression [13, 14]:

(−p1 + p2) n + 2(ρ1ν1D1 − ρ2ν2D2) · n = −2σKn, x ∈ Γt . (12)

Here, Di (i = 1, 2) is the strain rate tensor corresponding to the velocity vector vi ,
and K is the mean curvature of the surface Γt (it is assumed that K > 0 if this
surface is convex outward of the domain Ω2t ).

To conclude, we postulate the condition of continuity of the total velocity vector
across the interface:

v1 = v2, x ∈ Γt . (13)

In fact, conditions (13) contain two additional scalar conditions because the conti-
nuity of the normal component is already implied in conditions (11).

5 Theorems of Invariance of Conditions on the Free
Boundary

This paragraph deals with the properties of invariance of conditions (8)–(13) with
respect to transformations that ensure conservation of the Navier–Stokes equations
(3). For simplicity, we consider a situation without external forces. Then the function
pg involved into the dynamic condition (9) coincides with the function p involved
into the momentum equation (the first equation of system (3)).

Let us consider the Euclidean space R8 with the coordinates of its points being
x1, x2, x3, t, v1, v2, v3, p. This space is subjected to the action of the Galileo group
G10 with the basis operators X0, X j ,Y j , Xi j (i, j = 1, 2, 3; i < j) defined by for-
mulas (4). It is admitted by system (3). Let us consider a certain k–parameter subgroup
H of the group G10. Let l ≤ k be the maximum number of operators of this group
that are not linearly related. It should be noted that l < k only if k ≥ 3 and H contains
a group of rotations 〈X12, X13, X23〉. We are interested only in intransitive groups
G10; in this case, l < 8.

Let Iα (α = 1, . . . , 8 − l) be a complete set of functionally independent invari-
ants of the group H . Let us use mto denote the rank of the matrix (∂ Iα/∂vβ),
where β = 1, 2, 3, 4, and it is assumed that v4 = p. Clearly, m ≤ min(4, 8 − l).
In what follows, we consider only such groups H wherem < 8 − l. Then there exist
n = 8 − l − m invariants of H that do not contain v, p, which are the sought func-
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tions in system (3). Without loss of generality, we can assume that these invariants
are Im+1, . . . , Im+n . The condition m < n is a necessary condition for the existence
of an invariant H -solution of the above-mentioned system, and the number n − m is
the rank of this solution.

Let us now assume that the equation F(x, t) = 0 defines a non-singular invariant
manifold of the group H . This means that F can be written in the form

F = Q[Im+1(x, t), . . . , Im+n(x, t)]

with a certain function Q.

Theorem 1 Let the free boundary F(x, t) = 0 be a non-singular invariant manifold
of the subgroup H ∈ G10. Then conditions (8) and (9) satisfied on this surface are
also invariant with respect to H.

Theorem1 was put forward by Pukhnachev [15]. The proof of this theorem can
be also found in [16]. At σ = 0, it turned out that the group G10 in the condition of
Theorem1 cannot be replaced by a wider subgroup of the infinite-dimensional group
G∞ admitted by system (3). This extension is possible if σ = 0. In this case, the
statement of Theorem1 remains valid if G10 is replaced with an extended Galileo
group G11 by means of supplementing the generators of the group G10 with the
dilation operator Z .

Let us now consider the conditions on the free boundary (8) and (10) for the Euler
equations (7). If there are no external forces, it may be assumed that pg = p. Here,
we have an analog of Theorem1; the proof is skipped.

As was noted earlier, the notion of the free surface is understood as an idealized
interface of two immiscible fluids. Below, we formulate the properties of invariance
of the conditions at the interface (11)–(13). Let us useGΦ

10 to denote the direct product
of the Galileo group G10 and the group generated by the operator Φ = ϕ∂p, where
ϕ(t) ∈ C∞ is an arbitrary function.

Theorem 2 Let the interface of immiscible fluids F(x, t) = 0 be a non-singular
invariant manifold of the subgroup H ∈ GΦ

10. Then conditions (11)–(13) satisfied on
this surface are also invariant with respect to H.

If σ = 0 in condition (16), then the group GΦ
10 in the formulation of Theorem2

can be replaced by the direct product of the group GΦ and the extended Galileo
group G11. The maximum extension of the admitted group is observed at σ = 0 and
identical densities of the contacting fluids.

Theorem 3 Let us assume that ρ1 = ρ2 and σ = 0 in conditions (12). Moreover,
let the interface F(x, t) = 0 be a non-singular invariant manifold of the subgroup
H ∈ G∞. Then conditions (11)–(13) satisfied on this surface are also invariable with
respect to H.

Theorems2 and3 are new.They show that the invariant properties of the conditions
at the interface of immiscible fluids are richer than similar properties of the conditions
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on the free boundary. This is caused by the fact that the concept of the interface ismore
natural from the physical viewpoint than the concept of the free surface. Theorems2
and 3 are proved in accordance with the scheme used to prove Theorem1; the proof
is not provided here.

Theorem1 was used to construct invariant solutions of the Navier–Stokes equa-
tions, which were preliminary matched with the conditions on the free boundary,
which is an invariant manifold of the corresponding group [15, 16]. However, retain-
ing the invariance of the free boundary, it is possible to alleviate the requirement to
the solution of system (3): it can be partially invariant. Examples of such solutions
of problems with a free boundary are provided in the next paragraphs.

6 Partially Invariant Solutions of the Navier–Stokes
Equations

It is not an exaggeration to say that the initial trend of studying the Navier–Stokes
equations was to obtain their exact solutions. Here, we should mention the solution
of Hiemenz [17], which describes the flow near the stagnation point, and also the
solution of Karman, which describes the motion in a half-space induced by plane
rotation [18]. There is a popular opinion that these both steady solutions are self-
similar solutions of system (3). In reality, these solutions have a group-theoretical
nature, but it ismore complicated. Petrova et al. [19] considered aproblemof unsteady
motion of a fluid near the stagnation point. It turned out that the solution of this
problem is a partially invariant solution of system (3) of rank 2 and defect 2 with
respect to the group generated by the operators X1 = ∂x1 and Y1 = t∂x1 + ∂v1 . The
corresponding resolving system inherits some of the group properties of system (3).
The solution obtained by Hiemenz is an invariant solution of the resolving system
with respect to the operator X0 = ∂t .

A similar situation is observed for the Karman solution. To write down this
solution, we use system (3) in cylindrical coordinates r = (x21 + x22 )

1/2, φ =
arctan(x2/x1), z = x3:

dvr
dt

− v2φ
r

= − 1

ρ

∂p

∂r
+ ν

(
Δvr − 2

r2
∂vφ

∂φ
− vr

r2
)
, (14)

dvφ

dt
+ vr vφ

r
= − 1

ρr

∂p

∂φ
+ ν

(
Δvφ + 2

r2
∂vr
∂φ

− vφ

r2
)
,

dvz
dt

= − 1

ρ

∂p

∂z
+ νΔvz,

∂vr
∂r

+ vr
r

+ 1

r

∂vφ

∂φ
= 0,

dvz
dt

= − 1

ρ

∂p

∂z
+ νΔvz,

∂vr
∂r

+ vr
r

+ 1

r

∂vφ

∂φ
+ ∂vz

∂z
= 0.
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Here

d

dt
= ∂

∂t
+ vr

∂

∂r
+ vφ

r

∂

∂φ
+ vz

∂

∂z
, Δ = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2
∂2

∂φ2
+ ∂2

∂z2
.

The motion is called rotationally symmetric if the sought functions in system (14)
are independent of the variable φ. The Karman solution refers to this class. It is
described by the formulas

vr = rΩF(ς), vφ = rΩG(ς), vz = (νΩ)1/2H(ς), p = ρνΩQ(ς), (15)

where ς = (Ω/ν)1/2z. Substitution of Eq. (15) into Eq. (14) yields a system of ordi-
nary differential equations for the functions F,G, H, Q:

F2 − G2 + F ′H = F ′′, 2FG + G ′H = G ′′, HH ′ = Q′ + H ′′, 2F + H ′ = 0.
(16)

Let us impose the following boundary conditions on the solution of system (16):

F = 0, G = 1, H = 0 at ς = 0, F → 0, G → 0 as ς → ∞. (17)

Then solution (15) describes the fluid motion in the half-space z > 0 induced by
rotation of the bounding solid plane around the axis of symmetry with an angular
velocity Ω .

Following [20], we demonstrate how the Karman solution can be obtained on the
basis of group considerations. Let us consider a five-parameter subgroup H of the
group C∞ with the basis operators X1, X2,Y1,Y2, X12. This subgroup corresponds
to the partially invariant solution of system (3) of rank 2 and defect 2. Its invariant
part in cylindrical coordinates has the form vz = h(z, t), p = q(z, t). By virtue
of the continuity equation, there exists a relationship between the radial and axial
velocity components: ∂vr/∂r + vr/r + ∂vz/∂z = 0. By requiring that the function
vr is bounded as r → 0, we have vr = r f (z, t), where f = −h/2.

Now we substitute the expressions for vr , vz, p into the first equation of system
(14) and consider the fact that the sought functions are independent of φ. As a result,
we obtain the presentation of the circumferential velocity vφ = rg(z, t), where g is
expressed via the function h and its derivatives. Thus, the general presentation of
the partially invariant solution of system (3) with respect to the group H , which is
regular on the axis of symmetry, is

vr = r f (z, t), v = rg(z, t), vz = h(z, t), p = q(z, t). (18)
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The functions f, g, h, q satisfy the system of equations

∂ f

∂t
+ h

∂ f

∂z
+ f 2 − g2 = ν

∂2 f

∂z2
,

∂g

∂t
+ h

∂g

∂z
+ 2 f g = ν

∂2g

∂z2
,

∂h

∂t
+ h

∂h

∂z
= − 1

ρ

∂q

∂z
+ ν

∂2h

∂z2
, 2 f + ∂h

∂z
= 0. (19)

System (19) inherits some part of the group properties of the original system (3),
in particular, the translation with respect to time. The corresponding steady solution
of system (19) coincides with the Karman solution (15) with accuracy to notations.
We can say that the Karman solution is an invariant solution of a certain partially
invariant sub-model of the Navier–Stokes equations, whereas a solution of the form
of Eq. (18) is an unsteady analog of the Karman solution. It turns out that this solution
can describe the process of layer spreading on a rotating plane [21] and [16], Chap.
VII.

We require that conditions (10) and (11) should be satisfied on the invariant
manifold z = s(t) of the group H for solution (18). For this purpose, the unknown
functions in system (19) have to be subjected to the boundary conditions

∂ f

∂z
= ∂g

∂z
= 0, q − 2ρν

∂h

∂z
= 0 for z = s(t),

ds

dt
= h[s(t), t] for t > 0.

(20)
In addition, we impose the boundary conditions

f = 0, g = ω (t), h = 0 for z = 0, t > 0. (21)

Here, ω (t) is a specified function, ω (0) = 0, ω′(0) = 0. The formulation of the
problem with an unknown boundary for system (19) is closed by setting the initial
conditions

f = g = 0, h = 0, s = s0 > 0 for t = 0. (22)

Thus, we obtain the following problem: we have to find a function s(t) and a solu-
tion of system (19) in the domain ST = {z, t : 0 < z < s(t), 0 < t < T } so that
conditions (20)–(22) are satisfied. Let us assume that the function ω(t) belongs to
the Hölder classC1+α/2[0, T ], where 0 < α < 1. Then there exists a unique solution
of problem (19)–(22) for any T > 0 [16].

The resultant solution is interpreted as follows. At the initial time, the quiescent
fluid occupies an infinite layer 0 < z < s0 whose lower boundary is a solid surface,
whereas the upper boundary is free. Then the plane starts smooth rotation around the
z axis with an angular velocity ω(t) and sets the fluid into the corresponding motion.
The characteristic feature of the problem implies that the free boundary remains flat
for all t > 0. This property was used to develop a technology of depositing coatings
onto a flat disk (see [22] and the references therein). As the problem solution exists
for all t > 0, it is of interest to study its behavior as t → ∞. This was made in [23],
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where the asymptotic behavior of the solutionwas found for the casewith the function
ω(t) = Atn for large values of t (A and n are constants). In the same paper, results of
the numerical solution of problem (19)–(22) were reported for several typical values
of ω(t) (see also Chap. VII of the monograph [16]).

Now we construct an example of a partially invariant solution of system (3),
which describes plane motion with an internal interface. In what follows, x and y
are the Cartesian coordinates on the plane, while u and v are the corresponding
components of the velocity vector. It is assumed that both fluids have an identical
density, ρ1 = ρ2 = ρ, but different viscosities, ν1 and ν2. The boundaries of the flow
domain ΠT = {x, y, t : x ∈ R, 0 < y < l(t), 0 < t < T } are solid impermeable
walls. One of them, y = 0, is stationary, while the other one, y = l(t), moves along
the y axis. The line y = s(t) is the interface between the fluids. The band 0 < y <

s(t) is occupied by thefluid indicated by the subscript 1, and the band s(t) < y < l(t)
is occupied by the fluid indicated by the subscript 2. At the initial time, both fluids
are at rest.

Let us consider a subgroup of the group G∞ generated by the operators X = ∂x
and Y = t∂x + ∂u . It corresponds to a partially invariant solution of system (3) of
rank 2 and defect 2 of the form

ui = −x
∂vi
∂y

, vi = vi (y, t), p = ρ

2
a(t)x2 + m(y, t), i = 1, 2, (23)

where a is a given function of t . (We confine ourselves to solutions of system (3),
where the functions vi and p are even functions of the variable x , while ui are odd
functions of this variable). Substituting expressions (23) into system (3), we obtain
equations satisfied by the functions v1, v2, and m:

∂2v1
∂y∂t

+ v1
∂2v1
∂y2

− (∂v1
∂y

)2 = ν1
∂3v1
∂y3

+ a(t) for 0 < y < s(t), 0 < t < T, (24)

∂2v2
∂y∂t

+ v2
∂2v2
∂y2

− (∂v2
∂y

)2 = ν2
∂3v2
∂y3

+ a(t) for s(t) < y < l(t), 0 < t < T,

∂v1
∂t

+ v1
∂v1
∂y

= − 1

ρ

∂m

∂y
+ ν1

∂2v1
∂y2

for 0 < y < s(t), 0 < t < T, (25)

∂v2
∂t

+ v2
∂v2
∂y

= − 1

ρ

∂m

∂y
+ ν2

∂2v2
∂y2

for s(t) < y < l(t), 0 < t < T .

The boundary conditions on the solid regions of the boundary of the domain ΠT

(no-slip conditions) have the form

v1 = 0 for y = 0, 0 ≤ t ≤ T, v2 = dl

dt
if y = l(t), 0 ≤ t ≤ T . (26)
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Based on relations (11)–(13), the boundary conditions on the interface between the
fluids are written as

v1 = v2, ν1
∂v1
∂y

= ν2
∂v2
∂y

, ν1
∂2v1
∂y2

= ν2
∂2v2
∂y2

for y = s(t), 0 ≤ t ≤ T, (27)

ds

dt
= v1[s(t), t] = v2[s(t), t] for 0 < t < T . (28)

They are supplemented with the initial conditions

v1(y, 0) = 0 for 0 ≤ y ≤ s0, v2(y, 0) = 0 if s0 ≤ y ≤ l0, s(0) = s0, (29)

where l0 = l(0), s0 ∈ (0, l0) is a specified constant.
The problem with an unknown boundary is formulated. We have to determine a

function s(t) and a solution v1, v2,m of system (24), (25) that satisfies conditions (8)–
(29). It should be noted that relations (24), (26)–(29) form a closed system for finding
the functions v1, v2, and s. If these functions are found, then the remaining sought
function m is reconstructed by a quadrature from Eq. (25). The additive function
of time arising thereby makes it possible to ensure the continuity of the function m
across the interface.

Problem (24)–(29) is rather non-standard. At the moment, the uniqueness of its
classical solution can be guaranteed. To prove the existence theorem, it is reasonable
to pass in this problem to the Lagrangian coordinates in which the flow domain is
fixed. It can be expected that problem (24)–(29) does have a solution, at least, for a
sufficiently small value T > 0.

7 Example of Partially Invariant Solution of the Euler
Equations

Belowwe study a rotationally symmetric solution of theEuler equations (5) in a cylin-
drical layer ΩT = {r, z, t : b < r < s(t), z ∈ R, 0 < t < T }. The equations of
motion are obtained from Eq. (14) by assuming that ν = 0 and taking into account
that the sought functions are independent of the variables φ:

∂vr
∂t

+ vr
∂vr
∂r

+ vz
∂vr
∂z

− v2φ
r

= − 1

ρ

∂p

∂r
,

∂vφ

∂t
+ vr

∂vφ

∂r
+ vz

∂vφ

∂z
+ vr vφ

r
= 0,

(30)
∂vz
∂r

+ vr
∂vz
∂r

+ vz
∂vz
∂z

= − 1

ρ

∂p

∂z
,

∂vr
∂r

+ vr
r

+ ∂vz
∂z

= 0.

System (30) admits a group with operators ∂z and t∂z + ∂vz , which corresponds
to its partially invariant solution of rank 2 and defect 1 of the form
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vr = u(r, t), vφ = v(r, t), vz = −z
(∂u

∂r
+ u

r

)
, p = p(r, t). (31)

Substituting expressions (31) into Eq. (30), we obtain the resolving system of equa-
tions for the sought invariant functions, which can be conveniently written in the
form

∂u

∂r
+ u

r
= L ,

∂L

∂t
+ u

∂L

∂r
− L2 = 0,

∂v

∂t
+ u

∂v

∂r
+ uv

r
= 0, (32)

∂u

∂t
+ u

∂u

∂r
− v2

r
+ 1

ρ

∂p

∂r
= 0.

Let us assume that the layer boundary r = b is a permeable surface. It is subjected
to the boundary condition

u = c(t), r = b, z ∈ R, 0 < t < T, (33)

where c(t) is a prescribed function. The boundary r = s(t) is assumed to be free. It
is subjected to the conditions

p = pa + σ

s(t)
, r = s(t),

ds

dt
= v[s(t), t], 0 < t < T, (34)

which follow from conditions (8) and (10).Moreover, the following initial conditions
are imposed:

u(r, 0) = u0(r), v(r, 0) = v0(r), b ≤ r ≤ s0, s(0) = s0. (35)

Here, u0(r) and v0(r) are specified functions, and s0 > b is a prescribed constant.
System (32) has a recurrent structure: its first two equations are separated from

the others. An effective analysis of problem (32)–(35) is reached by means of the
transition to the Lagrangian coordinate ξ instead of r . The relationship between r
and ξ is determined by solving the Cauchy problem

dr

dt
= u(r, t), t > 0; r = ξ, t = 0. (36)

The following notations are introduced:

u[r(ξ, t), t] = U (ξ, t), L[r(ξ, t), t] = Λ(ξ, t),

v[r(ξ, t), t] = V (ξ, t), p[r(ξ, t), t] = P(ξ, t).

Here, r(ξ, t) is the solution of the Cauchy problem (36). We denote u′
0(ξ) +

u0(ξ)/ξ = a(ξ). In the new variables, system (32) takes the form
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∂Λ

∂t
= Λ2, r

∂2r

∂r∂t
+ ∂r

∂ξ

∂r

∂t
= r

∂r

∂ξ
Λ, (37)

∂V

∂t
+ UV

r
= 0,

∂U

∂t
− V 2

r
+ 1

ρ

( ∂r

∂ξ

)−1 ∂P

∂ξ
= 0. (38)

The solution of the first equation of (37) with the initial condition Λ(ξ, 0) = a(ξ)

has the form

Λ = − a(ξ)

a(ξ)t + 1
. (39)

The second equation of (37) can be written as

∂

∂t

(
∂r2

∂ξ

)
= Λ

(
∂r2

∂ξ

)
,

after which it is easily integrated with allowance for equalities (39) and r = ξ at
t = 0:

r(ξ, t) = [
ξ∫

ς(t)

2ηdη

a(η)t + 1
+ b2

]1/2
. (40)

Here, the function ς(t) determines the image of the fixed boundary r = b of the flow
domain in passing to the Lagrangian coordinates. From Eq. (40) and the equalities
r [ς(t), t] = b, rt [ς(t), t] = c(t), we obtain the Cauchy problem for finding the
function ς(t):

2ς
dς

dt
= −bc(t)[a(ς)t + 1], t > 0; ς = b, t = 0.

In accordance with the second condition of (34), the image of the free boundary
r = s(t) on the plane of the Lagrangian coordinates is a segment of the straight line
ξ = s0.

Using formulas (40) and U = rt (ξ, t), we find the functions V and P with the
help of quadratures from Eq. (38). In this case, the function P is determined with
the accuracy up to the additive function of time. Thus, the first condition of (34)
can be satisfied on the free boundary r = s(t). As a result, we obtain a parametric
representation of the solution of the problem with a cylindrical free surface for the
Euler equations.
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Group Properties of the Riemann
Function

A. V. Aksenov

Abstract A linear hyperbolic equation of the second order in two independent vari-
ables is considered. The Riemann function of the adjoint equation is shown to be
invariant with respect to the symmetries of the fundamental solutions. The Riemann
function is constructed with the aid of fundamental solutions symmetries. Examples
of the application of the algorithm for constructing Riemann function are given.

1 Introduction

In the study [1], B. Riemann suggested the Riemann’s method of integrating that was
applied to a hyperbolic second-order partial equationwith two independent variables.
In order to apply theRiemann’smethod, it is necessary to construct Riemann function
that is a solution of Cauchy special characteristic problem [2]. General method for
Riemann function construction does not exist.

In [3], an extensive analysis of six certain methods for creation Riemann function
of particular types of equations. Ibragimov recommended to find Riemann function
with the aid of equation symmetries [4, 5] basing on Ovsyannikov study result [6]
in group classification of linear hyperbolic second-order equations.

The most complete review of research on the Riemann function is given in [7].
In the present study,we consider themethod for constructing theRiemann function

based on the use of the symmetry of fundamental solutions. Examples of using the
method are given.
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2 Riemann’s Method

Let us consider the general linear hyperbolic equation of the second order in two
independent variables

Lu = uxy + a(x, y)ux + b(x, y)uy + c(x, y)u = 0 . (1)

Riemann’s method is based on the following identity

2(vLu − uL∗v) = (vuy − uvy + 2auv)x + (vux − uvx + 2buv)y ,

where L∗v = vxy − (av)x − (bv)y + cv=0 is the adjoint equation. Riemann’s
method allows us to convert the integration problem of Eq. (1) to construction of
the intermediary Riemann function R(x, y; x ′, y′), that obeys the following adjoint
equation of variables x, y

L∗R = 0

and the following conditions at the characteristics:

(Ry − aR)
∣
∣
x=x ′ = 0 , (Rx − bR)|y=y′ = 0 , R(x ′, y′; x ′, y′) = 1 .

General solutions of Cauchy problem and Goursat problem are constructed with the
aid of Riemann function for Eq. (1) [2].

Riemann function u = R∗(x, y; x ′, y′) of the adjoint equation satisfies the Eq. (1)
and following conditions at characteristics:

(R∗
y + aR∗)

∣
∣
x=x ′ = 0 , (R∗

x + bR∗)
∣
∣
y=y′ = 0 , R∗(x ′, y′; x ′, y′) = 1 . (2)

Riemann functions R and R∗ have properties of reciprocity [2]

R(x, y; x ′, y′) = R∗(x ′, y′; x, y) . (3)

3 Symmetries of Fundamental Solutions

Fundamental solutions of linear partial differential equations are frequently invariant
under transformations admitted by the original equation [8]. Below, a fundamental
solution is constructed using the algorithm from [9, 10] proposed for finding funda-
mental solutions of linear partial differential equations. The algorithm makes use of
the symmetries admitted by a linear partial differential equation with a delta function
on its right-hand side. Let us briefly describe the main result of this work.

Consider the pth-order linear partial differential equation
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Au ≡
p

∑

α=1

Bα(x)Dαu = 0 , x ∈ Rm . (4)

Here, the standard notation is used: α = (α1, . . . , αm) is a multi-index with nonneg-
ative integer components, α = α1 + · · · + αm , and

Dα ≡
(

∂

∂x1

)α1

· · ·
(

∂

∂xm

)αm

.

The fundamental solutions of Eq. (4) are solutions of the equation

Au = δ(x − x0) . (5)

It was shown in [11] that Eq. (4) with p � 2 and m � 2 can admit only symmetry
operators of the form (the finite-dimensional part of Lie algebra)

Y =
m

∑

i=1

ξ i (x)
∂

∂xi
+η(x, u)

∂

∂u
,

∂2η

∂u2
= 0 .

The basic Lie algebra of symmetry operators of Eq. (4) regarded as a vector space is
the direct sum of two subalgebras: one consisting of operators of the form

X =
m

∑

i=1

ξ i (x)
∂

∂xi
+ζ(x) u

∂

∂u
, (6)

and the infinite-dimensional subalgebra generated by the operators

X∞ = ϕ(x)
∂

∂u
, (7)

where ϕ(x) is an arbitrary solution of Eq. (4). Note that operators (7) are symme-
try operators of Eq. (5). In what follows, we consider only symmetry operators of
form (6).

Let denote X
p
an extension of order p of symmetry operator (6).

Proposition 1 The infinitesimal operator given by (6) is a symmetry operator of
Eq. (4) if and only if there exists a function λ = λ(x) satisfying the identity

X
p
(Au) ≡ λ(x) Au (8)

for any function u = u(x) from the domain of Eq. (4).

Let us formulate the main result [9, 10].
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Theorem 1 The Lie algebra of symmetry operators of Eq. (5) is a subalgebra of the
Lie algebra of symmetry operators of Eq. (4) and is defined by the relations

ξ i (x0) = 0, i = 1, . . . ,m ,

λ(x0) +
m

∑

i=1

∂ξ i (x0)

∂xi
= 0 .

(9)

Let us describe an algorithm for finding fundamental solutions by applying sym-
metries [9, 10]:
1. Find a general symmetry operator of Eq. (4) and the corresponding function λ(x)
satisfying identity (8).
2. Use this operator and relations (9) to obtain the basis for the Lie algebra of
symmetry operators of Eq. (5).
3. Construct invariant fundamental solutions with the help of the symmetries of
Eq. (5).
4. Obtain new fundamental solutions from the known ones with the help of the
symmetries of Eq. (5) (production of solutions).

Remark 1 To find generalized invariant fundamental solutions, we need to search
for invariants in the class of generalized functions.

Remark 2 Inworks [12, 13], instead of the second relation from (9) another relation
was proposed.

4 Method for Constructing of the Riemann Function

Symmetry operator of the Eq. (1) has a form

X = ξ 1(x)
∂

∂x
+ ξ 2(y)

∂

∂y
+ ζ(x, y) u

∂

∂u
(10)

and as this takes place the following relations must be hold

∂ζ

∂x
+ ∂(b ξ 1)

∂x
+ξ 2 ∂b

∂y
= 0 ,

∂ζ

∂y
+ ∂(a ξ 2)

∂y
+ξ 1 ∂a

∂x
= 0 ,

∂2ζ

∂x∂y
+ a

∂ζ

∂x
+b

∂ζ

∂y
+ ∂(c ξ 1)

∂x
+ ∂(c ξ 2)

∂y
= 0 .

(11)

Function λ = λ(x, y) that satisfies the identity law X
2

(Lu) ≡ λ Lu has the form
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λ = ζ − d ξ 1

d x
− d ξ 2

d y
. (12)

Let us consider the equation

Lu = δ(x − x ′) δ(y − y′) , (13)

that describes fundamental solutions of homogeneous Eq. (1). So the symmetry
operators of fundamental solutions (or the symmetries of Eq. (13)) satisfy following
additional conditions as Theorem 1 takes place

ξ 1(x ′) = 0 , ξ 2(y′) = 0 ,

λ(x ′, y′) + d ξ 1(x ′)
d x ′ + d ξ 2(y′)

d y′ = 0 .
(14)

Show that conditions at characteristics (2) are invariant under symmetry opera-
tor (10) at (11), (12) and (14). Note that characteristics x = x ′, y = y′ are invariant
under operators of the symmetry of the fundamental solutions. ζ(x ′, y′) = 0 results
from relations (12) and the second one of (14). This implies that the latest one of
relations (2) is invariant.

Write the invariance condition at the characteristic x = x ′

X
1
(uy + au)

∣
∣
∣
∣
x = x ′

u = R∗
= 0,

{(

ζ − dξ 2

dy

)

(uy + au) + u

[
∂ζ

∂y
+ ∂(a ξ 2)

∂y
+ξ 1 ∂a

∂x

]} ∣
∣
∣
∣
x = x ′

u = R∗
= 0. (15)

Invariance condition (15) is realized owing to (11) and (2) at the characteristic x = x ′.
Invariance of the condition at the characteristic y = y′ is convinced analogous.

The normalization condition R∗(x ′, y′; x ′, y′) = 1 gives the additional relation

η(x ′, y′) = 0. (16)

Thus, we have proved the following theorem.

Theorem 2 The symmetries of the fundamental solutions of the second-order linear
hyperbolic equation with the additional relation (16) leave the Riemann function
R∗(x, y; x ′, y′) of the adjoint equation invariant.

It follows fromTheorem2 that theRiemann function R∗(x, y; x ′, y′) of the adjoint
equation is an invariant of the symmetries of fundamental solutions of the original
equation. TheRiemann function R(x, y; x ′, y′) of the original equation is determined
from the reciprocity relation (3).
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Formulate the algorithm of Riemann function construction based on the usage of
the fundamental solutions symmetries [14, 15]:

1. Solving for symmetries of linear homogeneous equation (1).

2. Computation of the fundamental solutions symmetries.

3. Construction of invariant solutions with the aid of fundamental solutions symme-
tries.

4. Extraction ofRiemann function R∗(x, y; x ′, y′) from the computed invariant solu-
tions invoking continuity condition of Riemann function and its first derivatives
at the point (x ′, y′) and the condition R∗(x ′, y′; x ′, y′) = 1.

Remark 3 This algorithm allows one to find the Riemann function of a hyperbolic
equation without passing to characteristic variables. This stresses the invariant nature
of this method of constructing of the Riemann function.

Remark 4 Let us consider the equation

Lu = δ(x − x ′) δ(y − y′). (17)

As Adamar noticed in [16], the fundamental solution of Eq. (4) or the solution of the
Eq. (17) can be written as

u f = R∗θ(x − x ′)θ(y − y′) .

Next, as Theorem 2 takes place, its right part is invariant of fundamental solutions
symmetries.

5 Examples

Consider examples of the method application.

Example 1 Consider an equation

uxy + u = 0 . (18)

The symmetries of Eq. (18) can be found using the symmetry-finding algorithm
from [8]. Symmetry operators basis of the finite-dimensional part of Lie algebra of
Eq. (18) has the form

X1 = ∂

∂x
, X2 = ∂

∂y
, X3 = x

∂

∂x
−y

∂

∂y
, X4 = u

∂

∂u
.
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The general form of the coordinates of the symmetry operator of Eq. (18) is as
follows

ξ 1 = a1 + a3x, ξ 2 = a2 − a3y, η = a4u.

Therefore, function λ is equal λ = a4 (from the relation (16), it follows that a4 is
zero) and the equation

uxy + u = δ(x − x ′)δ(y − y′)

admits the symmetry operator

Y = (x − x ′)
∂

∂x
−(y − y′)

∂

∂y
. (19)

The solution that is invariant under symmetry operator (19) is found as

u = f (z) , z = (x − x ′)(y − y′) .

Here, function f = f (z) is a solution of the ordinary differential equation

z f ′′ + f ′ + f = 0 . (20)

The general solution of Eq. (18) has the form

f = C1 J0(2
√
z) + C2Y0(2

√
z) ,

where C1, C2 are arbitrary constants; J0(z), Y0(z) are Bessel functions [17]. The
condition f (0) = 1 implies that

R∗(x, y; x ′, y′) = R(x, y; x ′, y′) = J0(2
√

(x − x ′)(y − y′)) .

Example 2 Consider an equation

uxy + 1

4(x + y)2
u = 0 . (21)

The symmetries of Eq. (21) can be found using the symmetry-finding algorithm
from [8]. Symmetry operators basis of the finite-dimensional part of Lie algebra
of (21) has the form

X1 = ∂

∂x
− ∂

∂y
, X2 = x

∂

∂x
+y

∂

∂y
, X3 = x2

∂

∂x
−y2

∂

∂y
, X4 = u

∂

∂u
.

The general form of the coordinates of the symmetry operator of the Eq. (21) is
as follows
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ξ 1 = a1 + a2x + a3x
2, ξ 2 = −a1 + a2y − a3y

2, η = a4u.

Therefore, function λ is equal λ = −2a2 − 2a3(x − y) + a4 (from the relation (16),
it follows that a4 is zero) and the equation

uxy + 1

4(x + y)2
u = δ(x − x ′)δ(y − y′)

admits the symmetry operator

Y = (x − x ′)(x + y′)
∂

∂x
−(y − y′)(y + x ′)

∂

∂y
. (22)

The solution that is invariant under symmetry operator (22) is found as

u = f (z) , z = (x − x ′)(y − y′)
(x ′ + y′)(x + y)

.

Here function f = f (z) is a solution of the ordinary differential equation

(z2 + z) f ′′ + (2z + 1) f ′ + 1

4
f = 0 . (23)

The general solution of Eq. (23) has the form

f = C1EllipticK (i
√
z) + C2EllipticCK (i

√
z) ,

where C1, C2 are arbitrary constants; EllipticK (z) is complete elliptic integral of
the first kind and EllipticCK (z) is complementary complete elliptic integral of the
first kind [17]. From the condition f (0) = 1 follows

R∗(x, y; x ′, y′) = R(x, y; x ′, y′) = 2

π
EllipticK

(

i

√

(x − x0)(y − y0)

(x0 + y0)(x + y)

)

.

Example 3 Let us consider Euler–Poisson–Darboux equation

∂2u

∂r2
+ 2α

r

∂u

∂r
−∂2u

∂z2
= 0 . (24)

The symmetries of Eq. (24) can be found using the symmetry-finding algorithm
from [8]. In case of α �= 0 Eq. (24) admits the following basis of the finite part of
Lie algebra symmetry operators



Group Properties of the Riemann Function 277

Y1 = ∂

∂z
, Y2 = r

∂

∂r
+z

∂

∂z
, Y3 = u

∂

∂u
,

Y4 = 2r z
∂

∂r
+(r2 + z2)

∂

∂z
−2αzu

∂

∂u
.

The general form of the coordinates of the symmetry operator of Eq. (24) is as
follows

ξ 1 = r(a2 + 2a4z), ξ 2 = a1 + a2z + a4(r
2 + z2), η = (a3 − 2αa4z)u.

Therefore, function λ is equal λ = −2(a2 + 2a4z) (from the relation (16) it follows
that a3 = 2αa4z′) and the equation

∂2u

∂r2
+ 2α

r

∂u

∂r
−∂2u

∂z2
= δ(r − r ′)δ(z − z′)

admits the symmetry operator

Y = 2r(z − z′)
∂

∂r
+[

r2 + (z − z′)2 − r ′2] ∂

∂z
−2α(z − z′)u

∂

∂u
. (25)

The symmetry operator (25) has two functionally independent invariants

ξ = r2 − (z − z′)2 + r ′2

2rr ′ , τ = rα u .

Invariant solutions are sought in the form

τ = f (ξ) ,

or
u = r−α f (ξ) .

Euler–Poisson–Darboux solutions (18), that are invariant under symmetry oper-
ator (20), have the following form

u = r−α
[

C1 P−α (ξ) + C2 Q−α (ξ)
]

,

where C1,C2 are arbitrary constants; P−α (ξ) , Q−α (ξ) are Legendre functions of
the first and second kinds [17]. The condition f (0) = 1 gives us Riemann function

R∗(r, z; r ′, z′) = ( r

r0

)−α
P−α (ξ) . (26)

Remark 5 TheRiemann function (26) describes, up to a constant factor, a solution to
the characteristic problem of interpenetration of two centered rarefaction waves [18].
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Example 4 Let us consider the equation

∂2u

∂x∂y
+ β

x + y
u = 0 . (27)

The symmetries of Eq. (27) can be found using the symmetry-finding algorithm
from [8]. In case of β �= 0, Eq. (27) admits the following basis of the finite part of
Lie algebra symmetry operators

X1 = ∂

∂x
− ∂

∂y
, X2 = u .

The general form of the coordinates of the symmetry operator of the Eq. (27) is
as follows:

ξ 1 = a1, ξ 2 = −a1, η = a2u.

Therefore, function λ is equal λ = a2 (from the relation (16), it follows that a2 = 0)
and the equation

∂2u

∂x∂y
+ β

x + y
u = δ(r − r ′)δ(z − z′)

no admits a symmetry operator.

6 Conclusion

The main result of the study is the consideration of the method for constructing
the Riemann function based on the use of symmetries of fundamental solutions. Its
effectiveness is performed by examples.
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