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Abstract Cognitive abilities are the vital skills that the human brain requires to
perform any type of task, from simple to complex. These skills have a huge impact
on the day-to-day lives of people. The electroencephalogram (EEG) is an efficacious
technique to study the brain activity while it executes these different cognitive tasks.
With low-cost EEG hardware available these days, measuring accurate EEG data has
become an effortless task, thereby leading to new innovations like the brain–computer
interfaces. In this study, four cognitive tests: Hopkins verbal learning test, Stroop
test, Symbol digit modality test, and Benton’s visual retention test were considered
to stimulate the cognitive abilities. After performing the frequency domain analysis
on the EEG signals from a predefined dataset, we obtain the spectral topographical
images as classification data, and a deep learning model with convolutional neural
network was used to classify these images based on the cognitive tasks. We have
obtained a classification accuracy of 84% using our proposed model.

Keywords Electroencephalography · Cognitive tasks · Fast Fourier transform ·
Deep learning

1 Introduction

Cognitive abilities are a set of natural skills that the brain uses to carry out any task.
It has been used to measure the productivity of human brain. They are based on
the thinking mechanism of the brain, information processing and learning ability
rather than the actual knowledge. They are a collection of skills such as attention,
memory, reason, auditory and visual processing. Incompetence in any of these abili-
ties will give rise to difficulties in comprehending a subject, solving problems, brain
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storming, analyzing and focusing. Hence, identifying these short comings becomes
very important in developing efficient methods to cope with such problems. The idea
of humans interacting with computers has gained importance recently. The brain–
computer interface (BCI) is being seen as the future solution to cognitive impairment.
Not only do BCIs have their applications in medicine, for instance, brain tumor
diagnosis and neuronal rehabilitation, they are also being used for entertainment,
neuromarketing and advertising [1].

Electroencephalography (EEG) is a convenient non-destructive instrument for
examining brain activities with extraordinary temporal resolution that is on the scale
of milliseconds. There has been a drastic improvement in the size and expense of
EEG devices, which has made the process of procuring EEG signals much easier.
EEG is effective in recording and analyzing brain functions for a plethora of that
encompasses gaming, dealing with traumatic and sleep disorders, cognitive impair-
ment, etc. The use of EEG has expanded from its conventional applications like
neurological diagnosis [2] to neurotherapy and brain–computer interfacing [3]. With
low-cost EEG hardware available these days, measuring accurate EEG data has
become an effortless task. EEG records data from the scalp when electrical varia-
tions are detected due to synchronized activity of millions of neurons. BCI is a device
that interprets the EEG signals and further translates it for communication purposes
or for controlling appliances without manual commands.

Deep learning has caused radical breakthroughs in the field of data science.Convo-
lutional neural networks (CNNs) are considered as the building blocks of deep
learning architectures. They are incredible at capturing and learning the right set
of features from any kind of input data at different levels similar to a human brain.
The main task of BCI is to recognize brain signals. Since brain signals are prone
to corruption by various biological artifacts and concentration levels, deep learning
models with CNN are best suited for classifying such signals. In [4], the authors
have used several complex CNN architectures like CifarNet, AlexNet and VGGNet
to segregate the levels of consciousness of patients who have been under anesthetics.
The capsule network [5] has been designed for the classification of motor imagery
signals.

Although numerous types of EEG signals are used in the study of BCI, the signals
of interest depend upon the brain states that generate the distinct cognitive abilities
[6]. The various brain states are responsible for producing different brain waves
at different frequency ranges. The classic names of these EEG bands are delta,
theta, alpha, beta, and gamma. For our research, we have considered the three most
predominant brain waves, i.e., theta, alpha, and beta bands.

EEG classification has been performed using many feature extraction techniques
and with both deep and machine learning algorithms. Neural synchrony measures
such as power analysis, phase amplitude coupling, and phase locking have been
applied to EEG signals to assess which mathematical method provides the best
discrimination between cognitive tasks using Support Vector Machines (SVM) for
classification [6]. For classifying the Raven’s advance progressive metric test and
a baseline task, wavelet-based feature extraction was proposed by Amin et al. [7]
along with the use K-nearest neighbors, SVM and naive Bayes classifiers. Radial
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basis function SVM has been suggested by Hosni et al. [8] for the classification of
mental tasks, by using a new independent component analysis technique for EEG
pre-processing. Letter composition and visual counting tasks can be distinguished
using empirical wavelet transform [9].

The BCI dealing with EEG signals associated with cognitive tasks has features
obtained from wavelet transform, fast Fourier transform, and other methods, with
multilayer perceptron and SVM being used for classification [10]. An automated
computer platform has been proposed for clustering EEG signals corresponding with
left-hand and right-hand gestures, with the independent component analysis being
applied on associated channels for noise alleviation of generated EEG sources. The
independent components of the feature datasets were given as input to multilayer
perceptron and SVM. This research shows that the categorization of diverse pairs of
motor cognitive tasks can be utilized in a BCI tomanage plethora of instruments [11].
Application of neural networks for identifying and grouping EEG patterns related
to motor imagery, i.e., real and imaginary movement of left/right leg in untrained
subjects is discussed [12]. CNN with stacked autoencoders, which are dense feed
forward connections, has been utilized by Tabar and Halici [13] for the segregation
of EEG-based motor imagery signals.

In this paper, we have used fast Fourier transform (FFT) for feature extraction and
have transformed the intermediate results into three-channel images before applying
deep learning CNN model for classification.

2 Data Acquisition

2.1 Subjects and Experimental Design

The EEG was recorded, while the test subjects performed different neurophysio-
logical tests. The four cognitive tasks conducted were Hopkins Verbal Learning
Test (HVLT), Stroop Test (ST), Symbol Digit Modality Test (SDMT), and Benton’s
Visual Retention Test (MODBENT). The tests were performed by each subject in the
same order. The cognitive tests chosen focused on a variety of skill set like memory,
attention, processing speed, visual retention, etc.

EEGwas recorded from14electrodes placed in a standard10–20electrode system.
The International 10–20 electrode placement system is recognized as a standard
procedure for describing the location of electrodes on top of the human scalp. The
system is based on the position of an electrode and the underlying area of the cerebral
cortex. Each region in the cerebral cortex has a letter corresponding to the lobe and
a number which identifies the segment of hemisphere. Frontal (F), Temporal (T),
Central (C), Parietal (P), and Occipital (O) are the letters designated for the lobes
[14].

EEG readings for the four cognitive tests along with the baseline readings were
obtained from the dataset collected by Dvorak et al. [6] and were sampled at 250 Hz.
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The main presumption is that, as the dissimilar cognitive tasks require distinct brain
functions and different regions of brain to activate, the EEG characteristics during
the variety of tasks would diverge. The extent to which attributes in the EEG can
be used for mapping EEG signal analogous to its task provides insight into feature
extraction for task discrimination.

2.2 Neuropsychological Tests

HVLT has been corroborated within brain disordered populations (e.g., Alzheimer’s
disease, amnesic disorders) as an estimate of verbal learning and memory. In this
test, a list of words was read out to the subjects and they were asked to recall after a
short period of time. ST is considered to measure selective attention and processing
speed. Subjects had to skim through three different lists of words. The three lists
contained names of colors printed in black ink, same colored ink, jumbled color ink
(e.g., “red” printed in “blue” ink), respectively [6]. In SDMT, to assess the divided
visual attention, the subjects had to promptly comprehend and coincide symbols with
corresponding numbers. MODBENT assesses visual perception and memory. The
subjects were given four figure designs and had to select the best match from the
previously seen figures [9]. The tests were conducted in the same duration of time
for each test (HVLT: 149 ± 96 s, ST: 207 ± 93 s, SDMT: 167 ± 85 s, MODBENT
950 ± 108 s) with baseline being conducted for 660 ± 350 s. Fifty-four subjects
who participated in four cognitive activities and a baseline recording contributed to
a total of 270 samples of data.

3 Design Methodology

3.1 Proposed Classification Model

The EEG time series data were down sampled from 250 to 125 Hz. From the
down-sampled signals, 15,000 data points were extracted. This was done to exclude
segments of the signal with extremely low relevance. The data points were converted
into csv files with EEG signals from the 14 electrodes placed around the scalp. This
marks the end of the preprocessing stage.

The spectral topography maps were generated with the preprocessed data. These
maps are the three-channel 2D images [15]. These images were then classified using
our CNNmodel. The process of generating the images and the CNN architecture are
explained in the following sections. Figure 1 shows the classification model.
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Fig. 1 Proposed classification model

Fig. 2 Spectral topography mapping block

3.2 Spectral Topography Mapping

The EEG data were chopped into overlapping discrete one second “snippets”.
Hanning window was applied to each of these snippets. In order to obtain mean
FFT amplitude, which is required for the succeeding steps, we must calculate the
total number of intervals per electrode. The following specifications were considered
to estimate the number of intervals. The sampling frequency is 125 Hz, and the frame
duration is one second. The overlap percentage between snippets is taken as 75%
with 15,000 data points. As a result, for one electrode we get 464 intervals. Since
there are 14 electrodes, there are 6496 intervals for each subject.

Fast Fourier transform was applied for each interval and converted from time to
frequency domain. The mean of the FFT amplitudes is calculated for each frequency
band: beta (12–40 Hz), theta (4–8 Hz), alpha (8–12 Hz) for all intervals, giving
three scalar values for each interval. This process is called as frequency binning,
and it yields a three-dimensional array of size (464 × 14 × 3). These values were
deciphered as RGB color channels and extrapolated onto a 2D map of the head [16].
This process of projecting theta, alpha, and beta values onto the map of electrode
locations is known as Azimuthal projection. Thus, the entire procedure of spectral
topography mapping results in three-channel 2D images of size 28 × 28 × 3 which
are sent to the CNN network. Figure 2 shows the spectral mapping procedure.

3.3 Convolutional Neural Network

In the last decade, the CNN has become a very popular deep learning algorithm and
has been applied to a variety of pattern recognition problems. In terms of accuracy
and speed, it has been proven over time that CNNs outperform other classification
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Fig. 3 CNN architecture model

algorithms. The hidden layers of a CNN typically consist of convolution and max
pooling layers, fully connected layers, and activation function applied in the end [17].
For a completely new task/problem, CNNs prove to be very good feature extractors.
Depth-wise and separable convolutions are used to extract EEG features in a CNN
called EEGNet devised by Lawhern et al. [18]. The five-layer CNN model has been
designed for automatic motor imagery classification. The first convolution layer in
the five layer model aims at filtering EEG in the space domain, whereas the second
convolution layer does subsampling on the EEG signal and transforms it into the
time domain [19]. Baseline architecture was designed in [20] with the convolution
block containing one-dimensional convolution layer, batch normalization layer [21],
and ReLU activation. Three such blocks are stacked with global average pooling and
softmax activation applied in the end.

The CNN architecture illustrated in Fig. 3 is used to classify the previously
obtained EEG images. The first block consists of 16 two-dimensional convolution
filters each of 5× 5 kernel size, batch normalization layer and ReLU activation. The
second block is constructed with a convolution layer having 32 filters each with 3
× 3 kernel size, followed by maxpooling operation and ReLU activation. The third
block is made only with convolution layer (64 filters with 5 × 5 kernel size) and
ReLU function. The resulting feature maps are flattened and given as input to the
dense layers. Softmax activation is applied to the final dense layer. Scores for each
data are then obtained from the network’s output based on the interpolated images.

4 Results and Discussion

We obtained a training accuracy of 87.15% and testing accuracy of 84.33% on our
proposed CNN. Figure 4 shows the accuracy plot. The number of EEG images
generated from 270 data samples and 464 frames generated per data sample was
125,280. Training and testing data are split according to the ratio of 3:1. The model
was trained for 30 epochs with a learning rate of 0.01 and a batch size of 256.
Adadelta optimizer along with categorical cross entropy loss function was used to
train the networks. The training was done on a Windows machine with 4 GB RAM.
The preprocessing was done using MATLAB and Python with Keras API used to
construct the CNN.

Figure 5 shows the testing accuracy alongwith a set of predicated and actual values
for few images. Figure 6 shows the heat map obtained with the testing images, for the
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Fig. 4 Accuracy plot for the proposed CNN

Fig. 5 Predicted and actual
values

Fig. 6 Heat map for
cognitive task classification
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Table 1 Comparing
accuracies with other methods

Architectures Classification methods Accuracy (%)

Machine learning Radial basis function SVM
[8]

70.00

SVM [6] 78.80

Deep learning CNN with autoencoders
[13]

75.10

CNN [15] 79.56

Proposed CNN 84.33

CNN. We infer that the prediction percent is the highest for baseline task, followed
by MODBENT, HVLT, SDMT and ST.

Radial basis function SVM was used as the classifier in [8], for distinguishing
three cognitive tasks, and they obtained an accuracy of 70.00%. SVM was used by
[6] for the classification of cognitive tasks, and the accuracy score was 78.80%.
CNN perform better than machine learning methods since they deal with end-to-end
classification. The deep learning model proposed by [13] has an accuracy of 75.10%,
for classifying motor imagery signals. The CNN model designed by [15] consists of
four convolution layers followed by three dense layers, and it classifies known skills
from unknown skills. The accuracy obtained is 79.56%. Our CNN architecture can
segregate more than two classes and achieves a higher accuracy score of 84.33%,
performing better than all other methods listed in Table 1.

5 Conclusion

We transform EEG data into spectral 2D images that are topologically preserved,
as opposed to traditional EEG analysis techniques that ignore vital spatial infor-
mation. Consequently, the proposed approach is designed to conserve the spectral,
spatial and temporal framework of EEG which aids in finding properties that are less
susceptible to irregularities within each dimension. The process of spectral topo-
graphical mapping takes a long time; hence, it increases the computational time. The
unique combination of EEG frequency band (alpha, beta and theta) components in
the projected spectral topographical maps proved to be the distinguishing feature
between the tasks. The CNN takes the spectral topography maps as features for clas-
sification. Cognitive classification can be used to facilitate interactions between a
computer and a human, such as the brain–computer interface. The number of tests
can be increased so that we can classify other cognitive behaviors.



A Deep Learning Approach for Automatic Classification … 393

References

1. Abdulkader SN, Atia A, Mostafa MSM (2015) Brain computer interfacing: applications and
challenges. Egypt Inform J. https://doi.org/10.1016/j.eij.2015.06.002

2. Mcloughlin G,Makeig S, TsuangMT (2014) In search of biomarkers in psychiatry: EEG-based
measures of brain function. Am J Med Genet Part B Neuropsychiatr Genet. https://doi.org/10.
1002/ajmg.b.32208

3. Nash JK (2000) Treatment of attention deficit hyperactivity disorder with neurotherapy. Clin
EEG Neurosci. https://doi.org/10.1177/155005940003100109

4. Liu Q et al (2019) Spectrum analysis of EEG signals using CNN to model patient’s conscious-
ness level based on anesthesiologists’ experience. IEEE Access. https://doi.org/10.1109/ACC
ESS.2019.2912273

5. Ha KW, Jeong JW (2019) Motor imagery EEG classification using capsule networks. Sensors
(Switzerland). https://doi.org/10.3390/s19132854

6. Dvorak D, Shang A, Abdel-Baki S, Suzuki W, Fenton AA (2018) Cognitive behavior classifi-
cation from scalp EEG signals. IEEE Trans Neural SystRehabil Eng. https://doi.org/10.1109/
TNSRE.2018.2797547

7. Amin HU, Mumtaz W, Subhani AR, Saad MNM, Malik AS (2017) Classification of EEG
signals based on pattern recognition approach. Front Comput Neurosci. https://doi.org/10.
3389/fncom.2017.00103

8. Hosni SM, Gadallah ME, Bahgat SF, AbdelWahab MS (2007) Classification of EEG signals
using different feature extraction techniques for mental-task BCI. In: ICCES’07—2007 inter-
national conference on computer engineering and systems. https://doi.org/10.1109/ICCES.
2007.4447052

9. TanveerM, Gupta A, Kumar D, Priyadarshini S, Chakraborti A,Mallipeddi R (2019) Cognitive
task classification using fuzzy based empirical wavelet transform. In: Proceedings—2018 IEEE
international conference on systems,man, and cybernetics, SMC2018. https://doi.org/10.1109/
SMC.2018.00304

10. ElBahyMM,HosnyM,MohamedWA, IbrahimS (2017)EEGsignal classification using neural
network and support vector machine in brain computer interface. Adv Intell Syst Comput.
https://doi.org/10.1007/978-3-319-48308-5_24

11. Samaha MHA, AlKamha K (2013) Automated classification of L/R hand movement EEG
signals using advanced feature extraction and machine learning. Int J Adv Comput Sci Appl.
https://doi.org/10.14569/ijacsa.2013.040628

12. Maksimenko VA et al (2018) Artificial neural network classification of motor-related EEG: an
increase in classification accuracy by reducing signal complexity. Complexity. https://doi.org/
10.1155/2018/9385947

13. Tabar YR, Halici U (2017) A novel deep learning approach for classification of EEG motor
imagery signals. J Neural Eng. https://doi.org/10.1088/1741-2560/14/1/016003

14. Kumar JS, Bhuvaneswari P (2012) Analysis of electroencephalography (EEG) signals and its
categorization—a study. Procedia Eng. https://doi.org/10.1016/j.proeng.2012.06.298

15. Zulkifley M, Abdani SR (2019) EEG signals classification by using convolutional neural
networks

16. Bashivan P, Rish I, Yeasin M, Codella N (2016) Learning representations from EEG with
deep recurrent- convolutional neural networks. In: 4th international conference on learning
representations, ICLR 2016—conference track proceedings

17. Al-Bander B, Al-Nuaimy W, Williams BM, Zheng Y (2018) Multiscale sequential convolu-
tional neural networks for simultaneous detection of fovea and optic disc. Biomed Sig Process
Control. https://doi.org/10.1016/j.bspc.2017.09.008

18. Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ (2018) EEGNet:
a compact convolutional neural network for EEG-based brain-computer interfaces. J Neural
Eng. https://doi.org/10.1088/1741-2552/aace8c

19. Tang Z, Li C, Sun S (2017) Single-trial EEG classification of motor imagery using deep
convolutional neural networks. Optik (Stuttg). https://doi.org/10.1016/j.ijleo.2016.10.117

https://doi.org/10.1016/j.eij.2015.06.002
https://doi.org/10.1002/ajmg.b.32208
https://doi.org/10.1177/155005940003100109
https://doi.org/10.1109/ACCESS.2019.2912273
https://doi.org/10.3390/s19132854
https://doi.org/10.1109/TNSRE.2018.2797547
https://doi.org/10.3389/fncom.2017.00103
https://doi.org/10.1109/ICCES.2007.4447052
https://doi.org/10.1109/SMC.2018.00304
https://doi.org/10.1007/978-3-319-48308-5_24
https://doi.org/10.14569/ijacsa.2013.040628
https://doi.org/10.1155/2018/9385947
https://doi.org/10.1088/1741-2560/14/1/016003
https://doi.org/10.1016/j.proeng.2012.06.298
https://doi.org/10.1016/j.bspc.2017.09.008
https://doi.org/10.1088/1741-2552/aace8c
https://doi.org/10.1016/j.ijleo.2016.10.117


394 M. Suchetha et al.

20. Wang Z, Yan W, Oates T (2017) Time series classification from scratch with deep neural
networks: a strong baseline. In: Proceedings of the international joint conference on neural
networks, vol 2017, pp 1578–1585. https://doi.org/10.1109/IJCNN.2017.7966039

21. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing
internal covariate shift. In: 32nd international conference on machine learning, ICML 2015

https://doi.org/10.1109/IJCNN.2017.7966039

	 A Deep Learning Approach for Automatic Classification of Cognitive Task Using the Scalp Electroencephalogram Signals
	1 Introduction
	2 Data Acquisition
	2.1 Subjects and Experimental Design
	2.2 Neuropsychological Tests

	3 Design Methodology
	3.1 Proposed Classification Model
	3.2 Spectral Topography Mapping
	3.3 Convolutional Neural Network

	4 Results and Discussion
	5 Conclusion
	References




