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Pyrethroid-Degrading Microorganisms s
and Their Potential Application

for the Bioremediation of Contaminated
Environments

Yaohua Huang and Shaohua Chen

Abstract Long-term and extensive application of synthetic pyrethroid
(SP) insecticides indoor has resulted in a large increase in the number of people
reported to have detected residues of pyrethroids and their major intermediate
metabolite 3-phenoxybenzoic acid (3-PBA) in body fluids. The neurotoxicity and
reproductive toxicity of pyrethroids to nontargets have attracted extensive attention.
The microbial degradation of pyrethroids has been reported frequently in the past
30 years. In recent years, based on the development of biomolecular tools and
materials science, the mode of action of microorganisms and their functional
enzymes has been expanded. This chapter summarizes the pyrethroid degradation
microorganisms that have been published in the past and proposes the metabolic
pathways of pyrethroids. In addition, we also discussed the degradation mechanisms
of pyrethroids based on the catalytic triad of the pyrethroid hydrolase.
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6.1 Introduction

Pyrethroids are a synthetic organic compound similar in structure to natural pyre-
thrums extracted from Chrysanthemum cinerariaefolium. Their acid and alcohol
parts are bound by ester bonds and usually contain 1-3 chiral centers. As a chiral
compound, pyrethroids usually have 4-8 stereoisomers (Bhatt et al. 2020a). Differ-
ent isomers exhibit different insecticidal activities and have enantioselective degra-
dation characteristics during microbial metabolism (Garcia et al. 2017). Pyrethroids
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can be divided into two categories based on the presence or absence of cyano-group
on the a-chiral carbon: type II pyrethroids with cyano-group and type I pyrethroids
without cyano-group.

Allethrin is the first type I pyrethroid synthesized in the USA in 1949, which is to
control domestic sanitary pests (Bhatt et al. 2020d). Compared with type II pyre-
throids, pyrethroids of type I had structural diversity and were generally less toxic
than type II due to the absence of cyano-group (Zhang et al. 2016). In addition to the
cyano-group, pyrethroids have introduced halogens such as fluorine, chlorine, and
bromine to increase insecticidal activity (Tang et al. 2018b; Zhan et al. 2018; Cycon
et al. 2014).

Pyrethroids have been used worldwide for more than 40 years since they were
synthesized in the middle of the last century. With the increasing restrictions on
organophosphorus and organochlorine pesticides by governments, the use of pyre-
throids has increased year by year, from 25% of the world pesticide market in 2010
to more than 30% in 2018 (Zhai et al. 2012; Cycori and Piotrowska-Seget 2016). A
pyrethroid is a broad-spectrum insecticide with selective toxicity to Diptera, Hyme-
noptera, and mammals (Thatheyus and Gnana Selvam 2013). To improve the
insecticidal activity and environmental stability of active ingredients, piperonyl
butoxide and piperonyl sulfoxide were added to commercial pyrethroids (Thatheyus
and Gnana Selvam 2013).

Pyrethroids are highly hydrophobic and will be adsorbed in sediment rapidly after
entering the water body (Delgado-Moreno et al. 2011). Subsequently, some of them
are utilized by indigenous microorganisms, and the other part enters the aquatic food
web, which may eventually accumulate in the human body through biological
amplification (Liu et al. 2012; Cycon et al. 2017). A large number of results have
confirmed that pyrethroids have high toxicity to aquatic organisms (Mendis et al.
2018; Mulla et al. 2017; He et al. 2008). Long-term exposure to pyrethroids can
affect the quality of human semen (Ham et al. 2020). A series of environmental
problems caused by the irrational use of pyrethroids has aroused public concern in
recent years. At present, diverse methods have been developed to remove pyre-
throids from the environment.

In this chapter, we are summarizing the previously isolated and characterized
degrading microorganisms and introduce the metabolic pathways of common pyre-
throids. In the last two decades, many researchers have reported pyrethroid hydro-
lases encoded by genes with open reading frames (ORF). We will discuss these
functional enzymes and describe the metabolic mechanisms that catalyze the triad
(Serine, Histidine, Aspartate) at the active site of the degrading enzyme.

6.2 Potential of Microbes in Pyrethroid Degradation

Pesticide-degrading microorganisms have become a scientific research hotspot and
effective strategy to treat pesticide residues over 30 years of development due to their
unique advantages. Microbes can catabolize the large-molecular heterologous
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pollutants remaining in the environment into nontoxic or low-toxic inorganic small-
molecule compounds in various ways (Huang et al. 2021; Lin et al. 2020; Mishra
et al. 2020; Chen et al. 2012a). Generally, it is an effective way to use enrichment
culture technology to screen functional microorganisms from soil, water, and acti-
vated sludge contaminated by pesticides (Zhang et al. 2021; Zhan et al. 2020; Lin
et al. 2011). There are also reports that it is feasible to obtain degrading functional
bacteria from resistant insects and fermented food (Cho et al. 2009). Type II
pyrethroids are lethal to aquatic organisms which are often used as ship detergents
to prevent the adhesion of marine organisms (Feng et al. 2009). Therefore, seawater
has also been reported commonly as an important source of pyrethroid degrading
microorganisms.

To date, a great number of studies have confirmed that bacteria and fungi can
effectively degrade pyrethroid residues in water and soil (Table 6.1). There are also a
few reports on yeast and algae (Pang et al. 2020). Microorganisms can use pyre-
throids as the sole energy source or with the help of other nutrients to remove
pyrethroids through co-metabolism (Zhao et al. 2019b). Bacillus subtilis 1D has
been reported to hydrolyze 95% of cypermethrin within 15 days. And 700 bp
esterase and 1200 bp laccase were extracted from strain 1D, which indicates that
esterase and laccase are involved in the cypermethrin metabolism (Gangola et al.
2018). Wang et al. (2019) isolated a strain of Photobacterium ganghwense 6046
from seawater. This strain can grow with cyfluthrin as the sole carbon source and
degrade 60% of cyfluthrin (100 mg-L™") for 72 h (Wang et al. 2019). The interme-
diate products of cyfluthrin were identified, and the cyano-group was not found. It is
speculated that cyano-groups may be metabolized by strain 6046 first. Paracoccus
acridae SCU-MS53 is an epiphytic bacterium isolated from locusts, which can
metabolize 79.84% of cyhalothrin in 48 h (Tian et al. 2018).

Response surface methodology (RSM) is a common method to optimize micro-
bial growth and degradation conditions. Based on the Box-Behnken design, Zhan
et al. (2018) used RSM to optimize the degradation conditions of Acinetobacter
baumannii ZH-14. Under the conditions of 30 °C and pH 7, permethrin with a
concentration of 50 mgL~' was completely removed within 72 h. Bacillus
thuringiensis 7S-19 obtained from activated sludge can completely eliminate
100 mg-L~" cyhalothrin in 72 h and can continue to work effectively when the
concentration is as high as 800 mg-L~". In addition to cyhalothrin, strain ZS-19 can
also efficiently metabolize fenpropathrin, deltamethrin, beta-cypermethrin, and
cyfluthrin (Chen et al. 2015). Allethrin is the earliest synthesized pyrethroid, but
reports on allethrin degradation bacteria are not common. Acidomonas sp. degraded
70% of allethrin at a concentration of 16 mM in MSM medium during 72 h and
proposed a metabolic pathway (Paingankar et al. 2005). Recently, Bhatt et al.
(2020b) manifested that Sphingomonas trueperi strain CW3 utilized allethrin as
the sole source of energy and remove 93% of 100 mg-L ™" allethrin after 7 days. The
optimal culture conditions are pH 7, temperature 30 °C, and inoculation amount of
0.1gL™".

While earlier studies focused on the degradation kinetics of single strains, more
studies now suggested that microbial consortia may exhibit higher degradation
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Table 6.1 Pyrethroid-degrading microbes obtained from various sources

Pyrethroids Microbial strains Species | Results References
p- Pseudomonas Bacteria | 1. 25-900 mg/L p-cypermethrin | Zhang
Cypermethrin | aeruginosa CH7 is metabolized over 90% in MSM | et al.
within 12 days 2011)
2. The optimal culture condition
is 25-35 °C and pH 6-9, inocu-
lation amount is 0.15 g/LL
Bacillus Bacteria | 1. 50% degradation observed ina | Zhao et al.
licheniformis B-1 liquid medium within 72 h (2015)
2. Degradation rate can be
improved by adding surfactants
Tween-80 and BRIj-35
Aspergillus Niger | Fungus | 1. 54.83% degradation obtained | Deng et al.
YAT with 50 mg-L~" -cypermethrin | (2015)
using strain YAT after 7 days
Brevibacillus Bacteria | 1. 75.87% of p-cypermethrin was | Tang et al.
parabrevis BCP-09 removed by strain BCP-09 in (2018a)
3 days
2. The optimal inoculation con-
dition was pH 7.4, 38.9 °C
Pseudomonas Bacteria | 1. More than 80% of 50 mg/L - | Tang et al.
aeruginosa GF31 cypermethrin was removed after | (2015)
7 days
2. Supplementation of peptone
significantly increased the
degradation
Bacillus subtilis Bacteria | 1. 89.4% of 50 mg/L f3- Xiao et al.
BSFO1 cypermethrin was eliminated (2015)
after 7 days
Ochrobactrum Bacteria | 1. 90% of p-cypermethrin was Chen et al.
lupini DG-S-01 degraded in MSM within 5 days | (2011a)
and concentration was 50 mg/L
Bacillus Bacteria | 1. Approximately 80% f- Bhatt et al.
thuringiensis SG4 cypermethrin (50 mg/L) was (2020c¢)
removed by strain SG4 after
15 days
Bacillus Bacteria | 1. f-cypermethrin with a con- Sundaram
sp. ISTDS2 centration of 50 mg/L was com- | et al.
plete catabolism in MSM within | (2013)
8 days
2. Completely removed 100 mg/
L beta-cypermethrin in soils after
30 days
Bacillus sp. SG2 Bacteria | 1. 81.6% of f-cypermethrin Pankaj
(50 mg/L) were eliminated in et al.
MSM after 15 days (2016)
Bacillus subtilis 1D | Bacteria | 1. 160 mg/L of f-cypermethrin Gangola
was metabolized by 95% within | et al.
15 days (2018)

(continued)
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Table 6.1 (continued)
Pyrethroids Microbial strains Species | Results References
Fenvalerate Bacillus Bacteria | 1. When the culture was in the Tang et al.
licheniformis optimal condition at pH 7.48 and | (2018b)
CY-012 the initial concentration was
44 mg/L, about 80% fenvalerate
was eliminated during 60 h
Bacillus flexus Bacteria | 1. Fenvalerate with a concentra- | Mulla
XJU-4 tion of 2 mM was completely et al.
degraded within 6 days (2017)
2. Fenvalerate can be utilized as
the sole source of carbon
Stenotrophomonas | Bacteria | 1. 100% removal of 50 mg/L Chen et al.
sp. ZS-S-01 fenvalerate was accomplished in | (2011c)
6 days
2. About 80% of fenvalerate was
metabolized when concentration
was 500 mg/L after 5 days
Cladosporium Bacteria | 1. More than 90% of fenvalerate | Chen et al.
sp. HU with 100 mg/L was eliminated (2011d)
during 5 days
Pseudomonas Bacteria | 1. About 92.3% of fenpropathrin | Song et al.
aeruginosa JQ-41 with an initial dose of 50 mg/L (2015)
was degraded after 7 days
Bacillus sp. DG-02 | Bacteria | 1. 93.3% degradation of Chen et al.
fenpropathrin was achieved ina | (2014)
liquid medium within 72 h
2. Strain DG-02 can degrade a
variety of pyrethroids
Deltamethrin | Bacillus cereus Y1 | Bacteria | 1. About 99.4% deltamethrin was | Zhang
metabolized in MSM within 96 h | et al.
2. When deltamethrin in soils, the | (2016)
degradation rate is 74.9% after
24 days
Streptomyces Bacteria | 1. 100% initial dose of Chen et al.
aureus HP-S-01 deltamethrin with a concentration | (2011b)
of 300 mg/L was removed by
strain HP-S-01 within 7 days
2. Deltamethrin can be used as a
sole source of carbon
Cyhalothrin Bacillus Bacteria | 1. 100 mg/L of cyhalothrin was | Chen et al.
thuringiensis degraded completely in a mini- (2015)
ZS-19 mal medium within 72 h
Paracoccus Bacteria | 1. 79.84% of 75 mg/L Tian et al.
acridae SCU-M53 cyhalothrin was degraded within | (2018)
2 days, and the carried-out con-
dition is 28 °C and 180 rpm
Cunninghamella Fungus | 1. Most of the 100 mg/L Palmer-
elegans DSM1908 cyhalothrin is hydrolyzed within | Brown
120 h et al.
(2019)

(continued)
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Table 6.1 (continued)

Pyrethroids Microbial strains Species | Results References
Aspergillus Fungus | 1. 44.8% cyhalothrin was Birolli
sp. CBMAI 1829 degraded when concentration et al.
was 100 mg/L in 14 days (2018)
Allethrin Sphingomonas Bacteria | 1. Approximately 93% allethrin | Bhatt et al.
trueperi CW3 (100 mg/L) was metabolized in (2020b)
the liquid medium after 7 days of
incubation
Fusarium Fungus | 1. Completely removal of alle- Bhatt et al.
proliferatum CF2 thrin (50 mg/L) was achieved (2020d)

after 5 days and used as a sole
corban source

Permethrin Acinetobacter Bacteria | 1. Completely metabolism of Zhan et al.
baumannii chlorpyrifos with a concentration | (2018)
ZH-14 of 50 mg/L was achieved after
72 h

2. Permethrin can be utilized by
strain ZH-14 for growth as a sole
source of energy

Flucythrin Brevibacterium Bacteria | 1. About 88.6% of degradation Chen et al.
aureum DG-12 was observed in 5 days (2013a)
Cyphenothrin | Staphylococcus Bacteria | 1. 92.8% cyphenthrin was Huang
succinus HLJ-10 metabolized in MSM within et al.
7 days (2020)

2. Strain HLJ-10 can use
cyphenthrin as the sole carbon

source
Phenothrin Pseudomonas fulva | Bacteria | 1. Strain P31 was able to Yang et al.
P31 completely degrade 100 mg/L (2018)

phenothrin within 72 h

2. Phenothrin can be utilized as
the sole carbon source by strain
P31

capabilities than single strains (Feng et al. 2020a, b). The previous results of Tang
et al. (2020) showed that when the ratio of Klebsiella pneumoniae BPBA052 and
Acinetobacter Junii LH-1-1 was 2.5:7.5, the dissipation of 75 mg'Lfl deltamethrin
in 96 h was 94.25%. Streptomyces aureus HP-S-01 and B. Cereus ZH-3 can 100%
metabolize cypermethrin (50 mg-L ") within 72 h (Chen et al. 2012b). A consortium
composed of four beta-cypermethrin-degrading bacteria, which was Streptomyces
sp. GXZQ4, Enterobacter sp. GXZQ6, Streptomyces sp. GXZQ7, and Pseudomonas
sp. GXZQ13, was obtained by enrichment culture and high-throughput sequencing.
The consortium’s degradation rate of beta-cypermethrin (100 mg-L~") was up to
89.84% after 96 h (Qi and Wei 2017).

Among the published pyrethroid degrading bacteria, only a few strains can
degrade pyrethroid 100% in a short time. Pyrethroids are similar in structure,
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which means that the same strain may degrade many different pyrethroid pesticides
(Bhatt et al. 2020f). The essence of microbial metabolism is an enzymatic reaction,
in which complex macromolecular compounds are gradually broken down under the
action of various enzymes (Feng et al. 2020a; Zhang et al. 2020; Bhatt et al. 2021a).
3-Phenoxybenzoic acid is the main intermediate metabolite of most pyrethroids.
3-PBA has high water solubility and antibacterial properties, which is one of the
reasons limiting the further metabolism of pyrethroids (Zhao et al. 2019a). It is a new
attempt to solve the toxicity of 3-phenoxybenzoic acid (3-PBA) through co-culture.
Two strains of Aspergillus oryzae M-4 and B. licheniformis B-1 were combined by
Zhao et al. (2016). After 72 h of cocultivation, 100 mg-L™" f-cypermethrin was
removed by 78.85%. The toxic intermediate product 3-PBA formed by the hydro-
lysis of p-cypermethrin with B. licheniformis B-1 was effectively utilized by
A. oryzae M-4, the gallic acid produced by the metabolism of beta-cypermethrin
with A. oryzae M-4 was effectively degraded by B. licheniformis B-1.

6.3 Genes and Enzymes Involved in Pyrethroid Metabolism

Carboxylesterase is a very important class of pyrethroid hydrolases. It is a subtype of
esterase and had classified in subtype 3.1.1 by the International Union of Biochem-
istry (Bhatt et al. 2021b). Carboxylesterase/lipase is divided into eight families (I-
VIII). Group I esterases are true lipases, while group II-VIII esterases are carboxyl-
esterase (Zhan et al. 2020). Carboxylesterase is the most studied enzyme among
pyrethroid hydrolases. It is widely found in resistant insects, mammals, and micro-
bial cells. It can hydrolyze a variety of organic compounds containing esters, such as
carbamate and pyrethroid, and produce nontoxic acids and alcohols (Liu et al. 2017).
The active site of esterase contains serine residues, which are located in the con-
served pentapeptide motif (Gly-X-Ser-X-Gly) (Diegelmann et al. 2015).

Many pyrethroid degradation genes, such as pye3, pytY, estA, pytZ, pytH,
est3385, mesl, and sys410, have been cloned and identified (Wang et al. 2009; Li
et al. 2008; Ruan et al. 2013; Luo et al. 2018). Phylogenetic analysis indicated that
Est3385 derived from Rhodopseudomonas palustris PSB-S belong to the esterase
group I, Sys410 belongs to esterase V family, and the pyrethroid carboxylesterase
PytY encoded by pytY gene is a member of esterase VI families (Luo et al. 2018;
Ruan et al. 2013; Fan et al. 2012). Most pyrethroid hydrolase activities have been
reported to require no cofactor, but the presence of some metal ions can severely
inhibit enzyme activity. The pyrethroid hydrolase extracted from A. niger ZD11 has
a pl value of 5.4 and a molecular weight (MW) of 56 kDa; a pyrethroid esterase,
Pye3, with an open reading frame (ORF) of 819 bp and an MW of about 31 kDa, was
obtained from the soil by using metagenomics tools; and the esterase EstP with an
ORF of 1914 bp was extracted from Klebsiella sp. strain ZD112 cells. These three
enzymes can be strongly inhibited by Hg** and Ag* (Wu et al. 2006; Li et al. 2008;
Liang et al. 2005).
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Due to the similarity in the structure of pyrethroid pesticides, most pyrethroid
functional enzymes show broad-spectrum substrate specificity to pyrethroids. Pyre-
throid hydrolytic esterase (EstP) was isolated from Klebsiella sp. ZD112 and
encoded by gene estP, has an ORF of 1914 bp. The molecular weight of EstP is
about 73 kDa, which contains 637 amino acid residues (Wu et al. 2006). No
similarity was found with the reported nucleotide sequences of esterase/lipase family
members by multiple sequence alignment. The purified EstP has a broad spectrum of
substrate utilization. The K, and k., values of EstP hydrolyzing trans- and cis-
permethrin indicated that EstP hydrolyzes pyrethroids more efficiently than
carboxylesterases obtained from insect-resistant insects and mammals.

The ORF of the pyrethroid hydrolytic gene est 3385 contains 963 nucleotides,
and the optimum pH and temperature are 6.0 and 35 °C, respectively (Luo et al.
2018). The enzyme can metabolize a variety of pyrethroid pesticides, and
fenpropathrin is the best substrate. The enzyme degradation kinetics indicated that
the Vinax and K, values of hydrolyzed fenpropathrin were 0.918 £ 0.025 U/microg
and 0.734 £ 0.013 mmol/L, respectively. The pytH cloned from Sphingobium
sp. strain JZ-1 encodes the carboxylesterase PytH. In addition to hydrolyzing a
variety of pyrethroids, PytH can also convert short-chain fatty acids (Wang et al.
2009). Studies have shown that transferring the carboxylesterase encoding gene
pytH into Pseudomonas putida KT2440 can completely hydrolyze 0.2 mM per-
methrin, fenpropathrin, and cypermethrin within 48 h (Zuo et al. 2015).

Previous results showed that there is enantioselective degradation of pyrethroid
hydrolase. The pyrethroid hydrolase extracted from the A. Niger ZD11 was able to
detoxification various pyrethroids, but compared with cis-permethrin, the substrate
utilization of trans-permethrin was higher (Liang et al. 2005). A pyrethroid hydro-
lase esterase gene pytY containing 897 bp ORF was isolated from Ochrobactrum
Anthropi YZ-1 by Ruan et al. (2013). PytY can hydrolyze different pyrethroids, but
it showed the highest hydrolysis activity with lambda-cyhalothrin as the substrate.
The kinetic constants of Vmax and Km were 56.33 nmol/min and 2.34 mmol/L,
respectively.

The beta-cypermethrin-degrading monooxygenase CMO was first identified by
Chen et al. (2013b) from environmental microorganisms. The natural enzyme
showed that the CMO has a pl of 5.4 and an MW of 41 kDa. The enzyme exerted
the greatest activity against befa-cypermethrin at 30 °C and pH 7.5. Fe** can
significantly enhance the activity of CMO, while Cu®*, AI**, and Ag* have a strong
inhibitory effect on CMO activity. Most of the pyrethroid hydrolases are extracted
from the cells of organisms. It has been proved that it is feasible to extract pyrethroid
metabolizing enzymes from extracellular regions. A functional enzyme was isolated
from Pseudomonas aeruginosa strain GF31 cells. The molecular weight of the
enzyme was 53.7 kDa, and the pl value was 7.67. The ORF contained a 1611 bp
DNA fragment, encoding 536 amino acids. Through phylogenetic analysis, it was
highly similar to aminopeptidases (Tang et al. 2017).
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6.4 Catalytic Mechanisms of Pyrethroids

Pyrethroid hydrolases are members of the a/f superfamily. Most of the active site
amino acids of carboxylesterase have conservative sites, with the active site amino
acids contain a catalytic triad composed of nucleophiles, basic groups, and acidic
groups (Bhatt et al. 2020a). Hydrolase folds into a complex three-dimensional
structure in space, and the different residues of the catalytic triad (Ser-His-Asp)
come together during the folding process. The triad is hidden in the enzyme protein
molecule, and the serine residue at the active site is masked by the alpha helix.
Through the folding of enzyme protein, the catalytic triad of carboxylesterase
activity site is combined with a pyrethroid.

Aspartate and histidine combine with two hydrogen bonds to increase the pKa
value (acidity coefficient) of the triad and activate the nucleophile serine. After the
hydroxyl molecule of the serine is activated by catalytic histidine/aspartate, the latter
obtains electrons from the hydroxyl molecule of the nucleophile. The active site of
pyrethroid hydrolases contains serine residues, which is situated in the common
pentapeptide sequence Gly-X-Ser-X-Gly of esterases. It acts as a nucleophile to
attack the carbonyl group of pyrethroids through hydroxyl (OH), then releases
alcohols, and produces a covalent intermediate of acylation (Bhatt et al. 2019).
The basic group (His) and the acidic group (Asp) obtain hydrogen ions from the
OH of serine, and the carbonyl group’s nucleophilic attack of pyrethroid is
performed by hydroxyl anion generated from serine. These two processes are carried
out simultaneously.

The carbon atom of the ester bond of pyrethroid is attacked by serine (nucleo-
phile) and forces the oxygen atom of the ester bond to accept electrons, forming a
tetrahedral intermediate. Restoration of the intermediate carbonyl leads to the trans-
fer of histidine protons to the carbon atoms of pyrethroids adjacent to the a-chiral
carbons. Subsequently, water molecules replace serine as a nucleophile to supply a
proton to histidine, and the remaining OH attacks the carbonyl carbon atom to form a
complex intermediate (Bhatt et al. 2020a). Furthermore, the serine in the enzyme
regains protons from the basic group histidine, which further hydrolyzes the com-
plex intermediate into nontoxic acids and alcohols. The specific metabolic process is
shown in Fig. 6.1.

6.5 Metabolic Pathways of Pyrethroid Biodegradation

The main intermediate metabolites detected in pyrethroids during microbial metab-
olism are 3-phenoxybenzyl alcohol, 3-phenoxyebenzoic acid (3-PBA), and
3-phenoxybenzaldehyde. The metabolite a-hydroxy-3-phenoxybenzeneacetonitrile
is a unique intermediate product of pyrethroid II due to the absence of cyanogen in I
pyrethroid (Guo et al. 2021; Bhatt et al. 2021c). Under alkaline conditions, pyre-
throids are easily hydrolyzed into cyclopropane-containing acid and o-hyroxy-3-
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Fig. 6.1 Catalytic mechanisms of pyrethroids

phenoxybenzeneacetonitrile, and then quickly converted into
3-phenoxybenzaldehyde (Chen et al. 2011a). In the presence of dehydrogenase,
3-phenoxybenzaldehyde is further oxidized to 3-PBA (Deng et al. 2015). 3-PBA is
an endocrine disruptor which stables in the environment, has higher water solubility
than the parent compound, and is frequently detected in human urine. When
monitoring the residues of pyrethroids, 3-PBA is often used as a detection indicator
(Hongsibsong et al. 2019).

Most of the time, microorganisms follow the same metabolic pattern and metab-
olize the parent pesticide into 3-PBA (Chen et al. 2012d). Staphylococcus succinus
HLJ-10 converts D-cyphenothrin through the cleavage of ester bonds and diaryl
bonds. 3-PBA, 3-phenoxybenzaldehyde, and o-hyroxy-3-
phenoxybenzeneacetonitrile were detected in this process (Huang et al. 2020);
B. licheniformis B-1, A. niger YAT, B. subtilis BSFO1, and Brevibacillus parabrevis
BCP-09 have been reported to have similar metabolic steps on beta-cypermethrin
(Tang et al. 2018a; Deng et al. 2015; Xiao et al. 2015). However, after the formation
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Fig. 6.2 Microbial degradation pathways of pyrethroids

of 3-PBA, different strains hydrolyze 3-PBA in completely different ways (Fig. 6.2).
Under the catalysis of dioxygenase, 3-PBA may have a variety of downstream
metabolic mechanisms. Bacillus licheniformis CY-012 can hydrolyze 3-PBA into
benzoic acid and phenol (Tang et al. 2018b). Subsequently, phenol is hydrolyzed to
catechol by hydrolase, and benzoic acid is further generated into 3-hydroxybenzoate.
Another approach is performed by A. niger YAT; 3-PBA was hydrolyzed into
protocatechuic acid and phenol (Deng et al. 2015). Protocatechuic acid undergoes
aromatic ring cleavage with the assistance of dioxygenase to form 3-carboxy-
muconic acid.

3-Phenoxybenzoic acid is one of the most studied pyrethroid intermediates. An
interesting phenomenon was observed by Zhu et al. (2016) that 3-phenoxybenzyl
alcohol and 3-PBA can be converted to each other, but will soon be hydrolyzed
further. In addition, Candida pelliculosa ZS-02 and A. oryzae M-4 revealed another
possibility of transforming 3-PBA into 3,5-dimethoxyphenyl or gallic acid (Chen
et al. 2012a). After the formation of phenol into catechol, dioxygenase played an
important catalytic role in the further decomposition of the aromatic ring to muconic
acid (Zhao et al. 2019a). Ultimately, it is mineralized into nontoxic water molecules
and carbon dioxide.
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Until now, there are few reports on the biodegradation pathway of type I
pyrethroids. In recent years, microbial degrading strains which can efficiently
degrade permethrin, bifenthrin, d-cypermethrin, and permethrin have been screened
from different sources, and their metabolic pathways have been demonstrated. Bhatt
et al. (2020b) first hydrolyzed the ester bond of permethrin by S. trueperi CW3 to
produce chrysanthemic acid and alcohol 2-(1,4,4-trimethyl-cy-clohex-2-enyl) etha-
nol. Then, the alcohol was oxidized to 1,4,4-trimethylcyclohex-2-ethylene carbox-
ylic acid, which was further transformed into chrysanthemyl alcohol. Under the
metabolism of Acinetobacter baumannii ZH-14, permethrin first formed
2,2-dimethyl-3-(2,2-dichlorovinyl) cyclopropanecarboxylic acid and
3-phenoxybenzenemethane, and then transformed into 3-phenyl benzaldehyde by
redox. Finally, 3-Phenoxybenzaldehyde converted to 1,2-benzenedicarboxylic acid
with the diaryl cleavage (Zhan et al. 2018).

6.6 Bioremediation of Pyrethroid-Contaminated
Environments

The large-scale application of pyrethroids has caused ecological pollution of soil,
sediments, and surface water, as well as serious indoor residues (Yoshida 2009;
Chen et al. 2012c). After applying pyrethroids in the environment, as long as a small
part of the active ingredients reach the target organism, most of them remain on the
surface of plants and soil (Bhatt et al. 2020e; Huang et al. 2019). Most of the
pyrethroid residues that contact the surface of plants and soil will be degraded by
solar radiation. A small proportion of pyrethroids are utilized by indigenous micro-
organisms as a carbon source for growth. However, there are reports that the
presence of deltamethrin can interfere with indigenous microbial communities
(Braganca et al. 2019).

The long-term residues of pyrethroids in the soil force indigenous microorgan-
isms to induce the expression of pyrethroid-related metabolic genes, thereby accel-
erating the metabolism of pyrethroid residues in contaminated environments. In
addition to their own enzyme activities, soil temperature, pH, initial pyrethroid
concentration, soil water content, and organic matter content also affect the soil
bioremediation process by pyrethroid-degrading microbes (Bhatt et al. 2021d;
Mishra et al. 2021). Zhang et al. (2016) collected a B. cereus strain Y1 from soil
contaminated with deltamethrin, which can metabolize 74.9% of deltamethrin within
24 days. Bacillus sp. ISTDS2 was isolated from the marble mining area and was
observed to use beta-cypermethrin as the sole source of nitrogen and carbon for
growth (Sundaram et al. 2013). The f-cypermethrin with a concentration of 100 mg/
L is thoroughly hydrolyzed by strain ISTDS?2 in the field after 30 days. Recently,
Bhatt et al. (2020c) obtained a B. thuringiensis SG4 from farmland. The experimen-
tal results suggested that 83.3% of 100 mg/L cypermethrin was removed from soil
after 15 days of incubation.
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6.7 Conclusions and Future Perspectives

Microbial degradation of pesticides in the environment faces many different prob-
lems. The metabolic activity of purified strain in soil has been the focus of previous
research. Studies have shown that some microorganisms will give priority to the use
of nutrients in soil media, leading to a decrease in the utilization of pyrethroids. The
biodegradative efficiency of hydrophobic pyrethroids by microorganisms is related
to the bioavailability of cells to pesticide molecules. The degradation rate of pyre-
throids can be improved by adding appropriate surfactants Tween-80 and BRIj-35.
The transformed pyrethroids pose another challenge to the environment. Pyrethroids
metabolites are more water-soluble and have biological toxicity than the original
pyrethroids. In the past 30 years, although a variety of microorganisms have been
screened out and have the ability to hydrolyze pyrethroids. However, only a few
strains can metabolize 3-PBA and pyrethroids simultaneously.

In order to solve these problems, many governance schemes have been proposed
in recent years. Microorganisms that can utilize different substrates were combined
to form consortia, which often exhibits a higher biodegradation effect than a single
strain. Most microorganisms in nature cannot be obtained directly. Metagenomics
provides a powerful tool for obtaining novel microbial enzyme resources. At present,
the main pyrethroid degrading enzymes reported are carboxylesterase,
monooxygenase, CYP, and laccase. However, not all enzymes have all the charac-
teristics of high stability, high productivity, and high enzyme activity, which is
essential for practical field application. Random mutagenesis, as another powerful
tool, can enhance the catalytic activity and stability of enzymes through molecular
modification, providing the possibility to obtain more potential enzymes.

Based on multidisciplinary results, many studies on immobilized degradation
strains have been reported. Using calcium alginate in the form of microcapsules can
immobilize a single purified strain or a multi-strain consortium. Compared with free
cells, the immobilized strain has a higher substrate utilization rate. By regulating the
flow rate, the number of repetitions of fixed strains can also be prolonged. With the
development of materials science, many kinds of substrates for fixing cells have been
developed, showing different advantages. In addition to immobilizing living cells,
the immobilization of degrading enzymes has also been reported. Most of these
experiments are currently in the laboratory research stage, and there are still many
studies that need to be further carried out before the real large-scale application.
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