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Abstract The built environment is known as a major contributor to both sustain-
ability problems and solutions. Life Cycle Sustainability Assessment (LCSA) which
is a promising approach to evaluating the environmental, economic, and social dimen-
sions of building performance, is progressively drawing the building researcher’s
attention. This chapter aims to review the roots and evolution of building sustain-
ability assessment and discusses the associated challenges of LCSA in building
and energy retrofit design. Through a critical review, different assumptions and
limitations will be reviewed, and the main challenges of integrating LCSA into
building energy retrofit design will be classified and discussed. In the end, the new
research lines such as developing integrated LCSA models, application of opti-
mization methods, and Building Information Modeling (BIM) in LCSA will be
discussed.
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1 Introduction

The built environment is known as a significant contributor to both sustainability
problems and solutions [1]. In such a context, the growing consensus about three facts
is of paramount importance leading to progressive efforts in providing comprehen-
sive standards and guidelines for the Life Cycle Sustainability Assessment (LCSA)
in the building sector. First is the perception of sustainability as a multidimen-
sional, interdisciplinary, and dynamic science. It requires continuous research to
deliver a balanced understanding among various dimensions, including environ-
ment, economy, and social dimensions [2, 3]. The dynamism among sustainability
pillars and their inherent intricacies demands providing up-to-date standards and
guidelines as an indispensable requirement of the assessment works and continuous
methodological development and improvement [3–5].

Second is the fact that the expansion of the building sector in response to the
growing needs of housing and urbanization trends shows that the building sector is
a key role player to achieve the sustainability targets in the present and the future [6,
7]. In the same context, the large share of existing buildings discloses the significant
potential of building refurbishment strategies to reach sustainability in this sector
[8].

Last but not least is that the building sector can no longer be considered as lineated
life products. The building sector’s life span is now being studied in the cradle to
grave circular scheme by which its sustainability must be evaluated with a whole life
cycle perspective [1].

However, various building sustainability assessment frameworks and standards
have been released worldwide, a survey on their implementation level in the recent
scientific publications is worthy of investigation. This research aims to review and
discuss recent scientific publications in LCSA on building energy retrofitting. The
goal is to enlighten the extent to which the current standards have been employed in
the reviewed publications, the missing aspects (not developed in the standards), and
propose scenarios for development and methodological implementation.

To achieve the purposementioned above, the published research papers in the field
of LCSA in building energy retrofitting are critically reviewed and discussed with a
focus on the scope and indicators coverage, the adopted assessment methodologies,
weighting, and aggregation methods among LCSA pillars and the final decision-
making procedures. The papers are reviewed in four categories containing LCA,
LCC,SLCA, andmultidimensional LCSAstudieswhere the limitations and advances
are critically discussed.

The initial results of the present review highlight that the main challenges in the
published research papers could be attributed to (1) lack of required databases, (2)
quantification and measurement problems in LCSA impact categories, (3) lack of
including impact categories and indicators suggested by standards, and consequently
(4) an unbalanced level of development in LCSA pillars evaluation. Also, the level
of information provided in each study, both as the input data and the final results,
do not match the standards recommendations. Moreover, the development of SLCA
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assessment methodologies and the synthesis among LCSA pillars through weighting
and aggregation are found as vivid obstacles of LCSA application in the literature.
These findings along with more issues found in this review, enlighten and explain
the critical challenges of LCSA standards implementation in building energy retrofit
studies. The data and information management, alongside the considerable compu-
tational time required for the in-depth assessment, are the main obstacles in applying
LCSA in building energy retrofitting.

In this chapter, the root and evolution of the concept of sustainability over the last
decade are studied. Later on, the advent of life cycle sustainability assessment in the
building sector and its integration into decision-making methods in building design
is reviewed and analyzed. Afterward, The application of LCSA in building energy
retrofitting is critically discussed to highlight the main challenges and emerging
opportunities in this field of study. The chapter continues with a detailed classifi-
cation of the main observed challenges of LCSA implementation in building and
energy retrofit design. In the end, after an in-depth review, the development of inte-
grated frameworks coupled with optimization models and the integration of Building
Information Modeling (BIM) is discussed as promising solutions for implementing
LCSA into building and energy retrofit design.

2 Sustainability and Development; The Roots
and Evolution

Although the term sustainability is widely used, there are still ambiguities and
complexities in the concept of sustainability and sustainable development [9, 10].
This vagueness has been discussed over the years, and it is still being addressed
in the academic environment. One possible reason that leads to these complexities
is the fact that both sustainability and development are not static and have been
evolving in response to the existing dynamism between society and nature [3–5].
The concept of sustainable development is initially driven from economic discipline
in [11], where the concerns were about the capacity of limited natural resources to
support the increasing human population. According to the Scopus database, the term
sustainability was found in 70th, when it first emerged in the scientific literature of
economic studies [11], however, some previous studies indicate that the use of this
term dates back to a monograph published in 1713 to address the sustainable use of
forest resources [2, 12].

As described in dictionaries, development refers to the gradual growth to become
more advanced [13]. To clarify this general definition, several theories and inter-
pretations have been proposed by scholars in different fields. One of the definitions
collected by [5] elaborates development as a multidimensional process in which
major changes in social structures, attitudes, and institutions as well as economic
growth, inequality reduction, and poverty eradication are involved. Regarding the
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historical definitions, the term sustainability primarily addresses the economic-
environmental aspects,while development ismore oriented to socio-economic issues.
Therefore, sustainable development could be interpreted as a concept addressing
social, economic, and environmental issues. A similar interpretation is now widely
accepted and used.

It is possible to track the efforts to interpret and standardize the term sustainability
or sustainable development in the twentieth century. The United Nations confer-
ence on the human environment held in Stockholm, Sweden, in 1972, is known as
the first international conference to deal with the concept of sustainability [14]. In
the declaration of the Stockholm conference, 26 principals were agreed concerning
human rights and responsibilities with respect to the social, environmental, and
economic aspects. These principles demand an internationally collaborative action
plan to achieve sustainable development principles worldwide. In this conference,
109 recommendations were provided to determine how the international participant
should effectively regulate their actions to protect the human environment [15].

TheWorld Commission on Environment and Development (WCED) provided the
first definition of sustainable development in 1987. In the draft published byWCED,
Sustainable development was defined as a development that meets the needs of the
pursuant without compromising the ability of the future generations to meet their
needs. This definition considers the limited ability of the environment to provide the
present and future needs of humanity while highlighting that the economic and social
requirements in all countries must also be defined in terms of sustainability [16].

An important UN Conference on Environment and Development (UNCED) was
held in Rio de Janeiro, Brazil, in 1992 [17]. It is known as the first attempt to imple-
ment sustainable development from concept to an international action plan [12]. In
the 4th principle of the Rio declaration, environmental protection is emphasized as
an integral part of development. The 5th principle refers to eradicating poverty and
standard of living as indispensable social requirements of sustainable development.
The 12th principle promotes a supportive and open international economic system
leading to economic growth for better addressing the problems of environmental
degradation [18]. An overall review of the Rio declaration principles shows that envi-
ronmental issues are the main concerns and the core of this declaration since most
of the principles have aimed to promote practical environmental protection actions.
Later in 2002, in the World Summit on Sustainable Development held in Johannes-
burg, SouthAfrica, the balance between economic development, social development,
and environmental development as interdependent and mutually reinforcing pillars
of sustainability were reaffirmed [19].

Regarding the conflicts among three sustainability pillars and the unequal or insuf-
ficient progress in the three dimensions of sustainability, the United Nations Confer-
ence on Sustainable Development, Rio + 20 was held in Rio de Janeiro, Brazil, in
2012 [20], emphasizing the balance among sustainability pillars. In the report of
this conference entitled “The future we want”, poverty eradication is recognized as
the greatest global challenge facing the world and an indispensable requirement for
sustainable development [21]. In this report, the concept of the green economy is
recognized as an essential tool that is available for achieving all pillars of sustainable
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development. A particular focus on the social aspect highlighted in this conference
was also among the Millennium Development Goals, where six goals out of all eight
proposed sustainable development goals were oriented to the social dimension of
sustainability [22].

The following United Nations Sustainable Development Summit was held in
New York in 2015. The resolution adopted by the General Assembly in UN on 25
September 2015 entitled “Transforming our world: the 2030 agenda for sustainable
development, changed the traditional concept of sustainable development fundamen-
tally [12] and set out 17 areas of sustainable development goals [23]. These areas
are known as the last versions of Sustainable Development Goals (SDGs) declared
by United Nations. The year 2015 was a distinguished historical point when the UN
set out the 17 SDGs. Not only this step forward for better understanding SDGs and
providing the bases of intergovernmental collaboration, but also the Paris Agreement
on international effort to increase the abilities of countries in controlling the impacts
of climate change [24], have been considered as the historical human efforts to build
a more sustainable future.

As elaborated in this section, the definitions of sustainability and development
have been subjected to several changes in their meaning and priorities over the
last decades. The dynamism and evolving interaction between human society and
the natural resources as a complex system could be recognized as the main reason
for changing interpretation to define meanings and priorities in sustainability and
development.

3 Sustainability Assessment of Buildings—A Life Cycle
Approach

The concept of sustainable development targets all human activities and aspects of
life and is expected to be adopted by public policy makers to regulate the socio-
economic aspect of worldwide activities. It is particularly promoted and applied to
address the issues related to the design of the built environment in the last decade
[25].

The increasing need for housing in human societies resulting from population
growth has led to a rapid expansion of the built environment [26]. The share of
the building sector in final energy consumption and GHG emission are increasing
worldwide. According to the statistics, the building sector is accounted for 36 and
39% of the final energy consumption and CO2 emission globally [27]. These values
have been estimated at 40 and 32% in European Union (EU), respectively [28].

Given the noticeable contribution of the built environment expansion to the envi-
ronmental impacts [6, 7], economy, and societies [29] as three pillars of sustainable
development [30], growing attention to this issue is now emerging in academies,
industries, and policy programs. The increasing awareness about the building sector’s
considerable impacts on sustainability targets resulted in establishing standards and
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guidelines to reduce the environmental impacts in this sector. In this context, both
the economic and social performance of the building sector has been pursued by
emerging studies, as well as the environmental performance, to provide harmony
and balance among three life cycle sustainability pillars [1]. However, the social
dimension is the least addressed aspect of building sustainability in the literature
[31], mainly due to simplifying the sustainability concept in buildings and reducing
it tomerely environmental sustainability. The terms sustainability andgreenbuildings
have been in use interchangeably in building science literature [31]. Consequently,
the initial understanding of the term “green” as “building design strategies that
are less environmentally and ecologically damaging than typical practices” [32],
as well as the fact that environmental performance has been better surveyed and
standardized [33], could be recognized as the main reasons explaining why all three
sustainability dimensions are not equally developed and investigated in the building
science literature.

Like the general concept of sustainability, the definition of sustainability in build-
ings has experienced various interpretations and evolution over the last decade.
However, at least three sustainability pillars, such as environment, economy, and
society, are now recognized as the widely accepted interpretation; the value judg-
ment among these three pillars is still controversial. Looking atGreenBuildingRating
Systems (GBRSs) such as LEED and BREEAM, the dominancy of a tendency to the
environmental interpretation of green or sustainable building is observable [32].

On the other side, several guidelines have been published to standardize the assess-
mentmethodof the sustainability in buildingswith a life cycle approach such asBEES
models [34] or the EN standards, including the framework of building sustainability
assessment [35], the framework of environmental [36], social [37], and economic
performance assessment [38]. However, these methods provided useful methods
to measure the building performance regarding the sustainability pillars, but do not
address how tomake decisions systematically among alternatives with different envi-
ronmental, economic, and social performances. For instance, BEES models propose
a weighted-sum approach to assign a final index to each alternative based on its envi-
ronmental and economic performance but stay silent about the weighting methods
between economy and environment. Likewise, the EN standards have standardized
the calculation methods to measure the environmental [39], economic [40], and
social performance [41]; they do not clarify how the decision maker should compare
different alternatives having conflicting results for each sustainability pillar.

The sustainability pillars in buildings are still being developed and discussed.
For instance, looking at GBRSs, there are various aspects and credits, such as the
integrative process in LEED or technical quality and process quality in DGNB, that
cannot be attributed to the three traditional sustainability pillars. Likewise, recently
a fourth dimension has drawn researchers’ attention in the literature as institutional
dimension [42, 43] that is defined as “the results of interpersonal processes, such
as communication and co-operation, resulting in information and systems of rules
governing the interaction of members of a society” [32].

The various interpretations of sustainability and the lack of accurate definition and
calculation methods to quantifiably measure the sustainability pillars show that the
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sustainability assessment and life cycle sustainability assessment [44] in buildings
are still open challenges that need to be more surveyed in the future studies.

4 Life Cycle Sustainability Assessment in the Decision
Context—Challenges and Opportunities
of Decision-Making Models in Building LCSA

The term Decision-Making (DM) model first emerged in the scientific publication of
political science in 1959 [45, 46]. The application of this concept then got increasing
attention in other fields as well. As a piece of evidence, the number of scientific
publications referred to decision-making models/methods has increased from 2 to
more than 15,500 between 1952 to 2020, with a significant growth rate over the
recent years. As much as more complicated criteria entered human life, the higher
necessity of comprehensive methods to make intelligent decisions is perceived. As a
result, the application of DMmethods is now widely accepted and is spreading to all
fields from very early practice in politics [45] to recent implementation in advanced
technologies [47].

Decision-making models are known as the most important application of math-
ematics in various human activity fields [48]. The necessity of advanced decision-
making models arises when at least two assessment criteria exist, and these criteria
are contradictory, or the solutions need a value judgment by stakeholders who might
have conflicting interests [49].

Facing the global questions that encompass conflicting criteria, multiple diverse
goals, contradictory interests, and targets with several different perspectives, Multi-
Criteria Decision-Making Models (MCDMs) have been widely implemented to find
the appropriate answers to contradictory questions [50]. Sustainability is of those
areas that MCDMsmodels are applied to find comprehensive optimal solutions [51].
As already mentioned, sustainability appeared in the scientific literature in the 70th
decade, while the first implementation of a DMmodel into the sustainability studies
dated back to 1997, where it was applied to address the sustainability of future
perspective of Swedish urban water systems [52].

Decision-making models in building life cycle sustainability assessment is a very
new field of study compared to the comparatively short history of building LCSA. It
also shows that building sustainability and life cycle sustainability of buildings were
initially developed without taking all the benefits delivered byDMmodels. However,
as LCSA and sustainability assessment include a higher level of complexity and a
broader definition over the preceding years, more attention to implementing DM
models emerges in the literature.

Amon all MCDM methods, several reviews concluded that AHP is the most
popular and applied method in the literature [53, 54]. A study performed by [55] on
MCDMs in sustainable energy development issues highlighted that AHP followed by
TOPSIS is the most popular multi-criteria decision-making method in the literature.
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This fact is also confirmed in our review of few papers published in the field of
MCDMs in building life cycle sustainability assessment between 2010 to 2020.
Table 1 summarizes the features of recent publications that have applied DMmodels
in building life cycle sustainability starting from 2010 to 2020. In this review, those
publications that applied decision-making models in building LCSA were reviewed
to highlight the coverage level of LCSA pillars and find the most utilized decision-
making methods. As shown in Table 1, most reviewed papers included all three
sustainability pillars to evaluate the performance of different types of building design
solutions such as structural systems and materials, HVAC systems, and building
technologies.

Analytical Hierarchy Process (AHP) is found as the most appliedMCDMmethod
within the reviewed papers, while some authors have proposed hybrid DM methods
to overcome the drawbacks of the single techniques in their studies [56, 57]. AHPwas
firstly developed by [58]. According to its developer, AHP is defined as “a theory of
measurement through pairwise comparisons and relies on the judgments of experts
to derive priority scales. Saaty [59] proposed to decompose the decision process into
four steps by which it would be possible to apply AHP in making decisions. These
steps are [59]: (1) Definition of the problems and determine the kind of knowledge,
(2) Structuring the decision hierarchy, (3) Constructing the pairwise comparison
matrices, and then (4) Using the obtained weights to define the overall priority. AHP
is known as a widely accepted and effective method to support decisions in the
complex decision-making process by reducing the problems’ complexity through
transforming complicated problems into a set of simple comparisons and rankings
[57], and increases the transparency and objectivity of decision-making as well as
facilitating the detection of controversial items and providing data for establishing
agreements [49].

Despite the advantages of the AHPmethod, one challenging issue associated with
this method is that different hierarchies of criteria may affect and cause changes in
weight allocations [55, 60]. Cinelli et al. [61] have concluded that although AHP is
simple to understand and is well-supported by tools, as a drawback, it is cognitively
demanding for decision makers’ perspectives.

AHP assumes a full compensation among the criteria that means a low perfor-
mance in one criterion could be entirely compensated by the high performance of
other criteria [61]. While AHP is found as the most applied MCDMmethod to deter-
mineweights of criteria, TOPSIS is known as one of themost popularmethods to rank
alternatives in a decision-making process, thanks to its straightforward application
[55]. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
as developed by [67] is based on the concept that the selected alternative must have
the shortest distance to the positive ideal solution while keeping the longest distance
from the negative ideal solution [57]. Although TOPSIS is highly appreciated due to
its easy application in problems with different sizes, some of its disadvantages are
also addressed in the literature, such as not considering the correlation of attributes
and its difficulty to weight attributes and keep the consistency of judgments [68].

These facts as fundamental critics about themost appliedMCDMs in sustainability
studies partially showwhy integratingMCDMmethods in this research field could be
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called an open challenge. It is important to note that this paper does not aim to review
all MCDM methods; in fact, the pros and cons of the most popular methods have
been briefly discussed to understand the most common challenges of implementing
decision-making models in sustainability assessment.

5 Implementing Life Cycle Sustainability Assessment
in Buildings—The Case of Building Energy
Refurbishment

This section reviews the published papers that addressed at least one dimension of
life cycle sustainability assessment in building energy retrofitting to understand the
methodological advancement, limitations, and challenges in this topic. Therefore, all
the relevant papers published and indexed in Scopus and Elsevier until 2020 were
retrieved and initially classified into three rubrics, including LCA, LCC, and SLCA
studies. These papers are analyzed to clarify the adoptedmethodologies in each paper
to provide a clear picture of the state of the art.

Figure 1 represents the number of papers published between 1989 to 2019 and
their distribution around the world. As it is shown in this figure, the publication in
this field is increasing fast during preceding years. The European countries, led by
Sweden, Italy, Spain, and Portugal, followed by United States, Canada, and China,
have the largest share in the research and publication of this field. The lack of LCSA
research in several countries underlines that this research field is still not applied
worldwide despite its significance in understanding global sustainability issues.

Fig. 1 Cumulative number of publications and their distribution in the world
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5.1 LCA in Building Energy Retrofitting; A Review
on Methods and Assumptions

Different assumptions and limitations in LCA studies make them difficult to be
compared and interpreted against each other. A review is needed to be performed to
highlight these assumptions, challenges, and new advancements within the research
works related to LCAof building energy retrofit. This review provides essential bases
to develop a comprehensive methodological framework for the application of LCA
in building energy retrofit design.

Those papers that addressed the LCA of building energy retrofitting in the title
or abstract were collected. By reviewing methods and materials in each paper, the
challenges of LCA in building energy retrofit are discussed in this section. This part
focuses on investigating uncertainties, inconsistencies, challenges, and methodolog-
ical advances in LCA application in energy retrofit projects. These challenges might
affect the reliability and comparability of LCA studies. Reviewing the assumptions
and solutions in previous studies will provide a better perspective on how each LCA
study could be integrated into the decision-making process of an energy retrofit
design project.

One reported issue in previous LCA studies is how to standardize functional unit
(FU) in LCA [69] of energy retrofitting which will be reviewed and discussed in this
section. The different functional unit has been used in the reviewed papers. In the
present review paper, four different kinds of functional units are found:

1. The energy demand/ consumption to provide the required level of thermal
comfort [70].

2. The quantity of used materials in a system [71].
3. The unit of area or volume of the refurbished building [72].
4. The whole building under LCA [73].

According to the LCA standards, the functional unitmust be clarified in the assess-
ment report. In this review, we realized that some authors have not clearly shown the
functional unit in their works, making their results impossible to be compared with
other studies [39].

It is reported that the most popular system boundaries in LCA studies are cradle to
grave [74]; this statement is also concluded and confirmed in the present review. Some
researchers have limited the system boundary of the study solely to the overwhelming
life cycle phases [75–77]. For instance, Mangan and Oral [78] limited their analysis
to the production stage and use stage due to the lack of data in demolition and end-
of-life stages. The system boundary limitation in the research is justified by the fact
that previous studies have proven that these eliminated stages (demolition and end
of life) have nearly 1 percent of total energy consumption in a building life cycle.

Some other researchers have included the whole building life cycle following the
EN 15,978 standard [73, 79–81]. Regarding the reviewed papers in this section, it is
found that most researchers have used the whole life cycle phases in their studies,
while the lack of databases alongside the negligible impacts are seen as the main
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Fig. 2 Life cycle inventory databases used in the reviewed papers

reasons and justification for excluding some life cycle phases in the rest of the
reviewed papers. An interesting research by Oregi et al. [82] showed a simplified
LCA in which only the production and operation phases are covered could provide
accurate results in designing energy retrofit scenarios.

LCI is known as one of the most complicated steps of an LCA study because of
the vast numbers of inputs and missing data on materials and building components’
environmental performance. In this review, some databases, such as Ecoinvent and
EPDs, as well as existing literature or specific data reported by manufacturers, are
found as the most common databases (Fig. 2). According to Oregi et al. [80], since
different databases may have been prepared using various assumptions, it is essential
to pay attention to the possible inconsistency of databases used in research.

Several environmental impact categories and indicators are proposedbyLCAstan-
dards [39]; however, most published papers have only evaluated a small number of
environmental impacts. It is stated that energy and global warming potential (GWP)
is the most surveyed key performance indicator in previous studies; however, it is
worthy of focusing and reviewing papers that have taken into accountmore indicators
and study how they have been compared against each other. Most of the reviewed
papers have only analyzed less than three environmental impact categories mainly
due to simplifying the data acquiring procedure.Globalwarming potential and energy
are the most evaluated impacts, as illustrated in Fig. 3.

De Larriva et al. [70] included two environmental indicators, Gross Energy
Requirement (GER), and Global Warming Potential (GWP). They have stated that
since the LCA is increasingly motivated by the climate change debate, they have
chosen these two indicators.

The environmental impact categories in the study performed by Garcia-Perez
[71] are limited to global warming potential and embodied energy. Ghose et al.
[72] selected twelve environmental impacts recommended by EN 15,978 such as
global warming potential, ozone depletion potential, photochemical oxidation poten-
tial, acidification potential, eutrophication potential, abiotic depletion (resources and
fossil fuels) according to theCML impact assessmentmethod.They also usedUseTox
method to evaluate human toxicity carcinogenic, human toxicity non-carcinogenic
and ecotoxicity freshwater and ILCD 2011 + ReCipe method for particulate matter
formation and ionizing radiation. The selection of these categories is in line with
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Fig. 3 Number of research papers that addressed each environmental impact. Note Energy refers
to cumulative energy demand, non-renewable primary energy, embodied energy, life cycle energy
and gross energy requirement

national recommendations in New Zealand, as they reported. In contrast, Mangan
and Oral [78] andMarique and Rossi [79] only focused on life cycle energy and CO2

emission. Oregi et al. [80] included only NonRenewable Primary Energy resources
in their life cycle impact category. Valancius et al. [77] also included limited environ-
mental indicators such as nonrenewable primary energy and CO2 emission. Indica-
tors in the study performed by Tadeu et al. [83] are limited to nonrenewable primary
energy and greenhouse gas emissions over the building’s life cycle.

For simplicity, Oregi et al. [82] considered only one indicator, which is “Use
of nonrenewable primary energy sources.” Managn and Koclar Oral [76] only
took into account LCE and LCCO2. in their study. In the analysis performed by
Valacius, Vilutiene, and Rogoza [77], only CO2 emission and nonrenewable primary
energy consumption over the building life cycle are taken into account. The research
performed by Nydahl et al. [81] is focused on two environmental impact categories,
including life cycle energy use and greenhouse gas emissions. Beccali et al. [73]
considered six environmental impact categories at the level of mid-point indicators,
including Cumulative Energy Demand (CED), Global Warming Potential (GWP),
Ozone Depletion Potential (ODP), Acidification Potential (AP), Eutrophication
Potential (EP), Photochemical Ozone Creation Potential (POCP).

The above-mentioned examples also confirm that, althoughmost researchers have
followed the LCA standards to calculate environmental impacts, only a few papers
have analyzed all proposed environmental impacts by LCA standards. This limitation
is mainly due to the lack of databases or with the aim of simplifying the calculation
steps, which hopefully will be resolved by developing LCI databases and advancing
the LCA software to facilitate the calculation process for non-expert users.

Finally, in some of the reviewed papers, some criteria that are almost neglected
in the literature such as the different energy mixes in the future, have also been
considered. Ghose et al. [72] have taken into account different energy mixes since,
according to national energy programs, the share of fossil fuels is predicted to be
reduced by implementing renewable energy sources in New Zealand.
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5.2 LCC in Building Energy Retrofitting; Indicators
and Economic Parameters

This section concentrates on the application of Life Cycle Cost (LCC) as a well-
established method for the analysis of the economic performance of buildings [8, 84,
85]. The main parameters of LCC analysis in selected reviewed papers are discussed
in this section, including theLCC indicator and economicparameters such as discount
rate and energy price inflation rate in each paper.

Several economic indicators such as Net Present Value (NPV), Payback Period,
Net Saving or Net Benefit, Saving to Investment Ratio, and Adjusted Internal Rate
of Return are proposed by relevant standards [40]. Our review showed that NPV is
the most used economic indicator in the reviewed papers (Fig. 4). Other economic
indicators such as Value at Risk, Energy productivity, Net Present Cost, Net Saving,
Saving to Investment Ratio, Adjusted Internal Rate of Return, Simply Pay Back
Period are also adopted in different papers.

Taking accurateDiscountRate (DR) and InflationRate (IR) values is of paramount
importance in economic assessments. A wide range of values both for the discount
rate and inflation rate is found in the reviewed papers, while the EN 16,627:2015
proposes using the discount rate equal to 3 percent for the sake of comparability
of the results of LCC studies. Some researchers have compared the LCC results by
taking various values for discount and inflation rates in their studies [86–90]. For
instance, Copiello, Gabrielli, and Boniaci [91] reported that the discount rate might
affect the results four times as much as the energy price. They alsomentioned that the
discount rate might also affect the energy retrofit project by encouraging owners for
higher initial investment. Our analysis shows that the values taken by researchers are
usually higher than the 10-year average values which are reported by the countries.

NPV

IRR

INVESTMENT COST

SIR

CAGR

PPT

EP

NS

AIRR

VaR

0 5 10 15 20 25 30 35 40

Number of papers

Fig. 4 Number of research papers that addressed each LCC indicator, Var: Value at Risk, AIRR:
Adjusted Internal Rate of Return, NS: Net Saving, EP: Energy Productivity, PPT: Payback Period
Time, CAGR: Compound Annual Growth Rate, SIR: Saving to Investment Ratio, IRR: Internal
Rate of Return, NPV: Net Present Value
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Fig. 5 The minimum, maximum discount rate (%) applied in the LCC studies in each country
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As shown in Fig. 5, theminimumandmaximumvalues of the discount rate applied
in the research papers are higher than the actual average value of the discount rate
in each country. Although it is worthy of investigation to analyze the influence of
various DR values in research works, it is recommended to adopt themacroeconomic
values according to the actual economic situation of the study project. Moreover, in
compliance with the EN standards taking similar DR values in LCC studies in the
building sector increases the comparability of the results. In case the researchers
aim to conduct sensitivity analysis to evaluate the impact of the different economic
situations on their project, the economic parameters should also represent the actual
values in the projects’ economic contexts and the relevant standards (e.g., Italian
studies in Table 2, Figs. 5 and 6).

Regarding the values of discount rate and energy price inflation rate, Fig. 7 repre-
sents important information about the reviewed papers. As it is illustrated, most
research works are performed with an energy price inflation rate lower than the
average in all papers. However, a variety of discount rate values are considered
in papers. Figure 7 shows that the papers published in different countries tend to
conduct LCC analysis with a combination of low to a medium value of inflation rate
and medium to high value for discount rate.

5.3 SLCA in Building Energy Retrofitting; The
Implementation Level

Any adverse or beneficial change to the society or the quality of life that could be
expressed with quantifiable indicators is defined as SLCA impact with respect to
the following categories in EN 15,643-3:2012 [37]: accessibility, adaptability, health
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Table 2 Summarizes the economic parameters applied in selected LCC studies in each country.

Countries Discount rate Energy price inflation rate Country
(electricity)Min Max Country Min Max Country (gas)

Austria [92] 4.5 4.5 0 – – – –

Belgium [93] 2 2 0 3 3 4.392 4.39

Canada [94] 3 5 1 – – – –

China [84, 95] 6.6 8

Germany [96] 2.5 2.5 0 0 4 0.955 2.86

Italy [87, 88,
97–99]

0 15 0.25 0 4.5 0.562 2.104

Oman [100] 3 3 1.726 – – – –

Portugal [101] 6 6 0 4 4 3.238 3.329

Singapore [89] 4 8 2.15

Sweden [102–109] 0 10 −0.5 0.5 3 1.33 0.759

S. Korea [8, 110,
111]

0 2.54 1.5 – – – –

Turkey [112–114] 13 13 5.25 – – – –

United States [86,
115, 116]

0 6 0.5 5 5 2.233 0.6

Fig. 6 The minimum,
maximum Energy Price
Inflation rate (%) applied in
the LCC studies in each
country versus the 10-year
En-PIR of the countries (the
average of gas and electricity
price for end-user in
residential buildings)
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and comfort, loading and neighborhood, maintenance, safety/security, sourcing of
material and services, and stakeholder involvement.

In the present review, no published research paper is found which directly
addresses the social dimension of building energy retrofitting with a life cycle
approach in the title, abstract, or keywords. However, few papers are found in which
some social indicators such as thermal comfort [117], human live risk [118], and
social feasibility [119] are taken into account. Thermal comfort could be considered
as a social aspect of building sustainability assessment according to EN 15,643-
3:2012 since it affects occupants and users’ satisfaction levels. The studies performed
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Fig. 7 The average of discount rate versus the average of energy-price inflation rate adopted in
selected LCC studies in each country

by Assiego de Lavaria et al. [120] and Mostavi et al. [117] are of those few ones that
have addressed one of the impact categories of social LCA in their assessment.

6 LCSA Challenges; A Classification of the Open
Challenges and a Discussion on Emerging Solutions
in the Literature

Several challenges are associated with sustainability assessment as a multidimen-
sional interdisciplinary field of study [121]. However, taking a life cycle approach
to sustainability assessment increases the study’s comprehensiveness; it might result
in a higher level of sophistication since more databases and assessment methods
with a higher level of uncertainties and inconsistencies might be included in the
analysis. Given the discussions in the previous sections and the research papers that
addressed the sustainability assessment challenges within the last five years, themain
challenges of measurement in life cycle sustainability assessment are presented and
discussed in this section. Such a discussion helps to enlighten what aspects of LCSA
need to be investigated and developed by further research works in the future.

The challenges associated with data collection and accessibility are constantly
reported as one of themain obstacles in implementing life cycle sustainability assess-
ment [1]. The required databases to conduct life cycle sustainability assessment are
not readily available for specific materials, products, or services around the world
[122–129] and the data acquisition procedure is not straightforward [126–134] due
to the complexity of the data preparation and data-sharing challenges [124, 135].
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Although databases have been developed during the last decade, the lack of data is
still a barrier in this field. Moreover, the uncertainty caused by the missing data of
emerging technologies alongside the uncertainties of measuring methods are known
as important LCSA challenges [126, 134, 136–139].

A significant challenge of implementing LCSA is the fact that no consensus exists
to establish or adopt a clearmethodology to link the three dimensions of sustainability
[1, 122, 129, 140–143]. The combination and harmonization among different metrics
and measurement techniques [122, 139, 140, 143] alongside the different maturity
levels of assessment methods for LCSA pillars [131, 136, 137, 144], specifically
the weakness in developing the quantifiable measurement methods of the social
dimension [127, 129, 131, 133, 134, 144–146] is of the most critical challenges in
this field. Aggregating the LCSA pillars is a complex issue [1, 122, 126, 129, 136,
140–142] due to the challenges associated with selecting the suitable indicators [3,
122, 125, 127–129, 145], weighting [1, 44, 126, 134, 139, 146–148], normalization
[44, 134, 142, 146, 148], and formulating life cycle sustainability [1, 129, 130, 133,
139, 149, 150].

As illustrated in Fig. 8, the associated challenges of measuring LCSA could be
initially classified into six groups, including Data, Measuring methods, Aggregation,
Indicator selection, Uncertainties, and Results. Further and future research works
need to be conducted to resolve these challenges. Apart from the continuous efforts
to standardize the measuring methods, to develop databases and reduce the uncer-
tainty of the evaluations through methodological advancements, new trends in the
literature are found to answer the challenges of integrating and facilitating LCSA

Fig. 8 Classification of the existing challenges related to measuring life cycle sustainability
assessment. The size of each section corresponds with the number of papers addressed each
challenge
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in the building design process. The advent of developing integrated LCSA models
and digitalization-LCSA nexus in the literature are examples of the new research
trends aiming at providing solutions to ease the LCSA implementation in building
and energy retrofitting design.

6.1 Integrated LCSA Models—Multi-dimensional LCSA
Studies and Application of Optimization Methods

The research works that have addressed more than one LCSA dimension have
constantly been increasing over the last few years. Several authors have included
LCA and LCC simultaneously in their analysis, such as Krarti and Dubey [151] eval-
uated the economic and environmental benefits of three levels of energy retrofitting
for different building types, including residential, commercial, and governmental
buildings. Ruparathna et al. [152] proposed a method to find the best energy retrofit
scenarios of buildings by considering energy consumption, life cycle costs, and
GHG emission. Some researchers proposed a conceptual framework for an inte-
grated LCSA model using a weighted-sum approach that includes all three LCSA
pillars [153, 154]. Implementing LCSA into energy building energy retrofitting is
a multi-objective task for which optimization methods and algorithms to find the
extremum values of multi-variable functions are used by several authors over the last
years to resolve the complexity of this task [1, 155].

Table 3 summarizes the recent research papers that addressed more than one
LCSA pillar and represents the indicators and optimization algorithms adopted in
each study.

Although several research papers have already been published addressing multi-
dimensional life cycle sustainability assessment of buildings, our review showed that
there are still challenges to be resolved. For instance, the lack of well-established
quantificationmethods tomeasure SLCA is still a barrier to implement LCSA.More-
over, the lack of consensus onweightingmethods for aggregatingLCSApillars is still
an open challenge in this field. These challenges are expected to be resolved through
future research on integration methods; however, it requires the development of LCI
databases, measurement development, and standardization of LCSA pillars.

6.2 BIM-Based LCSA—A Solution for Data Management
and Processing

Digitalization in the built environment and the application Building Information
Modeling (BIM) are growing rapidly in the construction industry and can help
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Table 3 Summary of integrated multidimensional LCSA studies

Author LCA LCC SLCA Indicators Optimization
algorithm

Chantrelle et al.
[156]

✓ ✓ ✓ GC, Energy, CO2,
Thermal comfort

Genetic Algorithm:
NSGA-II

Kusar et al. [118] ✗ ✓ ✓ NPV, Human live risk,
Structural safety

✗

Risholt et al. [157] ✓ ✓ ✓ GC, CO2,Thermal/ air
quality

✗

Gustafsson et al.
[158]

✓ ✓ ✗ GC, PEC, NRE, CO2 ✗

Holopainen et al.
[119]

✓ ✓ ✓ GC, GWP, Social
feasibility

✗

Pal et al. [159] ✓ ✓ ✗ Life cycle carbon
footprint and life cycle
cost

Genetic Algorithm:
NSGA-II

Ramin et al. [160] ✓ ✓ ✓ Energy, CO2, cost, water Multi-objective
optimization

Moschetti and
Brattebø [161]

✓ ✓ ✗ NPV, CED, GWP –

Ylmén et al. [162] ✓ ✓ ✗ Global warming
potential, life cycle costs

Genetic Algorithm

M. Gustafsson
et al. [163]

✓ ✓ ✗ NPV, GWP, Freshwater
EP, particulate matter
formation, NRPE

✗

Mauro et al. [164] ✗ ✓ ✓ LCC, Thermal comfort NSGA-II algorithm

Mostavi et al.
[117]

✓ ✓ ✓ LCE, LCC and Thermal
comfort index

HS Algorithm

Almeida and
Ferreira [165]

✓ ✓ ✗ GC, CO2, PE ✗

Almeida [166] ✓ ✓ ✗ GC, GWP, NRPE, TPE

Jokisalo et al.
[167]

✓ ✓ ✗ LCC and Energy
consumption

NSGA-II algorithm

Amirhosain and
Hamma [168]

✓ ✓ ✗ LCC, energy
consumption

NSGA-II algorithm,
ANN, ML

Hirvonen et al.
[169]

✓ ✓ ✗ LCC, CO2 emission NSGA-II algorithm

Conci et al. [170] ✓ ✓ ✗ NPV, GWP ✗

Amini Toosi and
Lavagna [154]

✓ ✓ ✓ NPV, several
environmental impacts,
Thermal comfort

Genetic Algorithm

(continued)
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Table 3 (continued)

Author LCA LCC SLCA Indicators Optimization
algorithm

Mateus et al.
[171]

✓ ✓ ✗ NPV, GWP, CED ✗

and support the integrated design process through improving information manage-
ment and cooperation between designers, producers, and end-users during the whole
buildings’ life cycle stages [172–175].

Buildings consist of various components; this brings a massive amount of infor-
mation and complexity to the design phase [176]. This is usually reported as the main
reason for performing LCSA at the later project phases, where the complexity and
uncertainties are reduced [177, 178]. BIM tools are capable of providing and present
both graphical, numerical, and descriptive information of buildings in different levels
of development (LOD) [179–182], which is an important requirement for applying
an LCA during the design phase. It is also reported that the use of LCA methods in
the building sector cannot be developed without developing the level of information
in this sector, on the other hand, it is stated that the use of BIM for public buildings
will be compulsory in the EU from October 2018 [182] and expected to be exten-
sively used in the near future [173]. All these facts indicate that BIM-based life cycle
sustainability assessment is a promising and indispensable solution to resolving data
integration and management challenges.

Several researchers have addressed the application of BIM in building life cycle
assessment. For instance, Malmqvist et al. [183] proposed BIM tools to overcome
data analysis problems during the early stages of the design process. They indicated
that in the early stages of design, there are many possible solutions and decisions to
take, while the precise data which are required for the LCA calculations are usually
available at the later design stages. To overcome this problem, speed up the LCA
calculation process, and increase the accuracy and completeness of the evaluations,
they suggested using BIM tools in the LCA-design process [183].

Many researchers have elaborated the necessity of BIM application in LCA and
have tried to use BIM tools in an LCA process [181, 184–187]. Although many
studies demonstrate the advantages and benefits of BIM-based life cycle assessment
and the integration of BIM and LCA [187–189], serious challenges such as software
integration or data requirements are still the main problems and barriers in this field
[182]. The existing BIM tools are not capable of comparing different alternatives,
also still suffer from data library limitations [74, 184, 186]. It is understandable that
in order tomake the BIM-LCA integration useful, the input data, assessment process,
result acquisition, and interpretation must be as easily achievable as soon as possible,
and the whole integrated assessment system must be user-friendly [182].

The integration between BIM tools and energy simulation software is not still
fully developed. Also, data exchange between BIM and LCA tools is another critical
issue. In some research works, automated produced bills of materials are imported
into the excel sheets for the LCA calculation. Ajayi et al. [187], Basbagill et al.
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[190], Peng [184], and Houlihan et al. [191], as well as many other researchers,
have used a manual process for data exchange between BIM tools and LCA tools or
LCA calculation sheet in Excel. However, some plugins on Revit Autodesk make it
possible to quantify environmental impacts in the BIM environment based on LCA
methods [183, 193]. There is still a gap in software integration between BIM, LCSA,
and energy simulation tools.

Another problem stated and confirmed by researchers is that BIM databases are
not developed enough for the LCA process. Because of this problem, in most cases,
the bill of material quantities and material properties are edited manually by the
end-users [182].

Although the BIM concept is not effective in integrating building performance
assessment into the sketch design phase due to the excessive required time for
modeling [192], if the task is about implementing the LCSA in designing energy
retrofit scenarios, BIM can significantly facilitate the assessment process, sincemany
of design parameters have already been defined and the uncertainty is lower in energy
retrofit design compared to the sketch and initial design phase.

To start an integrated BIM-LCSA design process, some questions must be
answered first:

1. What are the design and assessment goals? The answer will determine what
kinds of performance criteria must be assessed.

2. What is the assessment methodology, and what kind of assessment methodolo-
gies need to be integrated into BIM?

3. What kind of data and databases need to be integrated into BIM?
4. What is the required detail, accuracy, and completeness level for the performance

assessment?
5. How should the result be reported, and in which way should they be processed

and used?

As an example to answer one of these questions, Dupuis et al. [193] indicated
that to be able to perform an accurate LCA study and achieve sound results, every
data element should be at least at the LOD 350 detail level. Each BIM model at a
lower level than LOD 350 means that some essential data for LCA calculation will
be missed.

Although BIM-based LCSA is a promising solution to overcome the integra-
tion challenges of LCSA in building and energy retrofit design, there are still some
challenges in applying this framework, such as availability of life cycle inventory
(LCI) databases, software integration, and transferring building information between
modeling software and LCSA tools. Given the rapid progress in developing design-
assessment tools and LCI databases, it is expected that LCSA analyses would be
possible to be performed in the BIM environment without using intermediary tools
in the near future.
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7 Conclusion

This chapter discussed how sustainability assessment has been developed from a
single-dimension and environmental-oriented interpretation to a multidimensional
interdisciplinary research field by reviewing its roots and evolution path over the last
decades. Then we discussed how decision-making models have been integrated into
life cycle sustainability assessment of buildings to facilitate the informed decision-
making in the multi-objective design-assessment contexts such as building life cycle
assessment. Through literature review on the implementation of LCSA in building
energy retrofitting,we discussed the existing challenges of the life cycle sustainability
assessment.We concluded that different assumptions such as various functional units,
system boundaries, and lack of awide range of standard environmental impacts result
in complexities in the comparability of the reviewed research works. Moreover, the
lack of LCI databases is known as the main obstacle of LCA application. Also,
we showed that the level of documentation of some research works is lower than
the recommendation by relevant standards, which need to be considered in future
research works to enhance the readability and comparability of the results.

Regarding the LCC studies, we showed that Net Present Value is the most popular
economic indicator used by several researchers to evaluate the economic performance
of their retrofit design. Macroeconomic parameters such as discount rate and energy
price inflation rate adopted in each paper were discussed, and we showed that the
assumed values in the research papers are lower than the actual values in the economic
context of the study in most cases. However, we highlighted that several papers have
taken various values of discount rate and energy price inflation rate to evaluate the
impacts of these parameters on the final results.

In this review, the lack of integrating social life cycle assessment into evaluating
energy retrofit design is found as one of themain limitations. The SLCA is less devel-
oped thanLCAandLCCand requiresmoremethodological advancements, especially
in developing measurement methods, quantifiable indicators, and databases.

It is also found that the number of multidimensional LCSA studies in building and
energy retrofit design is increasing over the preceding years, and several researchers
have proposed integrated frameworks to implement LCSA into the building design.
In this context, the development of optimization algorithms and available tools are
promising solutions to facilitate the LCSA implementation in the multi-objective
building design process. Likewise, the BIM-based approach to integrate LCSA
into the building design process attracted the researcher’s attention for solving the
complexity of data management and processing in building life cycle sustainability
assessment. Nevertheless, it is essential to develop measurement methods, standard-
ization, and aggregationmethods of LCSA pillars alongside providingmore compre-
hensive databases and developing integrated software and tools by future research
works to facilitate the implementation of LCSA in the building and energy retrofit
design process.
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