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Preface

The multifactorial biological etiology of Alzheimer’s disease and autism spectrum
disorder leads to distinctive perception, thinking, and learning in affected
individuals, providing a more profound emphasis on the need for early diagnosis,
continuous assessment of patients, proper educational methods, and social
environment.

This book explores alternative solutions for autism spectrum disorder based on
the theory of brain plasticity, the relationship between the gut microbiota and the
central nervous system, along with genetic factors and toxic metal exposures, which
are responsible for the oxidative damage resulting in a decreased ability of patients to
use objects or response to auditory stimuli. It also identifies and provides the latest
research on memory loss, the first sign of cognitive impairment followed by behav-
ioral disturbances.

This book also provides the latest research towards efficient Alzheimer’s disease
management, including targeting the disease with symptomatic treatments such as
cholinesterase inhibitors, NMDA receptor antagonists, β-secretase and γ-secretase
inhibitors, α-secretase stimulators, tau inhibitors, immunotherapy, nutraceuticals,
and nano drugs. Alzheimer’s disease symptoms are mainly associated with a rigor-
ous neuronal decline and the appearance of two brain lesions, senile plaques, and
neurofibrillary tangles, mainly composed of Aβ and hyperphosphorylated tau pro-
tein, respectively.

This book aims to serve as a reference book for those teaching in Neuroscience,
Medicine, Biochemistry, Neuroinformatics, and Nanotechnology, and professionals
in occupational therapy, geriatric clinics, and rehabilitation.

Chapter 1 discuss the latest updates in dementia pathophysiology, sleep
pathologies in dementia, insomnia disorder, management of sleep disorders in
dementia, and treating sleep with breathing in dementia.

Chapter 2 explore the latest research insights on understanding autism spectrum
disorder and Alzheimer’s disease pathogenesis with the perspective of mitochondrial
dysregulation as the underlying phenomenon.

Chapter 3 overview the recent advances and trends regarding autism spectrum
disorder and its correlation with Alzheimer’s disease and the medications approved
for Alzheimer’s disease, which have also been observed to be effective in autism
spectrum disorder.
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Chapter 4 present the potential application of the most common natural products
to Alzheimer’s disease treatment due to minimizing side effects compared to isolated
chemical compounds.

Chapter 5 investigates the role of environmental toxicants, mercury, accelerating
symptoms, and natural compounds’ therapeutic potential in preventing Alzheimer’s
disease, focusing on the environmental toxicants as a risk factor in Alzheimer’s
disease pathogenesis.

Chapter 6 provide a systematic review of Alzheimer’s disease, viz. factors,
environmental toxicity, genetic predisposition, and ongoing treatment strategies
for developing novel drugs and the use of medicinal herbs for treating Alzheimer’s
disease.

Chapter 7 demonstrate deeper insights into the various polyphenols that play a
pivotal role in the therapeutics of Alzheimer’s disease due to their antioxidant
properties providing neuroprotection and their properties of easily crossing the
blood-brain barrier.

Chapter 8 investigate the spectrum of ChE inhibitors and NMDAR antagonists
along with other treatment options used in Alzheimer’s therapy.

Chapter 9 discuss the clinical features of psychotic illnesses, the relationship
between these disorders with genetic insight, and the common therapeutic targets for
these conditions.

Chapter 10 review the representation, visualization, and mathematical formula-
tion mostly of RNA secondary structures, which can be viewed as steps towards the
three-dimensional prediction modeling and their role in neurodegeneration.

Chapter 11 emphasize the current immune-therapeutics for treating Alzheimer’s
disease and autism spectrum disorder that have reached clinical trials and the
connecting mechanisms involved in the aggregated/toxic proteins, such as amy-
loid-β peptide (Aβ), Aβ precursor protein (APP), tau, α-synuclein, and
apolipoproteins.

Chapter 12 discuss the applications of nanoparticles in treating Alzheimer’s
disease, allowing the design of clever therapeutic carriers, which can simultaneously
cross the blood-brain barrier and carry payloads to the specific objectives targets.

Chapter 13 highlight the potential aspects of ABC transporters in Alzheimer’s
disease treatment, while inadequate Aβ, which are physiologically assisted by the
superfamily ABC transporters at the brain barrier, are essential in the progression of
the disease.

Chapter 14 underline the importance for children with autism spectrum disorder
to identify sleep profiles and to include various aspects of their symptom profiles in
sleep deficiencies, resulting in new therapeutic strategies.

Chapter 15 focus on the cognitive impairment, executive dysfunction, and reha-
bilitation aspects of children and adults with autism spectrum disorder.

Jeddah, Saudi Arabia Ghulam Md Ashraf
Sydney, Australia Athanasios Alexiou
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Behavioral Pathophysiology
and Psychological Implications for Sleep
Disorder in Dementia

1

Rokeya Akter, Deepak Kaushik, Kuldeep Kumar, and
Md. Habibur Rahman

Abstract

Dementia is considered rigorous neurodegenerative disarray, and it might be
categorized addicted to numerous subtypes by dissimilar pathogenic reasons.
Moreover, dementia is the typically second-hand expression for indicative and
arithmetical physical 5 version main neurodegenerative disorders. These
disorders characterized through functionally impairing refuse in individual or
additional cognitive domains, like concentration, administrative role, reminis-
cence, or verbal statement, as strong-minded by equally the past and purpose
deficits lying on bedside cognitive assessments or official neuropsychological
trying. However, the burden of dementia is rising internationally. In the nonat-
tendance of remedial action, defensive techniques to holdup or decrease succes-
sion of dementia are vital, relying on resting on the recognition of modifiable
factors. The belongings of dementia lying on sleep are healthy documented;
though, there is currently rising confirmation signifying bidirectional association
connecting sleep pathologies with dementia. Equally, middle-aged and adult
populations typically practice sleep-disordered breathing (SDB), deprived
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superiority sleep, and limits of sleep. It has been related to the amplified risk
of dementia with cognitive refuse in an integer of observational reports,
albeit disconnectedly. The mechanisms of sleep disorders might donate to
neurodegeneration are various and comprise impacts of disjointed sleep on
the permission of neurotoxins within SDB via the preservative property of
irregular hypoxia beta-amyloid creation, hypoxic cell loss, neuroinflammation
with injuring to intellectual vasculature. Neuroimaging modalities present vital
opportunities to appreciate the connection between snooze pathologies with
dementia risk in vivo, particularly in the severe preclinical stage of AD. In
this chapter, we highlighted in dementia pathophysiology, the confirmation
connecting sleep pathologies through dementia, insomnia disorder, management
of sleep disorders in dementia, Treating sleep with breathing in dementia, and
draw the improvement informative this possible pathophysiological connection to
have eventuated the request of neuroimaging.

Keywords

Dementia · Behavioral pathophysiology · Psychological implications · Insomnia
disorder · Cognitive behavioral · Poor sleep

1.1 Introduction

Behavioral and psychological symptoms of dementia (BPSD) are a heterogeneous
collection of non-cognitive symptoms and behavior in people who have dementias.
Evidence recommended sleep might manipulate heart biomarkers of Alzheimer’s
disease (AD) (Akter et al. 2021; Rahman et al. 2021). Complexity in declining sleep
(Shokeir 2014), poor sleep eminence (Lucey et al. 2018), sleep beating (Lucey et al.
2017), excessive daytime drowsiness (Carvalho et al. 2018), and sleep muddled
inhalation (Shim et al. 2017) was recommended to raise intellectual Aβ evidence in
non-demented aged. Dementia is a top reason for disability and loss worldwide
(Livingston et al. 2017). It recurrently unfavorably affects together prejudiced and
goal index of sleep (Brzecka et al. 2018), counting sleep-disordered inhalation
(Emamian et al. 2016). There is a mounting confirmation to sleep pathologies
frequently lead to dementia analysis (Wennberg et al. 2017), suggesting that certain
sleep changes might not merely be an indicator of enlarged risk but might straight
donate to dementia pathogenesis, particularly dementia attributable to Alzheimer’s
disease. Apnea (Arya et al. 2021; Díaz et al. 2017) or disruptive sleep apnea
condition (Hooghiemstra et al. 2016) was connected to superior levels of
AD-associated neuronal damage biomarkers. Sleep eminence might even adapt to
the defensive property of additional ecological factors like body work out (Brown
et al. 2015) on brain Aβ statement. There are several mechanisms which use sleep
abnormalities. The detection of such pathways is challenging, complemented more
by the heterogeneity of sleep alters and calculations, the various pathological reasons
as healthy as the manifold mediator and the confounding reasons for dementia which
needed the accountability. Quality of sleep abnormalities reproduce preclinical

2 R. Akter et al.



pathological alters in areas of the intelligence serious for an excellent sleep. Sleep
troubles are widespread issues for adults (Dekker et al. 2019). Compromised sleep is
connected with an inferior in general and sleep-related fitness position, which might
guide to unhelpful individual and communal penalty (Del Campo et al. 2011).
Individuals with sleep troubles account for superior levels of nervousness, unhappy
mood, physical hurt and uneasiness, and cognitive deficiencies (Kyle et al. 2010).
Insomnia might also be connected by long-term fitness penalty, counting augmented
morbidity, respiratory illness, rheumatic illness, cardiovascular sickness, cerebro-
vascular circumstances, and diabetes. Besides, potential legion studies have
originated that different sleep situations or parameters, like insomnia (Benedict
et al. 2015), disruptive sleep apnea (Lutsey et al. 2018), sleep linked behaviors
disarray (Yaffe et al. 2011), and altered sleep period (Westwood et al. 2017), might
appreciably raise the risk of cognitive disorders between non-demented adults. In the
past 2 existence, large amounts of legion studies have sprung up to discover the
longitudinal incurring of sleep-connected exposures on events of cognitive disarray,
which necessitates a resourceful methodical review. Generally, dementia is a scien-
tific condition recognized through the expansion of cognitive mutilation of adequate
harshness to crash a person’s everyday function. It is also an analysis made follow-
ing keeping out of reversible reasons. Nearly all dementias are progressive
circumstances as bereavement is predictable and intended for which rejection
healing action is obtainable (Livingston et al. 2017). Mild cognitive impairment
(MCI) is a more syndrome analysis; within cognitive utility that is underneath that
predictable for a period but is inadequate to collision everyday function. Among
39% of people through MCI resolve development to dementia. The commonness of
dementia is powerfully connected to grow old, with about 1 in 10 peoples aged more
than 65 years and 3 within 10 elderly 85 years plus over exaggerated (Ward and Pase
2019). Even though the convinced category of dementia happens in the middle time,
90% of belongings happen in persons elderly 65 existence and more than, income
again? is termed late start dementia (Elahi and Miller 2017; Rahman et al. 2020a).
Through populations mature, the quantity of dementia belongings internationally,
predictable to be 47 million within 2015, is predicted to come near nearly 150 million
through 2050 (Livingston et al. 2017). In this chapter, we highlighted in dementia
pathophysiology, the confirmation connecting sleep pathologies through dementia,
and sketch the advances informative this possible pathophysiological connection
that might have eventuated as of the submission of neuroimaging.

1.2 Imaging Relation of Dementia with Alzheimer’s Disease

The most common neurodegenerative disorders include dementia. Dementia. It
increases memory loss, deterioration of thoughts, and dying ability to do everyday
business. The primary common fundamental pathologies are: AD, vascular dementia
(VaD), and frontal temporal dementia (Forette and Boller 1991; Kalaria et al. 2008;
Rahman et al. 2021). Owing to their similarities in pathophysiology and other risk
factors, it is difficult to differentiate AD from VaD (Erkinjuntti 2001; Rahman et al.
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2020a; Roman 2001). Every pathology at different levels, ensuing in various patients
by clean cerebrovascular sickness and clean AD instead of the range’s limits
(Erkinjuntti 2001; Roman 2001). Awaiting 2018, the worldwide figure of populace
livelihood by dementia has been anticipated by about 50 million (Patterson et al.
2018), and the figure will triple through 2050. The aging of this resident has
important implications for the emergence of dementia, subsequent impairment
enlargement and dependency (Sousa et al. 2009, 2010). The information and quan-
tity of aged people are quickly increasing in mounting countries like India, China,
and America (Espenshade et al. 2003), and dementia completed the major giving to
disability in these events (Sousa et al. 2009). It is well-known massive lumber for
families, health-mind techniques, and the entire civilization to mind and props up
patients through dementia (Etters et al. 2008). Internationally, the price of the disease
is around a trillion US dollars per time, and the expenditure is expected twice to
2030. Unplanned sampling in the case of door-to-door populations is an alternative,
reliable technology in these studies as it includes patients who are unable to seek
fitness treatment (Pringsheim et al. 2014). Although, the diversification of showing
tackle has to be documented as the main problem in the opinion of the factual
occurrence (Mayston et al. 2014) and the difference in verbal communication and
civilization, as healthy as literacy levels, create it an enormous fence to conquer.
Furthermore, the extended latency epoch flanked by the start of neurodegenerative
processes withal analysis of dementia happening poses an additional confront
informative to what degree sleep alters indeed predate, and consequently might
add to, neurodegenerative processes, as opposed to what degree slumber
abnormalities reproduce preclinical pathological alters in areas of the intelligence
dangerous for high-quality sleep.

1.3 Insomnia Disorder in Dementia

Sleep troubles are common concerns for the elderly (Young n.d.). Compromised
sleep is associated with a minor in general and sleep-related fitness standing, leading
to unhelpful individual and community consequences. Individuals through sleep
problems state superior levels of nervousness, miserable humor, physical soreness
and uneasiness, and cognitive deficiency. Long-term health effects such as increas-
ing morbidity, lung disease, rheumatism, cardiovascular disease, brain conditions,
and diabetes can also include insomnia.

1.4 Significant Role of Insomnia with Dementia

Although, insomnia comprises a grievance of reduced sleep, through associated
significant daytime belongings, happening at the slightest 3 nights for each week
for at least 3 months (Beck 1979). Universal, epidemiologic studies account for
constant scientific insomnia disarray about 10–12% (Lichstein et al. 2013; More
et al. 2013; Ohayon 2002). In one report, 74% of persons with insomnia sustained to
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have sleeplessness a year afterward, and about 46% reported sleeplessness persisting
in favor of more than 3 years (Morin et al. 2009a). Conventionally measured as
‘secondary,’ subsumed as symptoms of extra-scientific diagnoses inside mental
well-being mind, the lately revised analytic and Statistical Manual of Mental
Disorders, version 5 outlines the ‘require for sovereign scientific notice of a slumber
disorder’ (American Psychiatric Association 2013). This is maintained by
investigating representative not only to rates of cerebral and bodily health
co-morbidity are elevated, but to pre-existing constant insomnia is a sovereign
danger factor for the growth of gloominess (Baglioni et al. 2011), cardiovascular
illness (Vgontzas et al. 2009a), and also category 2 diabetes (Vgontzas et al.
2009a, b). From the perspective of public well-being and happiness, sleep appears
to exist an imperative subject that has been, up until now, renowned (Buysse 2014;
Luyster et al. 2012).

1.5 Role of Pathophysiology in Dementia

There are numerous pathological reasons behind onset dementia. Correct classifica-
tion needs neuropathological affirmation, although, in perform, judgment is based on
syndromal observation. Around 2/3 of delayed dementia is due to AD (Rahman et al.
2020b; Uddin et al. 2020). This is pathologically well known through the develop-
ment of cortically based extracellular beta-amyloid signs and neurofibrillary intra-
cellular enclosures (Elahi and Miller 2017). The “amyloid cascade” principle of AD
generally enhances the growth of beta-amyloid proteins. At the same time, the
structure of cell membrane of small beta-amyloid peptide is inequitable. This is a
higher protein such as amyloid precursor protein. Beta-amyloid cleavage with
metabolism is damaged by a list of reasons that count heredity, partly unpredictable,
although hypoxia and snooze may be significant. The excess beta-amyloid amassing
can lead to an arrangement of Oligomers following these fibrils, following mats and
finally extracellular plaques, which all serve to disrupt the position and relationship
between neural cells. AD is next followed by expanding tau neurofibrillary tangles to
spread during the intelligence happening intracellular injure, synaptic disability with
neuronal cell loss, with contained hasty provocative processes accelerating injure.
Jointly through structural neuroimaging events of neurodegeneration like as atrophy
biomarkers strengthen the new National Institute of Aging and the Alzheimer’s
Association research structure that divides the attendance and phase of AD
in vivo, recognizing to AD might be there in a preclinical phase biomarkers like as
tau protein (Akter et al. 2021; Knopman et al. 2018). VaD is a different foremost
donor behind beginning dementia. This might associate with big vessel stroke,
which might be clinically “silent” brain planned lacunar infarction with little cerebral
vessels’ primary disease that might be calculated by the structural brain (Bos et al.
2018). Like AD, the VaD might also have an extended preclinical stage. Like
dispersion tensor imaging (DTI), the latest structural imaging methods might allow
the untimely test of the brain’s pallid substance that might be distorted untimely in
together vascular with AD pathologies (Bos et al. 2018). A combination of VaD with
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AD pathologies is known and would seem to be phenotypically preservative
(Arvanitakis et al. 2016).

1.6 Poor Sleep and Quality of Life Functioning

Characteristically, insomnia is connected with enlarged exhaustion, impaired labor
output, condensed excellence of life with relationship approval, as healthy as
augmented ill-health (Espie et al. 2012; Kyle et al. 2010; Roth and Ancoli-Israel
1999). Despite such confirmation of poor performance life form credited to deprived
sleep and a necessary analytic principle for sleeplessness, there has been a moder-
ately small investigation on life excellence. New astonishing known that the appar-
ent collision on individual performance serves because of a significant driver of
grievance and help-seeking performance rather than just apparent sleep defeat
(Morin et al. 2006; Stepanski et al. 1989). In one big epidemiological report, four
of the five mainly cited reasons for looking for a slumber discussion through a health
expert were the morning penalty of exhaustion, mental suffering, physical uneasi-
ness, and abridged work efficiency. Clinician information of enduring consultations,
plus cross-sectional with prospective survey studies (Buysse et al. 2007; Levitt et al.
2004) additional display that persons through insomnia protest deficits in disposi-
tion, and cognitive power, joined through significant levels of nervousness, exhaus-
tion, and bodily pain/uneasiness.

1.7 Insomnia Functioning with Cognitive Behavioral Therapy
in Dementia

Cognitive-behavioral therapy (CBT) considered as the management of primary
option for an importunate inadequate snooze (Espie et al. 2016; National Institutes
of Health 2005), is a mental action intended to fracture the decoration of maladaptive
thoughts and behavior to provide to uphold insomnia. CBT indicates various
methods, counting a behavioral component joint through a cognitive with an
instructive part. Meta-analyses point to CBT has reasonable to big and tough
belongings on slumber excellence, sleep competence, sleep start latency plus
wake-up time following sleep beginning (Mitchell et al. 2012; Trauer et al. 2015;
Wu et al. 2015). Furthermore, about 60% of persons who be given CBT react to the
action, and 39% attain reduction (Morin et al. 2009b). Rationally, effective action
must lessen like impairments. Based on the confirmation that impaired sleep might
be causally connected to condensed excellence of life domains, improving sleep
should improve performance. There are a few beginning confirmations from minor
analyses that CBT might yield widespread profits (Espie et al. 2001, 2007, 2008;
Morin et al. 2009a), and still, a few primary data in little samples with CBT for
sleeplessness might decrease depressive or nervousness symptoms (Manber et al.
2008; Pillai et al. 2015), but a sufficiently motorized, ultimate trial investigative
useful health rank and well-being is extended unpaid.
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1.8 The Role of Sleep in Dementia

It has elevated gratitude for the role of potentially adaptable dementia agents, such as
high blood pressure, fatness, diabetes, sadness with low cognostic levels, and
physical activity. These risk factors can be predicted jointly to contribute to over
one-third of all traditional AD-related causes and to support the basis for many
studies assessing multi-programming interventions in individuals. This background
may be an unusually contemporary role of sleep pathologies in dementia. A number
of resident studies with SDB propose (Ward and Pase 2019), low sleep excellence,
extremely short or extended sleep before alters in slumber building (Pase et al. 2017)
connect with higher risk dementia, counting dementia owing to equally AD with
VaD. Although, these relations have not been time after time exposed. Besides, sleep
changes might impact dementia risk through other pertinent mediators or connected
factors, like obesity and diabetes. It is too hard to decide to what degree sleep alters
are resultant as of preclinical neurodegenerative alters.

To be grateful for how sleep alters impact dementia pathogenesis, it is careful to
appraise the contact dementia and MCI containing lying on sleep. People live
through dementia are merely too well-known by alters in sleep to happen in
dementia, like complexity through sleep start, distorted sleep/wake upcycles, dis-
jointed sleep at night-time, extreme daylight sleepiness, and the augmented periods
of daylight sleep (Musiek et al. 2018). Polysomnography reports explain improved
sleep latency, abridged competence, augmented quantity of occasion exhausted in
the lighter sleep events, and condensed time exhausted in sluggish-wave with fast
eye group sleep in dementia. Comparable alters are also established in MCI, like in
the society-based study. The fundamental sleep mechanisms that affect dementia
may tell of a breach of neurodegenerative alterations by circadian beat of the brain
and those concerned in the reserve of cortical stimulation, in particular circadian
beats, changing sleep–wake-up cycles and a multiplicity of night-time arousals. Pet
experiments showed that a stubborn sleep/wake-up cycle connects the Beta-amyloid
accumulation (Roh et al. 2012). Tau protein collection takes place early on the
hippocampus, a region essential to the development of non-RM slumber spindles
with slow-gesticulation sleep, in the medial chronological lobe (Fjell et al. 2017).
Cortical beta-amyloid accretion into the prefrontal cortex of medial media seems to
harm the development of lenient oscillation of NREM (Mander et al. 2015). MCI
dementia is also strongly linked to SDB. A meta-study of SDB in dementia recorded
is approximately five times in stable older adults. MCI is related to the cognitive
ordinary cognitive normal (CN), with a far superior apnea–hyperpnea directory in an
elderly population Example of HypnoLaus (Haba-Rubio et al. 2017). This might be
unbalanced ventilator manage ensuing beginning disjointed sleep, alter in the neu-
romuscular executive of the higher airway owing to degenerative alter the post
middle gyrus (Joo et al. 2013) as like as upper airway power flaw, due to
sarcopenia/bodily infirmity to regularly coexists with dementia. The pathological
match-up has to establish to in AD, and tau protein accumulates untimely in the
locus coeruleus, a section of the intelligence significant in inhalation directive and
attentiveness (Fig. 1.1).

1 Behavioral Pathophysiology and Psychological Implications for Sleep. . . 7
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1.9 Sleep Disorders Mechanism in Dementia Pathogenesis

Sleep play together healing and defensive actions in the brain and inequity might
reasonably donate to neurodegeneration (Fig. 1.1). Several fundamental mechanisms
are partially understood. For healing actions, sleep seems vital for the record of
genes necessary for neural compartment casing and myelin honesty (Elvsåshagen
et al. 2015), particularly in the pallid substance (Sexton et al. 2017; Takeuchi et al.
2018). Specific regions and functions of the intelligence in exacting might be more
reliant on slumber for neural physical condition, such as preservation and reinstate-
ment of hippocampus synaptic membranes (Van Someren et al. 2019). Sleep too
appears vital for the intonation of synaptic relations, a procedure dangerous for
knowledge and reminiscence (De Vivo et al. 2017). Crossways the era range, reports
have exposed the significance of sleep on useful brain fitness events, particularly for
the cognitive domains of reminiscence with concentration, as healthy as disposition
with behavior (Scullin 2017). As a result, disturbed sleep can have reversible effects
on cognitive utility, exacerbating dementia-related cognitive deficits, or contribute to
minor neural cell loss and impairment that may be preservative to other neurodegen-
erative processes, lowering the threshold of pathological change required for demen-
tia examination. Newly, pseudo-lymphatic coordination was discovered to give
details on how the brain recover potentially neurotoxic squander (Iliff et al. 2012).
This glymphatic structure has been exposed to be optimized throughout sleep (Xie
et al. 2013). There is a preservative property in SDB. In addition to troublesome
sleep, the periodic reductions and seizures through respiration help SDB guide
irregular drops in oxygenation stages. Hypoxia itself might potentiate neural com-
partment loss with dysfunction, particularly inside the hippocampus, (Yuan et al.
2015), and has also been linked in mammal models through improved creation and
condensed permission of beta-amyloid (“Leaf-nosed bat,” 2009).

1.9.1 Consideration with the Management of Sleep Disorders
in Dementia

Diagnosing sleep troubles in the populace through dementia might be complicated
due to impaired reminiscence and short an imminent (Alzheimer’s Association 2016;
Roth 2012). For that reason, it is significant to meet together patients with caregivers
(Urrestarazu and Iriarte 2016). Throughout these interviews, divan with wake-up
times and bedtime routines must be reviewed. It thought to be renowned by sleep
troubles in the populace through dementia are linked with lumber in caregivers of
people through dementia, in exacting spousal caregivers (Rongve et al. 2010).
Indeed, sleep troubles in dementia patients connecting to caregiver lumber have
been established to be the main reason for the insertion populace through dementia
in treatment homes (Pollak and Perlick 1991), identifying by treating slumber
troubles in dementia might be vital to the happiness of patients and caregivers. We
have encapsulated our suggestions in (Table 1.1) and meant for new particulars, see a
new widespread review through Ooms and Ju (2016).

1 Behavioral Pathophysiology and Psychological Implications for Sleep. . . 9



1.9.2 Daytime Sleepiness Treatment

Comparable to management for insomnia, melatonin has too exposed to get better
daytime drowsiness and raise daytime motion (Brusco et al. 2000; Cohen-Mansfield
et al. 2000; Dowling et al. 2008; Mishima et al. 2000). Daytime sleepiness might
also be alleviated by altering the medication category with dosing (Urrestarazu and
Iriarte 2016). Daytime sleepiness is general between people through dementia and is
a particular predicament in PD. A new meta-analysis established that bodily activity
might improve morning sleepiness, as healthy as numerous additional symptoms
considered to be connected through sleep interruption in PD (Cusso et al. 2016).
Confirmation from reports investigating pharmacological treatments’ contact
suggests with modafinil, and smaller amounts of caffeine with atomoxetine might
improve too much daytime drowsiness in PD (Rodrigues et al. 2016). Overall,
daytime drowsiness and night-time sleep troubles are regularly connected, with
one problem exacerbating the new, so techniques aimed at referring problems
might help lessen the new as glowing.

1.9.3 Treating Sleep with Breathing in Dementia

Continuous supportive airway stress therapy is often used to treat sleep-disordered
breathing. Dementia patients with SDB seem to tolerate it at the same pace as
non-demented SBD patients (Harmell et al. 2016) though, people with dementia
through different neuropsychiatric syndromes might not accept continuous positive
airway stress as well (AnChiu et al. 2008; Cooke et al. 2009). Two reports recom-
mend to along with people among AD and SDB, and continuous positive airway
stress use might help get better cognition, humor, and drowsiness (Ancoli-Israel

Table 1.1 Suggested treatments for dementia patients through sleep troubles

Sleep
problem

Recommended pharmaceutical
approach

Recommended non-pharmaceutical
approach

Insomnia Low dose (25–50 mg) trazodone;
mirtazapine; melatonin

Bright light treatment; tumbling or
withdraw caffeine with alcohol; dark and
calm bedroom; not eating near bedtime;
evade daytime sleeping; daytime bodily
action

SDB Think discontinuation of medications
to might get worse SDB (e.g.,
benzodiazepines)

CPAP

Daytime
sleepiness

Melatonin; altering present
medication category with dosing

Daytime bodily movement

RBD Melatonin; clonazepam Eliminate potentially harmful substance
from the bedroom; make barriers; evade
antidepressants like caffeine and chocolate

Abbreviations: CPAP continuous positive airway pressure, PD Parkinson’s disease, RBD rapid eye
movement sleep behavior disorder, SDB sleep-disordered breathing
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et al. 2008; Cooke et al. 2009). Continuous positive airway pressure has also been
shown to lead to increases in hippocampal with cortical quantity, as well as blood
oxygenation level dependent signals in the prefrontal cortex through subcortical
areas (Archbold et al. 2009; Ayalon et al. 2006; Thomas et al. 2005; Zhang et al.
2011) which might potentially advance cognition.

1.9.4 Neuroimaging Studies in Dementia

Mainly significant proceed inconsiderate the relation among sleep disorders within
scrupulous AD has been recognized through amyloid PET, known beta-amyloid
lumber is prognostic of event dementia are shown in Table 1.2 (Elahi and Miller
2017). A study of 20 healthy men and women, with an average age of 40, who
recorded their normal sleep cycle and then underwent sleep deficiency testing, is one
of the most notable findings. The two were connected by baseline beta-amyloid
timber, and the latter showed an improvement in all night beta-amyloid levels in the
thalamus and hippocampus (Shokri-Kojori et al. 2018). Unhelpful health results
connected to little sleep were too reported in an elder assembly of 70 men with
women by a middle-age of about 76. Identity reported slight sleep was connected
cross-sectionally through elevated beta-amyloid in the presumes with largely cortical
freight, (Spira et al. 2013). However, no similar connections were found in three
additional similarly sized irritated sectional studies analyzing sleep time in cohorts
by a mean period of 62–76 life (Branger et al. 2016; Brown et al. 2016; Sprecher
et al. 2015). In multiple studies elder populations, self-studied sleep dominance has
to be originated to be linked cross-sectionally across global and local cortical beta-
amyloid (Spira et al. 2013; Sprecher et al. 2015) particularly in connection by
increased sleep latency (Branger et al. 2016) as like as linked by sleep construction
alter as captured via PSG17 with actigraphy.

1.10 Conclusion with the Future Direction

The connection between sleep and dementia is complex and most likely bidirec-
tional. Snoozes, as well as dementia, are associated with a number of customs. Sleep
disturbances can be caused by a brain pathology called fundamental dementia. Via
co-occurring sleep turbulence, sleep commotion may contribute to the improvement
of dementia, and dementia may lead to a more rapid decline. The majority of the
studies that have been related cross-sectional and warned on sleep as a risk factor for
Alzheimer’s disease (Cooke et al. 2006; Cricco et al. 2001; Lobo et al. 2008; Osorio
et al. 2011; Talarico et al. 2013). Identifying by treating troubled sleep in people
through dementia might improve multiple results, counting dementia route and
caregiver lumber (Etters et al. 2008; Pollak and Perlick 1991). Sleep is an adaptable
action. It is also a vital possible aim for involvement in cognitive refusal with
dementia. Sleep as early on as in the prime of life might raise the hazard of dementia;
this might have important implications for AD avoidance. Sleep, like other risk

1 Behavioral Pathophysiology and Psychological Implications for Sleep. . . 11
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factors for Alzheimer’s disease, will need to be challenged in midlife. However,
more investigation in this field is required. Affecting ahead, sleep investigation can
decide trajectories of dementia, get a better patient prediction, and decrease the threat
of deprived scientific consequences, as well as dementia oneself.
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Mitochondrial Dysfunction: A Key Player
in the Pathogenesis of Autism Spectrum
Disorders and Alzheimer’s Disease

2

Aisha Farhana and Yusuf Saleem Khan

Abstract

Increasing evidence has pinpointed that loss of mitochondrial function or regula-
tion is a critical player toward the pathogenesis of various metabolic,
neurodevelopmental, and neurodegenerative disorders, including autism spec-
trum disorders (ASD) and Alzheimer’s disease (AD). The lacuna in understand-
ing these diseases’ underlying biology is that pathology develops through the
interaction of various biological pathways rather than a defined mechanism.
Mitochondria are dynamic organelles that perform diverse functions, including
cellular energy production, calcium homeostasis, apoptosis, and innate immune
regulation. Hence, mitochondria integrate various cellular pathways, and any
exogenous or endogenous perturbation may result in their dysfunction. Herein,
we explore the latest research insights that have evolved our understanding of
ASD and AD pathogenesis with the perspective of mitochondrial dysregulation
as the underlying phenomenon. We discuss the pathological relevance of cause
and effect of mitochondrial dysregulation, such as increased reactive oxygen
species (ROS) production, mitochondrial DNA damage, aberrant immune
responses, impaired energy metabolism, and altered gut microbiome in the
etiology of ASD and AD. Being at the center stage, mitochondria have emerged
as a novel target with considerable therapeutic potential, which can be exploited
to delay, manage, or treat ASD, AD, and other neurological disorders. We also
discuss the novel therapeutic options such as H2S therapy, dynamic microbiome
modulation, ketogenic diet, and cofactor therapy that are emerging as a plausible

A. Farhana (*)
Department of Clinical Laboratory Sciences, College of Applied Medical Science, Jouf University,
Sakaka, Saudi Arabia

Y. S. Khan
Basic Sciences Department, College of Medicine, Vision (Al Farabi) Colleges, Riyadh, Saudi
Arabia

# Springer Nature Singapore Pte Ltd. 2021
G. Md Ashraf, A. Alexiou (eds.), Autism Spectrum Disorder and Alzheimer's
Disease, https://doi.org/10.1007/978-981-16-4558-7_2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4558-7_2&domain=pdf
https://doi.org/10.1007/978-981-16-4558-7_2#DOI


treatment regimen and have shown favorable outcomes in initial studies. Hence,
this article summarizes the current understanding of the functional and structural
disturbances in the mitochondria that lead to ASD and AD and could be
harnessed for better diagnostic and prognostic outcomes.

Keywords

Mitochondrial dysfunction · Autism spectrum disorders · Alzheimer’s disease ·
Oxidative stress · Microbiome · Bioenergetics · Immune dysfunction

2.1 Introduction

Mitochondria are a double membrane organelle of approximately 0.75–3 μm2 size
present in all cells of the eukaryotes and almost all prokaryotes. They act as the
powerhouse of cells by producing energy in the form of adenosine triphosphate
(ATP), which is required for cellular functions. Other functions of mitochondria
include cellular differentiation, signaling, cell growth, death, and cell-cycle regula-
tion. Mitochondrial structural and functional abnormalities have been demonstrated
as a common shared mechanism across multiple neurodegenerative disorders that
include diseases/syndromes such as cardiovascular disease; diabetes; schizophrenia;
myopathy; stroke; endocrinopathy; bipolar disorder; chronic fatigue syndrome;
Pearson syndrome; dementia; Kearns-Sayre syndrome; Parkinson’s disease; Leber’s
hereditary optic neuropathy; Barth syndrome; retinitis pigmentosa; Alzheimer’s;
Friedreich’s ataxia; mitochondrial encephalopathy, lactic acidosis, and stroke
(MELAS) syndrome; Wilson’s disease; progressive external ophthalmoplegia; myo-
clonic epilepsy with ragged red fibers (MERRF); hereditary spastic paraplegia; etc.
But most often, it presents itself in the form of neurological diseases such as ASD
and AD. Present epidemiological data confirms that almost 5–80% of children
affected by ASD show mitochondrial dysfunction compared to only 0.1% among
the general population (Rose et al. 2012; Bayer 2015). Pathophysiological studies
have shown a distinct connection between mitochondria and AD; however, an exact
epidemiological data is not available thus far.

ASD represents a group of confounding diseases that include autism, Asperger’s
syndrome, and pervasive developmental disorders. ASD is marked by developmen-
tal and neurological syndromes that lead to impaired social communication abilities
and repetitive behavior. ASD symptoms start to manifest during early childhood and
last throughout the lifetime. On the other hand, AD is a progressive degradation of
brain cells, usually in the elderly, leading to dementia, which affects a person’s social
abilities. Though both disorders are at the two ends of the age spectrum, they have
common clinical manifestations such as language impairment, a problem in
executing functions, dementia, and motor disability (Khan et al. 2016). Understand-
ing ASD and AD from a biological perspective becomes complex due to its diagno-
sis solely through behavioral criteria directed by the Diagnostic and Statistical
Manual of Mental Disorders (DSM), which keeps being revised based on
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identifying more contemporary patients’ patterns. The identification of ASD and AD
through behavioral benchmarks is partly due to an insufficient understanding of the
biological processes and the non-availability of quantitative biomarkers for these
diseases. The cavities in understanding these diseases’ biology is that the pathology
develops through a complex interaction of several biological pathways rather than a
defined mechanism. It involves biological components as diverse as bioenergetics,
epigenetics, and genetics, besides having environmental effectors.

The pathologies observed in ASD and AD, such as toxic accumulation of protein
aggregates in AD, and increased white matter neurons together with a substantial
decrease in the GABAergic cerebellar Purkinje cells in ASD, can be due to mutation,
rearrangements, or point mutations in mitochondrial DNA (mtDNA). Recent
researches indicate that diseases such as Parkinson’s disease, AD, Rett syndrome,
and ASD plausibly share a common mechanism of mitochondrial dysfunction
leading to disease progression (Frye 2020). Over the last few decades, despite a
compelling problem of underdiagnosis, there has been a surge in the prevalence of
ASD worldwide (Chiarotti and Venerosi 2020; Maenner et al. 2020). Many studies
indicate that mitochondrial dysfunction may have an essential role in the develop-
ment of ASD. It is also reinforced by the evidence that several comorbidities that
develop due to mitochondrial defect such as epilepsy, sleep apnea, gastrointestinal,
and immune dysfunction share an association with ASD. Mitochondria are sensitive
organelles susceptible to endogenous alterations such as iatrogenic medications,
toxicants, immune activation, and metabolic disruption besides the exogenous
environment. The general effectors for mitochondrial dysfunction that facilitate
progress toward AD and ASD are illustrated in Fig. 2.1. Many of these stressors
have also been demonstrated in the etiology of ASD. Hence, there seems a clear
link between these two disorders, which points to a possible shared etiological
mechanism.

Furthermore, AD also has multiple etiological factors, and aging is considered a
significant risk factor. Most studies on AD have focused on τ (tau) and amyloid-beta
(amyloid-β) pathology as underlying factors. Some studies have demonstrated that τ
pathology contributes to mitochondrial dysfunction leading to neurodegeneration.
Amyloid-β protein has been shown to accumulate in the mitochondrial matrix
hampering its function, such as failure of energy metabolism, generation of reactive
oxygen species (ROS), and permeability transition pore (PTP) formation. Hence, it
could be conjectured that brain metabolism in AD may be deranged due to altered

Fig. 2.1 The effectors of mitochondrial dysfunction associated with ASD and AD
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mitochondrial functionality. This hypothesis had opened up new frontiers to explore
alterations in mitochondrial bioenergetics as a possible cause of ASD, AD, and
associated pathologies. Recent research studies have provided insight into novel
metabolic targets to treat or prevent ASD and AD pathogenesis.

In this article, we discuss the latest findings that support that mitochondrial
dysfunction and functional and structural abnormalities in mtDNA are the central
mechanisms toward the pathogenesis of ASD and AD. We will also analyze the
association of ASD and AD with respective co-occurring medical conditions in the
light of mitochondrial dysfunction at the center stage. The review will also focus on
understanding the advancement in the therapeutic approaches used for remodeling
and enhancing mitochondrial functions, leading toward novel treatment
methodologies for treating or managing ASD and AD.

2.2 Increased Oxidative Stress Linked to Mitochondrial
Dysfunction in ASD and AD

The regulation of cellular survival, orchestration of biosynthetic metabolic
pathways, and ROS signaling are the canonical functions of mitochondria. These
organelles are integral to supporting the energy requirement of our body’s metabolic
processes during the resting, active, and stressed state. They populate the cells of the
body and harbor their mtDNA (mitochondrial DNA). Besides catabolizing glucose
and oxidizing fatty acids to generate ATP, mitochondria play a distinct role in
forming reactive oxygen species (ROS), calcium signaling and homeostasis, and
the regulation of programmed cell death (Malek et al. 2018).

The accumulation of τ-protein and amyloid-β plaques is a pathological hallmark
of AD that consequently progresses toward developing the disease. On the other
hand, behavioral challenges mark the identification of ASD. Studies spanning the
past few decades have determined that many factors, including biological, environ-
mental, lifestyle, epigenetics, and genetics, influence the development of the two
diseases. However, the mechanism of pathogenesis remains elusive. Recent studies
have furnished distinctive insights that underscore mitochondrial dysfunction as an
early event in ASD and AD pathogenesis (Rossignol and Frye 2012; Frye 2020).
Oxidative stress plays a pivotal role in linking mitochondrial dysfunction and
neurological disorders. Imbalances in the cellular milieu rendered through the
presence of pro-oxidant metabolites, activated immune cells, toxicants, etc. subse-
quently lead to mitochondrial dysfunction.

The notion that mitochondrial abnormalities may be the cause of ASD came up in
1985, with the observation of lactic acidosis in children with ASD. Presently, ASD is
quite common among children and is noted to be affected by different triggering
etiologies, one of them being physiological abnormalities of mitochondrial dysfunc-
tion widely ranging from 5 to 80% (Rose et al. 2012). Similarly, metabolic changes
and increased ROS production in AD brains underscore mitochondrial abnormalities
at their nexus. With the advent of more recent techniques, considerable evidence has
now accumulated that pinpoints oxidative stress, and calcium homeostasis
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alterations precede the formation of pathological identifiers in AD, such as plaques
and tangles in the brain (Von Bernhardi and Eugenín 2012).

The mitochondrial electron transport chain (ETC) is the underlying source of
ROS production. ROS serves as a signaling molecule under normal concentrations,
modulating numerous physiological reactions, including the ETC, ion transport, and
neurotransmitter receptors. If ROS production exceeds the physiological system’s
buffering capacity, it manifests in the form of oxidative stress. The primary cause of
oxidative stress is the abnormality in ETC. Increased ROS in the AD brains, as well
as a region-specific reduction in the blood flow and oxygen utilization, provide
ample evidence implicating compromised mitochondrial physiology in the develop-
ment and progression of the disease (Bonda et al. 2014). Unregulated ROS produc-
tion causes damage to cellular lipid, protein, and DNA, leading to derangement in
the metabolic processes or development of anatomical lesions. The brain regions that
were found to be most vulnerable to high ROS were the frontal, parietal, and
temporal lobes. These areas overlap the areas that are found to be affected in AD
patients (Wang et al. 2006).

Higher ROS levels induce ASD cascade, which posits mitochondrial
abnormalities as the critical origin of neurodevelopmental impairment in ASD.
However, these deficits in the mitochondria’s ETC complex activity are distinct
from the abnormalities observed in classical mitochondrial diseases. Studies have
identified higher ETC complex IV, III, and I activity in ASD animal models and
patients (Frye and Naviaux 2011; Delhey et al. 2017; Valiente-Pallejà et al. 2018).
Others have linked reduced antioxidant capacity and increased ROS levels at the
systemic level in ASD. Molecules of oxidative stress have been shown in the brains
of ASD patients and also in their parents (Ohja et al. 2018). Another study
demonstrated impairments in the glutathione redox balanced in cerebella and tem-
poral cortices of autistic patients (Rose et al. 2012). Transcriptional profiling of
84 genes of oxidative stress machinery identified a signature pattern of eight genes,
namely, glutamate-cysteine ligase modifier (GCLM), superoxide dismutase
2 (SOD2), neutrophil cytosol factor 2 (NCF2), prions (PRNP), prostaglandin-
endoperoxide synthase 2 (PTGS2), thioredoxin (TXN), and ferritin heavy chain
(FTH1), involved in ROS metabolism which were downregulated in autistic
individuals (Bolotta et al. 2018). Further, RBC damage through ROS that causes
altered RBC shape and morphology has been a significant feature in autistic patients
(Bolotta et al. 2018).

Interestingly, immune dysfunction identified as one of the pathological features
of ASD has a close link with oxidative free radicals accumulation. Altered redox
balance either in the prenatal or postnatal period is associated with immunological
activation, which increases the risk of autism in children. Though prenatal immune
dysregulation is not clearly understood, exposure to unhealthy postnatal
environments is linked to a distinct immune dysregulation pattern, endogenous
autoantibodies, and inflammation observed in autistic patients. Mitochondrial func-
tional abnormalities can initiate specific stress signals leading to an aberrant immune
response. Nonetheless, a meticulous approach toward understanding the molecular
pathways that trigger inflammasome cascade resulting from mitochondrial
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dysfunction needs further research (Chen et al. 2018). A thorough understanding of
metabolic circuitry that underscores mitochondrial dysfunction in ASD and AD may
facilitate novel treatment strategies.

2.3 Mitochondrial DNA Damage Promotes the Development
of ASD and AD

Mitochondria are present in every cell at varying numbers depending upon the
difference in tissue origin. Cells of tissues with greater metabolic demands like the
brain, cardiac, and skeletal muscle tissues have many mitochondria. Each mitochon-
drion harbors many copies of mtDNA. Moreover, mitochondrial genomes have
10–20-fold high mutation rates compared to nuclear DNA, which renders them
inherently heteroplasmic (Stein and Sia 2017). Studies have reported that
mitochondria have a skewed concentration of nucleotides that compromise
mtDNA polymerase subunit gamma (PolG) enzyme fidelity, corroborating higher
mutation rates in mitochondrial DNA. Consequently, these mutations accumulate
more in tissue with higher metabolic activity, such as the brain, leading to more
pronounced phenotypes.

Additionally, mitochondria are subjected to oxidative stress due to their respira-
tion function, which can induce oxidative lesions in their genome (Sharma and
Sampath 2019). ASD and AD, besides other neurodegenerative diseases, have
higher ROS concentrations, and reports have demonstrated its association with the
deletion of mtDNA. Diminished mitochondrial genome integrity has now been
understood to predispose early- and late-onset metabolic diseases such as ASD,
Parkinson’s disease, and Alzheimer’s disease.

mtDNA mutations occur across polypeptide mutations, rRNA and tRNA
mutations, rearrangement mutations, and mutations in the regulatory region affecting
mtDNA replication and transcription. A study on ASD children indicated that
around 28.6% of ASD subjects displayed mutations commonly associated with
mitochondrial disorders, such as the presence of low mtDNA content and putative
pathogenic mtDNA mutations (Varga et al. 2018). mtDNA haplogroup differences
can contribute to the modulation of the ASD risk. A cohort study of 1624 patients
with ASD identified many mtDNA haplogroups across different clusters in ASD.
Hence, mitochondrial haplogroups associated functional variants could be a risk
factor for developing ASD (Chalkia et al. 2017). Using databases of mtDNA
sequence and variation (comprehensive MITOMAP, A Human Mitochondrial
Genome Database initiative), many mutations in mtDNA have been identified that
are linked to pathologies and comorbidities associated with ASD and AD (Sharma
and Sampath 2019). Several genetic anomalies are related to mitochondrial defects
in ASD, including mitochondrial DNA mutations and deletions and chromosomal
abnormalities. These abnormalities have been identified in buccal cells and cells of
the immune system, fibroblasts, gastrointestinal tissue, and muscle, besides in the
brain tissue of patients with ASD.
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Studies on AD brains have shown reduced mtDNA content and mass, increased
fragmentation of mtDNA, deletion, and apoptotic cell loss, associated with elevated
free radicals linked with a reduced cyclooxygenase (COX) level. In a downstream
signaling cascade that perpetrates with mitochondrial stress, cell apoptosis is trig-
gered. These innate immune mechanisms are susceptible to nuclear and mtDNA and
any other type of DNA from the phagolysosomal compartment. The presence of
apoptotic vesicles in the blood from ASD patients, which in turn contain a consider-
able concentration of mtDNA, is plausibly recognized as an innate pathogen in ASD.
These vesicles enter the microglia of ASD patients through blood and lymphatic
systems and triggering an immune response (Pangrazzi et al. 2020). Many studies
have also observed sporadic mtDNA deletions in brain tissues obtained after the
postmortem of late-onset AD patients. In a study, mtDNAΔ4977 showed a 15-fold
hike in its occurrence in AD subjects’ cortical neurons (Phillips et al. 2014). Visible
chromosomal lesions and slight copy number variants at 16p11, an inverted dupli-
cation on one of the domains of chromosome 15q11-q13, are also commonly
observed in 10–20% of ASD cases (Cook Jr et al. 1997; Qureshi et al. 2014).

2.4 Calcium Homeostasis Imbalance Perpetrates
Mitochondrial Dysfunction in ASD and AD

The function of mitochondria in regulating and buffering cytoplasmic Ca2+ (calcium
ion) manifests as a central player in normal neurotransmission, neuronal plasticity,
gene transcription regulation, and excitotoxicity (Celsi et al. 2009). Different studies
have cited the function of mitochondria in Ca2+ buffering impairment in the aging
brain and AD (Camandola and Mattson 2011). Disturbances in the Ca2+ homeostasis
are closely connected with mitochondrial permeability transitions potentiated by
high ROS generation, elevated phosphate concentrations, and ATP depletion. This
eventually leads to the release of pro-apoptotic factors and cell death (Toglia and
Ullah 2016; Granatiero et al. 2019). Predominantly, the function of most of the ions
is limited to electrical conduction at the cell membrane. However, calcium addition-
ally integrates signaling to cellular transcriptional, translational, metabolic, and
biochemical events. The intrinsic function of calcium as a second messenger
arbitrates diverse cellular processes through spatial and temporal alteration in con-
centration (Berridge et al. 2000). This function is carried out by a multitude of
calcium-binding proteins, transporters, and voltage-dependent ligand-gated ion
channels. Since calcium plays a ubiquitous role in cell physiology, any regulatory
defects in the calcium signaling pathway can disrupt neurological function as
demonstrated by several pathological conditions, including ASD (Nguyen et al.
2018). Derangement in calcium signaling potentially causes many abnormalities
associated with ASD pathogenesis, such as mitochondrial function defects,
neurotransmitter signaling, and synaptic plasticity. Mechanistic variants have been
identified in calcium signaling pathways related to the endoplasmic reticulum
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(ER) and mitochondrial organelle dysfunction in ASD and AD. Though organelles
are inherent to all cells throughout the body, the central nervous system (CNS) is
profoundly affected by organellar diseases (Nguyen et al. 2018). Some genetic
studies have also identified ion channel gene mutations in ASD subjects, suggesting
it to be a channelopathy and a plausible reason for associated comorbidities (Noebels
2017).

Cognitive functions such as memory, neuron excitability, synaptic plasticity,
axon growth, the release of neurotransmitter, and precise modulation of calcium
gradients are regulated through intracellular calcium homeostasis (Wen-hong et al.
1998; Hernández-López et al. 2000; Neher and Sakaba 2008). Nerve stimulation is
achieved by increasing cytosolic calcium from a resting concentration of ~100 nM
by mobilizing calcium from intracellular ER stores or extracellular milieu.
Mitochondria play a pivotal role during this signal transduction process by immedi-
ately sequestering Ca2+ through its calcium uniporter. Hence, the extracellular signal
impulse is swiftly propagated through a tightly regulated mitochondrial process
(Giorgi et al. 2012). Mutations in mtDNA affect calcium homeostasis, such as
reduced Ca2+ sequestration, which consequently disturb ETC, mitochondrial mem-
brane potential, and ATP production. ATP production is reduced due to the inability
of Kreb’s cycle enzymes to function in the absence of calcium. Positive feedback is
generated with subsequent loss of ATP synthesis, which affects overall cell physiol-
ogy. Besides, Ca2+ homeostasis derangement can also lead to intracellular Ca2+

overload within the mitochondria. In AD, the accumulation of amyloid-β facilitates
ROS generation, which causes the accumulation of Ca2+ and PTP opening in
mitochondria (Giorgi et al. 2012). Vitamin D is a key modulator of calcium
homeostasis, which functions through its nuclear receptor, thereby controlling
gene expression. It plays a crucial role in cellular proliferation and fine-tuning
voltage-gated calcium channels. Furthermore, mitochondria are imperative in pro-
ducing the active form of vitamin D, D3 (1α,25-dihydroxyvitamin-D3). The defi-
ciency of D3 during fetal life is strongly linked with the pathogenesis of ASD
(Vinkhuyzen et al. 2017).

2.5 Neuronal Mitochondrial Dysbiogenesis Underlies
the Development of ASD and AD

Many studies have demonstrated that mitochondrial biogenesis is fundamental to
neuronal growth. Cellular pathways that are functional during neuronal development
also promote mitochondrial biogenesis to arbitrate developing neurons’ energy
requirements. Mitochondrial biogenesis is regulated through a concerted mechanism
manifested through crosstalk between mitochondrial and genomic DNA
counterparts. Mitochondria proliferate and constantly fuse as a part of healthy
cellular mechanisms and respond to enhanced energy needs, oxidative stress, and
disease conditions. Mitochondrial biogenesis is controlled through checkpoints
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during transcription, translation, and post-translation. This process is activated by
peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) (Jones et al.
2012). Further, sequential activation of nuclear respiratory factor-1 and nuclear
respiratory factors-2 (NRF-1 and NRF-2) transcription factors leads to mitochondrial
biogenesis. These newly formed mitochondria are integrated into the mitochondrial
metabolic machinery, while the ones that are nonfunctional or damaged or demon-
strate possible membrane disruption are tagged for degradation and removal. The
removal of damaged mitochondria follows an autophagy-dependent mechanism
called mitophagy (Lou et al. 2020).

Additionally, mitochondrial dynamics are regulated through fusion and fission
processes, which counteract cellular damage by complementing cellular
components, besides removing damaged mitochondria through autophagy. The
mitochondrial biogenetic pathways functional through NRF 1, NRF 2, PGC-1α,
etc. are demonstrated to be impaired in neurological diseases such as ASD and
AD. A number of mitochondria and biochemical mediators such as NRF 1, NRF
2, and mitochondrial transcription factor A (TFAM) and PGC-1α are shown to be
decreased in the hippocampus of AD brains, which diminish AMP-activated protein
kinase (AMPK)-induced neuronal growth. Disturbed mitochondrial biogenesis,
demonstrated by altered expression of mitochondrial fission (Fis1 and Drp1) and
fusion (Mfn1/2 and Opa1) proteins and in the temporal cortex, indicated its relation
to differences in the morphology and function of mitochondria in ASD (Tang et al.
2013). Many studies have correlated this deranged biogenesis potential of
mitochondria to the disruption of neuronal plasticity and compromised cellular
resilience. This process is demonstrated to eventually regulate psychotic disorders
regularly observed in psychiatric comorbidities (Quiroz et al. 2008).

Another feature of mitochondrial biogenesis is an interconnected network of
proteases and chaperones that maintains the quality of proteins and remove damaged
proteins from the mitochondrial compartment (Folisi 2015). During homeostasis,
mitochondrial chaperons facilitate protein folding and translocation, while proteases
degrade and remove misfolded and damaged proteins from the mitochondria.
Impaired chaperons and proteases consequently lead to the accumulation of protein
aggregates, such as τ-protein and amyloid-β in AD, which ensues in the form of
mitochondrial dysfunction (Ruan et al. 2013; Deepa et al. 2016). Notably, genetic
mutations could cause impaired functions of mitochondrial chaperones and
proteases and are extensively demonstrated to precipitate severe neurological
diseases (Martinelli and Rugarli 2010; Goo et al. 2013; Strauss et al. 2015). Though
few studies have linked the impaired function of proteases and chaperons with AD,
others have shown their upregulation to be a priming episode in amyloid progression
and τ-pathology in AD (Beck et al. 2016; Sorrentino et al. 2017). Similarly, few
researchers have identified impaired inner membrane protease polymorphic forms of
IMMP2L in ASD. Recently, the identification of protease malfunction and its
reciprocal effect in the development of ASD have also gained momentum.
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2.6 Impaired Mitochondrial Energy Metabolism Propels
the Development of AD and ASD

Brain function is a composite of neuronal and glial cell function and synaptic
efficiency. Healthy neuronal function demand higher energy needs, and hence
numerous mitochondria are present in the brain cells (Picard and McEwen 2014).
The mitochondria carry out their primary function to synthesize ATP. Coherence
with other cellular organelles provides buffering machinery that regulates calcium
levels during nerve impulses and signal transduction. Besides, they are instrumental
in the biosynthesis of heme and iron-sulfur (Fe-S) clusters required to synthesize
presynaptic neuronal transmitters in synapses (Lin and Beal 2006). Hence, it is
discernible that disruption of mitochondrial functions is likely to cause nervous
system abnormalities leading to neurodegenerative or neurodevelopmental disorders
(Alexiou et al. 2018).

The brain is one of the highest energy-consuming organs, which approximately
uses 25% of total energy in the resting state. Hence, a deficit in the energy fuel
supply, such as the availability of glucose, or metabolic machinery like mitochon-
drial dysfunction, negatively impacts brain function. Neurons highly depend on
oxidative phosphorylation as a source of energy, which renders them susceptible
to mitochondrial dysfunction (Cardoso et al. 2016. Studies using
fluorodeoxyglucose positron emission tomography (FDG- PET) have identified
low glucose metabolic rates in AD patients, especially in the posterior cingulate,
temporal, and parietal lobes and the hippocampus (Kapogiannis and Mattson 2011).
These regions are dedicated to cognition and memory, and hence defects in energy
metabolism could be a proximate source of pathologies in neurological disorders
such as AD and ASD. The hypometabolism of glucose in the AD brain is
compensated by shifting to amino acid and lipids as energy sources (Toledo et al.
2017). Metabolomics and lipidomic studies have identified at least six central
metabolic pathways, including glycerophospholipid and aspartate metabolism in
human autopsy samples to be defective.

Similarly, essential amino acids, branched-chain amino acids (BCAAs), poly-
amine metabolism, and serotonin pathways in the APPswe/PS1deltaE9 double
transgenic AD mouse model were found to be altered. Though these studies provide
a direct link with AD, not all of these metabolic findings were replicated (Casanova
et al. 2016; Pan et al. 2016). Presently, molecular networks, viz., systems biology
approach, have identified metabolic connections in varied metabolic pathways,
highlighting the dysregulation of biochemical reactions at different disease progres-
sion stages (Santiago and Potashkin 2014). This approach provides distinct mecha-
nistic insight into complex diseases such as AD and ASD, which stem from changes
in multiple genes, proteins, and metabolites.

Metabolites such as glutamate and glycolytic intermediates, lactate, and pyruvate
were observed to be increased. In contrast, carnitine, the fatty acid carrier from the
cytosol to the mitochondria, and glutathione were demonstrated to be lower than
expected in the serum of ASD and AD patients (Shimmura et al. 2011; Frye et al.
2013; Bjørklund et al. 2020; Oh et al. 2020; Xie et al. 2021). Contrarily, fatty acid
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palmitate was shown to be increased in ASD plasma samples. Palmitic and stearic
acid and omega-6 fatty acids are also demonstrated to cause neuroinflammation and
hence τ-phosphorylation and its aggregation in AD disease models. Palmitate is
implicated as an intracellular signaling molecule that regulates the progression of
several pathologies as diverse as cardiovascular diseases, neurodegenerative
diseases, cancer, etc. (Fatima et al. 2019). It has also been proposed that metabolic
modifiers precede the onset of neurological symptoms.

2.7 Enteric Microbiome Alterations Modulate Mitochondrial
Function in ASD and AD

The enteric microbial flora (microbiome) influences the physiological and biochem-
ical status of humans. In the last two decades, understanding the gut microbiome
function in influencing health and disease has gained considerable scientific interest.
The communities of microbial cells that harbor within the gut are involved in
processes as diverse as metabolism, nutrition, and the host’s immune regulation
(Guinane and Cotter 2013). Besides a positive effect on human health, some
microbial cells also release chemical mediators that can potentially disrupt normal
cellular pathways, including mitochondrial functions. Diseases like gastrointestinal
complications, diabetes, and autism have been attributed to a microbiome-mediated
disruption in addition to other associated mechanisms. The chemical mediators
secreted by the microbes residing in the gut can travel through the bloodstream,
penetrating the blood-brain barrier (Guinane and Cotter 2013; Burokas et al. 2015).
Studies have identified that behavioral symptoms in autism can aggravate with
alterations in the diet and changes in the gut microbiota through early antibiotic
exposure, perinatal infection, hospitalization, etc. The gut microbe produces short-
chain fatty acids (SCFA) upon dietary carbohydrates fermentation, which serve as an
essential trigger to modulate mitochondrial functions and other cellular regulatory
pathways (Saint-Georges-Chaumet and Edeas 2016). These SCFA produced by
gut microbes, most notably propionate, have been concomitant with the develop-
ment of ASD to affect mitochondrial function (MacFabe 2015) directly. Some
microbial products induce a damaging immune response in their immediate vicinity
and travel to invade the blood-brain barrier inducing a pro-inflammatory state in
the sentinel microglia. This pro-inflammation is associated with derangement in
the normal mitochondrial functions and progression toward hypoxia as well as
neuroinflammatory and epigenetic modifications (Siniscalco et al. 2013; MacFabe
2015). An SCFA component, propionate, is demonstrated to increase anti-
nitrotyrosine immunoreactivity indicating oxidative stress. Propionate is also
demonstrated to increase glutamate cysteine ligase modifier (GFA), a marker of
immunoreactivity, and reactive astrocytes in the hippocampus of ASD subjects
(Edmonson et al. 2014).

The microbiota of the intestinal system is altered as a result of unhealthy lifestyles
such as food, sleep problems, circadian rhythm disturbance, and sedentary routines.
Multifactorial changes spanning quantitative and qualitative differences have been
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documented in the gut microbiome of AD patients and are considered a significant
risk factor for sporadic pathogenesis of AD. Studies using specific pathogen-free
mice and microbiome-reconstituted mice models have revealed increased brain-
derived neurotrophic factor (BNDF) in the amygdala and reduced serotonin receptor
(5HT1A) mRNA and NR2B subunit of the N-methyl-D-aspartate (NMDA) receptor
mRNA expression. Also, in the hippocampus, this decrease is associated with an
insufficiency of working and spatial memory (Neufeld et al. 2011). In another study,
intestinal dysbiosis induced through ampicillin reduces the mineralocorticoid level
and NMDA receptors in the amygdala, impaired spatial memory, and increased test
animals’ aggressiveness. However, this was restored through the Lactobacillus
fermentum NS9 strain as a part of the intestinal microbiome (Wang et al. 2015).
Studies using matched cohorts have also pointed toward an association of
microbiome composition with AD (Haran et al. 2019). Metagenomics
complemented by clinical data has also confirmed a nexus between microbiome
disturbance, neuroinflammation, intestinal disturbances, and AD/ASD disease.

The presence of acute stress and infection with conditional pathogenic bacteria
Citrobacter rodentium are also reported to cause memory disorders in C57BL/6
mice (Gareau et al. 2011). A study conducted by Alzheimer’s Disease Research
Center (Wisconsin, USA) in 2017 demonstrated marked changes in the gut
microbiome of AD patients matched to healthy individuals. This study decreased
bacterial numbers belonging to Firmicutes and Actinobacteria phyla (particularly
genus Bifidobacterium), and a surge in Bacteroidetes and Proteobacteria phyla
bacteria in the gut microflora of AD patients was observed. Hence, the study
distinctly demonstrated that intestinal microflora’s functional component and taxon-
omy influence brain functions (Vogt et al. 2017). The human intestinal microflora
has a direct regulatory role that works along the gut-brain-mitochondrial axis,
modulating the development of neurological diseases such as ASD and AD.

2.8 Biomarkers of AD and ASD Linked to Mitochondrial
Dysfunction

The pathological markers of AD include β-amyloid and τ-accumulation in the brain
of AD patients. τ-protein regulates microtubule stability. However, modified τ
aggregates in the neurons and is identified as a significant player in neurodegenera-
tive diseases. In mice studies, τ-ablation has been concurrent with the enhanced ATP
production and improvement in attentive capacity and recall memory (Jara et al.
2018). Mechanistically, τ-deletion reduced oxidative damage, thereby restoring the
mitochondrial pro-fusion state besides inhibiting mitochondrial PTP formation, thus
enhancing positive mitochondrial dynamics. There are reports that β-amyloid and
τ-protein accumulation and apolipoprotein E (APOE) genes (a sporadic AD risk
factor gene) could trigger mitochondrial dysfunction, which exacerbates the
pathology.

Another pathological marker of AD, amyloid precursor protein, APP, together
with amyloid-β, has a more direct link with mitochondria as compared to τ-protein
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(Zhang et al. 2021; Mantzavinos and Alexiou 2017). These proteins localize to
mitochondrial membranes and interact with other mitochondrial proteins besides
disrupting ETC and importing nuclear-encoded mitochondrial proteins. They are
shown to increase the production of ROS. However, it is also reported that the
declining function of disrupted mitochondria leads to the accumulation of β-amyloid
proteins besides several other comorbidities of AD. However, the existence of
feedback loops makes a blurred understanding of the cause and effect. Recent
researches have revealed that a highly toxic oligomeric form of β-amyloid protein
(OAβ) disrupts normal mitochondrial function leading to a cascade mechanism
responsible for severe deficit in the energy deficits preceding the development of
AD (Sackmann and Hallbeck 2020).

Though ASD is identified mainly through behavioral pattern changes, several
pathological markers have recently been correlated with the disease, including
biomarkers of fatty acid metabolism, buccal cell enzymology, apoptotic markers,
and ROS alteration. Most of these biomarkers are directly related to mitochondrial
dysfunction, indicating an active role of mitochondrial disruption in the pathogenesis
of ASD (Rose et al. 2018). Environmental exposure to toxicants and microbiome
metabolites vis-a-vis oxidizing microenvironment is demonstrated to modulate
mitochondrial function in ASD models.

2.9 Mitochondrial Targeting as a Therapeutic Approach
for ASD and AD

The current therapy for AD relies on administering either glutamate-NMDA receptor
antagonist like memantine or cholinesterase inhibitors, such as galantamine,
rivastigmine, and donepezil. However, drug therapy is not approved by the Food
and Drug Administration (FDA) for treating symptoms of autism. Autism is usually
treated through behavioral management therapy, speech language, nutritional ther-
apy, cognitive behavior therapy, joint attention therapy, physical therapy, etc.
Regardless of the underlying mechanism that finally results in the development of
ASD and AD, early diagnosis and intervention would lead to better treatment
outcomes. As the knowledge of these neurodevelopmental diseases’ pathogenesis
is advancing, the prospects of better treatments can be augmented with targeted
approaches (Fig. 2.2). Besides the present methodology of the drug-based treatment,
many novel therapies are being explored and are continually evolving. Some of the
new treatment approaches are discussed here.

2.9.1 H2S Therapy

As observed in AD and ASD, enhanced ROS production affects mitochondrial
function, contributing to the onset of neurodegeneration. Immediate consequences
of high oxidative stress include lipid and protein oxidation and mtDNAmutation that
induces neuronal cell death. Hydrogen sulfide (H2S) has been demonstrated to
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mitigate these effects of oxidative stress by elevating glutathione (GSH)
concentrations through the potassium (KATP/K

+) and calcium (Ca2+) ion channels.
H2S exerts its antioxidant effect through inorganic and organic compounds that
mediate the activities of GSH, glutathione peroxidase, and superoxide dismutase,
which in turn neutralizes hydrogen peroxide (H2O2)-induced oxidative damage.

Endogenously, H2S is produced through pyridoxal phosphate-dependent
enzymes in tissues, namely, cystathionine β-synthase (CBS), cystathionine γ-lyase
(CγL), cysteine aminotransferase (CT), and 3-mercaptopyruvate sulfur transferase
(MST). The normal level of H2S for both plasma and tissue is 50–160 μM. CBS
expression is very high in the hippocampus and cerebellum areas of the central
nervous system (CNS). H2S is a gasotransmitter that functions as a powerful
antioxidant during the mitochondrial oxidation process to reduce oxidative stress
generated in neurodegenerative diseases. Besides, H2S can exert its protective effects
as an anti-inflammatory molecule in the CNS to dissipate neuroinflammation (Zhang
et al. 2017). Treatment with H2S donor, sodium hydrosulfide (NaHS), has proven
efficacy in suppressing hypoxia-induced neuronal apoptosis by blocking the H2O2-
activated Ca2+ signal pathway. H2S could also augment anti-apoptosis through
nuclear translocation of nuclear factor kappa B (NF-κB) regulation (Zhang et al.
2017). Furthermore, the enzyme cystathionine γ-lyase (CSE), which produces H2S,
binds to τ-protein to exert its catalytic activity. Recently, this enzyme is shown to be
depleted in AD human brains and 3xTg-AD mouse models, which leads to lower
production and hence diminished concentrations of H2S (Giovinazzo et al. 2021).
Therefore, in the absence of H2S, hyperphosphorylation of τ-proteins progresses as
observed in AD. On the other hand, H2S prevents this phosphorylation by
sulfhydrating the τ-protein kinase, namely, glycogen synthase kinase 3β (GSK3β).
This understanding has been furthered in the study by Giovinazzo et al. that

Fig. 2.2 Therapeutic modulation strategies for the restoration of mitochondrial dysfunction in
ASD/AD patients
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demonstrated the amelioration of both motor and cognitive deficits in AD upon
administration of the H2S donor sodium GYY4137 to 3xTg-AD mice (Giovinazzo
et al. 2021).

2.9.2 Microbiome Modulation and Probiotic Therapy

ASD and AD have a compelling association with mitochondrial dysfunction.
Besides, gastrointestinal symptoms are an essential indicator of ASD and are
strongly associated with mitochondrial dysfunction. It is noticeable that the gut
microbial flora can orchestrate immune modulation and inflammasome activation
in both these diseases, as previously described. Furthermore, mitochondrial damage-
associated molecular patterns (DAMPs) are signals to activate innate immunity.
Hence, a cascade of molecular events triggered by a dysbiotic gut microbiome
could stimulate the production of metabolites that target and damage mitochondria.
Recent research has indicated that the plasma levels of pro-inflammatory cytokines
such as IL-2, IL-4, IL-6, TNF-α, TNF-β, IFN-γ, etc. are significantly high in subjects
with ASD. The increase in cytokines TNF-α and IL-6 is distinctly associated with
the pathogenic gut microbiome, which constitutes the microbiota unique to ASD
individuals in most of the disease cases. Beneficial gut microbiota, which includes
Lachnospiraceae and Bacteroides and negatively correlates with pro-inflammatory
cytokines, is present at reduced levels or absent in ASD (Cao et al. 2021). Hence,
disturbances in plasma cytokine profile that link with alterations in the abundance of
healthy gut microbiota in ASD patients could be considered an early diagnostic
mechanism for ASD.

On the contrary, a specified microbial population with positive effectors harbors
the ability to enhance oxidative capacity and be exploited as treatment strategies.
Such a therapeutic approach holds the potential of slowing the onset of several
metabolic and neurodegenerative diseases such as ASD and AD. Probiotics have
shown promise in improving autistic symptoms by directly restoring intestinal
microflora balance with subsequent positive effects in strengthening the gastrointes-
tinal barrier. A study conducted on ASD children used four bacterial strains plus a
prebiotic, fructooligosaccharide. It helped to normalize the gut microbiome and
gastrointestinal functions, besides ameliorating the typical behaviors in autistic
children. The probiotic therapy also increased the bacteria population, such as
Bifidobacteriaceae and B. longum, which are beneficial. It reduced the existing
potentially disease-causing bacteria such as Clostridium and Ruminococcus
associated with autism symptomatology (Wang et al. 2020). Hence, probiotics are
being tested as a promising treatment for ASD associated with gastrointestinal
symptoms and can be utilized as a safe and effective treatment.

Future AD therapies can also involve the use of probiotics, especially as prophy-
laxis methodology, when mild cognitive impairment is observed or AD is first
diagnosed. A healthy gastrointestinal tract harbors facultative anaerobic or
microaerophilic Lactobacillus and Bifidobacterium species, which metabolize gluta-
mate to produce gamma-aminobutyric acid (GABA). GABA is an important
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inhibitory neurotransmitter in the CNS, and dysfunction of GABA is connected to
dysfunction of synaptogenesis, cognitive impairment, and AD (Bhattacharjee and
Lukiw 2013). Hence, restoring the typical microbiome in AD patients may have
enormous effects and may facilitate customized microbiome manipulative strategies
for the therapeutic management of AD and other neurodegenerative disorders.

2.9.3 Ketogenic Diet

A ketogenic diet has shown beneficial effects in children with ASD in improving the
primary and associated symptoms of epilepsy. Unlike antiepileptic drugs, they are
not related to adverse effects. The ketogenic diet exerts its beneficial effects, possibly
through cerebral glucose metabolism, to improve mitochondrial morphology and
white matter development in the brain. The ketogenic diet’s positive influence has
been observed in children with pyruvate dehydrogenase complex deficiency, with
improvement in speech, language, and social functioning. In a case study, early
initiation of a ketogenic diet has been associated with longevity and mental growth.
From the mitochondrial standpoint, the ketogenic diet seems to be a promising
therapy in both ASD and AD. In these neurodegenerative diseases, mitochondrial
dysfunction and impaired bioenergetics can be salvaged through the use of ketone
bodies. Ketone bodies can serve as the primary energy source for many metabolic
processes instead of glucose. Besides, ketone bodies can exert neuroprotective
effects by reducing glucose levels and increasing ketone bodies’ formation by the
liver. An increase in ketone bodies is mainly through the oxidation of polyunsatu-
rated fatty acids (PUFA). PUFA increases peroxidases and reduces mitochondrial
membrane potential and ROS through enhanced mitochondrial uncoupling protein
expression (Milder and Patel 2012). A ketogenic diet also enhances the overall anti-
injury potential of neurons by increasing global metabolic efficiency even under
insufficient energy phases (Henderson et al. 2009). Ketogenic diet therapy seems to
be a promising candidate as it can reduce inflammation and ROS generation, delay
the progression of AD, and improve cognitive ability in AD patients.

2.9.4 Cofactor Supplementation

Besides many general cofactors that support improvement in the symptomatology
of ASD and AD, nicotinamide adenine dinucleotide (NAD), thiamine
tetrahydrofurfuryl disulfide (TTFD), biotin (B7), and methylcobalamin (B12) are
imperative to healthy mitochondrial functions. Thiamine facilitates normal cellular
energy metabolism, production of energy equivalence, and reduction of cellular
ROS besides maintaining the structure and function integrity of mitochondria. At
the same time, biotin attenuates the loss of mitochondrial membrane potential and
reduces ROS production. Methylcobalamin (B12) is an integral cofactor for the
regeneration of GSH and GSH/GSSG (James et al. 2004). It is vital for the proper
functioning of the brain and nerves and red blood cell production. In a randomized
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controlled trial, oral supplementation of cofactors (vitamin/minerals) for 3 months
has shown improvement in the symptoms of autistic children besides improving
methylation, glutathione, ATP, and NAD levels and reducing oxidative stress
(Adams et al. 2011).

Additionally, L-carnitine is an amino acid derivative, which affects CNS and
mitochondrial physiology. Studies have indicated altered metabolic channeling of
L-carnitine in ASD patients (Demarquoy and Demarquoy 2019; Malaguarnera and
Cauli 2019). Clinical trials are underway for the use of cofactor therapy in AD,
focusing on metabolic improvement through dietary supplementation of L-carnitine
tartrate, N-acetylcysteine, nicotinamide riboside, and serine. These studies aim to
increase mitochondrial activity in the brain cell types through simultaneous dietary
supplementation (ClinicalTrials.gov Identifier: NCT04044131) (Remington et al.
2016; Tardiolo et al. 2018; Peng et al. 2020). The cofactor therapies are well
tolerated throughout a person’s pathological status without any significant side
effects or long-term detrimental effects. Many of the cofactors are water-soluble
vitamin B supplements, which can be eliminated from the body through the kidneys.

2.10 Conclusion

Recent years have observed notable research advances in the field of mitochondrial
disease. The development of advanced techniques that provide the ability to uncover
novel mitochondrial gene mutations and associated metabolic derangements has
immensely improved our understanding of molecular mechanisms that lead to
mitochondrial dysfunction, which can influence a plethora of metabolic pathways
including amino acid, carbohydrate, and lipid metabolism. Additionally, mitochon-
drial derangement also affects regulatory networks modulating apoptosis, calcium
flux, hormonal and immunologic responses, and oxidative stress, eventually affect-
ing the brain function. Mitochondria posit an inherent tendency to adapt to changing
energy demands and microenvironments. However, increased environmental stress
such as oxidative stress and diminished defense responses potentially induce struc-
tural and functional abnormalities in the mitochondria. Induced or genetic defects in
the mitochondria thus act as the precursor of a plethora of neuronal disorders. In this
review, we have provided an integrated perception of the major aspects of mito-
chondrial functional and structural abnormalities such as imbalance in calcium
homeostasis, mitochondrial dysbiogenesis, gut microbiome alterations, mtDNA
defects, etc. and their implications for neurodevelopmental and neurodegenerative
disorders, namely, ASD and AD. Mitochondrial mechanistic failure is presently
established as a significant event that impinges upon the progression of these
diseases, and hence a potential target for therapeutic intervention.
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Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disability that is
associated with the promotion of social, communication, and behavioral inflexi-
bility or impairment in an individual, whereas Alzheimer’s disease (AD) is a
progressive neurodegenerative disorder characterized by degeneration and death
of brain cells and ultimately leads to dementia and cognitive decline. However,
reports suggest that both share common neuronal proteins including amyloid
precursor protein (APP), phosphatase and tensin homolog (PTEN), fragile X
mental retardation protein, and metabotropic glutamate receptors. Here, the
correlation between neuronal proteins of these two diseases is highlighted. The
significance of common signaling pathway is illustrated though the NOWADA
model. The brain of individual suffering from ASD exhibits phenomenon of
hyperplasticity that can be very crucial in tackling the AD. This study overview
the medications approved for AD such as donepezil, galantamine, rivastigmine,
tacrine and memantine, which have been also observed to be effective in ASD.
More vigorous investigations are obligatory as there is an absence of medication
for ADS and AD. Through overviewing the recent advances and trends regarding
ASD and its correlation with AD can be fundamentally conducive in understand-
ing mechanism of etiology of ASD and AD and formulating the ultra-efficient
therapeutic approach to impediment complications due to these diseases.
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3.1 Introduction

Autism spectrum disorder (ASD), simply referred as autism spectrum, is a group of
neurodevelopmental disabilities that are associated with introducing the social,
communication, and behavioral inflexibility and problems in an individual. It may
also comprise autism, Asperger syndrome, Rett syndrome, and childhood disinte-
grative disorders. An individual always repeats such social, communication, and
behavioral problems without having any interest modification from the
complications. It has been reported in 2015 that around 1% of people are suffering
from the autism spectrum which makes it near about 62.2 million people worldwide
associated with this issue. The exact causes responsible for autism still remain unfold
or unexplored to the world. In the initial 2 years of age of an individual, symptoms
usually come into sight; that is why autism spectrum disorder is considered as a
neurodevelopmental disorder.

Alzheimer’s disease is a progressive neurodegenerative disorder characterized by
degeneration and death of brain cells and ultimately leads to dementia and cognitive
decline (Querfurth and LaFerla 2010). Trouble in memorizing the current events are
the initial symptoms, difficulties in language and problems in behavior, and reduc-
tion in the muscle mass which weakens and ultimately leads to death (Querfurth and
LaFerla 2010). The Alzheimer’s disease cause is not explored yet clearly.
Alzheimer’s disease is known to be associated with protein misfolding diseases
(proteopathy). Amyloid beta protein and tau protein are two proteins recognized to
be responsible in causing Alzheimer’s disease (Hashimoto et al. 2003).

Amyloid beta protein is structurally composed of 6–43 amino acids that are
critically associated with Alzheimer’s disease (Hamley 2012). It is regarded as
intrinsically unstructured which is lacking the specific three-dimensional conforma-
tion. Amyloid beta is a portion of other bigger protein in the synapses of nerve cells
known as amyloid precursor protein (APP). APP has the ability to penetrate into the
membrane neurons and is very vital for the growth and development of neurons
(“About Alzheimer’s Disease: Symptoms,” 2012).

Amyloid beta has been observed to cause the impairment, the death of neurons,
and production of ROS (Hardy and Allsop 1991). It contains small portions of beta
sheet and alpha helix structures, but it results into the formation of aggregates at
higher concentration called amyloid fibrils, which is dominated by the presence of
beta sheets. In the neuron cells, amyloid beta protein helps in the formation of lipid
peroxidation and the formation of 4-hydroxynonenal. 4-hydroxynonenal is structur-
ally an aldehyde group, which is toxic in nature, and found in cells formed during the
process of lipid peroxidation (Hardy and Allsop 1991). The phenomenon of lipid
peroxidation results in damaging the functioning of ATPases, transporters of
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glutamate, and glucose. Thus, in the membrane where the transmission of nerve
impulses occurs in the neurons, amyloid beta protein stimulates the phenomenon of
depolarization, influx of calcium ion, and dysfunctioning of mitochondria (Mattson
2004). Reports suggest that the deficiency of amyloid beta protein is not exhibiting
any noticeable absence of any role in the functioning. For the diagnosis of a patient
suffering from Alzheimer’s disease, no clear blood test is available in medical
science; thus, signs and symptoms associated with Alzheimer’s disease are usually
exploited by doctors to diagnose this complication. Enzymes like gamma secretase
and beta secretase are involved in the cleaving of APP into the minor parts (Hooper
2005). Among such minor fractions of APP, one of them results into the formation of
amyloid beta, which ultimately bundles and accumulates exterior of neurons in
compact structures referred to as senile plaques (Hooper 2005). The shape and size
of senile plaque vary, but then its usual size is 50 μm which has a tendency to form
protein aggregates and which functions as neurotoxic in nature.

Tau protein is a microtubule-associated protein (MAP), primarily found in
neurons, and structurally is an isoform of six proteins formed via alternative splicing.
In neurons, its role is to keep the microtubule in a stable condition. Tau proteins in
hyper-phosphorylated form are coupled with the pathogenesis of Alzheimer’s dis-
ease and Parkinson’s disease (Goedert et al. 1991). Tau protein is phosphorylated
through serine and threonine residues as these residues have binding sites for
phosphorylation. The phosphorylation phenomenon is controlled by protein kinases
especially serine threonine kinases. The proteoglycans including heparin sulfate are
vital in the absorption of tau protein on the surface of cells by means of micro-
pinocytosis process. It has been also observed that tau proteins play a crucial role in
cell signaling and apoptosis (Ahanger et al. 2021a). There is obstruction of synapses
by the misfolding and aggregation of tau protein. Some well-established reports
depict that the Alzheimer’s disease is caused due to protein misfolding or it is a
proteopathy, in which the brain of the patient suffering from Alzheimer’s disease is
clumped due to aberrant amyloid beta protein (Ahanger et al. 2021b; Bashir et al.
2021). The brain cells or neurons have no tendency to be reversed after its death.
Hence, there is lack of sustainable medicine for this fatal complication. But, in order
to live with this suffering, scientists have suggested some therapeutic molecules,
which provide the patient some sight of relief.

Acetylcholine is a neurotransmitter that is very crucial for the transmission of
nerve impulse. Choline acetyltransferase is the crucial enzyme responsible for the
synthesis of acetylcholine from choline and acetyl-CoA. Acetylcholine can be
fragmented into choline and acetate in the presence of acetylcholinesterase. The
action of acetylcholinesterase can be inhibited in order to design the therapeutic
approach in various neurological complications including Alzheimer’s disease.
Taking clue from this approach, rivastigmine is a drug which has been found very
effective as the blocker of acetylcholinesterase. Rivastigmine has been used in the
preparation of nanoparticles, namely, cholesterol liposomal nanoparticles
(Govindarajan Karthivashan et al. 2018). It has been found that in the brain, half-
life of rivastigmine after conjugation with nanoparticle is enhanced significantly that
contributes in its ability to tackle Alzheimer’s disease. Reports have shown that there
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are other important inhibitors of acetylcholinesterase such as catechin, which is very
effective in the protection against various neurological diseases, when incorporated
in gold nanoparticles (Govindarajan Karthivashan et al. 2018).

The genetic, neuroanatomical aberrations and environmental factors are thought
to be the probable risk factors responsible for triggering the autism spectrum
disorder. Reports obtained from MRI experiments suggest that people suffering
from autism spectrum especially between the age group of 3 and 4 years possess a
bigger total cerebral brain volume with respect to children which are at a verge of
developing. Other reports depict that patients suffering from ASD from age group
between 2 and 4 years also possess a larger brain volume with respect to the normal.
Such uncharacteristic expansion of brain formation is due to extreme broadening of
brain white matter and gray matter especially from the cerebral region. The H-MRS
technique is very significant to identifying deformities and pathologies in brain
sections that seem normal under MRI technique. From such experiments, N-acetyl
aspartate choline, creatine, and myoinositol are some molecules with important
spectral peaks. N-acetyl aspartate acts as an indicator which is very sensitive to
structural stability of neurons. From the MRSI experiments, it is clear that people
suffering from autism spectrum especially between the age group of 3 and 4 years
shows that there is a reduction of N-acetyl aspartate. Such outcomes possess
the significance for understanding the complexity of anomalous enlargement of the
brain in the autism spectrum disorder. There is the assumption regarding the
enlargement value of the brain in the patient suffering from ASD, which points it
toward the impairment phenomenon of apoptosis or synaptic pruning. This sugges-
tion depicts that as the concentration of N-acetyl aspartate elevates, it results into the
formation of further compactly packed neurons or enlarged synaptic networks.

Immense measures of collective initiatives and associations such as Alzheimer’s
Disease Neuroimaging Initiative obtain and stake huge number of data including
phenotypic, genotypic, behavioral, and imaging in order to assist in determining new
biomarkers so to better apprehend the complexity of fatal complications. The
extensively recommended approach which is the usual outline deals with the relation
of the specific components symbolized in the form of nodes by the graph (Sarah
Parisotb et al. 2018). In biomedical sciences, particularly, these nodes may signify
the persons or patient observed in the possibly huge population, which comprises
groups of characteristics, whereas the boundaries of the graph possess the relations
of components and topics by the natural means. This type of demonstration permits
to integrate the information about imaging and non-imaging data and personal
characteristics all together, which may be used for the examination and pathology
of brain diseases in huge populations (Sarah Parisotb et al. 2018). Many studies use
the Graph Convolutional Networks, which involves ABIDE and ADNI, two huge
datasets, in order to forecast the autism spectrum disorder and its transformation into
the Alzheimer’s disease, respectively. This demonstration from both databases
depicts that this innovative arrangement may expand outcomes. The acquired results
were with precision by means of ABIDE with 70% and ADNI with 80% (Sarah
Parisotb et al. 2018). Downregulation of the immune system, inflammation (local
reaction to cellular damage), oxidative stress (cellular damage caused due to the
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inequality between free radicals and antioxidant), mitochondrial impairment, and
exposure to environmental toxicants are some major physiological aberrations which
are coupled with autism spectrum disorder (Fry and Frye 2012).

3.2 Materials and Methods

3.2.1 Comprehensive Study of Review of Literature of Different
Neuronal Proteins

The basic material is acquired from the vigorous study of different previously
authentic publications. Different neuronal proteins including amyloid precursor
protein (APP), fragile X mental retardation protein, metabotropic glutamate
receptors, and phosphatase and tensin homolog (PTEN) in association with autism
spectrum disorder and Alzheimer’s disease were thoroughly studied and reviewed.
Various cell signaling pathways comprise NOTCH, WNT proteins of Alzheimer’s
diseases, and the protein of apoptosis pathway. All these pathways are collectively
referred to as NOWADA model or NOTCH-WNT-Alzheimer's Disease-Apoptosis
model. This vital pathway is comprehensively highlighted in this chapter (Fig. 3.1).

3.3 Discussion

There are many reports that suggest a link between autism spectrum disorder (ASD)
and Alzheimer’s disease (AD). Patients especially children suffering from autism
have shown an increased percentage of amyloid precursor protein in plasma (Sokol
et al. 2006). It has been observed that such patients exhibit two times the quantity of
amyloid precursor protein as compared to patients suffering from mild autism
spectrum disorder. Generally, it is estimated that a greater amount of soluble amyloid
precursor protein-alpha results in insignificant reduction of Aβ40 in patients
suffering from autism (Sokol et al. 2011). Such observations indicate that there are
more chances of formation of higher proteins which are non-amyloidogenic in nature
with anabolic behavior in autism spectrum disorder as compared to Alzheimer’s
disease which are dominated by catabolic behavior (Sokol et al. 2011). Increased
amount of soluble amyloid precursor protein-alpha formed by means of
non-amyloidogenic phenomenon might be involved in the complexity of autism
spectrum disorder. There is a genetic disorder which is involved in intellectual
disability called fragile X syndrome (FXS). The phenotypes responsible for mental
retardation, introducing the social, communication, and behavioral problems in an
individual, are called FXS phenotypes. Enhancement in the formation of soluble
amyloid precursor protein-alpha through non-amyloidogenic phenomenon might be
backing to phenotypes of both autism spectrum disorder and fragile X syndrome.
The neurological disorder where there is an absence of a well-developed brain,
especially in the newborns, which results into the development of a smaller than
normal head is referred to as microcephaly. Increased levels of soluble amyloid
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precursor protein-alpha are also believed to be associated with microcephaly. Such
kind of involvement of soluble amyloid precursor protein-alpha is partly facilitated
by binding of sAPP-alpha to catenin. Cortical neurons are changed by adhesion and

Fig. 3.1 Different abnormal neuronal proteins associated with autism spectrum disorder and their
influence on neuroplasticity (Zeidan-Chulia et al. 2014)
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migration due to sAPP-alpha to catenin thus stimulating this abnormal development
of the brain.

The abrupt uncontrolled electrical signals between the neurons are referred to as
seizures. It has been found that patients suffering from autism spectrum disorder,
fragile X syndrome, and Alzheimer’s disease are also characterized with possessing
10–30% of seizures (Hagerman 2002; Scarmeas et al. 2009).

3.3.1 Different Neuronal Proteins Associated with Autism
Spectrum Disorder and Alzheimer’s Disease

3.3.1.1 Amyloid Precursor Protein (APP)
Amyloid precursor protein (APP) is a bigger fraction of amyloid beta protein largely
located in the synapses of nerve cells. It is present in many tissues but is largely
located in synapses of nerve cells. The arrangement of different subcellular
components in the presynaptic and postsynaptic locations for transmission of
nerve impulse is controlled through the process called synapse formation. APP
plays an important role in the process of synapse formation. The significant
modifications exhibited by the neurons of the brain due to cortical reorganization
are also facilitated by amyloid precursor protein, and the tendency is called
neuroplasticity. Further, the enabling of exportation of iron is also an important
biological function of amyloid precursor protein (Rogers et al. 2008). The export of
iron is enabled by binding of APP with ferroportin and due to the presence of
ferroxidase activity observed in APP, and this activity can be suppressed by the
zinc ion (Rogers et al. 2008). In addition, the neuronal transport of molecules
produced in neurons transported into synapses of neurons in the distal portion is
also facilitated by amyloid precursor protein (Satpute-Krishnan et al. 2006). This
transport is meditated by binding of cargo protein with kinesin protein. This type of
transport is called anterograde neuronal transport (ANT), which occurs by transport
of neuron molecules from the cell body outward into the synapse portion of neurons
(Satpute-Krishnan et al. 2006). The gene present in humans which is responsible for
encoding glutamate receptor is called metabotropic glutamate receptor 1 protein
(mGluR1). The receptor, which functions by means of secondary messenger, is
regarded as metabotropic receptor. It has been suggested that during the cell culture,
there is the stimulation of glutamate receptor 1 which in turn leads to the enhance-
ment in the release of soluble amyloid precursor protein (Jolly-Tornetta et al. 1998).
In addition, there are reports which suggest that during cell culture, amyloid precur-
sor protein is also associated with adhesion of nerve cells which signifies that this
protein might also be vital in prevention. Hence, the position and role of APP in the
autism is important for normal growth and development of the brain (Geschwind
2009).

3.3.1.2 Fragile X Mental Retardation Protein (FMRP)
Fragile X mental retardation protein (FMRP) is a vital protein, which is crucial for
normal growth and development of the brain. There is development of FXS, ASD,
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Parkinson’s disease, mental retardation, and POF when the FMRP gene undergoes
mutation (Verheij et al. 1993). Transportation of target mRNAs and guiding the
phenomenon of translation at the synapse are major effects of FMRP. It has also been
linked to interact with the assembly of ribosomes connected to the molecule of
mRNA (Weiler et al. 1997). This interaction tendency of FMRP is operative in the
presence of H homology domain, and glycine-arginine rich residues facilitated by
controlling translation are apparently crucial for usual memory and learning (Weiler
et al. 1997). The proximal portion of dendrite is the site involved in the formation of
fragile X mental retardation protein, whereas distant portion of a dendrite is involved
in transmission of nerve impulse synapse after the stimulation from mGluR (Miller
et al. 2005). In patients suffering from fragile X syndrome, there is a rise in amount
of dendritic spines in an immature form, which signifies that the morphology of the
spine is irregular and uncharacteristic in nature (Sokol and Edwards-Brown 2004).
Deficiency of fragile X mental retardation protein has been also linked with the
formation of anomalous dendritic spine, which is a membranous outgrowth from the
dendrite of a neuron crucial for the transmission of nerve impulse (Sokol and
Edwards-Brown 2004).

3.3.1.3 Metabotropic Glutamate Receptors (mGluRs)
Metabotropic glutamate receptors (mGluRs) refer to glutamate receptor or type of
GPCRs situated in the synapses of nerve cells, which function as metabotropic in
nature, i.e., functions in the presence of secondary messenger (Bonsi et al. 2005).
mGluRs interact with the excitatory neurotransmitters glutamate (Bonsi et al. 2005).
mGluR is involved in the phenomenon of translation through triggering the different
cell signaling pathways such as PI3K/mTOR pathway that is based on the fragile X
mental retardation protein pathway (Lahiri et al. 2002). There are different
subclasses of mGluRs and mGluRs 1, which have been observed to be responsible
for causing the complications like Fragile X syndrome. The most frequently reported
cause of autism spectrum disorder is Fragile X syndrome. mGluRs I are recognized
to enhance the functioning of N-methyl-D-aspartate receptors which are important
sites in causing excitotoxicity (excessive stimulation of glutamate receptor by the
increase in glutamate that leads to damage and death of neurons) (Skeberdis et al.
2002). Metabotropic glutamate receptor II acts as agonists very important in the
treatment of mood swings or mania or depression which are the peculiarities of a
prolonged mental health complication known as schizophrenia (Krystal et al. 2003).

3.3.1.4 Phosphatase and Tensin Homolog (PTEN)
PTEN is an important human protein that functions as the tumor suppressor gene due
to its phosphatase activity. The tensin domain and the catalytic domain are the two
types of domains found in the structure of PTEN protein (Steck et al. 1997).
Phosphatase activity in PTEN is responsible for tumor suppression. This phospha-
tase activity possessed by the protein PTEN is also very significant in cell cycle
control, stopping cells from increasing and dividing too promptly (Steck et al. 1997).
There can be more susceptibility in the formation of various cancers if this PTEN
gene undergoes mutation. There is the formation of structure of lesions in the
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cerebellar portion causing a disease called dysplastic gangliocytoma of the cerebel-
lum characterized by the presence of mutated PTEN (Pilarski and Eng 2004). The
study also suggests that there is the development of autism complications if the
PTEN gene goes through any defects or abnormalities. The protein PTEN has been
observed to be involved in the binding with the tumor suppressor protein called
Tp53. This interaction results in the reduction in formation of energy in the nerve
cells. This energy crisis in neurons results in destructive changes in the DNA of
mitochondria with formation of energy in an abnormal way in different portions of
the brain which is very vital for an individual’s social behavior (Steck et al. 1997).
The deficiency of PTEN protein leads to the binding of PTEN to p53 which initiates
insufficiencies and abnormalities of different proteins observed in patients suffering
from incapacities in learning such as autism spectrum disorder (Napoli et al. 2012).
The structural change of various PTEN proteins is a key distinguishing trait seen in
people suffering from autism spectrum disorder. This condition in which an individ-
ual is characterized with having an enlarged and abnormal head is called
macrocephaly (Kerrr et al. 2006).

3.3.1.5 Correlation Between Amyloid Precursor Protein (APP), Fragile X
Mental Retardation Protein, and Metabotropic Glutamate
Receptors

There are reports which illustrate the significant governing correlation between
amyloid precursor protein (APP), fragile X mental retardation protein, and
metabotropic glutamate receptors with respect to autism spectrum disorder and
Alzheimer’s diseases (Westmark and Malter 2007). When the synaptic terminal is
isolated from the nerve cell, it is called a synaptosome. When the synaptosome is
resealed at postsynaptic level, it is called a synaptoneurosome. There is enhancement
of amyloid precursor protein (APP) in protein synthesis when the synaptoneurosome
is activated in the presence of metabotropic glutamate receptors (Westmark and
Malter 2007).

The complex formation between RNA and protein in the presence of amyloid
precursor protein (APP) and fragile X mental retardation protein mRNA has been
observed to be denatured via agonist behavior exhibited by metabotropic glutamate
receptors in animals especially wild type (Westmark and Malter 2007). With basal
conditions, fragile X mental retardation protein is involved in the suppression of
translation of amyloid precursor protein. However, this suppression is operative once
metabotropic glutamate receptor 5 is stimulated and activated. The suppression of
amyloid precursor protein is lacking which is based on translation of fragile X
mental retardation in fragile X syndrome (FXS) (Vanderklish and Edelman 2002).
Studies also suggest that increase in the translation of amyloid precursor protein is
not observed to be activating the amyloidogenic pathway of amyloid precursor
protein. This ultimately can facilitate the additional substrate for the enzyme such
as alpha-secretase pathway and possibly display significant neuroprotection from the
lethality of Alzheimer’s disease. Specifically, this would describe the deficiency of
Aβ plaques detected in fragile X syndrome and in autism spectrum disorder
(Vanderklish and Edelman 2002).
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3.3.1.6 Significance of NOWADA Model in Alzheimer’s Disease
and Autism Spectrum Disorder

There is web of various cell signaling proteins associated with Autism Spectrum
Disorder such as Notch, Wnt, proteins of Alzheimer’s disease, and the proteins of
apoptosis pathway. Notch protein refers to transmembrane protein responsible for
cell-cell communication and regulating the fate of the cell at the time of develop-
ment. Wnt protein is a glycoprotein involved in Wnt signaling pathways responsible
for the interaction between cells either cell-cell communication or same-cell com-
munication and controlling of developmental processes, and this protein has been
also observed in association with ASD (Zeidan-Chulia et al. 2014). There are at least
374 proteins in this model, which are interrelating with each other by means of 3665
interactions. These proteins result into the formation of some nodes with various
categories: Notch, Wnt, AD, or apoptosis. These networks of proteins have been
observed in patients suffering from autism spectrum disorder in the cerebellar
portion of the brain (Zeidan-Chulia et al. 2014). The network of such complex of
proteins is believed to be a mutual pathway existing between the etiology of
Alzheimer’s disease and autism. In silico studies depict that there are two therapeutic
molecules such as magnesium and rapamycin that exhibit significant effects on
proteins associated with NOWADA model.

Rapamycin Rapamycin is a conjugated molecule that acts as antibiotic and has been
observed to be involved in the suppression of B cell and T cell process of activation
by decreasing the sensitivity of IL-2 via suppression of mTOR. But nowadays, it is
believed that rapamycin can be significant in the prevention of autism spectrum
disorder (Spilman et al. 2010). Studies from mice tell us that rapamycin could be
involved in restoring the synaptic plasticity and enhancement of transmission of
nerve (Ehninger et al. 2008; Spilman et al. 2010).

Magnesium Magnesium serves as the cofactor and possesses the catalytic effec-
tiveness in the hydrolysis of GTP. The enzyme serine threonine kinase containing
proline is known as glycogen synthase kinase-3 beta or simply the GSK3B (Zhang
et al. 2000). Its phosphorylating activity is based on the substrate of magnesium. Its
mutation has been coupled with neurological complications including bipolar dis-
ease and Alzheimer’s disease (Zhang et al. 2000). There are studies which illustrate
that the decreased level of magnesium has been observed markedly in the brain of
individuals suffering from autism spectrum disorder; correspondingly, a decreased
level of magnesium has also been observed markedly in the brain of individuals
suffering from Alzheimer’s disease with respect to normal brains (Strambi et al.
2006). In recent times, there are studies which show that the increased level of
magnesium in the brain performs a vital role and results in the neuroprotective
effects in the synapses portion in individuals suffering from Alzheimer’s disease.
Therefore, magnesium could be used as a therapeutic strategy in order to tackle
Alzheimer’s disease. There are also reports of progressive communicative effects of
magnesium in the presence of pyridoxine treatment with respect to the treatment of
autism spectrum disorder (Strambi et al. 2006).
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3.3.1.7 Neurotoxic Nature of Aluminum as the Inducer of Autism
Spectrum Disorder and Alzheimer’s Disease

Aluminum is the commonly observed and most extensively used metal on the
surface of the planet. Approximately 52 million tons of aluminum are produced
annually throughout the world. The report suggests noncarcinogenic nature of
aluminum in humans. Aluminum is harmless or nontoxic in nature up to 40 mg
per day. Aluminum oxide has been used as food additive, coloring agent,
emulsifying agent, and thickener. It is also reported in humans that aluminum
oxide has been associated in the formation of numerous neurological complications
such as Alzheimer’s disease and autism spectrum disorder (Virk and Eslick 2015).
Ample reports are there which illustrate that aluminum shows a neurotoxic behavior
in humans and might be a very critical inducer in the pathogenesis of Alzheimer’s
disease, autism spectrum disorder, and some gradual, neurological complications
based on age (Virk and Eslick 2015). Hence, it is believed that such types of contact
circumstances to aluminum can harmfully deteriorate human health. In other studies,
involving a postmortem examined human brain, there was an increased level of
aluminum which could be suggestive to be associated with Alzheimer’s disease
(Aileen Pogue 2016). It is also observed that toxicity of aluminum can be a causative
agent for degeneration of the central nervous system, which can especially lead to
the formation of encephalopathy (malfunction and damage of the brain) (Aileen
Pogue 2016).

3.3.1.8 Correlation in Therapeutic Approach Approved for Autism
Spectrum Disorder and Alzheimer’s Disease

As far as treatment of autism spectrum disorder is concerned, there are only two
drugs for the treatment of autism spectrum disorder, risperidone and aripiprazole.
These therapeutic molecules are approved by the Food and Drug Administration
(FDA) not for the primary symptoms of this complication but for countering the
irritability complication associated with ASD. There are some treatments which have
been observed to be effective in treating the symptoms associated with autism
spectrum disorder, and among them there are also some medications which are
also effective and recommended in the treatment of Alzheimer’s. According to US
FDA, donepezil, galantamine, rivastigmine, tacrine, and memantine are few
molecules which have been accepted as effective therapeutic strategy for
Alzheimer’s disease. Such molecules are responsible for obstructing and blocking
the usual breakdown of the neurotransmitter acetylcholine, referred to as cholines-
terase inhibitors.

3.3.1.8.1 Donepezil
Donepezil is structurally a hydrochloride salt derived from piperidine, which is
approved for the treatment of Alzheimer’s disease. Donepezil is observed to be
interacting with cholinesterases and deactivates the activity of this enzyme, thereby
by obstructing acetylcholine from the breakdown (Anas Shamsi et al. 2020). At
synapses, this ultimately leads to increases in the level of acetylcholine (Kumar and
Sharma 2020). However, its exact mechanism of action is still not explored yet.
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There are reports which depict that 70% of patients suffering from autism spectrum
disorder have shown improvement (Anas Shamsi et al. 2020). Studies have shown
that in patients suffering from autism spectrum disorder, children from the age group
of 2.5–6.9 years have disturbances in rapid eye movement (REM) sleep (Buckley
et al. 2011). Upon administration of the drug donepezil to these patients, there has
been an enhancement in the level of REM sleep (Buckley et al. 2011). In other
studies, before donepezil was administered, particularly in children aged 5 years,
patients showed symptoms of lacking communication, eye contact, and hyperactiv-
ity (Srivastava et al. 2011). Upon administration, a marked enhancement in commu-
nication, eye contact, and hyperactivity was seen. Still, there are inconsistent
evidences regarding the improvement from symptoms of ASD with the use of
donepezil (Srivastava et al. 2011).

3.3.1.8.2 Galantamine
Galantamine is a benzazepine derivative of norbelladine which acts as a cholinester-
ase blocker. It is approved for different memory loss problems and treatment of
Alzheimer’s disease. Galantamine obstructs the acetylcholinesterase, which is
responsible for the breakdown of the neurotransmitter acetylcholine. This suppres-
sion of acetylcholinesterase results in the rise of neurotransmitter acetylcholine
significantly for transmission of nerve impulse. Studies suggest that galantamine
can be administered in patients suffering from autism spectrum disorder especially to
children (Ghaleiha et al. 2013). Upon administration of this drug, there has been an
observance of removal of the social irritability and lethargy (Ghaleiha et al. 2013). In
other studies, suggesting administration of 16 mg per day of galantamine in patients
suffering from autism spectrum disorder especially adults from the age group
21–25 years, there is enhancement in the expression of language and communica-
tion. It is assumed that galantamine is possessing dual activity as it has been
exhibiting parallel effects in both children and adolescent patients suffering from
autism spectrum disorder (Nicolson et al. 2006).

3.3.1.8.3 Rivastigmine
Rivastigmine is a carbamate ester which acts as a cholinesterase blocker and is
approved to treat neurological complications including Alzheimer’s disease and
Parkinson’s (Khoury et al. 2018). It has been observed that rivastigmine is involved
in the suppression of butyrylcholinesterase activity as well as acetylcholinesterase. It
is also reported that the pathway associated with the activity of alpha-secretase can
be modified in the presence of rivastigmine (Khoury et al. 2018). Another study
suggests that rivastigmin (0.8 mg twice a day) when administered to patients
(children) suffering from autism spectrum disorder leads to enhancement of com-
munication (Chez et al. 2004b). Such improvement in the communication has been
observed statistically substantial for therapeutic approach and provides optimistic
healing effects in the individuals suffering from the autism spectrum disorder (ASD)
(Chez et al. 2004b).
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3.3.1.8.4 Tacrine
Tacrine chemically belongs to the class of acridines, regarded as blocker of acetyl-
cholinesterase, and has been recommended for the treatment of Alzheimer’s disease
(Taraschenko et al. 2005). The tread name of tacrine is Cognex in the market
(Taraschenko et al. 2005). Tacrine is easily soluble in distilled water, 0.1 normal
solution of HCl, dimethylsulfoxide, methanol, ethanol, and propylene glycol, and in
both the buffers including phosphate buffer and acetate buffers (Taraschenko et al.
2005). Reports suggest that 20 mg of tacrine can be given to autism spectrum
disorder patients especially in the age group 17–33 years. Upon administration of
this drug, there has been an observance of recovery from bad temper and unfitting
communication-like symptoms (Niederhofer 2007).

3.3.1.8.5 Memantine
Memantine is a primary aliphatic amine, which acts as a blocker of acetylcholines-
terase, and is approved as medication for Alzheimer’s disease. Excessive release of
glutamate results in the repeated stimulation of glutamate receptors. This repeated
stimulation results in the deterioration and death of neurons. This process is called
neuronal excitotoxicity. This excitotoxicity phenomenon has been assumed to be
responsible for the pathogenesis of Alzheimer’s disease. The N-methyl-D-aspartate
receptor (NMDA receptor) provides an innovative method to understand the narrow
effectiveness of present medications aiming the cholinergic system.

Memantine is reported to be interacting with NMDA receptor. The binding
affinity of this interaction is excellent; thereby, memantine is able to conquer the
continued entry of calcium ions, predominantly from the extrasynaptic receptors
involved in neuronal excitotoxicity. Thus, memantine is involved in the suppression
of neuronal excitotoxicity and reserves the role of the receptor at synapses. Hence,
the binding of memantine to glutamate receptors or NMDA receptors is very
significant in the symptomatic enhancement.

There are several studies which describe the effectiveness of memantine
administrated in patients suffering from autism spectrum disorder. Reports suggest
that 8.1 mg per day of memantine drug (Chez et al. 2004a) provides recovery from
bad temper and unfitting communication-like symptoms, further improving attention
and language (Chez et al. 2004a). In another study, 20 mg per day dose of
memantine was administered (patients aged 6–19 years) showing progress in social
withdrawal and carelessness (Erickson et al. 2007). However, a few patients experi-
enced increase in side effects such as irritability, rash, and seizures with this
medication (Erickson et al. 2007).

Numerous reports have delineated contradictory effects in some individuals
suffering from ASD after the medication of memantine (Rossignol and Frye
2014). Remarkably, memantine has been described to both recover and deteriorate
the irritability. Such studies indicate that there can be particular subcategories of
children suffering from ASD which react significantly to memantine (Rossignol and
Frye 2014). Evidently bigger, well-made, and vigorous investigations are required to
further assess the effectiveness of memantine in patients suffering from ASD
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especially children and also subcategories that may significantly react to medication
of memantine (Rossignol and Frye 2014).

3.3.2 Role of Neuroplasticity in Autism Spectrum Disorder
and Protection from Alzheimer’s Disease

Due to proliferation of cells, there is organ enlargement, which is called hyperplasia
or hypergenesis or neoplasia or benign tumor. The condition of being hyperplastic is
known as hyperplasticity. Many times, hyperplasticity condition may be harmless,
which takes place in some specific tissues (Sembulingam and Sembulingam 2012).
During pregnancy, glandular cells in the breast that are responsible for secreting milk
undergo growth and multiplication. This is an excellent instance of hyperplastic
response (Dirbas and Carol 2011). The innate ability of brain neurons to form and
reorganize or modify their synaptic connections and behavior in response to new
information, injury, or dysfunction is known as neuroplasticity (Davidson and Bruce
2012; Doidge 2007). These changes occur from the cellular level (neurons) to
extensive level comprising cortical remapping. In the cortex of the brain, there is
an assembly of minicolumns (vertical column) responsible in executing particular
information including texture, color, and outline maps; it is called cortical maps
(Doidge 2007). The phenomenon through which the brain is influenced and stimulus
results in the formation of the cortical map which is new is known as cortical
remapping (Doidge 2007). Thus, neuroplasticity is some sort of hyperplasticity in
which the brain adjusts some significant changes such as training and acquiring new
abilities that may be learning languages, math, and also physical activities and
strength (Compare: Reznikov et al. 2012). The phenomenon in physical activities
is involved in the initiation of motor cortex which ultimately is responsible for
enhancing the connectivity between your brain and your body, which is regarded
as neuropriming. During the event of neuropriming, the brain goes into a state of
profound plasticity so that brain acclimatizes such physical activities more efficiently
through the process of hyperplasticity (Livni 2019). The physical activity which
involves the building of robust networks of the brain with the muscles by means of
neurostimulation is called neuropriming (Livni 2019). It involves the phenomenon
of hyperplasticity or hyper-learning. There is the headset that permits the operator to
increase any physical ability rapidly through the use of neuropriming mechanism,
and this headset is called halo sport (Livni 2019).

Thus, the soundness of the brain is reliant on sustaining a suitable equilibrium at
the cellular level and extensive level of cortical plasticity (Freitas et al. 2013). In
cortical plasticity, gradual deterioration at the cellular level (neurons) of the brain
involves modifications which are associated with the age of an individual and a
compensating rise in extensive level of cortical plasticity (Freitas et al. 2013). It has
been observed that individuals suffering from ASD are also suffering from age-
linked cognitive and behavioral problems. There is, however, no indication that
people with ASD have a shorter lifespan than the rest of the population. This report
shows that patient suffering from ASD can also sustain a significant tendency for
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modulation throughout the lifespan. In the pathogenesis of dementia in Alzheimer’s
disease, there is the involvement of phenomenon of cascade prematurely which is
believed to be driven by changes in synaptic plasticity. In these complications of the
brain, there is accumulation of amyloid aggregates; tau protein-induced neuronal
degeneration is also supposed to occur due to changes in synaptic plasticity
(Oberman and Pascual-Leone 2013). The autism spectrum disorder is mostly
associated with hyperplasticity. The hyperplasticity has been also reported to form
a cascade by the involvement of various neuronal proteins which can provide the
defense from the early offense of various neurological complications (Andrasi et al.
2005). Numerous reports indicate that neuroplasticity decreases during the course of
the life cycle. It is further suggested that the cortex of the brain in patients suffering
from autism spectrum disorder is exhibiting the hyperplastic response. Therefore,
such complications must be prevented by decrease in the hyperplastic response
(Oberman and Pascual-Leone 2013). It is reported that individuals suffering from
autism spectrum disorder manifest hyperplasticity or brain plasticity through adult-
hood. This may be crucial for the prevention of the onset of Alzheimer’s disease
(Andrasi et al. 2005; Oberman and Pascual-Leone 2013). Figure 3.1 shows different
abnormal neuronal proteins associated with autism spectrum disorder and their
influence on neuroplasticity (Zeidan-Chulia et al. 2014).

In conclusion, the neurodevelopmental disability caused by autism spectrum
disorder (ASD) and neurodegenerative complication caused by Alzheimer’s disease
(AD) are two dangerous diseases with debilitating consequence in the human health.
However, research refers that both complications involve the same neuronal proteins
such as amyloid precursor protein (APP), phosphatase and tensin homolog (PTEN),
fragile X mental retardation protein, and metabotropic glutamate receptors. There-
fore, there may be a strong relationship among these neuronal proteins with respect
to the pathogenesis of these complications, so this study also describes such correla-
tion. The significance of common signaling pathway is illustrated though the
NOWADA model. Also, hyperplasticity is also a significant phenomenon in the
brain of individuals suffering from ASD whose exhibition could be the possible key
factor in the pathogenesis of AD. There is no medication available for the treatment
of ASD; still, there are some drugs such as donepezil, galantamine, rivastigmine,
tacrine, and memantine approved for AD. In ASD, acetylcholine and glutamate
neurotransmitters in the state of impairment are targeted by such medications.
Studies reveal that these drugs have also shown some improvement in a few
symptoms of ASD. Therefore, further strong studies are recommended, as efficient
medication for ADS and AD is unavailable. Through emphasizing the current
advances and progress on ASD and its association with AD, this study focuses the
importance on understanding the pathogenesis and complications associated with
these disorders and urge to design effective medications for such a frustrating human
disease.
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Abstract

Alzheimer’s disease (AD) is considered one of the most complex neurodegenera-
tive disorders. Amyloid and tau pathology, along with neurofibrillary tangles, are
most commonly seen in this disease. Various compounds show promising
responses in treating this disease, but they also cause severe side effects. To
minimize these side effects, researchers explored several natural products for the
treatment of this disease. Natural products cause very minimal side effects as
compared to isolated chemical compounds. The minimal side effect might be due
to the complex synergistic effects of various bioactive components present in
these natural products. Several natural products like green tea, epigallocatechin
gallate, baicalein, berberine, and quercetin show a robust response in the treat-
ment of AD. Some natural compounds like Ginkgo biloba extract and Huperzine
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A passed the clinical trial on PD. This chapter has explored the potential of some
of the most common natural products to treat AD in a sequence-wide manner.

Keywords

Alzheimer’s disease · Green tea · Epigallocatechin · Baicalein · Clinical trials

4.1 Introduction

Alzheimer’s disease (AD) is a multifactorial and progressive disease of the brain that
occurs worldwide. AD is also considered one of the most common forms of
progressive dementia characterized by beta-amyloid and tau pathology (DeTure
and Dickson 2019). Oxidative stress, neuroinflammation, mitochondrial dysfunc-
tion, and synaptic dysfunction are common factors observed in AD progression
(Tönnies and Trushina 2017). Targeting mitochondrial dysfunction shows a better
therapeutic response to stop the progression of this disease (Rai et al. 2020). Despite
several treatment options, there is no holistic approach to stop the disease progres-
sion. Although several compounds have a strong potential to treat AD, several side
effects limit their usage.

Consequently, researchers have shifted their attention toward natural compounds
that might have significantly fewer side effects. Researchers have demonstrated that
several natural products show enhanced therapeutic efficacy in treating AD (Dey
et al. 2017; Shao and Xiao 2013). In this book chapter, we have discussed the role of
some common natural products which are used to treat AD.

4.2 Green Tea in the Treatment of AD

In a recent study, green tea’s neuroprotective role was evaluated in a rat model of
AD. In this study, the authors demonstrated that cognitive functions were improved
after green tea administration (Schimidt et al. 2017). In a similar work, the impact of
green tea consumption on oxidative stress parameters was shown in 30 patients with
chronic AD. Based on the antioxidant level improvement, they implicated that green
tea could be added as a prophylactic agent in the AD therapeutic category (Arab et al.
2016). Zhu et al. aimed to conduct a study to improve synaptic efficiency to revive
memory impairment in AD. The authors explored L-theanine’s role, a natural
constituent present in green tea, to achieve the memory improvement goal by
altering hippocampal synaptic transmissions in transgenic experimental mice.
They further suggested that L-theanine could modulate the hippocampal synaptic
efficiency, consequently alleviating AD symptoms, hence could be considered as a
therapeutic candidate in the AD treatment regime (Zhu et al. 2018). In a most recent
study, green tea as cognitive impairment rejuvenating moiety in the form of the
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dietary supplement was investigated. In the study, firstly, an extract was obtained
from dried Camellia sinensis (CS) leaves and later was decaffeinated. Further
in vitro and in vivo studies revealed a decline in beta-amyloid (Aβ42 and Aβ40)
levels (Kim et al. 2019). Ali et al. carried a molecular docking study to examine
green tea’s effect on the level of acetylcholinesterase (AChE)- and
butyrylcholinesterase (BChE)-dependent neurodegeneration in AD. They suggested
green tea as a potential inhibitor of AChE and BChE with enhanced cholinergic
neurotransmission for a prolonged period (Ali et al. 2016). Another investigation by
Kaur et al. depicted that green tea extract exhibited therapeutic abilities for
age-related cognition impairment in young and old male Wistar rats. The current
study suggested that green tea could be employed as a potential therapy to reverse
age-related deficits in learning and memory through selective acetylcholinesterase
inhibition (Kaur et al. 2008). Another group evaluated green tea’s constituent
polyphenol epigallocatechin gallate (EGCG) to halt the aggregation cascade of Aβ
and tau proteins. In vitro assays revealed that EGCG has the potential to prevent
amyloid-like formation of β-sheet rich along with aggregates of tau. Hence, EGCG
was found to be a potential candidate to attenuate Aβ by inhibiting the hallmarks of
AD (Wobst et al. 2015). In another investigation, the antioxidant and antiapoptotic
pathway inhibitor potential of green tea was studied in the primary cortical neuron.
The authors quantified the level of reactive oxygen species (ROS) and superoxide
dismutase (SOD) in the serum and performed Western blot. The study concluded tea
polyphenol as potential therapeutics against glutamate-induced excitotoxicity and
their protective effect mediated by the attenuation of oxidative stress and anti-
mitochondrial apoptotic pathway (Lin et al. 2016). In a similar work, the antioxidant
potential of EGCG was concluded based on the findings of behavioral and biochem-
ical tests (Biasibetti et al. 2013). In another study, fish oil in combination with EGCG
was administered in transgenic mice. The authors reported a decline in the therapeu-
tic dose of EGCG due to possible synergistic effects. Eventually, enhanced inhibi-
tion of cerebral Aβ deposits was observed in the mice (Giunta et al. 2010).

Additionally, Lim et al. evaluated catechin of green tea to treat AD via free radical
scavenging activity. The studies established a significant improvement in behavioral
deficits utilizing shortening of escape latencies, escape distances, and swimming
velocities in diseased mice. Hence, the authors demonstrated that catechin could be a
potential therapeutic intervention in AD-related dementia (Lim et al. 2013). Another
study employed multi-dimensional targeting approach of green tea component L-
theanine to attenuate β-amyloid-induced cognitive dysfunction and neurotoxicity.
Findings of the experiments concluded L-theanine as a potential therapeutic agent by
declining extracellular signal-regulated kinase and p38 mitogen-activated protein
kinase (ERK/p38) and nuclear factor κB (NF-κB) and by the reduction of macromo-
lecular oxidative damage (Kim et al. 2009).
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4.3 Therapeutic Role of Vitamins in AD

Fillenbaum et al. demonstrated that taking vitamin C and/or vitamin E alone did not
delay dementia and AD in community-dwelling elders (Fillenbaum et al. 2005).
Therefore, the authors finally suggested that supplemental vitamin C and/or E use
alone is inadequate to delay dementia or AD. On the contrary, Boothby et al.
investigated the potential of supplemental vitamin C and E in the treatment. They
showed that the combined use of vitamin C and/or vitamin E reduces AD prevalence
(Boothby and Doering 2005). One study explored the role of vitamin E along with
donepezil for mild cognitive impairment treatment. The double-blind study results
demonstrated no significant improvement in cognitive impairment with the com-
bined use of vitamin E and donepezil. However, donepezil therapy displayed a lower
rate of AD progression up to some extent (Petersen et al. 2005). Additionally,
Refsum et al. confirmed the link between low levels of vitamin B-12 in
AD. Finally, the authors’ findings suggested that the level of cobalamine is impaired
in AD and can be improved with the administration of B-12 (Refsum and Smith
2003). In another study, Kontush et al. explored the effect of vitamin E and C
supplementation on lipoprotein oxidation in AD patients. They suggested that
vitamin E and C significantly prevented autoxidation of CSF and plasma
lipoproteins. So, the above findings documented that combined use of vitamin E
and C supplementation provides a biochemical basis for AD (Kontush et al. 2001).
Additionally, Li et al. evaluated the impact of dietary intakes of vitamin E,
vitamin C, and β-carotene on AD’s development. The meta-analysis results indicated
a reduction in AD risk after taking vitamin E and C, along with β-carotene as dietary
components (Li et al. 2012). Moreover, another study investigated the role of
vitamin E in Alzheimer’s disease (Lloret et al. 2009). In addition to this, in
old-age conditions, Polidori et al. showed an enhanced level of carotid intima–
media thickness and reduced levels of plasma vitamin C along with vitamin
E. Biochemical results revealed that optimum level of vitamin C might be involved
in protection against AD and other cognitive manifestations (Polidori et al. 2015).
Takasaki et al. investigated the anti-oligomerization potential of vitamin A through
in vitro studies on Aβ. They examined the oligomerization inhibitory effect of
vitamin A on Aβ40 and Aβ42. Thus, based on the above evidence, author confirmed
that vitamin A could be useful in AD prevention (Takasaki et al. 2014). In another
similar study conducted by Huy et al., the anti-amyloidogenic potential of vitamin
K3 analogs was shown via in silico and in vitro characterization for AD treatment.
Both numerical and experimental results exhibited significant inhibition of Aβ
aggregation and conformational conversion by different analogs. Moreover, cell
viability results showed strong free radical reduction and protection against A-
β-induced toxicity. Based on all these findings, the authors documented that
modified vitamin K3 analogs could become a strong anti-amyloidogenic therapeutic
candidate for AD (Huy et al. 2013). Moreover, Gezen-Ak et al. studied the effect of
Apa1 and Taq1, two single nucleotide polymorphisms (SNPs) of vitamin D receptor
(VDR) gene in 104 Alzheimer’s participants. They concluded that the risk of AD
was more in Apa1 heterozygotes (Gezen-Ak et al. 2007). In a similar finding,
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Lehmann et al. confirmed the interaction of two VDR polymorphisms, i.e., Apa1 and
Taq1, in the regulation of neuroinflammation in patients <75 years old (Lehmann
et al. 2011). Meanwhile, another study examined the role of vitamin D in decreasing
L-type voltage-sensitive calcium channels A1C (LVSCCA1C) levels and in causing
the downregulation of cytotoxicity in the vitamin D treated group, resulting in
upregulation of nerve growth factor (NGF) secretion compared to the control
group. This study also determined that inhibition of Aβ toxicity prevents the
alteration of cortical neuronal activity (Dursun et al. 2010). Moreover, Annweiler
et al. showed that higher intake of dietary vitamin D leads to fewer chances of AD
among women aged 75 years and older (Annweiler et al. 2012a).The same group
studied a combination of memantine and vitamin D and demonstrated improvement
in Mini-Mental State Examination (MMSE) score and cognition performance in
patients with AD compared to drug alone (Annweiler et al. 2012b). Similar results
were reported by another group (Pogge 2015). A meta-analysis performed by Zhao
et al. revealed that a lower level of 25-hydroxy-vitamin D was observed in patients
with AD and Parkinson’s disease as compared to healthy control (Zhao et al. 2013).
Additionally, Grimm et al. demonstrated that 25(OH)-vitamin D increases
β-secretase BACE1 protein levels, responsible for an increase in Aβ peptide level.
Vitamin D leads to upregulation of neprilysin (NEP) expression and consequent
increase in Aβ degradation. They concluded the potential of vitamin D in the
management of AD (Grimm et al. 2014). The same group reported the strong link
between vitamin D deficiency in AD and other neurodegenerative disorders like PD
and vascular dementia (Grimm et al. 2019). Additionally, other reports also found
that development of dementia and AD is increased in vitamin D-deficient patients
(Littlejohns et al. 2014; Afzal et al. 2014). Furthermore, Gangwar et al. demonstrated
that the MMSE score was significant in the treatment group as compared to the
control group. Thus, they indicated that vitamin D effectively improves cognitive
functions and senile dementia in the elderly (Gangwar et al. 2015). In this regard,
Oudshoorn and colleagues exhibited similar findings where MMSE score was higher
in vitamin D-sufficient patients and suggested vitamin D3 has an additional effect in
enhancing cognitive performance in patients with AD (Oudshoorn et al. 2008).
Mohamed et al. reported that vitamin D3 exerts a neuroprotective effect in AD
(Mohamed et al. 2014). Further, Mizwicki et al. reported that insufficiency of
1α,25 (OH)2-vitamin D3 (1,25D3) and resolvin D1 might involve a risk factor for
the development of AD (Mizwicki et al. 2013). Recently, Fan et al. provided
evidence that four potential targets encoded by genes CACNA1C, NOTCH4,
COMT, and DRD3 show the important effect of vitamin D against AD and psycho-
sis (Fan et al. 2020).

4.4 Epigallocatechin Gallate in AD

Zadeh et al. reported the potential of (-)-epigallocatechin-3-gallate (EGCG) to
decrease the Aβ generation through in vitro studies using murine neuron-like cells
(N2a). These cells were transfected with the human “Swedish” mutant amyloid
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precursor protein (APP). They observed that EGCG significantly enhanced the
cleavage of the α-C-terminal section of APP and lifted the N-terminal AP cleavage
product, soluble APP-α. In this study, a reduced level of Aβ and plaque were
observed. Finally, they concluded that EGCG could be used as a prophylactic
treatment for AD (Zadeh et al. 2005).

In another study, Cano et al. designed epigallocatechin-3-gallate (EGCG) and
ascorbic acid (AA) dual drug-loaded PEGylated Poly Lactic-Co-Glycolic Acid
(PLGA) nanoparticles to improve the stability of EGCG by enhancing the bioavail-
ability and effectiveness in the AD model. They concluded that nanoformulations of
EGCG/AA nanoparticles (NPs) have a unique property to be developed as a safe and
effective treatment of AD (Cano et al. 2019). In an interesting study, the
neuroprotective potential of EGCG was explored using surface plasmon resonance
imaging (SPRi) of Aβ aggregation. Based on the above findings, they suggested
SPRi asone of the promising tools for screening the neuroprotective effects of new
compounds (Cheng et al. 2013).

In a different study, Engel et al. showed EGCG amyloid inhibitor activity. They
demonstrated that in contrast to its behavior in a bulk environment, EGCG has a
strong potential to prevent hIAPP amyloid fibril formation at the phospholipid
interface (Engel et al. 2012). In another study, the neuroprotective effect of EGCG
in contrast to some other selective bioactive compounds was investigated against Aβ
fibril formation and neuronal cell death in H2O2 developed pro-oxidant PC12 cells.
Based on the findings of in vitro cell viability results and ROS assays, the authors
concluded intense neuroprotective activity of EGCG (Harvey et al. 2011). In another
study, Mori et al. investigated the combinatorial effect of EGCG and ferulic acid in
the AD mice model.

Furthermore, combination treatment reduces neuroinflammation, oxidative stress,
and synaptotoxicity. Authors concluded that using plant-derived phenolics, EGCG,
and ferulic acid could serve as a promising therapeutic strategy to treat AD (Mori
et al. 2018). Similarly, Lee et al. demonstrated the neuroprotective potential of
EGCG against β-amyloid-induced cognitive dysfunction. The results of α-, β-, and
γ-secretase assay demonstrated the Aβ1–42 level reduced in the hippocampus and
cortex region of the brain. Furthermore, Western blot results also illustrated the
substantial reduction in signal conduction of kinase, and nuclear transcription factor
(NF-kB) extracellular pathways were involved in apoptotic cell death induced by
Aβ1–42 (Lee et al. 2009). In another study, Smith et al. developed nanolipidic
particles to improve the bioavailability and α-secretase inducing ability of polyphe-
nol EGCG. Nanoformulations of EGCG exhibited significant α-secretase promoting
activity in SweAPP N2a cells. In vitro results confirmed that this novel formulation
of EGCG would be a promising approach to use for AD treatment (Smith et al.
2010).

Similarly, Zhang et al. prepared EGCG selenium nanoparticles coated with tet-1
peptide to stabilize and reduce cytotoxicity. Furthermore, in vitro results exhibited
that both SE-EGCG- and Tet-1-EGCG-Se-coated nanoparticles could label Aβ
fibrils with a high affinity and Tet-1 peptides promisingly improved the cellular
uptake of Tet-1-EGCG-Se coated in PC12 cells in comparison to NIH/3T3 cells. So,
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the anti-AD results of various studies strongly recommended that Tet-1-EGCG@Se
was a novel therapeutic candidate for labeling and disaggregating Aβ fibrils (Zhang
et al. 2014).

4.5 Baicalein and Berberine in AD

In a recent study, Chen et al. investigated that baicalein flavone has the potential to
suppress the Aβ1–42 protein-induced Alzheimer-like pathophysiological changes and
cognitive dysfunction in the AD mice model. The findings of in vitro assays,
immunohistochemistry, and Western blot demonstrated that baicalein possesses a
strong neuroprotection potential to attenuate the Aβ1–42-related pathological
complications and memory (Chen et al. 2015). In another similar study, authors
elucidated baicalein’s neuroprotective effect on Aβ1–42-induced cognitive dysfunc-
tion, Oxidative stress, apoptosis, and histopathological studies proved the significant
neuroprotective role of baicalein in Aβ-induced hippocampus injury. Furthermore,
results of the TUNNEL assay investigated the reduction in oxidative stress-induced
cell death treated with baicalein. Hence, based on the above-accumulating evidence,
the authors indicated baicalein as an effective therapeutic agent to treat AD (Ding
et al. 2015). In a different study, Choi and colleagues aimed to develop an effective
therapeutic candidate against Alzheimer’s using a combination of flavonoids,
baicalein, and daidzein to explore synergistic estrogenic and neuroprotective
response using MCF-7 breast and PC12 neuronal cells. They further showed the
synergistic activity of these two flavonoids. Finally, the authors concluded that
daidzein and baicalein strongly potentiate the attenuation of Aβ aggregation, and
in the future, it could become a beneficial therapy against the treatment of
Alzheimer’s disease (Choi et al. 2013). Gu et al. aimed to investigate the protective
role of baicalein against synaptic plasticity and cognitive dysfunction in a mouse
model of Alzheimer’s diseases. In vitro studies examined the effect of baicalein on
Aβ1–42 oligomer impaired long-term potentiation (LTP), which was investigated by
electrophysiological methods. They also evaluated that baicalein significantly
reduces the activity of 12/15 lipoxygenase (12/15LO) and glycogen synthase kinase
3β (GSK3β); β-secretase enzyme levels and concentration of total Aβ also block the
phosphorylation of tau in APP/PS1 mice (Gu et al. 2016). Additionally, Xiong and
colleagues elucidated baicalein’s neuroprotective potential to attenuate Aβ-induced
microglial cell activation through the Janus kinase/signal transducer and activator of
transcription (JAK2/STAT3) signaling pathway. Both in vitro and in vivo studies
showed the neuroprotective properties through anti-inflammatory, anti-proliferative
effect through the JAK2/STAT3 signaling pathway, which revealed the new means
to cure Alzheimer’s disease (Xiong et al. 2014).

Another study aimed to elucidate Baicalein’s inhibitory effect against hydrogen
peroxide production and oxidative stress produced due to Aα aggregation in
SH-SY5Y cells. Finally, based on experimental investigations, the authors
concluded that baicalein possesses a strong ability to attenuate Aα aggregation.
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Thus, it could act as a potential therapeutic agent to prevent the progression of
neurodegenerative diseases such as AD (Fei Yina et al. 2011).

In a recent study, the authors demonstrated baicalein’s ability to diminish the
β-amyloid activity and to elevate the nonamyloidogenic APP processing in AD
transgenic mice. In vitro and in vivo results evidenced that this flavonol improved
the nonamyloidogenic processing of APP and was beneficial in reducing Aβ synthe-
sis and cognitive impairment (Zhang et al. 2013).

Zhao et al. aimed to investigate in the AD model the combined effect of baicalein
with ginsenoside Rb1 on the differentiation and proliferation of neural stem cells
(NSC). Immunohistochemistry examinations indicated the significant increase in the
percentage of NSCs, astrocytes, and neuronal cells in ginsenoside Rb1c and
baicalein treated cells. In the end, the authors demonstrated the neuroprotective
potential of combined ginsenoside Rb1 and baicalein therapeutic agents in AD
treatment (Zhao et al. 1678). Asai and fellows aimed to elucidate the potential of
berberine to inhibit Aβ secretion, which resulted in a change in the processing of
Alzheimer’s APP. They have shown that the APP-H4 neuroglioma cells (APPNL-H4
cells) exhibited a significantly reduced level of Aβ without inducing any cytotoxicity
and alteration in cell morphology. Therefore, based on these findings, the authors
suggested that berberine could be a drug of choice in treating AD (Asai et al. 2007).
In another similar study, berberine chloride’s potential to improve cognitive dys-
function and anti-inflammatory response through upregulation of interleukin-1beta
and nitric oxide synthase expression in an AD rat model was investigated. Findings
on real-time polymerase chain reaction (RT-PCR) and immunohistochemistry anal-
ysis evidenced enhanced cognitive functions and anti-inflammatory activity (Zhu
and Qian 2006).

In a recent study, berberine’s potential against the cognitive experimental model
of intracerebroventricular streptozotocin (ICV-STZ)-induced sporadic Alzheimer’s-
like dementia was investigated. Diverse in vitro and in vivo assays confirmed the
neuroprotective behaviour of berberine against neurodegenerative conditions
(Oliveira et al. 2016). In a similar kind of study, Durairajan et al. examined
berberine’s potential to improve β-amyloid pathology, gliosis, and memory dysfunc-
tion using the TgCRND8 transgenic mouse model (Durairajana et al. 2012). Another
similar study aimed to investigate the improved memory dysfunction and
antioxidative and anti-neuroinflammation potential of berberine (BBR) in
APP/PS1 mice. Experiments showed that BBR could strongly inhibit the NF-κB
signaling pathway and oxidative stress involved in neuroinflammation, resulting
from hyperphosphorylation of tau proteins. Hence, further investigations about
neuroprotective mechanisms of BBR might provide sufficient evidence as novel
strategies for AD treatments (He et al. 2017).

Hussein et al. explored the neuroprotective role of berberine to counteract
environmental heavy metal-induced Alzheimer’s-like pathology in an experimental
model of AD rat. In silico and docking studies proved that BBR significantly
inhibited enzymes like acetylcholinesterase (AChE), cycyclooxygenase-
2 (COX-2), and tumor necrosis factor-alpha converting enzyme (TACE) and
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decreased the level of AChE expression in brain tissues. Additionally, ELISA
measurement also confirmed the anti-inflammatory and antioxidant response via
an elevated level of Aβ42. Thus, the authors advocated the ability of berberine to
protect against various inflammation and stress-induced neurodegenerative diseases
and its application as a therapeutic agent to cure Alzheimer’s-like disease (Hussain
et al. 2018).

In another recent study, berberine’s role was investigated to inhibit AChE, BChE,
and two isoforms of monoamine oxidase (MAO) in Alzheimer’s disease (Ji and Shen
2012). Molecular docking studies examined the close resemblance between in silico
binding of berberine with AChE, BChE, and MAO. Moreover, further investigation
demonstrated that significant forces involved in ligand-receptor interactions were the
hydrophobic surface of berberine and neighboring hydrophobic residues. However,
electrostatic interaction between the cationic surface of berberine and neighboring
residues also participated but not in all of the above enzymes. Finally, the authors
enlightened the molecular basis of the inhibitory impact of berberine against differ-
ent enzymes involved in AD pathogenesis (Ji and Shen 2012).

A study conducted by Jiaa et al. aimed to explore the potential of berberine to
inhibit the production of Aβ-induced inflammatory response in primary microglia
and BV2 microglia cells through blocking of signaling pathways of nuclear factor-
kappaB and mitogen-activated protein kinase. ELISA test results exhibited a signifi-
cant reduction in Aβ-stimulated interleukin-6 (IL-6) and monocyte chemotactic
protein-1 production in a concentration-dependent manner. Similarly, RT-PCR and
Western blot analysis confirmed that berberine could strongly inhibit nuclear factor-
kappaB (NFκB) and mitogen-activated protein kinase (MAPK) signaling pathway
stimulation. Finally, the authors suggested berberine to be an important candidate for
designing various strategies to treat neurodegenerative diseases like AD (Jiaa et al.
2012).

Liu et al. aimed to investigate the role of berberine to improve axonal transport
defect and Calyculin-A-induced axonopathy in neuroblastoma-2a (N2a) cells. MTT
assay exhibited the significant protection of berberine-treated cells against
CA-induced toxicity as well as hyperphosphorylation of tau and neurofilaments
(NFs). Additionally, berberine restored the activity of protein phosphatase 2A
(PP-2A) by reversing the phosphorylation of the catalytic subunit of PP-2A and
reduction in the level of SOD. So, based on the comparative analysis of berberine
treated and untreated cells, it was suggested to use berberine as a therapeutic drug to
treat AD (Liu et al. 2014).

In a recent study, Lohan et al. aimed to develop berberine (BBR)-loaded surface
decorated multi-walled carbon nanotubes (MWCNTs) to manage AD. They
validated the significant uptake of BBR-loaded MWCNT formulations through a
confocal examination on SH-SY5Y cell lines. Further, pharmacokinetic analysis in
rats elucidated the promising drug absorption in plasma and brain tissues. Moreover,
the results of Morris Maze studies revealed a significant improvement in cognitive
impairment and memory performance. Additionally, biochemical estimation
indicated a significant reduction in oxidative stress-induced AD-like conditions.
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So, above findings suggested the potential of BBR-loaded polysorbate/phospholipid
coated MWCNTs in the management of AD (Lohan et al. 2017).

4.6 Quercetin in AD

In a recent study, in a triple transgenic Alzheimer’s disease (3xTg-AD) mouse
model, Paula et al. conducted a study to examine the role of chronic administration
of oral quercetin on markers of neurodegeneration, cognitive behavior, and emo-
tional deficits. This chronic treatment reduced the β-amyloidosis and tauopathy in
the hippocampus and amygdala. They further showed that quercetin protects neuro-
nal cytotoxicity, oxidation of protein, peroxidation of lipid, and Aβ-induced apopto-
sis. In the end, the authors concluded that quercetin might lead to delayed
progression of histological hallmarks observed in AD patients (Paula et al. 2019).

Recently, Mani et al. induced AD in wild adult zebra fishes administering
aluminium chloride via the intraperitoneal route. Behavioral and biochemical
analyses were then performed which showed a reduction of oxidative stress and
improved cognition. They also performed target identification, gene enrichment
studies, and molecular docking studies. The results depicted the protective effects
of quercetin on the AD model (Mani et al. 2018). A similar study by Ansari et al.
evaluated quercetin’s dose-response pattern and showed that quercetin protects
against Aβ toxicity by reducing oxidative stress at lower doses. Bioinformatics
studies were applied to know the binding sites of AChE. One of the binding sites
was used for molecular docking of quercetin with AChE. Finally, the authors
suggested that quercetin might act as an AChE inhibitor (Ansari et al. 2009).
Quercetin’s impact on the inflammatory response was explored by Vargas-Restrepo
and colleagues in the CA1 area of the hippocampus in a 3xTg-AD male and female
mice model. In this study, histological and biochemical experiments were
performed. And it was observed that the proinflammatory response in the CA1
hippocampal region of aged 3xTg-AD mice was lowered along with GFAP, induc-
ible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2) immunoreactivity,
and interleukin 1β (IL-1β) in hippocampal lysates with the quercetin administration.
Authors hypothesized that quercetin decreases the tauopathy by regulating IL-1β/
p38 MAPK activation, ultimately leading to enhanced cognitive performance
(Vargas-Restrepo et al. 2018).

Anticholinesterase and antioxidative activity of quercetin and its glycosylated
form rutin was explored in an interesting study. In vitro studies depicted the inhibi-
tion of AChE and BChE activities with inhibition of Fe2+-induced peroxidation of
lipid in homogenates of rat brain. Apart from this, quercetin portrays better radicals
scavenging and Fe2+-chelating abilities than rutin. The authors further proved better
quercetin activity through the IC50 values (Ademosun et al. 2016).

In an animal model of AD, in the hippocampus, Tong-Un et al. assessed the
effects of nasal route administration of quercetin liposomes on cognitive behavior
and biochemical markers of oxidative stress, SOD, catalase, glutathione, and MDA.
This nasal quercetin liposome administration significantly improved memory
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impairment by inhibiting the oxidative damage of the hippocampus. This could be
related to the decreased MDA level and improved level of SOD, catalase, and
glutathione (Tong-Un et al. 2010).

Ashrafpour et al. assessed acquisition and retention of spatial memory by querce-
tin in a rat model of AD. The results showed that intracerebroventricular (ICV)-STZ
AD groups exhibited significant impairment in the acquisition and retrieval of spatial
memory as compared to the control group. In the AD groups, training trials showed
considerable downfall in escape latency. The authors concluded that quercetin acted
as a spatial memory enhancer in ICV-STZ-induced AD rats (Ashrafpour et al. 2015).
In another work, quercetin’s role on cytotoxicity and cognitive impairment caused
by Aβ-peptide in mice was explored. In this study, quercetin inhibited the
1,1-diphenyl-2-picrylhydrazyl (DPPH) radical activity and protected PC12 neuronal
apoptosis induced by the treatment of Aβ (Li et al. 2017). Kim et al. demonstrated
the protective effect of quercetin and quercetin-3-b-D-glucoside (Q3G) in the T-maze
and object recognition test, as compared with Aβ25–35-injected control mice; admin-
istration of quercetin and Q3G improved memory and cognitive function. Compared
to the Q3G administered group, the quercetin group exhibited enhanced protective
effects from long-term spatial memory and learning ability impairments. Besides, in
the brain of Aβ25–35-injected control mice, peroxidation of lipid and formation of
nitric oxide (NO) was significantly increased. In the end, the authors suggested
quercetin could be a better option for the management of AD (Kim et al. 2016).

Recently, Molaei et al. reported an interesting work to assess quercetin’s synergic
effects (as chemical treatment) and exercise (as physical treatment) on AD-induced
learning and memory impairment. When the treatment was completed, the results
depicted that streptozotocin (STZ) in rats led to the impairment of spatial memory
and enhanced hippocampus oxidative stress. However, pretreatment with exercise or
quercetin injection enhanced spatial memory and oxidative stress caused by STZ
injection, the combination of quercetin and exercise pretreatment was more effica-
cious (Molaei et al. 2020). Aliaga et al. investigated the anti-amyloidogenic and
antioxidant properties of quercetin. In this study, quercetin inhibited the formation of
Aβ fibrils and disaggregated Aβ fibrils.

Furthermore, quercetin decreased almost entirely ROS generation in H2O2 treated
APPswe cells. Moreover, intracellular GSH content and redox status were improved
and diminished the index of lipid peroxidation as compared to the control APPswe
cells after quercetin treatment (Jiménez-Aliaga et al. 2011). In another study, in
human neuronal SH-SY5Y cells, quercetin neuroprotective effects were investigated
against H2O2-induced apoptosis. In a quercetin concentration-dependent manner,
H2O2-mediated cytotoxicity and lactate dehydrogenase (LDH) release were
suppressed. Additionally, in SH-SY5Y cells, quercetin reduced Bax gene expression
and enhanced the level of Bcl-2 gene. Moreover, activation of the caspase cascade
which leads to DNA fragmentation ultimately responsible for apoptosis was also
inhibited effectively by quercetin. Thus, quercetin exhibited significant
neuroprotective activity to prevent neurodegeneration progression induced by oxi-
dative stress (Suematsu et al. 2011).
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Heo et al. investigated the protective effects of quercetin on hydrogen peroxide,
and a significant decrease in cell viability was observed. However, preincubation
with quercetin and vitamin C protected H2O2-induced toxicity in PC12 cells in a
dose-dependent manner. As it is already known that oxidative stress increases
neuronal cell membrane breakdown, lactate dehydrogenase and trypan blue exclu-
sion assays were performed. The results showed that quercetin decreased oxidative
stress-induced neuronal cell membrane damage higher than that of vitamin C. The
authors concluded that quercetin contributed significantly to cells’ neuroprotection
from oxidative stress-induced stress neurotoxicity (Heo and Lee 2004). Nakagawa
et al. assessed the role of long-term quercetin intake on memory recall in aged wild-
type mice by using contextual fear conditioning. They also studied whether memory
recall was affected by the administration of quercetin-rich onion powder in early-
stage AD patients. Later on, in vivo analysis indicated that aged mice fed with
quercetin-containing diet showed improved memory recall. Additionally, the
Revised Hasegawa Dementia Scale was used to identify memory recall in early-
stage AD patients, which was significantly improved by the intake of quercetin-rich
onion powder for 4 weeks compared with the intake of control onion powder
(Nakagawa et al. 2016).

The protective effect of quercetin and its glycosides, rutin and quercitrinon
reactive oxygen species (ROS)-dependent (H2O2) and -independent (chemical
anoxia) apoptosis in rat glioma C6 cells was investigated by Chen et al. Authors
found that incubation of C6 cells with quercetin, but not rutin or quercitrin, protected
C6 cells from cytotoxicity induced by H2O2 and chemical anoxia as shown by
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and LDH
assays. Quercetin, rutin, and quercitrin dose-dependently inhibited DPPH radicals’
production in vitro as demonstrated by anti-DPPH radical assay. On the other hand,
DNA damage induced by OH radicals was prevented by quercetin (but not rutin and
quercitrin), as shown by plasmid digestion assay. Altogether, this study concluded
that quercetin showed an inhibitory effect on both ROS-dependent and
ROS-independent apoptosis, and induction of HO-1 protein expression was also
identified (Chen et al. 2006).

In separate work, in the AD Drosophila model, Kong et al. showed the impact of
quercetin and explored the underlying mechanisms. This study showed that querce-
tin might restore the gene expression agitated by an accumulation of Aβ. Further-
more, it was also shown that cyclin B RNAi in the brain could ameliorate AD
phenotypes. Altogether, neuroprotective effects of quercetin were significantly
exhibited by this interesting study (Kong et al. 2016).

Ginkgo biloba extract EGb761 tends to protect against Aβ-induced neurotoxicity,
but the mechanisms remain unknown. To elucidate this further, Shi et al. tested the
effects of EGb761 and its two important constituents, quercetin and ginkgolide B, on
the cytotoxic action of Aβ1–42 with human neuroblastoma SH-SY5Y cells. Authors
demonstrated that through c-jun N-terminal kinase (JNK), extracellular signal-
regulated kinase 1/2 (ERK1/2), and Akt signaling pathways, EGb761 blocked the
Aβ1–42-induced cell death, ROS accumulation, and mitochondrial dysfunction. It
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was also shown that the same signaling pathway also demonstrated that quercetin
and ginkgolide B might be involved in the inhibitory effects of EGb761. Ginkgolide
B also improved the functions of mitochondria, but quercetin failed to do
so. Individual EGb761 components showed the direct mechanisms underlying the
neuroprotective effects of EGb761 (Ihl et al. 2011).

4.7 Clinical Trial of Some Natural Compound in AD

Ihl et al., in a clinical trial, revealed thatGinkgo biloba extract EGb 761 increased the
baseline in primary outcomes Erzigkeit’s short syndrome test (SKT) and neuropsy-
chiatric inventory total score. Simultaneously, SKT was found to be decreased, and
no change was observed in NPI score after placebo once-daily dose treatment for
24 weeks in 410 patients. Interestingly, extract EGb 761 showed significant results
compared to placebo in secondary outcome measures (Ihl et al. 2011). The same
group tested the efficacy of EGb 761 in AD and vascular dementia in 404 outpatients
aged 50 years or above and reported enhanced therapeutic effects (Ihl et al. 2012).
Additionally, Herrschaft et al. reported improved SKT total score and NPI composite
score in patients treated with EGb 761 and placebo. Simultaneously, most of the
secondary efficacy variables provided better results with a once-daily dose of
240 mg of EGb 761 (Herrschaft et al. 2012). Most surprisingly, Villas and colleagues
demonstrated that participants aged 70 years or above who were given one dose of
placebo and EGb 761 for 5 years were unable to show any protective action in
lowering AD’s progression (Vellas et al. 2012).

Furthermore, Gavrilova et al. summed up that long-term exposure to Ginkgo
biloba extract was considered to be beneficial in improving cognitive performance in
patients with mild cognitive impairment (MCI) and neuropsychiatric symptoms
(NPS) with no severe adverse reaction reported (Gavrilova et al. 2014). Meanwhile,
Rafii et al. indicated that Huperzine A 200μg BID did not exert any change in
Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-Cog) at
16 weeks of primary analysis, while 400μg bis in die (BID) given in secondary
analysis showed enhancing effect in ADAS-Cog. Still, the effect got declined in the
placebo group at 16 weeks (Rafii et al. 2011). In this regard, Yang et al. confirmed
the similar action of Huperzine A in improving cognitive function with no significant
adverse effect reported in AD patients (Yang et al. 2013). Moreover, Ringman and
colleagues pronounced that placebo and curcumin C3 complex treated group
showed some adverse effects after 24 weeks of trial. However, they were unable
to determine the sufficient efficacy of the drug due to low plasma level (Ringman
et al. 2012). In a study, Nelson et al. indicated that bryostatin increased BDNF and
PSD-95, MMSE score at 3 h, and peripheral blood mononuclear cells-protein kinase
C epsilon (PBMCPKCε) level within 1 h after IV infusion and concluded that this
drug was well tolerated in patients (Nelsona et al. 2017). A Phase-II trial by Farlow
et al. also reported similar results and suggested bryostatin was considered safe and
effective as compared to the placebo-treated participants (Farlow et al. 2018). The
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study performed by Turner et al. revealed the reduced CSF Aβ40 and plasma Aβ40
levels after placebo treatment.

Additionally, magnetic resonance imaging (MRI) detected that resveratrol treat-
ment decreased brain volume and increased ventricular volume at 52 weeks com-
pared to a placebo-treated group (Scott Turner et al. 2015). In addition to this, Zhu
et al. conducted the study with no significant difference in scores obtained from
resveratrol-, glucose-, and malate-treated patients. Although low-dose resveratrol
was safe and well tolerated, the study did not prove effective in stopping disease
progression (Zhu and Grossman 2018). Simultaneously, Chang et al. implied that
memantine’s efficacy was enhanced in combination with tenuigenin and β-asarone.
They observed an increase in change scores after 12 weeks of treatment which would
be beneficial in treating moderate-to-severe Alzheimer’s disease mainly in 60–74-
year-old patients (Wenguang and Junfang 2018).

4.8 Corelation Between Microbiota Activity and Polyphenolic
Compounds

As we know, polyphenols in the diet are necessary to nurture one’s health, especially
the gut, and they do so by prompting the growth of particular bacterias and inhibiting
the growth of unwanted bacterias. Through recent advancements in the field of
science and technology, there are chances for a better understanding of the interac-
tion between dietary phenols and gut microbiota (Popa et al. 2017). This hypothesis
has further been supported by Cardona et al. (2013) and Tomás-Barberán et al.
(2016). Additionally, Cardona F et al. briefed that microorganisms convert
polyphenols into active metabolites, and hence the changes in gut microbiota have
the tendency to affect the polyphenol activity (Cardona et al. 2013). Moreover, for an
in-depth knowledge of this relationship, metagenomic and metabolomic studies
should be conducted (Cardona et al. 2013).

4.9 Conclusion

In conclusion, we can say that several natural compounds like green tea,
epigallocatechin gallate, baicalein, berberine, quercetin, Ginkgo biloba, and
Huperzine A exhibit potent neuroprotective activity in AD treatment. These natural
compounds can stop AD progression by acting on amyloid and tau pathology
(Fig. 4.1). Clinical trials also show the efficacy of some of the common natural
products like Ginkgo biloba and Huperzine A. Further studies will be needed to
explore additional bioactive compounds present in these natural products for their
AD treatment role.
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Mapping a Link Between Mercury Toxicity
and Alzheimer’s Disease 5
Swati Kundu

Abstract

Alzheimer’s disease (AD), the most common form of dementia, poses a threat to
the elderly worldwide. During AD progression, neurons’ structural and functional
features are affected by the accumulation of amyloid beta-peptide (Aβ) and tau
protein. This study investigates the role of environmental toxicants, mercury,
accelerating AD symptoms, and natural compounds’ therapeutic potential in
preventing AD. Mercury caused aggregation of Aβ protein, thus establishing a
direct link between AD’s mercury toxicity and pathogenesis. Natural compounds
with antioxidant and anti-inflammatory properties, namely, curcumin, carvacrol,
eugenol, and linalool, can be used to treat AD. This study focuses on the
environmental toxicants as a risk factor in AD’s pathogenesis and provides a
vision to look for natural compounds as therapeutics for AD treatment.
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NFT Neurofibrillary tangles
NP Neuritic plaques
PS Presenilin
ROS Reactive oxygen species

5.1 Introduction

A neurodegenerative disease where an irreversible and progressive loss of memory
occurs is termed Alzheimer’s disease (AD). Symptoms usually go unnoticed during
the infection stages, and the symptoms are prominent in later stages when there is a
subtle decline in cognitive function (Braak et al. 2011). This affects individuals’
daily activities and ends in fatality. It usually hits at the age of >60 years; however,
this is not mechanistically linked to brain ageing (Nelson et al. 2011).

The prevalence rate of AD has shown a peak in the last 10 years and has become a
known cause of dementia in Western countries (Alzheimer’s Disease International
2019). Its age-wise distribution in European countries is shown in Fig. 5.1. An
estimate reveals that AD would be affecting approximately 152 million population
by 2050 across the world (Alzheimer’s Disease International 2019). Unsurprisingly,
AD has gradually become one of the major reasons for the rising number of deaths in
the elderly population, just after cardiovascular diseases and cancer (Alzhemier’s
Association 2020). Figure 5.2 illustrates the death rate of patients suffering from AD
across various countries. Due to this disease’s rising trajectory, low survival rate, and
substantial financial burden on the family, it becomes imperative to unravel the
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Fig. 5.1 Age-wise distribution of population affected with AD in Europe (World Health Organi-
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causes and potential therapies to control the disorder. This chapter will review AD’s
pathophysiology, how it gets affected by environmental factors, and the potential of
natural therapeutics to prevent AD symptoms.

5.1.1 Functional Alteration in the Brain During AD

A healthy human brain has about a hundred billion neurons, a specialized cell
designated to transmit information in chemicals from one to the other. Their
extensions form a connection known as synapses, where this chemical transfer
occurs. This rapid transfer through the synapses generates a cellular basis of
memories, thoughts, sensations, emotions, and skills. Any changes in the structural
form or protein accumulation inside/outside the neurons lead to cognitive capability
loss. During the progression of AD, risk factors, namely, amyloid precursor protein
(APP) and presenilin (PS), are known causes for early onset; however, apolipopro-
tein E allele 4 (APEA4) mutation is a high risk factor for late-onset AD (Koffie et al.
2012; Meraz-Ríos et al. 2014). APP, a single-pass transmembrane protein, is highly
expressed in the brain which is cleaved via either α- and γ-secretases or β- and
γ-secretases and generates amyloid beta-peptide (Aβ) (Sadigh-Eteghad et al. 2015).

Moreover, the proteolytic function of γ-secretase is regulated by PS (Ridge et al.
2013). APEA, a dominant cholesterol and lipid carrier in the brain, regulates Aβ
aggregation and clearance in the brain (Liu et al. 2013a). An increased concentration
of Aβ impairs blood flow within the cerebral structure and speeds up neuronal
dysfunction. Additionally, an increased reactive oxygen species (ROS) generation
and mitochondrial damage are reported by the risk mentioned above that enhance
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AD’s neurodegenerative process (Meraz-Ríos et al. 2014). A sequential progression
of AD is shown in Fig. 5.3.

In AD, accumulation of Aβ acquires a β-sheet structure which forms a spherical
deposit called neuritic plaques (NP) (Sakono and Zako 2010). It is a 39–42 amino
acid peptide consisting of fibrillary core and microglia, astrocytes, and neurites
surrounding the core. These NPs are deposited outside the neurons and interfere
with neuron communication at the synaptic junction. This amyloidosis process also
leads to the hyperphosphorylation of the microtubule-associated protein called tau
protein (Li et al. 2016). It leads to the breakdown of microtubules and neuronal
skeleton resulting in the accumulation of flame-shaped neurofibrillary tangles (NFT)
which promote neuroinflammation. The Aβ fragments are deposited outside the
neurons causing interference in their communication, whereas tau protein deposits
inside the neurons and blocks transmission of essential nutrients to the brain
(Alzhemier’s Association 2020).
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5.1.2 Challenges in the AD Treatment

Limited understanding of brain complexity poses a daunting challenge in the
treatment of neurodegenerative disorders, including AD. A semipermeable mem-
brane of the brain, the blood-brain barrier (BBB), limits drug penetration, which is
the foremost cause for failure of proposed drugs in their preclinical trials for AD
(Pardridge 2009). Another hurdle during clinical trials for AD is the enrollment of
patients (Watson et al. 2014). This may be due to the poor public awareness and high
risk involved in the trials. Crucially, there is no standardized effect on the general
population, and its resultant effectiveness varies from one individual to the other
(Watson et al. 2014). Some drugs, namely, rivastigmine, galantamine, donepezil,
memantine, memantine combined with donepezil, and tacrine, have been approved
by the US Food and Drug Administration (Alzhemier’s Association 2020). How-
ever, these drugs do not entirely cure AD but are effective over the short term.
Additionally, we need to emphasize the risk factors, including environmental
causing AD.

A link between environmental factors and the development of AD is well
established (Killin et al. 2016). Although factors like age, family history, prevailing
health conditions, etc. cannot be changed, environmental factors can be assessed
carefully to reduce the risk of cognitive decline. These factors include heavy metal
toxicity, which is reported to cause systemic alterations when exposed to their
threshold concentration (Bakulski et al. 2020). Among heavy metals, mercury
seems to be the most hazardous one as it does not have any physiological function
and excretory mechanism in humans. Therefore, a longer duration of
mercuryexposure leads to its accumulation in nervous tissue.

5.1.3 Role of Mercury Toxicity

Historically, mercury toxicity has resulted in two major pandemics—the Minamata
Bay disaster and the Iraq incident. These incidents gave a clear picture of the neural
damage caused by mercury ingestion causing sensory, motor, and visual
disturbances (Harada 1986). The chemical form and dose of mercury to which the
human system gets exposed define its toxicity. As per the US Environmental
Protection Agency, the recommended reference blood concentration of mercury is
5.8 ng/mL; concentrations below this level are safe (Choi et al. 1981). Its vapor form
(elemental) makes it easily absorbable by biological tissue such as the respiratory
system. Since there is no mercury physiological function in humans, 80% of mercury
gets accumulated into tissues and cells in its oxidized form of Hg2+ (inorganic form).
Now, this Hg2+ form can bind to the sulfhydryl groups of thiol, hereby altering
cysteine-containing proteins (Rooney 2013). This results in the variation in these
proteins and, therefore, inhibiting their enzymatic function.

Mercury (organic form) can cross the blood-brain barrier (BBB) by binding to the
thiol group and gets converted into an inorganic form in the neurons and glial cells
(Cariccio et al. 2019). In the brain, mercury is reported to interact with numerous
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targets involved in various cellular functions and, therefore, interfere with the brain’s
structural stability and functionality. The high affinity of mercury for thiol and
selenol groups leads to depleting intracellular antioxidants, causing inhibition of
antioxidant enzyme activity (Wagner et al. 2010). This results in a redox imbalance
causing oxidative stress. Also, dysregulation of calcium stores results in calcium
overload in the brain which elicits mitochondrial permeability transition pore open-
ing leading to ROS overproduction (Roos et al. 2012). A resultant alteration in
chemical signals from the presynaptic membrane occurs, causing postsynaptic
receptor functions (Castoldi et al. 2001).

In AD, mercury binding to neuronal microtubules via thiol group blocks their
assembly and causes tubule disintegration (Siblerud et al. 2019). The structural
formation of neurons, an important factor in its sustainability and survival, is
stabilized by polymerization/depolymerization cycle of the cytoskeleton
components—actin filaments (F-actin) and microtubules (β-tubulin). Mercury
causes a change in β-tubulin; however, F-actin intensity remains unchanged
(Xu et al. 2012). Another consequence of mercury toxicity is the inhibition of
glutamate uptake a neurotransmitter by altering glutamatergic signaling in astrocytes
(Aschner et al. 2000). This causes an increased glutamine synthase activity, and a
sudden increase in glutamate release from the neuron occurs (Fuentes et al. 2001).
Consequently, glutamate levels rise from 0.6 to 10μM at the synaptic cleft, which is a
critical factor in the regulation of neural signaling (Bouvier et al. 1992).

Taken together, environmental toxicants in the form of mercury directly
accelerated the progression of AD symptoms by altering neural signaling.

5.1.4 Natural Compounds as AD Therapeutics

For ages, natural compounds hold prime importance for therapeutic use. Based on
the fact, in my previous research, based on antioxidant and anti-inflammatory
properties, I selected four natural compounds to study their effect on mercury
toxicity (Kundu et al. 2014, 2016). All these four compounds show not only
ameliorative but also prophylaxis effect against mercury in smooth muscle systems.
Their action of mechanism against mercury toxicity makes them suitable candidates
to study in AD. Some natural extracts are already in clinical trials to treat AD
(Table 5.1), while some natural compounds (mentioned below) are in their preclini-
cal trials that need to be investigated further in AD treatment.

(a) Curcumin is an active component of Curcuma longa L. plants. Its antioxidant
and anti-inflammatory potential is known to act against oxidative stress caused
during AD (Reddy et al. 2016). Curcumin has shown preventive actions against
AD by counteracting its primary cause, i.e., Aβ aggregation, at IC50 ¼ 0.8 μM
(Yang et al. 2005). A decrease in Aβ pathological aggregation has been reported
by inhibiting PS-2 or accelerating its clearance through degrading enzymes
(Wang et al. 2014). Furthermore, in vitro experiments showed that curcumin
at 0–20 μM reduced secretion of β- and γ-secretase, leading to improvements in
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learning and memory (Xiong et al. 2011). A clinical trial conducted to ascertain
curcumin’s side effects proved it a safe compound for AD patients (Baum et al.
2008). However, more clinical trials are needed to know the efficacy of
curcumin in AD treatment.

(b) Carvacrol is an active component of thyme oil. A study shows the effectiveness
of carvacrol against AD by alleviating cognitive impairments. This effect was
mediated at 471.2 mg/kg of carvacrol which increased levels of Aβ and cholin-
ergic hypofunction (Azizi et al. 2012). Carvacrol (IC50 ¼ 0.063 μM) also
displays an inhibitory effect on acetylcholinesterase, resulting in the loss of its
function (Jukic et al. 2007). An increased acetylcholine concentration in the
brain leads to better neuron-neuron communication, which repairs the loss of
cognitive function during AD. These studies highlight the natural therapeutic
potential of carvacrol; however, detailed investigations can only summarize the
clinical efficacy and potential sideeffects in the human system.

(c) Eugenol is an active compound of clove oil, cinnamon, and basil. In AD,
eugenol at the concentration of 0.01 mg/kg has shown a reduced amount of
amyloid plaques significantly in the hippocampus part of the brain (Taheri et al.
2019). This results in improved memory in AD rat models. Also, an increase in
the activity of antioxidant enzymes (glutathione peroxidase and superoxide
dismutase) and a decrease in the malondialdehyde content in the hippocampus
area in the eugenol treated rats have been reported (Liu et al. 2013b). Eugenol
has also shown its stabilizing effect for a native protein that delays the conver-
sion of the native conformation into β-sheet assembled mature fibrils, preventing
AD symptoms (Dubey et al. 2017).

(d) Linalool is an active ingredient of lavender oil. It showed a reversal of AD’s
histopathological hallmarks and subsequently restores cognitive functions in
hippocampus and amygdala parts of the brain (Maria et al. 2016). The concen-
tration used to study the effects was 25 mg/kg. It shows anti-inflammatory
effects including a significant reduction in the levels of the pro-inflammatory
markers—p38 MAP Kinase, nitric oxide synthase 2, cyclooxygenase-2, and
interleukin-1β—and antioxidant effects including maintaining antioxidant
enzyme (superoxide dismutase, glutathione peroxidase) activities and
malondialdehyde levels and enhanced activity of acetylcholinesterase
(Xu et al. 2017; Maria et al. 2016). This results in the reduction of extracellular
β-amyloidosis, tauopathy, astrogliosis, and microgliosis, leading to AD’s
improved symptoms. Linalool showed therapeutic potential against AD,
which makes it an ideal candidate for clinical investigations.

5.2 Summary

This review presents mercury toxicity as one of the significant risk factors humans
face in terms of loss of brain function, leading to AD. Further experimental data may
warrant a neural cascade affected with acute and chronic mercury exposure. My
previous studies have established the prophylaxis and ameliorative role of natural
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compounds against mercury toxicity which calls for a check of their potential role in
AD considering mercury as a risk factor. In vivo and in vitro studies done with some
of the natural compounds imply that treatment with curcumin, carvacrol, eugenol, or
linalool may inhibit the pathological mechanism(s) responsible for the development
of AD, including Aβ accumulation, oxidative stress, and neuroinflammation. If we
keep a check on the mercury accumulation in our system and look for natural
compound dosages which we should consume, it may open a new way in AD
therapeutics.

Conflicts of Interest All the authors declare no conflict of interest.
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Drug Therapy of Alzheimer’s Disease:
Cholinesterase Inhibitors, NMDA
Antagonists
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Abstract

Alzheimer’s disease (AD) is one of the brain’s progressive neuronal diseases
named after Aloes Alzheimer, a German physician who first described it in 1906.
AD is one of the most widespread forms of dementia, presenting one of the
biggest healthcare challenges in developed countries. AD causes a reduction in
cognitive function and language ability. Multi-target inhibitors have been devel-
oped as AD is a multifactorial disease. There is no effective treatment capable of
slowing down disease progression. Recently, the primary focus of research is on
novel pharmacotherapies. Several current drugs taken to treat the disease have
repulsive side effects and new substitutes. There is no therapy for AD, but
medicines are available that are designed to slow disease progression. Various
studies have shown that some herbs may improve brain function; however,
experimental data is limited to prove that they can treat AD. The objective here
is to provide a systematic review of AD’s factors, viz., environmental toxicity and
genetic predisposition, and ongoing treatment strategies used to treat
it. Additionally, this review presents the current status and future directions for
developing novel drugs with pharmacological activity. Evidence about the use of
medicinal herbs in treating AD and symptoms related to AD is discussed.
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Alzheimer’s disease · Environmental toxicity · Genetic predisposition · Treatment
strategies · Medicinal herbs

6.1 Introduction

Alzheimer’s disease (AD) comes under a broad category of neurodegenerative
disorders (ND). The NDs are characterized by the progressive and irreversible loss
of neurons from specific regions of the brain. The NDs also include Parkinson’s
disease (PD) and Huntington’s disease (HD), where basal ganglia neurons are
involved, and amyotrophic lateral sclerosis (ALS), where degeneration of spinal,
bulbar, and cortical motor neurons are involved. In AD, there is a loss of hippocam-
pal and cortical neurons resulting in disability of memory and cognition. AD is the
most common cause of dementia. There is persistent memory loss combined with
personality changes. The main risk factor for AD is age; AD affects 10% of the
population above the age of 65 (Evans et al. 1989). In AD, the hippocampus and
neocortex are most affected, but AD may also involve other brain regions (Arnold
et al. 1991).

AD is the most important cause of dementia, accounting for 60–70% of cases.
The sign of this dreadful disease deteriorates over time—from early lack of memory
to regular degeneration in language, orientation, and behavior and delayed severe
loss of memory and a few body functions till final death. The etiology of AD appears
to be multifactorial. Genetic mutations in presenilin (PS1, PS2) and amyloid precur-
sor protein (APP) genes, affecting a common pathogenic pathway in APP synthesis
and proteolysis, cause early onset of familial AD, causing the production of amyloid
β (Aβ) in excess (Wu et al. 2012). However, the cause of AD’s late onset is
inadequately understood, but it is believed that the leading risk factor is the involve-
ment of genetics with several genes. Aging, apolipoprotein (Apo) E4 genotype, head
trauma, and vascular conditions are other threats to the disease (Burns and Iliffe
2009). Both structural and functional abnormalities are involved in the pathophysi-
ology of AD. Numerous injuries occur in the brain, including the appearance of
senile plaques consisting of Aβ and neurofibrillary tangles containing
phosphorylated tau as AD goes into the advanced stage and the substantial loss of
synaptic profiles (Perl 2010). Significant oxidative stress and mitochondrial
abnormalities are also observed in AD together with neuronal death. There is no
cure for AD through a small number of treatments till now. FDA approved two
categories of drugs for the treatment of AD patients according to the AD
Medications Fact Sheet published by the National Institute on Aging. One is
cholinesterase inhibitors for mild to moderate AD. In contrast, the other is used to
treat moderate-to-severe AD and contains memantine, an antagonist against N-
methyl-D-aspartate receptor (NMDAR), a receptor gated by the neurotransmitter
glutamate.
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The purpose of this chapter is to shed light on the factors associated with AD, viz.,
environmental toxicity and genetic predisposition, and current treatment strategies
used to treat AD. Moreover, this chapter presents the current status and future
directions for developing novel drugs with pharmacological activity, medicinal
herbs in the treatment of AD, and the symptoms related to AD.

6.2 Environmental Toxicity and Genetic Predisposition

Some of the environmental agents including (1) toxic metals, (2) insecticides and
pesticides, (3) industrial/commercial pollutants, (4) antimicrobials, and (5) air
pollutants are all known to aggravate AD in vitro, in vivo and in clinical research.
Aluminum (Campbell 2002) and lead (Basha et al. 2005; Shih et al. 2007) are known
toxic metals that have been linked with many neurodegenerative diseases, including
AD, which cause toxic effects to many organs of the human body. Copper and
arsenic are other elements that disrupt the homeostasis of brain amyloid-β protein
associated in experimental model systems (Baum et al. 2010; Singh et al. 2013).
Chronic exposures to pesticides such as organophosphates (Kamel and Hoppin
2004), simultaneously with occupational exposure predominantly in agriculture,
have been shown to lead to cognitive and psychomotor impairment and possibly
to the progress of AD (Baldi et al. 2003). Behavioral changes were observed in
murine neonates exposed to brominated flame retardants, which are readily absorbed
by body fat, whereas adult mice exhibited impaired learning and remembrance
(Viberg et al. 2003). The use of plasticizers like, bisphenol A and phthalates can
cross the fetoplacental barrier to damage neurons (Zaman 2010).
Neurodevelopmental disturbances and behavioral changes were observed using
broad-spectrum antimicrobials, which are active ingredients of consumer products
like soaps and toothpaste; however, direct evidence linking these to AD is missing
(Barse et al. 2010; Veldhoen et al. 2006). Studies have been done on animal models,
and epidemiological approaches have reported other evidence that link with the
exposure to toxic metals (Sparks and Schreurs 2003; Thompson et al. 1988) and air
pollutants that cause neurological symptoms, including AD. Significantly, most of
the concerned environmental toxins are endocrine-disrupting chemicals that impair
neurogenesis and cognitive function in brain development and affect the neurologi-
cal function throughout human existence (Weiss 2007).

It remains unknown whether a single agent or combination of environmental
factors contributes to AD’s onset and progression. Further research is in progress to
endow with new insights into possible mechanisms to identify environmental risk
factors and strategies to lessen harmful exposures contributing to AD.

AD has a very strong root in genetics, whose classification has become an
essential part of hard work to know its pathology. For the last 10 years, AD risk
has been linked to more than 40 genes. Genetic data has shed new light, particularly
the main role of microglia and the pathogenesis of AD. However, further various
genetic studies are essential as our information of the genetics of AD is not sufficient.
Families with a high incidence have been identified and showed some evidence of
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the disorders’ pathogenesis, although most AD cases are sporadic. Mutations in the
genes coded for the amyloid precursor protein (APP) and proteins known as the
presenilins may be involved in APP processing causing inherited AD forms
(Bellenguez et al. 2020). Since the 1930s, AD presents an autosomal dominant
form of inheritance because rare forms of AD are entirely genetically determined.
Until the 1980s, the systematic linkage approaches for characterizing the
contributing genes were not developed. In this perspective, three genes, APP,
PSEN1, and PSEN2, were responsible for early-onset, dominantly inherited forms
of AD coding, respectively, for amyloid precursor protein, presenilin-1, and
presenilin-2 (Cacace et al. 2016). The majority of cases of AD are late-onset sporadic
forms, with no evident familial aggregation. AD appears to be one of the human
multifactorial diseases with the highest heritability level (70%). It has been reported
that the e4 allele of the apolipoprotein E (APOE) gene was connected with the risk of
early AD (Strittmatter et al. 1993). Since then, with the remarkable exception of
some African populations, this group has been detected in approximately all ethnic
groups (Farrer et al. 1997; Gureje et al. 2006). Due to the discovery of APOE and the
potency of the genetic factor in AD, our knowledge of AD’s genetics was expected
to amplify speedily. With the discovery of three new genetic risk factors, CLU, CR1,
and PICALM in 2009, the publication of the first two large-scale genome-wide
association studies (GWASs) of AD formed a landmark field in genetics (Harold
et al. 2009; Lambert et al. 2009).

6.3 Treatment Strategies

Based on the pathophysiology and neurochemistry of AD, the treatment strategies
are planned accordingly. The pathology of AD is categorized principally by extra-
cellular senile plaques and intracellular neurofibrillary tangles. The pathological
hallmark of AD increases protein β-amyloid, also called senile plaques, and neurofi-
brillary tangles, the collections of tau protein that are hyperphosphorylated as paired
helical filaments (Lambert et al. 2009; Athanasios and Stefan 2016). Several
hypotheses aimed at explaining the origins of AD and different treatment strategies
are discussed below.

6.3.1 b-Amyloid Cascade Hypothesis

Proteolysis of APP leads to the formation of Aβ peptide, an integral transmembrane
protein found in different cell types, including neurons and glial cells (Santana et al.
2015; Chiang and Koo 2014). Alternative splicing produces multiple isoforms of the
molecule in humans, with APP695 being the most abundant in the brain (Chiang and
Koo 2014). Aβ is formed via cleavage of α-, β-, and γ-secretase enzyme protein
complexes when APP is processed into smaller peptide fragments which include
presenilin and nicastrin molecules (Haass et al. 2012). APP is catabolized by
α-secretase and produces soluble sAPPα fragment, which remains in the
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extracellular space, and a carboxy-terminal 83-amino acid (C83) fragment, which is
anchored in the plasma membrane under physiological conditions (Eriksen et al.
2003; Alvarez et al. 2015). APP is primarily cleaved by β-secretase 1 (BACE),
which fragments APP into sAPPβ and a 99-amino acid membrane-bound fraction
(C99) in a neuropathological situation. Additionally, processing of the C99 fragment
by γ-secretase results in the production of either A(1–40) or Aβ(1–42) peptides,
which might lead to the formation of senile plaque (Mucke and Selkoe 2012;
Castello and Soriano 2013; Drachman 2014). Aβ peptides may cause synaptic
loss, decrease neuronal plasticity, alter energy metabolism, induce oxidative stress
and mitochondrial dysfunction, and provoke disruptions in cellular calcium homeo-
stasis, whereas sAPPα is beneficial to humans (Haass et al. 2012; Mucke and Selkoe
2012). The amyloid cascade hypothesis reveals that the development, aggregation,
and deposition of Aβ peptides constitute a significant incident in pAD’s pathogene-
sis, which activates neurotoxicity and neurodegeneration (Hardy and Selkoe 2002;
Haass et al. 2012) as shown in Fig. 6.1. Increased tau phosphorylation and the
formation of neurofibrillary tangles are most probably due to extreme extracellular
Aβ. Molecular genetics studies gave acceptance to this hypothesis, signifying the
possible novel therapeutics for inhibitors of β- and γ-secretase or enhancers of
α-secretase activity. However, in sporadic AD cases, the amyloid cascade hypothesis
cannot fully elucidate the root causes of the AD where the generation of Aβ does not
show a clear basis of genetics (Nalivaeva et al. 2008).

Amyloid precursor protein

OxidentAntioxidant

Exitoxicity
Tan protein hyperphosphorylation

Neurofibrillary tangles

Neuronal cell death

Death of Cholinergic Neuron

Inflammation

NMDA Antagonist

Anti-inflammatory

Amyloid β–generation (Amyloid β–plaques)

Death of Serotonergic & Adrengic Neuron

Deficit of
Acetylcholine Deficit of Serotonin

Deficit of
NorepinepherinAnti-cholinesterase

Memory Loss

–

–

–

Neuropsychiatric &Behavioral symptoms

Fig. 6.1 Potential targets for drug action in Alzheimer’s disease
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6.3.2 Strategies Focused on Tau Proteins

Tau proteins have an essential function in stabilizing microtubules, extremely
soluble, particularly in axons abundant in the neurons (Cowan and Mudher 2013).
Insoluble paired helical filaments (PHF) are formed from hyperphosphorylation of
tau, which forms neurofibrillary tangles. Cytoskeleton destabilization was provoked
by the loss of microtubule-binding capacity, which ultimately leads to neurons’
degeneration and death (West and Bhugra 2015). Tau-centered treatments intend to
reduce the phosphorylation and aggregation of Tau protein as a substitute for
amyloid-centric strategies. Additionally, microtubule-stabilizing drugs could be
used as a disease-modifying approach in AD (Shefet and Benhar 2015). Recently,
immunomodulation was recommended as a possible opportunity for promoting
adequate clearance of aggregates of TAU proteins.

6.3.3 The Cholinergic Hypothesis

AD is characterized by a progressive loss of learning and memory in addition to
neuronal death. The hippocampus is influenced by cholinergic modulation which is
the main region of the brain involved in memory processing (Konishi et al. 2015).
Neurotransmitter alterations are associated with the degeneration of cholinergic
neurons in the nucleus basalis of Meynert and the loss of cholinergic inputs to the
neocortex and hippocampus. Several studies showed a reduction in choline
acetyltransferase (ChAT) and acetylcholine (ACh) release, with decrease in nicotinic
and muscarinic receptors in the cerebral cortex and hippocampus of postmortem AD
brains (Tata et al. 2014). One of the two classes of drugs approved for treating
AD-like acetylcholinesterase inhibitors (AChEI) works by increasing ACh bioavail-
ability at the synapse. But none of these drugs are competent neither in reversing the
route of AD nor decreasing the progression of AD (Wallace and Bertrand 2013).
Their possible use in combination therapy with other disease-modifying compounds
should not be excluded; however, their clinical effect is largely calming. The use of
ladostigil (TV3326) improves extrapyramidal symptoms. It provides an antidepres-
sant effect as a reversible inhibitor of AChE and is a selective and irreversible
inhibitor of brain monoamine oxidases A and B (Weinreb et al. 2011, 2012). It
also appears to be a potent antiapoptotic, antioxidant, anti-inflammatory, and
neuroprotective agent.

6.3.4 Dendritic Hypothesis

Dendritic abnormalities come in comparatively early stages of AD. It has just been
recently shown that this is where we begin to know the primary molecular changes
that occur on the postsynaptic side in the dendrite, although dystrophic neurites,
reduced dendritic complexity, and dendritic spine loss are all documented features of
AD (Shirazi and Wood 1993; Cochran et al. 2014). Studies documented that soluble
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Aβ oligomers are the primary neurotoxic species accountable for the pathology of
dendrites. Aβ oligomers might cause anomalous activation of N-methyl-D-aspartate
receptor (NMDAR) postsynaptically by forming complexes with the cell-surface
prion protein (PrPC). PrPC, which interacts with Fyn tyrosine kinase-metabotropic
glutamate receptor 5 complex (FynmGluR5), is enriched at the neuronal postsynap-
tic density. Fyn activation occurs when Aβ is bound to PrPCFyn- mGluR5 complex.
Activation of Fyn leads to the tyrosine phosphorylation of the NR2B subunit of
NMDAR. This causes initial augmentation and then a loss of NMDARs present at
the cell surface (Yang et al. 2011). It has been shown that overexpression of Fyn
accelerated the loss of synapse and the beginning of cognitive impairment in the
transgenic mouse model of AD; at the same time, its inhibition produced an opposite
effect (Cochran et al. 2014). Elevated levels of Fyn in AD brain have been reported
in the brain of AD. Moreover, it has been reported that Fyn phosphorylates Tau at
Tyr18 residue (Wilkinson et al. 2014). Therefore, Fyn might be a potential target in
the treatment of AD.

6.3.5 5-HT6 Receptors in Alzheimer’s Disease

Receptors of 5-HT6 are articulated in areas of the CNS implicated in learning and
memory. Their inhibition promoted the release of acetylcholine. The restoration of
acetylcholine levels is due to 5-HT6 antagonism (Woolley et al. 2001). This hypoth-
esis confirms that 5-HT6 receptor antisense oligonucleotides improve learning and
memory in the Morris water maze test in normal rats (Ramirez et al. 2014). Together
with AChEIs, 5-HT6 inhibitors might be helpful in amalgamation therapy, such as
Lu-AE-58054 (SGS-518) and PF-05212365 (SAM-531), considered as potential
treatments for mild-to-moderate AD (De Felice 2013a, b).

6.3.6 Changing the Concept

Clinical studies propose that diabetes is the most important contributing risk factor in
AD. There is a close link between insulin-deficient diabetes and cerebral amyloid-
osis, as demonstrated by research data (Lourenco et al. 2015). Peripheral and central
insulin signaling impairments are likely to be present in both diseases. Thus, “type
3 diabetes” theory of AD was developed, which contributes to bridging the experi-
mental metabolic phenotypes present in diabetes and AD into a rational structure
(Clarke et al. 2015). Factors such as glucose toxicity, insulin resistance, oxidative
stress, elevated levels of advanced glycation end products, and cytokine-mediated
neuroinflammation are among the proposed mechanisms by which diabetes could
increase the risk of AD development. Recently it has been demonstrated that
hypothalamic administration of soluble Aβ oligomers initiates neuroinflammatory
cascades which ultimately leads to disorders in peripheral glucose homeostasis
(De Felice 2013a, b). Tumor necrosis factor α (TNFα) might play a key role in
this process (Lourenco et al. 2013; Risner et al. 2006). As AD and T2DM diseases
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are probably linked with each other due to somewhat similar molecular mechanisms,
it is rational to presume that drugs used in the treatment of T2DM may have a
neuroprotective effect in AD (Gold et al. 2010). It has been studied that
thiazolidinediones (TZDs) are an example of antidiabetic compounds having a
possible role in AD. Peroxisome proliferator-activated receptor γ (PPAR-γ) has an
agonist, e.g., TZDs, which is involved in promoting the PPAR-γ heterodimerization
with the retinoid X receptor (RXR) which regulates expression of genes involved in
lipid and glucose metabolism. TZDs are known to improve the sensitivity of insulin
and decrease cytokine-dependent inflammation (Blalock et al. 2010). Rosiglitazone
and pioglitazone are known antidiabetic medicines, which help in regulating glucose
homeostasis by increasing insulin sensitivity, reducing blood glucose levels, and
improving lipid metabolism. Both medicines have also been studied as potent
therapeutics for the treatment of AD. Pioglitazone modified various brain aging
indices but did not slow down the cognitive decline studied in animal models (Sato
et al. 2011). It has been studied that pioglitazone treatment improved memory and
cognition in patients suffering from AD in a clinical trial (Cardoso et al. 2013).

6.4 Future Strategies

AD is a multifaceted pathology that might entail multiple strategies for the treatment.
Early disease detection, combination therapies, and lifestyle choices are all likely
contributors (Mi et al. 2013; Barnard et al. 2014; Humpel 2011). For the successful
eradication of the disease, an extensive range of studies demonstrated insufficient
nutrition could augment AD development threat (Cooper 2014). Diet rich in
nutrients can progress your probability of not developing AD. However, neither
the Mediterranean-type diet nor the antioxidant diet only can prevent
AD. Identification of biomarkers indicates primary stages of AD, which can lead
to early diagnosis and development extrapolative outcomes. Recently, diagnostic
strategies are paying attention to A (1–42) detection and total and phosphorylated
Tau levels in the CSF and the brain. Imaging techniques such as brain MRIs are also
used (Humpel 2011; Wallon et al. 2012). When the pathology has fully developed
for both Aβ and tau increases to use as a diagnostic markers for AD development at
primary stages. Another set of molecules which can potentially improve AD pathol-
ogy is growth factors. Transforming growth factor β family, insulin-derived GFs
(insulin-like growth factor 1 (IGF-1) and insulin-like growth factor 2 (IGF-2)), basic
fibroblast growth factor (bFGF), and neurotrophins (nerve growth factor, NGF;
brain-derived growth factor, BDGF; glial-derived neurotrophic factor, GDNF) all
contribute in neurogenesis and neurodevelopment and might be measured as possi-
ble targets for AD treatment (Tuszynski et al. 2015; Perry 1986).
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6.5 Neurochemistry of AD and Its Association with Treatment

Neurochemical instability is most significant as far as drug treatment of AD is
concerned. All the four drugs approved by the Food and Drug Administration
(FDA) and their mechanism of action revolve around neurochemical conflicts.
There is a cholinergic hypothesis that suggests the deficiency of acetylcholine as
the main factor for the symptoms of AD (Paul 2005). However, from the pharmaco-
logical approach, the cholinergic hypothesis is most important, but considering the
cholinergic deficiency as an exclusive reason for AD symptoms is an over-
generalization. Instead, AD involves many neurotransmitters like glutamate, seroto-
nin, and neuropeptides (Chen et al. 2014).

6.5.1 Drug Treatment of Alzheimer’s Disease

Several approaches are in the process of trials based on AD’s pathophysiology and
neurochemistry, but a cure of AD is vague, and stopping disease progression is still a
dispute. None of the drugs has reached the stage of approval although numerous
drug trials are ongoing to target amyloid-beta production. Recently permitted drug
classes are only for neurochemicals. The two classes are cholinergic modulation and
NMDA modulation. The cholinesterase inhibitors and NMDA antagonist at least
decelerate the turndown of cognition, behavior, and global AD patients’ changes.
Though cholinergic and glutamatergic dysfunctions are neurochemical targets for
AD’s indicative progression, these drugs do not heal the disease (Giacobini 2000).

6.5.2 Cholinesterase Inhibitors

The fundamental idea is to enhance the cholinergic function of the brain. Recently
acetylcholinesterase enzyme (AchE) inhibitors are used as a new approach. Acetyl-
cholinesterase is the degrading enzyme of acetylcholine. As per cholinergic hypoth-
esis on AD, there is lack of acetylcholine and inhibition of degrading enzyme. the
acetycholine level enhances. The irreversible inhibitors of AchE (e.g., organophos-
phorus) turn into poisonous ones. Therefore, only reversible high lipid-soluble
inhibitors that can cross the blood-brain barrier are used (Yan and Vassar 2014).
Anticholinesterase drugs approved by the FDA for AD-related dementia are
donepezil, rivastigmine, and galantamine. These drugs have been selected because
of their central role in the selection of peripheral ChE inhibition.

6.6 Future Perspectives and New Drug Targets

There is no clear evidence that the current approved drugs help in modifying the
primary pathological process of AD. Instead, they only give suggestive relief and
slow the process of symptom deterioration. So the search of drugs acting on new
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targets is needed, and accordingly, several trials are in the pipeline. Several trials
were started, but they didn’t get approval, and many of them discontinued due to
lack of any considerable advantage in Phase II or III clinical trials. One recent target
is β-secretase, namely, β-site APP cleaving enzyme 1 (BACE1). BACE1 cleaves
precursor protein. Many compounds are being tried, but none have passed Phase III
due to lack of significant efficiency with discontinuation of studies for some
compounds (Napryeyenko and Borzenko 2007). Some other targets like tau stabili-
zation, tau aggregation inhibitor, microglial activation inhibitor are new molecules
might be passed the clinical trials’ phases.

6.7 Alternative or Herbal Medicine for Alzheimer’s Disease

Herbal drugs are acquiring enormous fame around the world as far as health is
concerned. Lack of allopathic medicines for the treatment of AD has focused interest
on herbal drugs. On medicinal herbs, a number of researches have been done. Herbs
have pharmacological properties like anti-inflammatory and antioxidant activities
that may be used in the treatment of AD. Patients suffering from AD have an
acetylcholine deficiency. Anti-inflammatory herbs like chamomile, ginseng, licorice,
turmeric, and white willow bark might decrease the brain tissue inflammation in
AD. Acetylcholine plays a significant function in cognitive function and reasoning.
Brains of the patients suffering from mild-to-moderate AD have unusually low
acetylcholine concentrations. This ensures that any compound that augments the
cholinergic organization in the brain might help treat AD and related brain failures.
For AD, herbs that inhibit acetylcholinesterase (AchE) have natural COX-2
inhibitors, also documented as medicinal herbs. Some other herbs are known for
decreasing the degeneration of the brain caused by AD-like Guduchi,
Yashtimadhuk, Padma (Nelumbo nucifera), Vacha, Convolvulus pluricaulis,
Shankhpushpi, Pancha-Tikta-Ghruta Gugguli, Amalaki, Musta Arjun, Amalaki,
Ashwagandha, Galo Satva, and Kutaj. They increase the function of the brain and
provide constancy when continuously used.

6.7.1 Ginkgo biloba

Gingko biloba is used as an extract. Several placebo-controlled trials have been
conducted. Numerous of these studies were less well designed and have not been
rigorously used in current investigative criteria. A meta-analysis of studies suggested
either pathetic or without benefit in patients of AD. Its use as an additional therapy
with anticholinesterase has not been estimated in long-term studies (Montgomery
et al. 2003).
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6.7.2 Acetyl-L-carnitine

Studies utilizing modern diagnostic definitions and conclusion methods have no
benefit for ALC. However, meta-analysis of studies with altering definitions, inclu-
sion criteria, and a conclusion has found proof of its use in mild disease. Studies with
its add-on to current standard treatments are still going on. No severe side effects
have been observed clinically or on an individual (Yang et al. 2005).

6.7.3 Curcumin

No clinical facts of curcumin for AD are available, despite many assert and animal
studies, for its function in decreasing oxidative damage and pathology of amyloid
protein. However, it is being used for many similar conditions (Lannert and Hoyer
1998). The list of drugs approved by the FDA and future drugs used to treat
Alzheimer’s disorder is shown in Table 6.1.

6.7.4 Panax ginseng (Araliaceae)

Panax ginseng (Ren-shen) possesses saponins, protopanaxadiol, protopantriol, and
oleanolic acid saponins known to have memory-increasing properties for the
learning destruction persuaded by scopolamine (Park et al. 1996). Ginseng grows
in Northeastern Asia. Its roots have been used in folk medicine in countries like
China and Korea, for boosting energy from ancient time. For thousands of years, it

Table 6.1 Drug used in Alzheimer’s

Drugs Targets

FDA approved
Donepezil

Glantamine Improve cholinergic deficit

Rivastigmin

Tacrine

Memantine Reduce exitoxicity by glutaminegic action

Future drugs
Ginkgo biloba Effects on cerebral blood flow, neurotransmitter systems, direct effect on

amyloid aggregation

Acetyl-L-carnitine Modulate the activity of neurotrophic factors

Lecithin Accelerate acetylcholine synthesis by increasing availability of the
substrate choline

Vinca minor
(Vinpocetine)

Improve cerebral metabolism, increase glucose consumption by the brain

Curcumin Antioxidant and anti-inflammatory properties as well as a direct effect
against β-amyloid aggregation
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was used as a medicinal herb. The ginseng extract has many uses: it maintains
human beings’ both physical and mental health (Bilge and Ilkay 2005).

6.7.5 Glycyrrhiza glabra (Fabaceae)

Glycyrrhiza glabra is also known as licorice. The effects of a water extract of licorice
on Aβ25–35-induced apoptosis in PC12 cells have been investigated. The result
suggests that it exhibits a shielding effect against apoptotic death of neurons induced
by Aβ fragments. Extract from the licorice root is reported to treat or even prevent
brain cell death in diseases like Alzheimer’s and its related symptoms (Rubio et al.
2011).

6.7.6 Commiphora wighitti (Burseraceae)

A plant resin, Commiphora wighitti (Guggulu) constitutes major constituents,
guggulipid and guggulsterone. The guggulipid is a possible cognitive stimulator
for the progression of memory in scopolamine-induced memory deficiency (Park
et al. 1996). Guggulu acts on impairment in learning and memory and reduces
choline actyltransferase levels in the hippocampus. However, it shows maximum
effects on memory functions and potential for dementia (Kumar et al. 2011).

6.7.7 Withania somnifera (Solanaceae)

Active glycowithanolides of Withania somnifera (Ashawgandha) have a major
antioxidant function, which is attained by increased activities of several enzymes,
viz., superoxide dismutase, catalase, and glutathione peroxidise (Sandhu et al. 2010).
Ashwagandha is used as a nervine tonic that rejuvenates the cells and boosts energy.
The cholinesterase inhibition assessment was carried out using a colorimetric
method based on Ellman’s reaction and demonstrated that the W. somnifera extract
significantly inhibited AChE in a concentration-dependent manner (Sandhu et al.
2010).

6.8 Conclusion

This review focuses on the associations between environmental causes and the
development of AD and other neurodegenerative disorders. Our information on
the genetics of AD has improved extensively over the last few years. But much
work remains to be completed to exemplify the missing genetic causes. This must
show how to modify treatments that go with the individual patient’s genetic report.
Present data revealed that AD neuropathology engages numerous signalling
cascades. Over the last few years, amyloid protein hypothesis has conquered the
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field, due to which many studies have focused on inhibition and elimination of Aβ
and senile plaques. Unluckily, the amyloid-centric strategies have failed to exhibit
developments in cognition in AD patients. Herbs may take part in the early treatment
of Alzheimer’s and other disorders like reduced memory and dementia. One of the
major benefits is that they have low toxicity compared to modern medicines. As a
result, if any person has a family history of AD or has memory problems, they may
start taking these herbal medications earlier to delay symptoms or possibly prevent
the arrival of the symptoms.
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Therapeutic Potential of Polyphenols
in Alzheimer’s Therapy: Broad-Spectrum
and Minimal Side Effects as Key Aspects

7

Anas Shamsi, Saleha Anwar, Taj Mohammad, Moyad Shahwan,
Md. Imtaiyaz Hassan, and Asimul Islam

Abstract

Alzheimer’s disease (AD) is a degenerative brain disease that is the leading cause
of dementia among the human population. AD is characterized by accumulating
amyloid plaques which are insoluble deposits of a 4 kDa peptide of ~40–42
amino acids in length, known as amyloid-β (Aβ). The imbalance between Aβ
generation and clearance in the brain leads to the progression of AD. AD pathol-
ogy is characterized by the deposition of oligomeric and fibrillar forms of
amyloid-β (Aβ) in the neuropil and cerebral vessel walls. Neurofibrillary tangles
are composed mainly of hyperphosphorylated tau and neurodegeneration.
Polyphenols are the most abundant antioxidants in the diet. More than 8000
naturally occurring polyphenols exist.

Numerous studies have indicated that high consumption of fruits and
vegetables rich in flavonoids and other polyphenols reduces the risk/incidence
of age-related neurodegenerative disorders, highlighting the importance of these
polyphenols as neuroprotective agents. Due to polyphenols’ ability to influence
and modulate multiple targets in the cascade of the pathogenesis of neurodegen-
erative diseases, they are considered a candidate with a promising result against
neurodegeneration, halting the progression of the disease. There is now
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substantial evidence indicating that oxidative damage to the brain is an early AD
pathogenesis event. Oxidative stress and damage to brain macromolecules are
vital processes in neurodegenerative diseases. The antioxidant properties of many
polyphenols are purported to provide neuroprotection. There are pieces of evi-
dence that some of the polyphenols can easily cross the blood-brain barrier
(BBB). This chapter will provide deeper insights into various polyphenols that
play a pivotal role in AD and shed light on the roles of these in the context of AD
therapeutics.

Keywords

Alzheimer’s disease · Polyphenols · Rosmarinic acid · Resveratrol · Green tea
polyphenol · EGCG · Curcumin · Quercetin

7.1 Introduction

Polyphenols are phenolic compounds that constitute one of the most abundantly
present secondary metabolites in the plant kingdom. Plant polyphenols were earlier
referred to in the literature as vegetable tannins due to the tanning effect on animal
skin (Bate-Smith et al. 1962). Structurally, the compounds are characterized by one
or more hydroxyl groups attached to the aromatic ring (Tsao 2010). Polyphenols
constitute a well-differentiated group in terms of the chemical structure and
biological activities as well. Their occurrence is conjugated chiefly with sugars,
amines, lipids, acids, and other phenols. The classification in different groups is
based on the number of phenol rings and structural elements attached to the rings
(Pandey and Rizvi 2009; Pimpão 2014). The primary classes are phenolic acids,
flavonoids, stilbenes, coumarins, and lignans (Fig. 7.1).

Phenolic acids are represented by hydroxybenzoic and hydroxycinnamic acid.
Hydroxybenzoic is rare in its contribution to the human diet, with a few exceptions:
gallic acid and ellagic acid (Manach et al. 2004). Hydroxycinnamic acid, on the other
side is common with candidates such as caffeic acid, ferulic acid, sinapic acid,
shikimic, and tartaric acid (Pandey and Rizvi 2009). The second group, flavonoid,

Fig. 7.1 Classification of polyphenols
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is the most studied group. More than 10,000 different structures have been
incorporated in this group with a common basic structure consisting of two aromatic
rings bound together by three carbon atoms that form an oxygenated heterocycle
(Cheynier et al. 2013). This phenol class is responsible for mesmerizing and alluring
colors presented by fruits, flowers, and leaves.

The most diverse group is subdivided into six subgroups: flavonols, flavones,
isoflavones, flavanones, anthocyanins, and flavanols. Differences within each group
arise due to the functional hydroxyl arrangement, its number, and alkylation and
glycosylation capabilities (Spencer et al. 2008). Some of the commonly known
flavonoids are quercetin, myricetin, kaempferol, etc. Stilbenes are not so common
in diet except for resveratrol found in grapes and red wine. The group is structurally
characterized by a two-carbon methylene bridge connecting two phenyl moieties
(Cassidy et al. 2000). The fourth group, coumarin, is made of an aromatic ring linked
to a condensed lactone ring. The fifth group is lignans, which are diphenolic
compounds formed by dimerization of two cinnamic acid residues. The richest
dietary source is linseed, containing secoisolariciresinol and low quantities of
matairesinol (Adlercreutz and Mazur 1997)

Fruits and vegetables are mainly considered to be the richest source of dietary
polyphenols. Hence, a healthy diet contains a cocktail of several phenolic
compounds in varied chemical forms (Lewandowska et al. 2016). It’s a challenging
task to determine the daily intake of polyphenols due to every person’s variable
dietary pattern. On average, it is estimated that a normal person takes about 14 mg of
flavonoids per day (Scalbert and Williamson 2000). Polyphenols are one of the
largest sources of antioxidants in the diet. However, the total phenolic content does
not directly correspond to the total antioxidant activity (Pérez-Jiménez et al. 2010).
The metabolism and absorption of phenolic compounds are essential for their
bioavailability, which is responsible for their significant biological activity. How-
ever, absorption and metabolism are affected by the polyphenol’s chemical structure
and factors related to interpersonal variabilities, such as systemic factors like age,
gender and pathologies, and the level of enzymatic activities.

Considering the largest class of polyphenols, the cleavage of the flavonoids can
occur in the stomach with a very low pH. Flavonoids are degraded into smaller
phenolic acids by the colon’s microflora, enabling them to be absorbed into the cells
and even cross the BBB (Spencer et al. 2004). The crossing of the BBB by
polyphenols is well evident; studies in situ, in vitro, and in silico showed polyphenol
structure, and efflux systems influence their brain bioavailability (Youdim et al.
2004; Figueira et al. 2017). However, the exact mechanism and route by which they
cross the barrier is still unclear. Most of the metabolites are lost in the urine and
contribute to a lower bioavailability (Spencer et al. 2004). Despite having phenotyp-
ical differences, neurodegenerative diseases have few common factors, such as
oxidative stress and inflammation. Our bodies have an endogenous mechanism to
maintain redox homeostasis to deal with overproduced free radicals in oxidative
stress. Somehow, these mechanisms seem to be inefficient in pathologic contexts,
making exogenous sources of antioxidants capable of dealing with oxidative stress
so crucial. Among these, dietary polyphenols have been extensively studied for their

7 Therapeutic Potential of Polyphenols in Alzheimer’s Therapy:. . . 113



strong antioxidant capabilities. Among the possible known mechanisms, the scav-
enging of free radicals by binding with polyphenols postulated under the radical
elimination hypothesis shows deleterious effects on free radicals (Das et al. 2016).
However, strategies for the antioxidant activity go beyond the neutralization of free
radicals having a modulating effect on the signaling pathways (Han et al. 2007).

Figure 7.2. shows a flowchart that depicts different bioeffects of polyphenols. The
well-fortified effect of polyphenols is majorly due to their capability to regulatory
effects on signaling pathways related to diseases, such as PGC-1α (Pasinetti et al.
2015), SIRT1 (Wu et al. 2017), AMPK (Jiménez-Flores et al. 2014), MAPK which
further regulates extracellular signal-regulated kinases (ERK), the p38 MAPKs, and
the c-Jun NH2-terminal kinases, NF-kB, activator protein 1, canonical Wnt, and
protein kinase C (PKC) (Das et al. 2016; Kaulmann and Bohn 2016). These
pathways play a crucial role in many biological functions, such as apoptosis, cell
proliferation, and many more (Das et al. 2016; Kaulmann and Bohn 2016). The role
of polyphenols as signal regulators is due to redox-sensitive changes on the
cascades. These phenolic compounds are engaged in several pathologies and are
used as a drug to hit many targets involved in neurodegenerative diseases, cancer,
and other pathologies (Upadhyay and Dixit 2015).

7.2 Polyphenols for Prevention and Treatment of Various
Diseases

Table 7.1. provides an insight into the mechanism of different polyphenols
specifying their bioactivity.

Fig. 7.2 Flowchart depicting different bio-effects of polyphenols
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7.3 Neurodegeneration and Role of Polyphenols

Neurodegenerative disorders (NDs) are diseases that collectively lead to debilitating
and fatal conditions affecting neurons. These neurological syndromes are chronic
and cause dysfunction of the nervous system due to neuronal cell failure
(Brettschneider et al. 2015), ultimately leading to dementia and ataxia. Hereditary
and/or sporadic conditions lead to the progression of the syndromes, which exerts a
deleterious impact on the central nervous system (CNS) and the peripheral nervous
system (PNS) (Soto 2003). Therapies to entirely modify the diseases by delaying or
reversing disease progression are not available. Hundreds of disorders afflict the
nervous system, such as Parkinson’s disease (PD), Alzheimer’s disease (AD),
Huntington’s disease (HD), multiple sclerosis (MS), amyotrophic lateral sclerosis
(ALS), degenerative nerve diseases, brain cancer, encephalitis, stroke, prion
diseases, etc. NDs are heterogeneous and have multiple factors responsible for the
pathology, affecting brain structure. AD, HD, PD, and ALS share misfolded protein
aggregation as common pathology, designated as protein conformational disorders
(Quist et al. 2005). AD, a clinical syndrome, is characterized by degeneration of
neocortical neurons and the hippocampus part of the brain (Braak et al. 1996),
responsible for major symptoms like loss of memory and cognitive decline (O’Brien
and Wong 2011). PD, the most common motor neuron disease, has clinical
symptoms such as bradykinesia, muscle rigidity, resting tremor, and postural insta-
bility caused by the loss of dopaminergic neurons in the substantia nigra pars
compacta (Lees 2007). Lewy bodies (LBs), the cytoplasmic inclusions, enclose
aggregated α-synuclein which is the disease’s hallmark (Shults 2006). HD displays
many symptoms including dementia, chorea, and emotional disturbance (Martin and
Gusella 1986; Walker 2007). The striatal region of the basal ganglia suffers a
neuronal demise. HD is linked to genetic mutation linked to the expression of
N-terminal polyglutamine (polyQ)-Huntingtin (Htt) beyond a length of ~35 gluta-
mine residues. Cleavage of these polyQ tails produces cytotoxic fragments with a
high tendency to cross-link and aggregate in neurons and glial cells (Tydlacka et al.
2008; Bugg et al. 2012). ALS is a fatal disease of motor neurons that can cause death
within a few years of the condition’s onset. The primary reason for death is respira-
tory failure. The disease is caused by progressive loss of bulbar, cortical, and ventral
cord motor neurons, with the major genetic risk factors being mutations in the genes
encoding the superoxide dismutase SOD1 (Rosen et al. 1993), the TAR-DNA-
binding protein (Sreedharan et al. 2008), and the fused in sarcoma or translocated
in liposarcoma protein (FUS/TLS) (Kwiatkowski et al. 2009; Vance et al. 2009).
Neurodegeneration is known to have multiple underlying factors, and polyphenols
present pleiotropic effects (antioxidant, anti-inflammatory, antitumor, anti-tau,
immunomodulatory properties, etc.; Kimura et al. 2010). Polyphenols have been
implicated as potential protective, curative, and preventive agents for many diseases,
such as AD (Silveira et al. 2019), Parkinson’s disease (Aquilano et al. 2008),
Huntington’s disease (Maher et al. 2011), hypercholesterolemia (Zou et al. 2003),
diabetes mellitus (Bahadoran et al. 2013), chronic fatigue syndrome (Gupta et al.
2009), stroke (Wang et al. 2013), many cancers (Zhou et al. 2016), autism (Parker-
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Athill et al. 2009), cardiovascular disease (Perez-Vizcaino et al. 2006), and vitiligo
(Jalel et al. 2009), among others (Das et al. 2016). Due to polyphenols’ ability to
influence and modulate multiple targets in the cascade of pathogenesis, they are
considered a candidate with a promising result against neurodegeneration, halting
the progression of the disease. For many years, polyphenols were thought to protect
cell constituents against oxidative damage through direct scavenging of free radicals.
Such an idea has become very popular, leading to several studies exploring this
property of polyphenols for NDs since oxidative stress constitutes an important
hallmark of these diseases.

The emerging acceptance of polyphenols and their derivatives shows an effect on
inhibition of specific protein kinases and lipid kinase signaling pathways (Williams
et al. 2004). Several other neuroprotective functions of polyphenols are contributed
due to properties like iron chelators (Griffioen et al. 2006), interference with
signaling pathways associated with neurogenerative diseases (Spencer 2010), inhi-
bition of neuropathological processes (Rezai-Zadeh et al. 2005), and regulation of
mitochondrial function (Surh et al. 2001; Mandel and Youdim 2004; Skupień et al.
2006).

7.4 Role of Some Important Polyphenols in AD

Aging alters an individual’s normal functioning as time passes by (Queen and
Tollefsbol 2010); it deteriorates and weakens the overall biological system. The
primary effect is faced by the brain and cognitive functions, affecting memory,
calculation, thinking, learning, and judgment. The effects are so severe that it
changes the overall physiology and behavior; AD is a severe problem with millions
of new cases every year (World Health Organization 2018).

Tau protein and the amyloid-β peptide (Aβ) are thought to be the key regulators in
AD. Both the proteins self-assemble to form amyloid plaques and neurofibrillary
tangles, respectively, which are well-known hallmarks of AD. Amyloid plaques with
40/42 (Aβ40 and Aβ42) amino acids are extracellular accumulations formed as a
by-product of APP metabolism. Mutations in the gene PSEN1 and PSEN2 of the
APP leads to overproduction of Aβ42. The imbalance between production and
clearance of Aβ is assumed to the major process of pathology. Oligomerization of
Aβ has been reported to be the prime cause of neuronal death and synaptic dysfunc-
tion. The tau hypothesis of AD progression claims that the accumulation of tau
proteins tangled together leads to the progression of this condition. Tangle formation
disintegrates the microtubule assembly and structure of the neuronal cells. The
communication between neurons is interfered with, leading to brain cell death.
Naturally occurring polyphenols have shown deleterious effects on these hallmarks
by targeting the associated signaling pathways (Zheng et al. 2019). Polyphenols alter
the amyloid-β precursor protein’s enzymatic processing and block toxic Aβ oligo-
merization by upregulating the clearance of Aβ42 monomer, modulating monomer
interactions, and remodeling oligomers nontoxic forms.
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Additionally, polyphenols prevent tau hyperphosphorylation and inhibit the
formation of tau β-sheet. The anti-Aβ-self-assembly and anti-tau-self-assembly
effects of polyphenols increase their potential as preventive or therapeutic agents
against AD, a complex disease with many pathological mechanisms. Polyphenols
are excellent antioxidants, and several in vivo experiments have been conducted to
find an association between polyphenol-rich food and amyloid accumulation
(Hu et al. 2013). AD risk was reduced to half in a group of mice fed with food
and rich in polyphenols and pomegranate, a good source of polyphenols (Hartman
et al. 2006). Resveratrol from grape extracts reduced hippocampal
neurodegeneration in transgenic mice (Kim et al. 2007).

The pathophysiology has a direct relation to oxidative stress related to neurons.
Oxidative stress causes neuronal damage and disrupts the intracellular signaling
leading to apoptosis (Ramassamy 2006). With continued aging, the central nervous
system becomes more susceptible and affected by oxidative stress (Joseph et al.
2005). In the early stages, the Aβ amyloid peptide exploits many mechanisms to
damage neurons, including mitochondrial dysfunction, apoptosis, and NF-kB acti-
vation. Plaque toxicity involves forming reactive oxygen species (ROS) and metal
transitions (Kaltschmidt et al. 1997, 1999; Longpré et al. 2006). Antioxidants from
the diet have a strong negative correlation with the factors promoting AD. Several
experimental evidence of dietary and naturally occurring polyphenols in curbing the
menace of AD are present. Flavonoid derivatives have been tested in vitro on rat
acetylcholinesterase (AChE) and shown better inhibitory activity than the marketed
drug rivastigmine, while a few demonstrated inhibitory activities similar to
donepezil (Kumar et al. 2016). Flavanols, catechins, and epicatechins in research
proved to be very promising against AD. However, many others have also reversed
the impact of AD, some of which are extensively approached in the following
sections.

7.4.1 Rosmarinic Acid

Rosmarinic acid is a naturally occurring phenolic compound, an ester of caffeic acid
and 3,4-dihydroxyphenyl lactic acid, generally found in plants of Lamiaceae (the
mint) family that possess broad-spectrum therapeutic potential (Shamsi et al.
2020a, b). RA has been well studied for different biological activities ranging
from anticancer to neuroprotective activities (Anwar et al. 2020; Shamsi et al.
2020a, b). RA is known to suppress various cancer types (Anwar et al. 2020) by
interfering with the signaling pathways involved in the upregulation of metastasis
like ERK. RA targets a major factor in the MAP kinases cascade. In vitro and in vivo
studies have given evidence for the potency of RA in AD therapy. Computation
technique like docking simulation has helped investigate binding efficiencies and
affinity of RA to Aβ peptide (Ramazzotti et al. 2016). Many mechanisms contribute
to the anti-AD effect of RA; one such is a reduction in amyloid-β (Aβ) secretion by
increasing the synthesis of monoamines. Amyloidosis, the formation of amyloid
aggregates, is the hallmark of systemic and neurodegenerative disorders. In RA’s
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presence, there is increased production of monoamine synthesis like epinephrine,
3,4-dihydroxyphenylacetic acid, and levodopa with the enhancement of dopamine
signaling pathways. The monoamines are responsible for the degradation of amy-
loid-β production (Hase et al. 2019). Oligomerization and aggregation of Aβ are
inhibited in the presence of RA (Ono et al. 2012), which inhibits AD progression.
PC12 cells were cultured and treated with Aβ1–42. Cell cytotoxicity was observed
with ROS formation, DNA fragmentation, lipid peroxidation, caspase-3 activation,
and hyperphosphorylation tau; all the effects were suppressed in 10μM RA (Iuvone
et al. 2006). RA’s potential AD effect was studied in vivo by administrating RA
orally to mice for 14 days in AD mice. The outcomes were favorable with restored
memory and neuromotor functions (Lee et al. 2016). Tau hyperphosphorylation and
aggregation are known to promote AD. RA has been studied for its effects on tau as a
potential candidate against AD. RA binds to tau in a manner that inhibits β-sheet
assembly, demonstrating the effect of RA as an anti-AD polyphenol (Shan et al.
2016; Cornejo et al. 2017).

7.4.2 Resveratrol

Resveratrol, a naturally occurring polyphenol, chemically known as trans-3,40,5-
trihydroxystilbene, is known to exert beneficial effects against AD (Baur et al. 2006;
Lagouge et al. 2006) by influencing cognitive impairments (Lagouge et al. 2006;
Ranney and Petro 2009). The compound is a known modulator of a few important
metabolic proteins such as peroxisome proliferator-activated receptor γ co-activator-
1α (PGC-1α), sirtuin 1 (SIRT1), and AMP-activated protein kinase (AMPK) which
are involved in the progression of AD and other neurological disorders (Um et al.
2010; Vinciguerra et al. 2010; Vingtdeux et al. 2011). Resveratrol has been shown to
benefit in vitro models of epilepsy, AD, HD, PD, ALS, and nerve injury (Rocha-
González et al. 2008). The polyphenol belonging to the stilbene subclass is not very
abundant in nature; a low concentration of the compound is found in some food
sources such as red grapes and its by-products such as juice and wine, some berries,
etc. (Sanders et al. 2000; Rimando et al. 2004). A study demonstrated that subjects
with mild cognitive impairment showed significant memory function improvement
after consuming purple grape juice (Krikorian et al. 2010). Similarly, in another
study, it was found that moderate red wine consumption proved beneficial in
AD-type cognitive deterioration in the Tg2576 transgenic mouse model of AD by
exerting a negative effect on Aβ neuropathology (Ho et al. 2009). This AD model
showed a steep decrease in the generation of Aβ peptide in the hippocampal neuron
cultures generated from these mice (Vingtdeux et al. 2008). Many ongoing research
pieces have claimed control on Aβ accumulation by resveratrol facilitating the
proteolytic clearance in neurons (Vingtdeux et al. 2010). Resveratrol shows anti-
amyloidogenic effects by exerting modulating effects on AMPK (Vingtdeux et al.
2010).
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7.4.3 Green Tea Polyphenol: EGCG

Asian countries traditionally consume green tea extracted from the Camellia sinensis
plant (Khokhar and Magnusdottir 2002). Green tea is rich in polyphenols with four
major derivatives based on structural variance which are epicatechin (EC),
epigallocatechin (EGC), epicatechin gallate (ECG), and epigallocatechin-3-gallate
(EGCG), with EGCG being the major one (Nanjo et al. 1996; Khan et al. 2006). In
the past few decades, green tea has gained a lot of attention mainly due to its active
compound EGCG, which is a known therapeutic agent targeting neurodegeneration
(Weinreb et al. 2004; Guo et al. 2005), inflammation (Singh et al. 2010), and cancer.
EGCG is a well-known radical scavenger (Weinreb et al. 2004), anti-inflammatory
agent (Singh et al. 2010), antioxidant (Weinreb et al. 2004), and metal chelator
(Lambert and Elias 2010), which makes it a suitable drug candidate against neuro-
degenerative diseases and other disorders. The metabolism of green tea polyphenols
has also been studied, and it was reported that these polyphenols are absorbed,
metabolized, and excreted within 24 h from the body. With a few cups of green tea
ingestion in a day, the concentrations of polyphenols in plasma increased by more
than ten times, sufficient to exert antioxidant activity against all the oxidative
damages (Lee et al. 1995; Sharma et al. 2007). EGCG’s radical scavenging
properties have been measured compared to vitamins E and C, and polyphenol
overtook them (Nanjo et al. 1996). Within the derivatives, the order of protective
effects in vitro has been reported to be ECG> EGCG> EC> EGC (Nie et al. 2002)
and their order of antioxidant potential, EGCG� ECG> EGC> EC (Weinreb et al.
2004).

The extensive researches on EGCG have uncovered its potential to promote aging
by exerting functional and morphological alterations on the human brain, like
suppression of cognitive dysfunction (Unno et al. 2004), enhancement in the
learning process (Unno et al. 2007), and reduction in oxidative damage to the
brain (Unno et al. 2007; Schaffer et al. 2012). In AD, EGCG has shown ROS
inhibition, degradation of Aβ, and γ-secretase activity, hence clearing off amyloid
accumulations. Increased α-secretase activity and suppression of tau have also been
observed (Lim et al. 2013). Advances in the mechanism by which EGCG acts on AD
and other related conditions have been well studied. EGCG modulates many essen-
tial signaling pathways such as MAPK, PKC, PKA, and PI3K/AKT pathways
(Mandel et al. 2005; Kalfon et al. 2007). Tau protein and amyloid-β are the two
biomarkers of AD, and their inhibition leads to the prevention of AD (Singh et al.
2015). In vitro studies on neuronal cells treated with 10μM EGCG show
neuroprotective effects by inhibiting Aβ-induced cytotoxicity; EGCG also acted as
an excellent acetylcholinesterase inhibitor (Okello et al. 2012; Qin et al. 2012). The
ability of ECGC as a ROS scavenger confers neuroprotective effects against A-
β-induced neuronal apoptosis (Choi et al. 2001). EGCG acts as a metal chelator by
inhibiting Al (III)-induced fibrillation of toxic amyloid-β and further converting
Aβ42 monomers into a folded conformation. Tau aggregation and oligomerization
are also inhibited, and at the exact time, the reversal of oligomers to unfolded
monomeric state occurs (Wobst et al. 2015). Administration of ECGC in AD
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transgenic mice suppressed phosphorylation of tau isoforms and regulated the tau
profile (Rezai-Zadeh et al. 2008). Long-term administration of the polyphenol in rats
significantly improved spatial cognitive learning abilities (Haque et al. 2006). All the
literature and experiments showed ECGC’s ability to reduce tau toxicity and Aβ
fibrillation and toxicity, thus showing its ability to prevent AD.

7.4.4 Curcumin

Curcumin is the active component of Curcuma longa, a widely grown spice in India
and other Asian and Middle East companies. It has been used extensively in the
Ayurvedic medical system as a pain reliever, antiseptic, and anti-inflammatory
agent; the compound is also known to have anticancer properties (Shishodia et al.
2005; Kunnumakkara et al. 2017). Effects of curcumin on AD and its reversal have
been studied extensively; in research on the prevalence of AD in India, a lower risk
factor of the disease in the population was found (Ganguli et al. 2000; Ng et al.
2006). Inflammation of the nerve cell is one of the pathogenesis in AD (Mishra and
Palanivelu 2008). Associated inflammatory changes are the presence of
pro-inflammatory factors that accompany the deposition of amyloid-β peptide.
Patients with prolonged use of nonsteroidal anti-inflammatory drugs (NSAID)
showed a reduced risk of developing AD. However, prolonged use can lead to
toxic effects on the human body (Mazzolani and Togni 2013). Curcumin, a potent
anti-inflammatory agent, has shown a reversal in AD by various mechanisms.
Curcumin is found to inhibit phospholipases, cyclooxygenase (COX-2), enzymes,
and transcription factor involved in metabolizing the membrane phospholipids into
prostaglandins (Shen and Ji 2012). ROS reduction, inhibition of factors such as
NF-κB and AP-1, which are involved in the expression of amyloid and linked to AD
by inhibiting pro-inflammatory cytokines activation like Tumor necrosis factor α
(TNFα) and interleukin β (IL-β), IL-1 and IL-6 (Park and Kim 2002; Kim et al.
2005). Curcumin is also a proven antioxidant and acts as a neuroprotectant against
AD and other ND diseases (Hewlings and Kalman 2017). Aβ levels in ADmice were
reduced to 40% with low doses of curcumin compared to control. A 43% decrease in
plaque formation was also observed. Low doses of curcumin over a more extended
period proved beneficial; however, higher doses surprisingly showed less effect. The
compound binds to Aβ at higher concentrations and blocks its self-assembly (Yang
et al. 2005). Curcumin easily crosses the blood-brain barrier and binds to the
plaques; majorly, Aβ40 aggregation is targeted for inhibition by curcumin (Narlawar
et al. 2008). Various other studies also demonstrated the same results, showing the
compound’s deleterious effect on senile plaques (Garcia-Alloza et al. 2007).
Curcumin also promotes phagocytosis of Aβ, clearing the depositions from the
AD brain (Fiala et al. 2007). Metal toxicity-induced Aβ aggregation was also
reversed; curcumin interacts with heavy metals such as cadmium and prevents
neurotoxicity from contributing to AD and related conditions (Baum and Ng 2004;
Daniel et al. 2004).
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7.4.5 Quercetin

Quercetin (3,5,7,30,40-pentahydroxyflavone) (QC), a polyphenol under subgroup
flavonoid, is generally found in fruits and vegetables. Many studies have reported
diverse quercetin activities, namely, anti-inflammatory, antithrombotic, anti-obesity,
anti-hypercholesterolemic, anti-atherosclerotic, and anticancer (Wang et al. 2014;
Dahiya et al. 2019a, b; Gupta et al. 2019a, b). The neuroprotective effects of
quercetin have been studied extensively, and the results are promising. At low
concentrations, QC neutralizes cell toxicity caused by oxidative stress in neuronal
cells. QC challenges the hallmarks of AD. It interferes with the formation of
neurotoxic Aβ species, prevents its oligomerization, and destabilizes the fibrils
(Regitz and Wenzel 2014; Caruana et al. 2016). QC inhibits β-secretase1 enzyme
activity by binding to it with hydrogen bonds; the hydroxyl group at C3 has a
significant role in inhibiting the enzyme that promotes AD (Shimmyo et al. 2008). It
stimulates the regeneration of neurons by downregulation of pro-inflammatory
cytokines, such as NF-kB and iNOS (Regitz and Wenzel 2014; Jantan et al. 2015;
Costa et al. 2016). NF-κB plays a significant role in assisting APP cleavage and
amyloid-β formation. QC-induced NF-κB inhibition was investigated, which
showed inhibition of the cytokine (Shimmyo et al. 2008; Paris et al. 2011).
Tauopathies commonly lay their roots in the brain’s hippocampal region, hampering
the cognitive abilities related to the region and further expanding to other regions of
the brain. QC decreased tau phosphorylation and the formation of NFTs (Sabogal-
Guáqueta et al. 2015). Kinases and phosphatases play a regulatory role in tau
hyperphosphorylation. Protein phosphatases keep a check on kinase activity, and
the imbalance between the two can cause AD progression. Quercetin reverses tau
proteins’ hyperphosphorylation via PI3K/Akt/GSK3β and MAPKs signaling
pathways (Jiang et al. 2016). Acetylcholinesterase (AChE) is an enzyme responsible
for the degradation of acetylcholine (ACh), leading to cognitive symptoms of
AD. Inhibiting AChE is a common method to treat mild and moderate types of
AD (Abdalla et al. 2014). QC inhibits AChE, balancing the levels of Ach in synaptic
cleft thus reversing the progression of the disease (Abdalla et al. 2013).

ROS is formed in the cells by oxidative damage, a major contributor to various
neurodegenerative disorders (Kennedy et al. 2016). Aβ is known to exert oxidative
damage on neurons (Kennedy et al. 2016). QC, a potent antioxidant, has been shown
to efficiently reduce superoxide free radicals (Alok et al. 2014). QC is a radical
scavenger, and it modulates the cell’s antioxidant properties by activating antioxidant
enzymes such as paraoxonase-2 (PON2). Nrf-2 is a regulator of the cell’s defense
against oxidative stress. The pathway linked, the Nrf-2-ARE pathway, has several
enzymes downstream that play a significant role in forming and destroying misfolded
and aggregated proteins in AD (Lakhanpal and Rai 2007; Kaur et al. 2013). Figure 7.3.
depicts a diagrammatic representation of the involvement of polyphenols with differ-
ent signaling pathways that are implicated in neurodegenerative disorders.
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7.5 Conclusion

With no cure and several unclear underlying mechanisms, the search for new drug
candidates is never lasting. Modern research focuses on various alterable factors
such as diet, which can play a significant role in the progression and suppression of
AD. Nutrients are primarily researched to find the missing links between
neurodegeneration and its reversal. Many nutrients present in our diet have altering
effects on the biochemical pathways and energy sources, thereby encouraging us to
study CNS and neurodegeneration. This chapter delineates the importance of differ-
ent polyphenols in the prevention of AD. These act as protective agents by different
mechanisms, and this has been discussed in detail, highlighting the beneficial
importance of consuming these in our diet. Oxidative stress and damage to brain
macromolecules are essential processes in neurodegenerative diseases. In lieu of the
fact that polyphenols are excellent antioxidants and several in vivo experiments
that have been conducted to find an association between polyphenol-rich food and
amyloid accumulation, these are known to have therapeutic potential to treat
AD. Moreover, recent studies have shown that polyphenols have an inhibitory effect
on kinases such as MARK4, a key player in tau phosphorylation leading to AD
pathology. The inhibitory effect of different polyphenols has been studied for other
kinases as well, viz., SPHK1 and PDK3, which is implicated in AD pathol-
ogy highlighting the imprtance of polyphenols in AD prevention by targeting
inhbition of the kinases.

Fig. 7.3 Diagrammatic representation of involvement of polyphenols with different signaling
pathways that are implicated in neurodegenerative disorders
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Abstract

Research endeavors toward Alzheimer’s disease (AD) treatment target early
detection, focusing on improving cognition and slowing down disease progres-
sion. The advancements achieved are credited to the increase in understanding
AD at the molecular level with the combined efforts of the clinicians, researchers,
and the drug industries. Thus, several medications are proven successful in
ameliorating the diseased symptoms; however, none could stop or reverse disease
progression. Among these, recent developments in AD therapeutics based on the
“cholinergic hypothesis” and “amyloid cascade hypothesis” hold enormous treat-
ment potential.
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Abbreviations

τ protein Tau protein
ACh Acetylcholine
AChE Acetylcholinesterase
AChEIs Acetylcholinesterase inhibitors
AD Alzheimer’s disease
Apo Apolipoprotein
Aβ peptide Amyloid-beta peptide
APP Amyloid precursor protein
BBB Blood-brain barrier
BuChE Butyrylcholinesterase
ChEIs Cholinestrase inhibitors
Hup Huperzine
MTDL Multi-target-directed ligand
NFT Neurofibrillary tangles
NMDA N-methyl-D-aspartic acid
NMDAR N-methyl-D-aspartic acid receptor
PS Presenilin

8.1 Introduction

Alzheimer’s disease progresses through an early synaptic dysfunction associated
with an increase in the oligomeric amyloid-beta peptide (Aβ peptide). However, the
etiology of AD is multifactorial and complex both in early-onset and late-onset AD,
although early-onset AD is better understood to follow through gene mutations in
amyloid precursor protein (APP) and presenilin (PS1, PS2) genes, finally causing
unwarranted production of Aβ protein. Late-onset AD is poorly understood. The
associated risk factors for late-onset AD are considered to be aging, head trauma,
vascular conditions, and the presence of apolipoprotein (Apo) E4 genotype (Burns
and Iliffe 2009). Pathological changes that distinctly demonstrate AD progress
include anatomical lesions in the brain and senile plaques made of Aβ and neurofi-
brillary tangles (NFT) consisting of hyperphosphorylated tau (τ) protein, substantial
loss of synapse and neuronal death, significant oxidative stress, and mitochondrial
abnormalities (Perl 2010). The continual upsurge in AD cases, with higher preva-
lence in the geriatric population, underscores its significance as a medical concern
and social burden.

136 N. Nazam et al.



8.2 Biochemical Pathways for AD Pathogenesis

Hundreds of drugs thought to improve cognition in AD efficiently have failed in
clinical trials. This is highly expected since multiple biochemical pathways are at
fault in AD pathogenesis, strengthening the diseased state. A single drug that could
cater to all or most of the pathways would be a promising one. However, this
demands an insight into the major pathways to harness essential clinical benefit.
The biochemical pathways that are increasingly observed as the possible cause of
Alzheimer’s disease’s pathogenesis align with the cholinergic hypothesis and gluta-
mate signalling. Deterioration of cholinergic neurons and subsequent neurotransmis-
sion failure are the dominant causes of the decline in cognitive and behavioural
functions observed in AD patients. Treatment strategies based on molecular knowl-
edge of AD are currently under development. Molecular research into AD aids in
identifying points of attack for rational drug treatment. Additionally, molecular
markers of Alzheimers are in tremendous use comprising a part of early and
differential neurochemical diagnostics.

According to the cholinergic hypothesis, a reduction in acetylcholine (ACh)
synthesis is an important biochemical event in AD development (Bartus et al.
1982). Therefore, AChE is proven as the most viable therapeutic target for the
symptomatic treatment of AD (Fig. 8.1). Though cholinergic drugs increase existing
levels of acetylcholine to surviving brain cells, they are not completely successful in
preventing neuronal death or disease progression (Raschetti et al. 2007; Forette and
Hauw 2008). The reason being these drugs have positive effects for only a shorter
period of approximately 1–3 years, and also cannot alter disease progression. Hence,
evaluating the potential AD treatments and improving clinical management via
different mechanisms are essential.

Substantial evidence favors the role of disrupted glutamate in the pathophysiol-
ogy of neurodegenerative disorders including AD (Emre et al. 2014; Hynd et al.

Fig. 8.1 Mechanism of action of acetylcholinesterase inhibitors in Alzheimer’s disease
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2004). Glutamate is abundantly present in the CNS, as an excitatory neurotransmit-
ter, solely located intracellularly. Extracellular concentrations of glutamate are
highly regulated for appropriate signal transmission. Alzheimer’s disease is
associated with a higher concentration of glutamate, leading to synaptic dysfunction.
High glutamate leads to membrane depolarization and opening up of N-methyl-D-
aspartic acid (NMDA) receptors, which causes an excessive cellular influx of
calcium, tilting the balance toward excitotoxicity (Zhang et al. 2016b). NMDA/
mGluR-mediated Ca2+ influx is a crucial factor that facilitates soluble Aβ-mediated
neurotoxicity resulting in amyloid plaques forming in the brain (Ferreira et al. 2015).
Thus, glutamate NMDA receptor (NMDAR) antagonists have emerged as crucial
therapeutic targets in AD (Fig. 8.2).

Since AD presents as a multifactorial disease, research aims to develop multi-
target drugs to impede other factors such as Aβ aggregation, τ aggregation, protein
misfolding, mitochondrila dysfunction, deranged metal homeostasis, decreased ACh
levels, and associated oxidative stress (Fig. 8.3).

With these many therapies designed for AD, many may delay the disease
progression and improve health-related quality of life, with no assurance for cure
or reversal of symptoms. Presently, FDA-approved drugs comprising the mainstays
for AD treatment include:

1. Cholinesterase (ChE) inhibitors.
2. NMDA glutamate receptor antagonists.

The perplexing cascades of neuronal cell death in Alzheimer’s disease point to the
need of in-depth investigation of potential drugs. These drugs have received FDA
approval since they are a step ahead in the path of developing better treatment
strategy. This chapter discusses about the spectrum of ChE inhibitors and

Fig. 8.2 Mechanism of action of NMDA receptor antagonist in Alzheimer’s disease
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NMDAR antagonist along with other treatment options used in Alzheimer’s therapy.
This chapter is in tune with the title of the book, which emphasizes on the recent
advancements toward novel frontiers in drug discovery against AD.

8.2.1 Cholinestrase Inhibitors (ChEIs)

The α/β hydrolase is a superfamily of hydrolytic enzymes with catalytic function
sharing a common “α/β hydrolase” fold. This hydrolase fold comprises proteases,
esterases, lipases, peroxidases, epoxide hydrolases, and dehalogenases (David et al.
1992). Among the vertebrates, two types of cholinesterase enzymes are majorly
found: acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The physi-
ological function of both is catalyzing acetylcholine in the synapse and neuromus-
cular junction, finally leading to the cessation of the nerve impulse. AChE is related
to butyrylcholinesterase (EC 3.1.1.8) closely, but they are distinguished from one
another based on specificity for substrate, tissue distribution, and sensitivity to
inhibitors (Lane et al. 2006).

ChE antagonists, also known as AChE inhibitors (AChEIs) or anti-
cholinesterases, prevent acetylcholine breakdown by inhibiting the AChE enzyme
in the cortex and hippocampus regions of the brain, which are the central foci of AD
progression. Ample evidence from neuropathological and imaging studies show
substantial cholinergic deficits in AD phases (Perry et al. 1993; Shinotoh et al.
2000; Bohnen et al. 2003). Such deficits in cholinergic activity call for the need of
AChE inhibitors to treat cognitive and memory impairments (Shinotoh et al. 2000;
van Laar et al. 2011). Improvement of cholinergic transmission could excite the
cholinergic receptors or prolong ACh availability in the synaptic cleft and improve

Fig. 8.3 Drugs for targeted treatment in Alzheimer’s disease
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AD-associated symptoms. The inhibition of cholinesterases (both acetyl and butyryl)
by cholinesterase inhibitors is a promising strategy. These inhibitors targeting AChE
and BuChE are approved as therapeutic strategies to alleviate AD and prevent its
progression. These ChE antagonists are documented as safe, well-tolerated, and
effective in slowing down cognitive impairment and neurodegeneration that may
temporarily alleviate AD symptoms. The capacity of BChE is not understood well
but is expected to play a role in some neurodegenerative disorders, including
AD. Hence, its inhibitors could be developed in the future for improvement in AD
symptoms. Noteworthy is the research focussed on AChE inhibitors, which has
scaled up from potent poison (sarin, soman) of war periods to effective medicine
(tacrine, donepezil) in the present peaceful days. Nevertheless, pharmacotherapy has
significantly evolved, yet few drugs with promising results are presently used to
prevent dementia in AD. The acetylcholinesterase inhibitors include (1) conventional
inhibitors, (2) naturally derived inhibitors, (3) synthetic analogs, (4) hybrid
inhibitors, and (5) next-generation inhibitors (Table 8.1).

Table 8.1 List of acetylcholinesterase inhibitors in clinical and preclinical phases

Conventional Approved and currently in use • Donepezil
• Galantamine
• Rivastigmine

Use discontinued • Tacrine
• Physostigmine

Naturally derived • Flavinoid (galangin, quercetin)
• Phenolic lipid (cardanol)
• Derived from algae and ascidians (anatoxins)
• Alkaloid (Huperzine A and B)
• ZT-1-A prodrug of Hup-A
• Carbamates (physostigmine)

Synthetic analogue • Analogues of phenyl-5,6-dimethoxy-1-oxo-2,3-dihydro-1H-2-
indenylmethanone
• Tacrine analogue (N-alkyl-7-methoxytacrine hydrochlo-ride)
• 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives
• Ladostigil (N-propargyl-(3R) aminoindan-5yl)-ethyl methyl
carbamate)
• 1,2,3-triazole-chromenone carboxamide derivatives
• 1,2,4-triazine and Chromone scaffolds
• Chalcone-based derivatives
• Donepezil-based multifunctional inhibitors

Hybrids • Donepezil-AP2238
• Donepezil-based dual inhibitors
• Tacrine based (tacrine-melatonin, gallamine-tacrine)

Next generation • Physostigmine derivatives (phenserine, tolserine, and eseroline)
• NS2330 (tesofensine)
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8.2.2 Conventional Inhibitors

This group majorly includes the following drugs: (1) tacrine (Cognex: 1993),
(2) donepezil (Aricept: 1996), (3) galantamine (Razadyne: 2001), and
(4) rivastigmine (Exelon: 2002).

Prior to tacrine, physostigmine—the first classic AChEI—was investigated for
AD but was later discontinued due to its poor tolerability (Thal et al. 1983). Tacrine
(tetrahydroaminoacridine, Cognex), a nonselective, reversible AChEI, was FDA
approved in 1993 and the first marketed drug for AD treatment. Its most potent
acute effect on cognition is attributed to added pharmacological drug properties that
include blockade of potassium channels, inhibition of monoamine uptake, and
inhibition of the monoamine oxidase (Wagstaff and McTavish 1994). Tacrine,
however, is no longer in clinical use for its narrow therapeutic index, frequent
cases of severe hepatotoxicity, and gastrointestinal toxicity. A high incidence of
cholinergic side effects, nausea and vomiting, diarrhea, dyspepsia or anorexia, and
myalgia also favored its discontinuity in use (Wagstaff and McTavish 1994).
Additionally, this drug was required to be administered in multiple doses due to its
short half-life.

Donepezil has been used for the treatment of mild-to-moderate AD. The action of
donepezil spans molecular and cellular levels to the pathogenesis of AD and not just
at the neurotransmitter level. It increases the availability of ACh at the synapses,
which enhances cholinergic transmission. It is also effective in inhibiting different
forms of glutamate-induced excitotoxicity, lowering inflammatory cytokines, and
increasing neuroprotective isoforms of AChE. Overall, donepezil helps alleviate
oxidative stress and other side effects (Jia et al. 2020). The structure of donepezil
allows for the synchronized inhibition of the active and the peripheral anionic sites of
AChE (Kryger et al. 1999). High doses of donepezil cause severe vomiting, muscle
weakness, blood pressure, nausea, breathing problems, and sometimes bradycardia
(Asiri and Mostafa 2010).

Drug galantamine improves cholinergic function in the brain through an increase
in synaptic ACh levels (Anand and Singh 2013; Andrieu et al. 2015). It was
originally isolated from plants but is now chemically synthesized and is used for
the treatment of AD since 2001. It is a specific, competitive, and reversible AChE
inhibitor, besides binding to nicotinic cholinergic receptors. Hence, it is effective in
treating the cognitive symptoms in AD patients. If administered with a gradual
increase in the dosage, it showed good tolerance (Lin et al. 2019). The associated
side effects include convulsions, severe nausea, stomach cramps, and vomiting
(Mehta et al. 2012). In combination with memantine (a glutamate antagonist),
galantamine is followed as a standard of care for AD therapy, which has provided
concurrent improvement in patient symptoms (Koola 2020).

The second-generation AChEI has entered the market. Another drug,
rivastigmine tartrate, is used to treat mild-to-moderate AD. It is proposed to exert
its effect by enhancing cholinergic activity through its targets—butyryl- and acetyl-
ChE. Chemically a carbamate, rivastigmine tartrate binds to AChE and is cleaved
into many phenol derivatives that are rapidly excreted. The carbamate moiety of
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rivastigmine binds the ES subunit of AChE with higher affinity than the acetate
moiety of ACh. This binding inactivates the enzyme for a short period. Side effects
of rivastigmine include stomach pain, diarrhea, nausea and vomiting, and loss of
appetite. Overdosing may cause fast or slow breathing, chest pain, and slow or
irregular heartbeat (Hirosawa et al. 2020). While rivastigmine and galantamine are
efficacious in AD patients with mild-to-moderate symptoms, donepezil benefits are
extended in alleviating severe AD symptoms (Feldman et al. 2001; Farlow et al.
2010). Galantamine, together with donepezil, also effectively inhibits AChE
(Hirosawa et al. 2020). While rivastigmine is a reversible BChE and AChE inhibitor,
donepezil is highly selective for acetyl compared to butyryl-ChE (Hirosawa et al.
2020).

Physostigmine is a tertiary amine carbamate AChE inhibitor, which effectively
crosses the blood-brain barrier (BBB) (Hirosawa et al. 2020). However, the drug
loses its therapeutic potential owing to its short half-life and adverse side effects.
This has also been discontinued like tacrine due to higher side effects than their
therapeutic indexes.

Though the past decades witnessed quite a few efficient AChE inhibitors, the
efficacy of these drugs has been narrow and could alleviate AD symptoms for a short
time (Li et al. 2019). None of them were effective in curtailing the progression of AD
(Huisa et al. 2019). Furthermore, the administration of these drugs is associated with
varied side effects, especially at higher doses. Innumerable short-term clinical trials;
double-blind, randomized controlled trials (placebo); and long-term cohort studies
highlight the following: (a) presently used AChEIs (donepezil, rivastigmine, and
galantamine) decrease cognitive, functional, and behavioral deterioration in
Alzheimer’s disease; (b) efficacies of either of them are apparently similar;
(c) benefits from them remain with treatment continuation; (d) their benefits are
mostly dose-related (until limited by side effects at very high doses); and (e) they are
safe and well tolerated.

Currently, natural and synthetic drug molecules are also in use for AD treatment,
of which some are in clinical use currently or in clinical trials based on accepted
treatment strategies. Naturally derived inhibitors are identified and isolated natural
molecules such as polyphenols, carbamates, alkaloids, and anatoxins (from green
algae). At the same time, synthetic analogs include indenyl derivatives, ladostigil,
and tacrine analogs.

8.2.3 Naturally Derived Inhibitors

Numerous phytochemical studies have identified and isolated natural molecules such
as alkaloids, coumarins, terpenes, and polyphenols possessing a wide range of
pharmacological activity against cholinesterase enzymes. These natural products
also possess antioxidant, anti-inflammatory, anti-amyloidogenic, and
neuroprotective activities. Hence, they have been assessed for designing and devel-
oping new anti-Alzheimer’s drugs (Huang et al. 2014b).
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Flavonoids have served as a good candidate as an AD inhibitor due to their free-
radical-scavenging characteristics. Many derivatives of flavonoids, such as quercetin
and galangin, have shown efficacy in AChE inhibition (Uriarte-Pueyo and Calvo
2011). Similarly, cardanol, a phenolic lipid extracted from cashew nut shells, has
shown promising results in inhibiting AChE (Lemes et al. 2016). However, the
toxicity and side effects for both compounds have not been evaluated in preclinical
or clinical settings. Some cholinesterase inhibitors derived from marine sources such
as algae and ascidians have also proven to inhibit AChE activity (Moodie et al.
2019). Recently, honey has been demonstrated in a preliminary study as a source of
AChE inhibitors attributed primarily to its flavonoids and phenolic acid content
(Baranowska-Wójcik et al. 2020).

The lesser use of Huperzine A (HupA), again a natural AChE inhibitor for AD
patients’ clinical treatment, is reported. Its property of being a highly selective,
reversible, and potent AChE inhibitor gained attention (Wang et al. 2009). HupA
when hybridized with donepzil has resulted in lesser effectiveness. While the HupA-
tacrine hybrids known as Huprines Y and X are potent in inhibiting AChE in vitro
compared to Tacrine (Camps and Munoz-Torrero 2005). HupA alone with its higher
oral bioavailability than tacrine and donepezil shows appreciable improvement on
working memory than reference memory (Bai 2007). HupA is better in inhibiting
AChE activity than tacrine, rivastigmine, and galantamine with the least activity
against BuChE (Wang et al. 2009). Huperzine B (HupB) is another natural alkaloid
isolated from lycopodium proven effective and a reversible inhibitor of AChE.
However, HupB is not that potent and selective like HupA, but it has a greater
therapeutic index and other encouraging benefits (Bai 2007).

Nonetheless, the global availability of HupA tossed with greater potency prevents
the clinical development of HupB. Yet the clinical use of HupA for AD treatment is
lesser because of its sale in the USA as a nutraceutical supplement. This is due to the
lack of a proprietary patent, and hence, FDA approval is not being pursued.

8.3 Synthetic Analogs: Indenyl Derivatives, Tacrine Analog,
Donepezil-Based Derivatives

Targeted drug analogs such as indenyl derivatives, ladostigil, and tacrine analogs
have been used in the treatment regime for AD. Though they bypass the gastrointes-
tinal side effects and hepatotoxicity, they have lower BBB permeability leading to
lower efficacy as compared to other types of AChEIs.

Numerous researchers found that analogs of phenyl-5,6-dimethoxy-1-oxo-2,3-
dihydro-1H-2-indenylmethanone show moderate AChE inhibitory effects
suggesting the presence of methoxy groups on the phenyl ring plausibly improved
the inhibition of AChE (Ali et al. 2009; Gupta and Patil 2020). Tacrine analog N-
alkyl-7-methoxytacrine hydrochloride has shown enhancement in the AChE-
inhibitory potential more than the parent drug tacrine (De La Torre et al. 2012).
Another set of synthetic analog, 1H-pyrazolo[1,2-b]phthalazine-5,10-dione
derivatives, has been proposed to treat AD, which showed inhibition of AChE at
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nanomolar concentrations (Taslimi et al. 2020). Ladostigil, N-propargyl-
(3R) aminoindan-5yl)-ethyl methyl carbamate, was evaluated to provide potent
inhibition of AChE together with neuroprotective properties (Albertini et al.
2020). The drug combines the neuroprotective effects of rasagiline, a selective
monoamine oxidase (MAO)-B inhibitor, used for Parkinson’s disease with AChE
inhibitory activity of rivastigmine, as a potential AD drug (Yogev-Falach et al.
2006). It is presently in Phase II clinical trials. Also, 1,2,3-triazole-chromenone
carboxamide derivatives and 1,2,4-triazine and chromone scaffolds are developed
as a multi-target agent for AD treatment (Rastegari et al. 2019; Mohsin et al. 2020).
Chalcone-based derivatives have also been evaluated to demonstrate AChE inhibi-
tory properties (Burmaoglu et al. 2020). Donepezil-based multifunctional
derivatives are also under evaluations as AChE inhibitors to treat AD (Li et al. 2018).

Multifactorial AD pathogenesis suggests controlling one target as insufficient in
AD therapy. This could be overcome with a new emerging strategy named multi-
target-directed ligands (MTDLs) (Bolognesi et al. 2008), wherein one compound as
a hybrid molecule simultaneously aims diverse targets with close association to AD
(Bajda et al. 2011). Numerous researchers have focused on developing donepezil-
based multifunctional ChEI for AD treatment due to its dual-site inhibition property
(Li et al. 2016, 2018; Cao et al. 2020). Various indinone derivatives have shown
anti-cholinesterase properties (Huang et al. 2014a; Guzior et al. 2014).

8.3.1 Hybrid Inhibitors

For a multifactorial disease like AD, the state-of-the-art model is of the “single-
ligand, multiple-target” approach. Hybrids combine BBB permeability with drugs
targeting multiple receptors, promising dual mode of action and enhanced effective-
ness. Donepezil-AP2238 hybrid was the first developed drug with dual binding sites
(Piazzi et al. 2003). Though similar in activities, the effect of AP2238 in inhibiting
Aβ-mediated toxicity is higher than donepezil (Piazzi et al. 2003). Currently, the side
effect profiles in humans for these hybrids are not known. Drugs used to target
aggregation of Aβ protein and AChE activity such as donepezil-based dual inhibitors
and tacrine hybrids have been used to target both Aβ aggregation and AChE
inhibition (Camps et al. 2008; Tang et al. 2011; Zhang et al. 2016a). Other
multipotent hybrid inhibitors include novel tacrine-melatonin hybrids, dual
inhibitors of AChE and monoamine oxidase or serotonin transporters, potent
ChEIs with antioxidant neuroprotective properties, gallamine-tacrine hybrids bind-
ing at ChE, and muscarinic receptors (Singh et al. 2016). The curative model of
one-ligand one-target followed from so many decades should now move toward
single-molecule targeting as many factors or pathways involved in neuronal death.
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8.3.2 Next-Generation Inhibitors

The derivatives of physostigmine such as tolserine, eseroline, and phenserine, have
been synthesized and tested for its activity on AChE. Tolserine differs from
phenserine at the phenylcarbinol moiety, by the presence of a 2-methyl group.
This provided tolserine a 200-fold selectivity toward human AChE compared with
BChE, which is active at lower concentrations than physostigmine (Kamal et al.
2000). It also showed increased potency toward AChE compared to phenserine or
physostigmine (Yu et al. 2010). Another drug, eseroline, a metabolite of physostig-
mine, was effective against ACE with higher selectivity than BChE (Zhan et al.
2010). However, the drug has not been continued to be used for AD therapy.

A selective, noncompetitive AChE inhibitor, Phenserine, has been shown to
improve cognition in AD patients. Phenserine also reduces the APP mRNA, reduc-
ing Aβ peptide formation (Zhan et al. 2010). Clinical testing for AD showed only
moderate success in initial Phase II clinical trials. Phenserine was considered a
promising drug for developing novel strategies for AD treatment because of its
dual effects. However, some Phase III clinical trials indicated it as ineffective, while
another clinical trial indicated its effectiveness at higher doses (Becker et al. 2018).
Nonetheless, clinical investigations with phenserine are still underway (Lecca et al.
2019).

Another new AChE inhibitor—NS2330 (tesofensine)—was observed to enhance
acetylcholine function both in in vitro and in vivo studies (Lehr et al. 2007).
Promising results were obtained in the Phase IIA trials showing substantial cognitive
improvement in patients with mild AD. But, Phase IIB trials revealed restricted
activity; hence the trials did not continue beyond 2007 (Lehr et al. 2007).

In a nutshell, AChEIs alter AD’s clinical indicators, and the therapy results in a
modest but significant cognitive effect in AD. An alternative approach to treating
Alzheimer’s disease is the inhibition of NMDA glutamate receptors, which is
thought to lead to less excitotoxic injury to the brain.

8.4 N-Methyl-D-aspartate (NMDA) Receptor Antagonist

The single NMDA receptor inhibitor approved for use in Alzheimer’s disease is the
glutamate antagonist memantine (Namenda: 2003). Memantine has been widely
used with modest benefits in clinical settings for the symptomatic treatment of
moderate-to-severe forms of AD (Agüera-Ortiz 2010). Memantine being one such
antagonist modulates the flow of glutamatergic neuronal transmission relying on
glutamate as the main excitatory neurotransmitter. During normal physiological
functions, memantine ineffectively blocks the low receptor activity levels. While
at enhanced glutamate concentrations associated with increased activation of
NMDAR, it is found to be appreciably effective (Chen and Lipton 2006) and,
hence, blocks the lethal effects of overactive glutamatergic activity such as
compromised synaptic plasticity and neuron damage (Danysz and Parsons 2003).
Better benefits to the patients were harnessed when memantine is used along with
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AChE inhibitors. Notably, memantine being well tolerated in AD, its combination
with other therapies could be a valuable and feasible alternative. And in numerous
clinical trials, it has displayed statistically significant improvements (Van Dyck et al.
2007). Thus, it is concluded that NMDAR antagonists hold potential in the upcom-
ing treatments of this neurodegenerative disorder.

8.5 Other Treatment Options

Another major drug approach is to target tau protein hyperphosphorylation causing
the formation of intracellular neurofibrillary tangles of the microtubule-associated τ
protein (Panza et al. 2016; Hashweh et al. 2020). With the discovery of
phenothiazines and methylthioninium as τ protein aggregation inhibitors, computa-
tional analysis-based drug discovery has speeded up. Many additional small mole-
cule inhibitors have been discovered, and studies were carried out to identify
effective inhibitors. Nonetheless, an effective inhibitor should have improved
blood-brain barrier permeability and milder side effects. Presently, many clinical
trials are being carried out on drugs that target earlier stages of the disease, particu-
larly preclinical AD instead of mild-or-moderate disease (Khoury et al. 2017).

8.6 Future Directions

With the discovery of first acetylcholinesterase inhibitor—physostigmine—numer-
ous studies have been done to gain better and efficient inhibitors (Thal et al. 1983).
Compared to the traditional inhibitors, their analogs, naturally derived inhibitors and
hybrid of synthetic inhibitors, cause less side effects. They also bear enhanced
properties such as improved BBB permeability and better efficacy (Camps et al.
2008). Studies on most of these inhibitors are either on animal models or done
in vitro and computational based. Hence, to ascertain their safety, toxicity, and
efficacy, future studies are needed in humans. Single drug agent is inefficient in
inhibiting disease progression completely, and undoubtedly many of such single
target agents have failed in clinical trials. Hence, a multi-target-directed ligand is a
wise approach with promising results toward various abnormalities, symptoms, and
pathways. For prospective studies, the design of novel MTDLs should bear the
characteristics based on available structure-activity relationship studies (Luo et al.
2013; Zhang et al. 2018; Singh et al. 2019).

Nonetheless, extensive randomized studies and more clinical trials of such
inhibitors are required to evaluate their potential and confirm their specific role.
The choice among drug combinations should be based on safety, drug burden, drug-
drug interactions, and a total number of non-overlapping pathways targeted. Clinical
trials should test the efficacy and safety of the drug combinations for which
promising research and clinical studies are available. Investigations in the future
need to correlate patient’s response to clinically vital outcomes that can streamline
benefits out of these drugs as single agent, combination, or MTDLs.
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8.7 Conclusions

Globally accepted anti-Alzheimer drug therapy comprises four acetylcholinesterase
inhibitors (tacrine, donepezil, rivastigmine, and galantamine) and one NMDA
receptor antagonist (memantine). All of them are more palliative than disease-
modifying therapy, and hence, none of them are successful in preventing the final
disease outcome. Acetylcholinesterase inhibitor-based investigations and the prog-
ress have scaled up from neurotoxins to neuroprotection characterized by cholinergic
deficit in AD. The clinical trials in this direction have confirmed appreciable
improvements in cognition and activities of daily living with these modulators.
Yet not all AD sufferers are benefitted from these existing therapeutics. Currently,
existing drug therapies are associated with several side effects; hence developing
novel agents with different structures and action modes is needed. Being a multifac-
torial disease, multi-target inhibitors for Alzheimer’s are a promising alternative.
Simultaneously addressing many biochemical pathways could stall this multifacto-
rial disease by hindering the cognitive impairment in the first place. Additionally, the
impact of treatment on long-term outcomes, including institutionalization, remains
unclear. Also, evidence supporting a duration for which these treatments should be
given is limited (Glynn-Servedio and Ranola 2017).

The elderly population is enormously expanding, and it is speculated that by
2050, one in three persons will have dementia, mainly due to Alzheimer’s disease
(Glynn-Servedio and Ranola 2017). This demands developing effective ways for
very early diagnosis and efficient disease-modulating therapies to avert and treat
AD. Overall, more significant efforts are needed to gain insight into the disease
mechanism and discover new scaffolds with novel drug targets, better drug efficacy,
safety, and prolonged adequate time. With the advancement in understanding
inhibitors and antagonists, preclinical markers and neuropreventive strategies should
also be targeted toward “at-risk” patients before the disease’s clinical onset.
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Genetic Basis of Psychotic Illnesses: A
Comprehensive Overview 9
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Abstract

Psychotic illness is a major health burden at the present world. Common psy-
chotic disorders like autism spectrum disorders and schizophrenia frequently
share clinical manifestations caused by brain dysfunction. However, there is a
clear distinction between early- and late-onset psychotic illnesses. Despite appre-
ciable advancement in identifying the genetic risk factors for most psychiatric
illnesses, it is still unknown how these genetic variants interact with epigenetic
risk factors and environmental factors that predispose risk for these clinically
distinct disorders. In this chapter, we tried to trace the clinical features of
psychotic illnesses and the relationship between these disorders with genetic
insight. Furthermore, we reviewed the common therapeutic targets for these
conditions. From the discussion, it is clear that psychotic illnesses share a genetic
overlap and the therapeutic target of these abnormalities relies on the same
pipeline. Therefore, prospects will be to develop more specific therapies for
treating psychotic illnesses.

Keywords

Psychotic illness · Autism spectrum disorders · Schizophrenia · Childhood-onset
schizophrenia · Multiplex developmental disorder · Genetic factors · Oxytocin

M. A. Aziz · T. Akter · M. A. Barek · M. S. Islam (*)
Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh

# Springer Nature Singapore Pte Ltd. 2021
G. Md Ashraf, A. Alexiou (eds.), Autism Spectrum Disorder and Alzheimer's
Disease, https://doi.org/10.1007/978-981-16-4558-7_9

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4558-7_9&domain=pdf
https://doi.org/10.1007/978-981-16-4558-7_9#DOI


9.1 Introduction

Psychotic illness is a combined period of unusual perceptions termed hallucinations
and distortions of reality called delusions. The prevalence of psychotic illness is
relatively low in the world’s general population, comprising a ratio of about 1:100.
However, increased research on psychotic disorders has revealed a higher frequency
of this disorder. For instance, recent data suggest that psychotic disorder is found in
more than 3 in every 100 autistic people, which is almost three times higher than in
the general population (Zheng et al. 2018).

There is a substantial overlap between different psychotic conditions describing
the relationship between them. The complex relationship of autism spectrum disor-
der (ASD) and schizophrenia is one such case (King and Lord 2011). However, these
disorders may vary considerably in terms of age of onset, with the former usually
first seen in childhood and the latter in adolescence or early adulthood. Moreover,
people with ASD may present comorbid psychotic conditions, including schizophre-
nia and bipolar disorder. This ultimately predisposes a person with ASD to a greater
risk of experiencing psychotic disorders than the general population (Larson et al.
2017).

The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition
(DSM-5) classified ASD under neurodevelopmental disorders and schizophrenia
under schizophrenia spectrum and other psychotic disorders of section II (Regier
et al. 2013). According to a previous study performed by Pourcain et al. (2018), the
shared genetic causes between various psychiatric illnesses found a slight overlap
between ASD and schizophrenia. However, a more significant overlap was observed
than adult-onset psychiatric disorders. Mouridsen et al. (2008) reported that the rate
is as high as 28%. A population-based study demonstrated that depending on the
type of psychotic illnesses, ASD patients with their odds have a comorbid psychotic
illness between 5.6 and 5.8 (Selten et al. 2015). Another previous study has also
described the epidemiological evidence about the connection between childhood
developmental disorders and adulthood psychotic conditions (Khandaker et al.
2014).

In this chapter, we try to trace the clinical features of various psychotic illnesses
such as ASD, schizophrenia, and the relationship between these disorders with
genetic insight. Furthermore, we overview the common therapeutic targets and
provide prospects of these conditions.

9.2 Clinical Features Shared Between Psychotic Disorders

From the very beginning, it has been a common debate in the thought of psychiatric
diseases whether or not the association between various disorders exists. Are there
any relations among these abnormalities, for example, if autism shares its features
with schizophrenia or it is distinct? Suppose we try to get the origin of this debate. In
that case, we have to look back to the history of the clinical discoveries and
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phenomenological manifestations from the past century of these disorders
(Vorstman and Burbach 2014).

However, recent results from thousands of genetic studies have revitalized the
concept by providing more recent insights into the genetic risk factors for psychiatric
disorders like ASD, schizophrenia, or others (Vorstman and Burbach 2014).

Although psychiatric illnesses are distinct, they share some common clinical
characteristics. For instance, impairment of communication, poor eye contact, and
social withdrawal faced by ASD patients are almost similar to symptoms (negative)
of schizophrenia in youths, as shown in Fig. 9.1 (Posey et al. 2004). From a study by
the National Institute of Mental Health (NIMH), it was found that a subset of
children (28%) with childhood-onset schizophrenia (COS) have comorbid COS
and ASD (Rapoport et al. 2009).

Surprisingly, some experiments have followed ASD individuals forward into
adulthood or looked back in schizophrenic adults for consistent ASD history. A
study confirms a relatively stronger correlation between ASD and schizophrenia than
what is assumed from their respective prevalence. According to earlier reports,
around 12% to 50% of individuals with ASD face psychotic disorders (Sverd
2003). Other studies also confirmed subgroup overlapping between psychotic
conditions. Konstantareas and Hewitt (2001) reported that all ASD patients with
similar criteria as schizophrenia suffered from disorganized subtype, though patients
with paranoid schizophrenia experienced ASD.

Moreover, male patients with ASD experienced a higher frequency of negative
symptoms than those with schizophrenia, which is related closely to the deficit
subtype of schizophrenia. An investigation by Stahlberg et al. (2004) concluded
that around 50% of patients from 241 adults with childhood neuropsychiatric

Fig. 9.1 Shared clinical features between ASD and schizophrenia
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disorders had ASD when they were assessed without exclusion criteria. Among
them, 15% of adults met the criteria for psychotic disorders.

Most researchers use different terms to describe psychiatric comorbidities and
developmental psychopathology due to mixed or shared clinical features. For exam-
ple, researchers from Yale Child Study Center named a subgroup of ASD children as
“multiplex developmental disorder” (MCDD) (Towbin et al. 1993; Klin et al. 1995),
which the researchers of Netherlands further applied to describe children meeting
similar criteria for both ASD and disordered thinking and/or affect dysregulation
(van der Gaag et al. 1995, 2005; Buitelaar and van der Gaag 1998; de Bruin et al.
2007). A follow-up study by van der Gaag et al. (1995) found that psychotic illness
is developed by adulthood in almost 64% of children with MCDD. A similar study
compared youths at risk for psychotic disorders and youths with MCDD but found
no differences in schizophrenic characteristics, disorganization, or prodromal
symptoms.

However, in terms of early development and treatment histories, both groups had
apparent differences. The study explicated that most of the children with MCDD are
at high risk for the development of psychotic illness in the latter half of their life.
Almost 78% of the MCDD group met the criteria for at-risk mental condition
(Sprong et al. 2008).

9.3 Genetics Behind Psychotic Disorders

Despite appreciable advancement in identifying the genetic risk factors or etiology
for most psychiatric illnesses, it is still unknown how these genetic variants interact
with epigenetic risk factors and environmental factors that predispose risk for
clinically distinct disorders. Several studies demonstrated that shared genetic factors
might underlie a substantial part of cross-disorder expression overlap in individuals
(Geschwind and Flint 2015; Gandal et al. 2016; Gandal et al. 2018).

Various studies have reported multiple genes that are associated with ASD as
shown in Table 9.1 (Wiśniowiecka-Kowalnik and Nowakowska 2019; Rylaarsdam
and Guemez-Gamboa 2019; Matsuzaki et al. 2012) and schizophrenia as shown in
Table 9.2 (Lin et al. 2016; Escudero and Johnstone 2014). Notably, many potential
candidate genes of ASD are associated with other psychiatric disorders, specifically,
schizophrenia, describing a genetic overlap between ASD and schizophrenia
(Table 9.3) (Rapoport et al. 2009; Crespi et al. 2010; Kasarpalkar et al. 2014; Lin
et al. 2016; Cross-Disorder Group of the Psychiatric Genomics Consortium 2013).
This overlap is found not only for schizophrenia but also in other neuropsychiatric
disorders such as mental retardation or attention deficit hyperactivity disorder
(ADHD) (Vorstman and Burbach 2014). Researches with polygenic risk scores
have consistently shown that mental disorders’ prediction improves by including
genetic variants that are more weakly associated. This data suggests that thousands
of genetic variants are associated with determining the risk for most psychotic
illnesses (Wray et al. 2014).
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Table 9.1 Candidate gene for autism spectrum disorder (ASD)

Gene Description
Chromosomal
location

ABCA1 ATP binding cassette subfamily A member 1 9q31.1

ADNP Activity-dependent neuroprotector homeobox 20q13.13

ANK3 Ankyrin 3 10q21.2

ATP10C ATPase class V type 10C 15q12

CACNA1E Calcium voltage-gated channel subunit alpha1 E 1q25.3

CADPS2 Ca2+-dependent secretion activator 2 7q31.32

CHD8 Chromodomain helicase DNA binding protein 8 14q11.2

CLCN6 Chloride voltage-gated channel 6 1p36.22

DLX5 Distal-less homeobox 5 7q21.3

EFHC2 EF-hand domain (C-terminal) containing 2 Xp11.3

FMR1 Fragile X mental retardation 1 Xq27.3

FOXP1 Forkhead box P1 3p13

FOXP2 Forkhead box P2 7q31.1

GABRB3 Gamma-aminobutyric acid A receptor, beta 3 15q12

GABRG3 Gamma-aminobutyric acid type A receptor
Gamma 3 subunit

15q12

GRIN2B Glutamate ionotropic receptor NMDA type subunit 2B 12p13.1

HOXA1 Homeobox A1 7p15.2

HTR3A 5-hydroxytryptamine receptor 3A 11q23.2

IMMP2L IMP2 inner mitochondrial membrane peptidase-like 7q31.1

KATNAL2 Katanin catalytic subunit A1 like 2 18q21.1

KCND2 Potassium voltage-gated channel subfamily D member 2 7q31.31

KCNQ3 Potassium voltage-gated channel subfamily
Q members 3

8q24.22

KCNQ5 Potassium voltage-gated channel subfamily
Q members 5

6q13

NLGN3 Neuroligin 3 Xq13.1

NRP2 Neuropilin 2 2q33.3

POGZ Pogo transposable element derived with ZNF domain 1q21.3

RBFOX RNA binding forkhead box 16p13.3

RIPK2 Receptor interacting serine/threonine kinase 2 8q21.3

SCN2A Sodium voltage-gated channel alpha subunit 2 2q24.3

SHANK2 SH3 and multiple ankyrin repeat domains 2 11q13.3-q13.4

SHANK3 SH3 and multiple ankyrin repeat domains 3 22q13.33

SLC6A4 Serotonin transporter; solute carrier family 6 member 4 17q11

SNRPN Small nuclear ribonucleoprotein polypeptide N 15q11.2

SYN1 Synaptic vesicle cycling proteins synapsin-1 Xp11.3-p11.23

SYN2 Synaptic vesicle cycling proteins synapsin-2 3p25.2

SYNGAP1 Synaptic Ras GTPase activating protein 1 6p21.32

TSC2 TSC complex subunit 2 16p13.3

UBE3A Ubiquitin protein ligase E3A 15q11.2

WNT2 Wingless-type MMTV integration site family member 2 7q31.2
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Table 9.2 Candidate genes for schizophrenia

Gene Description
Chromosomal
location

ADD1 Adducin 1 4p16.3

ANK3 Ankyrin 3 10q21.2

CCL22 Chemokine, CC Motif, Ligand 22 16q21

CD14 Cluster of differentiation 14 5q31.3

CD34 Hematopoietic progenitor cell antigen 1q32.2

CSMD1 CUB and Sushi multiple domains 1 8p23.2

CXCL12 Chemokine, CXC Motif, Ligand 12 10q11.21

DOCK4 Dedicator of cytokinesis 4 7q31.1

DPP4 Dipeptidyl peptidase IV 2q24.2

EGR1 Early growth response 1 5q31.2

FGFR1 Fibroblast growth factor receptor 1 8p11.23

FLNA Filamin A Xq28

FMR1 FMRP translational regulator 1 Xq27.3

GCA Grancalcin 2q24.2

GNAL G protein subunit alpha L 18p11.21

GRIA1 Glutamate ionotropic receptor AMPA type subunit 1 5q33.2

GRIN2A Glutamate ionotropic receptor NMDA type subunit 2A 16p13.2

GRM3 Glutamate metabotropic receptor 3 7q21.11-q21.12

HBEGF Heparin-binding egf-like growth factor 5q31.3

HTR3B 5-hydroxytryptamine receptor 3B 11q23.2

LRP1 Low density lipoprotein receptor-related protein 1 12q13.3

MAPK3 Mitogen-activated protein kinase 3 16p11.2

MCL1 Myeloid cell leukemia sequence 1 1q21.2

MIR137 MicroRNA 137 1p21.3

MLC1 Modulator of VRAC current 1 22q13.33

MMP16 Matrix metalloproteinase-16 8q21.3

NEURL Neuralized E3 ubiquitin protein ligase 10q24.33

NISCH Nischarin 3p21.1

NMUR2 Neuromedin U receptor 2 5q33.1

OPN1LW Opsin 1, long-wave-sensitive Xq28

PAM Peptidylglycine alpha-amidating mono-oxygenase 5q21.1

PCGEM1 Prostate-specific transcript 2q32.3

PLA2G15 Phospholipase A2 group 15 16q22.1

PRKCD Protein kinase C, delta 3p21.1

PRKD1 Protein kinase D1 14q12

PRMT1 Protein arginine methyltransferase 1 19q13.33

RAD51 Recombinase 15q15.1

SREBF1 Sterol regulatory element-binding transcription factor 1 17p11.2

SRR Serine racemase 17p13.3

STAR Steroidogenic acute regulatory protein 8p11.23

SV2B Synaptic vesicle glycoprotein 2B 15q26.1

(continued)
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The genetic relationship between ASD and schizophrenia is not studied exten-
sively, but evidence suggests shared genetic factors (Carroll and Owen 2009). In
most psychiatric illnesses and other common abnormalities, genetic complexity is
often compounded by phenotypic complexity. Studies of copy number variant
(CNV) and rare allele have reported a correlation between ASD and point and
structural mutations in neuroligins, neurexins, and related genes (Rapoport et al.
2009). Several reports have implicated the neurexin gene family in schizophrenia.
Again, neuroligins are from the postsynaptic protein family that transsynaptically
interact with neurexins (presynaptic proteins) required for excitatory and inhibitory

Table 9.2 (continued)

Gene Description
Chromosomal
location

TAP1 Transporter, ATP-binding cassette, major histocompatibility
complex, 1

6p21.32

TIE1 Tyrosine kinase with immunoglobulin and EGF factor
homology domains 1

1p34.2

TPR Translocated promoter region 1q31.1

Table 9.3 Common genes for ASD and schizophrenia

Gene Description
Chromosomal
location

APBA2 Amyloid-beta A4 precursor protein-binding family A
member 2

15q13.1

AS3MT Arsenic (+3 oxidation state) methyltransferase 10q24.32

BDNF Brain-derived neurotrophic factor 11p14.1

CACNB2 Calcium voltage-gated channel auxiliary subunit beta 2 10p12.33-p12.31

CASPR2 Contactin-associated protein-like 2 7q35-q36

CNTNAP2 Contactin associated protein-like 2 7q35-q36.1

DAO D-amino acid oxidase 12q24.11

DISC1 Disrupted in schizophrenia 1 1q42

DRD2 Dopamine receptor D2 11q23.2

GAD1 Glutamate decarboxylase 1 2q31.1

GRIK2 Glutamate Ionotropic Receptor Kainate Type Subunit 2 6q16.3

GSTM1 Glutathione S-transferase, MU-1 1p13.3

HTR2A 5-hydroxytryptamine receptor 2A 13q14.2

ITIH3 Inter-alpha-trypsin inhibitor, heavy chain 3 3p21.1

MAOA Monoamine oxidase A Xp11.3

MECP2 Methyl-CpG-binding protein 2 Xq28

MTHFR Methylenetetrahydrofolate reductase 1p36.22

NLGN4 Neuroligin 4 Xp22.32-p22.31

NRXN1 Neurexin 1 2p16.3

RELN Reelin 7q22.1

SLC6A3 Solute carrier family 6 member 3 5p15.33

TPH2 Tryptophan hydroxylase 2 12q21.1
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synapses formation and maturation. This gene accumulates neurodevelopmental
imbalance in both excitatory and inhibitory transmission theory for ASD and
schizophrenia (Carroll and Owen 2009). Rapoport et al. (2009) showed that COS
is preceded by and comorbid with a pervasive developmental disorder (PDD) in
30 to 50% of cases and average intelligence with schizophrenia in 46 patients;
criteria for ASD were fulfilled by 52% of subjects, increasing to 60% in the paranoid
subgroup (Unenge Hallerback et al. 2012).

Multiple deletions such as 1q21.1, 22q11.2, and 15q13.3 are associated with
different psychotic disorders, including ASD, schizophrenia, ADHD, and mental
retardation (Carroll and Owen 2009). The rate of ASD is higher in patients with
velocardiofacial syndrome (22q11) (Vorstman et al. 2006). Similarly,
microdeletions or microduplications of 16p11.2 have been observed in 1% of
ASD cases and 2% of NIMH childhood-onset schizophrenia cohort (Walsh et al.
2008; Kumar et al. 2008; Shen et al. 2010). These CNVs increase the risk for a wide
variety of neurodevelopmental phenotypes, including ASD and schizophrenia
(Carroll and Owen 2009). Although genome-wide association studies have not
shown any systemic comparisons of ASD and schizophrenia, few functional
correlations have been found at voltage-gated calcium channel genes, which are
associated with presynaptic neuronal function as well as neuronal plasticity across
different phenotypes (Carroll and Owen 2009). Genetic changes leading to psychotic
illnesses are shown in Fig. 9.2.

Almost all types of psychological disorders have shown the possibility to transfer
from generation to generation, and the risk of developing a disorder depends on the
type of biological relationship to the affected persons suggesting a strong genetic
correlation (Gottesman et al. 2010; Rasic et al. 2014). For instance, monozygotic
twins can share 100% of their nuclear deoxyribonucleic acid (DNA). They are highly
concordant with each psychological abnormality compared with dizygotic twins,
who share half of their genetic material. This variation indicates that psychotic
illness is mainly attributable to genetic factors. Moreover, there is a gradient
contribution of genetics, estimating a more significant inheritance for more severe
and less common illnesses like ASD, schizophrenia, and bipolar disorder
(Polderman et al. 2015). To be specific, approximately two-thirds of the genetic
associations are frequent to these psychotic disorders, and overlap of genetic variants
is found to contribute to the risk of ASD, ADHD, and intellectual disabilities (Cross-
Disorder Group of the Psychiatric Genomics Consortium 2013).

9.4 Common Therapeutic Targets for Psychotic Disorders

The analysis indicates that common pharmacotherapeutic targets for psychotic
disorders such as ASD, schizophrenia, and others will be in the same pipeline.
Multiple studies have suggested that the functional imbalance of excitatory-
inhibitory transmission in ASD offers great insight into drug development (Gogolla
et al. 2009; Krueger and Bear 2011). According to Kehrer et al. (2008), the
development of therapeutic targets would be the same neurotransmission system
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(excitatory-inhibitory) for schizophrenia. The interest in glutamatergic therapeutics
targeting glutamatergic-signaling pathways also increases (King and Bostic 2006;
Karam et al. 2010). Therapeutic drugs targeting gamma-aminobutyric acid (GABA)-
ergic system dysfunctions also get high priority for both ASD and schizophrenia
(Chattopadhyaya and Cristo 2012; Coghlan et al. 2012).

Antipsychotic medications have been the major attraction to the researchers due
to their highest efficacy in treating psychotic disorders like ASD. Risperidone and
aripiprazole are two US Food and Drug Administration (USFDA)-approved drugs to
treat significant behavioral disturbance in autism. Surprisingly, these two drugs were
initially developed for the treatment of schizophrenia. A study suggested that
antipsychotic drugs improve social cognition in schizophrenia patients though the
outcomes have not been tested in ASD, where the main focus is to improve
behavioral disturbance (Roberts et al. 2010).

Oxytocin (OXT), a neuromodulator, is another shared therapeutic target
associated with social behaviors, memory for social information, empathy, and
protective silencing of the fetus’s cortex at birth. It is important for social bonding
and social learning, which takes place during language learning. Both oxytocin

Fig. 9.2 Genetic alterations leading to psychotic illnesses
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receptor (OXTR) and OXT genetic variations are well established in ASD and
schizophrenia (Ebstein et al. 2012; Montag et al. 2012) due to promising response
to oxytocin such as psychotic illnesses, decreased repetitive behaviors, negative
symptoms, improved recognizing abilities, and social cognitive feature (Hollander
et al. 2003; Guastella et al. 2010; MacDonald and Feifel 2012).

9.5 Conclusion

Psychotic illness is a major burden to the present world. Some common psychiatric
disorders like ASD and schizophrenia frequently share clinical manifestations
caused by brain dysfunction. However, the distinction between early- and late-
onset psychotic illnesses in children results in both disorders. Many genetic factors
have been identified to be associated with these disorders. From the discussion of
this chapter, it is clear that these two disorders also share a genetic overlap. Besides,
the therapeutic target of these abnormalities relies on the same pipeline. Therefore,
prospects will be to develop more specific therapeutic targets to treat different
psychotic illnesses.
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Abstract

RNA is hierarchically organized, and its 3D structure can be described at different
levels. Instead of the long helices formed by two perfectly complementary strands
of DNA, an RNA chain folds back on itself to form short stretches of helical
regions interrupted by bulges, internal loops, hairpin loops, or multi-way
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junctions. While RNA plays a significant role in several biological processes,
including translation, catalysis, and gene regulation, the RNA secondary
structure’s prediction is crucial for the identification and formulation of the
RNA functionality. The second level of RNA hierarchical structure is RNA acting
as a key factor in the posttranscriptional regulation and the noncoding RNA
functions. This chapter reviews the representation, visualization, and mathemati-
cal formulation mostly of RNA secondary structures, which can be viewed as
steps toward the three-dimensional prediction modeling and their role in
neurodegeneration.

Keywords

Complexity · Dynamic programming · lncRNAs · Neurodegeneration ·
Prediction · RNA secondary structures

10.1 Introduction

The latest RNA secondary structure prediction methods include comparative
sequence analysis and folding algorithms (Singh et al. 2019). Several dynamic
programming tools (Akutsu 2000) are published that predict RNA secondary
structures with pseudoknots or noncanonical base pairs using alternative mathemat-
ical and biophysical representations (Nowakowski and Tinoco 1997; Stein and
Waterman 1978; Westhof and Fritsch 2000; Nebel 2001; Jiang et al. 2002; Reeder
and Giegerich 2004; Do et al. 2006; Parisien and Major 2008; Sato et al. 2009;
Schroeder 2009; Bellaousov and Mathews 2010; Reuter and Mathews 2010; Lorenz
et al. 2011; Sato et al. 2011; Zakov et al. 2011; zu Siederdissen et al. 2011; Seetin
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and Mathews 2012; Janssen and Giegerich 2014; Xu and Chen 2015; Sloma and
Mathews 2017; Jabbari et al. 2018; Ashraf et al. 2019). In a latest study, the DMfold
method has been presented to predict RNA secondary structures with pseudoknots
based on the deep learning technique and the improved base pair maximization
principle (Wang et al. 2019). Additionally, researchers demonstrated the IRIS
method (Python-based) for predicting RNA secondary structures based on PARIS
(Psoralen Analysis of RNA Interactions and Structures) data (Zhou et al. 2020).

By taking into consideration the latest presentation of the AlphaFold artificial
intelligence system for the prediction of a protein 3d structure using the DeepMind
platform (Senior et al. 2019, 2020), most of the RNA M-folding algorithms concen-
trate on the RNA secondary structure. Many computational methods are already
published for the prediction of RNA secondary structure (Fig. 10.1) either based on

Fig. 10.1 BACE1-AS
secondary structure. The
correlation of lncRNAs to
Alzheimer’s disease is already
presented in several latest
studies modulating Αβ
formation or impacting
apoptosis and affecting
Alzheimer’s disease
development or progression
(Fukumoto et al. 2002; Mus
et al. 2007; Parenti et al. 2007;
Faghihi et al. 2008a, b, 2010;
Modarresi et al. 2011; Ng
et al. 2013; Luo and Chen
2016; Kim et al. 2016).
(Adapted form Ashraf et al.
2019. This is an Open Access
article which permits
unrestricted use, distribution,
and reproduction in any
medium, provided the original
work is properly credited.
This is distributed under the
terms of the Creative
Commons Attribution
License)
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thermodynamic models that calculate the free energy or using the homologous RNA
sequences, such as the free energy-based algorithms, the free energy minimization
algorithm, the Sfold algorithm, the expected accuracy maximization algorithm, or
the structure profiling experiments (Mathews and Turner 2002; Hofacker 2003;
Knudsen and Hein 2003; Zuker 2003; Underwood et al. 2010; Hajiaghayi et al.
2012; Puton et al. 2013; Hamada 2015a, b; Lorenz et al. 2016; Yan et al. 2016;
Smola and Weeks 2018; Saus et al. 2018; Yu et al. 2020).

10.2 RNA Secondary Structure: Formalism and Representation

Let us recall the basic definition of secondary structures (Ashraf et al. 2019). A
secondary structure S on a sequence s is the set of base pairs (si, sj), where i < j and
where si represents the nucleotide at a position i on a sequence s that has the
following properties:

(i)
si, s j
� � 2 S ) si, s j

� � 2 AU,UA,GC,CG,GU,UGð Þ
(ii)

si, s j
� � ^ sk , slð Þ� � 2 S ^ si ¼ skð Þ ) j ¼ l

(iii)
si, s j
� � ^ sk , slð Þ� � 2 Si < k ) l < j _ j < k

Constraint (i) means that only Watson-Crick and wobble base pairs may form.
Constraint (ii) states that a nucleotide may be involved in at most 1 base pair, and
constraint (iii) implies that all base pairs are nested. While these constraints greatly
simplify the folding algorithms, none of the above constraints is biologically rele-
vant (Ashraf et al. 2019). Additionally, a few prediction solutions aim to predict
secondary structures, including pseudoknots and non-nested pairs, simultaneously
reducing the computational complexity like the programs ConStruct, HotKnots,
ILM, NUPACK, PKNOTS, and RNA STAR (Eddy 2004; Schroeder 2009). In
literature, RNA secondary structures can be displayed in different representations,
including hairpin and interior loops, multi-loops, external loops, pseudoknots, and
interior-pseudo-knotted loops (Fig. 10.2). Depending on the use, specific
representations are more or less useful (Ashraf et al. 2019), such as the bracket
notation, the trees, the arc-annotated sequences, the circles, the mountain plots for
large RNAs, and the dot plots.

10.3 Mathematical Representations of Closed RNA Secondary
Structures

A secondary structure of size n is closed if there is an h-bond connecting base 1 and
n (Doslic and Veljan 2007). For given integers n � 2, l � 0, there are S(l )(n � 2)
secondary structures of size n and rank l, also establishing a bijection between the set
of all closed secondary structures z(l )(n) and the set of all plane trees with exactly
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n leaves T(l )(n) (Ashraf et al. 2019). Base pairs like C-G, A-U, and G-U form h-
bonds, which cause folding of the molecular backbone into a configuration of
minimal energy (Doslic and Veljan 2007; Ashraf et al. 2019).

An alternative definition of closed secondary structures has been given (Rastegari
and Condon 2005), through the closed regions of a secondary structure: representing
a secondary structure as an arc diagram, in which base indices are shown as vertices
on a straight line, ordered from the 50-end and arcs, indicate base pairs, a region [i; j]
will be referred to as weakly closed if it contains at least one base pair and for all base
pairs i0�j0 of R, i0 2 [i; j] if and only if j0 2 [i; j] and closed if either i¼ 1, j¼ n or if it is
weakly closed and for all l with i < 1 < j the regions [i; 1] and [1; j] are not weakly
closed.

10.3.1 Closed RNA Representation as a k-Non-crossing Set
of Partitions

Geometrically, a closed k-non-crossing RNA secondary structure can be represented
either as a simple, closed curve or as a system of k such curves as it is already
published through the genetic algorithm RnaPredict (Deschenes 2005) and the

Fig. 10.2 RNA secondary structures elements, predictable by identifying the structure that
minimizes the free energy of the folded molecule (Adapted from clcbio Main Workbench educa-
tional presentations): (a) single-stranded RNA, (b) double-stranded RNA helix of stacked based
pairs, (c) bulge loop, (d) stem and loop or hairpin loop, (e) junctions or multi-loops, (f) interior loop,
(g) hairpin bulge, (h) pseudoknots, (i) kissing hairpins
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parallelized version of this algorithm P-RnaPredict (Hendriks 2005). Besides, Zhan
and Guo (2005) proposed a permutation-based genetic algorithm using the Standard
Roulette Wheel Selection (STDS) and the KBR strategy. According to these authors,
a closed RNA secondary structure is represented as a k-non-crossing set of partitions
representing the base and no base pairs, respectively. It should be noted at this point
that the combinatorial properties of secondary structures are derived from
Waterman’s recursion (Waterman 1987) as follows:

S2 nð Þ ¼ S2 n� 1ð Þ þ
Xn�2

S¼0

S2 n� 2� sð ÞS2 sð Þ,

where S2(n) denotes the number of RNA secondary structures.
Even though the above genetic algorithms have already provided comparable

results to the M-folding problem, the current benchmark for closed RNA secondary
structure prediction, unfortunately, they have polynomial-time solutions.

10.3.2 Closed RNA Representation as Motzkin Words and Paths

Arc-annotated sequences represent RNA molecules’ structural information and have
been extensively used for the RNA secondary prediction. As we mentioned before,
an arc-annotated sequence is a sequence over a given alphabet together with
additional structural information specified by arcs connecting pairs of positions.
The arcs determine the way the sequence folds into a three-dimensional space.
Arc-annotated sequences can be classified according to the combinatorial structure
of their arcs.

Stein and Waterman (1978) proved that the sequences arising in the enumeration
of secondary structures that can occur under various reasonable restrictions might be
considered as natural generalizations of the Catalan and Motzkin numbers
(A001006) (Sloane n.d.). To define the Motzkin word, we recall an equivalent
definition for secondary structures introduced by Viennot and Vauchaussade de
Chaumont (1985): For x 2 Σ denoting the number of occurrences of a symbol x in
w. Then a word w 2 Σn is a secondary structure of size n if w it satisfies the three
following conditions:

1. For every factorization w ¼ u � v, |u|(�|u|).
2. |w|(¼|w|).
3. w has no factor ().

Within this notation, a pair of corresponding brackets within a word w represents
two single-stranded nucleic acid bases, which are paired. The symbol | represents an
unpaired base. The words Σ�, which satisfy conditions (1) and (2) of the previous
definition, are called Motzkin words. Condition (3) accommodates that a hydrogen
bond cannot link together two adjacent bases. Consequently, loops consist of at least
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one base within our model, while a realistic assumption would force the loops to
consist of at least three bases. Note that Motzkin words abstract from the fact that
RNA contains four different nucleotides. Any Motzkin word of length n represents
4n pairwise different RNA structures. Loads are impossible because of pairing
constraints, but this matter is handled in the same manner as impossible loop or
stem lengths. As long as all concerned models abstract in the same way, the results
obtained on Motzkin words can be transferred to closed RNA secondary structures.

A Motzkin path is a lattice path in the first quadrant beginning at the origin,
ending at the x-axis and consisting of the steps u¼ (1,1) as the up-step, d¼ (1,�1) as
the down-step, and h ¼ (1,0) as the horizontal step. The set of all Motzkin paths of

length n has been already enumerated by the n-th Motzkin number Mn ¼
P

k�0

n

2k

� �
Ck (Donaghey and Shapiro 1977). It has also been proved that second-

ary structures are in a simple bijection with Motzkin paths without peaks (Deutsch
and Shapiro 2002).

In the general case of the RNA-RNA Interaction Prediction Problem (Tsiamis
et al. 2016), it is assumed that there exist two independent RNA sequences K and
L of length n and m, respectively. In a specific joint secondary structure of K and L,
each nucleotide is paired with at most one nucleotide in the same or the other strand,
while these two strands interact in opposite directions. If we assume that the K strand
is indexed from 1 to n in 50 to 30 direction and L is indexed from 1 to m in 30 to 50

direction, then we refer to the ith nucleotide in K and L by iK and iL, respectively, and
to any base pair between nucleotides i and j with the notion i � j.

There are several methods in the literature for the prediction of a joint structure
formed by two interacting RNAs: base pair counting, grammar-based approach to
RNA-RNA interaction prediction, stacked pair energy model or loop energy model
(Alkan et al. 2006), and RNA interaction structures combinatorics like generating
functions, singularity analysis, as well as recurrence relations and asymptotic
formulas for the number of joint structures (Li et al. 2008, 2011).

10.4 RNA Secondary Structures in Neurodegeneration

Several research studies focus on the role of specific proteins in neurodegenerative
disorders like Alzheimer’s disease (AD) and autism spectrum disorders (Alexiou
et al. 2018a, b, c, 2019). In a latest study, a computational analysis of lncRNAs and
their potential correlation to AD pathologies and lesions have been presented,
including the secondary structures of four proteins related to Alzheimer’s disease,
BACE1, Rad18, GABABR2, and hnRNPQ, targeted from the corresponding
lnRNAs BACE1-AS, NAT-Rad18, 17A, and hnRNP Q (Ashraf et al. 2019). In
this chapter, we present the secondary structure prediction table (Appendix), using
the same computational tool (QIAGEN CLC Main Workbench 8.0; QIAGEN CLC
Main Workbench Software n.d.) and the identical sequences imported from the
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Protein Databank, 6EJ3(BACE1_HUMAN), 4F12(GABABR2_HUMAN), 4UX8
(hnRNPQ_HUMAN), and 2Y43(RAD18_HUMAN).

10.4.1 How Can Pathogenic RNA Structures Cause
Neurodegenerative Disease?

Several of the functional secondary structural elements can suddenly appear as
pathogenic agents due to point mutations, sequence deletions, and expansions. The
newly formed mutated RNA motifs can interfere with normal interaction and initiate
the cells’ pathologic processes. Some of the widely acknowledged instances of such
gain of function comprise dysregulation of site-specific RNA editing by adenosine
deaminase acting on RNA (ADAR), sequestration of RNA-binding proteins, the
formation of pseudo internal ribosome entry sites (IRES), activation of cryptic
splicing sites, and subsequent cap-independent translation, i.e., repeat-associated
non-ATG (RAN) translation (Mirkin 2007; Zu et al. 2011). The formation of several
peptides in the absence of canonical AUG start codons has been exhibited through
broad-scale proteomics and transcriptome studies (Lee et al. 2012; Stern-Ginossar
et al. 2012; Slavoff et al. 2013). Hence, the biological implications of understanding
RAN translation are not just restricted to pathologic RNA structures.

Pathogenic RNA folding is attributable to various factors. The functional role
played by a specific RNA structural motif is revealed by disease pathogenesis. A
common cause of abnormal RNA folding is single nucleotide polymorphisms
(SNP). The conformational stability of a secondary structure element can change a
single nucleobase mutation. This can lead to a downstream pathology and disrupt a
fragile equilibrium of RNA-protein interaction networks. MAPT (Tau) mRNA, vide
infra being one of the intensely studied instances (Warf and Berglund 2010).

Activation of cryptic splicing sites contributes to the diversity of protein isoform
when pre-mRNAs intronic regions undergo retrotransposon insertions. An important
role is played by this mechanism in brain development, evolution, and cellular
differentiation. However, in most instances, it is also a contributing factor to genetic
diseases (Deininger and Batzer 1999; Baillie et al. 2011). For instance, an essential
role in the assembly of signal recognition particles (SRPs) is played by the structured
retrotransposon Alu element of 7SL RNA. In the human genome, the Alu motif is
the most abundant retrotransposon. With more than a million copies, the Alu motif
represents almost 11% of the entire genome (Lander et al. 2001). Cryptic exons can
be activated when the intronic region’s insertion of Alu elements occurs, thereby
leading to unnatural protein isoforms being formed (Vervoort et al. 1998; Pagani and
Baralle 2004). Large gene fragments deletion can also result from the Alu element-
driven abnormal recombination, and propagation of linked pathology is caused by
co-migration of the other pathologic RNA fragments (Nakayama et al. 2010; Iida
et al. 2012).

In the case of microsatellite repeat expansion disorders, strand slipping during
replication, repair, and recombination results from particular DNA oligonucleotide
fragments (repeated sequences) that fold into stable hairpins. As a result, there is the
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formation and elongation of such repetitive fragments (Gacy et al. 1995; López
Castel et al. 2010). The corresponding single-stranded RNA comprises the expanded
repeated sequence formed due to transcription. As a result of the presence of
additional secondary structural elements, this repeated sequence is folded aberrantly.
A high likelihood of expanded repeats is folded in abnormal structures once their
stable incorporation in the DNA sequence occurs. This subsequently leads to a
gradual augmentation of the pathology with age, and in future generations, it
manifests in the form of a phenomenon recognized as repeat instability (Kovtun
and McMurray 2008; Liu et al. 2010; López Castel et al. 2010).

10.4.2 lncRNAs and Alzheimer’s Disease

Mammalian genomes encode tens of thousands of lncRNAs, and up to 40% of these
lncRNAs are explicitly expressed in the brain (Briggs et al. 2015). Several neurode-
generative ailments have been attributed to abnormal lncRNA expression. Signifi-
cantly, the differential expression of hundreds of lncRNAs has been reported in
3xTg-AD model mice compared to the age-matched control animals. Additionally,
in comparison to control animals, 150 lncRNAs are found to be upregulated, and
99 lncRNAs are observed to be downregulated in the hippocampus of APP/PS1
transgenic mice. When transcriptome analyses were conducted on postmortem
human brains, it was identified that in the AD patient brains, levels of multiple
lncRNAs had been altered substantially. Together, in animal models and AD
patients, the differential expression of lncRNAs takes place. Thus, lncRNAs can
serve as biomarkers and probable treatment targets for AD (Li et al. 2020). Based on
the size, non-coding RNAs (ncRNAs) can be categorized into IncRNAs and short
RNAs (<200 nt in length) (Modarresi et al. 2011; Magistri et al. 2012). Lacking an
apparent open reading frame, IncRNAs vary in size from 200 nt to more than 100 kb
(Derrien et al. 2012; Harrow et al. 2012; Knauss and Sun 2013; Zhu et al. 2013).
IncRNAs associated with particular functions are conserved evolutionarily (Hamada
2015a, b; Iwakiri et al. 2016). They localize at particular types of cells and subcellu-
lar compartments and regulate dynamically (Knauss and Sun 2013; Washietl et al.
2014; Wilk et al. 2016). At various levels, gene expression is regulated by IncRNAs
(Melissari and Grote 2016). In line with epigenetic regulations’ primary function, the
bulk of the IncRNAs are present in the nucleus (Knauss and Sun 2013; Zeng et al.
2015). Though IncRNAs are not regarded as a “dark matter” instead, they have
extremely important roles for controlling the translation and transcription along with,
during chromatin modification regulation of the cell cycle, genome rearrangement,
genetic imprinting, messenger RNA (mRNA) decay, splicing, transcription, and
translation (Derrien et al. 2011; Zhu et al. 2013; Iwakiri et al. 2016). Investigations
into the genetic factors and pathomechanism of AD have been ongoing for over a
century. While the research continues, several studies have depicted that IncRNA
dysregulation has a role to play in epilepsy, cancer, and neurodegenerative, cardio-
vascular, and genetic diseases. Some studies have also indicated that IncRNAs also
have a substantial role in AD (Kraus et al. 2015; Sun et al. 2016; Melissari and Grote
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2016) (Fig. 10.3 and Table 10.1). Regardless of the role of IncRNAs in AD
pathology, several factors such as hypoxia/ischemia (Jha et al. 2018), mitochondrial
dysfunction (Jha et al. 2017a, b), impaired NF-κβ signaling (Jha et al. 2019a, b),
altered IDE and NEP expression (Jha et al. 2015), ABC transporter dysfunction (Jha
et al. 2019a, b), altered ion channels (Kumar et al. 2016), and HIV infections (Jha
et al. 2020) have also been reported to be associated with AD progression (Jha et al.
2017a, b; Kumar et al. 2015). Further, the linkage between various IncRNAs and AD
has been discussed in succeeding sections.

10.4.3 BACE1-AS

β-site amyloid precursor protein cleaving enzyme-1 antisense transcript (BACE1-
AS) is a well-conserved RNA transcribed from the positive strand of chromosome
11 on the parallel strand of the BACE1 locus (11q 23.3) (Faghihi et al. 2008a, b;

Fig. 10.3 Schematic diagram showing dysregulated lncRNAs in AD. BACE1-AS, 51A, 17A, and
NDM29 directly/indirectly enhance Aβ formation and/or the Aβx-42/Aβx-40 ratio. To maintain
long-term synaptic plasticity, BC200 regulates local protein synthesis. NAT-Rad18 has a major role
in apoptosis. Abbreviations: Aβ, amyloid β peptide; NDM29, neuroblastoma differentiation marker
29; BACE1, β-site AβPP cleaving enzyme-1; eIF4A, eukaryotic initiation factor 4A; BC200, brain
cytoplasmic 200 RNA; SORL1, sortilin-related receptor gene; mRNA, messenger RNA
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Modarresi et al. 2011). At the mRNA level as well as protein levels, regulation of
BACE1 expression is performed by BACE1-AS. In toxic Aβ, a vital role is played
by BACE1 (Mulder et al. 2010; Dash et al. 2014). In several varied cell stressors, the
implication of AD pathogenesis has taken place. On exposure to increased tempera-
ture, staurosporine, serum starvation, Aβ1–42, high glucose, and both BACE1-AS
and BACE1 mRNA are upregulated. This indicates that alteration of BACE1-AS
expression and thereafter BACE1 enzyme activity can be caused by cell stressors
(Faghihi et al. 2008a, b; Liu et al. 2014). Irrespective of whether BACE1-AS is
overexpressed or knocked down, parallel regulation of BACE1 protein and BACE1
mRNA takes place, subsequently resulting in reduced Aβ production and plaque
deposition (Faghihi et al. 2008a, b; Liu et al. 2014; Modarresi et al. 2011). In
animals, several physiological and behavioral deficits result from loss of BACE1,
including emotional deficits, memory loss, peripheral myelination defects, and
reduced synaptic plasticity (Ma et al. 2007; Laird et al. 2005; Hu et al. 2006; Decourt
and Sabbagh 2011; Borghi et al. 2007; Stockley and O’Neill 2008; Vassar and
Kandalepas 2011). The complicated pathologic and physiologic boundaries indicate
tighter regulation of the BACE1 expression (Vassar and Kandalepas 2011; Faghihi
et al. 2008a, b). In summary, BACE1-AS levels are increased due to cell stress; this,
in turn, results in simulation of the BACE1 expression, which has the potential of
further enhancing AβPP processing and Aβ1–42 production. Overexpression of
BACE1-AS can be further promoted through elevated Aβ1–42 levels along with
the AβPP processing cascade in a feedforward manner (Faghihi et al. 2008a, b; Liu
et al. 2014; Dislich and Lichtenthaler 2012). BACE1-AS increases the stability of
the BACE1 mRNA through the formation of a RNA duplex (Yuan et al. 2013; Wan
et al. 2017; Liu et al. 2014). Hence, both BACE1-AS and BACE1 can be potential
biomarkers and treatment targets for AD (Evin and Hince 2013; Perneczky and
Alexopoulos 2014; Dislich and Lichtenthaler 2012; Decourt and Sabbagh 2011).

Table 10.1 The role of dysregulated lncRNAs and their associated target in Alzheimer’s disease

IncRNAs Target(s) Function(s) Reference(s)

51A Downregulates
SORL1 variant A

Aβ" Ciarlo et al.
(2013), Ma et al.
(2009)

BACE1-
AS

Upregulates BACE1
mRNA stability

Aβ" Faghihi et al.
(2008a, b)

17A GABA B signaling
impairment

Aβx-42/Aβx-40", Aβ" Massone et al.
(2011), Gavazzo
et al. (2013)

BC200 Decouples ATP
hydrolysis via
targeting at eIF4A

Acts as a regulator of local protein
synthesis to maintain the long-term
synaptic plasticity

Lin et al. (2008)

NAT-
Rad18

Modulates Rad18
expression

Making the neuron more sensitive to
apoptosis

Iacoangeli et al.
(2010)

NDM29 Promotes BACE
and γ-secretase
activity

Aβx-42/Aβx-40", Aβ" Massone et al.
(2012)
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10.4.4 51A

For a long time, it has been hypothesized that the neuronal sortilin-related receptor
gene (SORL1, also known as SORLA and LR11) is involved in the pathogenesis of
AD (Jacobsen et al. 1996; Yamazaki et al. 1997; Lee et al. 2008; Rogaeva et al.
2007). As per suggestions from recent studies, as a sorting receptor for AβPP
holoprotein, SORL1 interacts with AβPP in endosomes and trans-Golgi networks,
affecting trafficking and proteolytic processing (Ciarlo et al. 2013). Shifting of AβPP
from the retromer recycling pathway to β-secretase cleavage pathway can be
facilitated by the reduced SORL1 expression. This, in turn, results in Aβ formation
due to increased secreted AβPP production (Ciarlo et al. 2013; Khvotchev and
Sudhof 2004). 51A is a novel ncRNA that maps in an antisense configuration to
intron 1 of the SORL1 gene, whose synthesis fosters the expression of SORL1
variants spliced alternatively. It must be noted that in the in vitro model and the AD
brain, 51A is overexpressed. One probable mechanism through which 51A increases
AD susceptibility is an increase in amyloid formation through downregulation of
SORL1 variant A via alternative splicing (Ciarlo et al. 2013; Ma et al. 2009).

10.4.5 17A

17A is a 159-nt lncRNA that is synthesized by RNA polymerase III. 17A maps in
intron 3 of G-protein-coupled receptor 51 gene (GPR51), endures alternative splic-
ing, and increases the volume of GABA B2 receptor isoforms. Through activation of
particular potassium channels and regulation of intracellular 30–50-cyclic adenosine
monophosphate accumulation, GABA B’s biological functions might be affected by
GABA B R2 splice variant B. As a result of these events, GABA B signaling
impairment increases Aβ secretion, and enhancement in the Aβx-42/Aβx-40 ratio
occurs. When compared with control tissues, 17A RNA is upregulated in AD,
indicating that there could be direct or indirect involvement with the AD mechanism
(Massone et al. 2011; Gavazzo et al. 2013; Wan et al. 2017).

10.4.6 NDM29

Neuroblastoma differentiation marker 29 (NDM29) is an RNA polymerase
III-transcribed ncRNA. NDM29 synthesis is induced by inflammatory stimulation
in a dose-dependent manner. Altered AβPP modulation accompanies the
upregulation of NDM29 RNA. In the meantime, it can also stimulate the BACE
cleavage activities, resulting in the generation of an increased amount of AβPP
C-terminal fragments. The fragments are meant for further processing by the
γ-secretase cleavage complex increasing the Aβx-42/Aβx-40 ratio as well as the
Aβ formation (Vella et al. 2015; Gavazzo et al. 2013; Massone et al. 2012).
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10.4.7 BC200

Brain cytoplasmic 200 RNA (BC200) is a translational regulator that targets eukary-
otic initiation factor 4A. It, in turn, assists with modulating local protein synthesis in
postsynaptic dendritic microdomains, decoupling adenosine triphosphate hydrolysis
from RNA duplex unwinding, and contributing to the maintenance of long-term
synaptic plasticity (Lin et al. 2008). As per a postmortem study, there is a reduction
of 60% in the BC200 RNA levels in cortical areas in individuals between the age of
49 and 86 years. There is a substantial upregulation in a BC200 RNA in an AD brain
compared with a normal brain that has been age-matched. Along with an increase in
disease progression, the comparative BC200 RNA levels increase in AD-involved
brain areas. Still, BC200 downregulation was reported by at least one study (Mus
et al. 2007). The contradiction between the studies can be attributed to the varying
severity of the disease and variations in the brain regions, but atypical BC200 RNA
expression is a distinct possibility (Wu et al. 2013). In somata, the comparative
BC200 RNA levels increase, while they decrease in dendrites. As a result of this
varying expression, there is an effect on microtubule-dependent transport, subse-
quently contributing to dendritic and axonal blockage, indicating early events in
AD. Subsequently, it can contribute to local Aβ generation, followed by amyloid
deposition (Iacoangeli et al. 2010; Zhou and Xu 2015). Findings from another group
indicate that there is no effect on BC200 RNA under apoptotic conditions in vitro.
The findings also hypothesized that BC200 is involved in necrosis instead of
apoptosis (Liu et al. 2015).

10.4.8 NAT-Rad18

One of the primary forms of programmed death of a cell is apoptosis. Progressive
cell loss resulting from excessive apoptosis contributes to various neurodegenerative
ailments, including AD. Rad18 is a member of the Rad6 epistasis group that handles
the responsibility for post-replication repair. By encoding a spectrum of
DNA-damaging agents, NAT-Rad18 genes encode for natural antisense transcripts
against Rad18. In the protein and mRNA levels, the relationship between
NAT-Rad18 and Rad18 is Rad18 showcases counter-balanced, wherein low expres-
sion level. Following exposure to Aβ, there is a differentially upregulated expression
of NAT-Rad18 in the brain tissues, especially the cortical neurons. When considered
in its entirety, there are indications from this evidence that through its effects on the
DNA repair system, AD may have involvement of NAT-Rad18 (Parenti et al. 2007).
Further, the summary of all these IncRNAs and their target with respect to AD has
been addressed in Table 10.1.
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10.5 Conclusion

This chapter has comprehensively addressed the representation, visualization, and
mathematical formulation of RNA secondary structures, which can be viewed as
steps toward the three-dimensional prediction modeling and their role in
neurodegeneration, especially in AD. Almost all AD-related lncRNAs have been
listed in this chapter, but the investigation into this field is very early. We still need to
elucidate how lncRNAs operate at the molecular and cellular levels as the lncRNA
field continues to develop. Most recent studies advocate that lncRNAs are potential
candidates in the ongoing quest for AD biomarkers and could facilitate identification
of rational therapeutic strategies. A deep understanding of lncRNA biology could
unlock more avenues to early AD diagnosis and treatment.

Appendix: Secondary Structure Prediction

Sequence Start End Region name

UBE2A_HUMAN 4 16 Alpha helix

UBE2A_HUMAN 33 41 Beta strand

UBE2A_HUMAN 53 59 Beta strand

UBE2A_HUMAN 70 74 Beta strand

UBE2A_HUMAN 82 82 Beta strand

UBE2A_HUMAN 87 88 Beta strand

UBE2A_HUMAN 89 93 Alpha helix

UBE2A_HUMAN 102 112 Alpha helix

UBE2A_HUMAN 124 148 Alpha helix

RAD18_HUMAN 4 6 Alpha helix

RAD18_HUMAN 13 24 Alpha helix

RAD18_HUMAN 27 38 Beta strand

RAD18_HUMAN 48 55 Alpha helix

RAD18_HUMAN 63 67 Beta strand

RAD18_HUMAN 75 97 Alpha helix

RAD18_HUMAN 113 117 Beta strand

RAD18_HUMAN 123 128 Alpha helix

RAD18_HUMAN 130 141 Alpha helix

RAD18_HUMAN 146 152 Alpha helix

RAD18_HUMAN 160 162 Alpha helix

RAD18_HUMAN 166 168 Alpha helix

RAD18_HUMAN 175 178 Alpha helix

RAD18_HUMAN 183 185 Alpha helix

RAD18_HUMAN 196 200 Alpha helix

RAD18_HUMAN 214 223 Alpha helix

RAD18_HUMAN 226 238 Alpha helix

RAD18_HUMAN 246 250 Alpha helix

(continued)
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Sequence Start End Region name

RAD18_HUMAN 253 263 Alpha helix

RAD18_HUMAN 271 291 Alpha helix

RAD18_HUMAN 295 318 Alpha helix

RAD18_HUMAN 322 324 Alpha helix

RAD18_HUMAN 325 326 Beta strand

RAD18_HUMAN 332 365 Alpha helix

RAD18_HUMAN 372 374 Beta strand

RAD18_HUMAN 381 387 Alpha helix

RAD18_HUMAN 410 413 Alpha helix

RAD18_HUMAN 425 432 Alpha helix

RAD18_HUMAN 444 460 Alpha helix

RAD18_HUMAN 473 485 Alpha helix

HNRPQ_HUMAN 19 22 Alpha helix

HNRPQ_HUMAN 27 33 Alpha helix

HNRPQ_HUMAN 36 54 Alpha helix

HNRPQ_HUMAN 58 68 Alpha helix

HNRPQ_HUMAN 70 80 Alpha helix

HNRPQ_HUMAN 85 89 Alpha helix

HNRPQ_HUMAN 91 106 Alpha helix

HNRPQ_HUMAN 112 112 Beta strand

HNRPQ_HUMAN 121 130 Alpha helix

HNRPQ_HUMAN 135 135 Beta strand

HNRPQ_HUMAN 137 137 Beta strand

HNRPQ_HUMAN 163 166 Beta strand

HNRPQ_HUMAN 171 184 Alpha helix

HNRPQ_HUMAN 191 193 Alpha helix

HNRPQ_HUMAN 205 210 Beta strand

HNRPQ_HUMAN 213 223 Alpha helix

HNRPQ_HUMAN 234 240 Beta strand

HNRPQ_HUMAN 245 247 Beta strand

HNRPQ_HUMAN 256 273 Alpha helix

HNRPQ_HUMAN 274 276 Beta strand

HNRPQ_HUMAN 288 292 Beta strand

HNRPQ_HUMAN 297 307 Alpha helix

HNRPQ_HUMAN 311 314 Beta strand

HNRPQ_HUMAN 320 322 Beta strand

HNRPQ_HUMAN 331 375 Alpha helix

HNRPQ_HUMAN 382 391 Alpha helix

HNRPQ_HUMAN 401 405 Beta strand

HNRPQ_HUMAN 412 432 Alpha helix

HNRPQ_HUMAN 611 617 Alpha helix

GDNF_HUMAN 4 15 Beta strand

GDNF_HUMAN 59 76 Alpha helix

GDNF_HUMAN 81 85 Alpha helix

(continued)
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Sequence Start End Region name

GDNF_HUMAN 89 91 Alpha helix

GDNF_HUMAN 93 97 Alpha helix

GDNF_HUMAN 118 127 Beta strand

GDNF_HUMAN 137 143 Alpha helix

GDNF_HUMAN 144 144 Beta strand

GDNF_HUMAN 150 164 Alpha helix

GDNF_HUMAN 167 170 Alpha helix

GDNF_HUMAN 188 190 Alpha helix

GDNF_HUMAN 193 202 Alpha helix

GABR2_HUMAN 21 32 Alpha helix

GABR2_HUMAN 66 70 Alpha helix

GABR2_HUMAN 78 94 Alpha helix

GABR2_HUMAN 96 103 Alpha helix

GABR2_HUMAN 111 122 Alpha helix

GABR2_HUMAN 128 131 Beta strand

GABR2_HUMAN 139 146 Alpha helix

GABR2_HUMAN 151 156 Beta strand

GABR2_HUMAN 171 175 Beta strand

GABR2_HUMAN 184 198 Alpha helix

GABR2_HUMAN 200 216 Alpha helix

GABR2_HUMAN 218 219 Beta strand

GABR2_HUMAN 224 226 Beta strand

GABR2_HUMAN 240 243 Alpha helix

GABR2_HUMAN 248 252 Beta strand

GABR2_HUMAN 257 265 Alpha helix

GABR2_HUMAN 268 270 Alpha helix

GABR2_HUMAN 277 281 Beta strand

GABR2_HUMAN 289 296 Alpha helix

GABR2_HUMAN 300 312 Alpha helix

GABR2_HUMAN 325 329 Alpha helix

GABR2_HUMAN 335 342 Alpha helix

GABR2_HUMAN 362 378 Alpha helix

GABR2_HUMAN 382 386 Alpha helix

GABR2_HUMAN 396 402 Alpha helix

GABR2_HUMAN 411 411 Beta strand

GABR2_HUMAN 414 418 Beta strand

GABR2_HUMAN 426 429 Beta strand

GABR2_HUMAN 437 438 Beta strand

GABR2_HUMAN 442 458 Alpha helix

GABR2_HUMAN 467 478 Alpha helix

GABR2_HUMAN 481 498 Alpha helix

GABR2_HUMAN 499 502 Beta strand

GABR2_HUMAN 510 513 Alpha helix

GABR2_HUMAN 522 525 Beta strand

(continued)
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Sequence Start End Region name

GABR2_HUMAN 529 537 Beta strand

GABR2_HUMAN 543 544 Beta strand

GABR2_HUMAN 549 566 Beta strand

GABR2_HUMAN 571 572 Beta strand

GABR2_HUMAN 575 583 Beta strand

GABR2_HUMAN 590 592 Beta strand

GABR2_HUMAN 596 601 Beta strand

GABR2_HUMAN 604 618 Beta strand

GABR2_HUMAN 624 627 Beta strand

GABR2_HUMAN 639 641 Beta strand

GABR2_HUMAN 653 664 Beta strand

GABR2_HUMAN 666 677 Beta strand

GABR2_HUMAN 681 682 Beta strand

GABR2_HUMAN 691 692 Beta strand

GABR2_HUMAN 694 713 Beta strand

GABR2_HUMAN 719 741 Beta strand

GABR2_HUMAN 743 748 Beta strand

GABR2_HUMAN 753 755 Alpha helix

GABR2_HUMAN 760 761 Beta strand

GABR2_HUMAN 777 777 Beta strand

GABR2_HUMAN 786 794 Alpha helix

GABR2_HUMAN 796 816 Alpha helix

GABR2_HUMAN 824 828 Alpha helix

GABR2_HUMAN 831 840 Alpha helix

GABR2_HUMAN 851 856 Alpha helix

GABR2_HUMAN 885 895 Alpha helix

GABR2_HUMAN 898 901 Alpha helix

GABR2_HUMAN 935 938 Beta strand

BACE1_HUMAN 7 9 Alpha helix

BACE1_HUMAN 10 11 Beta strand

BACE1_HUMAN 26 27 Beta strand

BACE1_HUMAN 60 64 Beta strand

BACE1_HUMAN 75 81 Beta strand

BACE1_HUMAN 88 92 Beta strand

BACE1_HUMAN 109 118 Alpha helix

BACE1_HUMAN 120 124 Alpha helix

BACE1_HUMAN 128 130 Beta strand

BACE1_HUMAN 145 147 Beta strand

BACE1_HUMAN 154 158 Beta strand

BACE1_HUMAN 160 163 Beta strand

BACE1_HUMAN 169 171 Beta strand

BACE1_HUMAN 177 186 Alpha helix

BACE1_HUMAN 187 187 Beta strand

BACE1_HUMAN 201 203 Alpha helix

(continued)
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Abstract

Since the late 1980s, Alzheimer’s disease (AD) and autism spectrum disorder
(ASD) had spread rapidly, and still, it persists in growing numbers. According to
recent statistics, around 50 million people globally live with AD, and 1 out of
54 children have ASD, reaching an epidemic scale. Both diseases are thought to
be the resultant of the build-up of abnormal proteins plaque/fibrils in the brain; the
major cause of the difference is age. Though several kinds of research have been
made, the detailed understanding of the mechanism behind the disease etiology,
progression, early diagnosis, and other genetic factors is yet to be explored. In the
past few years, only a few Alzheimer’s patients were given proper medication
using current drug therapeutics. Still, it gave only short relief and reverted in one
form or the other, probably due to unblocked cognitive decline progression. For
decades, the development of potential therapies for AD and ASD pathogenesis
revolves around the aggregated proteins in neurodegenerative diseases. The
emerging and expanding field of immunotherapy directs the clearing of these
proteins which are responsible for cognitive impairment. Here, particular empha-
sis will be placed on the current immune therapeutics that have reached clinical
trials. We also intend to divulge the connection between AD and ASD by
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deciphering the connecting mechanisms involved in the aggregated/toxic
proteins, such as amyloid-β peptide (Aβ), Aβ precursor protein (APP), tau,
α-synuclein, and apolipoproteins.

Keywords

Immunotherapy · Alzheimer’s · Autism · Amyloid-β peptide (Aβ) · Aβ precursor
protein (APP) · Apolipoproteins

Abbreviations

AD Alzheimer’s disease
APOE Apolipoprotein E
APP Amyloid precursor protein
ASD Autism spectrum disorder
CAA Cerebral amyloid angiopathy
ChAT Acetylcholinesterase
CNTNAP2 Contactin-associated protein-like 2
DLBs Lewy bodies
FHR1 Complement factor H-related protein
FN1 Fibronectin 1
IL Interleukins
LPO Lipid peroxidation
ROS Reactive oxygen species
BBB Blood-brain barrier

11.1 Introduction

Autism spectrum disorder (ASD) and Alzheimer’s disease (AD) are two clinical
syndromes that are distinct and uncommon by the concept; however, some
similarities are apparent. Both AD and ASD are neurodegenerative and
neurodevelopmental complex disorders, respectively, involve brain development
primarily, and are also quite often associated with abnormalities of immune
responses with devastating effects not only on the individual but also on society
(Khan et al. 2016). AD, like many other acute and chronic neurodegenerative
diseases, is associated with local inflammation clinically manifested by progressive
dementia (Moya-Alvarado et al. 2016). AD’s pathological characteristics are depo-
sition of distinctive extracellular plaques of amyloid-b and tau neurofibrillary tangles
associated with cognitive and mental dysfunction and cerebral amyloid angiopathy
(CAA) in arterial walls (Serrano-pozo et al. 2011). On the other hand, ASD is
characterized by social communication or interaction and restricted and repetitive
behaviors. One of the studies of autism disease stated that autism and cancer share
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several similarities at the level of cellular and molecular signal transduction, the
involvement of the immune system, and the microbiota. Lymph stagnation in the
brain may lead to neuroinflammation that is responsible for autism symptoms
(Antonucci et al. 2019). Disease-related genes and their products make the back-
ground of common associations like memory deficits, demyelination, cognition
changes, oxidative stress, and inflammation, as an integral part of both AD and
ASD (Khan et al. 2016).

The systemic administration of steroidal or nonsteroidal anti-inflammatory drug
treatments also failed to affect disease progression, leaving the scientific community
with the question of what had been missed in understanding the disease (Schwartz
et al. 2020).

More recently, it was found that brain-immune crosstalk is impaired in aging and
neurodegenerative diseases. Thus, a fundamental mechanism of maintenance and
support might be lost that could be amenable to restoration by rejuvenating the
immune system (Scheiblich et al. 2020).

It would not be surprising enough that clinical immunotherapeutic approaches for
other manifestations like cancer might be a suitable and fruitful therapy in the field of
AD and ASD. By the use of clinical immunotherapeutic approaches in empowering
the peripheral immune system, it might be possible to overcome the difficulties of
co-ordinately targeting multiple factors that contribute to disease escalation and
cognitive impairment, which may differ between patients, and at different phases
along with the course of the disease (Alsharoqi et al. 2020). Therefore, in general,
immunotherapy could serve as a means to harness the immune system to fight
diseases like AD and ASD.

11.2 Common AD and ASD Manifestations

11.2.1 Common Recognizable Symptoms of AD and ASD

Significant fall in motor skills thought and behavioral coordination, apraxia, signifi-
cant fall of expected chronological age with stereotyped repetitive movements
including body shaking and clapping, inability to position parts of the body in
space, and problems in changing clothes are the major characteristic features of
ASD. All this can result in loss of independence as manifested by the incapability to
perform routine jobs of performing daily ablutions, washing, dressing up, cooking,
and eating. In case of AD progression from the mild to the moderate stages,
alterations of the motor cortex, over-excitation, language problem, difficulties in
judgment, unseemly behavior, disinhibition, difficulties to troubleshoot task persis-
tence, restriction to verbal memory, alterations with the gamma-aminobutyric acid,
and cholinergic pathways and impairments in the frontal lobe were reported (Nagata
et al. 2010). Language circumlocution, dysfluent aphasia, difficulties in spontaneous
speech, and frequent tip-of-the-tongue experiences are common symptoms of the
two diseases. Early-stage symptoms specifically include dysfunctions in the
non-linguistic areas of attention and executive memory. Simultaneously, stereotyped
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communication is observed only on the progression of the disease; lowered semantic
vocabulary, hindered search activities, poor language scores, and the progression in
language impairment have been shown to correlate with clinical progression of
AD. AD patients’ facial recognition defects are due to their semantic nature.
Moreover, patients of AD and ASD found difficulties in naming the person in
question than in recognition and perception. These deficits affect most individuals
and may vary from benign problems to more severe cognitive changes; nevertheless,
the deficits were more pronounced when patients were imposed with demanding
tasks (Hodges et al. 1993).

11.2.2 Genetics Association and Pathogenesis of AD and ASD

Numerous genes are highly active during nervous system development and are
critical for the proper formation of any impairment that leads to ASD and AD
pathogenesis (Blaker-Lee et al. 2012). ASD is a multigenic and highly heteroge-
neous group of disease that often coexist with other comorbidities caused by both
inheritable and de novo gene variations. To distinguish which genes truly have
overlapping risk is a considerable task to discuss common phenotypes. Generally,
proteins responsible for energy metabolism, myelination, and synaptic vesicle are
reported to be dysregulated in the brain of ASD patients. Apolipoprotein (apo)
B-100, complement factor H-related protein (FHR1), complement C1q, and fibro-
nectin 1 (FN1) are the common dysregulated proteins reported in the serum of
individuals with ASD (Pichitpunpong et al. 2019). The most causative genes that
lead to AD pathogenesis are β- amyloid, amyloid-β (Aβ)-mediated plaque formation,
different conformations of Aβ, amyloid precursor protein (APP), presenilin 1 (PS1)
and presenilin 2 (PS2) genes, and α-synuclein (Alzheimer’s Association 2021).

α-synuclein association with many neurodegenerative diseases is collectively
termed as synucleinopathies. These disorders include cognitive impairment, AD,
ASD, PD, and dementia with Lewy bodies (DLBs). Misfolding and overexpression
of α-synuclein lead to its aggregation and the formation of amyloid-like fibril in DLB
region (Zhang et al. 2018).

α-synuclein via GSK3β (glycogen synthase kinase 3 beta) mediates phosphory-
lation of tau protein, leading to more Aβ production and accumulation, GSK3β
activation, and intra-cellular dysfunctioning. Moreover, Aβ-associated α-synuclein
aggregation in the limbic regions of AD patients facilitates more stable oligomers
and hence disease pathogenesis (Crews et al. 2009; Twohig and Nielsen 2019).

The plethora of studies also reported the presence of α-synuclein in the CSF and
plasma. α-synuclein plasma levels were found to be higher in ASD patients than in
normal control. Besides, the involvement of α-synuclein in the regulation of synaptic
plasticity leads to synaptic dysfunctioning, dopamine homeostasis imbalance, neu-
rotransmitter disturbances, and sometimes neuronal death. Thus, these
synucleinopathies and pathway disturbance might be strongly associated with
ASD pathogenesis (Al-Mazidi and Al-Ayadhi 2021).
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Other risk factors and genetic variations associated with AD and ASD are
tabulated in Table 11.1 (Fu et al. 2010; Caramelli et al. 1999; Sokol et al. 2011;
Crehan and Lemere 2016, Westmark and Malter 2007; Stigler et al. 2009;
Rylaarsdam and Guemez Gamboa 2019; Bowers and Konopka 2012; Chen et al.
2020; Griciuc and Tanzi 2021).

Apart from the direct role of several genes in AD and ASD pathogenesis, lipid
peroxidation (LPO), the end product of reactive oxygen species (8-isoprostane F2 α)
attack, is another marker of ASD (Ming et al. 2005). Due to the lack of glutathione-
producing ability of neuronal cells, the brain’s capacity to detoxify ROS is decreased
(Erden-İnal et al. 2002; Ono et al. 2001). Evidence has shown that extensive
oxidative stress is a characteristic of AD brains and autistic children, in addition to
the established pathology of senile plaques and neurofibrillary tangles in AD (Pratico
2008). Oxidative stress has been regarded as one of the contributing factors toward
the pathogenesis of AD. Biopsies from AD brains have shown a significant reduction
in mitochondria, while the mitochondrial DNA and proteins were seen increased in
the cytoplasm and the vacuoles of brain cells. This suggests the degradation of brain
cells due to oxidative stress (Hirai et al. 2001). Failure to resolve the inflammatory
responses could lead to chronic inflammation and damage to the brain tissue, as
observed in AD and ASD (Wang et al. 2015a).

11.2.3 Neuroimmune Dysfunctioning Associated with AD and ASD

Over the last few decades, understanding the underlying connection between the
brain and immune function has undergone dramatic changes in perception of
neurological degenerative diseases, mental disability, and several other related
neuropathology comorbidities. A plethora of research defines the optimal function-
ality of the brain concerning the immune system, provided that the circulating
immune and its response are needed to be tightly controlled, to understand the
brain pathologies and the optimal effect that are directly or indirectly dependent
on their type, location, activity, and other possible factors (Schwartz et al. 2020).
Approximately one out of six brains of autistic patients show signs of immune cell
infiltration in postmortem studies (Bailey et al. 1998).

Several in vivo model studies show an abnormal behavioral expression of natural
killer cells/cytokines and its development in the blood plasma of AD and ASD
patients especially interleukins (IL-1, IL-2, IL-4, IL-6, IL-8, IL-12, IL-13, IL-15,
IL-1β, and CD8 antigen; Wang et al. 2015a, b; Ashwood et al. 2011; Stigler et al.
2009; Singh 1996; Lahiri et al. 2021). Lee et al. (2006) reported that the proportions
of both CD4+ and CD8+ T-cells that associate with the production of interferon
(IFN)-g and IL-2 were found to be significantly reduced; on the other side, CD4+
and CD8+ T-cells that produce IL-4 were significantly elevated in 20 ASD children
in comparison to normal (Lee et al. 2006). Alteration in cytokine level is directly or
indirectly associated with the dysfunction in the blood-brain barrier (BBB) system
of the CNS (Noriega and Savelkoul 2014). Elevated ChAT activity and the presence
of microglial cells in the basal forebrain and the immature CNS are potent markers of
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Table 11.1 Genes implicated in AD and ASD

Gene Source product Function Major diseases

APOE Apolipoprotein E Cholesterol trafficking AD, ASD, CVDs

APP β-Amyloid precursor
protein

Neurite outgrowth and cell
adhesion

AD, ASD

C4B Complement cascade gene
4

Provides defense against
foreign pathogens,
autoimmunity

ASD, AD,
dementia

FN1 Fibronectin 1 Blood clotting, wound
healing

ASD, AD

NFTs Neurofibrillary tangles Microtubule stabilization AD, tauopathies

Low
plasma
ApoA1

Apolipoprotein A1 Cholesterol removal AD, CVDs

apoB-100 Apolipoprotein B100 Cholesterol efflux ASD, diabetes

BDNF Brain-derived neurotrophic
factor

Neurotrophin,
neuropreservation

Mental retardation
syndrome, late-
onset AD, ASD

COMT Catechol-O-
methyltransferase

Degrades catecholamines
such as dopamine,
epinephrine, and
norepinephrine

Parkinson, ASD,
AD

FHR1 Complement factor
H-related protein

Complement activation Uremic syndrome,
autoimmune
diseases, ASD, AD

FMR1 Fragile X mental
retardation protein (FMRP)

Regulation of mRNA
translation

AD, fragile X
syndrome

HLA-A Major histocompatibility
complex, class I, A

Part of the major
histocompatibility gene
complex

AD, autoimmune
diseases,
rheumatoid
arthritis, etc.

PTEN Phosphatase and tensin
homolog

Tumor suppressor
phosphatase, regulation of
neuron

Cancer, ASD

RELN Reelin Regulates neuronal
migration and
neuroplasticity in the brain

Cerebellar
hypoplasia, AD,
ASD

SLC6A4 Solute carrier family
6 (neurotransmitter
transporter, serotonin),
member 4, HTTP

Intracellular serotonin
transport

AD, ASD,

CLU, Clusterin Protein folding Neurodegenerative
diseases, cancer,
AD, ASD, aging

TREM2, Triggering receptor
expressed on myeloid cells
2

Scaffold folding, signal
transduction, regulation of
interleukin-6 production

AD, ASD,
dementia

(continued)
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ASD (Hagberg et al. 2012; Pratt et al. 2013). Apart from this, genome-wide associa-
tion studies (GWAS) reveal microglia and cytokines influence the expression of
several genes known to be linked with AD pathologies (Ji et al. 2019; Villegas-
Llerena et al. 2016; Karch and Goate 2015). Peroxisome proliferator-activated
receptors (PPARα, β, or δ) stimulate inhibitory proteins such as nuclear factor-
kappa β implicated in the expression of pro-inflammatory cytokines and chemokines
promoting AD progression (Delerive et al. 2000; Lawrence 2009). Deficits of
transforming growth factor beta-1 (TGF beta-1) could significantly contribute to

Table 11.1 (continued)

Gene Source product Function Major diseases

PICALM, Phosphatidylinositol-
binding clathrin assembly
protein

Protein coding and folding Leukemia, AD

TNF Tumor necrosis factor Immune activation Cancer, AD, ASD

PS-1 and
2

Presenilin 1 and 2 Generation β-amyloid, APP, AD, ASD, cancer

NLGN-1, Neuroligins Amyloid β binding, an
integral component of
membrane

AD, ASD

SYN-1
and 2

Synaptic vesicle cycling
proteins synapsin-1 and 2

Transporter activity,
regulation of
neurotransmitter secretion

Rett syndrome,
AD, ASD

SCN2A Sodium voltage-gated
channel alpha subunit 2

Encode ion-exchange
channel

Epilepsy, AD, ASD

CACNA1S Calcium voltage-gated
channel subunit alpha1 S

Provides instruction for
making calcium channel

Epilepsy, AD, ASD

CACNB-2 Calcium voltage-gated
channel auxiliary subunit
beta 2

Encodes auxiliary calcium
channel, trafficking to the
plasma membrane

Brugada syndrome,
epilepsy, AD, ASD

KCNQ-3
and 5

Potassium voltage-gated
channel subfamily Q
members 3 and 5

Provides instruction in the
making of potassium
channel

AD, ASD, benign
familial neonatal
epilepsy

SHANK-3 Multiple ankyrin repeat
domains 3

Protein folding, scaffold
protein binding, regulate
synaptic depression,
synapse formation

AD, ASD,
schizophrenia

FOXP2 Forkhead box P2 located on
7q31 chromosome
expressed during
mid-gestation (a critical
time point in brain
development)

Associated with language,
speech, motor behavior
during speech. Forced
expression of FOXP2 in
human neuronal cells and
the human fetal neural
progenitor cells resulted in
concomitant repression of
CNTNAP2, MET mRNA,
and protein. (Bowers and
Konopka 2012)

Pathophysiology of
ASD
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neuroinflammation and immune deregulation in ASD and AD (Ashwood et al.
2011). In a study by Shaftel et al. (2007), overexpression of IL-1 promotes Aβ
plaques in AD patients.

11.2.4 Immunotherapy Associated with AD and ASD

Dysfunctioning in the immune system which is the underlying cause of AD and
ASD led researchers to investigate immune-based therapies. As the immune-
privileged organ, the brain posits a huge challenge for ASD and AD in the field of
immunotherapy. Recently, several immune therapies mainly focus on the clearance
of plaque deposited due to β amyloid (Aβ) employing several mechanisms. The
transfer factor is a leukocyte lysate that stimulates an immune response against
foreign bodies such as bacteria, fungi, and viruses. Several reports manifest the
leukocytes mediated transfer factor (TF) based immunotherapy. In a study person
infected with congenital CMV and ASD showed improved motor skills such as
social behavior and interaction upon treatment with TF (Stubbs and Magenis 1980).
A similar study was also reported by Singh et al. (1988) where 8 autistic patients
were treated with TF. Six out of eight patients showed improvement in sleep, speech,
and attention (Singh et al. 1988). In a subsequent study to ascertain TF’s role,
10 (45%) out of 22 patients showed behavioral changes and improved IQ upon
treatment with TF (Fudenberg 1996) after undergoing the Symptom Severity Score
Average (SSSA) test.

Choroid plexus (CP) epithelial cells help in selective accession of immune cell
access; leukocyte trafficking is found to be impaired in animal brain models and
AD. Several independent in vivo studies have shown that the circulating monocyte
and immune-regulatory leukocytes can remove misfolded or unfolded protein (Aβ
plaques, tau proteins) hence maintaining the inflammatory milieu and synaptic
neuron structure and reducing gliosis (Schwartz et al. 2019).

11.2.4.1 Immunotherapeutic-Based Drug Considered for Clinical
Application in Autism.

11.2.4.1.1 Intravenous Immune Globulin
Intravenous immune globulin (IVIG)-based ASD treatment showed striking behav-
ioral improvement in several studies. In a study out of 19 autistic children, one had
markedly improved, four had adequately improved, while five showed minimal
change (Gupta 1996). These patients have better vision, improved socio-vocabulary
behavior, echolalia damage, and enhanced articulation (DelGiudice-Asch et al.
1999).

In an alternative study, four of the eight with regressive ASD treated with IVIG-
based treatment showed modest progression in hyperactivity and attention, although
the main symptoms showed no change. Simultaneously, a child with severe regres-
sive ASD demonstrated a substantial enhancement in core autistic symptoms
(Plioplys 1998). An oral human immunoglobulin study conducted on 12 youth
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with ASD showed a better behavioral response after 8 weeks of treatment in 6 of
12 (50%) patients (Woods 2012).

11.2.4.1.2 Prednisone
Prednisone is a synthetic glucocorticoid used to treat autoimmune and inflammatory
conditions due to its immunosuppressive effect. An open-label study examined
12 subjects with a pervasive developmental disorder for 16 weeks to use prednisone
to treat the pervasive developmental disorder. However, six subjects showed prog-
ress in language abilities, with parents and teachers reporting subjective
improvements in attention, purposefully directed behavior, and receptive emotional
abilities (Stigler et al. 2009).

11.2.4.1.3 Naltrexone
Positive effects of steroid treatment were observed in the case of autism (Chez and
Guido-Estrada 2010). Considering the effects that endogenous opioids have on
immune function, 12 autistic children were treated with 12 antagonist naltrexone
using a double-blind, placebo-controlled, crossover design. Patients on naltrexone
demonstrated significant improvement in behavioral symptoms. No changes among
naltrexone and placebo were found on the Childhood Autism Rating Scale. Seven
children with the maximum noticeable enhancement were considered “respondents.”
A decrease in the suppressor (CD4 CD8 +) subset, with an increase in the
sub-number of T-helper (CD4 + CD8) and normalization of the CD4/CD8 ratio
after naltrexone treatment, was found in respondents. The responses exhibit beta-
endorphin levels associated with the dispersal of the NK cell population during
NACX cell treatment (Scifo et al. 1996).

11.2.4.1.4 Pentoxifylline
Pentoxifylline, an immune modulator, has been studied as a possible treatment for
autism (Stigler et al. 2009). The drug prevents the production of certain cytokines,
such as TNF-α and IFN-γ. Pentoxifylline was found to be successful in treating
autism in many studies (Marchezan et al. 2018).

11.2.4.1.5 Vancomycin
Recently, antibiotic therapy in autism has been investigated. Several reports suggest
that after repeated broad-spectrum antibiotic usage, the intestinal clostridial species
may be responsible for developing autism in children. An open-label study with oral
vancomycin was performed on 11 children with diarrhea and retrograde-onset
autism. A study therapist completed the behavioral and communication rating scales
on the respective child. Eight (80%) out of ten children treated showed improve-
ment. All children’s ratings returned to baseline soon after cessation of vancomycin
treatment (Kang et al. 2017).

11.2.4.1.6 Vasopressin
The arginine vasopressin (AVP) signaling pathway is the most common pathway for
the treatment of autism spectrum disorder (ASD). Various preclinical studies stated
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the importance of AVP physiology, related to social functioning in many mamma-
lian species. Research suggests that AVP signaling is associated with social
impairment in children with ASD. The human gene for AVP-neurophysin II
(NPII) is mapped to chromosome 20p13; multiple genetic loci within the AVP
region can affect the progression of ASD, including childhood aggression (Hendaus
et al. 2019).

11.2.4.1.7 Selective Serotonin Receptor Inhibitors (SSRIs)
Reports suggest that 21–32% of ASD children and adolescents with SSRIs were on
prescribed medication is inconclusive evidence for SSRIs efficacy. The efficacy of
four SSRIs (fluvoxamine, fluoxetine, citalopram, and fenfluramine) was investigated
for ASD. Nine randomized clinical trials involving 320 participants were evaluated,
reporting 17 different outcomes. Most of the data were unsuitable for meta-analysis,
except for the proportion of improvements on the Clinical Global Impression-
Improvement Scale for 2 trials of fluoxetine and fluvoxamine in adults who
underwent SSRI placebo (relative risk, 12.58; 995% CI, 1.77–89.33). One of these
studies also showed improvement in aggressive behavior measures, and another
small study of adults showed improvement in anxiety. Citalopram confirmed no
positive effect on the largest high-quality test in children. The benefits of SSRIs for
ASD in children and adults was not restricted. Currently, SSRIs are prescribed “off-
label” to treat children with autism (Posey et al. 2006).

11.2.4.2 Immunotherapeutic-Based Drug Considered for Clinical
Application in the Case of Alzheimer’s

11.2.4.2.1 Bapineuzumab
Bapineuzumab is a humanized monoclonal antibody that reduces brain fibrillar
amyloid in AD patients (Sperling et al. 2012). However, it was associated with a
risk of vasogenic edema and microhemorrhage (ARIA). The 3D6 is the murine
precursor of humanized bapineuzumab, which has been reported to enter the trans-
genic mice model’s brain, decorate the plaques, and induce Fc receptor-mediated
phagocytosis (Bard et al. 2000). Several clinical studies have been conducted which
indicate a reduction in fibrillar amyloids in the brain of AD patients. A meta-analysis
based on clinical studies suggests a lack of bapineuzumab’s clinical efficacy and its
association with adverse effects (Abushouk et al. 2017). Therefore, the use of
bapineuzumab to treat AD patients is not recommended and can only be
reconsidered after re-evaluating its efficacy in a combinatorial formula.

11.2.4.2.2 Solanezumab
Solanezumab, another humanized IgG1 mAb, recognizes and targets a middle region
(residues 16–26) amyloid peptide epitope (Farlow et al. 2012; Siemers et al. 2016).
The murine precursor (m266) of the antibody binds tightly to monomeric amyloid
peptides but not to aggregates or fibrils (DeMattos et al. 2001, 2002). Solanezumab
effectively reduces amyloid in transgenic mice and does not carry the risk of ARIA
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like the bapineuzumab. Here, the proposed mechanism of action is the peripheral
sequestration of a monomeric amyloid peptide, i.e., peripheral sink effect.

11.2.4.2.3 Crenezumab
Similar to solanezumab, crenezumab is another humanized mAb that recognizes and
targets a midsequence (residues 13–24) amyloid peptide epitope. However, it differs
from solanezumab in that it possesses an IgG4 backbone. The IgG4 isotype helps
microglial phagocytic activity without raising cytokine storm (Adolfsson et al. 2012)
which contributes to neurotoxicity as well as ARIA (Ultsch et al. 2016). In vitro
studies report that crenezumab efficiently binds to amyloid fibrils and oligomers but
to a lower extent to monomers (Adolfsson et al. 2012). The epitopes recognized by
solanezumab and crenezumab overlap and therefore exhibit crossreactivity. Aβ
residues 21–26 adopt α-helical structure when bound to solanezumab, whereas
residues 21–24 exhibit random coil structure when bound to crenezumab. The
occurrence of α-helical epitope only in monomeric forms of Aβ but not in aggregates
explains solanezumab’s preference to bind monomer.

11.2.4.2.4 Gantenerumab
Gantenerumab, the first fully human IgG1 anti-Aβ mAb, can bind to conformational
epitopes that encompass both the N-terminus (residues 3–12) and midsequence
(residues 8–27) epitopes and show high affinity for fibrils. Early studies based on
PET (positron emission tomography) demonstrated that gantenerumab significantly
reduced brain amyloid plaques by recruiting microglial cells (Bohrmann et al. 2012).
Similarly, SAR228810 is also a humanized antibody that recognizes a particular
conformational epitope that allows specific binding to protofibrils and fibrils.

11.2.4.2.5 Ponezumab
Ponezumab is a human IgG2 mAb that targets the Aβ C-terminus (residues 30–40)
(La Porte et al. 2012). The IgG2 isotype has lower immune potential (Landen et al.
2013) limiting their clinical efficacy; therefore, ponezumab production was
discontinued after a few trials.

11.2.4.2.6 BAN2401
BAN2401, a humanized IgG1 mAb, specifically binds to soluble Aβ protofibrils.
This antibody was developed by E22G arctic mutation in the APP and has shown an
efficient reduction of Aβ protofibrils in the brain and CSF of tg-ArcSwe mice
(Tucker et al. 2015). Multiple clinical trials are going on, and BAN2401 has been
reported to show no ARIA cases, the significant limitations of bapineuzumab
(Lannfelt et al. 2014).

11.2.4.2.7 Aducanumab
Aducanumab, a human IgG1 mAb, selectively targets Aβ aggregates, including
soluble oligomers and insoluble fibrils (Sevigny et al. 2016). It targets the
N-terminus (residues 3–6), which forms a conformational epitope absent in
monomers. Analogs of this mAb exhibited the potential to cross BBB, bind
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parenchymal Aβ, and reduce soluble as well as insoluble Aβ (Sevigny et al. 2016).
So far, several clinical trials have been conducted using mAbs. Still, these mAbs
persist in limitations regarding their production, lower tissue penetration, and
adverse effects associated with inflammatory reactions and CAA-associated
microhemorrhage (Racke et al. 2005). The lack of specificity to the toxic pathologi-
cal Aβ oligomers is the major limitation of these passive therapies. Therefore, it can
be carefully contended that passive therapeutic approaches have limited efficacy in
symptomatic AD.

11.2.4.2.8 Antibody Fragments
Different formats of recombinant antibody fragments, such as single-chain fragment
variable (ScFv), fragment antigen-binding (Fab), single-domain antibody fragments
(VHH or sdAbs), bispecific antibodies (BsAb), gamma bodies, and intrabodies, are
currently being investigated as therapeutics for AD. These are preferred over con-
ventional full-length mAbs owing to their great specificity, higher affinity, stability,
solubility, and reduced immunogenicity (Manoutcharian et al. 2017).

The ScFvs
The ScFvs are the smallest antibody fragments (VH and VL linked with a linker).
These antibody fragments show increased stability as well as affinity (Frenkel et al.
2000; Malone and Sullivan 1996). ScFv can be delivered and distributed all over the
brain via intracerebral, intranasal, or virus-mediated routes (Campana et al. 2009;
Donofrio et al. 2005; Federoff 2009; Filesi et al. 2007). They are packaged in small
viral vectors like recombinant adeno-associated virus (rAAV) and injected into the
CNS. The first ScFv-based anti-Aβ antibody, 508F (Fv), was derived from the
monoclonal IgM 508 antibody. This fragment demonstrated efficient disaggregation
of Aβ fibrils and also reduced toxicity in cultured PC-12 cells. Similarly, N- and
C-terminal binding ScFvs were produced and selected using naive human ScFv
phage library with Aβ1–28 and Aβ1–40, respectively (Liu et al. 2004; Robert et al.
2008). Only the ScFv against N-terminal could inhibit Aβ aggregation in vitro (Liu
et al. 2004). Other novel fragments called catabodies have been developed. These
catabodies are ScFv fragments generated by affinity maturation of the corresponding
parent mAb with improved catalytic activity. They catalyze the proteolysis of Aβ
and reduce the accumulation of toxic amyloid in the brain. The first catabody, Asec-
1A, inhibited the aggregation of Aβ and reduced Aβ toxicity on human neuroblas-
toma cells (Kasturirangan et al. 2010). Similarly, a bispecific tandem ScFv produced
by combining iBSEC1 and Asec-1A showed inhibition of amyloidogenic APP
processing and enhanced Aβ proteolysis (Boddapati et al. 2012).

Fab Fragments
Fab fragments contain one heavy and one light chain with binding avidity lower than
IgG but affinity parallel to it. These are small in size and also stable when compared
to ScFvs. Tammer et al. (2002) produced a recombinant Fab (rFab) against the
central region of Aβ derived from the parent hybridoma 1E8. This rFab was an
efficient binder of amyloid plaques. This rFab retained the ability to inhibit fibril
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formation and associated toxicity with a strong affinity (Kd-6 nm) for Aβ, deter-
mined by surface plasmon resonance measurements (Robert et al. 2008, 2010).

Bispecific Antibodies (BsAbs)
A highly innovative approach, the molecular Trojan horse technology (Pardridge
2008) has been employed to generate fusion proteins called BsAbs against
AD. These BsAbs contained binding sites for Aβ peptide and for the insulin/
transferrin receptor (IR/TfR), which are highly expressed on the BBB. The central
part of the BsAb comprising CH2–CH3 domain of the mAb provides the binding site
for the FcRn receptor expressed on the BBB (Robert and Wark 2012).

Gamma Bodies
Gamma bodies are grafted amyloid-motif antibodies. They are designed based on the
principle that the amyloidogenic motifs of one Aβ peptide interact with identical
motifs of adjacent Aβ monomers forming stacks of parallel β sheets (Lührs et al.
2005; Perchiacca et al. 2012). This homotypic interaction between peptide motifs
induces Aβ fibrillation, and this phenomenon has been exploited for antibody
engineering to recognize specific Aβ oligomers and fibrils. A small amyloidogenic
peptide (6–10 residues) from Aβ-42 is grafted into the complementarity determining
regions (CDRs) of the VH domain that can recognize soluble Aβ oligomers and
fibrils. The gamma bodies which display the Aβ motif (18VFFA21) react with Aβ
fibrils. The central hydrophobic segment 18VFFA21 form β sheets during the
formation of fibrils from soluble Aβ oligomers (Lührs et al. 2005; Malone and
Sullivan 1996). Gamma bodies specific to fragments Aβ12–21, Aβ15–24, and
Aβ18–27 can readily recognize the Aβ18–21 motif present in β sheet but not
insoluble Aβ oligomers. Therefore, the β sheet development by the Aβ18–21 motifs
is the crucial structural modification during fibril formation from Aβ oligomers
(Perchiacca et al. 2012). However, gamma bodies displaying C-terminal motif
(34LMVGGVVIA42) recognize and bind both the oligomer and fibrils but weakly
with Aβ monomers (Ahmed et al. 2010; Zhang et al. 2013). Consequently, these
gamma bodies neutralize toxicity associated with both the conformers.

Intrabodies
Intrabodies are the intracellularly expressed antibody fragments that recognize and
bind molecules within the cell (Cardinale and Biocca 2008; Miller and Messer
2005). The intrabody ScFv-β1 developed to recognize the N-terminal region near
the β-secretase cleavage site demonstrated a significant reduction in Aβ generation in
APP overexpressing human embryonic kidney cells (Paganetti et al. 2005). This was
further improved when the KDEL sequence was incorporated which facilitated
expression specifically in the endoplasmic reticulum. ScFv-β1 acts by shielding
the cleavage site for β-secretase which facilitates the inoffensive α-secretase-induced
cleavage of APP (Sudol et al. 2009). In AD, the Fc region of antibody plays a
significant role in eliciting adverse reactions which include meningoencephalitis and
cerebral hemorrhages. Strategies that help lower the affinity of Fc to the Fc receptor
(FcγR) present on immune cells and inhibit complement activation through c1q
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binding are being worked upon. Point mutation for deglycosylation of the asparagine
at 297th position to alanine or glutamine, or replacing leucine with alanine in the
lower hinge region (L234 and L235), helped lower the Fc-FcγR interactions (Alegre
et al. 1994).

11.2.5 Immunotherapy-Based Common Medication for AD and ASD

Despite bundles of promising research from several decades, no effective medication
for AD and ASD exists. This might be due to the huge interconnection and complex
interplay of several genes/proteins in defining and staging AD and ASD. Drugs like
risperidone, thioridazine, risperidone, olanzapine, valproate, and serotonin are
widely used in treating AD patients (Lauterbach et al. 2010). Several ongoing AD
medications are currently being used to treat ASD such as rivastigmine, donepezil,
tacrine, galantamine, and memantine. Although FDA has not solely approved its use
in the treatment of ASD, these drugs show improvement in overall ASD behavior
like motor skills, expression, receptive language, social interaction, eye contact, and
many more (Rossignol and Frye 2014) with minor and long-term side effects. This
demands second-generation research that offers significant advantages in terms of
decreased cognitive and neurological impairment and reduced short- or long-term
side-effects (Table 11.2).

11.3 Dissimilarity in Alzheimer’s Disease and Autism

In the previous sections, much has been discussed, highlighting the features
expected in AD and ASD. Both conditions involve the build-up of proteins in the
brain and fueled by infectious waste, including neurotoxins causing the ultimate
neurological dysfunction. Several similarities among the two diseases are also
considered as twin similarities (https://alzheimerdisease.tv/diagnosis/autism/).

However, when the turn of differences between the two comes, the most popular
aspect we consider is the age factor, which is undoubtedly the biggest difference.
ASD is a neurodevelopment disease in kids, while AD is a neurodegenerative
disease of elderly people. Due to this crucial difference, ASD is often called AD
of a child, and AD is known as ASD of mature adults (Nasrat et al. 2017b).

Not discussed much, but there are still other notable differences between them,
which makes us say the twin similarity is not identical. These differences include:

1. Autism is a brain deformity that controls a person’s potential to correlate,
communicate, and relate to other people. On the other hand, Alzheimer’s disease
is a chronic, progressive, and prevalent most common age-related neurodegener-
ative disease (Nasrat et al. 2017b).

2. Autism is identified by a decrease in cognitive and social functions associated
with loss of already developed skills, while Alzheimer’s is a progressive disease
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hallmarked by cognitive disorders associated with loss of memory functions
(Li and Zhou 2016; Plassman et al. 2007).

3. Alzheimer’s is more prevalent in females than males, while autism is more
frequent in boys than girls (Hestvik et al. 2010; Leandro et al. 2005).

4. Alzheimer’s could take some years to develop, while autistic disorder could have
a fast onset to grow. Autism is a neurodevelopmental disorder occupying the
critical period of development of centers responsible for skills during early
childhood (Nasrat et al. 2017c); toxins could compromise these developing
centers in a short duration, affecting their development faster. While Alzheimer’s
is a neurodegenerative disease targeting already developed brain centers among
old-age people (Nasrat et al. 2017a), degeneration of these centers is a delayed
process needing, therefore, some years to exert its effect.

Table 11.2 The common conventional drugs used in the treatment of AD show an effective
response in ASD

Conventional
drugs Administration Response Side effects References

Haloperidol Oral, nasal
spray,
intramuscular,
intravenous

Reduction in
stereotypies, behavioral
improvement

Pyramidal side
effects, blurred
vision (long-
term effect)

Campbell
et al.
(1990)

Risperidone Oral, deep
intramuscular

Reductions in repetitive
behavior, aggression,
anxiety/nervousness,
and depression

Weight gain,
nausea,
restlessness,
vomiting

McDougle
et al.
(1998)

Olanzapine Oral,
intramuscular

Reductions in repetitive
behavior, aggression,
anxiety/nervousness,
and depression

Weight gain,
restlessness

Potenza
et al.
(1999)

Selective
serotonin
reuptake
Inhibitors

Oral,
intramuscular

Disabling anxiety,
obsessional and
repetitive behavior, and
the tendency of self-
injury

Weight loss,
dizziness,
headache, etc.

Fatemi
et al.
(1998)

Opiate
antagonists –
Naltrexone

Oral, nasal
spray,
intramuscular,
intravenous

Reducing overactivity,
promotes social
engagement, and
decreases self-injurious
behavior

Trouble
sleeping,
dizziness, joint
pain, etc.

Willemsen-
Swinkels
et al.
(1995)

Aripiprazole Intramuscular Reduces irritability Nausea,
vomiting, light-
headedness,
blurred vision,
weight gain

Elbe and
Lalani
(2012)
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11.4 Future Prospects Based on Lipoprotein-Based
Immunotherapy for AD and ASD

Studies in humans and in vivo and in vitro models support the hypothesis that
circulating HDL has vasoprotective properties, provides resilience to cerebrovascu-
lar dysfunction in AD, removes Aβ plaque from the brain endothelial cells via active
(Montañola et al. 2016), and reverses cholesterol transport mechanism by involving
various receptors such as p-glycoprotein, LDL receptor-related protein (LRP1), and
LDLR. Several studies show that the low level of apoA1, the major component of
HDL (Zuliani et al. 2010), elevated total cholesterol, and LDL/apoB levels corre-
spond to increased neuritic plaque density associated with a more severe form of AD
(Merched et al. 2000; Saczynski et al. 2007; Bates et al. 2009). Several cross-
sectional studies reported overexpressed apoB in neuronal degenerated cells/tissue
of transgenic mice (Bereczki et al. 2008, Caramelli et al. 1999) and lower serum
apo-A1 and HDL-C levels in AD (Jansen et al. 2019; Kunkle et al. 2019). Other
studies also reported dysregulation of cholesterol metabolism-associated genes,
higher triglycerides (TG), lower HDL, and LDL/HDL ratio in ASD patients (Kim
et al. 2010; Tierney et al. 2006; Hu et al. 2009). Smith-Lemli-Opitz syndrome
(SLOS) is an inborn decrease in cholesterol synthesis associated with ASD
symptoms (Aneja and Tierney 2008; Sikora et al. 2006).

Smith-Lemli-Opitz syndrome (SLOS), an inborn decrease of cholesterol synthe-
sis associated with ASD, improves rapidly after cholesterol supplementation
(Tierney et al. 2006). Besides, the expression level of apoB100 and apoA4 was
found to be elevated in high- versus low-functioning ASD (Corbett et al. 2007).
Lipoprotein-associated phospholipase A2 (Lp-PLA2) mediates vascular inflamma-
tion through the regulation of lipid metabolism in the blood. Lp-PLA2 inhibition
showed promising therapeutic effects in Alzheimer’s disease. Darapladib, a selective
and orally effective Lp-PLA2 inhibitor, has beneficial effects on the functional
integrity of the BBB (Huang et al. 2020) and reduced the influx of plasma
components into the brain tissue (Acharya et al. 2013). A phase II trial demonstrated
that Lp-PLA2 inhibition could benefit AD progression (Huang et al. 2020).

Rilapladib, another potent Lp-PLA2 inhibitor, resulted in low levels of plasma
CSF neurodegenerative markers, including albumin quotient (AlbQ), total tau
(T-tau), P-tau181, and neurofilament light chain (NFL). Lp-PLA2 inhibitors might
result from preventing BBB breakdown in cerebral amyloidosis in an independent
manner. Both darapladib and rilapladib were reported to be well tolerated with no
major side effects observed (Shaddinger et al. 2014).

Furthermore, lipoprotein (HDL) ability to modulate cholesterol bioavailability
and microdomains-enriched-glycosphingolipids is conserved evolutionarily, which
affects the landscape of the cell involved in the innate/adaptive immune system,
inflammation, and antigen presentation in several macrophages, cytokines,
receptors, B and T cell activation, and their complex pathways (Norata et al.
2012). In reflection of the possible important role of lipoprotein and cholesterol in
ASD and AD patients, large-scale clinical studies that manifest cholesterol supple-
mentation need to be initiated. There are considerable shreds of evidence that define
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HDL-based therapeutics’ safety in clinical trials against ASD and AD. Such as in the
prevention of AD-related neuroinflammation in mouse models and 3D
bioengineered human arteries, HDL molecules due to their small size and penetra-
tion tendency have also been used as a drug carrier to overcome the issue of BBB
penetrance during drug delivery. Reconstituted HDL carrying an Aβ-targeting drug
enters efficiently in the brain of AD mice, reduces amyloidosis, and improves
memory (Button et al. 2019). Thus, modulating ASD and AD-related
neuroinflammation based on the lipoprotein-mediated immunotherapy approach
could be an effective strategy to prevent damage to the CNS.

11.5 Conclusions

Immunotherapy is proving increasingly important for treating AD and ASD, but it
should be approached cautiously. Clinical trials and experimental systems have
demonstrated that cellular and humoral immune responses can be effective in
amyloid-β clearing. The attraction of immunotherapy for AD and ASD lies in its
ability to immunize large areas of the aging population to treat or prevent these
common neurological disorders’ dreadful effects. In inference, there is considerable
and robust evidence to recommend that active immunotherapy has the potential to
treat AD and ASD.
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Alzheimer’s Disease (AD): Physiological
Barriers for Therapy and Nanotechnological
Applications in Treatment
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Abstract

Neurodegenerative diseases are becoming more common in the people of old age.
Numerous complications have occurred in the treatment of neurodegenerative
diseases, some of which are multi-systemic in nature. Since the structure, efflux
pumps, and expression of the blood-brain barrier’s (BBB) metabolism are lim-
ited, traditional drug delivery systems are ineffective for treating neurodegenera-
tive disorders. Nanotechnology has the potential to significantly improve
neurodegenerative disease treatment by bioengineered systems that interact
with biological systems on a molecular level. This chapter discusses the
applications of nanoparticles in the treatment of Alzheimer’s disease.
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12.1 Introduction

The brain accounts for approximately 2% of body weight and consumes approxi-
mately 20% of coronary blood supply and 25% of total oxygen and glucose supply
(Zlokovic 2011). The presence of 100 billion capillaries and a complex network of
intercellular communications through the release of neurotransmitters and
neuromodulators in cohort with the synaptic potentials is responsible for brain
functioning (Abbott et al. 2006; Pardridge 2003). These brain activities require
continuous movement of ions and other molecules across the blood-brain barrier
(BBB). BBB is a selectively permeable membrane that protects the brain and
maintains the integrity of its functions. It separates the blood and brain tissue. An
intact BBB is vital to keep the brain tissue in a healthy state. It is often found
disrupted in most of the central nervous system (CNS) pathologies such as
Alzheimer’s disease (AD), brain cancers such as glioblastoma multiforme (GBM),
Parkinson’s disease (PD), multiple sclerosis (MS), or amyotrophic lateral sclerosis
(ALS) (Krol et al. 2013) which contribute to almost 12–15% of deaths globally.
Successful treatment of these conditions depends on the extent of crossing BBB by
the therapeutics. However, most of the noninvasive therapeutics for these conditions
have failed at the preclinical and clinical trials. This is because the brain allows only
a tiny percentage (2–3%) of small molecules across the BBB (these, in turn, show
very low absorption by brain parenchyma), while large molecules are all excluded
(Pardridge 2007) because of their insignificant penetration across BBB.

The unique protective ability of the BBB can be attributed to its anatomical
structure, physiological functions, and enzymatic and immunological activities.
These are discussed briefly below. A thorough state-of-the-art understanding of
these aspects of the brain and BBB will equip scientists worldwide to better target
the nanotherapeutics to the brain for successful treatment of CNS conditions.

12.2 Anatomy and Physiology of the Brain

The brain consists of a unique composition of its blood-brain parenchyma barrier
that is different from other parts of the body because of three specialized, tightly
regulated vascular barriers (Chen and Liu 2012). These barriers can be categorized
as follows: (1) arachnoid barrier; (2) blood-cerebrospinal fluid barrier; and (3) blood-
brain barrier (Abbott 2004). A diagrammatic representation of these barriers is
shown in Fig. 12.1.

12.2.1 Arachnoid Barrier

The brain is made up of three layers of protection composed of connective tissue
called the meninges. They are called the dura mater, arachnoid mater, and pia mater.
Their primary function is protecting the brain and containment of cerebrospinal fluid
(CSF) (Furtado et al. 2018). The cells forming the arachnoid mater are epithelial and
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form the arachnoid barrier. This barrier is relatively avascular and has a low surface
area of the total BBB. For therapeutics delivery, this barrier is not approachable
because of the low surface area.

12.2.2 Blood-Cerebrospinal Fluid Barrier

This membrane separates the brain from the cerebrospinal fluid. CSF is developed in
the choroid plexus of the brain’s lateral ventricles. The epithelial cells forming the
choroid plexus forms this barrier. Since the CSF is replenished every 4–5 h, the brain
flushes out any medication delivered through this barrier. Hence, it cannot present
itself as a good target for therapeutics.

12.2.3 Blood-Brain Barrier

This barrier is the closest to the neurons. It consists of a very intricate network of
capillaries. BBB is comprised of the brain microvessel endothelial cells (BMEC or
BMVEC or BEC). BMEC separates the blood compartment from the interstitial fluid
(ISF) of the brain. The isotonicity and composition of the ISF are maintained by
transport of various molecules and ions across BBB for the brain’s optimal func-
tioning. It is responsible for the transport of nutrients to the brain. It is characterized
by its very efficient efflux pumps that eliminate wastes out of the brain. It also has a
role in regulating and maintaining neurotransmitters at the periphery of the brain,
immune surveillance of the brain, and the inflammatory responses to the brain’s
invasion (Abbott et al. 2010). Hence, it is a dynamic barrier that protects the brain
aggressively. The BBB function is due to a collective action of BMEC and other
cells such as astrocytes, pericytes, microglia, vascular smooth muscles,
oligodendrocytes, and so on, which communicate with each other constantly in
complex pathways, thus regulating its permeability (Banks 2016; Neuwelt et al.
2011). This cohort of cells is called the neurovascular unit (NVU). Many of these
complex communicative pathways of the NVU are yet to be understood.

12.3 Blood-Brain Barrier (BBB)

The blood-brain barrier can be described in detail by defining the composition of
NVU and the physical structure as follows (Fig. 12.2).

12.3.1 Composition of the Neurovascular Unit (NVU)

12.3.1.1 Vascular Smooth Muscles
These muscles make up the arteries, arterioles, and veins of the brain and regulate
blood vessel functions. They often take up the role of pericytes.
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12.3.1.2 Pericytes
These cells surround the BMEC and enclose the brain’s capillaries in the basal
lamina of BBB, maintaining its integrity, homeostasis, and blood supply alongside
regulating macrophages (Abbott 2013). They have an important role in maintaining
tight junctions of the brain.

12.3.1.3 Astrocytes
These are star-shaped cells with perivascular end feet that support the BMEC
(Ransohoff et al. 2003). They have a role in the permeability of the BBB. Astrocytes
also express AQP4 water channels and the ion channels that maintain water and ion
homeostasis in the brain. Apart from supporting the neurons, astrocytes also insulate
the neurons, provide nutrition, and have a role in cytokine-mediated inflammatory
responses (Zlokovic 2008).

12.3.1.4 Microglia
These cells represent the macrophages in the brain originating from the perivascular
macrophages that cross BBB in the event of infection (Williams et al. 2001). Their
main function is phagocytosis of the dead and diseased neural tissue. They produce
pro-inflammatory factors such as lipopolysaccharide (LPS), tumor necrosis factor-α

Fig. 12.2 The neurovascular unit of the blood-brain barrier. A crosstalk between various cells in
the BBB elicits a highly protective and selective function of the BBB. (Adapted with permission
from Furtado et al. (2018))
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(TNF-α), interleukin-1ß (IL-1ß), and reactive oxygen species (ROS) that can disrupt
the BBB and its permeability (Didier et al. 2003).

12.3.2 Physical Structure of the BBB

BBB presents particular BBB properties attributed to the highly protective and
selective nature of its functions. These prioperties include the following.

12.3.2.1 Tight Junctions
Tight junctions are composed of transmembranous intercalated particles formed by
cytoplasmic proteins (such as claudins, occludins, and junctional adhesion
molecules) and function as gates between BMECs. They have a pore size of
approximately 1.4–1.8 nm (Zhang et al. 2016). Figure 12.3 illustrates the close
junctions. Their function is to prevent different molecules from traveling
paracellularly and to restrict their movement across the BBB to passive transport
of molecules with a diameter of less than 1 nm (Sarin 2010). Each stimulus recycles
these close junctions (Deli 2009). Claudin proteins are one of the primary cytoplas-
mic proteins involved in the formation of close junctions. The tight junctions formed

Fig. 12.3 The tight junctions and adherens junctions consisting of claudin, occludin, and intracel-
lular zonula occludins (ZO) proteins. (Adapted with permission from Sato and Coburn (2017))
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by claudins provide the BBB with a high transendothelial electrical resistance
(TEER) of approximately 1500–2000 cm2. Occludins and junctional adhesion
molecules (JAM-A, B, C) are proteins that help maintain and promote the close
junction and leukocyte movement across the blood-brain barrier (BBB) (Kooij et al.
2005). Tight junctions cooperate with cytoskeletal proteins such as actin and cyto-
plasmic proteins such as calcium-dependent serine protein kinase (CASK), zonula
occludins proteins (ZO-1, ZO-2, ZO-3), and cingulin. Cytoplasmic proteins are
categorized into first- and second-order adaptor proteins based on their ability to
strengthen the connections between close junctions and the endothelial cell
cytoskeleton.

12.3.2.2 Adherens Junction
These junctions are found closely placed near the tight junctions. They are composed
of glycoproteins of the class calcium-dependent cadherins, primarily vascular endo-
thelial cadherin (cadherin-5 or VE-cadherin) that adhere to the cytoskeleton of the
BMECs via linker molecules such as platelet-endothelial cell adhesion molecule
(PECAM), the catenins (α-, ß-, and γ-catenin), desmoplakin, and p120 catenin
(Bhowmik et al. 2015). They mainly have a role in regulating intercellular
interactions and paracellular permeability and microvascular integrity.

12.3.2.3 Apicobasal Polarity
The differences in the composition of the proteins of the tight junctions and adherens
junctions, the distribution of the target receptors, secretions from the cells, and
responses to stimuli between the luminal and abluminal sides of the membrane
constituting BBB create a polarity on it that has an important role in maintaining
the integrity of the BBB (Worzfeld and Schwaninger 2016).

12.3.2.4 Luminal Surface-Bound Glycocalyx
Glycocalyx is a carbohydrate-rich enclosure of the BMEC bound to it by
glycoproteins and proteoglycans. It maintains the integrity of BBB due to the sialic
acid component of the glycocalyx. It is responsible for the protection of BBB and
regulating the movement of molecules across it (Yokel 2016).

12.4 Enzymatic Role of BBB

The BBB is described by an enzymatic activity that protects the brain from different
molecules that pass through it by metabolizing them in endothelial cells (Pardridge
2005). These enzymes include monoamine oxidases and cytochrome P450 that can
inactivate toxic substances. Apart from the BMECs, pericytes and astrocytes also
possess enzymatic activity from peptidases, cholinesterases, and other such enzymes
that protect the brain (Yi et al. 2014).
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12.5 Immunological Activity of BBB

The immunological activity of the brain is very selective and unique (Ransohoff
et al. 2003). There is very little presence of lymphatic vessels in the brain. It also
lacks antigen-presenting cells (APCs) native to the region that elicit immune
responses by identifying inflammatory molecules such as dT-cells (Wekerle 2002).
Major histocompatibility complex (MHC) class II is expressed in certain microglia
in the brain (Matsushima et al. 1994). Leukocytes, in the form of T-cells, are also
extremely scarce in the brain. Thus, the brain’s immunity is preserved mainly by the
actions of BMECs, perivascular macrophages, microglia, brain T cells, and mast
cells. Further, chemokines elicit the immune responses in the brain by recruiting
T-cells during infections. These pro-inflammatory immune reactions, in turn, trigger
the immunosuppressive mechanisms in the brain (Furtado et al. 2018).

12.6 Transport Mechanisms in BBB

As previously mentioned, endothelial transport is the primary route for molecules to
enter the brain. It occurs through endocytosis into endothelial cells as well as
transcytosis into the BBB’s luminal and abluminal membranes. The BBB transports
nutrients from the blood to the brain, including glucose, galactose, amino acids and
monocarboxylic acids, nucleosides, amines, and vitamins, as well as growth factors,
enzymes, and plasma proteins. The constant flow of ions and other solutes through
the BBB maintains the brain’s pH. Additionally, BBB efflux pathways are used to
remove radioactive waste and metabolites. Due to the close junctions, the BBB
allows for very little paracellular transport. There are very unique mechanisms that
enable molecules and nutrients to pass through the BBB. The majority of these
processes operate in a bidirectional fashion, bringing information into and out of the
brain. However, some of these processes are constrained by the particle size
requirements. A clever design of therapeutic delivery systems that exploit BBB
mechanisms can be an effective strategy for increasing drug bioavailability. The
different processes at work will be briefly discussed here (Fig. 12.4).

12.6.1 Types of Transport Pathways Across the BBB

12.6.1.1 Paracellular Transport
This mechanism occurs very low through pores in the BMECs upon stimulation in
pathological conditions (Smith et al. 2016).

12.6.1.2 Passive Diffusion
This mechanism transports only lipophilic compounds. It is highly restrictive based
on the molecular size (<500 Da) and the number of hydrogen bonds (9–10)
(Lipinski et al. 2012).
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12.6.1.3 Carrier-Mediated Transport
This mechanism is responsible for endogenous molecule transport through specific
transporters. The molecules’ movement is determined by the concentration gradient
and is accomplished by the use of assisted diffusion transporters (in the gradient’s
direction) or active transporters (against the concentration gradient). Glucose trans-
porter 1 (GLUT1), excitatory amino acid transporter 1 (EAAT1), monocarboxylate
transporter 1 (MCT1), and massive neutral amino acid transporter 1 (LAT1) have
been identified as some of the most highly expressed transporters in the brain that are
involved in the transport of glucose, amino acids, and other nutrients (Smith 2005;
Ohtsuki and Terasaki 2007; Pardridge 1998).

12.6.1.4 Receptor-Mediated Transport
This mechanism facilitates macromolecule uptake through clathrin- or caveolin-
mediated endocytosis. The macromolecules serve as ligands for unique receptors
on the surface of the cells, forming the BBB such as LRP1, LRP2, and LDLR.
Following this, BMECs form vesicles and endosomes, which release the contents of
the vesicles into the brain. Intracellular proteins such as amphiphysin, endophilin,
and various adaptins, dynamins, and rab proteins guide the transport of vesicles
inside the cell (Bareford and Swaan 2007; Villaseñor et al. 2017). The clathrin-
mediated endocytosis is responsible for the uptake of molecules with a diameter of
200 nm, while the caveolin-mediated endocytosis is responsible for the uptake of
molecules with a diameter of up to 500 nm (Wohlfart et al. 2012).

12.6.1.5 Adsorptive-Mediated Transport
BBB is negatively charged because of the proteoglycans, which impedes some of the
macromolecules’ transport due to electrostatic interactions. Such molecules are
endocytosed by adsorptive-mediated transport. The affinity of macromolecules to
this pathway is much less, and hence the transport via this way is much less
compared to receptor-mediated transport (Hervé et al. 2008). However, the vesicles
formed in this path are much larger and can transport a higher number of
macromolecules across the BBB.

12.6.1.6 Cell-Mediated Transport
This mechanism is particularly successful at transporting molecules across the BBB
by immune cells such as macrophages and monocytes (Batrakova et al. 2011). This
mechanism is sometimes referred to as a “Trojan horse” technique because it utilizes
natural processes such as chemotaxis and diapedesis to recruit immune cells to
deliver therapeutic agents to the site of action. The benefit of this pathway is that it
can carry molecules as big as 1.2μm to the brain.
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12.7 Efflux Mechanisms of the BBB

Efflux processes aid in the elimination of waste and other potentially toxic
substances from the brain. Efflux transporters protect the brain’s interstitial fluid
(ISF) from adulteration. These transporters are found on both the luminal and
abluminal BBB membranes. They are extremely active and can rapidly expel foreign
particles from the brain. The ATP-binding cassette (ABC) superfamily, which
includes P-glycoprotein (P-gp) or multidrug resistance protein 1 (MDR1), has
been identified as the primary efflux transporter (Banks 2016). Several additional
MDR proteins have been identified, including MRP1, MRP2, MRP4, and MRP5,
and breast cancer-related protein (BRCP) (Uchida et al. 2011), which is regulated by
P-gp.

12.8 Changes in the BBB in Pathological Conditions

A complex interdependent functioning of the BMECs, pericytes, astrocytes, and
other NVU components is responsible for the protection of the brain. They together
perform additional functions such as regulating permeability, blood flow, angiogen-
esis, neurogenesis, and so on. In pathological conditions, these interactions are
highly disrupted, making the brain susceptible to serious injury. The components
of the NVU are sensitive to the immunological responses upregulated in the disease
state. These responses include the higher levels of pro-inflammatory cytokines such
as IL-1ß, IL-6, TNF-α, and interferon-γ (IFN-γ). The other substances that disrupt
the BBB integrity include ROS, free radicals, prostaglandins, histamines, intra- and
extracellular ionic compounds, and infective agents such as bacteria, fungi, viruses,
and other pathogens. These agents trigger neuroinflammation that leads to disruption
of the physiology and functions of the BBB.

Neurodegenerative disease results in the loss of a protein called agrin, a part of the
proteoglycans in the BMECs (Krol 2012). Matrix metalloproteinases (MMPs)
degrade occluding, fibronectin, laminin, and heparan sulfate that compose the
BBB. A change in pericyte number can affect the amount of claudin 5 occludin,
resulting in the weakening of the tight and adherens junctions (Bell et al. 2010).
These BBB composition changes due to changes in the proteins trigger
neuroinflammation by activating the immune cells of the brain. A downstream result
of these is the disruption of the transporters on the BBB such as GLUT1, LRP,
LDLR, and so on in very specific areas of the brain where the injury is located.
Neuroinflammation also upregulates the vascular cell adhesion molecule-1 (VCAM-
1) that further enhances the immune cell movement toward the action (Reijerkerk
et al. 2008; Floris et al. 2004), thus damaging the BBB. The heightened immune cell
response in pathological conditions may also trigger the natural immunosuppression
mechanism mediated by cells such as regulatory T-cells (T-reg) or the myeloid
suppressor cells (MSCs). This, too, is detrimental to the integrity of the BBB
(Moliné-Velázquez et al. 2011).
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A better understanding of the BBB’s composition and the processes underlying
the transport of molecules through the BBB will aid in the development of more
precise and targeted nanoparticles for the effective treatment of neurodegenerative
diseases such as tumors, Alzheimer’s disease, Parkinson’s disease, and multiple
sclerosis.

12.9 Employment of Nanotechnology for the Treatment
of Alzheimer’s Disease

Nanoparticles (NPs) are materials with a diameter between 1 and 100 nm. Organic
and inorganic materials may be used to synthesize NPs. There are NPs that are often
used as nanocarriers, owing to their superior properties such as increased water
solubility, biocompatibility, and biodegradability. The majority of AD therapeutics
have low bioavailability and are unable to cross the BBB. NPs are the best
candidates for the delivery of brain drugs because they can improve the medication’s
bioavailability and half-life even at low doses. NPs also improve therapeutic effec-
tiveness by increasing the target specificities by reducing acute tolerance (Zhang
et al. 2008; Lu et al. 2014; Rauf et al. 2019). There are different kinds of
nanoparticles employed in the studies of AD. The most common researched are
liposomes, dendrimers, and polymer-based NPs. The present section of the chapter
focuses on the role of NPs in different AD pathogenesis (Table 12.1 and Fig. 12.5).

12.9.1 Liposomes

Liposomes were first used as a carrier for nanoparticles in 1965 as liposomal NPs.
Liposomes are spherical vesicles with a single or bilayered lipid membrane, an
aqueous nucleus, and an aqueous exterior (Wechsler et al. 2019; Wei et al. 2015).
Liposomes are amphiphilic because phospholipid molecules in lipid vesicles are
amphiphilic. The remarkable fact is that not all nanoscale mixtures of lipids and
phospholipids contain liposomes. Certain nanoscale combinations of phospholipids
exhibit properties that are distinct from liposomal properties, in which liposomal
NPs are found exclusively in vesicle spheres such as hexagonal, micellular, or cubic
phases. Liposomes are extremely biodegradable, nontoxic, and non-immunogenic.
Liposomal NPs have a thickness of approximately 10 nm–10 μm. Liposomes
allowed the delivery of both hydrophilic and hydrophobic agents through their
hydrophilic cores and hydrophobic membranes. The adaptable liposomal NP struc-
ture enables the loading of samples (siRNA, dye, etc.) or therapeutic agents, thereby
facilitating BBB penetration (Vieira and Gamarra 2016; Hu et al. 2010; Leonor
Pinzon-Daza et al. 2013).

Liposomes used to treat Alzheimer’s disease were designed to specifically target
A peptides, thus preventing plaque formation. Few studies have shown that
liposomes containing phosphatidic acid and cardiolipin enhance in vitro interaction
with A oligomers. Additionally, several experiments indicated that PEG-coated
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liposomes were used to operate on monoclonal anti-A antibodies. Apart from
liposomes binding to A deposition in postmortem Alzheimer’s disease brain
samples, significant liposome binding to A monomers has been observed in vitro
(Canovi et al. 2011; Karthivashan et al. 2018). Natural compounds such as curcumin
and quercetin have anti-inflammatory, antioxidant, and anticancer effects. These
anti-inflammatory properties are used to treat and protect against Alzheimer’s
disease. Several studies on curcumin-loaded liposomes have shown anti-amyloidal
activity to fibrillation of Aβ under in vitro conditions.

By contrast, intranasal administration of quercetin liposomes significantly
reduced hippocampal neuronal degradation in a rat model of Alzheimer’s disease.
These results raise the prospect of liposomal delivery of naturally occurring
compounds to treat Alzheimer’s disease. As a result, liposomal NPs are an excellent
candidate for use in AD pharmaceutical systems (Tiwari et al. 2014; Hamaguchi
et al. 2010; Ansari et al. 2009).

Table 12.1 Summary of nanocarriers used for Alzheimer’s disease

Nanoparticle Modifications
Therapeutic
agents Model animals Results

Liposome PEG coating Beta-
amyloid
monoclonal
antibodies

Postmortem
Alzheimer’s
disease brain
samples

Significant binding of the
liposomes to amyloid-beta
monomers

CPPs
modification

Rivastigmine Mouse brain
microvascular
endothelial
cells model

Increased drug transport
across the blood-brain
barrier

Dendrimer PAMAM
dendrimers

N-acetyl-L-
cysteine

Rabbit
cerebral palsy
model

Reduced
neuroinflammation and
oxidative stress

Cysteine
dendrimer

KLVFF
peptide

Fibrillar
samples

Disrupted amyloid-beta
peptide aggregation

Polymeric Polyabsorbate Nerve
growth
factor

Mouse
scopolamine-
induced
amnesia
model

Increased nerve growth
factor levels in the brain,
as well as improved
recognition and memory
functions

Polyabsorbate
80 coated
PBCA

Anti-
amyloid abs

Rat
Alzheimer’s
disease model

Increased drug transport
across the blood-brain
barrier

PEG-PLGA Fibroblast
growth
factor

Rat
Alzheimer’s
disease model

Increased brain levels of
basic fibroblast growth
factor and enhanced
spatial learning and
memory
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12.9.2 Polymeric Nanoparticles

Polymeric nanoparticles measure between 1 and 1000 nm in size and are extremely
flexible and tunable structures. Polymers have a particular combination of properties,
which, unlike many other materials, enables them to be used in various drug delivery
applications. These materials provide opportunities to monitor and modulate particle
stability, loading performance, kinetic release, and surface modification ability
(Pardridge 2007; Smith et al. 2016; Wohlfart et al. 2012; Chang et al. 2009; Ren
et al. 2012). Polymers employed for the drug delivery system in the central nervous
system include polysaccharides, poly(ethylenimines), poly(alkylcyanoacrylates),
poly(methylidene malonates), and polyesters.

Polybutylcyanoacrylate (PBCA) was the first polymer-based nanoparticle to
deliver the central nervous system with therapeutic compounds. The emulsion
polymerization of polyalkylcyanoacrylate summarizes PBCA’s nanoparticles. In
this study, polysorbate 80-coated PBCA nanoparticles containing dalargin
(an opioid peptide) were administered intravenously (Tween 80). The primary goal
of this study was to achieve therapeutic amounts of dalargin in the central nervous
system, which would illustrate the medicinal product’s passage through the BBB.
Subsequent studies discovered that when radioactive dalargin-loaded PBCA
nanoparticles were used in the absence of polysorbate 80 coating nanoparticles,
the amount of nanoparticles crossing the blood-brain barrier decreased. This and
several other studies have shown that polysorbate 80 enhances the penetration of
polymeric nanoparticles through the BBB (Begley 2004; Lockman et al. 2004;
Kreuter et al. 2003; Schroeder et al. 1998; Das and Lin 2005).

Dendrimer Polymeric Nanoparticle

core

first generation

third generation
periphery

polymer chain

second generation

Liposome

crosslink

hydrophilic
head

hydrophobic
tail

Fig. 12.5 Nanoparticles used to deliver treatment for Alzheimer’s disease. Polymer nanoparticles,
dendrimers, and liposomes are all examples of nanocarriers used to deliver therapeutic agents
through the blood-brain barrier to treat Alzheimer’s disease. The optimal particle diameter for
crossing the blood-brain barrier has been determined to be between 5 and 200 nm. (Figure adapted
from Wechsler et al. (2019))
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In the bloodstream, nanoparticles are most readily collected through opsonization
by the reticuloendothelial system. Reduced particle size and adsorption of
surfactants (e.g., polysorbate 80) have been shown to benefit the residence time of
nanoparticles in circulation. Adsorption of nanoparticles of the surfactant polysor-
bate 80 seemed to have been demonstrated in part by a decrease in nanoparticle
removal by the reticuloendothelial network. Additionally, using small molecules and
growth factors, PBCA nanoparticles coated with polysorbate 80 have been used to
diagnose Alzheimer’s disease. Rivastigmine is an acetylcholinesterase inhibitor that
is currently being used to treat Alzheimer’s disease. Previously published research
demonstrated that rivastigmine-loaded PBCA nanoparticles coated in polysorbate
80 were superior to uncoated nanoparticles and free rivastigmine. In comparison to
filled nanoparticles, PBCA-loaded rivastigmine nanoparticles coated with polysor-
bate 80 accumulated more readily in the brain than nanoparticles without coating or
free rivastigmine. Additionally, the polysorbate 80 coating of the nanoparticles has
been shown to minimize liver accumulation; administration of growth factors natu-
rally found in the brain has also been shown to improve the pathophysiology of
Alzheimer’s disease in animal models as compared to uncoated nanoparticles
(Khemariya and Khemariya 2016; Anand and Singh 2013; Bullock et al. 2005;
Costantino et al. 2005).

Poly(lactic acid) (PLA), poly(glycolic acid) (PGA), and poly(lactic-co-glycolic
acid) (PLGA) are all examples of polymer nanoparticles that are used to deliver
pharmaceuticals into the central nervous system. These nanoparticles were designed
for intranasal administration in order to circumvent the blood-brain barrier. Due to its
large surface area, proximity to the brain, and high capillary density, an intranasal
injection is an appropriate route of nanoparticle administration. The addition of PEG
to the surface of PLGA further improved their ability to act as a carrier for drug
delivery. Specifically, Solanum tuberosum lectin was used to selectively conjugate
the PEGPLGA nanoparticles to the nasal epithelial membrane’s N-
acetylglucosamine for transmission to the brain. Intranasal administration of lectin-
modified nanoparticles to rats with Alzheimer’s disease resulted in a rise in basic
fibroblast growth factor levels in the brain compared to control rats. Improvements in
rats’ spatial learning and memory abilities were observed (Loureiro et al. 2016;
Sirelkhatim et al. 2015; Hanson and Frey 2008; Sánchez-López et al. 2018).

Utilization of organic, biodegradable, and biocompatible polysaccharides, such
as chitosan, is one such example. Previously published research established the use
of chitosan nanoparticles for the intranasal delivery of estradiol, resulting in
increased estradiol levels in the central nervous system. However, systemic admin-
istration of chitosan nanoparticles was used to deliver amyloid peptides, dopamine,
and caspase inhibitors to the central nervous system. In general, the ability of
polymeric nanoparticles to cross the blood-brain barrier is highly dependent on
surface modifications. The presence of surfactants or ligands causes the receptor to
undergo endocytosis. These and many other considerations must be considered
when developing nanoparticle-based drug delivery systems that cross the blood-
brain barrier for the clinical treatment of Alzheimer’s disease and other neurodegen-
erative diseases (Jia et al. 2016; Elnaggar et al. 2015; Wilson et al. 2010).
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12.9.3 Dendrimers

Dendrimers have shown promise for diagnosing and treating neurodegenerative
diseases. Dendrimers are complex three-dimensional polymers with tightly con-
trolled mass, scale, form, and surface chemistry. Numerous technologies based on
dendrimers have been developed to aid in the modification of dendrimers’ suitability
as drug delivery vehicles. This involves the possibility of maintaining therapeuti-
cally effective drug levels, increasing the distribution of active agents for a longer
half-life, enhancing drug transport and stability, and improving medicinal efficacy
(Costantino et al. 2005; Loureiro et al. 2016; Sirelkhatim et al. 2015). Additionally,
the dendrimer surface versatility allows biomolecules to bind to internal cavities with
strong drug-loading capacities. Dendrimers have been shown to bind to proteins,
lipids, and nucleic acids with high affinity. Numerous dendrimers have been
investigated for drug administration, imaging, and theranostics. This include
the following: Due to their chemical properties, PAMAM dendrimers were one of
the most extensively studied structures. This PAMAM dendrimer capability enables
the carriers to be used in a wide range of applications. Dendrimers have been used to
treat Alzheimer’s disease as anti-amyloidogenic agents. For example, PPI maltose
(PPI-G4-Mal) glycodendrimers of the fourth generation and PPI maltose (PPI-G5-
Mal) glycodendrimers of the fifth generation have demonstrated the ability to disrupt
the amyloid-(A) peptide’s A(140) fibrillation. Each of these systems employs a
unique mechanism to prevent A from fibrillating. While PPIG4-Mal forms clumped
fibrils and high-value amorphous aggregates at low-dendrimer-peptide ratios, the
fifth generation of fibril dendrimers prevents the formation of grain-based non-fibril
amorphous aggregates. These studies demonstrate that preventing fibril clumping
can be an effective way to slow the progression of Alzheimer’s disease. The use of
cationic phosphorus dendrimers has shown promise (CPD). To be more precise,
CPDs (generation 3 and 4) demonstrated anti-inflammatory properties by preventing
the inhibition of acetylcholine hydrolysis and exhibiting antioxidant properties.
CPDs also shown that the right levels of acetylcholinesterase inhibitor therapy are
not antagonistic when used in conjunction with traditional pharmacological
treatments for Alzheimer’s disease (Klajnert et al. 2006; Luo et al. 2002; Kalomiraki
et al. 2016; Aliev et al. 2019; Wang et al. 2014).

Dendrimers were also used to transport antioxidants and anti-inflammatory
medications through the blood-brain barrier. Although the combination of
neuroinflammatory and oxidative stress is correlated with a variety of neurodegen-
erative disorders, not just Alzheimer’s disease, it is worthwhile to investigate
dendrimers’ ability to deliver neurotherapeutics across the blood-brain barrier.
Moscariello et al. conducted research on the neuroinflammatory properties of
dendrimers (Moscariello et al. 2018; Agrahari et al. 2019). Kannan et al. used
PAMAM dendrimers to deliver N-acetyl-L-cysteine, an antioxidant and anti-
inflammatory agent. PAMAM dendrimers were paired with a streptavidin adapter
in Moscariello et al.’s research to investigate their absorption mechanisms and
transportation through the blood-brain barrier using in vitro vivo models
(Moscariello et al. 2018; Menjoge et al. 2010) (Fig. 12.6).
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Dendrimers have also been used to gain a deeper understanding of the processes
underlying Alzheimer’s disease. Dendrimers were initially used to study the forma-
tion of amyloid plates, which is a characteristic of the onset and progression of
Alzheimer’s disease. For example, the KLVFF sequence, which is required for the
formation of sheet structures, is one of the important peptide sequences involved in
the formation of amyloid aggregates. Chafekar et al. formed a dendrimer scaffold
that functions in KLVFF and inhibits aggregation A(142). Additionally, these
constructions demonstrated the ability to disassemble preexisting amyloid. In sum,
these results are important for a more complete understanding of tuned dendrimer
chemistry and formulations for the effective diagnosis and treatment of Alzheimer’s
disease and other neurodegenerative diseases (Klajnert et al. 2006; Luo et al. 2002).

12.9.4 Gold Nanoparticles (GNPs)

GNPs have been extensively studied in several biomedical applications, including
AD therapy, to deliver drugs and theranostics. A study by Kogan et al. employed
GNPs to remove amyloid aggregates in a low microwave fields (Guerrero et al.
2010). GNPs dissolved aggregates of Aβ peptide and inhibited additional
aggregations of Aβ peptide by producing local thermal energy (Guerrero et al.
2010). Another study by Liao et al. developed negative charged GNPs and showed
that GNPs inhibited Aβ fibrillation and redirected Aβ into spherical oligomers and

Fig. 12.6 Dendrimer-mediated delivery of drug for the disruption of beta amyloids.
(Figure adapted from Harilal et al. (2019))
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fragmented fibril (Peng et al. 2014). Similar results were seen when GNPs were
modified with a carboxyl group. In this effect, the negative surface potential of GNPs
is significant. Prades et al. modified the GNPs with CLPFFD and
THRPPMWSPVWP peptide sequence. They showed that due to the presence of
transferrin receptor in the BBB endothelial cells, it leads to increased brain perme-
ability under in vitro and in vivo conditions (Guerrero et al. 2010; Sivanesan and
Rajeshkumar 2019).

12.10 Future Direction

Regarding AD treatment, notable studies demonstrating the importance of
nanotechnological technologies for therapeutic delivery and AD theragnostic have
been carried out. Nonetheless, most of the research is preclinically focused. The
findings suggest that the clinical trials and nanotechnology-based treatment in AD
will increase therapeutic outcomes shortly. Many new technologies and
nanotechnology-based approaches have demonstrated promise in processing drug/
biomolecules and/or imaging agents in the BBB for AD therapy. These
nanotechnological strategies may help enhance the efficiency without problems of
the NP-mediated CNS delivery.

12.11 Conclusion

Alzheimer’s disease is a complex condition of progressive dementia that is very
difficult to treat because of the impenetrable blood-brain barrier. Though it is
disrupted in AD, it is still challenging for delivering drugs across BBB.
Nanoparticles allow the design of clever therapeutic carriers, which can simulta-
neously cross the BBB and carry payloads to the specific targets. In addition,
substantial research was carried out in nanoparticles that allowed for the brain’s
imaging to detect early biomarkers with high sensitivity in AD. Working in this field
is promising but not sufficiently good to bring such technology in AD therapy from
bench to bed. Several key aspects, including pharmacokinetics, metabolism, and
toxicity issues, are still adequately addressed with many nanomaterials, mainly
inorganic nanoparticles (significantly used in imaging studies). Finally, most
nanoparticles examined for AD therapy demonstrated their action, mostly in preclin-
ical studies.
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Role of Impaired ABC Transporters
in Alzheimer’s Disease 13
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Abstract

The ATP-binding cassette (ABC) superfamily groups are membrane proteins that
serve as active efflux pumps for many substances, together with therapeutics.
ABC transporters comprise of a highly conserved “cassette-like” domain that
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catalyzes the ATP hydrolysis providing the energy needed for the transport of
substances against a concentration gradient. They actively transport both the
endogenous and exogenous substances and implicated in the absorption, distri-
bution, and excretion of several xenobiotics. They exhibit ubiquitous expression
throughout the human body, with a special relevance in barrier tissues like the
blood-brain barrier (BBB). At this level, they play a physiological role in tissue
protection by reducing or limiting brain accumulation of neurotoxins. Further-
more, dysfunction of ABC transporters, at expression and/or activity level, has
been associated with many diseases. Alzheimer’s disease (AD) is a progressive
neurodegenerative disease and the most common form of age-related dementia
that starts with memory loss and progresses to include severe cognitive
impairment. In recent years, it has been shown that inadequate Aβ, which are
physiologically assisted by the superfamily ABC transporters at the brain barrier,
are important in the imitation and the progression of the disease. This book
chapter highlights the significance of this alternative approach as a novel in
AD, to provide the researchers an opportunity to evaluate the potential aspects
of ABC transporters in AD treatment.

Keywords

ATP-binding cassette transporters · Central nervous system · Alzheimer’s disease

13.1 Introduction

ABC transporters are one of the main super families of transporter proteins (Thomas
and Tampé 2020). ABC transporters are transmembrane proteins localized on cells
as well as organelles and are extensively expressed in all organisms. In humans,
ABC transporters are predominantly expressed in cancer cells as well as lipo-
processing cells, for example, macrophages (Nedeljković et al. 2021). The ABC
transporter family contains 48 genes (for humans) spanning the gene codes abca to
abcg. The most common researched of these are P-glycoprotein or PGP (abcb1;
MDRI), “breast cancer resistance protein” or BCRP (abcg2), as well as the “multi-
drug resistance-associated proteins” or MRPs (abccs). These transporters are
identified to exist at barriers between the blood and the CNS (Ek et al. 2010;
Møllgård et al. 2017) as well as between the blood and CSF (Kratzer et al. 2013;
Møllgård et al. 2017) and the CSF and the CNS. The superfamily of ATP-binding
cassette (ABC) transporters controls drug distribution, metabolism, as well as
bioavailability in cells and the extracellular matrix; the transporter thus plays a
very significant role by limiting the accumulation of drug in the tissues, also with
drug resistance (Linton 2007). At present, only few members are recognized as
members of neural stem/progenitor cells as well (NSPC) (Broccardo et al. 2006;
Mohan et al. 2006. The superfamily is composed of many transporters belonging
among the seven subfamilies of ABC A and ABC G. In the blood-brain barrier
(BBB), these subfamilies include ABCB subfamily consequent to P-glycoprotein
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(P-gp) which mediates multidrug resistance (MDR), the subfamily ABCC of multi-
drug resistance-related proteins (MRP), and the subfamily ABCG (breast cancer
resistance protein, BCRP (Leslie et al. 2005). The broad and partly overlapping
specificity of substrate on several hydrophobic compounds is common to multidrug
transporters. They are exclusively dispersed in organs with secretive or barrier
functions, together with the intestine, renal, liver, and lungs, as well at the BBB
and the choroid plexus, chiefly for neurodegenerative disease. They are categorized
into the apical membrane faced with the luminal surface of the tubes, tubuli, and
canaculi or to the basolateral membrane in epithelia or endothelium. This function-
ality and polarization at the cell membrane allow guided transport across these
cellular obstacles (Leslie et al. 2005); therefore, ABC transporters help in fulfilling
the important function in excreting various peptides and compounds. Such barrier
plays a prominent role in linking the cellular-intracellular intra-compartment and
intracellular environment with the systemic outer bloodstream, especially in diseases
with compartmental organ associations. Because this role may also play a part in the
pathophysiology of neurodegenerative disorders, the brain is considered one of the
largest compartments surrounded by barriers. Over the past 10 years, the focus of a
recent AD research area has been on blood-brain barrier transporters in the
ATP-binding cassette (ABC) and in other CNS cells. In order to move substrates
across the cells, tissues and organelle’s membranes, ABC transporters utilities the
ATP. There are different types of molecules, substances, compounds, and drugs
which act as substrates for ABC transporters; among them are cholesterol, peptides,
lipids, toxins, and certain groups of drugs; therefore, ABC transporters become very
core part of many biochemical and physiological reactions in maintaining the
homeostasis of the body by metabolism extrusion and restricting drug absorption.
Researchers recently found that ABC transporters play an important role even in
diseases, where pathways and processes involving ABC transporters are changed.
For some types of ABC transporters with role in AD and CNS like BCRP, MRP1,
P-gp, ABCA1, and ABCA2 are associated with high concentrations of Aβ brain
levels. It is still unclear how, and if accurately, ABC transporters add to AD
pathophysiology. This lack of comprehension offers new insights, particularly
with the promise of untying disease data and identifying targets that could help
develop new therapeutic strategies for AB. This lack of understanding provides the
opportunity which is discussed in this chapter.

13.2 ABC Transporter Superfamily

The largest family of transmembrane protein represents the ABC genes. By binding
to ATP, these proteins use energy all the way through the cell membrane for the
purpose to drive the transport of different molecules (Dean and Allikmets 1995).
Depending on the organization and sequence of their ATP-binding domains,
proteins are designated as ABC transporters, known as nucleotide-binding folds
(NBF). Generally, the functional protein comprises two NBFs and two domains of
the transmembrane (TM). There are 6–11 membrane-spanning helices in the TM
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domains which provide substrate specificity. In the cytoplasm, NBFs are located and
transmit the energy to carry the substrate throughout the membrane. They are mainly
involved in the importation of essential substances into bacteria that cannot be
obtained via diffusion (e.g., carbohydrates, vitamins, metal ions, etc.). The shuttling
of hydrophobic compounds either inside the cell as part of metabolic processes or
outside the cell for transport to other organs, secretion from the body, is the major
known function of eukaryotic ABC transporters. Eukaryotic ABC genes are
organized either as full transporters or as half transporters containing two TMs and
two NBFs. The latter has to form homodimers or heterodimers to act as functional
transporter. In eukaryotic genomes, ABC transporters are widely diffused and highly
conserved across the species, indicating that majority of these genes have been
present since the eukaryotic origin. Depending on the similarities in gene structure
(half versus complete transporters), domain order, and on sequence homology in the
NBF and TM domains, the genes can be cut into subfamilies. Seven subfamilies of
the mammalian ABC gene exist, five of which are found in the genome of Saccha-
romyces cerevisiae. One of the major superfamilies of proteins, which are well
distributed in all animals, from prokaryotes to humans, is ATP-binding cassette
transporters (ABC transporter). These proteins are categorized according to their
ABC domains(s) sequence and organization (Pohl et al. 2005). In eukaryotes, the
transporters of ABC are expressed in intracellular compartments such as plasma
membrane, Golgi, endosomes, multivesicular bodies, endoplasmic reticulum,
peroxisomes, and mitochondria (Dean and Annilo 2005). In humans, around
48 ABC transporters have been identified so far, divided according to their structural
characteristics into seven families (called ABC A–G). ABC proteins are primarily
involved in the transport of vitamins, lipids (i.e., cholesterol, phospholipids,
glycolipids, etc.), bile salts, steroids, toxins, and medicine and metabolisms via
biological membrane through molecular processes (Molday et al. 2009).
Accumulating evidences support the fact that the subfamily-A of the ABC trans-
porter has the key role in human physiology, and when mutated or altered, they
cause different diseases (Peelman et al. 2003). Tangier (ABCA1), Alzheimer’s
(ABCA2/ABC7), Stargardt’s (ABCR/ABCA4), and Harlequin ichthyosis
(ABCA12) (Tarling et al. 2013) are examples of ABC A subfamily disorders.

13.2.1 ABCA (ABC1)

This subfamily contains 12 set of transporters that are classified into two subgroups
based on their phylogenetic and intron structure. The first group consists of around
seven genes dispersed on six chromosomes (ABCA1, ABCA2, ABCA3, ABCA4,
ABCA7, ABCA12, and ABCA13), while in the second group, it contains only five
genes (ABCA5, ABCA6, ABCA8, ABCA9, and ABCA10) located on chromosome
17q24 as a cluster. Some of the largest ABC genes are located in the ABCA
subfamily, most of which are >2100 amino acids. The ABCA1 and ABCA4
(ABCR) proteins, only two members of this subfamily, have been thoroughly
studied. As per the role of ABC1 protein, it is involved in cholesterol transport
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and high-density lipoprotein (HDL) biosynthesis disorders. In the outer segments of
the photoreceptor cell, the ABCA4 protein is linked to the transport of vitamin A
derivative and ultimately plays an important role in visual cycle (Fig. 13.1).

13.2.2 MDR/Tap (ABCB)

ABCB subfamily is one of the unique families as it includes both full and half
transporters. As members of this subfamily, seven half and four full vans are
currently listed. ABCB1 (MDR/PGY1) is one of the first human ABC transporters
that has been cloned and characterized by its capability to present a phenotype of
multidrug resistance to cancer cells. The blood-brain barrier and the liver include the
functional sites of ABCB1. Proteins like ABCB4 and ABCD11 are excessively
found in the liver in order to assist in bile secretion. ABCB2 and ABCB3(TAP)
genes are among the half transporters that form a heterodimer in order to carry
peptides introduced as antigens toward the ER. The ABCB9 half transporters are the
closest homology of the TAPs which were localized to lysosomes. The remaining
four half transporters are restricted in the mitochondria, ABCB6, ABCB6, ABCB8,
and ABCB10, where they act in the metabolism of iron and the transport of
precursors of Fe/S proteins.

Fig. 13.1 Oxidative stress in Alzheimer’s disease. The schematic diagram shows how oxidative
stress can be induced by mitochondrial dysfunction, inflammation, hyperphosphorylated tau, and
Aβ accumulation in AD
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13.2.3 ABCC (MRP/CFTR)

The next subfamily of ABCC generally comprises about 12 different transporters
with huge functional range that includes cell surface receptors, ion transporter, and
secretion of toxins. The protein CFTR is a type of ion chloride channel that has a
major role nearly in the exocrine secretions, and cystic fibrosis is caused by
mutations in CFTR (Quinton 1999). Proteins ABCC8 and ABCC9 bind to sulfonyl-
urea and control the channels of potassium involved in insulin secretion modulation.
Nine MRP-associated genes make up the majority of the subfamily. Of these, drug
conjugates are transported into glutathione and other organic anions by ABCC1,
ABCC2, and ABCC3. Proteins ABCCA4, ABCC5, ABCC11, and ABCC12 are
very small in size than other genes, but similar to MRP1 and lack an amino-terminal
domain that is not necessary for the purpose of transport (Bakos et al. 2000). Proteins
ABCC4 and ABCC5 impart resistance, including PMEA and purine analogs, to
nucleosides.

13.2.4 ALD (ABCD)

The human genome in the ABCD subfamily contains four genes, with two in the
yeast and Drosophila genome, respectively. The yeast genome, PXA1 and PXA2
after dimerization forms a functional transporter and is incorporated in peroxisomes
for oxidation of long chain fatty acids (Shani and Valle 1998). The half-transporters
which can function as either homo- or heterodimers in the regulation of very-long-
chain transport of fatty acids were encoded by all the genes.

13.2.5 ABCE (OABP) and GCN20 (ABCF)

The genes with an ATP-binding domain, such as ABCE and ABCF subfamilies,
which are derived from ABC transporters, do not have a TM domain and are thought
to be useful in membrane transport. The ABCE subfamily only contains oligo-
adenylate binding protein, a substrate that recognizes oligo-adenylate which is
formed in some viruses at the time of infection. This gene is present, but not in
yeast, in multicellular eukaryotes, indicating that it is part of innate immunity. A pair
of NBFs is included in each ABCF gene. The GCN20 cerevisiae gene promotes
activation of elF-2 kinase (Marton et al. 1997) and ribosome-associated human
homolog, ABCFI, which is likely to have a similar function (Tyzack et al. 2000).

13.2.6 ABCG (White)

This subfamily ABCG is considered to consist of having six half transporters and
NBF at the amino side and TM domain at the carboxyl side. The ABCGI mammalian
gene is involved in the transport of cholesterol control (Klucken et al. 2000). Among
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the other different genes of ABCG are ABCG2, a gene involved in drug resistance;
ABCG5 and ABCG8 which help in sterol transport both in the liver and intestine;
ABCG3, a gene which has been found mostly in rodents; and lastly ABCG4 which is
found to be expressed in the liver. There is no literature available that explains the
roles of the last two genes (Table 13.1).

13.3 Role of ABC Transporters in CNS

13.3.1 ABC A Family

ABC A1, a member of the ABC A family, has been studied as the most common
transporter in the CNS and has been detected in choroid plexus epithelial cells,
microglia, brain capillary, neurons, and endothelial cells at the protein or molecular
level. ABCA has also been found in the brain capillary endothelial and abluminal
membrane in cell line TR-CSFB3 belonging to rats (Panzenboeck et al. 2002;
Fujiyoshi et al. 2007). The other members of ABCA together with ABCA2–9 are
also found in epithelial cells of choroid plexus neurons, microglia, capillary endo-
thelial cells, oligodendrocytes, and astrocytes of the mouse, rat, and human brain at
the protein or mRNA levels (Bhongsatiern et al. 2005; Kim et al. 2006; Gosselet
et al. 2009). ABCA family transporters are involved in apolipoprotein-dependent
cholesterol efflux, sterol homeostasis, and lipid metabolism (Gosselet et al. 2009).

Table 13.1 Members of the ABC transporter family

Subfamily
name

Former
name Members

Linked diseases in
humans

Number
of genes

Number of
pseudogenes

ABCA ABC1 ABCA1, AB,
A3, A4, A5,
A6, A7, A8,
A9, A10, A12,
A13

Tangier disease 12 5

ABCB MDR ABCB1, B2,
B3, B4, B5,
B6, B7, B8,
B9, B10, B11

Bare lymphocyte
syndrome

11 4

ABCC MRP ABCC1, C2,
C3, C4, C5,
C6, C7, C8,
C9, C10, C11,
C12, C13

Dubin-Johnson
syndrome

13 2

ABCD ALD ABCD1, D2,
D3, D4

Adrenoleukodystrophy 4 4

ABCE OABP ABCE1 1 2

ABCF CGN20 ABCF1, F2,
F3

3 2

ABCG White ABCG1, G2,
G4, G5, G8

Sitosterolemia 5 2
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The role of these transporters in the CNS is, however, little understood. ABCA1 is
found to be upregulated by ethanol in a recent research discussing the impact of
alcohol on the fetal brain in mouse astrocytes in vivo as well as in fetal human
astrocytes (Guizzetti et al. 2007). Cholesterol plays an important role in brain
growth. Ethanol caused an increase in cholesterol efflux and a significant reduction
in the level of intracellular cholesterol and induced a disturbance in cholesterol
homeostasis but did not impair cellular cholesterol synthesis. Alcohol has a deleteri-
ous effect on the fetus as ethanol disturbs cholesterol homeostasis which affects the
development of the brain. Moreover, ABCA1 has been shown to contribute in apoE-
dependent cholesterol efflux in neurons as well as brain capillary endothelial cells.

Consistent with this, cholesterol efflux from ABCA1-deficient mice has reduced
in microglia and astrocytes, resulting in cellular cholesterol accumulation and
reduced removal of apoE (Hirsch-Reinshagen et al. 2004). This is an important
discovery in that decreased levels of lapidated apoE decrease the proteolytic break-
down of amyloids (Jiang et al. 2008) which raises the chances of Alzheimer’s
disease. This forms a potential correlation between Alzheimer’s disease and
ABCA1 (Wahrle et al. 2004).

13.3.2 ABC B Family

One of the best-studied transporters of the ABC B family in CNS is ABCB1
(P-glycoprotein, P-gp, and ABCB1/MDR1). Very few studies have been conducted
on other ABC B members in the brain. mRNA for phosphatidylcholine transporters,
ABCB4 (Pglycoprotein3, PGY3) and mitochondrial transporters, ABCB7, ABCB8,
(MABC), ABCB10 (mitochondrial ABC transporter 2, MTABCT2 and ABCB6
(mitochondrial ABC transporters3, MTABC3) have been found in capillary endo-
thelial cells of pigs, rats, cows, humans and mice. Additionally, ABCB4 as well as
ABCB11 (BSEP, bile export pump) mRNA has been identified in the choroid plexus
in humans and rats; the protein level of ABCB2–11 has not been observed in
the CNS.

13.3.2.1 ABCB1 (P-Gp, MDRI, P-Glycoprotein)

13.3.2.1.1 ABCB1 Speech, Localization, and Function
Juliano and Ling in 1976 explained the phenomenon of drug resistance in tumors by
discovering ABCB1 drug resistance cell line. In the normal barrier and also in
excretory tissues like the liver and intestine, ABCB1 was observed to be physiologi-
cally expressed. In 1989, the ABCB1 protein was found to be present in the capillary
endothelial cells of the human brain (Thiebaut et al. 1989; Cordon-Cardo et al.
1989). The mRNA, protein, as well as function of ABCB1 were recognized a few
years later in cow, pig, rat, mouse, dogfish, and killifish capillaries of the brain, as
well as the monkey, dog, and cat endothelial cells (Miller et al. 2002; Pekcec et al.
2011). It has become apparent over the last 15 years that ABCB1 plays a significant
role in the operation of the blood-brain barrier. Four factors make ABCB1 a crucial
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obstacle to the entry into the brain of a huge quantity of xenobiotics which include
CNS drugs as well as toxins, expression, localization, potency, and multi-specificity
(Begley 2004). Firstly, in brain capillary membranes, ABCB1 is strongly expressed.
Studies have also reported considerably higher ABCB1 protein levels in plasma
membranes sequestered from the capillaries of the brain of mice or rat in comparison
to any other tissue tested for plasma membranes (Miller et al. 2008). Secondly, the
localization of endothelial capillary cells is incessant with ABCB1 acting as a drug
outflow pump as well as a blockade in the CNS for entry. There is a set of evidence
relating to the acceptance of ABCB1 plasma membrane lumen (Roberts et al. 2008;
Hartz et al. 2010a, b). On the other hand, it is still the role and degree of abluminal
and intracellular ABCB1. Thirdly, the substances that prevented from crossing the
endothelium capillary of the brain by ATP-driven efflux transport. In accordance
with this, the findings of the in vivo laboratory indicated that loperamide, an ABCB1
substrate as well as an opioid that does not have central analgesic effects and also
cannot traverse the blood-brain barrier, exert considerable antinociception when
cyclosporine was first administered with ABCB1 inhibitor in mice. Fourthly,
ABCB1 has a surprisingly wide range of substrate compounds with a large structure
variety that ranges from tiny molecules, for example, loperamide (MW 285–477 Da)
and verapamil and morphine for amyloid (MW4200 Da) (Kuhnke et al. 2007; Hartz
et al. 2010a, b). Additionally, different groups of xenobiotics, for example, HIV
protease inhibitors, antibiotics, opioids, chemotherapy, etc., can be controlled by
ABCB1 (Bauer et al. 2005). CNS is shielded from potential destructive toxins by a
perfect “gatekeeper,” ABCB1 in the brain capillary endothelium. On the other hand,
ABCB1 functions as a drug barrier. Two studies in the Netherlands from the
Schinkel Laboratory best exemplify this “double-edged” sword feature of ABCB1.
CNS-protective role of ABCB1 was first identified in ABCB1-deficient MDR-1
knockout mice with ivermectin, an anthelmintic drug as a standard parasite control
measure. Although this is usually harmless technique and remained unaffected by
wild type mice, all MDR-1 knockout mice died. Subsequent experiments showed
that the absence of blood-brain barrier ABCB1 results in higher brain absorption for
neurotoxic ivermectin, which usually cannot cross the endothelial brain capillary
into the CNS. In vivo follow-up dosing experiment supported these results and
showed an increase 5–50-fold inside the plasma to the brain; the proportion of
drugs which are substrates, in addition, do not pass the brain in MDR1-knockout
mice (Schinkel et al. 1996). The physiological significance of ABCB1 in shielding
the brain and the difficulty of delivering therapeutic drugs into the CNS is illustrated
in these examples. Whereas the most information presented on the ABCB1 in the
CNS is from the endothelial cells of brain capillary, the mRNA, protein, and
functional levels of ABCB1 are also expressed in other human brain cells (Daood
et al. 2008) and monkey, sheep (Bougoin et al. 2008), rat (Niehof and Borlak 2009),
and mouse cells (Wu et al. 2009). The location of the transporter was in the
cytoplasmic vesicles as well as the plasma membrane as revealed by electron
microscopy in pericytes from human brain sections (Bendayan et al. 2006). There
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were no recorded functional studies of ABCB1 in pericytes. ABCB1 is found inside
the astrocytes in the caveolae, nuclear envelope plasma membrane, astrocytic foot,
and coated vesicles. It has also been suggested to play a role in the nucleotide’s
efflux (Ronaldson et al. 2004; Wu et al. 2009). MLS-9 cell line of rat microglia also
contains ABCB1 located along the nuclear envelope as well as the plasma membrane
(Ballerini et al. 2005). Functional tests of ABCB1 in this cell line revealed efflux of
saquinavir, indinavir, and HIV protease from cell (Scott Kim et al. 2009). The
expression of ABCB1 has been observed in the plasma membrane of progenitor
cells as well as neural stem cells of the human fetus (Daood et al. 2008). More tests
of ABCB1 in the choroid plexus have been performed. ABCB1 transport of 99mTc-
sestamibi from human, rat, and mouse intact choroid plexus tissue indicates apical
localization and transport of substrate to cerebrospinal fluid. In isolated choroid
plexus epithelial cells of sheep, the expression of ABCB1 protein was expressed
(Bougoin et al. 2008). In comparison, the experiments in the choroid plexus epithe-
lial cell of pig as well as rat experiments showed the localization of ABCB1 in the
sub-apical vesicles; in these studies, transport via ABCB1 was not spotted (Daood
et al. 2008; Niehof and Borlak 2009).

13.3.2.1.2 Control on ABCB1
ABCB1 regulation has been observed mainly in endothelial cells of brain capillary
as well as to a smaller extent in the choroid plexus in the CNS and astrocytes. During
the last 5 years, many pathways of signaling have been mapped that control ABCB1
in the brain. Here, we briefly summarize the findings of inflammatory mediators,
oxidative stress, and nuclear receptors on ABCB1 control.

13.3.2.1.3 Control of ABCB1 in Inflammation
The first regulatory study conducted on ABCB1 regarding endothelial capillary cells
of the brain dealt with the cause of transporter inflammation. In a research, the
exposure of low levels of ET-1, TNF-alpha, or LPS to isolated brain capillaries of
rats (Hartz et al. 2006; Bauer et al. 2007) resulted in a reversible and fast decrease in
transport activity of ABCB1 but the expression of the protein showed no improve-
ment (Hartz et al. 2004). Binding of ligand to the TLR4, TNF-R1, ETB, TNF-R1,
and TLR4 receptors and activation of PKC and NOS were involved in the signaling
process, resulting in rapid membrane recovery of ABCB1 and a decrease in ABCB1-
mediated transport (Hartz et al. 2006). For a longer time frame (hours), exposure of
ET-1 or TNF-α to the brain capillaries for a longer period of time has increased the
expression as well as transport activity of ABCB1 proteins (Bauer et al. 2007). Such
a continuing consequence was facilitated by a similar signaling mechanism like the
abovementioned short-term effect. The other studies based on in vitro cultures of
capillary endothelial cells in the pig or human brain, higher levels of mRNA and
ABCB1 protein were subsequently found by the treatment with TNF (Poller et al.
2010), but the function of ABCB1 showed no effect. On the other hand, IL-1 and
IL-6 have decreased ABCB1 mRNA and protein, respectively (Poller et al. 2010).
The conflicting results were also produced through in vivo studies. Seelbach et al.
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(2007) in a study conducted on a rat model of peripheral inflammation and higher
expression protein ABCB1 inside the brain capillaries found a decreased brain
uptake of morphine as well as ABCB1 substrate, and, in addition, decreased
morphine antinociception was observed, suggesting that the overexpression of
ABCB1 excluded morphine from the brain. Goralski et al. (2003) found intraven-
tricular LPS injection-facilitated brain inflammation decreased overall brain ABCB1
mRNA expression in rats, and ABCB1 substrate digoxin mRNA increased brain
absorption.

In in vitro cultures of rat astrocytes, ABCB1 protein expression was increased by
TNF-α and IL-1β, while gp 120 and IL-6, an envelope glycoprotein of HI virus has
resulted in decrease in ABCB1 expression. The transport efficacy was also decreased
by IL-6, and gp120 (Ronaldson and Bendayan 2006). Another study showed
upregulation of ABCB1 protein by CT1, IFN- γ, CNTF, IL-6, and LIF while
working on mouse astrocyte cell cultures and CNT-knockout mice, based on
CNTF effect (Monville et al. 2002). The other variation seen in these findings can
be elucidated via the concept that the inflammation is a multifaceted phenomenon,
and the inflammation response is dependent on model, context, time, and also dose.
Even so, based on these studies, it is obvious that the moderators of inflammation
have an intense reaction to ABCB1 in the brain. The exact mechanism is accountable
for transport switches to be illuminated.

13.3.2.1.4 Regulation of ABCB1 by Oxidative Stress
Oxidative stress like ROS (reactive oxygen species), and CNS inflammation are
linked to various CNS disease, for example, multiple sclerosis, brain tumors stroke,
epilepsy, brain trauma, multiple, Alzheimer’s as well as Parkinson’s disease.
ABCB1 mRNA along the vincristine transport as well as protein expression is
increased during the in vitro exposure of endothelial cells of rat brain capillary
with hydrogen peroxide for about 24–48 h (Felix and Barrand 2002). Hydrogen
mediates signaling via NF-kB, PKC, c-jun, Akt, and ERK 1/2 which switched on
ABCB1 transcription (Nwaozuzu et al. 2003). In vitro exhaustion of GSH in rat
brain endothelial cells is associated with increased ABCB1 mRNA in addition to the
expression of proteins; however, N-acetylcysteine, a ROS scavenger, eliminated this
effect (Hong et al. 2006). These studies suggest an adequate sense of balance among
cellular ROS and GSH, and the exhaustion of GSH has increased ROS, resulting in
an increased ABCB1. In addition, these results may be significant in stroke research,
as most of these signals have been seen in animal stroke models as well. On one side
of CNS disease, it is obvious that the toxins and pollutants can also lead to the
generation and production of ROS. In this concern, excess expression of isolated rat
brain capillaries exposed to diesel particles which act as one of the environmental
pollutants leads to the expression of ABCB1 protein and transport activity with the
help of NADPH oxidase, a membrane linked enzyme complex that produces super-
oxide (Hartz et al. 2008). The increased oxidative leads to the TNF-α also TNF-R1
and c-jun signaling. These data include the involvement of environmental toxins in
CNS disease.
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13.3.2.1.5 Regulation of ABCB1 by Nuclear Receptors
The nuclear receptors function as transcription factors by binding to their ligands and
cause their target genes to be transcribed. Some of the nuclear receptors, like aryl
hydrocarbon receptor (AhR), PXR (pregnane X receptor), or CAR (constitutive
androstane receptor), are activated by drugs as well as regulate ABC transporter
transcription which comprises ABCC1, ABCC2, and ABCC3 apart from
metabolizing enzymes (Geick et al. 2001). These nuclear receptors have clinical
importance as well, because they can affect the pharmacokinetics of many drugs. We
detected mRNA of PXR and protein expression in brain capillaries of pigs, rats, and
mice; it was found that the activated PXR along with hyperforin, PCN,
dexamethanose, or hyperforin has improved the expression of ABCB1 protein as
well as transport action (Ott et al. 2009). Narang et al. (2008) have demonstrated that
the dexamethasone-induced induction of ABCB1 is expected to be involved in the
glucocorticoid receptor in endothelial cells of the rat brain capillary. In transgenic
mice, the expressed human PXR have shown the upregulation of ABCB1, which has
reduced the antinociceptive impact of methadone, a kind of CNS-active opioid, and
ABCB1 substrate resulting in PXR activation of ABCB1, in the blood-brain barrier,
has potential entailment for the release of CNS drugs (Theodoulou et al. 2006).

In this regard, treatment of HIV by means of a protease inhibitor is considered in
which concentration of virus in the periphery is effectively lowered beneath the
limits of detection; however, a load of virus in the brain is unchanged as the entry of
protease inhibitor in the brain is restricted by ABCB1 and, therefore, changes the
CNS as a store for HIV virus. To make matters worse, PXR ligands operate as
protease inhibitors and may cause ABCB1 to contract even more, creating a barrier
to HIV treatment in the CNS (Perloff et al. 2007). ABC transporters controlled by the
nuclear receptors are still there situated within the human blood-brain barrier.
Dauchy et al. (2008) revealed the expression of mRNA, of CAR (constitutive
androstane receptor), PXR, AhR (aryl hydrocarbon receptor) of brain microvessels
extracted from human brain biopsies. This regulatory system in the brain’s capillary
endothelium gets activated by and regulates ABC entry for transporters and may
have significant medical consequences for CNS pharmacotherapy.

13.3.3 ABC C Family

There are 13 members of the ABC C family; out of these 13, 9 are transporters
(ABCC1–6 and ABCC10–12); among them, information on ABCC12 in CNS is not
available. Also ABCC6 and ABCC10 were detected in the CNS at the mRNA stage
only. Specifically, ABCC6 (MRP6) mRNA was contained in capillaries of the
bovine brain and endothelial cell cultures of humans, cows, pigs, rats, and mouse
(Warren et al. 2009), microglia cell cultures of rats, and whole choroid plexus tissue
cultures of humans and rats (Berezowski et al. 2004). In bovine brain capillary
endothelial cell cultures, the mRNA of ABCC10 (MRP7) has been identified
(Warren et al. 2009); on the other hand, the mRNA of ABCC1 (MRP8) has been
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identified as well as protein in the neurons of the human brain sections (Bortfeld
et al. 2000).

13.3.3.1 ABCC1

13.3.3.1.1 Function, Expression, and Localization of ABCC1
In 1992, Cole et al. first discovered ABCC1 in human cell H69AR. The presence of
ABCC1 in CNS was first of all reported by Regina et al. in 1998. The authors
showed in vitro mRNA and protein expression as well as transport function of
ABCC1 in microvessel endothelial rat brain cell cultures. Later pig, human,
mouse, cow, and rat endothelial cell cultures have shown the mRNA and protein
expressions of ABCC1 (Ohtsuki et al. 2007; Roberts et al. 2008; Warren et al. 2009).
At the blood-brain barrier level, the localization of ABCC1 is debatable. Although
few reports showed ABCC1 expression in the albuminal membrane of capillaries of
pieces of mouse brain (Kilic et al. 2008; Soontornmalai et al. 2006), apical localiza-
tion of ABCC1 is seen in capillary endothelial cell cultures of the bovine brain and
capillaries of sections of the human brain in other reports (Zhang et al. 2004; Nies
et al. 2004). Roberts et al. (2008) in a recent study involving rat brain capillary
immune stained isolates determined the location of ABCC1 which is predominantly
in the abluminal membrane; however, a low level of the transporter is present in the
luminal membrane as well. It’s also questionable if data from functional studies can
be used to evaluate the ABCC1 function. Through brain perfusion studies, it has
been shown there are no differences in the ABCC1 substrate and 17 β-estradiol-D-
17-β-glucuronide uptake in the brain in case of wild type in contrast to ABCC1
knockout mice, demonstrating that ABCC1 is non-operational or is present or absent
in the case of luminal membrane (Cisternino et al. 2003).

For experiments involving wild type and ABCC1 knockout mice, intracerebral
microinjection of 17-estradiol ID-17—glucuronide drastically reduced efflux in the
brain of mice lacking ABCC1. This indicates that the endothelial capillaries contain
functioning ABCC1 in the lumen of the membrane. From these observations,
localization of ABCC1 in brain capillaries is uncertain and could depend on
model, species, and study. Provided LTC4 is transported by ABCC1in both luminal
and abluminal, it can possibly be localized considering that the boundary between
the blood and the brain is the brain capillary endothelium responsible for communi-
cation in both directions, such as in inflammation. ABCC1 expression, as well as
function, is well-known in choroid plexus, astrocytes, and microglia (Poller et al.
2010). ABCC1 mRNA and protein were found in astrocytes of rat brain
compartments (Mercier et al. 2004), in rat astrocyte culture (Chen et al. 2009),
astrocytoma cultures of humans (Spiegl-Kreinecker et al. 2002), and also astrocytes
of human brain parts (Zhou et al. 2001). The transport function in astrocytes cultures
of the rat was recognized, where the GSH release was induced by ABCC1 from cells
in the way of oxidative stress (Hirrlinger et al. 2001, 2002). In other studies
involving the cultured astrocytes of ABCC1 knockout mice as well as wild-type
mice, ABCC1 is totally responsible and accounts for 60% of GSH export (Minich
et al. 2006). The ABCC1 protein and mRNA have been detected in primary
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microglia rat cell cultures as well as in MLS-9 microglia rat cell line (Dallas et al.
2003; Hirrlinger et al. 2002); apart from this, ABCC1 localization was also found in
plasma membrane (Dallas et al. 2004). Furthermore, in rat, mouse and human
choroid plexus tissues, ABCC1 protein and mRNA have been highly expressed
(Gazzin et al. 2008; Saito et al. 2001) in Z310 and TR-CSFB (Hosoya et al. 2004;
Shi et al. 2008). The rat and mouse choroid plexus studies have shown the localiza-
tion of ABCC1 in the basolateral compartment (Sugiyama et al. 1999;
Soontornmalai et al. 2006). With consistent localization in basolateral compartment,
the choroid plexus transport was mediated by ABCC1 directly to the blood from
epithelium of choroid plexus (de Lange 2004; Kusuhara and Sugiyama 2004). In
addition to that, ABCC1 protein and mRNA were found to be also in bovine pericyte
cultures in addition to pericyte isolated from rat brain (Berezowski et al. 2004;
Shimizu et al. 2008), in nerve cell from human brain, as well as from the
oligodendrocytes of rat cultures (Daood et al. 2008; Hirrlinger et al. 2002). Useful
studies in these cells for ABCC1 have not been conducted yet.

13.3.3.1.2 Regulation of ABCC1
Some signaling mechanisms associated with ABCC1 in the CNS have been
identified. The most excellent ones are the pathways that address the impact of
HIV in the neurovascular unit transporters. In this sense, protein expression in
addition to transport activity of ABCB1 and ABCC1 has shown to be increased in
bovine capillary endothelial cells and in astrocyte cultures of rat and mouse by HIV
proteins tat and gp120 (Hayashi et al. 2006; Ronaldson and Bendayan 2008).
Inflammatory component in signaling involves NF-kB, TNF α, JNK, and MAPK.
These findings are important considering that HIV virus is reserved in microglia and
the CNS; astroglia are one of the main cellular targets of the virus inside the CNS.
The other pathways of ABCC1 regulation have been set in the primary mouse
astrocyte cell line (Ronaldson et al. 2010). The unconjugated bilirubin has shown
to increase ABCC1 and facilitates its trafficking to the plasma membrane from the
golgi apparatus (Hayashi et al. 2005). This leads to the protective mechanism
where bilirubin is increased in disease states like hepatitis, selfprotecting its own
toxicity. The mechanism by which bilirubin increases ABCC1 is uncertain, but a
possible explanation is the activation of nuclear receptors.

13.3.3.2 ABCC2 (Associated Protein 2 or Multidrug Resistance, MRP2)

13.3.3.2.1 ABCC2: Localization, Expression, and Function
Detection of ABCC2 in 1996 by Paulusma et al. in rat hepatocytes resulted in a
debate about expression of ABCC2 in the blood-brain barrier (Paulusma et al. 1996).
In a study, Miller et al. (2000), immunolocalised ABCC2 to the luminal plasma
membrane of brain capillaries of killifish, rat and pig (Jetté and Béliveau 1993).
From the findings, there was no immunoreactivity reported in brain capillaries
among TRcontrolled rats which are devoid of ABCC2 (Jetté and Béliveau 1993).

In comparison, different other groups could not notice ABCC2 protein or mRNA
in brain capillary endothelial cultures, in samples of brain capillaries, and in total
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brain samples of human, mouse, cow, or rat (Zhang et al. 2000; Sugiyama et al.
2003). From these observations, ABCC2 signal was absent in Western blot results
carried out in whole-brain homogenate, brain capillary lysates, and even capillary-
depleted brain homogenate in rats (Zhang et al. 2004; Johnson et al. 2006). ABCC2
is, however, an integral protein of the plasma membrane. ABCC2 protein was
merely present in enriched plasma membrane from isolated brain capillaries of
mouse and rat, and immunoreactive ABCC2 was found in isolated capillaries of
the luminal membrane transported by ABCC2 (Bauer et al. 2008). By using
ABCC2-null TR-control rats, these results were experimentally verified. According
to Soontornmalai et al., the inconsistency about blood brain barrier expression of
ABCC2 in different studies is because of species in addition to strain differences
(Soontornmalai et al. 2006). Furthermore, ABCC2 mRNA, endothelial brain
capillaries, and also protein expression have been monitored in rat and mouse
choroid plexus (Choudhuri et al. 2003). ABCC2 localization in the choroid plexus
has been confirmed as yet, but functional research on ABCC2 is missing. ABCC2
has not been studied in any other brain cells.

13.3.3.2.2 Regulation of ABCC2
Regarding the regulation of ABCC2, near the blood-brain barrier, only two studies
have been conducted. In one study, there has been higher ABCC2 protein expression
and transport rate in case of rat brain capillaries following PCN as well as dexa-
methasone exposure in vitro and in vivo (Bauer et al. 2008). Narang et al. (2008)
demonstrated upregulation of ABCC2 mRNA as well as protein via dexamethasone
in the next study, with cultured rat brain endothelial capillary cells by a way that is
independent from GR activation (Narang et al. 2008). There are no other studies
conducted or even published related to the ABCC2 regulation in the CNS.

13.3.3.3 ABCC3 (Multidrug-Associated Protein 3 Resistance, MRP3)
Concerning ABCC3 in the CNS, there is very less literature available. The mRNA
expression of ABCC3 has been seen in rat, pig, human, as well as mouse brain
capillary endothelial cell cultures, (Warren et al. 2009) in cultured rat astrocytes,
microglia, and neurons, of choroid plexus tissues of rat as well as in humans (Niehof
and Borlak 2009; Choudhuri et al. 2003). In immunostained brain capillaries of
human brain parts and in choroid plexus of mouse, the ABCC3 protein has also been
detected (Niehof and Borlak 2009; Soontornmalai et al. 2006). In human brain
capillary endothelial cell line, hCME/D33, the transport of methotrexate by
ABCC3 was found (Poller et al. 2008). The regulation of ABCC3 in the CNS has
not been published yet.

13.3.3.4 ABCC4 (Multidrug-Associated Protein 4 Resistance, MRP4)
ABCC4 is one of the new family members of multidrug resistance-associated protein
and is structurally very much similar to the ABCB1 in contrast to other ABC C
family transporters (Belinsky et al. 1998). For the very first time, Leggas et al. have
found the ABCC4 protein expression of ABCC4 of mouse cerebral vasculature brain
parts and confined the transporter at the luminal membrane of the brain capillaries
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(Leggas et al. 2004). These types of results were confirmed by studies carried on
human, rat, and cow brain capillaries apart from the cell cultures of brain endothelial
capillaries (Roberts et al. 2008; Ohtsuki et al. 2007). The localization of ABCC4 was
described by Zhang et al. in luminal as well as in abluminal membrane of bovine
brain capillary in endothelial cell cultures along with brain capillaries of rat (Zhang
et al. 2000, 2004). There are no studies conducted and published on the transport
activity of ABCC4 in the brain capillary endothelium or in endothelial cells of
capillary. However, ABCC4 has proved to assist efflux transport of nucleoside
analogs, organic ions, sulfate, and glutathione glucuronate-conjugated drugs, and
prostaglandins (Zhou et al. 2008). Moreover, thiopurines, methotrexate, and
topotecan are transported by ABCC4 (Adachi et al. 2002; Chen et al. 2002) proving
that ABCC4 can perhaps assist blood-brain function in the blood-brain barrier by
protecting the brain from xenobiotics as well as inducing resistance to some thera-
peutic drugs. On the other hand, the significance of ABCC4 on efflux transport
toward the brain-blood barrier is not clear. The mRNA of ABCC4 is expressed in
human and as well as in rat choroid plexus (Niehof and Borlak 2009; Choudhuri
et al. 2003) but the protein expression of ABCC4 was observed only in the choroid
plexus of the rat (Roberts et al. 2008). Studies conducted on rat and mouse choroid
plexus have shown that the ABCC4 is localized in the choroid plexus epithelium
basolateral membrane (Roberts et al. 2008; Leggas et al. 2004). In line with this,
experiments showed the restriction of topotecan penetration by ABCC4 via choroid
plexus epithelium into the cerebrospinal fluid in wild as well as knockout mice,
suggesting protective role of ABCC4 (Leggas et al. 2004). Lastly, in other brain
cells, the expression of ABCC4 has also been seen. The ABCC4 protein was also
found in some parts of human brain astrocytes (Nies et al. 2004), and in rat astrocyte
cell cultures, the ABCC4 mRNA was found there (Hirrlinger et al. 2002; Ballerini
et al. 2002). In addition to this, the ABCC4 mRNA and its protein were found in rat
microglia cell cultures (Ballerini et al. 2005; Dallas et al. 2004), but in rat nerve cell
cultures, there was only ABCC4 mRNA and no protein (Hirrlinger et al. 2002).
There are no studies available relating about the function of ABCC4 together with
microglia, astrocytes, and neurons.

13.3.3.5 ABCC5 (or MRP5)
ABCC5 is mostly placed near the blood-brain barrier in the CNS and has been found
as expressed at the mRNA degree in cow, pig, rat, mouse, and human brain cultured
capillaries or endothelial brain cell capillaries (Wijnholds 1999; Zhang et al. 2000).
ABCC5 has been located in the brain capillaries of mouse, where it was observed to
be localized in the lumen of plasma membrane (Soontornmalai et al. 2006). The
ABCC5 has been demonstrated in human brain capillaries as well as in bovine
capillary endothelial cell cultures (Zhang et al. 2004; Nies et al. 2004). In the
endothelial cell line hCME/D3 of human brain capillaries, the transport of metho-
trexate was confirmed via ABCC5 (Poller et al. 2008); extra functional studies on the
blood-brain barrier of ABCC5 have not been carried out. In rat astrocyte cultures,
ABCC5 mRNA has been extensively found; in addition to that, ABCC5 protein and
mRNA were also observed in astrocytes of human brain slices and microglia of
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cultured rats (Calatozzolo et al. 2005; Dallas et al. 2004). The mRNA of ABCC5 has
been observed in rat nerve cells (Hirrlinger et al. 2002), and ABCC5 protein
expression has been detected in the nerve cells of human brain slices (Nies et al.
2004). The mRNA of ABCC5 has been detected in choroid plexus of rat and
humans, in addition to cultured rat oligodendrocytes (Niehof and Borlak 2009;
Choudhuri et al. 2003). At present, the transport function of ABCC5 has not been
identified in CNS cells.

13.3.4 ABCD Family

The family of ABCD transporters has been found in the peroxisomal membrane,
where the metabolic breakdown of fatty acids, for the purpose of transport in
peroxisomes, takes place (Theodoulou et al. 2006). ABC D is in charge of
transporting fatty acyl-CoAs and long-chain fatty acids in this regard (Cartier et al.
1995). As a half transporter, ABCD1 gets dimerized with ABCD2 or even 3 so as to
form a complete as well as functional active transport protein transporter, because it
is a half-transporter (Liu et al. 1999). Protein and mRNA of ABCD1 have been
found in endothelial cells of mouse brain capillary (Berger et al. 1999) as well as
astrocytes, oligodendrocytes, and microglia both from the mouse brain and postmor-
tem fractions of human brain (protein (Fouquet et al. 1997). The mRNA of ABCD-4
has been detected in mouse brain endothelial cells (Berger et al. 1999). In pericytes,
neurons, and choroid, there is no information available about ABCD transport
expression. The mutational defects of ABD1 gene in CNS have been found as the
main reason of adrenoleukodystrophy, one of the lethal demyelinating recessive
diseases in the CNS which is inherited progressively (Aubourg et al. 1993). Because
of ABCD1 mutational defects, only few or no functioning protein transporting long
chain fatty acids in peroxisomes for metabolic degradation are available. This
enhances fatty acid accumulation in different body parts, especially in the white
matter of the brain, where fatty acid breaks down the blood-brain barrier as well as
resulting in a progressive destabilization of the axon myelin sheaths, which ulti-
mately leads to severe injury to the brain and finally death (Kumar et al. 2008; Moser
et al. 1995).

13.3.5 ABCG Family

ABCG1 (White1), ABCG4 (White 2), ABCG5 (White-3, sterolin-1) and ABCG8
(sterolin-2) are cholesterol and sterol transporters and responsible for the sterol as
well as cholesterol homeostasis (Wang et al. 2008). In CNS, ABCG1 has been
responsible in bovine brain capillary endothelial cells (mRNA, (Gosselet et al.
2009), astrocytes of the primary cell cultures of the mouse (mRNA, protein (Tarr
and Edwards 2008), in neuron cultures of humans (mRNA), in mouse brain parts of
nerve cells (Wang et al. 2008), in rat choroid plexus epithelial cell line,TR-CSFG3
(protein, (Fujiyoshi et al. 2007), in the whole choroid plexus of rat (mRNA),
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(Fujiyoshi et al. 2007),where it is found to be present in the cell membrane
(Fujiyoshi et al. 2007). ABCG4 has also been found in choroid plexus of rat
(mRNA) (Wang et al. 2008). ABCG5 and ABCG8 have been found in tissues of
rat choroid plexus. Further, other relevant studies have demonstrated that the brain
uptake of plant sterols was highly increased in mice deficient of ABCG5 or ABCG8
(Cronican et al. 2010), demonstrating the presence of these two transporters inside
the lumen of brain capillary endothelium. There are no other sources of information
presently available to support these findings.

13.3.5.1 ABCG2 (Breast Cancer Resistance Protein, BCRP)

13.3.5.1.1 ABCG2 Expression, Localization, and Function
The ABCCG2 transporter has been discovered in human breast cancer cell line
MFC-7 in 1998 by Doyle et al. with increased mitoxantrone resistance, but negative
for both ABCB1 and ABCC transporters (Doyle et al. 1998). In the CNS, the
expression of ABCG2 has been observed in stem cells (protein, (Islam et al.
2005), MLS-9 cell line of microglia (Lee et al. 2007), primary cultures of astrocyte
(protein, mRNA) (Lee et al. 2007), in pericyte cell line (protein, (Shimizu et al.
2008) as well as in progenitor human cultures. The ABCG2 has been localized in the
plasma membrane of human neural stem cells, where it has shown to promote the
transport of prazosin indicating that neural stem cells are shielded by ABCG2 from
xenobiotic insults (Islam et al. 2005). However, at the brain barrier, maximum
analysis on ABCG2 in the CNS was carried out. By conducting differential screen-
ing of subtracted cDNA library in 2002, Eiseblatter et al. discovered ABCG2 at the
blood-brain barrier and have found 2.1 kb of mRNA overexpression in porcine brain
capillary endothelial cells treated with hydrocortisone (Eisenblätter and Galla 2002).
By Northern blot technique, it was found that this type of mRNA was extensively
present in endothelial cells isolated from pig brain capillaries. This encodes
656 amino acid proteins from ABC transporter that is largely similar to mouse and
human ABCG2. Cooray et al. reported mRNA as well as protein expression of
ABCG2 in microvessels from parts of the human brain shortly after this study
(Cooray et al. 2002). ABCG2 protein and mRNA have also been found in cultured
capillary endothelial cells, brain slices, or brain capillaries from mouse, rat, and cow
(Lee et al. 2007; Hartz et al. 2010a, b; Aronica et al. 2005). The two main ABC
transporters were identified by Dauchy et al., and they demonstrated that the ABCB1
and ABCG2 were extensively expressed in brain capillaries of isolated human
biopsies, with a 20–25 times enhancement of each transporter in capillaries versus
mRNA-based cortex as well as protein levels. As per ABCG2 blood-brain barrier
tests, its localization was expressed in the luminal membrane of human and rat
capillaries or endothelial cell cultures (Eisenblätter et al. 2003; Hori et al. 2004).
Further, the functional studies conducted in endothelial capillary cell cultures of pig
brain have revealed the efflux transport of daunorubicin (Eisenblätter et al. 2003) as
well as from brain perfusion experiments in wild type with ABCB1 deficient mice
with ABCB1/ABCG2 inhibitor, GF120918, as well as the ABCB1 inhibitor,
PSC833, showed transport of prazosin beside mitoxantrone by ABCB1 (Cisternino
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et al. 2004). More notably, several chemotherapy medications, including lapatinib,
imatinib, and dasatinib, have also been shown to regulate the blood-brain barrier
transporter ABCG2 (Shukla et al. 2009; Zhou et al. 2009; Breedveld et al. 2006)
which makes it a severe task in the treatment of brain tumors, especially
glioblastoma.

13.3.5.1.2 Regulation of ABCG2
Mainly three areas in the blood brain barrier have been thoroughly analyzed in
ABCG2 regulation. First is steroid regulation of ABCG2. The brain capillary
endothelial cell culture of rat was subjected to dexamethasone for about 24 h to
visualization function and upregulation of ABCG2 at mRNA and protein level
(Narang et al. 2008). The effect of dexamethasone on ABCG2 was aided by a
mechanism based on GR. Recently, the transport activity of ABCG2 was reduced
quickly due to the effect of 17-β-estradiol (E2) on the brain capillaries of rat and
mouse (Hartz et al. 2010a, b). The effect of E2 was observed to be fully reversible
within no time; it does not involve transcription, translation, or proteasomal degra-
dation, representing a non genetic mechanism of signaling. Second regulation of
ABCG2 was observed in inflammation. Exposure of 72-h IL-6, IL-1β and TNF-α
pro-inflammatory mediators has reduced mRNA and protein expression of ABCG2,
in the endothelial cell line of human brain hCME/D3 (Poller et al. 2010). In primary
cultures of porcine brain capillary endothelial cells, Wedel-parlow et al. (Poller et al.
2010) confirmed these findings. In these experiments, exposure to both the IL-6 and
TNF-α decreased the ABCG2 mRNA for 6 h, while IL-1β decreased ABCG2
protein. By comparison, ABCG2 protein was induced by ET-1. Last is the regulation
of ABCG2 in brain cancer. Bleau et al. (2009) showed that in glioma progenitor
cells, signaling via PTEN/PI3K/AKT controls the ABCG2 activity. These results
were significant because they can potentially be used against brain tumors or brain
tumor cells to target ABCG2 to improve brain cancer care.

13.4 Function of ABC Transporters in Alzheimer’s Disease

Alzheimer’s disease (AD) affects more than 25 million people worldwide, and this
figure is estimated to increase to fourfold over 100 million patients by 2050. This rise
would increase the cost of global health sector to unimaginable proportions. AD is a
debilitating illness, aside from the cost factor. Mentally and physically, AD patients
decline and turn performance of human beings to helpless dependents, thus
vanishing out existence. There are limited FDA-approved drugs available in the
market. Only patients with mild to intermediate AD showed response to these
medications but they cause serious side effects. In addition to this, a large number
of patients respond to therapy inadequately or not at all. Consequently, new treatments
that are directed to the underlying problem causing AD symptoms reverse are
today’s need.

However, AD is still a mystery, amid decades of scientific efforts; millions of
patients with safe and successful treatments remain unavailable. The hallmark
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signatures of AD are two proteins, amyloid-β (Aβ) and tau. Aβ’s physiological role
is still uncertain, but Aβ brain levels are poor in healthy people, while Aβ proportion
can be accelerated as many as 100 times in the brain of AD patients, where it
becomes cluster of plaques. The proteins associated with microtubules and that
interact with tubulin are the tau proteins; they mediate their incorporation into
microtubules, thus modulating axonal microtubule stability and flexibility. However,
tau phosphorylation leads to cause a disturbance in the organization and structure of
the microtubule, and AD hyperphosphorylation of tau protein leads to microtubular
collapse and ultimately results in neurofibrillary tangles within the neurons. The
hallmark of AD pathology is both Aβ plaques and neurofibrillary tau tangles and is
suspected to cause dementia and neurodegeneration. With an emphasis on
ATP-binding cassette (ABC) transporters near the blood-brain barrier and in CNS
cells, a new AD research area has developed over the last 10 years. ABC carriers use
ATP to transfer their substrates through organelles, cells, and tissue membranes.
Peptides, lipids, sterols, xenobiotics, and cholesterol, as well as certain toxins and
vast group of therapeutic drugs, are the substrates of ABC transporters involved with
AD. ABC transporters are considered as an integral element of many physiological
as well as biochemical pathways, thus playing a significant role in preserving the
homeostasis of the body by extruding metabolites and reducing xenobiotic absorp-
tion. Recently, researchers have found that ABC transporters have also played a
critical role in diseases where ABC transporter processes and pathways are altered.
This role is emerging for some ABC transporters, such as ABCA1, ABCA2, P-gp,
MRP1, and BCRP, in AD and other CNS disorders associated with high brain levels
of Aβ (Fig. 13.2).

13.4.1 ABCB1

ABCB1 is extensively expressed in excretory as well as barrier tissues, also known
as P-gp, which provides good protection against harmful nonpolar therapeutic drugs
in addition to xenobiotics. It was discovered in 1989 on human BBB vascular
endothelial surfaces (Cordon-Cardo et al. 1989). Accordingly, ABCB1 is also
expressed in choroid plexus, neuron, pericytes, and astrocytes (Bernstein et al.
2014). The BBB’s ABCB1 facilitates AD (Pahnke et al. 2014) occurrence as well
as onset (Pahnke et al. 2014). Different findings have revealed that expression of
ABCB1 via BBB has influenced the encephalon transport of endo-xenobiotics
(Potschka et al. 2002). Aβ was first reported to interact with ABCB1 by the use of
ABCB1-overexpressing HEK293 cells in 2001; this provides solid proof that
ABCB1 is an Aβ transporter (Lam et al. 2001). In addition, a clinical discovery
showed that the activity of ABCB1, which can be tested in vivo using (R)-[11C]
positron emission tomography (PET) and verapamil, is lower in Alzheimer’s disease
patients as compared to age-related healthy controls (Van Assema et al. 2012).
Similarly, ABCB1 insufficiency near the BBB has led to Aβ deposition in P-gp-
deficient null mouse in vivo. Additionally, the levels of brain Aβ accumulation were
increased in P-gp-deficient null mice relative to P-gp wild-type mice, showing a
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direct correlation between in vivo Pgp as well as Aβmetabolism (Cirrito et al. 2005).
In addition, a substantial decrease in Aβ intensities was observed in APP/PS+/�
P-gp wt mice relative to APP/PS+/� P-gp mice which indicates that upregulation
P-gp could be a legitimate method to reducing brain Aβ expression (Bruckmann
et al. 2017). Deposition of Aβ in the vessel walls was observed in 243 non-demented
human brain tissues of blood vessels with very less protein expression of ABCB1 by
immunohistochemistry (IHC) techniques in medical temporal lobe, whereas those
with higher ABCB1 protein expression displayed lower Aβ deposition, signifying
that P-gp might impact the removal of Aβ from the brain (Vogelgesang et al. 2002).
Conversely, βABCB1 protein expression as well as ABCB1 action was significantly
decreased in endothelial cells of porcine brain treated with Aβ42 for 48 h (Shubbar
and Penny 2018). Furthermore, studies have shown that levels of ABCB1 protein
decrease during normal ageing at BBB, which is positively associated with Aβ
accumulation in AD (Silverberg et al. 2010). Pro-inflammatory cytokines have
been found in Aβ-induced AD models, including TNF-alpha, IL-1β, and IFN-γ,
and these cytokines will downregulate the levels of mRNA of ABCB1 as well as
protein, intruding the unconstructive feedback loop between Aβ and ABCB1
(Alasmari et al. 2018). It has been shown that oxidative stress (OS) in endothelial
primary cultured rat cells has accelerated ABCB1 expression as well as activity near
the BBB endothelium (Sita et al. 2017). However, there is conflicting information
regarding the involvement of ABCB1 to the clearance of Aβ. Likewise, pretreatment
of rats with inhibitors of ABCB1 (quinidine and/or verapamil) showed no improve-
ment in the amount of Aβ crossing the BBB in rats (Ito et al. 2006). Collectively, in

Fig. 13.2 Classification of
ABCA subfamily
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the above studies and animal models, the paradoxical findings can be described by
using different cell lines, presenting that certain physiological changes can impact
Aβ buildup. To treat AD, investigators have discovered a novel therapeutic treatment
or medication targeting ABCB1. In vivo studies have revealed that treatment with
ibuprofen can reinstate reduced mRNA as well as protein expression of ABCB1 in
APP/PS1 mice (Zhang et al. 2018). In another study, it was found that a substrate of
P-gp is Huperzine A (HupA) which is an effective inhibitor of acetylcholinesterase
(AChE), isolated from Huperzia serrata. HupA has been used to target central
nicotinic and muscarinic receptors in the treatment of AD and pose neuroprotective
properties by inducing strong anti-inflammatory effects (Damar et al. 2016). The
brain versus plasma concentration of Huperzine A was considerably improved in
Abcb1-deficient mice. Furthermore, the findings indicated that P-gp would mediate
the distribution of Huperzine A in brain distribution (Li et al. 2017). Similarly,
1,1-(1,10-biphenyl]-4–4-diyl) bis(3-(piperidin-1-yl) propan-1-1-one)
dihydrochloride (DL0410), a new artificial dual AChE/butylcholinesterase
(BuChe) inhibitor for AD cure, presented multidrug properties for AD treatment,
for example, refining cognitive deficits, improving synapse loss, inhibiting the
activity of cholinesterase, as well as reversing the plaque load produced by Aβ
(Zhou et al. 2016; Yang et al. 2015; Lian et al. 2017). P-gp regulated the transport of
DL0410 in Caco-2 and MDCK-MDR1 cells, indicating that additional effectiveness
along with safety in drug versus drug interactions in AD treatment should be
considered (Dodacki et al. 2017).

13.4.2 ABCG2

ABCG2 also called breast cancer (BCRP) protein is found in endothelial cells of
BBB and has a defensive role in preventing xenobiotic absorption (Mao 2005).
Mounting evidence has shown that in brain endothelial cells, ABCG2 mediates Aβ
transport. In vitro studies have shown that the HEK293 cells steadily transfected
with human ABCG2 can mediate cellular inflow of Aβ40. In addition, the study also
found that GF12918 (a dual inhibitor of ABCB1 and ABCG2) can be blocked by Aβ
uptake in ABCB1-deficient mice by means of an in situ brain perfusion procedure,
indicating that ABCG2 is also expressed in BBB as well as involved in transport of
Aβ40 (Do et al. 2012). In addition, Aβ deposition increased significantly in ABCG2-
deficient mice relative after intravenous Aβ injection in wild-type mice, indicating
that ABCG2 can inhibit Aβ from entering the brain (Shen et al. 2010). Gene and
protein levels of ABCG2 have been increased in the cerebral vessels of patients with
AD and mouse models of AD, in comparison to ABCB1 levels (Xiong et al. 2009).
The authors proposed that ABCG2 increase could serve as a vascular pathology
biomarker for cerebral amyloid angiopathy (CAA). Additionally, after genome-wide
analysis it was shown that absence or presence of ABCG2 C/C genotype along with
apoE (APOE) is the potent factor for AD pathogenesis (Fehér et al. 2013). The brain
endothelium, mediated by ABCG2 (Zhou et al. 2017), can be penetrate certain
compounds that prevent Aβ accumulation in AD models.
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13.4.3 ABCG4

ABCG4 are half transporter which (Cserepes et al. 2004) often dimerizes with
ABCG1 to become stable. ABCG4 is excessively found in endothelial primary
cells, glial cells, as well as brain neurons in order to facilitate cholesterol efflux to
produce lipoprotein comprising of apoE (Tarr and Edwards 2008; Dodacki et al.
2017). Several studies have found, to the best of our knowledge, that ABCG4 can
influence the development and clearance of Aβ. In comparison with ABCG4-KM, a
class of walker A lysine mutant of ABCG4, Sano et al. (2016) observed that the
elevated APP levels tend to increase in HEK/APPsw cells rapidly transfected with
ABCG4. In addition, the author showed that the decreased secretion of Aβ was
caused by altered distribution of γ-secretase. They also showed that Aβ secretion was
raised during the inhibition of ABCG1 and ABCG4 by SH-SY5Y cells. These
researchers argued that ABCG4 could suppress the development of Aβ and the
formation of Aβ plaque (Sano et al. 2016). The impact of ABCG4 on the clearance of
Aβ from BBB has been documented in studies. In HEK293 cells, stably transfected
with mouse ABCG4, mediated the cellular inflow of Aβ. In addition, probucol fully
inhibits Aβ efflux from HEK293-ABCG4 cells (Do et al. 2012). Similarly, the
authors demonstrated that ABCG4 acts at the luminal surface of endothelial capillary
cells in mouse and can transport both Aβ and cholesterol by using an ABCG4-
deficient mouse model. The author associated impaired sterol metabolism with
competitive inhibition of Aβ efflux as well as progression of AD (Dodacki et al.
2017).

In addition, the study showed that in microglial cells, levels of ABCG4 are
considerably increased and could lead to Aβ degradation by phagocytosis (Uehara
et al. 2008). There is a need for further studies to investigate the role of ABCG4 in
AD pathology which may increase clearance speed of Aβ for AD pathogenesis.

13.4.4 ABCA1

ABCA1, known as the regulatory protein of cholesterol efflux (CERP), is commonly
distributed in brain tissues and can induce cholesterol and phospholipid efflux to
ApoE. A significant risk factor in AD pathogenesis is cholesterol metabo-
lism impairment in the brain since cholesterol levels are known to increase Aβ
development by disturbing BACE1 (Fernández-Pérez et al. 2018). As ABCA1 levels
are expressed in the endothelial cells along with neurons of the brain, they do not
specifically transport Aβ (Akanuma et al. 2008). ABCA1 can affect the development
and degradation of Aβ rather than the efflux in the BBB. The study presented that
high level of ABCA1 gene as well as protein induced by LXR ligands might
upregulate the concentration of secreted Aβ and might be reversed using the RNAi
method by blocking ABCA1 expression (Fukumoto et al. 2002). In addition,
homeostasis of cholesterol in BBB models is controlled in vitro by ABCA1 and
ABCG1. Bexarotene (an RXR agonist) stimulates the expression of ABCA1,
facilitates the exchange of cholesterol amid the blood as well as the brain, and
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reduces the inflow of Aβ through the BBB (Kuntz et al. 2015). Furthermore, current
study has observed that increase of glucose decreases the expression of ABCA1 and
in addition increases the amount of intracellular cholesterol, which controls the
localization of LXR alpha/ABCA1 in the lipid raft as well as trigger BACE1 in
SK-N-MC cells (Lee et al. 2016). These findings indicate that ABCA1 facilitates
lipid and cholesterol rafts in BACE1 APP processing. ABCA1 controls the levels of
ApoE as well as lipidation of ApoE, whereas ApoE is known to be a chaperone for
Aβ, influencing both its clearance and its aggregation (Holtzman et al. 2012). The Aβ
level was discovered to be significantly greater in 12-month PDAPP Abca1�/�
mice than in PDAPP Abca1�/�mice without interfering the processing of APP and
carbonate-insoluble ApoE co-localized along with Aβ plaques, suggesting that
defectively lapidated ApoE co-deposits with insoluble Aβ (Wahrle et al. 2005).
The author also found overexpression of ABCA1 in the mouse brain escalates
lipidation of ApoE and reduces deposition of Aβ (Wahrle et al. 2008). Similarly,
microRNA-33 over expression-induced ABCA1 reduction raises cellular cholesterol
as well asthioflavin a type of S- positive plaques, leading to amyloidogenesis
(Wijesekara et al. 2016). In the hippocampal area of patients with AD, however,
mRNA expression of ABCA1optimistically related with the severity of dementia
(Akram et al. 2010). Hence, it can be used as a therapeutic target to aid and assist
apoE/Aβ interactions inside the brain by influencing ABCA1 expression and its
activity. The current research discovered CS-6253, which could activate directly
ABCA1 (ABCA1 agonist), in vitro increase apoE lipidation, and reverse the accu-
mulation of apoE4-driven Aβ and tau hyperphosphorylation. The cause of late-onset
AD may be certain environmental and genetic variables. In H4-AβPPs cells,
dichlorodiphenyltrichloroethane (DDT) affects the role of ABCA1 which then
increases the amount of Aβ (Li et al. 2015). In the general population, ABCA1
N1800H, a functional mutation observed in 0.2% of individuals, was linked with an
increased possibility of AD (Nordestgaard et al. 2015). In addition, in three genetic
models, ABCA1 rs2422493 (C-477-T) polymorphism is statistically significantly
related with an increased threat of AD (Chen et al. 2016). The ABCA1rs2230806
polymorphism reacted well to the treatment of donepezil (DNP) in Han Chinese
patients with AD, a drug used to enhance cognition of patients with AD (Lu et al.
2018). Similarly, in AD patients in northern China, the ABCA1 R219 K allele
caused a decrease in ABCA1 (Ya and Lu 2017). The small molecular inducer
P2X7 was observed to increase ABCA1 as well as ApoE lacking direct activation
of the LXR pathway on the basis of the above findings (Fan et al. 2018).

13.4.5 ABCA7

Another CERP, ABCA7, shares a 54 percent sequence similarity with ABCA1 also
expressed in endothelial cells of the microglia, neurons, and brain (Kim et al. 2006;
Gosselet et al. 2009). ABCA7 facilitates transition of phospholipids as well as
cholesterol to lipid-poor apolipoprotein acceptor through cell membranes (Chan
et al. 2008). Several groups have shown that ABCA7 can control homeostasis of
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Aβ and pathology of Aβ. Research has revealed that ABCA7 acts in the processing
of APP, resulting in increased secretion of Aβ that can possibly be related to the
action of endocytosis in microglia (Satoh et al. 2015). ABCA7 could also substan-
tially inhibit Aβ secretion in stably expressing APP Chinese hamster ovary (CHO)
cells without influencing the activities of alpha- and β-secretases (Chan et al. 2008).
ABCA7 deficiency in APP/PS1 mice raises Aβ levels and, in addition, intensifies the
burden of amyloid plaque (Sakae et al. 2016). In transgenic mice, ABCA7 deficiency
can exacerbate the burden of amyloid in the brain, consistent with these findings
(Kim et al. 2013). In microglia, ABCA7 is also active in Aβ clearance. The
phagocytic Aβ clearance in microglia in Abca7�/� mice was observed to be
significantly decreased in comparison to that in wild-type mice (Fu et al. 2016). In
addition, the absence of ABCA7 endothelial cells of mouse induces a decrease in
basolateral-to-apical transport of Aβ peptides (Lamartinière et al. 2018). The author
has shown that, not directly but in the presence of ApoI-J, ABCA7 affects Aβ
transport. Records from multiple genome-wide association studies (GWAS) have
revealed that ABCA7 is a risk factor for late-onset AD, the only ABC transporter
reported by GWAS (May et al. 2018; Efthymiou and Goate 2017). GWAS has
identified several gene variants, for example, ApoE, apolipoprotein J (ApoJ,
clusterin), and phosphatidylinositol-binding clathrin assembly protein (PICALM)
(Lambert et al. 2009; Harold et al. 2009), which are thought to be known as risk
factors for AD. Aβ clearance can be affected by both ApoE and ApoJ. Bell et al.
showed that Aβ clearance in the BBB increased when ApoE was bound by LRP1-
mediated transport to Aβ, while ApoJ was bound by LRP2-mediated transport to Aβ
(Zlokovic et al. 1996; Bell et al. 2007). The ABCA7 SNP rs3764650 sequence was
involved in the incidence of AD and is related with a moderate decrease in the
expression of ABCA7 (Zhao et al. 2016; Vasquez et al. 2017). In addition, the
ABCA7 SNP (rs3764650) is also correlated with the risk of AD in the Chinese
population, although its risk may be increased by age and ApoE4 status (Liu et al.
2014). In African Americans, ABCA7 rs3764647 and ABCA7 rs115550680 were
associated with risk of AD (Reitz et al. 2013; Logue et al. 2011). In the Spanish
population, ABCA7 rs4147929 is correlated with LOAD (Moreno-Grau et al. 2018).

13.4.6 ABCC1

In pericytes, astrocytes, and capillary endothelial cells (Wolf et al. 2012), ABCC1, a
strong efflux pump at the BBB, is located on both sides of the brain (Gazzin et al.
2008). The role of ABCC1 in AD has been shown by several studies (Ballerini et al.
2002). In vivo experiments have shown that transgenic mice lacking ABCC1, Aβ40,
and Aβ42 levels were elevated in APP/PS1 compared to ABCC1-positive controls
(Krohn et al. 2011). Furthermore, scientists discovered that thiethylperazine, an
ABCC1 activator, might decrease Aβ load in transgenic APP/PS1 mice (Krohn
et al. 2011). These findings indicate that extracts of St. John’s wort may be a
medicinal medication for AD treatment, which needs more study.
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13.5 Potential Alzheimer’s Therapeutic Goals

13.5.1 ABCA1 and ABCA2

While ABCA1 and ABCA2 belong to the same subfamily of ABC transporters, their
physiological roles and possible involvement in AD pathophysiology are distinct.
For proper lipidation of proteins, ABCA1 is essential in the CNS. Reduced levels of
ABCA1 protein produce lipid-poor ApoE that tends to escalate the aggregation of
Aβ. In AD mouse models, several studies have shown that LXR-mediated
upregulation of ABCA1 increases ApoE levels, decreases Aβ brain levels, and has
beneficial effects on cognition (Koldamova et al. 2005; Burns et al. 2006; Lefterov
et al. 2007; Riddell et al. 2007; Jiang et al. 2008; Donkin et al. 2010). Since there are
various compounds available to activate LXR, this strategy may be a possible AD
therapeutic strategy. In addition to ABCA1 upregulation, however, activating LXR
also raises the level of expression of ABCG1, another ABC superfamily lipid
transporter, and ApoE. This is significant as both ABCG1 and ApoE have also
been involved in AD (Wollmer et al. 2007). As a result, the useful effects of LXR
may be due to the upregulation of fewer types of proteins and may involve other
proteins that regulate transport as well as lipid metabolism, for example, Cyp7a1 or
the transfer protein of cholesterol ester (Honzumi et al. 2010). Therefore, it is
difficult to interpret the findings of the study due the complexity of the LXR
regulatory network, and further research is needed to conduct to distinguish the
functions of ABCBA1, ABCG1, and ApoE, along with further proteins in
AD. Comparative to ABCA1, ABCA2 over expression increases the synthesis of
APP, and boosts brain levels of Aβ (Chen et al. 2004; Davis 2010). It means that
decrease of ABCA2 can likely decrease brain levels of Aβ and have a beneficial
impact on cognition. Till today, there is no research which clarifies the role of
ABCA2 as a therapeutic strategy in AD under physiological as well as pathophysio-
logical circumstances.

13.5.2 P-Glycoprotein

P-gp can theoretically be utilized as an AD therapeutic target, given its crucial
position in the neurovascular Aβ clearance mechanism. As described above, a
novel strategy has been proposed to stimulate PXR, the nuclear receptor to reestab-
lish the blood-brain barrier P-gp, and therefore to minimize Aβ brain load as well as
slow cognitive loss (Hartz et al. 2010a, b). Loeb et al. (2004) found that in this
respect, patients treated with antibiotics doxycycline and rifampicin having slight-to-
moderate AD every day for 3 months in a randomized, triple-blind, and controlled
clinical trial substantially slowed cognitive deterioration compared with control
group patients. Interestingly, PXR is activated by both doxycycline and rifampicin
(Yasuda et al. 2008). Thus, one potential reason for these patients’ gradual cognitive
deterioration is that rifampicin and doxycycline turn on PXR, which amplified the
levels of the blood-brain barrier P-gp, which in turn may have improved the
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clearance of Aβ in the brain, dropped the levels of Aβ in the brain, and thus
decreased the progressive decline in cognition. However, this theory remains to be
confirmed. An alternative technique is to undo the underlying mechanism which
decreases the levels of expression and functional activity of the blood-brain barrier
P-gp in AD. Awareness of this process could help establish goals for protecting
P-gp, maintaining brain clearance of Aβ, preventing slow accumulation of Aβ in the
brain, and preventing or delaying AD. In a recent review, the impact of Aβ on blood-
brain barrier P-gp as well as expression of LRP in mice was investigated by Brenn
et al. Aβ40 and Aβ42 were re-administered for 24 h via an ALZET Mini-Osmotic
pump implanted subcutaneously. Researchers found that only Aβ42 significantly
reduced the levels of mRNA expression of ABCB1 along with LRP1 in vivo, but no
variations were seen at the protein level (Brenn et al. 2011). But rather than
prescribing Aβ to the brain, this may have been attributed to peripheral Aβ adminis-
tration, which would have imitated AD pathology more closely. Further research are
not available that discuss the mechanism which reduce P-gp near the blood-brain
barrier in AD. Studies undoubtedly show that restoring expression of P-gp as well as
function may be effective in improving brain clearance of Aβ and decreasing brain
levels of Aβ (Cirrito et al. 2005; Hartz et al. 2010a, b). Though, it is now important to
critically evaluate the hypothesis that restore that P-gp at the blood-brain barrier may
function as a legitimate therapeutic approach to minimize Aβ brain burden, decreas-
ing cognitive impairment, and delay in advancement of AD.

13.5.3 MRP1

Krohn et al.’s (2011) research is currently the first single proof which indicates a
potentially significant function for MRP1 in the in vivo removal of Aβ from mouse
brain. More specifically, scientists offer proof of concept of a possible novel
therapeutic method for the treatment of AD. There are three crucial points to be
discussed. First, it is important to explain the comprehensive miniature mechanism
through which thiethylperazine influence MRP1 and probably other mouse (and
ultimately human) transporters. Such understanding is important because
thiethylperazine tends to activate MRP1 while simultaneously inhibiting P-gp.
Furthermore, although the dose of thiethylperazine reduced Aβ brain load, the direct
impact on in vivo barrier in blood to brain MRP1 expression and/or functional
activity resides indistinct. Second, there is debate about MRP1 place near the
blood-brain barrier in humans as well as in rodents. Although few researches
indicate that MRP1 is located in the luminal part of the cell membrane, other studies
have established expression of MRP1 in the cell membrane (Nies et al. 2004; Zhang
et al. 2004; Soontornmalai et al. 2006; Kilic et al. 2008). A current research, though,
by Roberts et al. (2008) shows that rat MRP1 is expressed in the brain capillary
endothelium on both the luminal and abluminal membranes. Based on this result, the
transport of Aβ mediated by MRP1 might occur in one or two directions: (1) by
luminal MRP1 into the brain and (2) by luminal MRP1 out of brain into the capillary
lumen. Last, there is direct proof that Aβ is transported near the blood-brain barrier
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via P-gp; however, for MRP1, such straight proof is unavailable till now. Together,
further research is needed to validate existing records to demonstrate clearly MRP1
is highly intricate in Aβ brain clearance as well as a legitimate AD treatment target.

13.5.4 BCRP

Quickly after the first researches were reported on P-gp as well AD, investigators
proposed that Aβ is also transported by BRCP and contributes to clearance of Aβ in
the brain. The existing information, however, is contradictory, and the role of BRCP
in AD is inconsistent as well as inadequate at this point. Although some study shows
that Aβ is transported by BCRP (Tai et al. 2009; Xiong et al. 2009), further research
indicate that BCRP is not transported via Aβ (Hartz et al. 2010a, b; Krohn et al.
2011). There is also contradictory evidence from AD patient brain samples: BCRP
protein levels have been documented to be unchanged at the blood-brain barrier
(Wijesuriya et al. 2010); however, other research shows an increase in BCRP
expression (Xiong et al. 2009). The conclusion is incompatible to what one can
imagine if BRCP led to blood brain clearance of Aβ. One reason for BRCP in AD is
that it can serve as a gatekeeper to prevent Aβ from inward the brain at the blood-
brain barrier (Xiong et al. 2009). This however varies with the present knowledge of
AD etiology, which puts forward that Aβ accumulation in the brain is not due to
increased Aβ uptake but rather to decreased brain Aβ clearance. Several problems
may lead to these contradictory results. Changes in the expression and/or behavior of
transport could, for instance, rest as per AD model, patient or image, and/or inter-
individual dissimilarities between patients and research animals.

13.6 Conclusion

ABC transporters are essential factors for the smooth function of the blood-brain
barrier. ABC transporters provide protection via efflux and influx mechanism. The
transporters efflux the toxic endogenous material out of the cell and thus also provide
protection to the CNS and neurons. Going through all the ABC transporters, the
involvement of transporters with Alzheimer’s disease (AD) is clear. However,
researchers are still working for the exact role of ABC to elicit the neurological
complications including AD. However, researchers must investigate the immediate
effect and signaling in order to discover a therapeutic approach for healthy ABC
transporter functions. The effect of genetic heterogeneity, which is a risk factor for
the production of AD, needs to be investigated in relation to the loss of
neuroprotective function and amyloid beta clearance efficiency of the whole BBB.
Aβ oligomers are important in the pathogenesis of Alzheimer’s disease. Although it
has been shown that impaired clearance increases the amount of Aβ in the brain and
increases the likelihood of Aβ oligomer forming, further study on the function of the
ABC transporter in clearing Aβ oligomers is needed. Understanding the mechanisms
by which ABC transporters regulate and control the development and clearance of
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Aβ can show not only the disease-regulating role of transporters but also the
pathogenesis of transport disorders in the neurodegenerative phase seen in
Alzheimer’s disease. The findings in this chapter clearly suggest that the ABC
transporter prevents Aβ deposition by regulating the processing or removal of Aβ,
thereby protecting the brain, and thus is likely to counteract the progression of
Alzheimer’s disease. As a result, in the process of developing drugs against these
two transporters, further clarification of these transporters, especially ABCB1 and
ABCA1, is critical. The two transporters are the most researched, with clear data
tying them to the pathology of Alzheimer’s disease. Despite some contradictory
outcomes from the above text, the findings favor their upregulation as a therapy to
improve, heal, or deter disease development.

Henceforth, when regulating ABC transporters, long-term consequences should
be considered, such as decreased brain clearance and drug tolerance under trans-
porter induction/activation conditions. Understanding the specific signaling
mechanisms that control these transporters could lead to better drug distribution to
the brain, which could have a significant effect on the prevention and treatment of
brain diseases.

The role of ABC transporters in preserving brain physiology and homeostasis
(including regulating Aβ levels) is highlighted in the chapter by their involvement
and subcellular and cellular distribution in the brain parenchyma and BBB.
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Autism Spectrum Disorder Relationship
Between Sleep and Behavior: The Effect
of Sleep Variability Exploration
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Abstract

While it has been shown that severe sleep issues are normal in children through
autism spectrum disorder (ASD), and inadequate sleep exacerbates problem-
focused daytime behavior, study and clinical practice have not been very
concerned with such relationships. The recommendations on therapy for treating
challenging behaviors in ASD do not include sleep or are very minimal. In
addition, less attention is being paid to children with low autism, who are
frequently affected by extreme sleep disruptions and difficulties with their behav-
ior. This chapter discusses the nature of ASD sleep disorders and emphasizes the
implications of sleep disruptions for people with low autism. This is suggested to
help understand symptoms and behavior profiles (or vice versa) and thereby
contribute to better-targeted treatments by identifying ASD children based on
the essence of their sleep disorders. This chapter ends by addressing current
knowledge limitations and suggests fields that are essential for future study.
The treatment of ASD sleep is highly likely to improve the conduct of the day
and the family in this exposed population. In this chapter, we demonstrate the
need to define sleep profiles for children with low-functioning autism, particularly
for challenging behavior in this condition.
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14.1 Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by
impairments in social contact and the occurrence of restrictive and repetitive
behaviors and desires (Del Barrio 2016). Often people with ASD have issues with
mental health, such as observational/powerful behavior, aggressiveness, self-injury,
mood swings, hyperactivity and attention problems, anxiety, and sleep problems
(Anagnostou et al. 2015). Such problems coexist with the main signs of diagnosis
and have an overall effect on the functioning, quality of life, and care results for
people living with ASD. ASD is a condition characterized by problems in social
contact and repetitive and stereotyped attitudes (Cooper 2017). While ASD’s global
burden is unknown today, the company costs for this condition were recently
estimated in the United States at $126 billion and in the United Kingdom at
$34 billion (World Health Organization 2013). Autism is one of the most enigmatic
childhood development disorders, with a dramatic rise from 1 in 88 children in 2008
to 1 in 68 in 2010 (Christensen et al. 2016).This rise and economic burden
establishes ASD patients as one of the most important clinical research and devel-
opment priorities. In ASD, the prevalence of sleep disorders is between 50 and 80%.
Sleep issues are one of the key concerns posed by child caregivers with ASD
(Humphreys et al. 2014; Reynolds and Malow 2011). Sleep performs many
functions in a growing child including energy consumption, brain development,
consolidation of memory, and cognition (Stores and Wiggs 1998). At present,
children through autism with sleep disturbances with more than 40–80% sleep
issues, in comparison to 25–40% normally developing children (TYP) is one of
the most burdensome concerns of the children with autism (Marrus and Constantino
2016). Owing to the importance of regular sleep, the outcome of sleep issues is
potentially serious for people with ASD. Recent work has found inadequate sleep
aggravates the frequency of main ASD symptoms (Tudor et al. 2012; Liu et al. 2006)
and other ill-adaptive behaviors (e.g., self-injury, tantrums, and violent behavior)
(Henderson et al. 2011; Ferguson et al. 2019). The association between sleep profiles
and behavior issues in people through ASD has been limited to date. The basic
nature of the disorders in people with low autism cannot be addressed by present
sleep therapies. In this chapter, we demonstrate the need to define sleep profiles for
children with low-functioning autism, particularly for challenging behavior in this
condition.
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14.2 Autism Spectrum Disorder Sleeping Problems

ASD also leads to comorbid disorders and related symptoms, including sleep
disorders (Matson and Rivet 2008; LoVullo and Matson 2009). Poor sleep among
parents and caregivers of ASD is one of the most burdensome and heavy complaints.
Evidence suggests that about 40–80% of people with ASD are sleeping, and the risk
does not seem to depend on the extent of cognitive impair (Cortesi et al. 2010). Other
findings found that individuals with low autism are more vulnerable than those with
higher function, despite the degree and extent of their cognitive disorder, to recurrent
dormant process disturbances (Sajith and Clarke 2007). This chapter suggests that
recognizing, defining, and treating low-functioning autism sleep disturbances may
have beneficial effects for related symptoms and daytime behavior and thereby
enhance the lives of this group.

14.3 Autism and Poor Functioning

ASD is known for its extraordinary phenotypic heterogeneity, also considered an
obstruction to the investigation of diagnosis, etiology, treatment, and prediction
(Charman et al. 2011). The degrees of disability of ASD people are variably
described as having a rational proportion that is not as large (<70) and higher
(T70), correspondingly. The level of disability is therefore variably different
among individuals who have low autism and high autism (Battle 2013). In addition
to the signs of core ASD, many children with low autism can have extreme
behavioral problems including tantrums, violence, environmental damage, a socially
deficient behavior, and self-injury (Kanne et al. 2011). The new DSM-V are the far
bigger impairments in people with low autism than those encountered by their more
successful peers (Ni Chuileann and Quigley 2013). There is also a much more
nuanced medical image of children with low-working autism, with more ASD
symptoms and related co-morbidities, and a broad intervention for children over a
lifetime. To date, equal consideration has not been extended to these groups of
people about individuals through high-functioning autism.

14.4 ASD and Other Psychological Symptoms

A third possibility is that sleep disorders are entirely irrelevant to ASD. The associa-
tion between sleep disturbances and related psychiatric comorbidities in people who
have ASD is significant in this context. Sleep disorders can exacerbate related
psychiatric symptoms such as interference or abuse (Daroff 1991). In comparison,
medical conditions like attention deficit/hyperactivity disorder (ADHD) can also be
linked to exacerbating sleep disturbances in individuals with ASD. It is characterized
by difficulty with social communication as evidenced by “deficits in social-
emotional reciprocity deficits in nonverbal communicative behaviors for social
interaction deficits in developing, maintaining and understanding relationships”
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(Liu et al. 2017). People with ASD are often represented literally, directly, honestly,
steadily, and loyally in plain language (Conte 2021). Many people with ASD are
distressed by unanticipated schedule changes or unexpected events and tend to thrive
with rules and routine (Henry 2020). ASD and sleep-associated problems are shown
in Fig. 14.1.

14.5 Sleep Disorder Variation in ASD

ASD is seen as a multifaceted condition with various symptoms in individuals, it is
no wonder that many sleep disorders in this population are prevalent. Furthermore,
the sleep pattern variation in ASD indicates mixed phonotypical ASD sample
profiles. Excessive sleep delay, decreased sleep duration, declared sleep time,
increased sleep wake, and sleep resistance for 1 day are the most common problems
for children with ASD; see (Hollway and Aman 2011) for further review. Therefore,
sleep problem that is common for ASD children, but others. Such sleep issues seem
to continue throughout the patient’s life (Matson et al. 2008a), and individuals with
ASD who have an ASD problem also suffer from sleep problems together (Rong
et al. 2021; Souders et al. 2009). Several of those issues can be categorized as a
primary sleep disorder (e.g., insomnia, parasomnia, and circadian sleep-wake
diseases) under the International Classification of Sleep Disorders (ICSD-3) (Daroff
1991). Table 14.1 displays mainly the common sleep problems in ASD, according to
ICSD-3, to provide a sense of the sleep spectrum and severity of difficulties in ASD.
To date, several sleep research studies at ASD have concentrated on individuals who
can communicate with and participate in sleep actigraphy and polysomnography
with high-functioning autism (Allik et al. 2008). The existence and occurrence of
sleep disorders in low-functioning autism is generally unclear. The cruelty of sleep
disorders (such as sleep and sleep delay) and the extent of autism symptoms (e.g.,
communication deficits) was shown by one study (Tudor et al. 2012). One research
has indicated that the increased severity of the autism causes an increased risk of
sleep difficulties, but these linkages are still uncertain, and low-functioning autism
sleep profiles have not yet been explained. To date, precise sleep patterns and
symptoms of low autism persons remain unknown.

Fig. 14.1 ASD and sleep-associated problems symptoms
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Table 14.1 ICSD-3 Sleep disturbances in children through ASD with a description and confirma-
tion identification

ICSD-3
classification Sleep summary Study

Sleep
actions

Significant findings of
the ASD population

Insomnia The initiation of sleep,
treatment, length,
consolidation, or
coherence is an
ongoing issue

Wiggs and
Stores
(2004)

Actigraphy
and SQ

Increased latency of
sleep, night awakens,
and low sleep
effectiveness

Includes resistance to
sleep, regular night
awakenings, and/or
sleep failure

Malow
et al.
(2014),
Deye et al.
(2016)

PSG and
CSHQ

Sleep quality
decreases, sleep takes
longer, and wakes
occasionally at night
(2–3 h)

Goodlin-
Jones et al.
(2008)

Actigraphy
and SD

Sleeping time is lower
in comparison with
TYP or DD children

Krakowiak
et al.
(2008)

SQ Improved sleep and
night awakenings in
contrast to traditional
children

Anders
et al.
(2011)

Actigraphy
and SD

ASD children 2 years
of age slept on average
less than controls for
24 h every 24 h

Parasomnias Undesirable physical
sensations that take
place during sleep or
sleep excitement.
Features nightmares,
wake screams,
dynamic movements,

Hering
et al.
(1999)

Actigraphy
and SQ

54% of children have
numerous and early
night anticipation with
ASD

Hallucinations and
unconscious
movement of the
nervous system

Doo and
Wing
(2006)

SQ, CSHQ,
and
actigraphy

All studies indicate
higher parasomnia
rates in children with
ASD in accordance
with similar groups

Schreck
and Mulick
(2000)

Circadian
rhythm
sleep-wake
disorders

Changes to the
circadian time keeping
system, its function for
preparation, or
misalignment of the
external and
endogenous circadian
rhythm manifestations
in sleep initiation and
maintenance difficulty

Giannotti
et al.
(2008)

PSG and
CSHQ

10% of children living
with ASD reported
problems with sleep
that differ by season as
light/dark cycle
fluctuations

Tordjman
et al.
(2013)

Measures
of
melatonin

Strong routine and
weak nocturnal
melatonin relative to
controls in individuals
with ASD
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14.6 Behavioral Problems

Children with ASD also have several issues, including agitation, violence, self-
injury, hyperactivity, impulsiveness, and noncompliance (Postorino et al. 2017).
Such behavioral issues raise parental stress and negatively impact family life quality
(Dabrowska and Pisula 2010; Mugno et al. 2007). Several studies have shown that
sleep disorders can intensify behavioral issues in people with ASD (Patzold et al.
1998; Goldman et al. 2011). For example, in a study of 45 children with ASD, Fadini
et al. (2015) established that sleep disruption was connected with the use of the Child
Behavior Checklist (CBCL) for thinking and complete behavioral issues. In 166 kids
with ASD relative to 111 uninfluenced babies, Park et al. (2012) reviewed the sleep
disorders and their correlations with comorbid psychoanalysis. The authors find that
children with ASD and sleep disorders are more likely than children who are not
sleep-impaired to engage in violent behavior, internalize, externalize, and have total
problems of behavior. This result supports the idea that improving the sleep of young
children can reduce behavioral problems for children and in effect can reduce
parental stress and improve the functioning of the family. One of the study on the
practice route in children and youths with ASD for detection, assessment, and
management of insomnia indicates to pharmacological treatment (i.e., melatonin)
might be suggested in certain circumstances (Malow et al. 2012). Parents with kids
with ASD and sleep disorders should also use tools to cope with these disorders. The
function of parents in lessons them techniques to avoid or react to such behaviors is
commendable for parent training as the first-line intervention model. Competent
measures such as sleep hygiene in children with ASD are successful in managing
sleep difficulties (Dunn et al. 2012; Loring et al. 2016; Pattison et al. 2020).
Randomized controlled trials by Johnson and others have shown the feasibility
and initial efficacy of parent training interventions in sleep disorders in a population
of well-characterized young children with ASD (Johnson et al. 2013). Several
features in ASD were identified for early disorder characterization and are often
referred to as “Red ASD flags” (Leaf et al. 2020). Symptoms of ASD and features
usually occur at the age of 2, and most ASD children prefer solitaire, no pretense, or
symbolic play up to this age as well (Leader et al. 2020).

14.7 Over-Activity and Carelessness

Hyperactivity and inattention to ASD are frequently found in children with ASD,
with about 30% meeting the diagnostic requirements for ADHD (complicated
hyperactivity disorder with attention deficit) (Simonoff et al. 2008). Numerous
research found that children with ADHD are experiencing serious sleep disturbances
including erratic sleep, sleep disruptions, insomnia, and finally day sleep (Singh and
Zimmerman 2015). The presence of these signs may also increase the probability
that people with ASD may suffer from sleeping disorders. DeVincent et al. (2007)
also showed that ASD children with sleep issues have had higher ADHD levels
compared with children without sleep problems as they investigated the associations
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between sleep problems and psychological symptoms. Wheelwright et al. 2010 also
concluded that ASD weaker sleepers had greater recorded inattention, hyperactivity,
and restricted/repetitive behavior in the assessment of the probable effect of parental
sleep issues on sleep planning during objective trials (e.g., actigram). Also care for
symptoms of ADHD, such as methylphenidate, drugs are recognized to interfere
with sleep and even to boost sleep issues. Sangal et al., for example, noticed in a
randomized, two-blind crossover study (Sangal et al. 2006) that sleep-induced
latency was substantially higher than that of atomoxetine in 85 ADHD infants
with methylphenidate.

14.8 Treating ASD Children’s Sleep Disorders

Significant sleep disorders in children with autism are increasingly apparent, but
little study has been carried out in this population on the evidence of sleep treatments
(Knight and Johnson 2014). Sleep disturbances in ASD are often untreated and
ignored because many behavioral issues continue to prevail (Cortesi et al. 2012). By
contrast, research has shown that melatonin is helpful even to kids with ASD who
suffer from sleep latency problems because night wake is known to increase and to
disrupt sleep maintenance (Rossignol and Frye 2011). Some research promotes the
effectiveness of melatonin in reducing the duration and increasing the total amount
of sleep when administered near bedtime (Goldman et al. 2014; Dodge and Wilson
2001). Effective intervention for improving the start of sleep and maintenance in
ASS has been shown in the conduct of interventions such as sleep hygiene strategies
aimed at environment change to facilitate daily sleep-wake cycles (Weiskop et al.
2007). The potency of melatonin is also affected by sleep disturbances and environ-
mental and other medical conditions (Damiani et al. 2014). Despite the absence of
biological causes, the first diagnosis of sleep disturbance in ASD is parent-based
education and behavioral strategies (Grigg-Damberger and Ralls 2013). The
concepts regulating sleep hygiene include the selection and setup of a suitable bed,
increasing TV views, and stimuli for emotion and action during the night. For
patients with circadian sleep disturbances, light treatment is efficient for progressing
or delaying the sleep period, and it may be recommended for children with circadian
disruption of an ASD (Miano et al. 2007). However, light therapy is limited in
studies for people for poorly functioning autism. This advanced clinical therapy is
suitable for people with low autism who have little to no spoken abilities on average.
The efficacy of conduct treatment strategies currently is therefore dependent on
small trials and lacks quantitative sleep metrics. Children with a range of conditions
not limited to ASD have now also been included (Malow et al. 2014). Due to the
correlations between insufficient sleep, increased daytime issues, and parental pres-
sure in ASD, successful sleep strategies tailored to the cognitive and developmental
level of children are very important.
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14.9 The Correlation Between Bad Sleep and Problematic ASD
Behavior

Sleep disturbance is associated with emotional and compartmental issues including
internalization and externalization of symptoms during typical development (Malow
et al. 2014). However, increasing evidence indicates that child sleep issues can make
a big difference to the well-being, actions, attention, cognition, and school perfor-
mance of children (Chen et al. 2006). Lower sleep hours were associated with greater
ASD severity and were predictive, including deficiencies in social skills (Richdale
and Schreck 2009), cognitive defects, higher expectations, and tighter observance of
nonfunctional routines (Schreck et al. 2004). Due to its nature, the consequences of
sleep disturbance in this condition are potentially significant, given the associated
destructive behavior. ASD signs have been compounded by sleep disorders. As well
as aggravating the symptoms of ASD, sleep disorders have also been demonstrated
to be associated with increased over-activity levels, agitation, noncompliance,
aggressiveness, irritability, and affective issues that can all greatly interfere with
the daily functioning. Despite studies into the association between sleeping
disturbances and challenging ASD performance, the effect of sleep issues was
overlooked for children with low autism (Schreck et al. 2004). Therefore, the
two-way interplay between sleep and actions was small. Sleep disturbance is usually
linked to emotional and conduct issues including the internalization and externaliza-
tion of symptoms (Wang et al. 2020). ASD signs have been exacerbated by sleeping
problems. Less time sleep was associated, and more serious ASDs such as social
ability deficits were predicted. Knowing the severity of sleep disorders in ASD, it is
apparent that sleep can be modified in certain populations with ASD (Richardson
and Friedman 2016). In addition, sleep treatment has been shown to increase the core
symptoms of ASD in a group of people with ASD (e.g., communication and
socialization impairments) as well as to decrease the severe behaviors of ASD
(Kruppa et al. 2021). The association between sleep difficulties and inappropriate
behavior for children with ASD indicates further study is necessary to determine the
direct links between specific sleep issues and the specific daily patterns of behavior
that might affect people with ASD (Kruppa et al. 2021).

14.9.1 Mood Disturbances and Anxiety

Anxiety was also observed in children and adolescents with ASD, and a meta-
analysis found that 39.6% of young people suffering from ASD had clinically
high levels of anxiety or at least one anxiety disorder (van Steensel et al. 2011).
Research has shown that anxiety is related to psychological hyper-arousal, which in
turn can exacerbate sleep and sleep problems (Krämer et al. 2012; Monk et al. 2001).
In reality, anxiety can trigger distracting thoughts and concerns during pre-sleep
periods, interfering in the onset of sleep. Different studies have shown that anxiety
and mood disorders can worsen sleep disorders for typically developing children
(Owens 2007; Cortesi et al. 2010; Van der Heijden et al. 2018; Medic et al. 2017).
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Similar research also found that anxiety is correlated with insomnia, though insom-
nia can lead to depression (Johnson et al. 2006; Jansson and Linton 2006). Mood
disorders, for example, depressive or bipolar disorders, have also been documented
frequently in people with ASD (Simonoff et al. 2012). Both conditions were also
associated with abnormal or hyper-arousal cognitive function. It is known, for
example, that people with bipolar disorders may suffer from decreased sleep
requirements (Gold and Sylvia 2016). An increasing amount of studies recommend
that anxiety and mood symptoms are also related to sleep disorders for people with
ASD (Paavonen et al. 2008; Quine 1991). A survey of 477 autism children also
showed a significant rise in family issues with maternal anxieties and mood
symptoms (Mayes and Calhoun 2009). For example, Nadeau et al. (2015) found
that a number of issues with sleep were associated with the internalization and
externalization of symptoms and the symptoms of anxiety in a study of 102 children
with ASD. Past research of anxious children has shown that management of these
symptoms improves sleeping conditions (Alfano et al. 2009). These symptoms may
minimize problems in sleep even in people with ASD. It is possible. Nonetheless,
more research into the potential of reducing sleep disorders is also needed in the
psychological or pharmacological treatment approaches tailored to the wants of
young people with ADS.

14.9.2 Future Guidance: Sleep and Activity Relationship in ASD

The latest research indicates that people with ASD have a strong one-way relation-
ship between sleep and behavior. Sleep disorders are well-known to aggravate and
exacerbate symptoms of ASD in most important areas. These interactions have been
studied very well with people with mixed groups of ASD populations and with
people with high-functioning autism in a cross-sectional research. Target tools like
polysomnography and wrist actigraphy (a tool which measures physiological
conditions during sleep, like an electroencephalogram) were used to confirm the
associations between bad sleep and daytime behaviors in a mixed sample of ASD
kids (Knight and Johnson 2014; Goodlin-Jones et al. 2009). With the severity
awareness of sleep disturbances in ASD, sleep in some populations with ASD is
modifiable. (Reed et al. 2009). For children with autism, medication intervention
including melatonin is an important sleep intervention (Guénolé et al. 2011). Mod-
erate evidence is also available that holistic parent monitoring interventions as the
CSHQ are a high-level single-point response intervention to help determine child-
hood ASD sleep efficiency (Hodge et al. 2012). Sleep therapy has shown that the
principal symptoms of ASD in a subgroup of ASD individuals are improved and
complicated activity in ASD is decreased (Tordjman et al. 2013). Taking into
account the two-way correlation between sleep disorders and challenging behavior
in ASD, preliminary research indicates that sleep disorder and sleep disorder do not
result in positive outcomes in isolation (Richdale et al. 2014). ABA (applied
behavior analysis) therapy is known to be effective in helping a subset of children
with ASD with disruptive behavior; it is known to affect learning levels and
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cognitive efficiency. Furthermore, the effects are affected by the consistency of
learning. Since sleep is involved in learning behaviors including obedience, irrita-
bility, hyperactivity, and aggressiveness, more research is now emerging to show
that sleep can be an obstacle to ABA care with ASD (Russell et al. 2013). The
association between sleep issues and inappropriate behavior, which has been listed
for children with ASD since daytime, indicates that more work is needed to establish
direct ties between such problems and everyday comportment habits that can
influence individuals with ASD.

14.9.3 Further Fields of Study

As mentioned, recent work primarily focuses on more productive ends of autism and
literature in people with low autism who may have the most serious problems in
sleep and behavior. However, though recent studies have shown strong connections
between inadequate sleep and problematic behaviors in ASD, it is still unclear, as
discussed above, how special the particular issues are in sleep and symptoms of
people suffering from low-functioning autism. The study of sleep in children with
poorly functioning autism poses particular analytical challenges. Biased parental
accounts impart bias, negative halo effects (Souders et al. 2017), and individuals
with sensor sensitivities or lack of engagement have difficulty tolerating objective
intervention, such as PSG and actigraphy (Hodge et al. 2012). To date, very few
studies have been performed longitudinally on compartmental problems and ASD
sleeping conditions, most of which have been cross sections. Transversal studies
often investigate a single age group, and the majority of research includes mixed
children and adolescents. Since children with ASD are listed as one of the most
significant priority sleep research populations by the National Sleep Foundation
(Mindell et al. 2009), more accurate, reliable, nonintrusive sleep measures and child
autism data are needed to better define sleep quality and quantity in this population.
It is understood that the extent of ASD and behavioral disorder wax and fall over
development with some activity that improves with age (Matson et al. 2008b). Since
various behavioral patterns are found in particular ages and maturity age does not
always correlate with chronological age in ASD, longitudinal designs are important
for researching relationships. Up to now, only one study examines retrospective,
high-functioning autism and usually improves regulation oversleep disturbance and
behavior. Little is understood how sleep changes over time in ASD and how
variables such as age and stage of development can be associated with this transition.
The research found no association between sleep difficulty and developmental
period (i.e., childhood, adolescence, and adulthood) in ASD (Delahaye et al. 2014)
although sleep difficulties with age decreased with other tests, albeit cross sectional,
comparable to normal developmental difficulties (Giannotti et al. 2008; Goldman
et al. 2012). Therefore, further longitudinal studies are necessary to monitor the
pathway to sleep in this population to recognize key ASD phenotypes and link these
to sleep profiles. For example, sleeping problems in ASD can vary with medication,
climate, or comorbidities like epilepsy or GI problems. Whether co-occurring
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disorders cause behavioral issues or continue to present problems, or exacerbate
existing ASDs, is difficult to determine. To answer this poignant question, research
must be carried out. To improve sleep and to promote more optimistic predictions by
improving day-to-day actions and family functioning in that population, it is impor-
tant to recognize and provide treatment for sleep problems in ASD. Studies have a
common proposal that factors resulting in the ASD phenotype should be identified
and instead tailored therapeutic measures designed to restore or minimize particular
deficits. Eventually, treatment recommendations for helping people with low autism
to handle difficult behavior often do not include sleep or are rather minimal in scope.
ASD sound resistance may be correlated with lower waking thresholds, sleep
fragmentation, etc. This chapter suggests that identifying ASD children with sleep
disturbances based of the essence of their sleep issues may help them understand
signs and behaviors (or vice versa). The exposure of children with low-functioning
self-regulation behavior (such as self-harming behavior) can, for example, increase
sleep and sleep latency before they go to bed until they sleep and become sleepy.
Increased light sensitivity from exposure to the device and/or tablet blue-enriched
light may also be correlated with circadian timing and melatonin issues, which
contribute to increasing sleep-wake circadian patterns in this population.

14.10 Concluding Remarks

Although severe sleep disorders are common in children with ASD and inadequate
sleep exacerbates the everyday behavior of particular problems, the results are
premature. A new avenue for the advancement of procedures is provided by having
a more detailed insight into the human existence of sleep problems at ASD as sleep is
an environment that can be remedied. Because sleep is a key physiological process
(e.g., learning, memory, neuroplasticity), sleep disturbances play a key role, includ-
ing the exacerbation of problematic behavior, in ASDs. Nonetheless, to date, studies
have failed to offer conclusive proof of the connection between sleep and actions in
people (of all ages) who are poorly functioning with autism. This review underlines
the importance for children with ASD to identify sleep profiles and to include
various aspects of their symptom profiles in sleep deficiencies (and vice versa). In
addition, this knowledge results in new therapeutically strategies and action that, in
68 individuals impacted by this overall developmental condition, will ideally
enhance the long-term outcomes.
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Abstract

Since 1943, when Kanner introduced the term “Autism,” there has been much
progress to identify the nature of impairment in autism spectrum disorder (ASD)
among adults and children. Currently, it is classified as a neurodevelopment
disorder marked by impaired social cognition, altered sensory stimulation and
language deficiency with or without impaired IQ. Despite having clear diagnostic
criteria, the heterogeneity in cognitive, language and intellectual abilities across
type and ages perplexes the clinical picture of ASD and needs clinical expertise
for diagnosis. This chapter outlines the nature of ASD and types of impairment
broadly classified in the area of cognition, speech and language, intelligence
impairment and executive dysfunctioning. Furthermore, the chapter highlights a
range of rehabilitative technique for person with ASD, namely, dialectical
behaviour therapy (DBT), cognitive behaviour therapy (CBT), pivotal response
treatment (PRT), sensory motor training, parent-mediated intervention (PMT),
speech therapy, music therapy and sensory integration therapy. This chapter has
also highlighted the current scholarly debate about ASD and DLD (developmen-
tal language disorder) categorically different or on the same continuum.
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In 1943, Kanner used the term autism, which is derived from Greek word “autos”
meaning “self” and “ismos” meaning “Action”. Autism spectrum disorder (ASD) is
a neurodevelopmental disorder (Suthar et al. 2020) characterized by the deficit in
social communication and interaction, social and emotional reciprocity, nonverbal
communication behaviour (e.g. inability to maintain eye contact, facing away from
the listener), developing and maintaining relationship, problems in adjusting to new
social context (e.g. absence of interest in others), restricted and repeated behaviour
(e.g. a typical speech or movement), excessive routine rituals, fixed interest and
hyper-/hypo-reactivity to sensory stimulation (e.g. indifferent to pain, altered vigor-
ous and truncated sniff response, odour identification impairment, hypo-
discrimination for sour and bitter taste, i.e. lower taste discrimination, etc.). The
symptoms are present in early childhood and cause marked impairment together in
everyday functioning (Hyman et al. 2020; American Psychiatric Association 2013).
Cognitive, language and intellectual challenges are the major diagnostic criteria for
ASD (Hus 2017). Although there are well-defined diagnostic criteria, the heteroge-
neity in cognitive, language and intellectual abilities across the type and age
differentials perplexes the clinical picture of ASD. Children with regression type
exhibit more impaired cognitive and social abilities as compared to non-regressive
type around the age of 28 months since birth (Matson et al. 2010). Furthermore,
compared to early-onset type of ASD among the regression type, symptoms manifest
until the age of 2 years proceeded by regression, whereas among children of early-
onset type, symptoms manifest soon after birth (Barbeu 2017). A study has found
differential IQ in the sample of 156 children with neonatal and regression type with
age range of 10–14 years (M ¼ 11.7, SD ¼ 0.9), where 3% of children were above
average IQ (>115), 28% had average IQ (85–115), 16% had below average IQ
(<50) and 55% intellectual disability (<70) (Charman et al. 2011). In this chapter,
we describe the cognitive impairment and rehabilitation aspects of children and
adults with ASD.

15.1 Cognitive Impairment

Mere sensory and perceptual impairment is the classical way of looking at ASD. The
DSM-5 (American Psychiatric Association 2013), has shown an improvement and
shift of focus to the impaired social cognition (SC), as a key feature of ASD among
children and adults. In the new development of literature, the disorder is largely
characterized by impaired socio-cognition and language/communication deficiency.
Researchers have examined the association between general/specific intelligence
and social cognition. Skuse et al. (2009) have found significant correlation between
higher verbal IQ and social communication. A recent study has also found low
general intelligence hindering social cognition, but up to a certain threshold. They
further added that increased intelligence does not add outstanding social cognition in
ADS children (Hirosawa et al. 2020).
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15.1.1 Social Cognition (SC)

Social cognition includes social motivation, social recognition, social attention and
social learning ability (Happe et al. 2017). This is important in the positioning of
“self”while interacting with others (Isaksson et al. 2020). Alteration in these abilities
is presumed as impaired in SC. Negative alteration in SC is associated with increase
in ASD symptoms and autistic trait (Isaksson et al. 2020). While explaining SC
among adults with ASD, “theory of mind” (ToM) provides useful findings. ToM
relates with the ability to recognize other’s mental state to understand and predict
people’s behaviour. Recent research has recognized ToM as an important social
cognition ability, which helps in making meaningful social interaction and
maintaining interpersonal relationship (Baksh et al. 2020). ToM has cognitive and
affective domains. Adults with ASD have both types of impairment (Murray et al.
2017). Recent advances show that children with ASD manifest preference to
non-social stimuli over social stimuli. Gale et al. (2019) conducted an empirical
study to test the social motivation of ASD children. They presented abstract moving
geometrical figures (non-social stimuli) and films of faces of young adults (social
stimuli) to ASD children. It was found that the children preferred geometrical figures
over human faces. This finding supports that ASD children lack social motivation in
the sense that preference of non-social stimuli over social stimuli signifies greater
reinforcement strength of non-social stimuli and tendency to avoid social stimuli.
Avoidance of social stimuli may lead to deficit attending faces and eyes of caregivers
or listening human voices which may act as an additive factor of low social
communication.

15.1.2 Non-social Cognition

There is a great research interest about the nature of impairment among children with
ASD, and comparatively less researches have focused on the nature of impairment
among adults with ASD. In children, largely social cognition impairment is a focal
area of research, and non-social cognition deficit is an understudied aspect of it. It
refers to reasoning, problem-solving, attention, vigilance, verbal learning and mem-
ory. Recently, non-social cognition was studied among adults with ASD. A meta-
analytical review shows statistically largest impairment on information processing
speed, followed by verbal learning, memory, reasoning and lastly problem-solving
skills among adults with ASD (Velikonja et al. 2019). This finding clearly
demonstrates that at different stages of life, ASD probably shows different kinds
of impairment. However, the external validity of this finding is subjected to multi-
cultural prospective studies.
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15.2 Language and Speech Impairment

The second kind of impairment is related to language which is an important aspect of
human cognition. Studies have reported that children with ASD have difficulty in
producing the complex sentence structure specifically sentences with relative clause
(e.g. The chocolate that Sam had yesterday, was made of dark chocolate and milk)
(McGregor et al. 2012; Riches et al. 2010) and producing the repeated sound;
therefore, they omit the speech sound (Cleland et al. 2010). Notably the reduction
in the use of tense while sentence making and speaking is very common
(Modyanova et al. 2017; Roberts et al. 2004; Tager-Flusberg 2015).
Morphosyntactic deficit is another visible language deficiency in this case
(Gladfelter and Barron 2020; Riches et al. 2012). Similar language deficiency is
observed in developmental language disorder (DLD); therefore, the current scholarly
debate is whether ASD and DLD are the categorically different disorders or they are
on the same continuum (Gladfelter and Barron 2020). Adults with ASD also
reported communication difficulty (Lewis et al. 2008). Recently, a qualitative
study was conducted to examine the autistic adult’s view of their communication
skills and needs. Through thematic analysis of their experiential orientation, it was
found that autistic adults presented a complex communication difficulty
(e.g. inability to find the word while public speaking). This difficulty further
exacerbate while conversing with strangers as compared to the people with spec-
trum. They experience intense anxiety while communicating (Cummins et al. 2020).

15.3 Intellectual Impairment

The third kind of impairment is intellectual impairment. The intellectual impairment
and autistic symptoms are mostly not mutually independent of each other in ASD.
For example, repetitive and restrictive behaviour (RRB) (e.g. typical movement) is
found to be correlated with low non-verbal quotient (Bishop et al. 2013; Hirosawa
et al. 2020; Riches et al. 2010). There exists negative correlation between RRBs and
non-verbal IQ among ASD children (Kim and Lord 2010; Ray-Subramanian and
Weismer 2012). In fact, the first description of autistic disorder given by Kanner
(1943) included delayed intellectual development. Although Intellectual Disability
(ID) is a separate disorder under DSM-5 as a Neurodevelopmental Disorder
characterized by the significant impairment in intellectual functioning (IQ <70)
and adaptive functioning prior to 18 years of age (Ropers 2010). Epidemiological
studies report that 30% of ASD children also have ID. DSM-5 specifies the diagnosis
of ASD “With or Without Intellectual Disability” (Thurm et al. 2019). Presence of
RRBs in both the disorder makes them more proximal to each other. ASD can persist
with or without ID; therefore, diagnosis requires more clinical expertise (Thurm
et al. 2019).
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15.4 Executive Dysfunction (ED)

Executive dysfunctioning is the fourth type of cognitive impairment among
individuals with ASD. 41% to 78% of individuals with ASD experience issues
related with executive functioning (EF) (Lynch et al. 2017). It impacts
neurocognitive, psychosocial and behavioural aspects of ASD personalities (Leung
et al. 2016; Pugliese et al. 2016). Executive functioning involves proper functioning
of working memory, cognitive flexibility, inhibitory control and planning abilities
(Christ et al. 2017). Working memory helps in active manipulation of sensory
information for a relatively shorter period of time compared with long-term memory
(LTM). Inhibitory control is the ability to suppress activation and processing of
sensory information which could interfere with cognitive goals. Executive
dysfunctions are operated by the prefrontal cortext (PFC), a part of the frontal
cortext. The frontal lobe helps in memory, reasoning, problem-solving and
decision-making. It is found that people with ASD irrespective of ages and func-
tional level have this kind of impairment. Impairment in cognitive flexibility,
planning, working memory and self-monitoring is the most prevalent among
individuals with ASD (Cassidy et al. 2014; Zinke et al. 2010). A recent study in
this context among children recorded highest impairment in organizing ability,
followed by working memory, emotion control and self-monitoring. Significant
difference was not found on executive dysfunction related to age differential of
children. Therefore, it is suggested that executive dysfunctioning among ASD
children remains stable across all ages (Alsaedi et al. 2020) (Fig. 15.1).

The following section covers the rehabilitation aspect of children and adults
with ASD.

Fig. 15.1 Showing cognitive impairment in autism spectrum disorder
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15.5 Rehabilitation

The meta-analytic review of epidemiological study shows less prevalence of ASD in
Asia (Bangladesh 2018 0.76/1000, India 2017 2.19/1000, China 2014 2.75/1000,
Nepal 2018 3.42/1000) compared to the European countries (Sweden 2011 14.4/
1000, Poland 2014 5.29/1000, Germany 2012 6.50/1000) (Chiarotti and Venerosi
2020), but since Asian countries are more populous, therefore we could expect a rise
in the prevalence rate. Thus, we consider that it is important to discuss the types of
rehabilitation that is needed for children and adults with ASD (Fig. 15.2).

15.5.1 Dialectical Behaviour Therapy (DBT)

In the 1990s, dialectical behaviour therapy (DBT) emerged as a rehabilitative
technique for suicidal behaviour and borderline personality disorder. But researches
have found similar suicidal ideation in ASD patients (Hedley and Uljarević 2018;
Segers and Rawana 2014). Hedley and Uljarević (2018) have found that 25% of the
total (N ¼ 76) adults with ASD had clinical range of depression and 20% had
suicidal ideation. They also found that perceived tangible support was a protective
factor against suicidal ideation. ASD patients manifest depressive thoughts also
(Dickerson Mayes et al. 2014; Cassidy et al. 2014). In ASD, the deficit in emotion
regulation and lack of control over affective state are associated with suicidal

Fig. 15.2 Showing the rehabilitative techniques for autism spectrum disorder
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ideation and attempts. Social anxiety is also a precursor for suicidal ideation.
Therefore, DBT could be applied on them. This therapy is based on “dialectical
therapeutic alliance” where the therapist teaches skills related to emotion regulation,
self-regulation, self-acceptance and acceptance of other (Huntjens et al. 2020;
Salsman and Linehan 2006). Learned emotion regulation reduces RRBs (repetitive
restrictive behaviour) (Salsman and Linehan 2006). Current advances have proved
the efficacy of DBT in reducing suicidal ideation. Through randomized single blind
technique, it was found that DBT is effective in teaching emotion regulation that
further decreases suicidal thoughts and attempts among patients with ASD (Huntjens
et al. 2020). But the authors suggest conduction of empirical follow-up studies with
repeated measure trials in case of such findings, which was the limitation of the
above-mentioned study.

15.5.2 Cognitive Behaviour Therapy (CBT)

CBT is used to reduce the anxiety of ASD patients. Anxiety is seen as a comorbid
symptom in ASD and observed since the conceptualization of the disorder 70 years
ago till today (Uljarević et al. 2016). According to Özerk and Cardinal (2020), ASD
is more commonly observed among pre-school and school-age children. The basic
premise of CBT is that there is an association between the way we think (cognition)
and the way we act (behaviour). Therefore, non-adaptive thoughts and coping
strategies perpetuate negative affect like anxiety (Spain and Happe 2019). A large
number of ASD patients are refereed for CBT sessions, but the effectiveness among
ASD patients depends on building therapeutic alliance, which requires socio-
communication characteristics of the patients. Since ASD children and adults have
difficulty in socio-communicative skills and introspecting own thought, therefore, it
is very difficult to develop alliance with them (Kinnaird et al. 2019). By and large,
cotemporary research supports CBT as the most widely used psychoeducation
intervention for anxiety reduction among school-age children with ASD (Hillman
et al. 2020). On the contrary, very few studies have used CBT to alleviate the
depression co-occurring with ASD in adults. Restrictive and repetitive behaviour
and thinking cause depressive symptoms (Gotham et al. 2014). A pilot study with
randomized controlled group design found low-intensity CBT as feasible and effec-
tive for alleviating severe depression of adults with ASD (Russell et al. 2020).

15.5.3 Pivotal Response Treatment (PRT) Approach

PRT is not an independent type of therapy, but it is a technique derived from applied
behaviour analysis (ABA). The term “pivotal” in this technique refers to “the target
skills which when successfully acquired can elicit more widespread positive clinical
gains in the Childs’ other domain of functioning” (Lei and Ventola 2017). PRT is
widely in used to teach and improve cognitive and language skills of ASD children.
It is a natural behavioural intervention that aims at the pivotal skills combined with
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motivational reinforcement and is found to benefit most of the children with ASD
(Verschuur et al. 2020; Koegel et al. 2016). It improves language, communication,
maladaptive behaviour, cognitive expressive skills and positive affect and decreased
social avoidance and repetitive vocalization (Verschuur et al. 2020; Fossum et al.
2018).

15.5.4 Sensory-Motor Training

Sensory-motor abnormalities particularly postural sway are the most visible features
of some ASD children and adults, along with social communication and interaction
deficit (Bruchhage et al. 2018; Lim et al. 2018; Mosconi and Sweeney 2015).
Recently, poor postural control was found to be associated with poor somatosensory
input in children with ASD (Bucci et al. 2018; Gouleme et al. 2017). Largely, the
problem is found in the cerebellum which results in impaired integration of somato-
sensory input through functional neuroimaging (Bruchhage et al. 2018). Recent
advances in this connection are aiming to decrease postural sway and postural
control by using different sensory-motor training programs. Travers et al. (2013)
conducted a study in which video games were implied in biofeedback techniques for
balance postural training of such children. The results showed significant improve-
ment postural sway and better postural stability. Caldani et al. (2020) have provided
preliminary evidence by demonstrating positive impact of short-rehabilitation train-
ing program on postural control in children with ASD. The study consisted of
20 children in two groups—group 1 and group 2 (G1 & G2)—matched on age, IQ
and sex. G1 was given short posture rehabilitation training, while G2 served as the
control group. Their posture was measured two times, before training is given—time
1 (T1)—and after giving the training, time 2 (T2) They found that T1 measurement
was the same in both the groups; however, at T2, postural control and stability
improved in the treatment group (G1).

15.5.5 Parent-Mediated Intervention (PMI)

Parent-mediated training programmes are used for young children of ASD. Parents
learn the therapy from therapists and provide support to their children, e.g. joint
attention therapy, social communication therapy and behaviour therapy. Manoharan
et al. (2019) studied the impact of Brief Parent-Mediated Intervention on joint
attention, imitation and social and adaptive skills of children with ASD living in
South India. They found that after 12 weeks of training, parents reported improve-
ment on children’s outcome measures as compared to the control group. This study
suggested effectiveness of the parent-mediated intervention for attention, imitation
and social adaptive skills. Despite documenting evidence on PMI outcomes, current
studies suggest that parental characteristics play a crucial role in PMI outcome such
as parental stress, socio-economic status and autism phenotype which are related to
varying effects of PMI (Shalev et al. 2020).
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15.5.6 Speech Therapy Intervention

Communication in inherent social behaviour and given the diagnosis of ASD,
speech is a prominent disability. In addition to pharmacological treatment for
language improvement, speech therapy is used to improve the language deficiency
of ASD children and adolescents. Speech-related issues such as echolalia, improper
use of pronouns, improper grammatical structure of sentence, etc. are commonly
observed (Oliveria et al. 2018). Although language deficiency is the major symptom
of ASD, ASD patients need SLPs—speech language pathologists. However, it has
been found that SLPs are not regularly used in the routine assessment of the speech
of these children (Hus 2017). Insufficient training in using language assessment tools
is a probable reason (Gillon et al. 2017). Multidisciplinary approach is recommended
for the assessment of ASD which includes the involvement of SLPs along with
physical and mental health professionals (Volkmar et al. 2014).

15.5.7 Music Therapy (MT)

Conceptually defining the term, “music therapy” is considerably insoluble because
this therapy involves interdisciplinary component “music” and “therapy” (Eren
2017). The American Music Therapy Association (AMTA) has defined it as “the
clinical and evidence-based use of music interventions to accomplish individualized
goals within a therapeutic relationship by a credentialed professional who has
completed an approved music therapy program”. There are a number of approaches
to MT, e.g. Orff approach to music therapy (OMT), the Kodaly approach to music
therapy (KMT), the Dalcroze approach to music therapy (DMT), Kindermusik and
music therapy (KinMT), psychodynamic approach to music therapy (PMT),
behavioural approach to music therapy (BMT), music therapy in wellness (MTW),
neurologic music therapy (NMT), biomedical music therapy (BioMT), sensory
integration approach to music therapy (SIMT), etc. (Eren 2017). But the profile
study of most preferred and effective music therapy for children with ASD shows
that behaviour approach and sensory integration approach are the most effective
ones. It involves singing, bodily movement, dancing and communicating while
listening to music (American Music Therapy Association 2005). Music therapy
has always given encouraging results when employed to improve the physical,
emotional, cognitive and social requirements of children with developmental dis-
ability. Findings of previous studies have mentioned the application of music
therapy for children with ASD to facilitate a variety of skills such as communication,
to maintain relationship with adults, increased inner motivation for mastery, etc.
(Stevens and Clark 1969; Yinger and Gooding 2014). A recent study has tested the
impact of active music therapy and passive music therapy among children with
ASD. Bharathi et al. (2019) conducted an empirical study to examine the impact of
active MT and passive MT on social skills of children with ASD in South India.
Along with listening to music, the active MT group was required to dance, play
music instrument and sing songs. However, the passive MT group listened to music
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alone. Findings showed the former group scored high on perspective-taking ability,
initiating interaction, responding to others while communicating, maintaining
relationships and interaction. Therefore, it is suggested that MT has a significant
influence on improving social skills of ASD children.

15.5.8 Sensory Integration Therapy

Sensory integration therapy is used as an occupational therapy to make children and
adults with ASD learn the adaptive sensory and motor ability, according to the
environmental demands. This therapy involves tasks which require sensory-motor
coordination such as use of deep busing, bounce pads, scooter boards, weighted vest
and clothing, etc. (Shaw 2002). A recent systematic review of those interventions
shows limited efficacy (Bodison and Parham 2018). The impact of this kind of
therapy shall be seen with the age-related perspective. For example, Ayres Sensory
Integration (ASI) is found effective for children with ASD whose age ranges
between 4 and 12 years (Schoen et al. 2019). ASI is a sensory integration interven-
tion used for children, in which the therapist identifies the sensory-motor issue by
using an assessment tool. These issues must interfere with the functional ability of
the child at home and in school. After that, intervention is given largely through
designing a play.

15.6 Conclusion

This chapter focuses on the cognitive impairment (i.e. social cognition, non-social
cognition, language and speech impairment, intellectual impairment) and executive
dysfunction and rehabilitation (i.e. dialectical behaviour therapy, cognitive
behaviour therapy, pivotal response treatment approach, sensory-motor training,
parent-mediated intervention, speech therapy intervention, music therapy and sen-
sory integration therapy) aspects of children and adults with ASD. Findings of recent
studies suggest that autism spectrum disorder is one of the most vulnerable disorders.
The functional ability of ASD can be rehabilitated by means of various
non-pharmacological interventions.
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