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Abstract

Cancer chemoprevention is defined as the use of natural, synthetic, or biochemi-
cal agents to reverse, suppress, or prevent carcinogenic processes in neoplastic 
diseases. Although the precise mechanisms that promote breast cancer are not 
fully understood, several recent clinical trials suggest that chemoprevention is a 
rational and attractive strategy for selected high-risk populations in a prophylac-
tic setting. Conventionally, endocrine interventions using selective estrogen 
receptor modulators and aromatase inhibitors have already been applied clini-
cally in high-risk populations. In particular, the chemoprevention approach for 
BRCA germline mutation carriers is drawing attention as an alternative option to 
invasive prophylactic mastectomy. Although the evidence from prospective clini-
cal studies was limited, this review aims to provide an up-to-date overview of the 
biological mechanisms and the efficacy of various chemopreventive agents, 
including new promising candidates that target BRCA deficiency, and discuss 
future challenges and prospects for breast cancer chemoprevention.
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9.1	 �Introduction

Given the increasing incidence and mortality of cancer worldwide as well as the 
rising cost of medical treatment, there is a growing interest in developing strategies 
for disease prevention. One of the approaches with enormous potential is chemopre-
vention. In 1976, Sporn defined the term “chemoprevention” as the use of natural, 
synthetic, or biological agents to reverse, inhibit, or prevent either the initial phases 
of carcinogenesis or the progression of premalignant cells to invasive disease [1]. 
The process of breast carcinogenesis begins with the accumulation of an unspeci-
fied number of genetic events, followed by the emergence of progressive dysplastic 
cells with genotypic and phenotypic alterations that lead to deregulated cell growth. 
Chemoprevention aims to reduce the incidence of disease by arresting or modifying 
these mechanisms.

Those at increased risk for developing breast cancer could benefit from preven-
tive therapy, as it is the most prevalent malignancy in women. The risk factors for 
breast cancer are described in various available risk calculation models, including 
the Tyrer-Cuzick and Gail models, to provide a numeric risk that can be used to help 
quantify the level of individual risk. Other individual risk factors for the selection of 
candidates for preventive therapy include the presence of premalignant diseases, 
such as lobular carcinoma in situ (LCIS), atypical ductal hyperplasia (ADH), and 
atypical lobular hyperplasia (ALH); high mammographic density; use of hormone 
replacement therapy; and presence of either high-risk penetrant genes, including 
BRCA1/BRCA2 mutation carriers or less penetrant genes, but higher-frequency 
polygenic risk score SNPs [2, 3]. The National Comprehensive Cancer Network 
(NCCN) guidelines and the United States Preventive Services Task Force (USPSTF) 
have stated and recommended the use of breast cancer risk-reducing agents in high-
risk populations. However, there is insufficient evidence showing the efficacy of 
chemopreventive agents in women who are carriers of pathogenetic BRCA1/BRCA2 
mutations. Hence, herein, we reviewed the current risk-reducing agents for breast 
cancer and pathogenetic BRCA1/BRCA2 mutation carriers suitable for chemopre-
ventive therapy.

9.2	 �Chemopreventive Drugs for Breast Cancer

9.2.1	 �Selective Estrogen Receptor Modulators

Hormones play a significant role in almost 70% of breast cancer cases [4], and cur-
rent chemopreventive strategies have targeted hormonally responsive breast can-
cers. The two major classes of antiestrogenic drugs, selective estrogen receptor 
modulators (SERMs) and aromatase inhibitors (AIs), have been recently used for 
breast cancer prevention. A list of prospective trials regarding the use of SERMs and 
AIs as primary preventive treatments for breast cancer is provided in Table 9.1 [5–14].

Estrogen is the main factor that stimulates the development and growth of breast 
cancer. Deprivation of estrogenic signaling has been the primary form of hormonal 
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therapy for patients with estrogen receptor (ER)-positive and/or progesterone 
(PgR)-positive disease. Over the past three decades, tamoxifen, a type of SERM, is 
an antiestrogen drug that inhibits the binding of estrogen to its receptors and has 
become the mainstay of hormone therapy [15]. Figure 9.1 illustrates the mechanism 
of estrogen deprivation [15].

Four large historical studies [5–8] evaluating the efficacy of tamoxifen as a pri-
mary chemopreventive drug have been conducted, and long-term follow-up data are 
available. An integrated analysis of tamoxifen primary prevention trials, including 
these studies, showed a 38% (95% confidence interval [CI] = 28–46; P < 0.0001) 
reduction in breast cancer incidence [16]. However, this drug was not effective in 
patients with ER-negative breast cancers (hazard ratio [HR] = 1.22, 95% CI = 
0.89–1.67; P = 0.21); nonetheless, tamoxifen prevention trials reported that the inci-
dence of ER-positive cancers decreased by 48% (95% CI = 36–58; P < 0·0001) [16]. 
The data from these studies, particularly the National Surgical Adjuvant Breast and 
Bowel Project (NSABP) Breast Cancer Prevention trial (P-1 trial), led to the US 
Food and Drug Administration (FDA) approval of tamoxifen in 1998 for breast 
cancer risk reduction in high-risk women. A large-scale study on tamoxifen and 
raloxifene (STAR) trial, which directly compared tamoxifen with raloxifene, found 
that tamoxifen was more effective in reducing the breast cancer risk than raloxifene 
after a long-term follow-up [17]. Data from the STAR trial and the other raloxifene/
placebo trial (MORE-CORE and RUTH) resulted in the approval of raloxifene by 
the US FDA for risk reduction of invasive breast cancer in postmenopausal women 
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with osteoporosis as well as for risk reduction of invasive breast cancer in post-
menopausal women at high risk of invasive breast cancer. Cuzick et al. performed a 
meta-analysis using individual data from nine randomized double-blind trials com-
paring the efficacy of four SERMs with placebo or another drug in women with no 
history of breast cancer. They showed a 38% reduction in the overall breast cancer 
incidence, including that of ductal carcinoma in situ (DCIS) [18]. Interestingly, the 
impact of reduction was larger in the first 5 years of follow-up than in the 5–10 years 
of follow-up (42% vs. 25%). Treatment with all types of SERMs increased the inci-
dence of venous thromboembolic events, whereas treatment with tamoxifen alone 
resulted in an increase in the incidence of endometrial cancers. Despite a 10–20% 
reduction in LDL cholesterol after treatment with SERMs, no reduction in cardio-
vascular disease was noted. Moreover, a significant reduction of 34% in the inci-
dence of vertebral fractures was reported in this analysis.

Only a subgroup analysis of the NSABP P-1trial evaluated the effect of tamoxi-
fen on breast cancer risk in women with BRCA1/BRCA2 pathogenic variants [19]. 
Tamoxifen reduced the breast cancer risk by 62% in BRCA2 carriers (relative risk 
[RR]: 0.38, 95% CI: 0.06–1.56), but not in BRCA1 carriers (RR: 1.67, 95% CI: 
0.32–10.07). However, this analysis is limited by the small number of participants 
carrying pathogenic variants; among 288 women with breast cancer, only 8 had 
BRCA1 pathogenic variants and 11 had BRCA2 pathogenic variants. To date, no 
primary prevention trials using tamoxifen or raloxifene have been conducted among 
women with BRCA1/BRCA2 mutations. Although not validated as a chemopreven-
tive agent for primary breast cancer in BRCA1/BRCA2 mutation carriers, tamoxifen 
prevents contralateral breast cancer by up to 50% [20–22]. In a recent meta-analysis, 
tamoxifen was significantly associated with a reduced risk of contralateral breast 
cancer among BRCA1/BRCA2 mutation carriers (summary RR, 0.56; 95% CI, 
0.41–0.76) [23]. Similar findings were observed in BRCA1 mutation carriers (sum-
mary RR, 0.47; 95% CI, 0.37–0.60) and BRCA2 mutation carriers (summary RR, 
0.39; 95% CI, 0.28–0.54), respectively [23]. Gronwald et al. demonstrated that the 
use of tamoxifen for 1 year was associated with a 63% reduction in the risk of con-
tralateral breast cancer (95% CI, 0.37–0.75; P = 0.003) [22]. They suggested that 
short-term use of tamoxifen for chemoprevention in BRCA1/BRCA2 mutation car-
riers may be as effective as a conventional 5-year course of treatment.

Previous data suggest a role for tamoxifen in estrogen receptor blockade and the 
prevention of contralateral breast cancer, even among BRCA1 mutation carriers who 
have a tendency to develop hormone receptor-negative disease. Although the under-
lying mechanisms mediating the protective role of tamoxifen in contralateral breast 
cancer remain unclear, a reduction in mammary cell proliferation [24], the number 
of mammary stem cells, and mammographic density [25] have been proposed. 
Premenopausal carriers of BRCA1/BRCA2 mutations usually exhibit higher titers of 
estradiol and progesterone [26], which is one of the reasons for developing cancer 
prevention strategies in premenopausal women.

De Censi et al. conducted a multicenter randomized phase III trial evaluating the 
effectiveness of 5 mg/day tamoxifen or placebo administered for 3 years in women 
with breast intraepithelial neoplasia, including those with ADH, DCIS, and LCIS 
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[27]. Low-dose tamoxifen reduced the risk of breast cancer development by 52%, 
and the incidence of side effects in the tamoxifen arm was not higher than that in the 
placebo arm [27]. This study indicated that low-dose tamoxifen may be an effective 
chemopreventive method with good tolerability.

9.2.2	 �Aromatase Inhibitors

In premenopausal women, aromatase and estrogen are produced by the granulosa 
cells in the functional ovaries and are also present in other normal tissues, including 
the mesenchymal cells of subcutaneous fat, breast, and bone [15, 28]. After meno-
pause, estrogen is no longer produced in the ovaries, but aromatase activity and 
production of estrogen persists in all the other sites [15].

Tamoxifen competes with estradiol for ER binding, whereas AIs reduce the syn-
thesis of estrogens from androgenic precursors (Fig. 9.1). A significant association 
exists between breast cancer risk and plasma levels of the common circulating 
estrogens in postmenopausal women [29], and AIs achieve almost complete inhibi-
tion of aromatase in vivo and suppression of plasma estrogen levels. The significant 
reduction in contralateral breast cancer in adjuvant AI clinical trials [30] has led to 
the increased interest in the use of these agents for primary prevention, especially 
due to the less incidence of toxicities, such as thrombotic events and endometrial 
cancer compared with SERMs. Two landmark studies were conducted to evaluate 
the efficacy of AI for the primary prevention of breast cancer (Table 9.1).

In the National Cancer Institute of Canada Mammary Prevention 3 (MAP.3) trial, 
after 35 months of follow-up, treatment with exemestane reduced the breast cancer 
risk by 65% in high-risk postmenopausal women [13]. Similarly, the European 
IBIS-II trial reported a 53% reduction in the breast cancer risk in women at increased 
risk of breast cancer after treatment with anastrozole [14]. Neither exemestane nor 
anastrozole was associated with an increased risk of thromboembolic or cardiovas-
cular events or other cancer types. The MAP.3 trial showed that short-term use of 
exemestane exacerbated the age-related bone loss despite calcium and vitamin D 
supplementation, but long-term follow-up is needed to assess its impact on the risk 
of fracture in the prevention population [31]. The side effects of exemestane, includ-
ing vasomotor, sexual, and musculoskeletal symptoms, had limited impact on 
patients’ quality of life [32]. In addition to vasomotor symptoms, musculoskeletal 
events were more common in the anastrozole arm [14]. In the NCCN guidelines and 
the USPSTF, AI is recommended as a risk-reducing agent for breast cancer. 
However, it remains unclear whether SERMs or AIs are preferred agents for the 
prevention of breast cancer because of the absence of head-to-head comparisons 
and differences in patient characteristics between studies.

Retrospective data suggested that AIs could reduce the risk of ER-positive 
contralateral breast cancer in BRCA1/BRCA2 mutation carriers who are receiv-
ing AIs as adjuvant therapy [33]; however, data on the effectiveness of AIs as 
well as tamoxifen for primary prevention in BRCA mutation carriers are 
insufficient.
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9.2.3	 �Denosumab

The receptor activator of nuclear factor κB (RANK), its cytokine ligand (RANKL), 
and the soluble receptor osteoprotegerin (OPG) form a functional triad in the tumor 
necrosis factor (TNF) and TNF receptor superfamily [34, 35]. RANK and RANKL 
are known for their involvement in bone metabolism [34]. The binding of RANKL 
to RANK on osteoclast precursors induces osteoclast maturation and activation, 
thereby promoting bone resorption, whereas the binding of RANKL by OPG inhib-
its RANKL-mediated signaling pathways, resulting in the inhibition of bone resorp-
tion and maintenance of bone density (Fig.  9.2) [34, 36]. Denosumab, a human 
anti-RANKL monoclonal antibody, is approved for the treatment of osteoporosis 
and for the prevention of skeletal damage due to bone metastases in patients with 
breast cancer and other types of solid tumors [37]. Various experimental data have 
demonstrated that progesterone-mediated upregulation of RANK/RANKL may 
also play a critical role in mammary gland epithelial cell proliferation, mammary 
stem cell expansion, and carcinogenesis, particularly in BRCA1 mutation carriers 
[38–42].

A precancerous BRCA1mut/+ tissue harbors an aberrant population of luminal pro-
genitor cells [43], and deregulated progesterone signaling has been implicated in 
BRCA1-associated oncogenesis [44–46]. Nolan et al. showed that a highly prolif-
erative subset of luminal progenitor cells that gives rise to basal-like breast cancer, 
constitutively expresses RANK and is hyper-responsive to RANKL (Fig. 9.3) [47]. 
They proposed that this finding suggests an exciting opportunity for the precision 
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Fig. 9.2  Mechanism of action of denosumab
Binding of RANKL to RANK on osteoclast precursors induces osteoclast maturation and activa-
tion, thereby promoting bone resorption. Conversely, the binding of RANKL by osteoprotegerin 
inhibits the RANKL-mediated signaling pathway, thereby inhibiting bone resorption. Denosumab 
binds to RANKL and reduces osteoclasts by directly inhibiting the RANK-RANKL signal-
ing pathway
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cancer prevention in BRCA1 mutation carriers [47, 48]. Important preclinical stud-
ies relevant to women with BRCA1 mutations demonstrated that genetic or pharma-
cological inhibition of RANKL significantly suppressed mammary tumorigenesis 
in BRCA1-deficient mice [47, 49]. In BRCA1-deficient mice, the loss of RANKL 
reduced the progression of mammary tumors, and the inhibition of RANKL sup-
pressed the development of mammary tumor [47]. Furthermore, the proliferation of 
mammary progenitor cells in BRCA1-mutant mice was suppressed by inhibiting 
RANK, supporting the paracrine activity of RANKL on RANK expression in 
ER-negative and PR-negative cells [50, 51]. Evidence from studies using human 
breast cells of BRCA1 mutation carriers consistent with the data of animal trials 
supports the inhibition of the RANK pathway as a new target for prevention. Among 
the mammary progenitor cells of BRCA1 mutation carriers, RANK-positive cells 
had significantly higher clonogenic potential than RANK-negative cells [47]. In a 
three-dimensional organoid model constructed using BRCA1 mutant breast cancer 
cells, exposure to progesterone increased the expression of Ki67, but treatment with 
denosumab inhibited this progesterone-induced increased expression of Ki67 [47]. 
A pilot window study was conducted in three women within this research, and biop-
sies taken before and after denosumab treatment showed a significant decrease in 
Ki67 expression after treatment [47].

OPG is an endogenous decoy receptor of RANKL that antagonizes RANK/
RANKL-mediated signaling [34]. Interestingly, women with BRCA1 mutations 
may have inherently lower circulating OPG levels than those with baseline risk. 
Widschwendter et  al. reported significantly lower free serum OPG levels among 
premenopausal BRCA mutation carriers compared with non-carrier controls 
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throughout the menstrual cycle [52]. In addition, the difference was more pro-
nounced in BRCA1 mutation carriers than in BRCA2 mutation carriers. Oden et al. 
conducted a prospective study in 206 BRCA mutation carriers with an average fol-
low-up period of 6.5  years [53]. They found a significant inverse relationship 
between circulating OPG levels and breast cancer risk among women with either a 
BRCA1 or BRCA2 mutation. Women with high plasma OPG levels had a signifi-
cantly decreased risk of developing breast cancer compared with women with low 
OPG levels (HR: 0.25; 95% CI: 0.08–0.78; P = 0.02) [53]. These data suggest that 
OPG may be a promising biomarker to help identify women who are at a higher risk 
of developing breast cancer and who would be ideal candidates for RANKL-based 
chemopreventive therapy.

As a clinical trial, the ABCSG 18 study provided important results supporting 
that targeting the RANKL pathway improves the outcomes for breast cancer 
patients. In this prospective, double-blind, placebo-controlled phase III trial, 3420 
postmenopausal breast cancer patients with early hormone receptor-positive disease 
were treated with an aromatase inhibitor and randomized to receive denosumab 
60 mg or placebo biannually [54]. The study reported a reduction in clinical frac-
tures in the denosumab group compared with the placebo group, with no additional 
toxicities [54]. Moreover, a follow-up analysis showed improved disease-free sur-
vival in women who received adjuvant denosumab with an acceptable safety profile 
[55]. Following the preclinical study that revealed the role of the progesterone/
RANK/RANKL pathway in mammary carcinogenesis, which is thought to be par-
ticularly relevant in women with BRCA1 mutations, a randomized, double-blind, 
placebo-controlled, multicenter, international phase III trial (BRCA-P trial) is now 
underway to determine the primary preventive effect of denosumab on breast cancer 
in healthy women with mutations in the BRCA1 gene. Osteonecrosis of the jaw is 
one of the adverse events of denosumab treatment, although it is less frequent. In the 
ABCSG 18 trial, none of the participants reported osteonecrosis of the jaw. If the 
safety of denosumab can be demonstrated in the BRCA-P trial, in which denosumab 
is administered to healthy BRCA1 mutation carriers, it could be used for RAKL-
based chemoprevention, which represents a plausible, non-surgical prevention of 
breast cancer in BRCA mutation carriers.

9.2.4	 �Poly ADP-Ribose Polymerase Inhibitors

Poly ADP-ribose polymerases (PARPs) are a family of enzymes that play a key 
role in the repair of DNA damage [56]. In particular, PARP-1 and PARP-2 are the 
most important enzymes used in the treatment for BRCA1 or BRCA2 mutation 
carriers [57, 58]. An important role of PARP-1 and PARP-2 is to maintain genomic 
integrity, particularly through base excision repair of single-stranded DNA dam-
age [59]. The inhibition of these enzymes leads to the accumulation of DNA sin-
gle-strand breaks, which can result in the occurrence of DNA double-strand 
breaks at replication forks [60]. In BRCA mutant cells, the function of BRCA 
protein, which is required for homologous recombination repair against 
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double-strand breaks, is lost. Therefore, when PARPs are inhibited in BRCA 
mutant cells, the DNA repair mechanism is disrupted and cell death is selectively 
induced (Fig. 9.4), resulting in an antitumor effect [61, 62]. The concept of syn-
thetic lethality has paved the way for the development of PARP inhibitors for 
cancer patients with defects in homologous recombination repair, particularly 
those with BRCA1 and BRCA2 bi-allelic loss [63, 64]. This new strategy has led 
to major advances in the treatment of patients with ovarian cancer and, subse-
quently, in those with pancreatic, prostate, and breast cancers. Currently, there are 
two PARP inhibitors approved for treatment in HER2-negative metastatic breast 
cancer patients with BRCA1/BRCA2 mutations: olaparib and talazoparib. Both 
have demonstrated improvements in progression-free survival compared with 
chemotherapy, overall better tolerability, and low discontinuation rates docu-
mented in the trials that led to the approval of these agents [65, 66]. The results of 
the OlympiA trial, a double-blind, randomized controlled, phase III trial that 
aimed to evaluate the efficacy of olaparib as adjuvant therapy in patients with 
high-risk HER2-negative breast cancer and germline BRCA mutations, are 
underway.

Thus, PARP inhibitors have emerged as promising agents for the treatment of 
cancer patients with BRCA mutations via synthetic lethality, but their role in chemo-
prevention has not been elucidated. Although preclinical data showed that veliparib 
and olaparib are effective in delaying mammary tumor development and extending 
the lifespan of BRCA1-deficient mice [67], the possible long-term effect of PARP 
inhibitor treatment on normal tissues in a patient without any cancer or even a high-
risk individual needs further clinical evaluation [68].
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Fig. 9.4  Mechanism of synthetic lethality in BRCA1/BRCA2-deficient tumor cell
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9.2.5	 �Nonsteroidal Anti-inflammatory Drugs

In experimental animal models, nonsteroidal anti-inflammatory drugs (NSAIDs) 
inhibit tumor growth [69, 70]. Aspirin may influence the cancer risk primarily 
through its effect on the cyclooxygenase (COX) activity. Like other NSAIDs, aspi-
rin inhibits the COX enzyme that converts arachidonic acid into prostaglandins 
[71]. Aspirin is presumed to have an effect on the tumor growth due to the inhibition 
of the cyclooxygenase-2 (COX-2) enzyme, which is associated with inflammation, 
apoptosis, cell migration, and angiogenesis [72]. Aspirin is also thought to be an 
effective antioxidant [71] and helpful in modulating estrogen biosynthesis [73].

Aspirin and NSAIDs are reported to be effective in preventing colon cancer [74, 
75]. Epidemiological studies showed accumulating evidence regarding the cancer-
preventive effects of these agents, and the long-term use of aspirin could also reduce 
the risk of breast cancer by approximately 14% [76, 77]. However, the efficacy of 
aspirin in the primary prevention of cancer remains controversial, because results 
from a large-scale, randomized control study suggested that alternate-day use of 
low-dose aspirin (100 mg) within a period of 10 years did not lower the risk of total, 
breast, colorectal, or other site-specific cancers [78]. Recently, a prospective study 
examined the association between regular NSAID use and breast cancer risk in a 
large cohort of women with a family history of breast cancer, including 1054 BRCA1 
or BRCA2 mutation carriers [79]. This study found that regular use of aspirin and 
COX-2 inhibitors was associated with a reduced risk of breast cancer (39% and 
61%, respectively) in women with either familial or genetic risk [79]. However, in a 
series of subgroup analyses, the strength of these associations did not differ by fam-
ily risk profile or mutation status; although not nominally significant, negative asso-
ciations were found for both BRCA1 and BRCA2 mutation carriers [79]. Similarly, 
the association was not modified by ER status [79].

The use of aspirin and other NSAIDs for primary breast cancer prevention can be 
an attractive strategy because they are inexpensive and widely available, but the 
benefits of NSAIDs need to be weighed against the potential harm of long-term use. 
Secondary prevention trials in women affected by breast cancer, such as the Aspirin 
for Breast Cancer (ABC) trial and the Add-Aspirin trial [80, 81], are ongoing and 
the results are awaited.

9.2.6	 �Retinoids

Retinoids have been studied as chemopreventive agents due to their role in regulat-
ing cell growth, differentiation, and apoptosis in preclinical models [82]. Fenretinide 
(N-(4-hydroxyphenyl) retinamide), a synthetic derivative of all-trans-retinoic acid, 
has been the most studied retinoid in clinical trials of breast cancer chemopreven-
tion owing to its selective accumulation in breast tissue and its unique ability to 
inhibit cell growth proliferation through the induction of apoptosis rather than dif-
ferentiation [83, 84]. A multicentric phase III randomized trial evaluating the effi-
cacy of fenretinide was initiated in 1987. The participants were stage I breast cancer 
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patients aged 33–70 years who had undergone surgery for breast cancer within the 
previous 10 years. Women were randomly assigned to receive either no treatment or 
200 mg/day of fenretinide orally for 5 years. The main outcome measure was the 
occurrence of contralateral breast cancer as the first malignant event. A statistically 
significant beneficial trend was observed in premenopausal women with contralat-
eral and those with ipsilateral breast cancer (HR: 0.66 and HR: 0.65, respectively), 
compared with an opposite trend in postmenopausal women (contralateral breast 
cancer HR: 1.32; ipsilateral breast cancer HR: 1.19), when the analysis was strati-
fied by menopausal status [85]. This result was confirmed after a 15-year follow-up. 
Fenretinide has demonstrated a favorable toxicological profile, which mainly 
includes reversible skin dryness and rashes and dark adaptation difficulties, often 
overcome by a regular 3-day/month suspension of the drug. However, teratogenicity 
remains a major issue, and contraception is required [86].

This agent has shown antitumor activity in ovarian cancer animal models [87]. In 
the phase III breast cancer prevention trial, the incidence of ovarian cancer during 
the 5-year intervention period was significantly lower in the fenretinide group (no 
cases vs. six in the control group) [85, 88], although no significant difference was 
shown in the long-term follow-up [89]. Moreover, fenretinide was highly effective 
in inhibiting the growth of BRCA1 mutant breast cancer cell lines [90]. Considering 
the protective effect of fenretinide in young women with second breast cancer and a 
similar trend in ovarian cancer, it can be used for chemoprevention in women with 
BRCA1 or BRCA2 mutations [83].

9.3	 �Future Challenges

We reviewed the current candidate drugs for the chemoprevention of breast can-
cer. Among them, endocrine intervention is considered as the standard of care for 
breast cancer with relatively few side effects; thus, it is most likely considered as 
a starting point for chemoprevention in high-risk breast cancer populations. 
However, despite the recommendation of chemopreventive therapy for breast can-
cer in some guidelines, many women do not prefer to take chemopreventive 
agents, and chemoprevention strategies are not widely used in clinical practice. In 
terms of primary prevention for breast cancer, the most important consideration is 
the balance between adverse events and their effects. A recent retrospective study 
in the United States indicated that the use of chemoprevention among women at 
increased risk for breast cancer remains low, especially among those aged below 
50 years, largely because of the fear of adverse events [91]. In particular, terato-
genic drugs, such as tamoxifen, may not be a good option for young women of 
childbearing age who are well aware of the possibility of chemoprevention. Given 
the low chemoprevention uptake among high-risk populations, healthcare provid-
ers must be encouraged to provide appropriate counseling to women who are eli-
gible for chemoprevention, which includes further education about the adverse 
effects and recruitment of women to participate in a trial regarding chemopreven-
tion when appropriate [91].
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Given the aforementioned limitations, chemoprevention options should be 
offered to women who have a significantly higher risk of breast cancer with germ-
line BRCA mutations. This is because prophylactic mastectomy is still the gold 
standard risk reduction method for women with BRCA mutations, but it is an inva-
sive procedure and requires psychological considerations because of its impact on 
cosmetic appearance. Therefore, further evidence regarding the specific chemopre-
vention options for these women should be obtained. A particularly promising 
approach is to focus on the differences in the mechanisms of carcinogenesis and 
phenotypes between BRCA1-deficient and BRCA2-deficient breast cancers, and to 
develop strategies for chemoprevention in BRCA1 and BRCA2 mutation carriers. 
Considering these differences, subtype-based approaches are expected, such as 
endocrine therapy for BRCA2 mutation carriers and denosumab for BRCA1 muta-
tion carriers. In addition, PARP inhibitors may be suitable agents for both BRCA1 
and BRA2 mutation carriers.

There is insufficient evidence to confer an optimal duration of administration in 
chemoprevention. However, the administration of chemopreventive treatment may 
require the suspension of prophylactic mastectomy, thus avoiding the potential 
harm from surgery in healthy women with BRCA mutations.

Although several steps must be overcome to ensure the feasibility of chemopre-
vention in the clinical setting, an individualized treatment using the recently devel-
oped molecularly targeted drugs will help improve the efficacy of chemopreventive 
strategies in both research and clinical settings. The development of rational, effec-
tive, and minimally toxic prophylactic drugs with the ability to modify carcinogen-
esis at an early stage is needed to improve the clinical outcome of 
chemoprevention.
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