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Abstract Full waveform inversion (FWI) is a recent powerful method in the area
of seismic imaging where it used for reconstructing high-resolution images of the
subsurface structure from local measurements of the seismic wavefield. This method
consists in minimizing the distance between the predicted and the recorded data. The
predicted data are computed as the solution of a wave-propagation problem. In this
study, we investigate two algorithms Gauss-Newton and L-BFGS for solving FWI
problems. We compare these algorithms in terms of its robustness and speed of con-
vergence.Also,we implement the Tikhonov regularization for assisting convergence.
Numerical results show that Gauss-Newton method performs better than L-BFGS
method in terms of convergence of l2-norm of misfit function gradient since it pro-
vides better convergence as well as the quality of high resolution constructed images.
Yet, L-BFGS outperforms Gauss-Newton in terms of computationally efficiency and
feasibility for FWI.
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1 Introduction

Full-waveform inversion (FWI) is a recent powerful method based on based on
nonlinear optimization technique in the area of seismic imaging. FWI was proposed
by [1–3] back in the early of 1980s for reconstructing high-resolution images of the
subsurface structure from localmeasurements of the seismicwavefieldbyminimizing
the distance between the predicted and the recorded data [4–6]. Since then there are
many numerical studies and new implementation of algorithms have been done [7, 8].

In this study, we investigate two algorithms Gauss-Newton and L-BFGS for solv-
ing frequency domain FWI as proposed in [7]. We compare these algorithms in
terms of its robustness and speed of convergence via realistic synthetic model with
marine exploration seismic setting. Also, we implement the Tikhonov regularization
for assisting convergence.

2 Problem Formulation

We will formulate the FWI problem in the frequency domain as proposed by PRatt.
Consider the slowness-squared asmodel parametersm ∈ R

ngrid and themeasurement
vector d ∈ C

ndata are related through a known but nonlinear relationship denoted as

d = F(m) + ε, (1)

where ε ∼ N (0,CD) is additive, normally distributed noise with zero mean and
covariance CD ∈ C

ndata×ndata .
The nonlinear forward modeling map F(m) can be desribed as

F(m) = PA(m)−1q, (2)

whereq ∈ C
ngrid is the discretized source termwhich considered known.The operator

A(m) ∈ C
ngrid×ngrid represents the discretizedHelmholtz operator (∇2 + ω2m)where

ω = 2π f is the angular frequency. The operatorP ∈ R
ndata×ngrid denotes the sampling

operator which samples the data d from the field vector variables u, which is the
solution of the Helmholtz equation u = A(m)−1q.

By choosing the matrix that L as the first order finite difference operator which
commonly referred to as roughening matrix, we can define the least-square misfit
function with Tikhonov regularization as
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where α is the regularization coefficient. The optimal model m can be sought by
minimizing the misfit function V (m) in 3. The resulting optimization problem is
typically solved using a gradient-based method which generates iterates of the form

mk+1 = mk − Bk∇V (mk), (4)

where Bk includes appropriate scaling/smoothing of the gradient. In this study the
matrix Bk could be represented either as the inverse of the Gauss-Newton approxi-
mation or the L-BFGS approximation of Hessian which will be explained in details
in the following sections. For the gradient of the misfit function, it can be computed
through adjoint-state method [9] and the explicit formula can be described as

∇V (m) = JT (F(m) − d) + α(LTL)m, (5)

with J the Jacobian of F(m).

3 Gauss-Newton Method

Gauss-Newton method is a method derived from Newton method for solving the
nonlinear optimization problem. The issue with Newton method in solving the non-
linear optimization problem especially FWI is the computation of full Hessian. In
Eq.4, the matrix Bk has two terms based on Newton method which can be presented
as

H = JT J + ∂J
∂m

(F(m) − d). (6)

Commonly, the computation of the second term is avoided due to its tedious
calculation and which in any case should be small by assuming the problem is
approximately linear, which, in practice, implies that the startingmodel is sufficiently
close to the true model. This is where the Gauss-Newton method is being derived
from. The difference between Newton and Gauss-Newton method is the negligence
of the second term in the Hessian computation. Based on [7, 10], we can safely
dropped off the second term in the Eq.6 because of its value is too small and it is
only important if changes in the parameters cause a change in the partial derivative
of the Helmholtz equation’s solution.
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The Gauss-Newton method and its approximation of Hessian can be presented as

mk+1 = mk − HGN∇V (mk), (7)

HGN = JT J, (8)

where the matrix HGN is assumed to have full column rank, and is thus invertible.
See [11] for more details regarding to this algorithm.

4 L-BFGS Method

The limited- memory BFGS method (L-BFGS) is a quite successful modification of
the quasi-Newton methods [11, 12]. In this method, no Hessian approximation is
ever actually formed, but rather a collection of the last several (sk, yk) pairs is stored
and used to compute the step. Let m, the memory size, be the number of (s, y) pairs
stored. Then, given an initial matrix H0, the matrix Hk can be defined as follows:
H ← H0

for m, . . . , 1 do
H ←− V T

k−i HVk−i + ρk−i sk−i sTk−i
end for
Hk ← H .
The notation is simplified by eliminating the iteration counter k and choosing to

store themost recent value of s, that is, sk − 1, in sm − 1 and the oldest value, sk − m,
in s0. The vectors yi , i = 0, . . . ,m − 1, are stored similarly. With these values, it can
be shown that the search direction in Eq.4 can be represented as

Bk∇V (mk) = Hk∇V (mk), (9)

where the matrix Hk is the L-BFGS approximation to the inverse Hessian and can
be computed through the algorithm presented above.

5 Numerical Examples

In these numerical examples, we illustrate the performance of Gauss-Newton and
L-BFGS algorithms through solving the frequency domain FWI problem. We solve
two FWI problems with two different velocity models with an objective to compare
these two algorithms in reconstructing the velocity models from the recorded data.

For first numerical example, we use a homogeneous velocity model with an inclu-
sion in the centre which acts as an reflector, depicted in the Fig. 1a. A standard
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(i) True Model (ii) Initial Model
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(iii) L-BFGS (iv) Gauss-Newton

Fig. 1 Numerical example 1: reconstruction of homogeneous velocity model with an inclusion in
the centre

finite-difference method is used to solve the Helmholtz equation. The grid size is
100 × 100, and grid spacing is 10 × 10 m. In this numerical example we consider
collocated sources-receivers setting with sources-receivers are located at every 20m.
We use frequency content 5 to 25Hz with frequency sampling of 3.33 Hz.

In the second numerical example, we use the Marmousi model as depicted in the
Fig. 3a to perform the numerical studies. A standard finite-difference method is used
to solve the Helmholtz equation. The grid size is 61 × 220, and grid spacing is 50 ×
50 m. 50 shots at every 100 and 100 receivers at every 50m are used in this numerical
example. This sources-receivers setting is resembling the marine exploration seismic
setting. We use frequency content from 0.5 Hz to 3.95 Hz with frequency sampling
of 0.5 Hz.

For both numerical examples, we performed 100 Gauss-Newton and L-BFGS
iterations each, starting from the initial model depicted in the Figs. 1b and 3b respec-
tively to obtain the optimal model m as shown in the bottom row of Figs. 1 and 3.
As regularization, we use the Tikhonov regularization method with regularization
operator L as first order derivative operator and regularization parameter α equals to
0.01.
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In practice, the Hessian is not store explicitly in memory and only its matrix-
vectors product are being computed. Thus, for the Gauss-Newton iterations, we
are solving a system of linear equations at each iteration using the preconditioned
conjugate gradient (PCG) to estimate the descent direction.

6 Discussions

Based on two numerical results, both algorithms are performing well and both show-
ing a good convergence of misfit values and the values of l2-norm of misfit function
gradient as illustrated in Figs. 2 and 4, respectively. As we can observe, the misfit
values of L-BFGS is better than Gauss-Newton algorithm, yet the values of l2-norm
of misfit function gradient for Gauss-Newton algorithm is lower compared to L-
BFGS algorithm. In practice, we should consider the values of l2-norm of misfit
function gradient as it represents the optimal distance of the solution to the truth.
This is because the true solution could be obtained when the misfit function gradient
is equal to zero or in the vicinity of l2-norm of misfit function gradient closes to zero.
Thus, based on this practice, Gauss-Newton algorithm is perform better compared
to L-BFGS because of its lower value in l2-norm of misfit function gradient.

Here we also should discuss the feasibility of each algorithm. Gauss-Newton
algorithm needs the matrix-vector product between the inverse of its approximated
Hessian and the gradient at each iteration in order to obtain the descent direction.
This computation is computationally intensive thus it takes longer time per iteration
to solve the optimization problem. Meanwhile, in L-BFGS algorithm no Hessian
approximation is ever actually formed, but rather a collection of the last several
(sk, yk) pairs is stored and used to compute the step. This makes L-BFGS algorithm
is computationally efficient compared to the Gauss-Newton algorithm.
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Fig. 2 Numerical example 1: misfit and norm of gradient values at each iteration



Gauss-Newton and L-BFGS Methods in Full Waveform Inversion (FWI) 711

Fig. 3 Numerical example
2: reconstruction of
marmousi model
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7 Conclusion

In conclusion, both algorithms, L-BFGS and Gauss-Newton are comparable to each
other in terms of performance. Gauss-Newton algorithm gives a better result in the
convergence of l2-norm of misfit function gradient sense, yet it is computationally
intensive.Meanwhile, L-BFGS performance is comparable to theGauss-Newton and
in terms of computationally efficiency and feasibility, L-BFGS is outperformed the
Gauss-Newton for the large scale optimization problems especially in FWI.
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Fig. 4 Numerical example 2: misfit and norm of gradient values at each iteration
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