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Abstract In this study, we discuss the application of Newton-GS iterative method
with quadrature schemes in solving nonlinear Fredholm integral equations. This
study proposes the application of Newton-Gauss–Seidel (NGS) iteration with the
second-order quadrature scheme in getting the approximate solution of nonlinear
Fredholm integral equations of the second kind (NFIE-2) in comparison with the
first-order quadrature scheme. The main idea of this study is to apply the second-
order quadrature scheme to discretize the NFIE-2 to form a system of nonlinear
integral equations. Then we convert the nonlinear system into the corresponding
linear system by imposing the Newton approach. By having this large-scale and
sparse linear system, the numerical implementation of Newton-Jacobi (NJ) and NGS
iteration approaches alone with first- and second-quadrature schemes have recorded
their number of iterations, computational time, and maximum absolute error. As a
result of thesemeasured parameters, the comparative study canbe performed to gauge
the effectiveness of NGSwith second-order quadrature scheme when compared with
the numerical results of first-order quadrature scheme and NJ iteration. Based on
numerical experiments, it can be important to highlight that the implementation of
NGS iteration with second-order quadrature scheme has significantly improved the
accuracy of its approximate results.
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1 Introduction

Academically, the problem of NFIE-2 has been solved using several analytical and
numericalmethods such as generalized extrapolationmethod [1], collocationmethod
[2–4], multi projection method [5], Homotopy perturbation method [6], Adomian
decomposition method [7], parameter continuation method [8], successive approx-
imation method [9], etc. However, due to its important application in science and
engineering, the studies of solving this problem is continued until now. Recently,
the researchers have proposed several methods including Nyström method [10],
Nyström-quasilinearization method [11], and trigonometric basis functions [12] to
solve the problem of NFIE-2.

Inspired by the accuracy of the data through implementation of higher order
quadrature scheme, this study is focusing on the implementation of the second-order
quadrature scheme to solve the NFIE-2 in the following form

u(t) = f (t) +
b∫

a

k(t, x, u(x))dx, x ∈ [a, b], (1)

where k is continuous on interval [a, b], f (t) is known function and u(t) is the
unknown function [13]. Family of quadrature schemes is one of numerical integra-
tion schemes which used widely in numerical studies due to its useful properties. A
system of linear or nonlinear equations can be generated from a single approxima-
tion equation through discretization process using a particular quadrature scheme.
Many studies have been conducted with implementing these quadrature schemes to
discretize the problem of differential and integral equations such as in [14–18]. The
implementation of different type or order of quadrature schemes have influenced the
accuracy of the approximate solutions.

Since one of the advantages of the second-order quadrature rule, in compar-
ison with first-order quadrature rule is that it provides more accurate approximation
equations by consideringmore grid points on interval [a, b], subsequently, the imple-
mentation of the composite Simpson’s 1/3 (CS1) scheme is expected to be resulting
more accurate solutions in terms of maximum absolute error. Prior to progres-
sively utilizing these quadrature schemes, we design the methodology of solving
nonlinear Fredholm integral equations using the NGS and NJ iterative methods with
the composite Simpson’s 1/3 (CS1) scheme namely NGS-CS1 and NJ-CS1. As for
comparative effect,we also establish the formulation and implementation ofNGSand
NJ iterative methods with the composite Trapezoidal (CT) scheme namely NGS-CT
and NJ-CT.Moreover, we just use NJ-CT as a control method to test the efficiency of
other three proposed iterative methods particularly NGS-CS1, NGS-CT and NJ-CS1
in solving NFIE-2.

This paper is organized as follows: In Sect. 2, we will discuss the method-
ology of this study by implementing the second-order quadrature scheme mainly
on the composite Simpson’s 1/3 (CS1) scheme towards NFIE-2 to form a system of
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nonlinear integral equations. Then, we discuss the Newton-GS iteration on solving
the corresponding nonlinear system. In Sect. 3, we present some numerical examples
from the previous studies to illustrate the effectiveness of the proposed approach.
Then, we discuss the numerical findings of this studies. Finally, we make some
conclusions and suggestion for further studies on solving NFIE-2 in Sect. 4.

2 Methodology

The methodology of this study is design by two main parts: in part one, we discretize
the nonlinear Fredholm integral equations using first- and second-order quadrature
schemes to form nonlinear integral system. In part two, using NJ and NGS iterative
methods, firstly, we need to do the linearization process over the generated nonlinear
system using Newton’s method to get the corresponding linear system. Later, the
linear system can be solved iteratively by using NGS-CS1, NGS-CT, NJ-CS1 and
NJ-CT iterative methods respectively to get their numerical solutions.

2.1 Discretization of NFIE-2 Using First- and Second-Order
Quadrature Schemes

The formulation of integration function in solving NFIE-2 in (1) using quadrature
scheme can be defined as follows

b∫

a

f (x)dx =
n∑
j=0

A j f
(
x j

) + εn( f ) (2)

where t j , ( j = 0, 1, . . . , n) are abscissas of the partition points of the integration
interval on interval [a, b], A j , j = 0, 1, 2, . . . , n are the numerical coefficients and
εn(y) is the truncation error. Constant A j , j = 0, 1, 2, . . . , n for Trapezium rule is
defined as [16, 17]

A j =
{ 1

2h, j = 0, n
h, otherwise

(3)

whereas the value of A j , j = 0, 1, 2, . . . , n for Simpson’s 1/3 is denoted in the
following expression

A j =
⎧⎨
⎩

1
3h, j = 0, n
4
3h, j = 1, 3, 5, . . . , n − 1
2
3h, otherwise

(4)
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where

h = b − a

n
. (5)

The differences between Trapezoidal and Simpson’s 1/3 rule can be illustrated as
follows.

Figure 1 shows the comparison of finite grid networks between Trapezoidal rule
and Simpson’s 1/3 rule on interval [a, b]. For illustration, let the total number of
subintervals to be n. The implementation of Trapezoidal rule will consider as much
(n + 1) node points while the Simpson’s 1/3 will also consider (n + 1) total node
point. This means Simpson’s 1/3 rule consider more node points on interval [a, b]
resulting the neighboring point between the node points to be increased. Thus, it will

(a) Trapezium Grid Network.

(b) Simpson’s 1/3 Grid Network.

Fig. 1 The comparison of finite grid networks for a Trapezium and b Simpson’s 1/3 on interval
[a, b]
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help to reduce the neighboring distance between the node points and provide more
accurate approximate solution of the problem.

In general, we can form the following nonlinear approximation equations based
on the implementation of quadrature scheme in integration part of (1) for i, j =
0, 1, 2, . . . , n, as follows

ui − A jhk(t, x0, u0) − A jk(t, x1, u1) − A jk(t, x2, u2) − · · ·
− A jhk(t, xn, un) = fi (6)

The nonlinear approximation (6) can be easily specified by replacing the A j based
on the given values in (3) and (4) for first- and second-order quadrature schemes.
The nonlinear function of (6) can be defined as

Gi (u0, u1, u2, . . . , un) = ui − A jhk(t, x0, u0) − A jhk(t, x1, u1)

− A jhk(t, x2, u2) − · · · − A jhk(t, xn, un) − fi (7)

Thus, we can form the following nonlinear system of NFIE-2 in the following
form

Gi (u0, u1, u2, . . . , un) = 0, i = 0, 1, 2, 3, . . . , n (8)

2.2 Formulation of NGS Iteration with Quadrature Schemes

In the second part, we will discuss the formulation of NGS iteration with quadrature
schemes to solve the generated nonlinear system in Part A. Using Newton’s method,
we can represent the corresponding nonlinear system (8) into a linear system as
follows [19]

J
(
u(k)

)
�u(k) = −G

(
u(k)

)
(9)

where

J
(
u(k)

) =

⎡
⎢⎢⎢⎢⎢⎢⎣

dG0
du0

dG0
du1

dG0
du2

· · · dG0
dun

dG1
du0

dG1
du1

dG1
du2

· · · dG1
dun

dG2
du0
...

dGn
du0

dG2
du1
...

dGn
du1

dG2
du2
...

dGn
du2

· · ·
. . .

· · ·

dG2
dun
...

dGn
dun

⎤
⎥⎥⎥⎥⎥⎥⎦

(n+1)×(n+1)

,

�u(k) =
[
�u0 �u1 �u2 · · · �un

]T
,
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and u(k) is determined by u(k+1)
i = u(k)

i + �ui .
To solve the linear system of (9), Jacobian matrix, J

(
u(k)

)
needs to be decompose

into J
(
u(k)

) = D − L − U , where D is diagonal matrix, L is strictly lower matrix,
and U is strictly upper matrix so we can formulate the formulation of Gauss–Seidel
iteration to solve NFIE-2 in (9) as follows [20]

�u(k+1) = (D − L)−1U�u(k) + (D − L)−1 f (10)

Algorithm 1 Implementation of NGS-CS1 Iteration.

i. Let ∇u(k) = 0, k = 0 and ε = 10−10.
ii. Set q = 0 and compute matrix J

(
u(k)

)
and G

(
u(k)

)
.

iii. Compute the current value, �u(k+1)
i

a. For i = 0, 1, 2, . . . , n and j = 0, 1, 2, . . . , n, calculate

�u(k+1)
i ← 1

Ai,i

⎛
⎜⎜⎜⎜⎝

fi − 1
Ai,i

(
i−1∑
j=0

Ai, j�u(k+1)
j

)

− 1
Ai,i

(
n∑

j=i+1
Ai, j�u(k)

j

)

⎞
⎟⎟⎟⎟⎠.

b. Conduct the convergence test,
∣∣∣�u(k+1)

i − �u(k)
i

∣∣∣ ≤ ε. If satisfied,

continue to step iv, otherwise repeat step iii(a).

iv. Conduct the convergence test,
∣∣G(

u(k+1)
)∣∣ ≤ ε. If satisfied, display the

approximate solution, and otherwise repeat step iii.
v. Display the output.
vi. Stop.

3 Numerical Experiments and Discussion

This study considers five large mesh size which are 512, 1024, 2048, 4096, and 8192.
Using three main parameters, number of iteration (Iter), computational time (Time)
andmaximum absolute error (Err), we compared the data obtained for four suggested
iterative methods, NGS-CS1, NGS-CT, NJ-CS1 and NJ-CT on three numerical
examples as stated here.

Example 1 Consider the following NFIE-2 problem [21]

u(t) = 1 − 5

12
t +

1∫

0

t x[u(x)]2dx (11)
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where the exact solution for this problem is u(t) = 1 + 1
3 t .

Example 2 Consider the following NFIE-2 problem [22]

u(t) = − t

9
− t2

8
+ t3 +

1∫

0

(
t2x + t x2

)
u2(x)dx (12)

where the exact solution for this problem is u(t) = t3.

Example 3 Consider the following NFIE-2 problem [23]

u(t) = t + cos
(
e(1) + t

) − cos(1 + t)

20
+

1∫

0

sin
(
e(x) + t

)
20

e(u(x))dx (13)

where the exact solution for this problem is u(t) = t .

Tables 1, 2 and 3 show the implementation of NJ and NGS using Trapezium
and Simpson’s 1/3 does not bring much different in terms of number of iteration and
iteration time. But in terms ofmaximum absolute error, the approximate solutions for
all proposed problems recordedmore accurate approximate error usingSimpson’s 1/3
rule compared to Trapezium rule. Figures 2, 3 and 4 demonstrates th3e comparison
of Newton-iterative methods in terms of maximum absolute error graphically for
Examples 1, 2, and , respectively. The figures show NGS-CS1 iterative method have
provided more accurate solutions compared to methods with Trapezium rule. This is

Table 1 Numerical results of NJ and NGS iterative methods using Trapezium and Simpson’s 1/3
for Example 1

Mesh size

512 1024 2048 4096 8192

Iter NJ-CT 329 330 330 330 330

NGS-CT 183 183 183 184 184

NJ-CS1 329 330 330 330 330

NGS-CS1 183 183 183 184 184

Time NJ-CT 1.66 6.65 26.56 106.12 423.31

NGS-CT 0.94 3.76 14.97 60.23 240.11

NJ-CS1 1.68 6.62 26.45 105.7 422.29

NGS-CS1 0.96 3.75 14.96 60.15 241.12

Err NJ-CT 3.18E−06 7.94E−07 1.98E−07 4.93E−08 1.20E−08

NGS-CT 3.18E−06 7.95E−07 1.99E−07 4.95E−08 1.23E−08

NJ-CS1 3.89E−10 3.92E−10 3.94E−10 3.95E−10 3.95E−10

NGS-CS1 1.23E−10 1.24E−10 1.25E−10 1.25E−10 1.25E−10



700 L. H. Ali et al.

Table 2 Numerical results of NJ and NGS iterative methods using Trapezium and Simpson’s 1/3
for Example 2

Mesh size

512 1024 2048 4096 8192

Iter NJ-CT 105 105 105 105 105

NGS-CT 64 64 64 64 64

NJ-CS1 105 105 105 105 105

NGS-CS1 64 64 64 64 64

Time NJ-CT 0.55 2.19 8.78 35.05 138.82

NGS-CT 0.35 1.41 5.54 22.00 87.79

NJ-CS1 0.58 2.19 8.70 34.75 138.96

NGS-CS1 0.36 1.39 5.48 21.91 87.93

Err NJ-CT 1.13E−05 2.82E−06 7.04E−07 1.76E−07 4.40E−08

NGS-CT 1.13E−05 2.82E−06 7.04E−07 1.76E−07 4.40E−08

NJ-CS1 4.47E−11 5.57E−11 6.28E−11 6.36E−11 6.39E−11

NGS-CS1 9.81E−11 6.99E−12 1.14E−11 1.18E−11 1.19E−11

Table 3 Numerical results of NJ and NGS iterative methods using Trapezium and Simpson’s 1/3
for Example 3

Mesh size

512 1024 2048 4096 8192

Iter NJ-CT 22 22 22 22 22

NGS-CT 18 18 18 18 18

NJ-CS1 22 22 22 22 22

NGS-CS1 18 18 18 18 18

Time NJ-CT 1.69 6.73 26.94 108.01 428.01

NGS-CT 1.42 5.66 22.72 90.89 360.65

NJ-CS1 1.69 6.76 26.99 107.97 441.91

NGS-CS1 1.43 5.69 23.01 91.07 363.81

Err NJ-CT 1.45E−07 3.63E−08 9.08E−09 2.27E−09 5.68E−10

NGS-CT 1.45E−07 3.63E−08 9.08E−09 2.27E−09 5.68E−10

NJ-CS1 2.84E−13 3.83E−14 2.82E−14 2.76E−14 2.78E−14

NGS-CS1 2.95E−13 1.84E−14 5.27E−15 4.80E−15 5.12E−15

due to the implementation of high order quadrature scheme which helps to increase
the neighborhood distance between each node points in interval [a, b]which resulting
more accurate results.Moreover,when comparingbothNJ-CS1andNGS-CS1,NGS-
CS1 iteration recorded more accurate results compared to NJ-CT.
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Fig. 2 Plots of maximum
absolute error for of NJ and
NGS iterative methods using
Trapezium and Simpson’s
1/3 (Example 1)

3.91E-11

1.56E-08
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2.50E-03

1.00E+00

512 1024 2048 4096 8192

Err

Mesh Size

NJ-CT

NGS-CT

NJ-CS1

NGS-CS1

Fig. 3 Plots of maximum
absolute error for of NJ and
NGS iterative methods using
Trapezium and Simpson’s
1/3 (Example 2)
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Fig. 4 Plots of maximum
absolute error for of NJ and
NGS iterative methods using
Trapezium and Simpson’s
1/3 (Example 3)
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4 Conclusions

In this study, we discuss the application of Newton-iterative method with first- and
second-order quadrature schemes in getting the approximate solution of NFIE-2.
Based on the data obtained, we can conclude that the implementation of second-
order quadrature scheme can improve the accuracy of the output compared to the
first-order quadrature scheme. This means the approximate solution obtained for
NFIE-2 is very close to the exact solutions. Thus, we conclude that Newton-GS
iteration with second-order quadrature scheme, NGS-CS1 to be the most efficient
method in solving NFIE-2 compared to the rest tested methods in this study. In the
future study, this finding had a wide potential to be extended using the combination
of the half-sweep iteration concept together with the weighted parameter iteration
family, specifically to weighted parameter [16, 17], modified weighted parameter
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[24, 25] and Accelerated parameter [26, 27] iteration families to reduce the iteration
number and computational time and to improve the accuracy of the approximate
solution.
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