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Multidisciplinary Computational Anatomy (MCA) is a recent and rapidly evolving field of 
research which brings new perspectives to medicine in general and surgery in particular. It 
provides a personalized digital representation of the patient based on his/her medical images 
and other available information (clinical, biological, lifestyle, environment, etc.) as well as 
statistical information computed on populations.

This digital representation of the patient’s anatomy and physiology provides a powerful 
basis to assist diagnosis and prognosis with quantitative markers, and to assist the therapy with 
computational tools for its planning, simulation, and rehearsal. This paves the way of a new era 
of digital medicine and surgery where the computer is used to augment the capabilities of the 
physician, not to replace him/her.

I had the privilege to follow the advances of the MCA project leaded by Professor Makoto 
Hashizume at an international meeting each year during the period 2014–2018. This book 
presents the cutting-edge and state-of-the-art results obtained by the major actors of this proj-
ect in Japan. It provides a large and thorough description of the scientific principles of multi-
disciplinary computational anatomy along with major clinical applications.

The scientific principles include the mathematical, computational, and biophysical models 
required to describe and analyze the spatial and temporal evolutions of the anatomy through 
time and populations, measured with various modalities of structural or functional medical 
images. They also include some of the most recent artificial intelligence methods based on 
statistical learning from large databases of patients. The book provides the methods to model 
human and tumor growth, abdominal organs as well as the cranial nervous, cardio-respiratory, 
and musculoskeletal systems.

The clinical applications cover most of the medical disciplines, including oncology, diges-
tive, and brain surgery, neurology, cardiology, pulmonology, hepatology, radiology, endos-
copy, histopathology, embryology, etc. The clinical applications based on MCA models are 
also well illustrated with a number of emerging innovative imaging technologies.

This book carefully prepared by Prof. Makoto Hashizume and his eminent colleagues is 
very timely. It is an important contribution to science and medicine and it will be very useful 
to all the persons interested in digital medicine and surgery, including students, teachers, and 
researchers in many disciplines including medicine, biology, computer science, and applied 
mathematics.

The advances presented in this book, through the development of more faithful digital rep-
resentations of the patients also called “digital twins” or “virtual patients,” will definitely con-
tribute to further improve the quality and precision of medical practice. This is for the benefit 
of real patients all over the world. This is the reason why I want to congratulate wholeheartedly 
all the contributors of this outstanding MCA project.

 Nicholas Ayache, Ph.D. 
Inria and MICCAI Society

Nice, France
December 2020
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The project “Multidisciplinary Computational Anatomy and its Application to Highly 
Intelligent Diagnosis and Therapy (MCA: multidisciplinary computational anatomy in short)” 
was funded by the Japan Ministry of Education, Culture, Sports, Science and Technology 
(MEXT) Grant-in-Aid for Scientific Research on Innovative Areas in 2014. I acknowledge the 
MEXT for financial support during the period of 2014–2018 fiscal year. A grant for the inter-
national activity was also accepted by MEXT in 2017 and it has accelerated the global initia-
tives in collaboration with 31 foreign leading centers of excellence (COE) over the world. It 
greatly contributed to strengthen the scientific levels in mathematical statistics as well as com-
puting and data sciences. Young investigators who were financially supported by this grant had 
a great opportunity to go abroad to accomplish collaborative research works internationally 
with those COE and contributed to establish the fundamentals of MCA together with them.

The purpose of this book is to introduce the basics and the state of the art of this technology 
and its clinical application, and to propose the “MCA-based Medicine.” It contains not only the 
cutting-edge technologies produced by the MCA project, but also the basic mathematics and 
fundamentals. This book will be helpful and informative for both basic and clinical researchers 
wishing to systematically survey the state of the art on MCA for challenging to change or to 
improve the current medicine. MCA is a new frontier of science that establishes a mathemati-
cal analysis base for a comprehensive and useful understanding of the “dynamic, living human 
anatomy,” and defines a new mathematical method for early detection and a highly intelligent 
diagnosis and treatment for the incurable or intractable diseases.

The “Personalized Digital Patient” is a digital representation of the patient’s anatomy and 
physiology based on models whose parameters can be learnt automatically from real or simu-
lated medical images and additional clinical, biological behavioral, and environmental data. 
Personalized digital patient’s modeling pays the most important role in “Surgical Data 
Science,” which allows us to design the management for patients in OR and to support the 
medical doctors making a final decision during surgery. What is called “Multidisciplinary” is 
defined as one point of space in digital human body, which composes multiple axes such as 
scale, function, time, and pathology axes. The clinical significance in each axis contains image 
resolution, modality of image, temporary phase such as second, minute, hour to age, or pathol-
ogy of the normal to diseased stage, respectively. It shows multiple attributes or a variety of 
modality of data on each part of the digital human body. Each part is a representative space of 
data so that the project aims at establishment of unified notation, technology, or principle and 
development of clinical application of the human model, such as spatiotemporal model, 
function- anatomy model, or pathology-anatomy model. The project on MCA comprises scien-
tific research on innovative areas based on medical images integrated with those information 
related to (1) the spatial axis, from a cell size to an organ size level, (2) the time series axis, 
from an embryo to postmortem body, (3) the functional axis, on physiology or metabolism 
which is reflected in a variety of medical image modality, and (4) the pathological axis, from a 
healthy physical condition to a diseased condition. In order to establish MCA model, all those 
data must be registered so that the data with multiple attributes are projected on the same vir-
tual space on the 3D axis and a standard spatiotemporal model of the digital human body is 
formed.
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The research group was consisted of three main “planned research groups” (A01, A02, and 
A03. Each consisted of three study groups and nine study groups in total), and sixty-two “pub-
lic offered research groups” (thirty-one each during the periods 2015–2016 and 2017–2018, 
respectively). A01 is a group for foundations of Multidisciplinary Computational Anatomy, 
A02 is a group for Computer-aided Diagnosis and Surgery Systems, and A03 is a group for 
Clinical and Scientific Applications. The latter public offered groups which joined us during 
the 2 year each, were adopted to strengthen the contents of the project. The principle has been 
technically established by making such MCA scenarios as mathematical methods for MCA 
modeling; (1) brain MCA modeling, (2) musculoskeletal MCA modeling, (3) lifetime MCA 
modeling, (4) chest MCA modeling, and (5) abdominal MCA modeling. Owing to their great 
contribution to development of MCA, the results were introduced in the world-class level 
international journals and presented at the many international meetings. The total number of 
pure reviewed papers is more than 900 during the last 5 years. International collaborative 
research works were so much actively performed that many young researchers were grown up 
under direction of the world-class leaders at the center of excellence.

A novel registration method was introduced by developing an automatic detection of over 
100 anatomical landmarks in medical CT. It showed a fair sensitivity without any abnormal 
training datasets. Because only images from normal cases were used in the training process, 
the proposed method requires no manual input of abnormal lesions. Their proposed method is 
expected to be beneficial in routine CT examination for patients with a cancer. A spatiotempo-
ral statistical model often suffers from a problem caused by sparsely distributed data along a 
time axis, which makes the statistical modeling difficult. We overcome the difficulty in those 
statistical modeling by introducing a two-stage modeling algorithm. The first stage maps all 
data into a feature space with reduced dimension and the second stage performs statistical 
modeling with q-Gaussian based parameter estimation followed by interpolation of statistics 
along a time axis. The effectiveness of the proposed modeling approach was demonstrated in 
the modeling of anatomical landmarks and surfaces of human embryos of Kyoto collection. A 
spatiotemporal shape model was also developed with a nested constraint and a neighboring 
constraint. Eventually combination of the both constraints with topological changes was devel-
oped and applied into modeling spatiotemporal statistical variations of surfaces of brain, ven-
tricles, and choroid plexuses of human embryos. A super resolution algorithm was developed; 
one is a dictionary based algorithm and the other is a deep learning based algorithm. A deep 
learning based super resolution technique and Generative adversarial network for super resolu-
tion (SRGAN) were extended to be applicable to three-dimensional (3D) low-resolution (LR) 
image. It was confirmed that the quality of the super resolution image was 2.42 dB higher than 
bi-cubic interpolation. Deep learning is now widely available, and redevelopment of the auto-
mated segmentation tools using deep learning will greatly improve the accuracy and facilitate 
their application to the MCA modeling. Therefore, deep learning based automated segmenta-
tion tools are developed so that functional and pathological modeling is investigated using 
automatically segmented anatomical structures. Segmentation accuracy of muscles signifi-
cantly improved using U-net compared with the previous hierarchical multi-atlas method. 
Average symmetric surface distance was reduced from 1.75 mm by the previous method to 
0.99 mm by U-net. Volume measurement error was reduced from 13.3% to 0.3% in average. A 
MR-CT image synthesis tool was developed using CycleGAN. Paired CT and MR dataset is 
not necessary, but just a bunch of unpaired CT and MR data having similar FOVs are used. The 
MCA modeling for the musculoskeletal system was developed, in which physiological units 
for functioning (muscle fibers) and transmission systems including connective tissues and 
physical connections are modeled. The new discipline provides a framework for personalized 
functional musculoskeletal anatomy modeling, which has not been available before.

Integration of those comprehensive set of medical imaging is required and clinically help-
ful. A computer needs to seamlessly understand human anatomy from macro- and micro- 
levels. The images of many different scales must be integrated so that multiscale image 
registration and navigation are the main topics in establishing the CAD and CAS system based 
on MCA. Tumor structure and growth analysis over time are good examples of MCA as well 
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as human growth pattern. An automated real-time pathological prediction method was devel-
oped for endocytoscopic images. It is expected to contribute to early detection of colonic 
neoplastic lesion and to reduction of cancer incidence and death rate. They developed extrac-
tion method of the 3D microstructure of vascular network from high-resolution dual-energy 
CT images using high luminance synchrotron radiation micro CT and successfully extracted 
capillary beds throughout the pulmonary acinus by combination of the dual-energy SRμCT 
images. Modern medical imaging devices have granted the visualization of metabolic and 
functional information of a body which have raised the enormous interest in quantitative image 
analysis. A computational model has been established for functional imaging and a new analy-
sis method was developed by using FDG-PET/CT images. A novel approach was developed 
using a deep learning technique for 3D CT images. The system enabled to measure metabolic 
volume, total lesion glycolysis, and effective dose based on the automated segmented results.

Marked development was also found in such clinical application system of the MCA model 
as surgical navigation, evaluation of the surgeon’s skill, semi-automatic surgical robotic sys-
tem with AI, surgical simulation system, and prediction of therapeutic effect as well as disease 
specific treatment model. A 4-dimensional human body model enabled deforming the skin and 
internal structure (organs, skeletal muscles, vasculature, etc.) associated with the whole body 
movement. In the surgical field, the changes in the position and shape of the target organ are 
expected to be predicted from the changes in the posture of the subject on the operation bed. A 
surgical navigation method and a surgical assist-robot have been proposed to guide the opera-
tion and relieve the surgeon’s workload. A marker-base/marker-less AR navigation system and 
a compact OMS robot for precise positioning have been developed. They seamlessly integrated 
these two systems and developed an autonomous surgical system, which could exchange the 
roles between surgeons and surgical systems by making the robot be the primary operator and 
the surgeon be the surveillant. They proposed an intelligent autonomous surgical robot to 
approach the affected surgical area based on MCA model and limited intraoperative biological 
information.

MCA model is the integrated multiple prediction model with such as multiscale prediction 
model, temporal prediction model, anatomy-function prediction model, or anatomy- pathology 
prediction model. Thus, it was planned in a new international network group on MCA to estab-
lish the principle of modeling theories of the spatiotemporal anatomy, multiscale anatomy, 
functional anatomy, and multiscale pathology anatomy in addition to the multidisciplinary 
registration theory and correlation theory. Emphasis was set to a theory establishment and base 
construction of the mathematical study foundation, and to expand the range of the new system. 
The outcome might lead to one of the best solutions to overcome the difficulties in the current 
medicine. Overall, this topic is a scientific domain connected to the universal problems in 
people’s health. The future perspective is toward the development of human resources as well 
as a new scientific field of mathematical statistics, information sciences, computing data sci-
ence, and mechanical- and bio-engineering to medical applications based on MCA.

Finally, I would like to thank all the researchers who participated in the project on MCA. I 
would also like to express my sincere gratitude to the advisory committee members, 
Professors Nicholas Ayache (Inria Sophia Antipolis-Mediterranee), David Hawkes 
(University College London), Junichi Hasegawa (Chukyo University), Hiroshi Iseki (Waseda 
University), and Yoshihiro Kakeji (Kobe University). I sincerely thank Professor Emeritus 
Hidefumi Kobatake (Tokyo University of Agriculture and Technology) for his continuous 
support and heartful advice.

Our goal is to contribute to the promotion of people’s health by proposing the “MCA-based 
Medicine.” I hope the concept of MCA would be distributed and developed, expanding the new 
scientific field of frontier of science over the world.

Fukuoka, Japan Makoto Hashizume   
June 10, 2020
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From Geometric Models to AI 
in Computer-Assisted Interventions

David J. Hawkes

Abstract

This chapter describes a programme of work undertaken 
at UCL and most recently at the Wellcome/EPSRC Centre 
for Interventional and Surgical Sciences (WEISS) to 
develop and use a hierarchy of computational models of 
deformable anatomy that includes pathology to guide 
biopsy and surgical interventions. The development of 
appropriate models and the concept of a multiscale hierar-
chy of complexity and function is described. Recent 
advances in machine learning that significantly improve 
usability are presented, leading to the generation of sys-
tems to meet unmet clinical needs in the treatment of 
prostate and liver cancer.
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1.1  Introduction

This chapter illustrates and contrasts our approach and prog-
ress for the minimally invasive MR guided biopsy and treat-
ment of prostate cancer and for minimally invasive 
laparoscopic liver surgery. Figure 1.1 provides a schematic 
view of the hierarchical approach to model complexity. The 
challenges of clinical translation and system validation are 
described and the chapter finishes with some comments on 
clinical adoption.

The motivation for this work aligns very well with that of 
the Multidisciplinary Computational Anatomy (MCA) 

Project. Both applications described below integrate infor-
mation across spatial scales including information from 
pathology in the case of the prostate and dynamic informa-
tion such as tissue motion and deformation over the time 
course of the intervention. In particular, this programme of 
work links to the gastric surgery work in Nagoya and a col-
laboration was established during a short sabbatical to 
Professor Mori’s laboratory by the author in 2015 [1].

1.2  Prostate Cancer and the Introduction 
of Multiparametric MRI

In the UK in 2019 deaths from prostate cancer were about 
11,900 making it the second most lethal cancer for males. 
The incidence is rising due to improved detection rates and 
greater awareness reaching 48,500 in 2019 in the UK, mak-
ing it the most commonly diagnosed cancer in men [2]. 
These figures show that the majority of men diagnosed will 
not succumb to the disease. Overdiagnosis and unnecessary 
treatment of clinically non-significant disease is a concern.

The work with Professor Mark Emberton and his team at 
UCLH started in 2005, when it became apparent that an 
image-guided approach to biopsy and targeted focal therapy 
was feasible. At that time cancer risk was predominantly 
determined by clinical signs such as nocturia, poor urinary 
flow, digital rectal examination and raised prostate-specific 
antigen (PSA). Diagnosis was by transrectal ultrasound 
(TRUS)-guided biopsy, an essentially random sampling of 
the prostate gland. Depending on the results, treatment 
choices were either do nothing except monitor the patient, 
radical surgical prostatectomy or whole gland radiotherapy. 
The first risks escape of metastatic disease and impact on 
long-term survival, and the latter two lead to a significant 
risk of damage to critical nearby structures. Until recently 
the prostate was the only solid organ in which cancer was 
assessed and treated without imaging to locate disease.

At that time, advances in multiparametric MRI (mpMRI) 
were showing excellent results in detecting prostate cancer. 
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In a significant study of 576 men, mpMRI was subsequently 
shown to be more sensitive than conventional transrectal 
ultrasound-guided biopsy [3]. Twenty-seven percent of men 
might avoid unnecessary biopsy and 18% might be diag-
nosed with the significant disease who might otherwise have 
been missed. Importantly mpMRI provides the motivation 
for our work as it provides a target for image-guided biopsy 
and, in appropriate cases, image directed focal therapies. 
While the display of the MR images during interventions can 
provide very useful guidance to the skilled and experienced 
operator it is a difficult task and has a steep learning curve. 
Compensation for the very different orientation and gland 
distortion due to the insertion of the rectal ultrasound probe 
is challenging. Below we present our solution to address this.

1.2.1  A Statistical Shape Model 
of the Prostate for Registration 
of MR-Derived Information 
to Transrectal Ultrasound

Models of the outer boundary of the prostate are segmented 
from T2-weighted MR and meshed to create a 3D model of 
the prostate, pelvis and rectum. This in turn is registered to 
the transrectal ultrasound images. This provides a mapping 
of the delineated pathology seen on the MRI to ultrasound 
coordinates to enable targeting of the biopsy needle in trans-
perineal biopsy or targeting of focal ablation [4].

Segmentation was originally done manually by expert 
observers. Finite element (FE) methods were used to gener-
ate a model of this anatomy and of the transrectal ultrasound 
probe. FE methods were then used to generate a large num-
ber of deformations simulating a range of positions of the 
probe within the rectum. Typically, 500 deformations are 
computed per patient. A statistical motion model (SMM) 
was obtained by resampling the prostate volume and per-
forming PCA on the resulting deformation coordinates. The 
SMM was registered to the transrectal ultrasound slices by 
finding the pose and deformation that maximised directional 
alignment of surface vectors of the model and the ultrasound 
detected prostate capsule. Registration was initialised 
interactively.

This system underwent trial in 8 patients and a Target 
Registration Error (TRE) of 2.42  mm was achieved using 
MR and US visible landmarks on 100 trial registrations.

Subsequently, the system was further developed using a 
generative SMM on a leave-one-out basis. A very similar 
TRE of 2.40 mm was obtained [5]. This process is illustrated 
in Fig. 1.2. This innovation meant that the SMM did not need 
to be regenerated for each subject.

These technologies were incorporated into a commercial 
system, the Smart Target System (now owned by Intuitive 
Fusion LLC, Miami, USA). 129 patients were selected with 
MRI visible lesions. A clinical trial was conducted compar-
ing biopsy guidance using the Smart Target System and con-
ventional visual alignment by the urologist. Each patient had 
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Local Tissue Properties
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Shape Motion Deformation

Fig. 1.1 A hierarchical approach in scale and complexity for image-guided interventions
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both procedures, randomised in order. In total using both 
procedures 93 clinically significant cancers were detected 
and each procedure alone detected 80. Each procedure, 
therefore, missed 13 clinically significant cancers. This trial 
concluded that the computer-assisted guidance system is 
equivalent to an experienced urologist performing this task.

1.2.2  A Multi-Scale Model of Pathology

The MR diffusion signal is an imaging probe modulated by 
cellular scale changes and potentially is sensitive to struc-
tural changes associated with the growth of cancer. Although 
the resulting reconstructed image is at a millimetre scale the 
information corresponds to micron level changes. A new 
method developed in our lab, Vascular, Extracellular and 
Restricted Diffusion for Cytometry in Tumours (VERDICT), 
models the diffusion in intracellular water, extracellular 
water and water in the micro-vasculature. Fitting a simple 
geometric model comprising spheres and cylinders to the 
simulation of the diffusion signal enables characterisation of 
the shape and size of these components. This enables deriva-
tion of a number of parameters of cellular structure such as 
the Intracellular Volume Fraction (IVF). This in turn enables 
inference of changes associated with cancer development 
and progression [6]. This has recently been applied to cancer 

grading in prostate cancer [7]. The signal has been spatially 
correlated with histopathology [8]. Results of a preliminary 
clinical trial on 42 men who had VERDICT scans followed 
by targeted biopsy showed that the estimated IVF was sig-
nificantly higher in patients with Gleason Grade 3 + 4 and 
above, compared with Gleason Grade 3 + 3 and lower [9]. 
This is an important finding as this is the current threshold 
for determining whether a cancer is clinically significant and 
hence requiring treatment. The measure was also shown to 
be sufficiently reproducible to be used as a marker of signifi-
cant cancer. More work is ongoing to qualify this as a cancer 
progression biomarker.

1.2.3  Integration of AI Methods

Examination of the clinical workflow reveals three areas 
where more automation would reduce user interaction, mak-
ing delivery of the procedure more efficient and potentially 
more accurate. These comprise the initial interpretation of 
the mpMRI with identification and delineation of any lesion, 
delineation of the outer capsule of the prostate to generate 
the prostate model and finally fully automating the process 
of registration of that model to TRUS.

One example for automated lesion identification from 
our laboratory is described in [10] in which 148 men with 
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Fig. 1.2 Schematic showing how a generative SMM was used to register TRUS of the prostate with a model derived from mpMRI
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lesions reported from mpMRI, and graded histologically as 
Gleason > = 3 + 3, were used to train and test a classifier 
with fivefold cross-validation. The images of 30 patients 
were then used to test the model. At a specificity threshold 
of 50%, the sensitivity was 0.93 and 0.88, respectively, 
which exceeded the performance of three experienced 
radiologists.

For automated registration of an MR-derived model to 
TRUS a system using correspondence between identified 
anatomical structures and ad-hoc landmarks was used to 
train a convolution neural network [11]. One hundred and 
eight image pairs from 76 patients were used to train with 
12-fold cross-validation. Six or seven patients whose data 
was held back from training were used for validation. 
Overall registration accuracy, expressed as the TRE, was 
3.6 mm. This is a promising result although not as good as 
the system described above using the statistical motion 
model. The advantage is a completely automated system 
which, once trained, delivered a registration in under one 
second.

Clearly, further development is needed and improved per-
formance is expected but significant challenges remain. The 
results described above are from one centre and results must 
be generalisable to multiple centres, different MRI and 
TRUS devices and different patient populations, whose can-
cer risks may evolve over time.

1.3  Unmet Clinical Need: Laparoscopic 
Liver Surgery

Bowel cancer, leading to liver metastases, has the second- 
highest cause of cancer death in the UK with an incidence of 
over 42,000 and a death rate of over 16,000 in the UK. Primary 
liver cancer has an incidence of over 6000 with a death rate 
only slightly less and the incidence is rising rapidly [2]. 
Surgery to remove the cancerous lesion is a potentially cura-
tive procedure for many patients. Conventional surgery 
involves a very large abdominal incision with significant 
post-operative pain, long-term scarring and long recovery 
times. Minimally invasive laparoscopic surgery involves 
insufflation of the abdominal cavity with carbon dioxide fol-
lowed by insertion through trocars of a laparoscope to pro-
vide a viewing port and specialised surgical instruments. 
Minimally invasive laparoscopy has significant patient and 
economic benefits in terms of less traumatic surgery and 
shorter recovery times, but the restricted surgical field of 
view increases the risk of accidental damage to critical struc-
tures such as blood vessels and the bile duct. Intra-operative 
complications can lead to reversion to conventional abdomi-
nal surgery with increased risk of morbidity and mortality. At 
present relatively few resections are undertaken laparoscopi-
cally in the UK due to the higher risk of damage to major 

blood vessels and the biliary tree. Image guidance with 
improved visualisation should lead to an increase in the pro-
portion of laparoscopic procedures.

1.3.1  Methodological Steps 
to a Comprehensive Image Guidance 
System for Laparoscopic Surgery

CT imaging has been used for many years to guide and plan 
liver resection with protocols to optimise the hepatic arteries, 
portal veins and lesion visibility. From these data, the lobes 
of the liver, the vascular systems and CT visible lesions can 
be segmented and a 3D model visualised to plan surgical 
resections, both open and laparoscopic. Commercial systems 
are available for this task and we used the service provided 
by Visible Patient SAS, Strasbourg. Navigation is limited as 
the pose visualised is often far from the surgeon’s view and 
no spatial correspondence between the 3D model and the 
surgeon’s viewpoint is provided. There is no information as 
to the proximity of surgical tools and instruments to critical 
structures such as the vasculature, biliary tree and lesion.

Our goal is to establish spatial correspondence between 
the surgeon’s view, the surgical tools he/she is using and the 
3D pre-operative model. The challenge is that the liver is a 
soft deforming structure that moves and changes shape dur-
ing breathing and whose shape significantly distorts during 
the procedure.

We have implemented and tested a clinical system based 
on an interactive alignment of a rigid 3D model with external 
optical tracking of the laparoscope and other surgical instru-
ments. The system has been tested on a liver shaped phan-
tom, in-vivo on a porcine model that provides an anatomy of 
similar size and shape to the human, and on nine patients 
[12]. The registration combines an intuitive manual align-
ment stage, surface reconstruction from an optically tracked 
stereo laparoscope and a rigid “iterative closest point” regis-
tration to register the intra-operative liver surface to the liver 
surface derived from CT. As part of this work, we proposed 
a simple and clinically feasible method for “hand–eye” cali-
bration, which determines the position and orientation of the 
laparoscope camera relative to the markers attached to the 
external end of the laparoscope. It is based on a single invari-
ant point viewed on the laparoscopic images [13]. This 
reduced the contribution of projection errors from 4.1 mm 
down to 2.0 mm for a laparoscope tracked with external opti-
cal markers. An example display is provided in Fig. 1.3.

We showed that surfaces could be reconstructed using 
video images from an optically tracked and calibrated stereo 
laparoscope at a rate of 370 ms/reconstruction using GPU 
technology with an accuracy ranging from 2.4 mm to 5.7 mm 
on a visually realistic rigid plastic liver phantom [14]. Such a 
system showed the potential for generating 3D  reconstructions 
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of liver surfaces without using structured light or other illu-
mination which might be difficult to achieve during laparos-
copy. It does, however, require a stereo laparoscope which is 
not readily available in clinical laparoscopy.

The nine clinical studies enabled us to collect representa-
tive laparoscopic data. We define the system accuracy via the 
re-projection error (RPE), the error of registered pre- 
operative CT derived data projected onto the video image. 
The system was capable of accuracies around 12  mm but 
there was significant variability.

We have also incorporated 2D laparoscopic ultrasound 
(LUS), taken with the probe in acoustic contact with the liver 
surface, which provides information on the location of vas-
cular and biliary structures to guide resection avoiding dam-
age to these critical structures. Using a porcine model in-vivo 
we obtained a mean TRE of 6.6 mm [15]. The landmarks 
were vessel cross-sections identified in both LUS images 
acquired with abdominal insufflation and vessel centrelines 
identified in pre-procedure CT acquired without insufflation. 
The TRE was reduced to 4.2 mm using a CT scan obtained 
during insufflation. This proof of concept showed the feasi-
bility of a locally (~10  mm) rigid transformation model 
although significant practical problems remained, in particu-
lar in identifying corresponding vessels.

As in the prostate application above the methods based 
on deep learning promise significant reductions in user 
interaction and improved workflow. We have described a 
method using a CNN architecture comprising fully-convo-
lutional deep residual networks with multi-resolution loss 
functions to delineate the liver outline from laparoscopic 
images [16]. The system was trained using 2050 video 
frames from six liver resections and seven laparoscopic 
staging procedures. Although this proof of concept was 
promising with a DICE score of >0.95 there were significant 
failures and further work is required to fully automate the 
process.

We recently demonstrated a method based on multi- 
labelled content-based image retrieval to align a temporal 
sequence of untracked LUS images of the liver surface and 
vasculature, with a segmented pre-operative CT scan [17]. 
Results on data collected on five patients showed that, by 
including a series of five untracked images in time, a single 
LUS image can be registered with accuracies ranging from 
5.7 to 16.4 mm with a success rate of 78%. This method has 
the potential to change the paradigm of image-guided lapa-
roscopic liver surgery by removing the need for an external 
tracker on the laparoscope and laparoscopic ultrasound 
probe.

These innovations, taken together, could dramatically 
change how laparoscopic surgery is undertaken, ultimately 
removing the need for external optical trackers. As with the 
prostate work, AI promises the means to overcome time- 
consuming and error-prone user interaction, and speed up 
certain of the more complex computations with learnt 
solutions.

1.4  Discussion and Conclusion

Unusually for a University-based Centre the Wellcome/
EPSRC Centre for Interventional and Surgical Sciences 
(WEISS) at UCL supports a fully ISO 13485:2016 compli-
ant Quality Management System (QMS). This was set up 
originally for the Smart Target prostate image-guided biopsy 
system but has now been adopted by the Centre to support 
the development of regulatory compliant medical software 
and software-based systems. It is now used in a number of 
projects. Together with activity to facilitate best practice in 
technology design, development and evaluation, we can 
ensure that the safety of prototype devices can be demon-
strated, supporting documentation exists and clinical evalua-
tion can take place. This work has lowered the barriers to 

Fig. 1.3 Left image: the right liver lobe as seen through the laparoscopic camera. Right image: augmented view with liver outline (orange), veins 
(blue and purple), arteries (red), gall bladder (yellow) and a tumour (green) [12].
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commercialisation, significantly de-risked development 
within an academic environment and enabled clinical trans-
lation. For the Smart Target system CE marking was obtained 
in 2016 and FDA Section 510(k) approval in 2017.

The liver work described above was developed with the 
SciKit-Surgery libraries which form a collection of tools for 
surgical navigation that can be bound together with Python, 
making use of standard graphical user interface components 
for rapid development of novel applications [18]. The liver 
surgery project also complies with the QMS.

In the last 2  years, two other clinical devices, initially 
developed within our Centre, have been commercialised. 
One by Odin Vision Ltd., provides AI-enabled endoscopy, 
and the other, Echo Point Medical Ltd., provides precision 
diagnosis and treatment of cardiovascular disease using 
novel fibre-optic sensor technology.

The rapid progress in machine learning methods has 
opened up significant opportunities in image-guided interven-
tions and surgical navigation. Many applications have failed to 
achieve widespread clinical adoption as they are too time-con-
suming to use and require too much scarce expert time in 
doing mundane tasks such as image segmentation, lesion iden-
tification and assisting in image registration. Recent advances 
in machine learning are demonstrating that most, if not all, of 
these tasks can be automated. This will have a major impact on 
the cost-effectiveness of these procedures and progress in 
effective clinical implementations are expected.

The caveat is that systems must be reliable in the real 
world of the clinic. Sufficient training data is needed to 
ensure system robustness and systems must be validated for 
local environments. Subtle changes in clinical protocol, 
small differences in performance of different imaging and 
sensing technologies, changes in patient presentation and 
disease profiles can all reduce performance.

Effective training for the surgeons of tomorrow in these 
new and emerging technologies is paramount and a require-
ment for their future adoption. Patient-specific computa-
tional models and personalised treatment plans are becoming 
more widespread and will be integrated into training. This 
could also be used for external consultations and multidisci-
plinary team meetings.

The work described in this short paper has taken between 
one and two decades to reach its current level of perfor-
mance. For the prostate work a commercial, regulatory-
approved system is available, but improvements are still 
being made incorporating the latest AI methods. For the liver 
work, on the other hand, significant progress in different 
technologies has been made but a clinically effective system 
is still to be realised.

The research described in this chapter can be seen to com-
plement well the work undertaken within the MCA project. 
We have demonstrated a strong multidisciplinary research 
environment, integrated structural and functional informa-

tion over different spatial scales including pathology and 
have shown examples of how the dynamics of tissue motion 
can be integrated.

What is clear in both applications described above is that 
close working between biomedical engineers, computer sci-
entists and the clinical teams, comprising surgeons, interven-
tionists, theatre nurses, radiologists and pathologists is 
absolutely vital. We have involved patient groups at all stages 
of development. This work only succeeds with the determi-
nation and passion of the developers to want to make a dif-
ference in patients’ lives.
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A Concept of Multidisciplinary 
Computational Anatomy (MCA)

Yoshitaka Masutani

Abstract

Multidisciplinary Computational Anatomy (MCA) is a 
multidisciplinary domain that literally extends Computed 
Anatomy (CA). The CA itself is relatively new, and MCA, 
which is its further extension, is a new academic field that 
is expected to develop in the future. It is important to have 
a bird’s eye view and understanding of these academic 
fields in order to understand the contents of this book. 
Therefore, this section outlines the background from CA 
to MCA and the ideas in these disciplines.

Keywords

Computed anatomy · Multidisciplinary computational 
anatomy · Data representation space · Multi-attribute 
data space

2.1  Computational Anatomy

Computed Anatomy (CA) can be regarded as a radical 
enhancement of the quantitativeness and reliability of tradi-
tional anatomy through advanced data processing based on 
computer science, mathematics, and statistical methods. 
Similar to recent science and technology including “compu-
tational physics,” “computational astronomy,” and “compu-
tational biology,” CA treats hypothesis-based analytical 
model construction. In addition, it approaches the essence of 
the human body based on large amounts of data processing 
and numerical calculations. The target data of CA is mainly 
the morphology of structures in the human body of various 
scales such as organs and tissues.

This is largely due to the dramatic development of com-
puter technology, and medical imaging devices such as X-ray 
CT, MRI, and microscope.

The former enabled the processing of large amounts of 
data at high speed while the latter realizes accurate and pre-
cise acquisition of morphological information of structures 
in various scales. One of the major achievements of CA is 
the statistical shape model (SSM) of various organs and its 
application, which is based on the shape representation by 
using statistical methods such as principal component analy-
sis (PCA) [1]. Although there are individual differences in 
the shape of organs, their general shapes are highly similar 
and it is often easy to determine the approximate correspon-
dence between the shapes of each individual. Based on the 
correspondence among the sample shapes, SSM decomposes 
a group of shapes that have a certain tendency even though 
there are individual differences into common components 
and expresses the shape by synthesizing them. The generated 
instance of SSM is a compact representation of the “probable 
shape” of a specific organ and can enhance the reliability of 
organ recognition, which is a segmentation of the organ in 
new image data. That is, SSM plays a role as an expression 
of prior knowledge for understanding medical images by a 
computer. SSM-based segmentation of organs in medical 
images results in an optimization problem centered on deter-
mining weights in the synthesis of each shape component. 
Furthermore, the weights for shape components obtained in 
the process of patient-specific organ segmentation represent 
the shape characteristics peculiar to the target individual and 
can be used for diagnostic support for diseases associated 
with organ morphological changes such as liver fibrosis [2]. 
On the other hand, there are cases where it is not simple to 
determine the correspondence among the sample shapes for 
the construction of SSM. In particular, when the structural 
topology differs between individuals called “anomaly,” for 
example, when the number of vertebrae differs, it is impos-
sible to determine the correspondence. Computational anat-
omy also tackles these kinds of problems.
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The above analysis methods and concepts are an extension 
of traditional anatomy and biological morphology measure-
ment called “morphometry.” However, the CA approaches 
enable high-definition and large-scale data processing such as 
X-ray CT and MRI. It was realized for the first time and is the 
essence of CA.  The MEXT grant project “Computational 
Anatomy1” in Japan [3] is aimed at building a CA model of 
organs based on a large amount of X-ray CT data of healthy 
adults, and also developing mathematical modeling methods 
such as SSM. Furthermore, the purpose was to develop these 
into medical image understanding and consequently support 
for diagnosis and treatment. Overseas research on the analy-
sis of anatomical structures based on large-scale databases, 
such as the ADNI (Alzheimer’s Disease Neuroimaging 
Initiative) project [4], has been widely conducted, and the 
field of CA continues to develop globally.

2.2  Multiplicity of Computational 
Anatomy

Here, we will describe what the multiplicity of CA, that is, 
Multidisciplinary Computational Anatomy (MCA) means, 
and how the subject of MCA differs from that of CA.

In general, “multiplicity” means increasing the elements 
or ideas and perspectives of things to two or more. In this 
case, the “element” corresponds to the conceptual or abstract 
thing of the element, way of thinking, or viewpoint of things, 
but in MCA, the “element” clearly refers to the type or attri-
bute of data. Unlike previous CA approaches, we handle data 
groups of a wide variety of images such as multiple scales 
(resolution), multiple modalities (image types), multiple 
time phases (time-age, etc.), and multiple pathologies includ-
ing healthy at the same time. This means that multiple data 
located at different coordinates on the “axis” often repre-
sented by concepts such as “scale axis,” “modality axis,” 
“time axis,” and “pathology axis” are handled in a unified 
manner.2 In general, conventional anatomy deals only with 
the morphology and structure of healthy organs and tissues, 
but one of the major features of MCA could be that it handles 
pathological tissues and structures due to diseases.

1 “Computational Anatomy (CA)” and “Multidimensional 
Computational Anatomy (MCA)” refer to academic fields, but both are 
also the names of grant-in-aid research projects of the Ministry of 
Education, Culture, Sports, Science and Technology. Therefore, when 
the content of the project is the target, it is written as “~ project.”
2 It is often confused with “multi-axis” because it sets many axes such 
as scale, modality, age, and pathology. However, according to this idea, 
the previous CA is a “single-axis” CA, and it is necessary to always 
target data having multiple coordinates on any single axis. This is not 
always the case in CA research, and it is more natural to base it on 
points in the data representation space defined in this section.

2.3  Data Representation Space for MCA

The concept difference between CA and MCA can be under-
stood when considered in the space composed of the above- 
mentioned multiple axes (Fig. 2.1). This space is defined as 
“data representation space.” That is, it is based on a point in 
the data representation space, and one point in the space indi-
cates data of a specific scale, modality, time phase, pathologi-
cal condition, and other types and attributes. However, even if 
the data is from multiple patients, if the data has the same 
type and attributes, it is only one point in the space. Previous 
CA uses a large amount of data represented by a single ele-
ment in the data representation space. That is, it deals with a 
limited subject of the disease such as CT abdominal images 
of healthy adults or brain MRI of Alzheimer’s disease patients, 
to identify specific organ shapes and structures. On the other 
hand, in MCA aiming for a comprehensive understanding of 
the human body, we handle the wide variety of data as mul-
tiple points in the data representation space. In the MCA proj-
ect up to now, the data representation space is constructed 
assuming the four axes of scale, function, time, and pathology 
mentioned above. However, it is also possible to expand the 
data representation space by adding new axes, for example, 
race, place of residence, and era of survival, etc. In addition, 
various interpretations and definitions are established for 
each axis, such as the case where it represents a continuous 
quantity such as time and scale, and the case where it contains 
discrete labels such as function and pathology. The pioneer-
ing part is also large, and future development is expected.

2.4  From Data Representation Space 
to Multi-Attribute Data Space

The data representation space is important for conceptually 
understanding multidimensional data, but further data pro-
cessing is required for quantitative analysis and modeling 
that leads to an understanding of the human body. That is, 
registration (alignment) between a large amount of image 
data. This is also essential for the data handling in previous 
CA, and a model like SSM is constructed by associating the 
data of many individuals with anatomical landmarks [5]. In 
MCA, it is necessary to register all data such as different 
scales, different time phases, and different modalities in the 
same individual, not only between individuals. As a result, 
multiple and many individual data groups are mapped to the 
human body standardized in space-time, and multi-attribute 
data obtained from multiple individuals is distributed at cer-
tain spatiotemporal coordinates (x, y, z, t). A space can be 
newly constructed (Fig. 2.2). This conceptual human body is 
defined as a “spatiotemporal standard human body,” and the 
space of data composed of any points thereof is called a 
“multi-attribute data space.”

Y. Masutani
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The ultimate purpose of MCA is to find knowledge to 
understand the human body itself from the image data of 
many individuals with multiple attributes and to contribute to 
the advancement of diagnosis and treatment. For that sake, 
the following three steps are needed. The first step is to con-
struct a spatiotemporal standard human body through regis-
tration between a large amount of data. The next is to find a 
certain distribution and law from a large number of data 
groups distributed in the multi-attribute data space at each 
position. Finally, it is necessary to perform appropriate mod-

eling based on them. If we call the result an “MCA model,” 
it can be said that this is a model that represents a kind of 
virtual human body and virtual patient.

2.5  Goal of MCA

As the final part of this section, the differences between CA 
and MCA and the goals of the latter are clarified with con-
crete examples.

Example of Single Data Type:
CT examination for healthy adults
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In the previous CA approach, so-called “intergroup com-
parison” research is widely conducted, in which clinical 
image data of a subject consisting of two groups, such as 
patients and normal controls, is analyzed and the significant 
difference in features obtained from each group is com-
pared. It is a typical example of research that makes com-
parisons using the ADNI database mentioned above. In the 
studies, VBM (Voxel-based morphometry) [6] was used to 
determine the volume of each part of the brain between the 
patient data group of Alzheimer’s disease (AD) and the 
healthy person (control) data group. One of the purposes of 
this approach is to identify sites with significant differences 
between the two groups based on volume statistics (mean 
and standard deviation) of each site, that is, sites with large 
volume changes due to AD. Therefore, it can be regarded as 
an MCA approach because it targets binary data along the 
pathological axis of disease state and healthy state, but it is 
slightly insufficient in a sense for the following reasons. The 
goal of MCA is integrated modeling that includes the mech-
anism of disease development and progression that leads to 
an understanding of the human body itself. The above 
approach merely models and compares each group indepen-
dently although it can be applied to the discrimination of 
diseases. However, it does not cover the modeling such as 
continuous changes of the image features due to the pro-
gression of the disease and also the mechanism of its devel-
opment. Beyond the binary state description of healthy and 
disease, further modeling makes it possible to discuss the 
mechanism of progression, which are expression and regres-
sion analysis of the severity and progression of the disease 
by grade and stage, based on the features obtained from 
multi-modal images. That is, it turns out that a comparison 
of the two groups is too simple and not enough.

2.6  Challenge to “Comprehensive 
Understanding of the Human Body”

It is clear that the goal of MCA, which aims to comprehen-
sively understand the human body, is in line with the goal of 
medical science. However, a major feature of MCA is that it 
is based on rich information supported by a large amount of 
multidimensional image data. On the other hand, as an 
emerging approach for analyzing medical images based on a 
large amount of similar data, a group of deep learning meth-
ods such as Deep Convolutional Neural Network (DCNN) 
have been attracting attention and being widely used in 
recent years due to their high performance [7]. It can be said 
that the training result implicitly expresses some knowledge 
about the human body captured in the image, but the corre-
spondence with the systematic medical knowledge is not 
clear at present. That is, we just examine the output to use it. 
On the other hand, as mentioned above, the approach of CA 

and MCA is an attempt to express knowledge explicitly by 
various models and to lead to an understanding of the image 
data of the human body and the human body itself. From the 
above, it seems that the methods of image analysis by deep 
learning and the approach of CA are contradictory at present, 
but it will be clarified in the future by detailed analysis of the 
training process and results of deep learning, which is being 
clarified. It is considered that it can be fused as a subset that 
supports the knowledge of CA and MCA.

What has been clarified so far in the MCA Project is 
that there are many technical problems to be solved, such 
as registration between images of different scales, which 
have not been dealt with in the past. There is also the prob-
lem that the amount of data required to construct a spatio-
temporal standard human body and build a highly reliable 
model from a multi-attribute data space is insufficient. 
Although it may be difficult to complete a multidimen-
sional anatomical model within the project period, some 
attempts have been made to build partial models. The 
approach of constructing a partial model based on multiple 
data, which is limited to a specific region or around the 
disease, will be integrated and developed to cover multiple 
diseases and the whole body in the future for the aim of 
completion of the MCA model.

This section outlines the background and concepts of a 
new discipline, MCA. In the following sections, some of the 
results of the “MCA Project”, that is, the above attempts, 
will be shown more concretely, and the goals and current 
issues of the MCA will be further clarified.
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Abstract

In this section, a method for constructing a multi- 
resolution model of pancreas tumor is described. The 
model is constructed from MR images of a KPC mouse 
that has a pancreatic tumor and a set of microscopic 
pathological images of the tumor. The multi-resolution 
model (explicitly or implicitly) represents the simulta-
neous probability density distribution of MR images and 
corresponding microscopic pathological images and 
would help to predict the distribution of pathological 
images that would be corresponded with each voxel in a 
pancreatic tumor region of a given MR image. 
Registration of the MR image and the pathological 
images is needed for the model construction, and we at 
first reconstruct a 3D microscopic pathology image of 
the pancreatic tumor from the set of pathology images. 
These images are obtained by slicing the extracted tumor 
into spatially continuous thin sections and by capturing 
each section under a microscope, and non-rigid registra-
tion is required for the 3D reconstruction from these 
microscopic images. A newly developed method for the 
non-rigid registration and a GAN-based method for the 
construction of the multi-resolution model is briefly 
described. In addition to the construction of the multi-
resolution model, a non- rigid image registration method 
would be useful for constructing a temporal model that 
represents the growth of the tumor inside the body. 
Given a temporal series of MR images, one would be 
able to construct the temporal model by non-rigidly reg-
istering the MR images captured at different times for 
describing the temporal change of the tumor. For the 

description of the temporal change, one needs to non-
rigidly register the organs around the tumor in the MR 
images, and the description of the temporal change is 
not easy because the non-rigid registration deforms not 
only the organs but also the tumor: The deformation of 
the tumor makes it difficult to describe its temporal 
change accurately. In this section, one non-rigid regis-
tration method that handles this problem is also briefly 
described.

3.1  Introduction

In this section, we describe a multi-resolution model of pan-
creatic cancer tumors. One of the objectives of the multidis-
ciplinary computational anatomy project was to develop 
methods for constructing statistical models of the human 
body by integrating medical images along spatial, temporal, 
functional, and pathological axes. The multi-resolution 
model of pancreatic cancer tumors described in this section 
is constructed by integrating low-resolution MR images and 
high-resolution pathological microscopy images. This is an 
example of medical image integration along the spatial axis. 
MR images are low resolution but can be captured non- 
invasively. The microscopy images, on the other hand, can be 
captured only invasively but can be used for the definitive 
diagnosis of disease because of their high resolution. If the 
MR images and the corresponding pathological ones are sta-
tistically not independent, it may be possible to predict one 
from the other. If the pathological images can be predicted 
from MR images, it may be useful in clinical applications. In 
the following, we describe the construction of a 
 multi- resolution model that can be used to predict candidate 
pathological microscopy images corresponding to each 
voxel of the tumor region in the MR image. The distribution 
of the candidate pathological images would change with 
respect to the voxel location in the tumor. One key technique 
for the model construction is the registration between the 
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MR image and pathological microscopy images. A deep gen-
erative model is used for the prediction of the candidate path-
ological images.

3.1.1  Data Description

In this study, we use a set of images of KPC mice, which are 
genetically engineered and are widely used as models for 
human pancreatic cancer research [1]. A temporal series of 
eight T1-enhanced MR images of the whole body of a KPC 
mouse was captured once a week. These images will be used 
for modeling of the growth of pancreatic cancer tumor and 
will be integrated with the multi-resolution model described 
in this section. The construction of the tumor growth model 
and the integration with the multi-resolution model are 
included in future works. The pancreatic tumor was extracted 
just after the last MR image was captured, and whole of the 
tumor was sliced into thin sections. The slices were then 
stained with four different stains (H&E, Ki67, MT, and 
CD31), and each of the stained slices was captured by a 
microscope. The spatial resolution of the MR images was 
1.536 mm × 1.536 mm × 0.5 mm, and that of the microscopic 
images was 0.15  μm  ×  0.15  μm. The slice thickness was 
about 4. The microscopic images of the thin sections were 
used for reconstructing a 3D microscopic image of the 
extracted pancreas tumor: The microscopic images of the 
thin sections of the tumor were non-rigidly registered and 
were piled in order of the spatial series of the sections. Fusing 
the tumor region in the MR image captured at last and the 
reconstructed 3D microscopic image of the tumor, we finally 

construct a multi-resolution model of the pancreatic tumor. 
Examples of images are shown in Fig. 3.1.

3.1.2  Image Registration for the Description 
of Tumor Growth

As described above, one key technique for the construction 
of the multi-resolution model is image registration. The 
image registration is important not only for the construction 
of the multi-resolution model but also for the construction of 
the tumor growth model. The criteria used for image regis-
tration will vary depending on its purpose. In this subsection, 
we describe an image registration method used to describe 
the temporal changes in position and shape of a pancreatic 
cancer tumor in the body by using a temporal series of MR 
images to show the difference from the criteria for the image 
registration methods used to construct the multi-resolution 
model, which will be described later.

Before the image registration of the MR images, we man-
ually annotated the regions of the abdominal organs and the 
pancreatic tumor in the MR images. Figure 3.2 shows some 
of the annotated regions. As shown, one can observe the 
tumor region (***) is increased in size over time. The objec-
tive here is to describe the change in position and shape of 
the tumor in the body. The tumor growth would be spatially 
anisotropic, and the position of the tumor in the body changes 
over time. This change is caused by factors due to the non- 
rigidity of the body and factors associated with the anisotro-
pic growth of the tumor. For the description of the tumor 
growth, it would be useful to explicitly distinguish between 

Fig. 3.1 Top: Temporal series of MR images of the KPC mouse. Bottom: Spatial series of pathological microscopic images of the extracted pan-
creatic cancer tumor (From left to right: H&E, Ki67, MT, and CD31)
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these two factors: non-rigid deformation of the body and the 
temporal change of the shape and size of the tumor. In order 
to compensate only the deformations due to the non-rigidity 
of the body and to explicitly describe only the temporal 
change caused by the tumor growth, we proposed an image 
registration method that can non-rigidly register the abdomi-
nal organ regions in the two given images while keeping the 
shape of the tumor in each image unchanged.

A large deformation diffeomorphic metric mapping 
(LDDMM) is one of the most widely employed methods for 
the non-rigid registration of images. Given two images, I0(x) 
and I1(x), the method can obtain a diffeomorphic mapping, 
ϕ1, between them by minimizing the following cost 
function:

 
E dt I IVv v( ) = + −∫ −

0

1
2

0 1
1

1
2� � � � �λ φ ,

 
(3.1)

where

 
φ φt

T

dtx v( ) = +∫
0

0  
(3.2)

for t ∈ [0, 1] and ϕ0 is an identity mapping. Let L denote a 
differentiation operator, then

 
f g f g, ,V L

L L= 2 ,  (3.3)

and  v v vV V
2 = , . The first term in the right-hand side is a 

regularization term and makes the deformation field, v, 

smooth enough so that the resultant mapping, ϕ1, is diffeo-
morphic. The second term measures the distance between 
the deformed image and the other given one.

Applying the LDDMM method to the two MR images 
captured consecutively at different times, one can obtain the 
diffeomorphic mapping, ϕ1, that maps from the older MR 
image to the other new one. Let I0 and I1 denote MR images 
captured earlier and later, respectively and let the tumor 
region in I0 and I1 be denoted by Ω0 and Ω1, respectively. As 
mentioned above, the abdominal organ regions located 
around the pancreatic tumor in I0 and I1 are manually anno-
tated. The obtained diffeomorphic mapping, ϕ1, would map 
each point, y0

i , in Ω0 to a corresponding point, y1
i  in Ω1, 

where i = 1, 2, …, N denotes the ID numbers of the points, 
and the deformation vector field, δδ01 1 0

i i i= −y y  (i = 1, 2, …), 
describes the temporal change of the tumor region. The map-
ping of the tumor region that is represented by the vector 
field, v01

i , though, would not be an identity map even when 
the size and shape of the tumor is unchanged between the 
two MR images were captured because the pose and position 
of the tumor would be changed. For describing the tumor 
growth, we need to explicitly compensate only the compo-
nents of the deformation field caused by the non-rigid defor-
mation of the body.

We modified an LDDMM method to develop a new 
method that rigidly registers pre-specified regions in given 
two images and non-rigidly registers the other regions. The 
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Fig. 3.2 Abdominal organ regions and tumor region manually labeled in the temporal series of the MR images. The regions of pancreatic cancer 
tumor (blue), kidneys (red), liver (orange), spleen (purple), and bladder (green) are indicated [2]
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new method can obtain a defeomorphic mapping from the 
older MR image, I0, to the newer one, I1, while keeping the 
shape and size of the tumor region, Ω0, in I0. Let I I0 0

′ = ( )′x  
and I I1 1

′ = ( )′u , where x′ ∉ Ω0 and u′ ∉ Ω1, respectively. Let 

U denote a rotation matrix and t denote a translation vector. 
Let q0

j  (j = 1, 2, …, M) denote points randomly and densely 
located inside the tumor region, Ω0, in I0. The newly devel-
oped method minimizes the following cost function [2]:
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Fig. 3.3 Trajectories,  1  and  2 , detected through images
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where the third term in the right-hand side denotes the differ-
ence between the points rigidly mapped by U and t and those 
non-rigidly mapped by ϕ1. The tumor region, Ω0 is mapped 
by U and t. Once the two MR images are registered by this 
method, the non-rigid deformation inside the body is com-
pensated while the size and shape of the tumor region, Ω0 in 
the older MR image, is maintained. Let Ω0

′  denote the region 
obtained by transforming Ω0 with the rotation, U, and the 
translation, t. Then the residual difference between Ω0

′  and 
Ω1 can be interpreted as being due to the tumor growth. It 
should be noted that if the tumor keeps its size and shape 
between the two MR images are captured, and no residuals 
would be observed between Ω0

′  and Ω1.

3.1.3  3D Reconstruction of Microscopic 
Tumor Image

As described, the tumor extracted from the KPC mouse was 
divided into a spatial series of thin sections, each of which 
was stained and imaged under a microscope. Microscopic 
images are 2D, and MR images are 3D. We need to recon-
struct a 3D microscopic image of the tumor in order to regis-
ter each of the tumor regions in the microscopic images to the 
corresponding portion of the tumor region in the MR image. 
One can obtain a 3D microscopic image by simply stacking 
the 2D microscopic images, but the resultant spatial pattern of 
the tumor in the 3D microscopic image would be discontinu-
ous and not smooth because of the translation, rotation, and 
non-rigid deformation of the thin sections. Non-rigid registra-
tion between the images of the neighboring thin sections is 
required to obtain an appropriate 3D microscopic image.

The smoothness of the spatial pattern of the reconstructed 
image is used as the criterion for the non-rigid registration. 
The similarity of pixel values, which is often used as the cri-
terion for the non-rigid registration between images, should 
not be employed for the reconstruction of 3D microscopic 
images. Let the vertical direction along which the 2D micro-
scopic images are stacked be represented by the z-axis. When 
the similarity of voxel values is employed as the criterion, 
voxels having similar values are aligned along the z-axis in 
the reconstructed 3D images and, as a result, each of the ana-
tomical structures, such as the blood vessels, would have a 
linear, unnatural structure along the z-axis direction.

Landmarks corresponding between images are used for 
determining the deformation of images in the registration. 
Let the series of the 2D microscopic images be denoted by 
Jj(x) (j = 1, 2, …, K) and let the corresponding landmarks 
detected in Jj be denoted by yj

l . Let  l  denote the l-th tra-
jectory of corresponding landmarks found through images. 
For the detection of the corresponding landmarks, we employ 
a simple template matching, in which the similarity is evalu-
ated by the normalized cross-correlation (NCC). A set of the 
landmarks are randomly generated at portions in which the 
spatial gradient of the image is higher than the threshold T 
(i.e., ∥  ∇  Jj  ∥    >  T), and the corresponding landmark is 
detected by locally searching the point that has the maximum 
NCC value in the next image Jj + 1. Let  l

j
l

j
l

j

l

l l l
= …{ }+ ′y y y, , ,1  

denote a trajectory of the l-th landmark found through the 
jl-th image, J jl

, to the jl
′  image, J

jl
′ , where j jl l< ′  (see 

Fig. 3.3). The shape of each trajectory is not smooth because 
of the transformation of the thin sections. It should be 
reminded that each microscopic image, Jj(x), is an image of 
the cross-section of the tumor and the landmarks corre-
sponded in different images are located on the cross-sections 
of an identical anatomical structure. The proposed method 
non-rigidly deforms every given image so that all of the tra-
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jectories become smooth, and hence anatomical structures in 
the resultant 3D image would be smooth.

The trajectory-based method mentioned above works sta-
bly and accurately only if the detection of the corresponding 
landmark can be given up when the corresponding landmark 
is not present in the 2D microscopic image because of arti-
facts. Actually, one can find many artifacts, such as folds and 
wrinkles of the specimen and image blurs. Figure 3.4 shows 
an example of the image of a folded specimen. The artifacts 
obscure the true corresponding landmarks that would be 
detected if the artifacts did not exist, and corresponding false 
landmarks would be detected when the true corresponding 
landmarks are obscured. In order to determine that no cor-
responding landmark is found, the proposed method applies 
backward template matching. Given a source landmark yj

l  
in the j-th image, Jj, the forward template matching detects 
the corresponding landmark, yj

l
+1 , that has the maximum 

NCC value in the next image, Jj + 1. Then a local image patch 
centered on the detected point, yj + 1 in Jj + 1, is set as a tem-
plate, and the backward template matching detects a corre-
sponding landmark from the j-th image, Jj. Let the detected 
point be denoted by ŷj

l . If the corresponding point detected 
by the forward template matching is correct, the point, ŷj

l , 
detected by the backward template matching should be 
located near the source point, yj

l . The proposed method 
rejects the corresponding landmark, y j

l
+1 , detected by the 

forward template matching if the backward template match-
ing detects the corresponding point far from the source point:

 
δ = − < 

ˆ ,y yj
l

j
l D  (3.5)

where D is a threshold of which value is experimentally 
determined in advance. Figure 3.4 shows an example of the 
rejection of the corresponding landmarks detected by the for-
ward template matching.

Let the map non-rigidly deforms Jj(x) be denoted by ϕj. 
Let � �y yj

l
j j

l= φ  denote the point to which yj
l  should be 

mapped. Given a set of landmarks, yj
j{ } , detected in Jj and 

given a set of the points to which the landmarks should be 

mapped, ��yj
j{ } , where  j j j j j

L
l l l j∈ = …{ } 1 2, , ,  denotes the 

ID number of the landmarks detected in the j-th image, one 

can straightforwardly obtain ϕj that satisfies � �� �y yj j j
j j= φ  

for any ℓj, e.g., by using a B-spline deformation method [3]. 
For smoothing the l-th trajectory,  l

j
l

j
l

j
l

l l
= …{ }

+ ′y y y, , ,
1

, the 

points to be mapped, yj
l– , are determined by minimizing the 

total variance of each trajectory as follows:
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where xj is a point in the j-th image, Jj ( j j j jl l l∈ …{ }+
′, , ,1 ). The 

first term of the cost function to be minimized denotes the length 
between two points, xj and xj + 1, in the neighboring two images 
and the second term denotes the distance from the l-th landmark 
in the j-th image, yj

l  to xj. The first term smooths the trajectory 
by shortening it, and the second term prevents the resultant tra-
jectory from being too far from the original trajectory,  l . 
Figure 3.5 shows an example of the change of the trajectories. 
Every trajectory is smoothed, as shown in the figure, and the 
given 2D images are non-rigidly deformed so that all detected 
landmarks are located on the smoothed trajectories. It should be 
noted that different from many conventional methods for the 
construction of 3D microscopic images, and the proposed 
method determines the non-rigid mapping of each image using 
not only its neighboring images but also give all images.
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Fig. 3.4 Example of landmarks detected around an artifact. (a) A 
source image. (b): Each radius indicates δ in (Eq. 3.5). Near the arti-
facts, the backward template matching fails to find the corresponding 

landmarks close to the source points. (c) A target image with an artifact. 
The circles show the detected corresponding landmarks. The method 
successfully rejects false corresponding landmarks near the artifact
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Figure 3.6 shows some examples of the non-rigidly regis-
tered two neighboring images stained with different stains. 
As can be seen, the microstructures are smoothly recon-
structed by the method. Figure 3.7 shows the cross-section of 
the reconstructed 3D image. The left panel shows the cross- 
section of a 3D image reconstructed without the non-rigid 
registration. As shown, the spatial pattern of the cross- section 
is not smooth if the non-rigid registration is not applied. The 
spatial pattern of the 3D image reconstructed by the pro-
posed method is continuous and smooth. Because the thin 
sections are stained with different stains, alternatively, one 

can see the horizontal stripes in the cross-section. The thin 
sections were stained with different stains for describing 
anatomically important structures in the reconstructed 3D 
image. For example, the Ki67 stain is used to enhance nuclei 
of tumor active cells. Extracting the stained nuclei from the 
Ki67-stained images and estimating the spatial density of the 
active nuclei in the reconstructed 3D tumor image, one can 
visualize the spatial distribution of the active cells in the 
tumor. Figure 3.8 shows the distribution of active cells in the 
tumor. As can be seen, the active cells are more densely dis-
tributed near the outer surface of the tumor.

Fig. 3.5 Example of trajectories of corresponding landmarks detected through images. Left: Not-smooth trajectories before the images are not 
deformed. Right: Smoothed trajectories after the deformation

a b c

Fig. 3.6 Examples of registered two images of differently stained. The two images are stained with (a) H&E and CK19, (b) H&E and Ki67, and 
(c) H&E and MT, respectively [4]
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3.2  Construction of Multi-Resolution 
Model of Pancreatic Tumor Image

The multi-scale image model of pancreatic cancer tumors is 
constructed from the MR image and the corresponding path-
ological images that are registered to the MR image. Once 
the 3D microscopic image is reconstructed, one can register 

the 3D microscopic image with the tumor region in the last 
captured MR image. The tumor region in the MR image is at 
first manually labeled for the registration, and the tumor 
region in the reconstructed 3D pathology image is non- 
rigidly registered to the manually labeled region in the MR 
image. The outer surface of the tumor is significantly useful, 
especially for determining the global transformation of the 

Fig. 3.7 Examples of the cross-sections of the reconstructed 3D 
pathology image. Horizontal stripes are presented because each slice 
image is stained saLeft: The cross-section of the 3D pathology image is 

constructed by only rigid registration. Right: The cross-section after the 
non-rigid registration
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Fig. 3.8 3D distribution of active cells. The nuclei stained with Ki67 are extracted, and the density is estimated. Left: A heat map of the density 
in one cross-section. Right: 3D density distribution of the nuclei stained with Ki67
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tumor region from the 3D pathology image to the MR image. 
For determining the non-rigid deformation of the 3D pathol-
ogy image inside the tumor, the spatial image pattern inside 
the tumor region in each 3D image should be referred to. A 
conventional mutual-information-based method for register-
ing images from different modalities [***] can be employed 
for the non-rigid registration of the tumor regions. One prob-
lem here is the large difference in the spatial resolution. One 
voxel in the MR image corresponds to about 100 × 100 rect-
angular region in each microscopic image. In this study, the 
mutual information between the voxel values of the MR 
image and the pixel values averaged over the rectangular 
region corresponding to each voxel of the MR image is max-
imized for the registration.

After the 3D images are registered, we have a set of pairs 
of the voxel value of the MR image and a corresponding 
patch image in the pathology images. Let the m-th voxel 
value of the be denoted by vm, and the corresponding micro-
scopic image patch be denoted by um, where m = 1, 2, …, M. 
Given the set of the pairs,  = ( ) = …{ }v m Mm m, |, |, |, |,u 1 2 , 
we construct a multi-scale model that represents the rela-
tionship between vm and um and that can predict the condi-
tional probability distribution, p(u| v), where v denotes the 
voxel value inside the tumor region in a given MR image 
and u denotes the pathology image patch. Once the model is 
constructed, one can predict pathology image patches that 
would correspond to each voxel in a pancreatic tumor region 
in a given MR image by drawing image patches from the 
conditional probability distribution, p(u| v). The image 
patches predicted from p(u| v) would change with respect to 
the conditioning voxel value, v, in the tumor region of the 
MR image [5].

Deep generative models are useful for the drawing of 
image patches. A deep generative model trained with a train-
ing set of images independently drawn from an identical 

probability distribution can generate fake images by drawing 
samples from the identical probability distribution. 
Generative Adversarial Networks (GANs) are one of the 
most popular deep generative models among various types of 
ones. We modified an α-GAN [6]. α-GAN is a fusion of 
Variational Auto Encoder (VAE) [7] and GAN. VAE is one 
of the most fundamental image generative models: It con-
sists of an encoder that maps an input image to a latent vari-
able and a decoder that maps the latent variable to the input 
image. The latent variable is regularized so that it obeys the 
Gaussian distribution. One drawback of a conventional VAE 
is the image quality of the decoded images. They are often 
blurred. GAN is one of the most widely employed generative 
models. A GAN improves the performance of the image gen-
erator by training a discriminator that classifies true images 
from fake ones generated by the generator. Conventional 
GANs can generate high-quality images, but the mode col-
lapse often happens and fails to generate sufficiently diverse 
images. α-GAN compensates for each shortcoming by fus-
ing these two. Let u and z denote the images and the corre-
sponding latent variables, respectively. Let θ and η denote 
the parameters of the decoder and of the encoder that esti-
mates the parameter values of the probability distribution 
function of the latent variable, respectively. The ELBO that 
is maximized by VAE is given as follows:

 
 θθ ηη

ηη θθ ηη, | KL |\mathbbm |( ) = ( )  − ( ) ( ) ( )
∗E p q pq z u u z z u zlog .  

(3.7)
α-GAN represents pθ(u| z) using the output of the discrim-

inator. Let the class of true images and of fake ones be 
denoted by true  and fake , respectively. The discriminator is 
trained to estimate the posterior probability distribution:

 
p p p  fake fake fake| |u u( ) ∝ ( ) ( ).  (3.8)

Assuming p p true fake( ) = ( ) , we have
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where p∗(u) denotes the true (unknown) probability distribu-
tion of true images. The second term in the right-hand side of 
(Eq. 3.9) is constant, and the first term can be represented by 
using the output of the discriminator as the right-hand side of 
the following equation:
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(3.10)

where θθ z( )  denotes the fake image generated by the gen-

erator (decoder) from the latent variable, z, D Gφφ θθ z( )( )  
denotes the output of the discriminator when the generated 
fake image is input and φφ u∗( )  denotes the output of the 
discriminator against the true image, u∗.

The second term of the right-hand side in (Eq. 3.7) is the 
distance between the probability density distribution of the 
latent variable encoded from the given image, qη(z| u), and the 
predetermined distribution of the latent variable, p∗(z), for the 
regularization. We employ a standard Gaussian distribution 
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for p∗(z). Let z∗ denote the latent variable drawn from p∗(z). 
Similar to (Eq.  3.10), by introducing another discriminator, 

ψψ
, that distinguishes the latent variables generated by the 

encoder from those sampled from the predetermined probabil-
ity distribution, p∗(z), we have the following representation:

Distance from surface

Voxel value
of MR Image

v

d

Fig. 3.9 An example of the change of the fake image generated from a 
same latent variable due to the change of the conditions
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where ψ denotes the parameters of the discriminator for the 
latent variables. Combining (Eq.  3.10) and (Eq.  3.11), we 
have
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(3.12)
In the above objective function, the discriminators are 

used to evaluate the realness of the generated images. As a 
result, the generative models obtained by optimizing the 

objective function shown in (Eq.  3.12) often suffer from 
mode collapse. α-GAN hence incorporates the directly mea-
sured distance between the generated image and its original 
one. Modeling pθ(u| z) with Laplace distribution, i.e. 
pθθ θθu z u z|( ) ∝ − − ( )( )exp λ   , one can evaluate the real-

ness as follows:

 
L Gθθ φφ

ηη θθ, \mathbbm |( ) = − − ( ) ( )Eq z u u zλ   .  (3.13)

α-GAN combines (Eq. 3.13) with (Eq. 3.12) and solves 
the following problem:
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In this study, not only the voxel value of the MR image 
but also the distance between the voxel and the outer surface 
of the tumor, d, is also used for the condition. Let c = (v, d)T 
denotes a two-tuple of the voxel value obtained for each 
voxel in the tumor region of the MR image that represents 
the voxel value and the distance from the outer surface. Then, 
we have θθ z c,( )  and qη(z, c| u) instead of θθ z( )  and qη(z| u) 
in (Eq.  3.14). The conditioned generator, θθ z c,( ) , is 
expected to sample images from the conditioned probability 
distribution, pθ(u| c, z), and qη(z, c| u) maps a given image, u, 
not only to the latent variable, z, but to the conditions, c, that 
correspond to the given image, u.

Assume that for each voxel in the tumor region in a given 
MR image one can measure the voxel value, v, and the dis-
tance, d, from the outer boundary. Then, given the measured 
values, c = (v, d), for some specific voxel in the given MR 
image, the trained deep generative model can generate fake 
microscopic images of H&E-stained specimen that would 
correspond to the voxel by the drawing of samples, z, from 
p∗(z) followed by the computation of θθ z c,( ) . Figure  3.8 
shows examples of the fake pathology images generated by 
the deep generative model. From an identical latent variable 
sampled from p(z∗), one can generate a variety of micro-

scopic images by changing the conditional values of c, as 
shown in Fig. 3.9.
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3.2.1  Summary

In this section, we described an outline of a method for con-
structing a multi-scale model of pancreatic cancer tumors 
from an MR image and microscopic pathology images. One 
of the objectives of the construction of the multi-scale model 
was to enable to prediction the corresponding pathology 
images from a given MR image of a pancreatic tumor. The 
prediction of the pathology image from the MR one is use-
ful for clinical applications because MR images can be 
obtained non-invasively, and pathological images, on the 
other hand, can only be obtained invasively. One important 
process in the construction of the multi-scale model is the 
registration between given images. The multi-scale model 
constructed in this study represents the probability distribu-
tion of microscopic pathological images conditioned by the 
corresponding MR images. For constructing such a model, 
we need to register MR images and corresponding MR ones. 
For this registration, we reconstruct a 3D microscopic image 
from a spatial series of 2D microscopic images of the tumor 
and registration between these images is needed for the 3D 
reconstruction. The objective of the former registration 
between MR image and 3D microscopic one is to corre-
spond each voxel in the tumor region of the MR image to a 
region of the microscopic pathology images for making a 
training set of pairs of a voxel in MR image and a region in 
pathology image. The objective of the latter registration is to 
make the spatial patterns of the resultant 3D microscopic 
image continuous and smooth. Once the training set of the 
pairs of a voxel in the MR image and the corresponding 
region in the pathology images, we can construct a deep 
generative model that can predict the pathology images that 
correspond to each voxel in the tumor region in the given 
MR image.

In the registration between the MR image and the recon-
structed 3D pathology image, we employed a conventional 
registration method that maximizes the mutual information. 
In this study, we evaluated the mutual information between 
the voxel values of the MR image and the mean voxel values 

of the corresponding regions in the pathology images. We 
decided to use the mean pixel values because necrosis 
regions in H&E-stained pathology images would have colors 
different from those in the non-necrosis regions. In other 
words, we selected the image features used for the evaluation 
of the mutual information manually. Future works include to 
develop a method for selecting image features appropriate 
for registering between images from different modalities that 
have largely different spatial resolutions.
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Fundamental Technologies 
for Integration of Multiscale 
Spatiotemporal Morphology in MCA

Akinobu Shimizu, Naoki Kobayashi, and Hayaru Shouno

Abstract

This chapter presents the achievements of multiscale spa-
tiotemporal statistical models during the whole period of 
the multidisciplinary computational anatomy project. 
Shimizu et  al. built spatiotemporal statistical models 
along a time axis of embryos and children, in which a 
modeling method to deal with a small sample of data was 
developed and smoothness constraints along a time axis 
were introduced into the spatiotemporal statistical model. 
Modelling of organs with nested and neighbouring con-
straints was also studied by their group. Multiscale mod-
els were constructed, in which Shimizu et  al. presented 
super-resolution techniques by dictionary learning and 
deep learning, and Shouno et al. studied super-resolution 
under a noisy environment in order to solve mapping 
problems among multimodal images. Kobayashi et  al. 
developed algorithms for image understanding of micro-
scopic images of a KPC mouse, where 3D tissues struc-
tures were recognised from pancreatic serial section 
images and from hyperspectral images.

Keywords

Spatiotemporal statistical model · Embryo · Children · 
KPC mouse · Super-resolution

4.1  Introduction

The goal of this study was to develop spatiotemporal statisti-
cal models that describe statistical variations of anatomical 
features (e.g. points and surfaces) and grey values (e.g. CT) 
along a temporal axis of a human. Furthermore, super- 
resolution algorithms for a multiscale model were devel-
oped. Reconstruction and understanding of a microscopic 
volume and application of the developed statistical models, 
such as segmentation with the models were also challenged 
to develop the multiscale model.

This chapter presents the achievements of multiscale spa-
tiotemporal statistical models during the whole period of the 
multidisciplinary computational anatomy project from fiscal 
year (FY) 2014 to FY 2018. Section 4.2 presents spatiotem-
poral statistical models of time series data along time or 
scale axes of embryos and children. Section 4.3 shows super- 
resolution techniques for multiscale model. Section 4.4 
describes developed algorithms of image understanding of 
microscopic images of a KPC mouse.

4.2  Spatiotemporal Statistical Model 
of Time Series Data

Shimizu et  al. focused on spatiotemporal statistical varia-
tions of embryo, and children, which included lots of prob-
lems to be solved in the modelling, such as rapid growth or 
topological changes of anatomical features (e.g. surfaces and 
landmarks). This section shows the achievements of the 
research group. Note that terminology on spatiotemporal 
data and models refers to the paper [1].

4.2.1  Modelling with a Small Sample of Data

A spatiotemporal statistical model often suffers from a prob-
lem caused by sparsely distributed data along a time axis, 
which makes the statistical modelling difficult. Shimizu 
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et  al. proposed a two-stage modelling algorithm, in which 
first stage maps all data into a feature space with reduced 
dimension and second stage performs statistical modelling 
with q-Gaussian based parameter estimation followed by 
interpolation of statistics along a time axis [2, 3]. The combi-
nation of the dimensionality reduction and the q-Gaussian 
based parameter estimation makes the statistical modelling 
robust under the condition of a small sample of data. The 
effectiveness of the proposed modelling approach was dem-
onstrated in the modelling of anatomical landmarks and sur-
faces of human embryos of Kyoto collection [4].

4.2.2  Modelling with Smoothness Constraint 
along a Time Axis

Smoothness of statistics along a time axis is a key technol-
ogy in the spatiotemporal statistical modelling. The contri-
butions are twofolds as shown below.

First, the best method was explored for the interpolation 
of statistics in the second stage of the spatiotemporal model-
ling [2, 3] presented in Sect. 4.2.1. The best combination was 
exhaustively searched among all possible pairs of three inter-
polation methods for average vector and six for covariance 
matrix as shown below.

• Interpolation methods for neighbouring average vectors: 
Linear, B-Spline, Information geometry.

• Interpolation methods for neighbouring covariance matri-
ces: Linear (rotation), tensor B-Spline, Affine-invariant, 
Log-Euclidean, Wasserstein geometry, Information 
geometry.

Figure 4.1 presents a spatiotemporal statistical model of 
landmark points on the face of human embryos of Kyoto 
 collection [4], where information geometry was selected as 
optimal for both average vector and covariance matrix.

Second contribution is that another smoothness constraint 
was introduced in the spatiotemporal statistical modelling of 
children’s liver scanned with inconsistent time intervals. 
Temporal regularisation was introduced to realise smooth 
changes in directions of neighbouring principal axes [5], 
which was inspired by the paper [1]. In addition, adaptive 
kernel regression was introduced to deal with inconsistent 
time intervals. The effectiveness was demonstrated using CT 
data of Children’s National Health System in Washington 
DC.

4.2.3  Modelling with Nested 
and Neighbouring Constraints

Topological constraints are important for modelling of sta-
tistical variation of nested structures and/or neighbouring 
structures so as to prevent unnatural leakage of inner struc-
tures and overlap between neighbouring structures. Shimizu 
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et  al. proposed a spatiotemporal statistical shape model 
(SSM) with a nested constraint [6] and a neighbouring 
constraint.

Figure 4.2 shows an original nested shape of the Kyoto 
collection [4]. Remains are the reconstructed shapes by the 
proposed method and two conventional methods. It was con-
firmed from the figure that the proposed RT-LSF-based SSM 
has no leakage, while conventional SSMs have leakages as 
denoted by red arrows.

4.2.4  Modelling of Topological Changes 
along a Time Axis

Some anatomical structures have topological changes in 
shape along a time axis. For example, choroid plexus typi-
cally appears after Carnegie stage 19. Shimizu et al. devel-
oped a level set distribution model that describes the 
appearance and disappearance of surfaces seamlessly. 
Eventually, the abovementioned nested and neighbouring 
constraints were combined with topological changes, which 
were used in modelling spatiotemporal statistical variations 
of surfaces of the brain, ventricles and choroid plexuses of 
human embryos of Kyoto collection [4].

4.3  Multiscale Model

Shimizu et al. and Shouno et al. developed super-resolution 
(SR) methods for multiscale models, one of which is a 
dictionary- based method and the others are deep learning- 
based methods.

4.3.1  Dictionary-Based Super-Resolution 
[7, 8]

Dictionary learning is a popular approach for SR of a single 
frame. Shimizu et al. employed the anchored neighbourhood 
regression (ANR) approach of the paper [9] to bridges 
between micro-CT volumes with different resolutions. It 
used ridge regression to learn exemplar neighbourhoods 
offline and uses these neighbourhoods to precompute projec-
tions to map low resolution (LR) patch volumes onto the 
high resolution (HR) domain. The advantage of the approach 
was the higher computational efficiency against other 
dictionary- based methods while keeping high performance.

The proposed method was applied to two micro-CT vol-
umes resected from a KPC mouse of pancreatic cancer, 
whose resolutions are 9 [μm] and 20 [μm], respectively. 
After registration between the two volumes using a landmark- 
based algorithm, the dictionary of patch volumes was con-
structed from a large number of pairs between LR and HR 
patch volumes. It was confirmed that the PSNR by the pro-
posed method was 2.42 [dB] higher than tri-cubic 
interpolation.

4.3.2  Deep Learning-Based Super-Resolution 
[10]

Shimizu et  al. developed a deep learning-based SR tech-
nique. Generative adversarial network for SR (SRGAN) [11] 
was extended to be applicable to three-dimensional (3D) LR 
images. 3D SRGAN iteratively optimises loss functions of a 
discriminator and a generator, in which 3D ResNet was used 

(similarity, leakage)

Original RT-LSF Multi-LSF LogOdds

(1.548, 0) (1.517, 203) (1.512, 3931)

a b c d

Fig. 4.2 Original nested shapes and the reconstructed shapes from the three SSMs (Fig. 4.4 in [6])
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as the generator and 3D CNN was employed as the discrimi-
nator. Finally, 3D ResNet was applied to an LR CT volume 
of lung and HR CT volume whose resolution is eight times 
higher than that of LR CT was reconstructed.

Figure 4.3 shows slice images of original HRCT volume 
and input LR one of the test data. Reconstruction of HRCT 
volume was carried out by tri-cubic interpolation, 3D 
SRGAN and dictionary-based SR, respectively. The figure 
demonstrated that 3D SRGAN successfully reconstructed 
the HRCT image from the input LR one. Peak signal-to- 
noise ratio of the HRCT volume was 25.41 [dB], which was 
higher than those of tri-cubic interpolation and dictionary- 
based SR.

4.3.3  Super-Resolution Problem under 
the Noisy Environment

In this study, Shouno et al. treat an SR problem under a noisy 
environment in order to solve the mapping problem among 
multimodal images. The SR problem is to generate an HR 
image from its corresponding LR image. In this field, there 
exists a lot of SR systems that work well for the natural 
images obtained by several digital cameras, which have very 
high contrast and low noise components. In several medical 
imaging devices, however, there exists some systematic 
noise intrinsically. Thus, in this study, a noisy observation is 
assumed because it is difficult to omit the noises which are 
involved in the observation. For this purpose, two deep 
learning- based systems are prepared. One is called “Very- 
Deep Super-Resolution (VDSR)” for the SR part; the other is 
called “Denoising Convolution Neural Network (DnCNN)” 
for denoising [12, 13]. The VDSR and the DnCNN are one of 

state-of-the-art models in each field. Both of them are based 
on the ResNet system, and the network architecture is very 
similar except for the batch normalisation layers.

To solve the SR problem, Shouno et al. focus on the com-
bination of deep learning systems. In the manner of using a 
deep learning approach, it is not so unnatural to use a single 
deep learning architecture to solve both SR and denoising 
problems simultaneously. The other approach is to prepare 
expert deep learning systems to solve SR and denoising 
problems independently. The left of Fig. 4.4 shows the con-
cept of these approaches. The first model is to apply a single 
deep learning model to solve both SR and denoising prob-
lems. The second model is to apply denoising problem solver 
at first and then apply SR problem solver. The third is to 
apply SR problem solver at first and then apply denoising 
problem solver.

At first, these three approaches are adopted to solve the 
natural images dataset for evaluation. To evaluate the abili-
ties of these methods, downscaled with AWGN images are 
prepared. In the assessment, controlling the noise strength, 
which is appeared in the standard deviation of the Gaussian 
noise, image restoration ability is measured by PSNR and 
SSIM. And then, these three approaches are also adopted for 
Micro-CT SR problems. The original Micro-CT images, 
which show a part of the lung, are provided from Kumamoto 
University Hospital.

In the training of each deep learning system, transfer-style 
learning is adopted; that is, a natural image dataset is applied 
for training SR and denoising deep learning techniques at 
first. Two hundred and ninety-one natural images for 
 transfer- style learning are prepared. After that, the deep 
learning systems are trained with a small number of 
Micro-CT images.

Original HRCT
image

Input LRCT
image

Reconstructed
HRCT image by tri-
cubic interpolation

Reconstructed HRCT
image by 3D SRGAN [10]

Reconstructed
HRCT image by

dictionary based SR [8]

a b c d e

Fig. 4.3 Original HRCT, input LRCT and reconstructed HRCT images from conventional methods and proposed method (3D SRGAN [10])
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The right of Fig. 4.4 shows a typical result of SR images. 
The top row pictures show the original HR image and the 
input of the system, which is the corresponding LR image 
with AWGN corruption. In the assessment process, the 
additive white Gaussian noise with the standard deviation 
as σ = 0.03 is added for each input. The bottom row shows 
the estimated HR image results. The left one shows the 
result of model 1, that is solving SR and denoising problem 
in a single deep learning system. The middle and the right 
ones show the results of model 2 and model 3, respectively. 
These two models are using separated deep learning sys-
tems for SR and denoising. From these SR images results, 
model 2 looks just better than the other two models, since it 
can eliminate noisy components in the background. In the 
PSNR evaluation, 18.33 [dB] is obtained for the model 1, 
21.58 [dB] for the model 2, and 18.13 [dB] for the model 3, 
respectively.

Under the several corruption rate environments, that is 
σ  =  0.01~0.1, the result performance of model 2 is better 
than those of model 1 and model 3 in the meaning of both 
PSNR and SSIM value.

The DL system is applied to the noisy SR problems. 
VDSR and DnCNN are adopted for the SR and denoising 
problem solvers, respectively. From the quantitative point 
of view, model 2 looks better than the other models. 
Seeing Fig.  4.4, the result of model 2 shows the clearer 
meaning of background noise rather than the other. 
However, some region of high spatial frequency looks ter-
rible. This result comes from the spatial signal frequency 
is similar to the spatial noise frequency. In model 2, the 
first system is denoising DL, which might eliminate fine-
resolution information. Thus, taking out the information 
from the estimated corruption information should be 
considered.

4.4  Image Processing of Pathological 
Images

This section shows the achievements on image understand-
ing of pancreatic serial section images and from hyperspec-
tral images.

4.4.1  3D Tissue Structure from Pathological 
Images

Kobayashi et al. target the discovery of small lesions which 
Computed Tomography (CT) or Magnetic Resonance 
Imaging (MRI) missed, and have studied registration of the 
three-dimensional (3D) structure obtained by pathological 
images and the 3D structure obtained by CT or MRI. In this 
study, the goals are image segmentation and 3D reconstruc-
tion of various structures from pancreatic serial sections of 
KPC mouse.

Materials are about 1000 pancreatic serial sections stained 
with Haematoxylin and Eosin (HE), 65 sections stained with 
Cytokeratin 19 immunostaining (CK), and 65 sections 
stained with Masson trichrome (MT). These slices were 
taken with a virtual slide scanner at about 7 times magnifica-
tion. The image size of each slice is about 15,000 × 10,000 
pixels. Though image segmentation of slides are necessary 
for 3D reconstruction, manual segmentations are impractical 
because of the large number of slides and pixels. Therefore, 
only 25 region of interests (ROIs) were manually segmented, 
and remains were automatically segmented using texture 
feature (co-occurrence [14] and run-length matrix feature 
[15]) and support vector machine (SVM) [16]. In the SVM, 
a linear kernel function was used for high-speed processing 
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Fig. 4.4 Left: Schematic diagram of SR systems approach (HR: high-resolution, LR: low-resolution), Right: Bottom line pictures show the result 
of each model
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and stepwise feature selection was adopted to improve 
accuracy.

The left side of Fig.  4.5 shows the image taken of the 
HE-stained specimen, part of the ROI, and manually seg-
mented image. The right side of Fig. 4.5 shows the 3D ren-
dered automatic segmentation result and ROI.  Comparing 
the manual segmentation in the lower left of Fig. 4.5 and the 
ROI in the right of Fig. 4.5, acinar cells (light green) and the 
pancreatic islet (green) could be accurately segmented; how-
ever, cancer (yellow), ADM (olive), and fibre candidate 
regions (red) were difficult to identify. Furthermore, it has 
been difficult to identify fibres accurately, which are fine 
structures, on a pixel-by-pixel basis. Overall, as a result of 
performing fivefold cross-validation on a pixel-by-pixel 
basis, the accuracy was 96% [17, 18].

Future plan is to evaluate the results in 2D and 3D images 
from a pathologist view and to make clear the inadequate 
point for precise segmentation.

4.4.2  Hyperspectral Image Processing 
of Pathological Images

With the development of a virtual microscope technology 
called whole slide imaging (WSI) in 2006, people have been 
raising expectations for computer diagnosis supports. A WSI 
system mostly takes RGB images. However, it is a known 
fact that it is very difficult to accurately extract tissues and 
give a cancer diagnosis with RGB images. In this context, 
this research proposes a method to more accurately extract 
tissues and give a cancer diagnosis using Hyperspectral 
Imaging (HSI) than using RGB images [19].

The method proposed by Kobayashi et al. involves pixel- 
by- pixel cancer nuclei detection and tissue detection by 
employing techniques such as spectral selection and bag of 
features (BoFs) for analysing the pathological images. A 
mouse’s HE-stained pancreatic cancer tissue specimen was 

used for the experiment. The spectral features were extracted 
from an image captured by a hyperspectral camera (EBA 
Japan CO., LTD., NH-3). An image of size 752 × 480 pixels 
was obtained, with the wavelength ranging in value from 
420 nm to 720 nm, and having 61 bands at 5 nm intervals.

 1. Tissue classification by HSI.

Five tissues (nucleus, sinusoid, lymphocytes, fibres and 
cytoplasm) are classified and accuracies are evaluated by 
using subject-based three-hold cross-validation in the exper-
iment. The codebook number of BoF is set to 80.

The classification accuracy is compared between the pro-
posed method using HSIs and a random forest algorithm 
using RGB images. The overall rate of the proposed method 
is 68% and is improved by 11% compared to the RGB-based 
method. In particular, the classification accuracies of fibres 
and cytoplasm are improved by 5–24% than the RGB-based 
method.

 2. Cancer extraction by HSI.

The method of tenfold cross-validation was thereby 
applied for randomly dividing the set of samples into ten 
approximately equal-sized parts. The classification accuracy 
of three methods, namely BoF + his (Hyperspectral Imaging), 
HSI, and RGB was then compared. The codebook number 
for BoF was set to a value of 150.

The classification results obtained from the tenfold cross- 
validation method are shown in Table  4.1. The obtained 

Automatic
segmentation

SVM
Model

Manual
segmentation

Red   : Fiber candidate
Light green: Acinar (normal) cell
Yellow   : Cancer
Olive   : ADM (pre-stage of cancer)
Blue   : Duct or blood vessel
Green   : Pancreatic islet

Fig. 4.5 HE stained images, 
ROI, manually segmentation 
image, and automatically 
segmentation result

Table 4.1 Accuracy by tenfold cross-validation

HSI + BoF HSI RGB
Average of accuracy 0.96 0.91 0.84
Average of sensitivity 0.96 0.91 0.83
Average of specificity 0.96 0.92 0.86
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results show that the accuracy rate of the HSIs is 91%, which 
in turn has an accuracy rate greater by 7% compared to the 
RGB images. Furthermore, the accuracy rate can be increased 
to 96% by adding the BoF feature to HSI.

From the result, consequently, the accuracy of tissue clas-
sifications and cancer diagnoses was enhanced with HIS 
images rather than with RGB images. By adding BoF to HIS 
images, their accuracy has been further enhanced. BoF 
includes spatial information around respective picture ele-
ments. While many traditional researches on HIS images 
used the differences in transmissions by wavelength and 
waveforms, few of them paid attention to spatial informa-
tion. It is possible to apply to HIS Images a texture analysis 
method such as a density co-occurrence matrix; however, 
this method is not feasible because it takes excessive calcula-
tion efforts. Meanwhile, the proposal method enables us to 
figure out with simple calculations the characteristics of HIS 
images including their spatial information. It is necessary 
from now on to discuss more effective objects and parame-
ters of BoF [20].

Kobayashi et  al. also proposed a capturing system with 
multispectral filter array (MSFA) technology [21–23]. 
Therein, a mosaicked image captured using an MSFA is 
demosaicked to reconstruct multispectral images (MSIs) 
[24, 25]. Joint optimisation of the spectral sensitivity of the 
MSFAs and demosaicking is considered, and pathology- 
specific multispectral imaging is proposed [26, 27]. This 
optimises the MSFA and the demosaicking matrix by mini-
mising the reconstruction error between the training data of 
haematoxylin and eosin-stained pathological tissue and a 
demosaicked MSI using a cost function. The effectiveness of 
the proposed MSFA and demosaicking is demonstrated by 
comparing the recovered spectrum and RGB image with 
those obtained using a conventional method.

4.5  Conclusion

This chapter presented the achievements of multiscale spa-
tiotemporal statistical models during the whole period of the 
multidisciplinary computational anatomy project from fiscal 
year (FY) 2014 to FY 2018. Shimizu et al. studied on spatio-
temporal statistical model along a time axis of embryos and 
children as well as modelling of organs with nested and 
neighbouring constraints. Super-resolution techniques by 
dictionary learning and deep learning were developed by 
Shimizu et al. and Shouno et al. Kobayashi et al. developed 
algorithms for image understanding of microscopic images 
of a KPC mouse.
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Fundamental Technologies 
for Integration and Pathology in MCA

Yoshinobu Sato and Yoshito Otake

Abstract

This chapter describes fundamental technologies on inte-
grating function and pathology with macro-normal anat-
omy to construct multidisciplinary computational 
anatomy (MCA) models. AI-based segmentation with 
Bayesian U-net and cross-modality image synthesis 
(image-to-image translation) with CycleGAN are firstly 
developed to obtain static macro-anatomy models from 
different modalities of clinical images, and then two 
approaches are described for MCA modeling: (1) con-
struction of templates of high-fidelity multi-scale anat-
omy models and registration of the templates to clinical 
images to obtain patient-specific models for in-silico 
simulations, and (2) functioning and pathology anatomy 
modeling by integrating dynamic behaviors and disease 
progression. These two MCA modeling approaches are 
applied to musculoskeletal functional anatomy including 
muscle fiber arrangements and muscle-bone attachments, 
skeletal motions including rig cage motions and hip joint 
postures, and liver deformations due to fibrosis 
progression.

Keywords

Deep learning · Skeletal motion · Disease progression · 
Muscle anatomy · Liver fibrosis

5.1  Introduction

The multidisciplinary computational anatomy (MCA) 
research extends the computational models of the static 
macro-anatomy of healthy adult human bodies so as to inte-

grate multiscale (macro to micro), temporal (dynamic and 
longitudinal), functional (physiological), and pathological 
(disease) aspects in the models. In this chapter, the functional 
and pathological aspects are especially focused on. 
Nevertheless, the multiscale and temporal aspects are closely 
related to function and pathology. For example, physiologi-
cal units, which play a key role in organ function, are typi-
cally micro-scale structures, dynamic behaviors of the 
anatomy are often directly related to organ function and 
pathology, disease progression is a temporal (longitudinal) 
phenomenon, and so on. Consequently, this chapter addresses 
multiscale and temporal aspects as well.

Segmentation of organs at the macro anatomy level is a 
prerequisite in our MCA approaches [1, 2]. Firstly, artificial 
intelligence (AI)-based segmentation is applied to obtain 
static macro-anatomy models from various modalities of 
clinical images [3, 4]. Then, two MCA approaches are 
addressed for integrating function and pathology. (1) High- 
fidelity anatomy modeling for in-silico functional simula-
tions [5–8]: Cadaveric data are used to acquire micro-scale 
and physical-attachment information of anatomy which is 
necessary for functional simulations but hardly or partially 
imaged in clinical images. We develop methods for con-
structing templates of high-fidelity anatomy models from the 
cadaveric data and their personalization using patient images 
in combination with AI-based segmentation and template 
registration. The usefulness of the methods is demonstrated 
for musculoskeletal anatomy. (2) Functioning and pathologi-
cal anatomy modeling [9–13]: Focusing on the musculoskel-
etal anatomy, dynamic anatomy is investigated while the 
musculoskeletal system is functioning, for example, the hip 
joint anatomy during standing and the rib cage anatomy dur-
ing breathing. In addition, anatomy-based pathological pre-
dictive models are constructed, with which biopsy-proven 
pathological data are associated, in application to liver fibro-
sis staging.

In the following, AI-based segmentation with Bayesian 
U-net and cross-modality image synthesis with CycleGAN 
are firstly addressed, and then the two MCA modeling 
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approaches, high-fidelity anatomy modeling and function-
ing/pathological anatomy modeling, are described.

5.2  AI-Based Segmentation and Cross- 
Modality Image Synthesis

The CT segmentation tasks, which were originally solved 
using traditional methods [1, 2], have been re-implemented 
using AI, that is, deep learning. As an example, Fig.  5.1a 
shows an overview and typical results of muscle segmenta-
tion using our novel Bayesian U-net [3]. The segmentation 
error, measured by ASD (average symmetric surface dis-
tance), in 19 individual muscle segmentation of the hip and 
thigh area was significantly reduced from 1.56 mm by the 
previous hierarchical multi-atlas method [2] to 0.99 mm by 
Bayesian U-net [3]. In addition, prediction of segmentation 
accuracy became possible using an uncertainty metric mea-
sured by Bayesian U-net. Correlation coefficients of pre-
dicted and actual segmentation accuracy (Dice measure) of 
19 muscles were 0.716 in average. Further, the method was 
successfully applied to public domain CT data from TCIA 
(The Cancer Imaging Archive) database [14] as well as CT 
data of the same hospital as training data. Segmentation 
accuracy of muscles has shown to be sufficiently high in 
large-scale testing, and now automatically segmented regions 
can be practically used for functional and pathology model-
ing with minimum operator interventions.

In order to apply segmentation methods developed for CT 
data to a different modality of data, for example, MRI data as 

assumed here, manual traces on MRI data are typically 
needed as training data. However, manual tracing is highly 
time-consuming. To avoid it, one approach is to synthesize 
CT images from MR images, and then existing CT segmen-
tation tools are applied to synthesized CT images. Figure 5.1b 
shows a diagram and typical results of our MR-CT image 
synthesis (image-to-image translation) and segmentation 
tool using CycleGAN [15] without using paired CT and MRI 
data [4]. In our method, just a bunch of unpaired CT and 
MRI data having a similar field of views are used. When 
more than two hundred cases of CT and MRI data are used 
as training data in combination with our newly introduced 
gradient consistency loss, significant accuracy improvement 
in image synthesis and final segmentation was observed 
compared with using around 20 cases of training data.

5.3  High-Fidelity Anatomy Modeling 
for Functional Simulations

One aim of the MCA research is to provide a framework for 
reconstructing patient-specific multiscale anatomy models, 
which are directly applicable to in-silico functional simula-
tions, from clinical images. One approach is to construct the 
model templates, and then non-rigidly register the templates 
to clinical image data for reconstructing patient-specific 
models. The templates include high-fidelity anatomical 
information such as micro-scale structures and physical con-
nections which are unable or difficult to be obtained only 
from patient clinical images. Because nonrigid registration 
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of the template to the whole image can be unstable and inac-
curate, we perform the registration for each segmented 
macro-level anatomical region, by which patient-specific 
information on microstructures and physical connections, 
partly included in the patient images, is properly recon-
structed in the models. We investigated this approach with 
applications to the musculoskeletal system.

Bones and muscles are the main anatomical structures in 
the musculoskeletal system, whose patient-specific macro 
anatomy is provided by AI-based segmentation described in 
6.2. Detailed anatomical information is useful for functional 
simulation about microarchitectures (such as muscle fibers 
and trabecular bones) inside macrostructures, connective tis-
sues (such as tendons, ligaments, and fasciae), physical con-
nections among tissues, and so on, which are often not or 
only partially captured in routinely available or less invasive 
clinical images of patients. In the following, firstly, details of 
construction of the musculoskeletal high-fidelity model tem-
plates are described, and then reconstruction of the patient- 
specific models from routinely available clinical 3D data is 
demonstrated.

5.3.1  Constructing High-Fidelity Model 
Templates from Cadaver 
Cryosection Data

In order to construct musculoskeletal high-fidelity model 
templates, muscle fiber arrangement templates are modeled 
from the Visible Korean (VK) dataset, high-resolution 3D 
volume data (0.1 or 0.2 mm3 voxel size) of the entire bodies 
of the cadavers, which are serially cryosectioned at 0.1 or 
0.2 mm and stored as high-resolution optical images [16]. 
Figure 5.2a shows typical results of muscle fiber tractogra-
phy from the VK 3D data. We firstly reduced artifacts caused 
by temporal variations of the lighting condition during a 
long-term data acquisition process of the VK data, and then 
performed structure tensor computation and fiber tracking 
[5]. Muscles are the power source of human movements. 
Muscles move the bones across the joint by their contraction. 
Their fiber directions are biomechanically important because 
muscle contraction happens along these directions. Muscle 
contraction force is transmitted to the bones through the 
muscle-bone attachment areas (origin and insertion for the 
fixed and moving bones, respectively). Therefore, muscle- 
bone attachment areas need to be determined in order to 
make muscle fiber arrangements utilized in biomechanical 
simulations.

Figure 5.2b shows the probabilistic atlases of the muscle 
attachment areas of the gluteal muscles used in our approach 
of the attachment area estimation. Unlike previous works 
based on cross-validation using two cadavers [17], the prob-
abilistic atlases of the attachment areas were constructed by 

3D digitization of 8 cadavers (later extended to 20 cadavers), 
and the patient-specific attachment areas were estimated 
using the probabilistic atlas and patient bone shapes [6]. 
Figure 5.2c shows the fiber templates of gluteus maximus, 
medius, and minimus muscles reconstructed from the VK 
data [7, 8]. Global fiber arrangement models based on 
B-splines are fitted to muscle fiber segments extracted from 
the VK data so that the fibers are constrained to start from the 
estimated origin areas and end to the insertion while cover-
ing the segmented muscle region. The size of the B-spline 
grid matrix to represent the deformation of the fiber arrange-
ment was gradually increased so as to stabilize the deforma-
tion computation. Although the extracted muscle fiber 
segments are scattered and incomplete, the global model 
ensures that all fibers start from the origin area, reach the 
insertion area, and densely cover the whole muscle volume.

5.3.2  Patient-Specific Musculoskeletal 
High-Fidelity Modeling from Clinical 
Images

The constructed high-fidelity model templates are non- 
rigidly registered with patient CT/MR images. The bone and 
muscle regions are firstly segmented, followed by the attach-
ment area estimation. In the formulation of the registration, 
shape similarity between segmented muscle regions of the 
patient images and the deformed templates are combined 
with vector field similarity between the fiber orientations 
estimated from the clinical images and those in the deformed 
fiber arrangement model templates.

Figure 5.2d shows validation results of patient-specific 
fiber arrangement reconstruction from clinical images in 
comparison with two previous methods (grid fitting and 
CFD) [18, 19] which only use the outer shapes of muscles to 
generate the fiber arrangements [8]. Our study demonstrated 
fully automated reconstruction of detailed patient-specific 
muscle fiber arrangements and muscle-bone attachment 
areas from routinely available clinical 3D data. The accuracy 
of reconstructed fiber arrangements was evaluated using the 
VK data of two cadavers [8]. One VK dataset (VK-1) 
includes high-resolution optical images (0.1 mm3 voxel), CT 
(1 mm3 voxel), and MR (1 mm3 voxel) data, and the other 
(VK-2) only high-resolution optical images (0.2  mm3). 
Firstly, the templates were constructed from VK-2. Then, 
they were non-rigidly registered with the segmented regions 
of CT and MR data of VK-1 to reconstruct patient-specific 
models. Finally, the reconstructed patient-specific models 
were validated using the templates constructed from VK-1. 
These results suggest a possibility that the current string 
approximation of muscle models in biomechanical simula-
tions [20] can be replaced by volumetric high-fidelity mus-
culoskeletal models [21].
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5.4  Functioning and Pathological 
Anatomy Modeling

5.4.1  Functioning Anatomy Modeling

CT and MR scanners are typically used to acquire images of 
stationary anatomy at supine/prone positions. The musculo-
skeletal system is functioning in various positions. Especially, 
modeling of joint and muscle configurations at weight- 

bearing positions and during typical movements would be 
important for functional modeling. For the purpose of func-
tional skeletal anatomy modeling, we show a couple of new 
approaches of combining dynamic 2D X-ray imaging with 
stationary 3D imaging. Figure 5.3 shows X-ray image-based 
chest 3D dynamic analysis of rib motion using anatomical 
and biomechanical (uniaxial rotation) constraints [9] com-
bined with a robust and fast 2D-3D registration [22]. As 
another function modeling, supine and standing skeletal pos-
ture modeling was analyzed using a large-scale database of 
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CT data and X-ray images. In order to perform this task, we 
have established fully automated processes of CT segmenta-
tion and subsequent 2D-3D registration of uncalibrated 
X-ray images with segmented CT data. We confirm that there 
was no significant difference between known and unknown 
calibration parameters [10]. More recently, 3D skeletal pos-
tures can be estimated only from 2D X-ray images without 
CT [11] by using training data obtained from automated 
2D-3D registration-based large-scale posture analysis [10]. 
This approach is now extended so as to deal with muscle 
analysis from 2D X-ray imaging, which will provide an 
AI-enhanced MCA framework of dynamic functioning anat-
omy modeling.

5.4.2  Pathological Anatomy Modeling

Regarding pathological anatomy modeling, the live fibrosis 
progression modeling is addressed. The dataset of multipara-
metric MR data of 56 patients of fibrosis stages F0 to F4, 
which were definitely diagnosed by biopsy pathology test, 
were collected. In addition, blood test data and stiffness mea-
surements obtained from MR elastography data were associ-
ated with each patient. Our aim is to construct a prediction 
model of the fibrosis stage from the liver shape, compare to 
that from blood test or stiffness measurement, and eventually 
combine shape, blood test, and stiffness into a prediction 
scheme.

Initially, we used principal component analysis (PCA) to 
derive the shape feature vectors [12]. Then, we used partial 
least squares (PLS) instead, which is regarded as a super-
vised dimensionality reduction scheme to optimize classifi-
cation or regression with known labels (in this case, known 
fibrosis stages) compared with PCA as an unsupervised one 
[13]. We confirmed that the SVM classification accuracy was 
largely improved by using PLS coefficients in comparison 
with PCA. Although shape-based classification was inferior 
to stiffness and blood test, its performance was close to them 
regarding classification between F0-F1 and F2-F4. Figure 5.4 
shows shape changes along the normal vector of the SVM 
discrimination plane. In these changes, not only commonly 
known shape changes such as right robe shrinkage and left 
lobe enlargement but also enlargements in the posterior part 
of the right lobe and the caudate lobe were observed, which 
were found in a recent clinical study [23]. This is regarded as 
an example of MCA models due to disease progression.

5.5  Summary

We have described recent research achievements on funda-
mental technologies for integrating function and pathology 
of tissues, organs, and systems in the MCA models. We 
extended macro anatomy modeling so as to incorporate func-
tion and pathology information. We developed a framework 
of high-fidelity anatomy modeling for functional simulations 
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using the template including information on micro-scale 
anatomy and physical connection constructed from cadav-
eric data, with application to musculoskeletal multi-scale 
modeling. In addition, disease progression was addressed 
with application with liver fibrosis modeling. AI-based seg-
mentation and image synthesis for macro-anatomy modeling 
from different modalities of data, and 2D-3D integration 
technologies for functioning anatomy modeling were also 
described and enhanced the significance of the MCA 
models.

In the MCA project, a new discipline of computational 
modeling of human anatomy has been established, which 
integrates multiscale anatomy, function (physiology), pathol-

ogy (disease), and temporal changes (growth/progression). 
The MCA models are constructed from different modalities 
of data and used to reconstruct patient-specific multiscale 
and dynamic anatomy models, in which functional and path-
ological aspects are integrated, from clinical image data.

We have particularly investigated the MCA modeling for 
the musculoskeletal system, in which muscle fiber arrange-
ments and bone-muscle attachment areas are modeled, and 
its patient-specific reconstruction schemes from clinical 
images are formulated. Further, musculoskeletal anatomy 
modeling during functioning such as standing and joint 
motion has been incorporated in the MCA modeling. Fig. 5.5 
shows an overview of musculoskeletal multiscale MCA 
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modeling, where our ongoing study about physical function 
prediction from muscle anatomy models is included as 
organ-system level modeling. Musculoskeletal analysis is 
addressed in a variety of research fields, including biome-
chanics, robotics, rehabilitation, orthopedics, ergonomics, 
prosthesis design, sports science, and so on. This new disci-
pline developed in this research provides a framework for 
personalized functional musculoskeletal anatomy modeling, 
which has not been available before. A new integrated 
research filed of personalized human body sciences will 
emerge centered at this newly developed discipline. As future 
work, the developed MCA models should be shared among 
research communities and utilized for in-silico functional 
analysis and simulations of the human body.
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Abstract

The progress of such medical imaging devices as com-
puted tomography (CT) or magnetic resonance (MR) 
scanners is continuously changing the environments of 
the clinical fields where medical diagnosis and treatment 
are performed. Medical imaging devices have become 
indispensable tools for safely and accurately performing 
medical procedures. Furthermore, although CT or MR 
obtains mm-level details of human anatomical structure, 
the μm-level structure is required in the pathological diag-
nosis for a final diagnosis. Handling multi-modality and 
multi-scale images reflect the nature of medical diagnosis 
and treatments. Multidimensionality exists both in the 
human body and in medical images obtained from the 
human body. For example, when we think about the reso-
lution scale, we realize that there are many scales in medi-
cal images, such as the human-body scale, the organ 
scale, the organ internal-structure scale, and the cellular 
scale. This chapter presents a research overview of “Pre-, 
intra-, and post-operative diagnosis and navigational 
assistance based on multidisciplinary computational 
Anatomy,” which was conducted under the MCA Project’s 
support. In pre-, intra-, and post-operative diagnosis and 
navigational assistance, it is crucial to use macro- and 
microanatomical structure information appropriately. 
Seamless integration of this anatomical information is 
crucial for MCA-based clinical assistance. We show the 
overview of MCA-based clinical procedure assistance. 
Then we will show some examples of MCA-based clini-
cal assistance systems that are focusing on macro- and 
microanatomical structures.

6.1  Introduction

The progress of such medical imaging devices as computed 
tomography (CT) or magnetic resonance (MR) scanners is 
continuously changing the environments of the clinical fields 
where medical diagnosis and treatment are performed. 
Medical imaging devices have become indispensable tools 
for safely and accurately performing medical procedures. 
Furthermore, although CT or MR obtains mm-level details 
of human anatomical structure, the μm-level structure is 
required in the pathological diagnosis for a final diagnosis. 
Handling multi-modality and multi-scale images reflect the 
nature of medical diagnosis and treatments. A micro-CT 
scanner is one device that enables the capture of volumetric 
images in μm-resolution. This means a computer needs to 
understand seamlessly human anatomy from macro- to 
micro-levels.

Multidimensionality exists both in the human body and in 
medical images obtained from the human body. For exam-
ple, when we think about the resolution scale, we realize that 
there are many scales in medical images, such as the human- 
body scale, the organ scale, the organ internal-structure 
scale, and the cellular scale. One typical example in medical 
images is tumor growth along the time axis in the time scale. 
It is also possible to define the meta-anatomy scale that is a 
logical scale that a set of anatomical names can express. In 
endoscopic diagnosis and surgery, medical doctors utilize 
medical images of different modalities and resolutions, 
including CT, endoscopic ultrasound, microendoscopic 
images at a millimeter, hundreds of micrometers, and a few 
micrometers resolution, respectively.

Multi-scale image registration and navigation are interest-
ing topics in the Multidisciplinary Computational Anatomy 
(MCA) project [1]. Such techniques will allow us to observe 
human anatomy from multilevels, including from mm to μm. 
The images of many different scales must be integrated. 
Meta-annotation at the macro- and micro-levels is also 
essential. For example, we can address human anatomy at 
the following scales: body, organ, internal organ structure, 
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micro-anatomy structure, and cell. Tumor structure and 
growth analysis are good examples of multidisciplinary 
computational anatomy over time. Endoscopic diagnosis and 
surgery also require multi-scale navigation. In endoscopic 
procedure guidance, we need millimeter accuracy for arriv-
ing at a target location; micrometer accuracy is required for 
analyzing cancer structures and treating them. Multi-modal 
images are also required for clinical decisions. The MCA 
aims to develop several methodologies to analyze the medi-
cal image from the time, function, pathological axis and 
deploy these technologies in the clinical field.

MCA also can obtain many benefits from the multilayer 
neural network, also known as deep learning. Especially in 
the image recognition area, the convolutional neural network 
has made remarkable progress in conjunction with software 
frameworks and computing devices like GPUs. This prog-
ress has also enabled us to perform advanced image analysis, 
including image classification, object detection, image seg-
mentation with high accuracy. Deep learning also had many 
effects on medical image analysis in MCA.  As described 
before, the goal of multidisciplinary computation anatomy is 
to integrate various information from the viewpoints of the 
spatial axis, the time axis, the functional axis, and the patho-
logical axis. These integrations required advanced medical 
image analysis. The deep learning technique enabled us to 
perform advanced image analysis.

Furthermore, medical diagnostic assistance devices’ real 
clinical application using machine learning techniques has 
now started. AI-assisted endoscopic diagnosis assistance 
system is one example. Utilization of the power of deep 
learning accurate such integration.

This chapter presents a research overview of “Pre-, intra- 
and post-operative diagnosis and navigational assistance 
based on multidisciplinary computational Anatomy,” which 
was conducted under the MCA Project’s support. In pre-, 
intra-, and post-operative diagnosis and navigational assis-
tance, it is essential to use macro- and microanatomical 
structure information appropriately. Seamless integration of 
these anatomical information is crucial for MCA-based clin-
ical assistance. We show the overview of MCA-based clini-
cal procedure assistance. Then we will show some examples 
of MCA-based clinical assistance systems that are focusing 
on macro- and microanatomical structures.

6.2  MCA and Clinical Procedure 
Assistance

In the clinical field, multidimensionality is always consid-
ered in diagnostic and surgical processes. This multidimen-
sionality is truly multidiscipline. We propose that 
multi-dimensional navigation of the patient’s anatomy space 
with the fusion of information would enable us to optimize 
diagnosis and provide aid to surgery. Here we define multi- 
dimensional navigation of the space of the patient’s anatomy 
as technologies navigating inside a space formed of multidi-
mensional and multimodal images interpreted in a multidis-
ciplinary way. We call this multidiscipline navigation or 
multi-dimensional navigation (Fig. 6.1).

When we overview research of the medical image pro-
cessing fields, most work focuses only on image information 
integration of images having almost the same resolution. For 
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example, CT and MR image integration has been conducted 
for many years. Information obtained from one image is 
overlaid on another image in such work. CT images have 
good performance in depicting bone, while MR images have 
good performance in depicting soft tissues. Integration of 
two images compensates for information lacking in one 
image. Although this kind of integration is a multidisci-
plinary computational anatomy field, it is just a part of the 
project. There is a big gap between these researches and our 
project goal to develop a total understanding of the human 
body based on medical images or advanced intelligent diag-
nostic and systems to aid surgery. Integrating multidisci-
plinary medical images is the key technology to advance 
medical assistance based on medical images.

As stated above, MCA aims to enable us to develop an 
intelligent diagnostic and surgical assistance system, which 
enables us to analyze multidimensional medical images 
taken in the process of diagnosis and surgery based on the 
multidisciplinary computational anatomical model and 
enable us to navigate the space spanned by the multi- 
dimensional medical images seamlessly. Examples of MCA- 
based medical assistance systems include: (a) 
multidimensional seamless registration, (b) multidimen-
sional seamless anatomical structure analysis, (c) multidi-
mensional meta-anatomical structure understanding and 
annotation, (d) multidimensional seamless visualization, and 
(e) decision assistance for diagnosis and surgery.

6.3  Macroscopic Anatomy and its 
Therapeutic Application

6.3.1  Macroscopic Anatomical Structure 
Analysis

One of MCA’s fundamental processes is to analyze anatomi-
cal structure from four viewpoints of the spatial axis, the 
time axis, the function axis, and the pathological axis. 
Anatomical structure segmentation from medical images is 
essential in MCA’s anatomical structure analysis. Atlas- 
based segmentation was utilized to segment anatomical 
structures from CT or MR images. This method firstly con-
structs anatomical structure atlas, and then input images 
were registered with atlases [2]. Likelihood maps of organ 
regions were computed from the registration results with the 
input images and the atlas images. Organ regions were then 
determined by the graph-cut method combined with the 
MAP (Maximum a posteriori) estimation. Progress of FCN 
(fully convolutional network) has changed the scene of 
multi-organ segmentation. U-Net is one of the famous FCN 
methods used for multi-organ segmentation from medical 
images [3]. In this process, we prepare many original CT 
images and label images of organ regions on original CT 

images. CT or MR images are volumetric mages consisting 
of many axial slice images. We manually trace organ regions 
on axial images to generate training datasets for the FCNs.

We have created an organ label image database of more 
than 600 abdominal CT scans cases. The database contains 
organ region label information of the stomach, the liver, the 
pancreas, the spleen, the artery, and the spleen [4]. This train-
ing dataset was utilized for training the cascaded U-Nets. 
The U-Net segmentation architecture is illustrated in Fig. 6.2. 
The cascaded U-Net’s former step is designed to roughly 
segment organ regions. The later stage segments each organ 
precisely.

Furthermore, organ position information is utilized to 
improve segmentation accuracy [5]. This is based on the fact 
that each organ’s locations in human anatomy are almost 
fixed. Figure  6.3 shows multi-organ segmentation results 
from abdominal CT images using the proposed U-Net-based 
framework. Cascaded segmentation workflow can achieve 
high accuracy in multi-organ segmentation.

6.3.2  Blood Vessel Recognition

We can see that the anatomical textbook illustrates blood 
vessel branching structure with anatomical name annota-
tions. Organ regions extraction from CT images can identify 
organ shape by using CNN.  However, anatomical organs’ 
names are also important information to recognize patient 
anatomy. Surgeons describe patient anatomy by using ana-
tomical names. We call anatomical name information meta- 
anatomical information. Meta-anatomical information is 
another axis that expands the MCA space. Meta-anatomical 
information is one of the key ideas of seamless understand-
ing of human anatomy, which is essential in MCA.

In anatomical structure extraction using the CNN, we can 
extract organ regions from CT images by the CNN. However, 
a blood vessel network is extracted as one region, although 
blood vessels have many branches. Each blood vessel has its 
anatomical name. Anatomical name recognition of blood 
vessel branches by computers is essential for advanced 
human anatomy recognition and multidisciplinary recogni-
tion of a human body’s total understanding. An automated 
anatomical labeling procedure is developed for assigning 
anatomical names for each branch extracted from CT images. 
We have utilized the machine learning method to recognize 
each branch of blood vessels or bronchi’s anatomical names 
combined with rule-based logic [6]. The convolutional neu-
ral network approach is recently developed for automated 
anatomical labeling of blood vessels. Firstly, we extract 
blood vessels from CT images and obtain blood vessels’ 
graph structures. We compute feature vectors for each blood 
vessel branch. Graph neural network (GNN) is applied to 
learn each branch’s anatomical names [7]. We use trained 
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GNN for inferring anatomical names of blood vessel 
branches. Figure 6.4 shows one example of GNN-based ana-
tomical name recognition results.

6.3.3  Surgical Navigation

Macroscopic anatomical structure segmentation can be uti-
lized for surgical navigation. Anatomical structure can be 
displayed according to the posture of the real laparoscope. 
Laparoscopic surgery is one of the less invasive surgical 
procedures. In laparoscopic surgery, a surgery inserts a lapa-
roscopic into a patient’s abdominal cavity. Surgical opera-
tions are conducted by watching laparoscopic camera 
videos. Although the laparoscopic procedure is less inva-
sive, it requires higher operation skills. One of the reasons is 
the limited view of the laparoscopic camera. A laparoscopic 
surgery navigation system that assists a surgeon is desired to 
be expected to overcome such problems. In laparoscopic 
surgery navigation, the critical point is to show anatomical 

structure information during laparoscopic surgery. 
Macroscopic anatomical structure information can be used 
for laparoscopic surgery assistance. For example, early gas-
tric cancer laparoscopic surgery requires operating blood 
vessels related to the stomach with precisely understanding 
patients’ anatomical structures around the stomach. It is 
possible to navigate laparoscopic surgical procedures by 
recognizing anatomical structures, including blood vessel 
structures or solid organ structures, from pre-operative CT 
images and presenting such information according to lapa-
roscope movement. One example is displaying anatomical 
laparoscopic surgical navigation information based on a 
laparoscope’s real-time tracking information by the optical 
or electromagnetic tracker. Such a navigation system 
requires coordinate system registration among the preopera-
tive CT images, the patient, the laparoscopic camera, and 
the  laparoscope body (Fig. 6.5). Coordinate system registra-
tion is typically performed based on markers attached to a 
patient body surface or anatomical structure that can be 
identified on a body surface and preoperative CT images 
[8]. Anatomical structures can now be easily segmented 
from abdominal CT images by the deep learning model 
using U-Net. Blood vessel names can also be identified on 
CT images by utilizing a graph-convolution network, a deep 
learning method.

The CNN is also useful for surgical scene recognition. 
For example, the CNN can recognize areas or blood vessels 
where a surgeon operates. Anatomical structures observed 
by a laparoscope can be identified by FCN (Fig. 6.6). Hayashi 
and his colleagues develop the method that displays 3D ana-
tomical structures extracted from CT images based on surgi-
cal scene recognition results [9]. Laparoscopic surgical 
navigation systems introduced in the previous paragraph uti-
lized positional trackers, including optical or electromag-
netic trackers. However, the scene recognized system does 
not require such tracking systems that are typically expen-
sive and are hard to set up in real clinical scenes. Although it 
is impossible to perform precise synchronization with lapa-
roscope movement precisely, it is possible to automatically 
display important anatomical structure information at the 
critical point scenes during surgery. This system is one of the 
new applications of CNN. Figure 6.7 shows an example of 
such a system.

6.3.4  3D-Printed Anatomical Model

3D printing is one of the advanced techniques to reproduce 
3D anatomical structures. 3D printing systems fabricate 
physical anatomical models based on anatomical structure 
information. A surgeon can touch and observe the 3D shape 
of organs using a 3D organ model fabricated by a 3D printer. 
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Intuitive observation becomes possible by bringing the 3D 
printed model to surgeons’ operating rooms. Although it is 
possible to render organ shape in a three-dimensional way on 
a computer screen, it is still on a 2D computer display. The 
surgical navigation system presented in the previous section 
is a typical example of a 2D-based 3D display. If we use 3D 
printed organ mode, a surgeon can understand 3D structure 
information very intuitively. CNN-based MCA enables us to 
automate 3D printing data generation [10]. The CNN-based 
organ region segmentation method can generate organ-shape 
information (STL) used in a 3D printer. Figure 6.8 shows an 
example of a 3D printed liver model based on CNN-based 
organ region segmentation from the liver’s preoperative CT 
images.

6.4  Colonoscopy Assistance Based 
on Macro- and Microanatomical 
Structure Analysis

Colonoscopy diagnosis assistance based on macro- and 
microanatomical structure recognition.

MCA project also conducted several developments of 
methods that assist colonoscope diagnosis assistance. 
Computer assistance of colonoscopy consists of two pro-
cesses: (a) colonic polyp detection and (b) colonic polyp 
classification. In colonic polyp detection assistance, a com-
puter detects colonic polyps in colonic video scenes and 
gives a physician some warning. Mori and his colleagues 
have created an automated polyp detection method based on 
CNN. The CNN is trained to detect frames where colonic 
polyps are observed by giving training images. C3D network 
is utilized to implement this colonic polyp detection function 
[11]. If colonic polyps are found in colonic video frames, the 
system makes a warning sound and changes colonoscopy 
videos’ border color into yellow for giving some attention to 
a physician (Fig. 6.9).

In colonic polyp classification, a computer classifies each 
colonoscopic polyp into neoplastic or non-neoplastic polyps 
based on microscopic structure analysis, including cell pat-
terns or tiny blood vessels. This method classifies super mag-
nified images of colonic polyp surfaces. The super magnified 
colonoscope is a new endoscope that can take both conven-

Fig. 6.5 Laparoscopic surgery navigation based on multi-organ segmentation

Fig. 6.6 Blood vessel detection on laparoscopic video frames
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tional colonoscopic images and super magnified colono-
scopic images. We have developed a method that can 
classified images were taken by the super magnified endo-
scope into neoplastic images or non-neoplastic images [12]. 
Hilger-tensor features are computed from super magnified 
endoscopic images, and we classify such features by support 
vector machi (SVM) technique to obtain classification results 
[13]. The system displays classification results with their 
likelihood in real time during endoscopic procedures. It is 
possible to show the classification results of two classes and 
four classes (Fig. 6.10).

Furthermore, procedure recommendation functions such 
as biopsy are implemented in such a system. This assistance 

function is executed when we push the button located at the 
manipulation handle of a super magnified endoscope. If each 
category’s likelihood is lower than a given threshold, the sys-
tem asks a physician to retake an image. This becomes pos-
sible because computer diagnosis is executed in real-time 
during endoscopy. We iterate this computer-assisted diagno-
sis process at a different position on a colonic polyp, and 
then finally, a physician decides polyps’ pathological types. 
Figure  6.8 shows an example of colonic polyp qualitative 
diagnosis.

This colonoscopy assistance system assists a physician in 
the anatomical structure viewpoints of macro (polyp detec-
tion) and micro (cell structure) levels. It is an excellent 
example of the seamless integration of macro- and micro- 
level computational anatomy. These systems are approved as 
official medical devices by the PMDA (Pharmaceuticals and 
Medical Devices Agency), Japan.

6.5  Micro-Scale Anatomical Structure 
Segmentation

6.5.1  Micro-CT Images

In MCA, it is important to establish a framework that can 
seamlessly handle macro- and microanatomical structures. 
Microscopic anatomical structure segmentation is also one 
of the vital tasks in MCA. However, volumetric image scan-
ners used in the clinical scenes are hard to obtain micro-
scopic volumetric images of anatomical structures Typical 
resolution of CT scanners used in the clinical field are about 
0.5 mm × 0.5 mm × 0.5 mm per voxel. It is necessary to use 

Fig. 6.7 Surgical assistance information display based on surgical scene analysis

Fig. 6.8 3D-printed liver model based on organ segmentation results 
by 3D U-Net
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high-resolution CT devices to capture microscopic anatomy. 
One solution is to use micro-CT devices that can be easily 
operated on a desktop. Such devices can capture microscopic 
CT images in micrometer resolution of a specimen. 
Figure  6.11a shows a picture of a desktop-type micro-CT 
imaging device and an example of a CT image of an inflated 
lung specimen taken by the micro-CT scanner. Furthermore, 
the three-dimensional rendering result is shown in Fig. 6.11. 
From Fig. 6.11, we see the micro-CT can capture the micro-
anatomical lung structures’ image, including the alveoli as 
sponge structure.

We have conducted microscopic anatomical structure 
analysis segmentation and microanatomical structure esti-

mation from clinical CT images. Also, we can observe inva-
sions of lung cancer in the alveoli-level by using micro-CT 
images. Micro-CT scanning enables us to analyze the micro-
anatomical structure of the lung.

6.5.2  Micro-Anatomical Structure 
Segmentation from Micro-CT Images 
of Lung Specimen

As we described in the previous section, micro-CT imag-
ing enables us to diagnose diseases, including lung cancer 
at the alveoli level. Although the CNN can be utilized to 

Fig. 6.9 Example of automated colonic polyp frame detection

Fig. 6.10 Example of automated colonic polyp pathological type classification if super magnified colonoscopic image
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analyze such images to segment micro-CT images into 
invasive cancer regions, non-invasive cancer regions, and 
normal regions, a lot of training data (manual trace of each 
region) is required to make a CNN network to output 
desired segmentation results. Manual trace of each region 
on micro-CT images is a tough task. A spherical cluster-
ing-based method was developed for micro-CT image seg-
mentation to overcome such problems, one of the 
unsupervised approaches. In the clustering method, it is 
essential to find suitable features to be used for clustering. 
Moriya et  al. have developed a variational autoencoder-
based approach for clustering [14]. Micro-CT images of 
the inflated lung specimen were segmented into invasive, 
noninvasive, and normal regions by this method. 
Figure 6.12 shows examples of spherical k-means cluster-
ing of micro-CT images.

6.5.3  Super-Resolution of Clinical CT Images 
Based on Micro-CT Image Database

Image generation method based on deep learning including 
GAN (generative adversarial network) has made remarkable 
progress in the computer vision field The GNA is useful not 
only in natural images (typical scenes captured by conven-
tional camera) but also in medical images. The CycleGAN is 
especially known as the method that mutually converts 
images of two different domains [15]. If we can design an 
appropriate loss function, the CycleGAN can be used for 
domain conversion and super-resolution of input images. 
Zheng et al. has proposed a method for super-resolution of 
clinical CT images taken at the clinical field [16]. This 
method utilizes micro-CT images and clinical (macro)-CT 
images for training. Clinical CT images are converted to 

a b c d e

Fig. 6.11 Example of micro-CT images of inflated lung specimen; (a) desktop-type micro-CT scanner, (b) lung specimen, (c, d) examples of 
micro-CT images, (e) example of 3D rendering of micro-CT image
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Fig. 6.12 Examples of micro-CT image segmentation
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micro-CT-level high-resolution images by the trained 
CycleGAN. The method shown in utilizes the loss function 
that employs the SSIM index in Cycle loss to obtain stable 
super-resolution results. Figure  6.13 shows an example of 
super-resolution of clinical CT images. This method us to 
achieve seamless integration of macro- and microanatomical 
structure information for us.

6.6  Conclusion

This chapter presented a research overview of “Pre-, intra- 
and post-operative diagnosis and navigational assistance 
based on multidisciplinary computational anatomy,” which 
was conducted under the MCA Project’s support. In pre-, 
intra-, and post-operative diagnosis and navigational assis-
tance, it is vital to use macro- and microanatomical structure 
information appropriately. Seamless integration of this ana-
tomical information is a key point of MCA-based clinical 
assistance. We showed the overview of MCA-based clinical 
procedure assistance. Also, we presented some examples of 
MCA-based clinical assistance systems that are focusing on 
macro- and microanatomical structures.
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Abstract

We are developing a detection/diagnosis system for lung 
cancer and chest diseases. These research use synchrotron 
radiation large-field microscopic CT images, high- 
definition CT images and pathology/clinical information, 
and long-term low-dose CT images and genetic informa-
tion. We present high-performance computer-aided diag-
nosis system by analyzing the pathological condition 
from these multiscale image information. These results 
are described.
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7.1  Introduction

Medical imaging is one of the major tools that have enriched 
medical science, disease diagnosis and treatment. The most 
widely used imaging modality in clinical practice for cancer 
detection, oncologic diagnosis, and treatment guidance is 
computed tomography (CT), which allows clinicians to 
assess the characteristics of human tissue noninvasively. 

Recent advances in CT imaging technologies allow the high- 
throughput extraction of informative imaging features to 
quantify the differences that oncologic tissues exhibit. A key 
challenge is to transform a myriad of spatially and tempo-
rally quantified features into medical knowledge: the process 
of integrating diverse information (demographic, clinico-
pathological, and quantitative imaging) to provide personal-
ized clinical predictions that can accurately estimate cancer 
probability and predict patients’ outcomes for risk-adaptive 
treatment.

Tumor heterogeneity is a key challenge for an era of pre-
cision medicine [1, 2]. The complex structures in tumors are 
exhibited on different spatial scales from whole-body to 
molecular imaging. Molecular characterization using 
genomic and proteomic technologies has been critical infor-
mation on the development of precision medicine approaches. 
However, these techniques of tumor sampling, often invasive 
biopsy-based molecular assays, does not always reflect the 
entire tumor cell characteristics [3]. Advanced medical imag-
ing technologies in clinical oncology have been expanded 
from a primary diagnostic tool to an important role in the 
context of precision medicine. The main reason is that the 
noninvasive imaging represents the entire tumor status, and 
provides complementary information to biopsy-based assays 
of tumor tissues. The quantitative CT imaging becomes 
increasingly attractive field [4–10]. The underlying hypoth-
esis of this research area is that the advanced computational 
approaches discover imaging biomarkers associated with 
cancer probabilities, clinicopathological prognostic factors, 
and gene expression levels from large amounts of image- 
based features. If this hypothesis is proven through external 
and independent validation cohorts of patients, we can non-
invasively infer biological characteristics of diseases, possi-
bly representing cancer probability and prognostic 
information, from the quantitative CT imaging.

We describe a system for detecting and diagnosing lung 
cancer and chest diseases using high-resolution 3D CT 
images and low-dose 3D CT images information. Fig.  7.1 
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shows multiscale image information. We develop high- 
performance computer-aided diagnosis system by analyzing 
the pathological condition from the multiscale image infor-
mation. The synchrotron radiation large-field microscopic 
CT images, high-resolution CT images and pathology/clini-
cal information, long-term low-dose CT images and genetic 
information are used for this progress. The main contents are 
as shown below.

 1. Quantitative elucidation and understanding of three- 
dimensional microstructures of normal adult lungs and 
COPD lungs: This research has enabled us to add new 
knowledge to the conventional three-dimensional micro-
structure of normal adult lungs. We are elucidating the 
pathology of COPD lungs.

 2. Development of computer-aided detection and diagno-
sis system for lung cancer, pulmonary embolism, and 
osteoporosis: We discuss the detection of lung cancer 
using low-dose CT images, the diagnosis and prognosis 
of lung cancer using high-resolution CT images, pulmo-
nary embolism using non-contrast CT images, and the 
detection of osteoporosis using long-term low-dose CT 
images.

 3. Finding genes associated with emphysematous lesion 
progression and detection of airway lesions: For emphy-
sematous lesions, genes associated with progression are 
identified using the secular change in the low absorption 
region of long-term low-dose CT images of heavy smok-
ers. Genetic information predicts the progression of 
emphysematous lesions in heavy smokers and presents 
the risk of emphysematous lesions. Airway lesions are 
detected by using high-resolution CT images to measure 
narrowing of the airway lumen and airway wall 
thickening.

7.2  Three-Dimensional Lung 
Microstructure

Revealing minute changes in organs will be achieved by 
developing imaging technologies with improved spatial and 
density resolutions. The recognition of abnormalities related 
to the lobular anatomy has become increasingly important in 
the lung diagnosis at clinical routines of CT examinations 
[11, 12]. This work analyzes the normal 3D microstructure 
of the lobular anatomy and advances the abnormal 3D micro-
structure. SRμCT opens up the 3D analysis of the fine micro-
structures of the lung. We developed SRμCT system with a 
spatial resolution of around 3  μm using a 36-megapixel 
CMOS digital camera to analyze the secondary pulmonary 
lobule microstructure [13, 14]. The volumetric SRμCT 
images were measured at the synchrotron radiation facility 
Super Photon ring-8  GeV (SPring-8) beamline BL20B2. 
Using the developed SRμCT system, we reconstructed a 
volumetric image of a human lung specimen with contrast 
agents. The normal microstructures of the secondary lobule 
of the lung with the basic structure of the peripheral lung 
were analyzed. These are 5–30 mm polyhedrons surrounded 
by interlobular septa. (1) Terminal bronchiole, respiratory 
bronchiole, alveolar duct, and alveolar sac/alveolar system, 
(2) arteriole, alveolar capillary, and venule system, and (3) 
the cooperative structure between the bronchial system and 
vascular system is elucidated. True 3D microanatomy was 
demonstrated. Figure 7.2 (a and b) shows terminal bronchi-
oles, respiratory bronchioles, alveolar ducts, alveolar sacs, 
and alveoli of normal and emphysematous regions. Figure 7.2 
(c and d) shows arterioles, alveolar capillary beds, and pul-
monary arterial systems of normal and emphysematous 
regions. These analysis results added new knowledge to the 
three-dimensional fine structure of the normal adult lung, 

Fig. 7.1 Multiscale image information
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which has been regarded as common sense shown in the 
schematic diagram of Netter [15]. We are conducting imag-
ing experiments on COPD lungs. On the progress of COPD, 
(1) terminal bronchioles, respiratory bronchioles, alveolar 
ducts, alveolar sac, and alveolar system, (2) arterioles, alveo-
lar capillaries, and venule system, and (3) the cooperative 
structure between bronchial system and vascular system, we 
aim to fully understand how it will be destroyed on a three- 
dimensional micro level.

7.3  Pulmonary Vascular System 
and Lymph Node System

Extraction of blood vessels is the basis of organ analysis. 
Contrast CT images are relatively easy to extract peripheral 
blood vessels, classify arteries and veins, and separate vascu-
lar contacts. These difficulties increase with non-contrast CT 
images. Figure 7.3 shows a blood vessel extraction result of 
contrast thoracoabdominal CT images [16]. Image enhance-

1000 µm
Normal

a b

Emphysema
1000 µm

100 µm

Pulmonary arteriole

Normal

c d

Emphysema
Capillary beds

100 µm

Fig. 7.2 Terminal bronchioles, respiratory bronchioles, alveolar ducts, alveolar sacs, and alveoli of (a) normal and (b) emphysematous regions. 
Arterioles, alveolar capillary beds, and pulmonary arterial systems of (c) normal and (d) emphysematous regions
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ment is used to extract peripheral blood vessels. Extraction 
of the inferior vena cava is difficult due to insufficient stain-
ing of the contrast agent [17]. Diameters of the aorta and 
main pulmonary artery are effective indices for pulmonary 
hypertension diagnosis [18]. For segmentation of these blood 
vessels from non-contrast CT images, it is necessary to iso-
late the area where the aorta and pulmonary artery are in 
contact. The segmentation methods have implemented sev-
eral methodological solutions: multi-atlas [19], three- 
dimensional level-set [20], cylinder-tracking [21], optimal 
surface graph cuts [22], and probabilistic atlas of curvature- 
based centerline [23, 24]. Figure 7.4 shows a segmentation 
result of the aorta and main pulmonary artery [24]. This 
approach constructs deformable probabilistic atlas of 
curvature- based centerlines of the aorta and main pulmonary 
artery. The centerlines in approximately cylindrical parts of 
the blood vessels are selected by a rigid registration of an 
optimized atlas. The atlas is represented by linear combina-
tion of standard probabilistic model [25] and principal com-
ponents. The cost function for the atlas optimization consists 
of prior probability and vascular direction. Local optimal 
solution of the cost function is found out by Quasi-Newton 
method [26]. The boundaries of the blood vessels are restored 

from the 3D Euclidean distances on the centerlines refined 
by B-spline interpolation [27]. Table 7.1 shows comparative 
evaluation of automatic and manual segmentation results for 
64 normal cases and 19 pulmonary embolism cases [23]. The 
metrics for the quantitative evaluation are Jaccard coefficient 
[28] and Dice coefficient [29]. This algorithm achieved 
highly accurate segmentation for normal cases, but also pul-
monary embolism cases with pathological deformations of 
the main pulmonary artery. We analyze lymph node metasta-
sis of lung cancer using contrast CT images. Figure  7.5 
shows the results of lymph node extraction. Lymph node 
metastasis can be confirmed by size and dense staining.

7.4  Detection and Diagnosis of Early 
Lung Cancer Using Low-Dose CT 
Images and High-Resolution CT 
Images

7.4.1  Malignancy Prediction of Suspicious 
Nodule on Low-Dose CT Images

Lung cancer is the leading cause of cancer-related mortality 
worldwide. Screening for lung cancer with low-dose com-
puted tomography (CT) has led to increased recognition of 
small lung cancers and is expected to increase the rate of 
detection of early-stage lung cancer [30]. The effectiveness of 
low-dose CT lung cancer screening has been reported by the 
NLST and NELSON studies [31, 32]. In NELSON, the ratio 
of positive CT screening is as low as 2.1%. Major concerns in 
the implementation of the CT screening of large populations 
include determining the appropriate management of pulmo-
nary nodules found on a scan. The guidelines for management 
of lung nodules detected from screening CT scans are based on 
estimations of the individual risk of malignancy. The ability to 
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Fig. 7.3 Blood vessels segmentation result of contrast thoracoabdomi-
nal CT images [16]

Fig. 7.4 Segmentation result of the aorta and main pulmonary artery 
from non-contrast CT images [24]. Red and green colors show the aorta 
and main pulmonary artery
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identify patients with a high rate of malignancy becomes cru-
cial to guide treatment decisions and to develop risk-adapted 
treatment strategies. Considerable research efforts have been 
performed to enable the prediction of cancer likelihood in lung 
nodules based on CT image analyses for optimal therapeu-
tic management to maximize patient survival and preserve 
lung function. There may be still room for the development 
of quantitative approaches to estimate the risk of malignancy. 
It will be essential to evaluate the discrimination ability of a 
widely-accepted lung cancer prediction model and to elucidate 
which benign nodules are hard to discrimination from malig-
nant nodules. We have been developing a high-performance 
computer-aided detection system for lung cancer CT screen-
ing [33–35]. We investigated whether the computer-aided CT 
image features can improve the discrimination ability of lung 
cancer prediction models for nodules in whom malignancy is 
suspected. The CT image features included nodule morphol-
ogy, a percentage of solid volume, internal and marginal inten-
sity features: first-order features, and grey level co-occurrence 

(GLCM) texture features. We built an integrated lung cancer 
prediction model with the computer-aided CT image features. 
When applying the prediction model to nodules with a maxi-
mum diameter of 2 cm or less in whom malignancy was sus-
pected, we found that the benign nodules of granuloma are 
able to discriminate from malignant nodules diagnosed as 
stage 0, IA1, IA2, IA3, IB (Fig. 7.6).

7.4.2  Prognosis Prediction of Lung Cancer 
on Thin-Section CT Images

Cancer treatment includes multiple options depending on 
nodule aggressiveness, and has created the need for prognos-
tic characterization. The tumor-node-metastasis (TNM) stag-
ing system for NSCLC is an internationally accepted system 
for determining the disease stage and is used for formulating 
a prognosis and guiding management. Patients with patho-
logical stage IA disease have the most favorable prognosis 

Table 7.1 Performances of aorta and main pulmonary artery segmentation [23]

Fig. 7.5 Thoracic lymph node extraction results. Pathological N1 lung cancer cases (a), (b), and (c). Yellow color shows ipsilateral lymph nodes. 
Blue colors show mediastinal and contralateral lymph nodes, respectively. Brown color shows lung cancers

7 Cancer Diagnosis and Prognosis Assistance Based on MCA



62

and are treated with surgical resection. The ability to identify 
those patients with a high rate of recurrence is crucial to 
develop risk-adapted treatment strategies. Considerable 
research efforts have been performed to enable the stratifica-
tion of lung cancer aggressiveness based on preoperative CT 
image analyses for optimal therapeutic management to maxi-
mize patient survival and preserve lung function. There may 
be still room for the development of quantitative approaches 
to stratify the risk of relapse in patients with early-stage lung 
cancer. We investigated potential usefulness of the computer- 
aided 3D image features, which extracted from inside nodule 
and marginal region, for stratifying the early-stage lung can-
cer. We measured 44 image features that describe nodule 
characteristics. The features can be divided into six groups; 
(a) nodule shape, (b) pleural attachment status, (c) intensity 
inside nodule, (d) texture inside nodule, (e) intensity in mar-
ginal region of nodule, and (f) texture in marginal region of 
nodule. We built a risk model using the generalized additive 
proportional hazard model based on the association between 
the total features and the duration of individual patient 
relapse-free survival (RFS). We used the multivariate general-
ized additive proportional hazard model to select the most 

useful features from retained features in the pre-selection and 
avoidance of multicollinearity steps. When applying the risk 
prediction model to 310 adenocarcinoma lesions with stage 
IA, we found that quantitative image features in combination 
with surrounding characteristics of lung cancer are associated 
with an increased risk of relapse in patients with stage IA 
lung adenocarcinoma. These results were shown in Fig. 7.7. 
The risk model may help identify the most aggressive sub-
group of patients with early-stage lung adenocarcinomas and 
could guide better clinical outcomes for these individuals.

7.5  Risk of Emphysematous Lesions by 
Long-Term Low-Dose 3D CT Images 
and Genetic Information and Airway 
Lesion Detection by High-Resolution 
3D CT Images

Chronic obstructive pulmonary disease (COPD) is a major 
public health problem that is predicted to become the third 
leading cause of death worldwide by 2030 [36]. Smoking is 
a well-known risk factor in the development of COPD [37]. 
COPD has emphysematous lesions and airway lesions. 
Figure 7.8 shows the secular change in the low attenuation 
area and the pack year analysis results using long-term low- 
dose CT images of heavy smokers for emphysematous 
lesions [38]. There are slow group and fast group of progress 
in heavy smokers. Based on this result, an association analy-
sis of single nucleotide polymorphisms (SNPs) with a CT 
image-based emphysema progression in heavy smokers has 
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Fig. 7.6 Box plot showing the distribution of malignancy probability 
scores obtained by using the computer-aided CT image features in the 
discrimination of the benign nodules (n = 349; granuloma (29 nodules), 
inflammation (167 nodules), stable solid nodule (130 nodules), and 
other benign type (23 nodules)) from the malignant nodules (n = 345; 
stage 0 (35 nodules), IA1 (143 nodules), IA2 (114 nodules), IA3 (16 
nodules), and IB (37 nodules)). The boxes represent the 25th and 75th 
centiles, with the medians indicated by the vertical lines. The whiskers 
represent the fifth to 85th centiles
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been performed [39]. The procedure of this association anal-
ysis is as follows; (1) thoracic organs and low attenuation 
volume (LAV) segmentation from low-dose CT images, (2) 
data selection using CT image-based features, (3) evaluation 
of CT image-based emphysema progression, and (4) associa-
tion analysis of SNPs with emphysema progression. COPD 
related genes are searched by 125 papers and 10 kinds of 
related genes of Japanese are selected; rs7733088 in HTR4 
[40], rs7671167 in FAM13A [41], rs13118928 in HHIP [42], 
rs13180 in IREB2 [43], rs3923564 in SFTPD [44], rs7937 in 
EGLN2 [45], rs2736100  in TERT [46], rs401681  in 
CLPTM1L [47], rs1333040  in CDKN2B-AS1 [48], and 
rs10849605 in RAD52 [49]. We discover SNPs related to the 
progress of the low absorption volume [39]. The excavation 
results are shown in Table 7.2 [39].
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Fig. 7.8 Secular change in the low attenuation area and the pack year 
analysis results using long-term low-dose CT images of heavy smokers 
for emphysematous lesions [38]

Table 7.2 Excavation results of 
COPD related single nucleotide 
polymorphisms [39]
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In COPD diagnosis using 3D CT images, airway lesions 
are diagnosed by evaluating the bronchus with an inner 
diameter of 2 to 4 mm [50]. Bronchus with an inner diameter 
of 1 to 2 mm can be evaluated by using ultra-high-resolution 
3D CT images [51]. We are developing a highly accurate 
bronchial measurement method using elliptic cylinder model 
fitting from high- resolution 3D CT images. Table 7.3 shows 
the evaluation results of ultra-high-resolution 3D CT images 
of the bronchial phantom. Figure 7.9 shows the evaluation 
results of 3D CT images of the bronchi.

7.6  Conclusion

We have researched and developed a detection and diagnosis 
system for lung cancer and chest diseases. With the basic 
idea of “diagnosing normal morphology and pathology on a 
micro to macro scale,” we have consistently analyzed organs 
and pathologies using high-quality large-scale image data-
bases. We have obtained remarkable research results by 
increasing the objectivity to “ambiguity” and achieving 
high-performance through advanced analysis. The above 
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Fig. 7.9 The result of applying low-dose CT to the right b1 bronchus in a COPD case (a) CT image including b1 bronchi, (b) Enlarged b1 bronchi, 
(c) Measurement result

Table 7.3 Measurement result of wall thickness and inner diameter
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methods are integrated and systematized. Figure 7.10 shows 
an overview of the system. The lung cancer and chest dis-
eases diagnosis workflow can be visualized by recording the 
disease read procedure, read location, and read time. These 
methods have also been successfully applied to colorectal 
cancer and kidney cancer.
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Abstract

This article describes the summary of our research 
achievement on the function integrated diagnostic assis-
tance based on multidisciplinary computational anatomy 
(MCA) models. The main purpose of our research was to 
develop computer-aided diagnosis (CAD) systems based 
on such anatomical models for organ and tissue functions. 
During FY2014 to FY2018, we made research achieve-
ments on each of sub projects such as the fundamental 
techniques for constructing anatomical models, the analy-
ses of functional images, and the work of other related 
CAD applications; the promising results indicated the 
success of our project, which may relate to improved clin-
ical practice in the future.

Keywords

Multidisciplinary computational anatomy · Functional 
imaging · Computer-aided detection/diagnosis · Deep 
learning · PET/CT image

8.1  Introduction

In the previous project named as “computational anatomy”, 
we had developed computational anatomy models of various 
organs in CT images [1]. On the other hand, in our recent 
project, named as “multidisciplinary computational anatomy 
(MCA)”, we not only continued to improve model construc-
tion and application but also focused on establishment of 
computational models for functional imaging. These models 
can be effectively combined to process multidisciplinary 
information. Our roles in this MCA-based project were to 
investigate image analysis methods based on the fusion of 
anatomic and functional information and to establish meth-
odologies of computer-aided detection/diagnosis (CAD) sys-
tems for organ and tissue functions.

The following sections describe the overall achievements 
of our project for each of the key topics. Section 8.2 explains 
the construction of anatomical models, which is the basis for 
the development of functional models. Section 8.3 describes 
the achievements on (1) the analyses of functional images in 
FDG-PET CT and PET/CT imaging, (2) these of muscle 
functions in CT imaging, and (3) on estimating the knee 
extension strength in ultrasound imaging. Section 8.4 pro-
vides several works of other related CAD applications, fol-
lowed by Section 8.5 for a summary of the overall study.

8.2  Basic Techniques for Building 
Anatomical Models

8.2.1  Purpose

Localization, segmentation, and registration are major chal-
lenges in medical image analysis, and required as the funda-
mental pre-processing steps in our project, which aims to 
merge the multi-modality medical images and fuse the 
information of human anatomy and functional information 
as well as temporal change. Therefore, the purpose of this 
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study was to accomplish these fundamental pre-processing 
steps based on abstract representations learned from the 3D 
CT and PET images to improve the robustness and 
efficiency.

8.2.2  Method

The proposed schemes used 2D and 3D deep convolutional 
neural networks (CNNs) to learn the hierarchical image 
feature space to accomplish (1) segmentation of the ana-
tomical structures (including multiple organs) on a CT 
image (generally in 3D) by using a pixel-wised annotation, 
(2)  localization of the bounding boxes that tightly surround 
the interesting regions in CT and PET images, and (3) reg-
istration that arranges the CT and PET images scanned 
separately into the same spatial space. All of these methods 
were based on deep learning (both supervised and un-
supervised approaches), and the network structures of the 
CNNs used for these different tasks were similar and par-
tially shared. The details of these methods can be referred 
in [2–6].

8.2.3  Results

A shared dataset consisting of 240 3D CT scans and a 
humanly annotated ground truth were used for training and 
testing the anatomical structures (17 types of major organ) 
segmentation and localization methods by using a four-fold 
cross validation. The coincidence (Jaccard index: JI) 
between the segmentation or localization result and human 
annotation was used as the evaluation criteria. In our exper-
iments of organ localization and segmentation, we con-
firmed that 77.5% of bounding boxes were localized 
accurately and mean JI was 78.8% (Fig. 8.1). These perfor-
mances were comparable or better in accuracy and had an 
advantage in computational efficiency and robustness com-
paring to the conventional methods without deep learning 
approach.

Another dataset consisting of 170 whole-body PET/CT 
scans was used for training and testing the image registra-
tion method by using un-supervised deep learning tech-
nique. The effectiveness of the registration process was 
evaluated by the normalized cross-correlation (NCC) and 
mutual information (MI) between CT and PET images 
using a ten-fold cross validation. The experimental results 
demonstrated that the mean values of NCC and MI 
improved from 0.40 to 0.58 and from 1.98 to 2.34, respec-
tively, via the image registration process. The usefulness of 
our scheme for PET/CT image registration was confirmed 
by the promising results (Fig. 8.2).

8.2.4  Conclusion

We proposed novel approaches to realize semantic segmen-
tation, organ localization, and image registration based on 
the abstract representations learned from the 3D CT and PET 
images. Comparing to our previous works that were based on 
the image signal directly, the robustness and efficiency of 
these fundamental pre-processing were improved signifi-
cantly. We confirmed that learning an image representation 
by high-level hierarchical features was the most critical step 
for model construction required by MCA.

8.3  Analysis of Functional Imaging

8.3.1  Automated Evaluation of Tumour 
Activities on FDG-PET CT Images

8.3.1.1  Purpose
Standardized uptake value (SUV) is a semi-quantitative indi-
cator of FDG-PET.  The maximum value of SUV is often 
employed for tumour evaluations, but it is difficult to evalu-
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Fig. 8.1 An example of organ segmentation in a 3D CT case [2, 3]. 
Left: segmentation result of multiple organs by using a 3D deep CNN 
[3], Middle: a ground truth of the target organs. Right: segmented result 
by our previous method using a 2D deep CNN with 3D voting [2]
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ate the size and spread of the tumour because the maximum 
value is obtained for only one voxel within the tumour 
region. Metabolic volume (MV) and total lesion glycolysis 
(TLG) have been used to evaluate the response to tumour 
treatments in recent years; MV is an indicator of the volume 
that reflects the size and spread of tissues with high metabo-
lism and TLG is an indicator that expresses the degree and 
volume of glucose metabolism. In order to determine the 

MV and TLG, segmented regions of objective tumours are 
required that indicate high glucose metabolism. Currently, 
an automated detection method for pulmonary nodules in 
PET/CT images using CNN is being used. Z-score is a statis-
tical index used to present deviation from a mean value and 
to show a quantitative abnormality in various measured fea-
tures in medical fields by comparing with feature values in 
normal groups. Z-score images have been widely used in 
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Fig. 8.2 An example of PET/CT image registration result by using 3D deep CNNs [5, 6]
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statistical image analysis methods to indicate the region 
abnormality pixel-by-pixel after a normal database was 
constructed.

We developed a new approach for application in the torso 
regions for tumour analysis using FDG-PET/CT images. In 
the statistical image analysis in the torso region, the organ 
segmentation technique is important, because the function of 
the organs is normalized based on the segmented regions. We 
adopted a novel approach using a deep learning technique 
for 3D CT images. The purpose of this study was to examine 
the differences in Z-scores obtained by the two organ seg-
mentation results of the bounding box and the segmentation 
approaches for the normalization step by using typical 
tumours in lung regions, because tumours with various accu-
mulations and sizes were evaluated in the FDG-PET/CT 
images. Furthermore, we developed a system to measure 
MV, TLG, and effective dose based on the automated seg-
mented results.

8.3.1.2  Methods
The overall scheme of our procedure consisted of the follow-
ing five steps: (1) segmentation of the left and right lungs 
(CT), (2) anatomical standardization (CT and FDG), (3) cre-
ation of normal model (FDG), (4) creation of Z-score images, 
and (5) automated segmentation of tumours.

The segmentation of lung regions was performed based 
on our deep learning approach. Two-hundred CT cases were 
used for the initial training of the networks which include 
manual segmentation results of 10 organs: lung (left and 
right), heart, liver, stomach, spleen, kidney (left and right), 
pancreas, and bladder. All regions were used for the training, 
but the results of left and right lungs were employed in this 
study.

After the determination of the organ regions, landmarks 
(LMs) were set to perform the anatomical standardization. 
Two methods for setting LMs, the bounding box method and 
the surface method, were used to compare the anatomical 
standardization results. The bounding box method is based 
on our localization approach for multiple organs. In this 
method, we set LMs on the apexes and the side of the small-
est rectangular parallelepiped surrounding the segmented 
organs. The surface method is based on the segmentation 
results of organs. In this method, we set LMs on the surface 
of the organ. To translate the locations of LMs on CT onto 
PET images, the image resolutions were unified on PET 
images. CT and PET images were registered based on the 
location records from the PET/CT device during the image 
acquisition [7, 8].

The normal model was created by using nine normal 
cases excluding training cases for the deep learning of organ 
segmentations. All LMs were aligned and deformed into one 
lung shape based on the thin-plate spline (TPS) method as a 

non-rigid image deformation technique. LMs on patient 
images were also aligned into one lung shape based on the 
TPS method.

All normal cases were anatomically standardized by the 
TPS method. The results of anatomical standardization indi-
cated that all pixels of PET images were aligned at the stan-
dard locations that present the functions in the organ. The 
mean (M) and standard deviation (SD) can express the confi-
dence interval of the normal function based on the accumula-
tion, that is, SUV in this study. The M and SD from the 
normal cases indicated the ranges of normal activities of glu-
cose metabolism in FDG-PET images.

We evaluated 9 normal and 21 abnormal cases. Initially, 
the regions of tumours were segmented by one of the authors 
using a graph-cut method. The initial regions were verified 
by a radiologist, independently: 25 obvious and 10 suspected 
tumours on PET images were marked as the correct regions, 
which were employed as the gold standard (GS). Two fea-
tures of CG distance (CGD) and area cover with GS (ACGS) 
were obtained from the GS and automatically detected 
regions. The regions were detected correctly when the CGD 
and ACGS were three voxels or less and 0.2 and more, 
respectively.

8.3.1.3  Results
The true positive (TP) fraction (%), the number of false posi-
tives (FPs), and average volume of FP (voxels) were 77, 
1.10, and 77.61 for surface method, 69, 1.05, and 94.0 for 
bounding box method, and 69, 1.00, and 184.52 for single 
SUV method without Z-score, respectively, in the case of 
employing the combinations of obvious and suspicious 35 
regions. We found that TP fraction was 7% decreased when 
applied from obvious to combined regions. Fig. 8.3 shows 
two examples from obvious 25 cases with GS regions in red 
regions. The MV, TLG, and effective doses were also 
obtained in each detected region based on the determined 
area.

8.3.1.4  Conclusion
LMs on the organ surface will be useful for statistical analy-
sis of torso images. Various values from the analysis will be 
helpful indices for quantitative analysis of FDG-PET images. 
Performance studies including human observers are required 
to prove the usefulness of the automated methods.

8.3.2  Automated Detection of Lung Nodule 
in PET/CT Images

8.3.2.1  Purpose
Automated detection of lung nodules using PET/CT images 
that we previously developed shows good sensitivity; 
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 however, there was a challenge to reduce the FPs. In this 
study, we proposed an improved FP reduction method for 
the detection of lung nodules in PET/CT images using 
CNN [9].

8.3.2.2  Methods
The outline of our overall scheme for the detection of lung 
nodules is shown in Fig. 8.4. First, initial nodule candidates 
were identified separately on the PET and CT images using 
the algorithm specific to each image type. Subsequently, can-
didate regions obtained from them were combined. FPs con-
tained in the initial candidates were eliminated by an 
ensemble method using convolutional neural network and 
hand-crafted features.

8.3.2.3  Results and Conclusion
We evaluated the detection performance using 104 PET/CT 
images collected by a cancer-screening programme. As a 
result of evaluation, the sensitivity of detection was 90.1%, 
with 4.9 FPs/case. Our ensemble FP reduction method elimi-
nated 93% of the FPs; our proposed method using CNN tech-
nique eliminates approximately half the FPs existing in the 
previous study. These results indicate that our method may be 
useful in the computer-aided detection of pulmonary nodules 
using PET/CT images. As a continuation of this research, we 
also conducted a study on the malignancy analysis of pulmo-
nary nodules using hand-crafted features and a machine 
learning algorithm, and showed that cases requiring biopsy 
can be accurately classified only by PET/CT images [10].

a b c d

Fig. 8.3 Two examples of obvious cases in which automatic segmentation was performed by the surface method and the gold standard verified by 
a radiologist [7]. (a) Case 1 GS, (b) Case 1 automatic detection, (c) Case 2 GS, and (d) Case 2 automatic detection.
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Fig. 8.4 Proposed overall scheme for detecting lung nodules in PET/CT images [9]
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8.3.3  Recognizing Skeletal Muscle Regions 
for Muscle Function Analysis

8.3.3.1  Purpose
We have been working on the model-based skeletal muscle 
recognition from the previous project. In this project, we 
aimed to advance muscle recognition techniques using the 
models for function analysis in whole-body CT images. We 
started an international collaborative work with Bern 
University, Switzerland, and we worked on recognition of 
spinal erector muscle using a deep learning technique.

8.3.3.2  Method
Skeletal muscle recognition was achieved using whole-body 
CT images and torso CT images. Figure 8.5 shows the prog-
ress of research on muscle recognition for functional analy-
sis from FY 2014 to FY 2018. Each colour represents a 
research area of the MCA project. The blue areas (Fig. 8.5a, 
b-1 and c-1) are on the spatial axis, and the green areas 
(Fig.  8.5b-2 and d) are on the functional axis. The orange 
area (Fig. 8.5c-2) is on the pathology axis.

We generated muscle shape models for sternocleidomas-
toid [11], supraspinatus, psoas major, and iliac muscles [12] 
(Fig. 8.5a).

Realizing complex muscle recognition requires automatic 
recognition of bone anatomical features that are deeply 
related to the muscle. Therefore, skeletal muscle attachment 
sites corresponding to the anatomical names were recog-
nized from the scapula based on accurate bone recognition 

and position/distribution characteristics (Fig.  8.5b-1). In 
addition, muscle bundle modelling was performed to prop-
erly position of the model and to create a precise model for 
functional analysis [13] (Fig. 8.5b-2).

For muscle function and muscle disease analysis of 
whole-body CT images, the whole-body muscle recognition 
using shape model (Fig. 8.5c-1) and a 3D texture analysis of 
the muscles were proposed (Fig. 8.5c-2). We modelled the 
body cavity region from the whole-body CT image, acquired 
the surface muscle regions, and recognized the deep muscles 
by applying the site-specific models. Based on the automatic 
recognition results, we segmented the skeletal muscles and 
achieved not only the muscle volume but also muscle image 
characteristics in whole-body CT images [14]. Here, we per-
formed a 3D texture analysis using Haralick’s features and 
found features that indicate a possible imaging classification 
of neurogenic and myopathic diseases, including amyo-
trophic lateral sclerosis (ALS).

As a challenging study, we achieved automatic recogni-
tion of the spinal erector muscle [15], which has a large and 
complex structure. By the conventional model-based method, 
the recognition rate in the 3D volume had a problem, 
although recognition rate was high in the 12th thoracic spine 
cross section. Therefore, in this study, recognition was per-
formed using the deep learning method. In addition, in order 
to improve recognition results of the skeletal muscles by 
deep learning for functional analysis, modelling of attach-
ment sites on bones [16] and muscle bundles by site [17] was 
realized (Fig. 8.5b-2 and d).

Shape model

a

(c-1)

(b-1) (b-2)

d

(c-2)Whole-body
CT Images

Deep Learning with
bundle model

Muscle bundle modelingPrecise feature analysis

Torso CT
Images

Recognition Analysis for ALS

Fig. 8.5 Schematic diagram of the muscle recognition for functional 
analysis. (a) Model-based recognition of muscle, (b) precise analysis of 
scapula for muscle recognition, (c) segmental recognition for the 

whole-body muscle analysis, and (d) spinal erector muscle recognition 
using deep learning with muscle bundle model
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8.3.3.3  Results
The effectiveness of the proposed method was evaluated 
using non-contrast torso CT and whole-body CT images. In 
the automatic recognition of the muscle with the shape 
model, concordance rates of 60.3% and 65.4% were obtained 
in sternocleidomastoid region using 20 cases of torso CT 
images and 10 whole-body CT images, respectively.

In the automatic recognition of the precise bone features, 
we used the trunk CT images of 26 cases, and the average 
concordance rate of 80.7% was obtained for the infraspinous 
fossa. As the result, feature recognition on the shoulder 
blades became possible in seven areas together with feature 
recognition based on six anatomical names, which we have 
already recognized.

In the automatic recognition and analysis of the whole-
body CT images was successful in 36 of 39 cases using the 
shape models at inner muscle region including psoas major 
and iliac muscle. We succeeded in analysis of ALS cases in 
four limbs using the recognition result.

For the erector spinal muscle, mean recognition accura-
cies of erector spinal muscle and attached area were 89.9% 
and 65.5%, respectively, in terms of Dice coefficient using 
11 cases. The muscle bundle running of the spinal column 
erector muscle was drawn, and the region of the muscle 
group constituting the spinal column erector muscle was 
acquired. As a result, an average Dice coefficient of 65.2% 
was obtained. This makes it possible to obtain muscle run-
ning information as structural information and to realize 
analysis of the structure in the muscle region recognized by 
deep learning.

8.3.3.4  Conclusion
The proposed method was realized recognition and analy-
sis of skeletal muscles in torso and whole-body CT images. 
We developed the method to implement skeletal muscle 
modelling from micro to macros by modelling the distribu-
tion shape of muscle fibres and muscle fibre bundles. At 
the same time, by comparing and integrating the deep 
learning method with a model-based approach, we 
achieved skeletal muscle recognition for skeletal muscle 
function analysis.

8.3.4  Knee Extension Strength Using 
Ultrasound Images

8.3.4.1  Purpose
The word “Locomotive syndrome” has been proposed to 
describe the state of requiring care by musculoskeletal disor-
ders and its high-risk condition. The goal of this study is to 
evaluate the relationships among ageing, muscle strength, 
and sonographic findings. This study aimed to develop a sys-
tem for measuring the knee extension strength using the 

ultrasound images of rectus femoris muscles and quadriceps 
femoris muscles obtained with non-invasive ultrasound diag-
nostic equipment [18, 19].

8.3.4.2  Methods
First, we extracted the muscle area from the ultrasound 
images of the rectus femoris muscles. Edges from an original 
image were detected using Canny edge detector and the 
edges close to the boundary of the muscle area were manu-
ally selected. The boundary lines of the upper and lower ends 
of the muscle area were determined by approximating the 
selected edges with curves. The area between these boundar-
ies was defined as the muscle area. Image features such as 
angular second moment and entropy were obtained from 
grey level co-occurrence matrix (GLCM), and the average 
value, standard deviation, skewness, and kurtosis were cal-
culated from the echogenicity histograms. In addition, the 
vertical length at the centre of the muscle area was consid-
ered as the thickness of the muscle. We combined these fea-
tures and physical features, such as the patient’s height, and 
build a regression model of the knee extension strength from 
the training data. Finally, we substituted the features calcu-
lated from the test data into the regression model, and esti-
mated their knee extension strength [19].

To assess muscle quality, texture analysis using GLCM 
was performed, in which the mean, skewness, kurtosis, 
inverse difference moment, sum of entropy, and angular sec-
ond moment were included. The knee extension force in the 
sitting position and thickness of the quadriceps femoris mus-
cle were also measured [18].

8.3.4.3  Results
We employed 168 B-mode ultrasound images of rectus fem-
oris muscles scanned on both legs of 84 subjects (19–86 years 
old) for evaluation. As a result, the correlation coefficient 
value between the measured and estimated values and the 
root mean squared error were 0.82 and 7.69 kg, respectively 
[19]. To assess muscle quality, one hundred forty-five healthy 
volunteers were classified into six groups on the basis of sex 
and age. The quadriceps femoris thickness, skewness, kurto-
sis, inverse difference moment, angular second moment, and 
muscle strength were significantly smaller in elderly partici-
pants versus those in the younger and middle-aged groups 
(p < 0.05). In contrast, the mean and sum of entropy were 
significantly smaller in the younger group than in the middle- 
aged and elderly groups [18].

8.3.4.4  Conclusion
We developed a system for estimating the knee extension 
strength using ultrasound images. The system has a potential 
in quantitatively assessing the muscular morphologic 
changes due to ageing and could be a valuable tool for early 
detection of musculoskeletal disorders.
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8.4  Other CAD Applications

8.4.1  Automated Malignancy Analysis in CT 
Images Using GAN

8.4.1.1  Purpose
In the detailed diagnosis of lung nodule using CT images, 
it is often hard task for radiologist to classify between 
benign and malignant nodules. In this study, we investi-
gated the automated classification of pulmonary nodules in 
CT images using a CNN [20]. We used a generative adver-
sarial network (GAN) to generate additional images when 
only small amounts of data are available, which is a com-
mon problem in medical research, and evaluated whether 
the classification accuracy is improved by generating a 
large amount of new pulmonary nodule images using the 
GAN.

8.4.1.2  Methods
The volume of interest centred on the pulmonary nodule was 
extracted from CT images, and two-dimensional images 
were created with the axial section. The CNN was trained 
using nodule images generated by the Wasserstein GAN, and 
then fine-tuned using the actual nodule images to allow the 
CNN to distinguish between benign and malignant nodules. 
CNN model was based on AlexNet; it consisted of five con-
volution layers, three pooling layers, and three fully con-
nected layers.

8.4.1.3  Results
CT images of 60 cases with pathological diagnosis con-
firmed by biopsy were analysed. They consisted of 27 
benign and 33 malignant nodules. As a result of evaluation, 
a correct identification rate of 67% for benign nodules and 
94% for malignant nodules was obtained. Thus, almost all 
cases of malignancy and two-thirds of the benign cases 
were classified correctly. This performance was higher than 
that of existing method without using GAN generated 
images.

8.4.1.4  Conclusion
Evaluation results indicated that the proposed method 
may reduce the number of biopsies in patients with benign 
 nodules, which are difficult to differentiate on CT images, 
by more than 60%. Furthermore, the use of GAN technol-
ogy clearly improved the accuracy of the classification. In 
addition, we also developed a method to generate three 
orthogonal cross sections with GAN and analyse malig-
nancy [21]. Furthermore, we tried to synthesize the vol-
ume data using 3D GAN and analyse with 3D CNN [22]. 
These results show that GAN helps improve classification 
accuracy, even in medical datasets with relatively few 
images.

8.4.2  Automated Classification of Cytological 
Images Using CNN

8.4.2.1  Purpose
In the detailed diagnosis of lung lesion, pathological exami-
nation is performed based on the morphological shape of tis-
sue or cell. However, pathologists have to examine the huge 
number of images per patient; it is difficult to maintain the 
diagnostic accuracy avoiding reading errors. In order to 
assist the image diagnosis of thoracic regions, we have devel-
oped the automated classification using cytological images 
using CNN [23–25].

8.4.2.2  Methods
The microscopic images of specimens stained by using the 
Papanicolaou method were first collected. Then, they were 
given to the input layer of CNN. As for the CNN architecture 
for the classification of lung cancer types [23], we introduced 
original CNN for consisted of three convolutional layers, 
three pooling layers, and two fully convolutional layers. The 
probabilities of three types of cancers (adenocarcinoma, 
small cell cancer, and squamous cell cancer) were estimated 
from the output layer. Training on the CNN was conducted 
by using our original database. As for the automated classifi-
cation between benign and malignant cells, we introduced 
pretrained model of VGG-16 network [24].

8.4.2.3  Results
For classification of the three cancer types, the classification 
accuracy of adenocarcinoma, squamous cell carcinoma, and 
small cell carcinoma was 89.0%, 60.0%, and 70.3%, respec-
tively; the overall accuracy was 71.1%. Regarding the clas-
sification of benign and malignant cells, overall accuracy 
was 79.2%.

8.4.2.4  Conclusion
The classification accuracies were comparable to those of a 
cytotechnologist or pathologist. It is noteworthy that CNN is 
able to understand cell morphology and placement of cancer 
cells solely from images without prior knowledge and expe-
rience of biology and pathology. These results indicate that 
CNN is useful for classification of cytological images. In a 
recent study, we introduced the GAN technique used in the 
previous section to generate high-resolution cytological 
images and showed that the classification accuracy was 
improved [25].

8.4.3  Miscellaneous

8.4.3.1  CAD with Radiogenomics
When genetic testing is performed in daily clinical practice 
in near future, such information can be used for early detec-
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tion of Alzheimer’s disease (AD) and subtype classification 
of cancer. For the detection of AD, a normal ageing model of 
MR brain images was developed, and z-score maps were 
generated to identify the difference from the normal model 
[26]. The statistical parametric mapping was used for three- 
dimensional anatomical standardization. The relationship 
between the genotypes and cerebral atrophy revealed that 
anatomical locations of the cerebral atrophy differ, and the 
transition in the disease state from mild cognitive impair-
ment to AD differs depending on the genotypes [27]. The 
result indicated genomic information can be used to identify 
patients susceptible to AD who should be subjected to peri-
odic screening.

For differential diagnosis of breast cancer, radiomic fea-
tures were determined to classify patients with triple nega-
tive breast cancer (TNBC). The area under the ROC curve of 
0.70 indicated a possibility of the radiomic features in clas-
sification of TNBC, which can promote precision medicine 
of breast cancer [28].

8.4.3.2  Detection of Cardiovascular Disease 
Using Funduscopy

Fundus photograph is useful for observing condition of cir-
culatory system. Measurement of retinal arteriolar-to- 
venular (AVR) diameter ratio can suggest a risk of 
hypertensive retinopathy. Microaneurysm (MA) is one of 
the early findings of diabetic retinopathy. However, detec-
tion of subtle change in vessel diameter and tiny aneurysms 
is not easy. We developed an automated AVR measurement 
method [29] and a fusion model of conventional [30, 31] 
and CNN-based [32] MA detection methods in this study. 
The results indicate the potential utility of the proposed 
method for early detection of hypertensive retinopathy and 
diabetic retinopathy.

8.4.3.3  Detection and Classification of Teeth 
for Automatic Dental Record Filing

Dental record plays an important role in dental diagnosis and 
personal identification. Automatic dental record (chart) fill-
ing can help dentists in improving diagnostic efficiency. It 
can also be used to establish systemic records for forensic 
identification. We have developed an automatic method to 
identify individual tooth and classify their tooth types in 
 dental panoramic radiographs and dental CTs for dental 
chart filing [33, 34]. A CNN model using surrounding infor-
mation and a relation network which takes the anatomic rela-
tionship of teeth into account provided improved detection 
and classification accuracies. The results indicate the poten-
tial usefulness of the proposed method for automatic dental 
chart filing.

8.5  Summary

In this article, we have introduced: (1) anatomical standard-
ization of CT images using automatic organ extraction and 
construction of a glucose metabolism model of PET/CT 
images, (2) establishment of a tumour detection, differentia-
tion, and analysis technology using morphological and func-
tional information in the pulmonary region, (3) automatic 
skeletal muscle recognition technology and construction of a 
composite model of skeletal muscle in whole-body CT 
images, and (4) development of an imaging diagnosis sup-
port system in related fields. These technologies we have 
developed for various functional diagnosis support systems 
that incorporate artificial intelligence (AI) such as deep 
learning into multidisciplinary computational anatomy 
(MCA) models are expected to be useful in the future devel-
opment of clinical systems and we hope it will contribute to 
saving many patients.
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Clinical Applications of MCA to Surgery

Kenoki Ohuchida, Chika Iwamoto, 
and Makoto Hashizume

Abstract

Now, we developed multidisciplinary computational anat-
omy (MCA) model, in which we constructed the database 
based on the spatial axis, the time axis, the functional 
axis, and the pathological axis that are important compo-
nents in actual clinical practice. We have developed a 
highly intelligent diagnosis and treatment system using a 
mathematical model that can cope with the individuality 
of various diseases and each patient. Here, we outlined 
the application of the MCA model in cancer treatment 
and surgical treatment.

Keywords

Laparoscopic surgery · Robot-assisted surgery · 
Navigation surgery · Simulation surgery

9.1  Introduction

Currently, major revolutions happen in clinical setting. In 
particular, treatment options for cancer are dramatically 
increasing. In medical treatment, a wide variety of anti- 
cancer agents have been developed. Their therapeutic effects 
have been reliably demonstrated in the medical field, leading 
to the progress of cancer medicine based on evidence-based 
medicine. In the surgical fields, the treatment with minimally 
invasiveness has surely become widespread due to endo-
scopic surgery. However, not only in cancer but also in all 
diseases, there are individual differences in the clinical con-

dition, so that an average therapeutic effect derived from 
simple statistical analysis cannot be expected in all patients.

In surgical treatment, the size, position, and mobility of 
the tumor, body shape, organ size, fat mass, and degree of 
adhesion of the patient vary widely among patients. 
Therefore, today, it is hard to say that all minimally invasive 
treatments are carried out without compromising the security 
and oncologic safety for all patients. As a result, sub-optimal 
treatment may be selected or given to some patients. Today, 
to avoid this, we need skilled doctors with the sufficient 
experience. However, only some of the skilled doctors have 
the ability and only a limited number of patients can enjoy 
their ability because human resources and ability are 
limited.

To break down such medical situation, it is indispensable 
to accelerate research with medical-engineering collabora-
tion for development of surgical simulation, surgical naviga-
tion, and surgical robots based on objective medical images. 
da Vinci Surgical System (Intuitive Surgical) was created 
from medical-industrial collaboration research, and more 
than 5000 units have been used in all over the world to date. 
In Japan, regulatory approval was received in 2009, and it 
has already been installed at many facilities. Robot-assisted 
surgery, which can maintain a high level of minimally inva-
sive, curative, and safe treatment, has become an insured 
medical treatment and has become indispensable.

We also previously developed small master–slave surgery 
assisted robot, lesion diagnosis system with virtual endos-
copy, navigation system for endoscopic surgery, Active run-
ning robotic endoscopy and contributed to the development 
of computer surgery through medical-engineering collabora-
tion. However, in the current situation, these technologies 
have not been put to practical use and brought about a change 
in surgical medical treatment.

Now, we developed multidisciplinary computational 
anatomy (MCA) model, in which we constructed the data-
base based on the spatial axis, the time axis, the functional 
axis, and the pathological axis that are important compo-
nents in actual clinical practice. We have developed a highly 
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intelligent diagnosis and treatment system using a mathe-
matical model that can cope with the individuality of various 
diseases and each patient. Here, we outlined the application 
of the MCA model in cancer treatment and surgical 
treatment.

9.2  Application of MCA Model 
in the Research of Pancreatic Cancer

Pancreatic cancer is a solid cancer and consists of a microen-
vironment characterized by abundant stromal components. 
To develop a truly effective treatment for pancreatic cancer, 
it is necessary to more accurately reproduce and understand 
the physical condition of pancreatic cancer including micro-
environment. In MCA, various types of images and models 
enable us to analyze such tumor microenvironment from 
morphological, spatial, temporal, and functional aspects, 
although such solid analysis was difficult to perform with 
conventional molecular biology analysis alone. Now, we 
clarified the pathophysiology of pancreatic cancer microen-
vironment. Pancreatic cancer arises from a precancerous 
lesion called PanIN in the early stage of carcinogenesis. 
PanIN is classified into PanIN-1, PanIN-2, and PanIN-3 
according to the degree of atypia. Among them, the lesion 
called PanIN-3 initially remained in the lumen as a non- 
invasive cancer, but when its malignancy further increased, it 
ruptured the basement membrane, invaded the surrounding 
stroma, and became invasive cancer. Then, it progresses 
inside the pancreas and invades adipose tissue and other 
organs outside the pancreas. Pathological observation of the 
local invasion process revealed that pancreatic cancer inva-
sion was always accompanied by a strong stromal reaction. 
In addition, it is well known that the center of pancreatic 
tumor is accompanied by a high degree of fibrosis called 
 desmoplasia, but similarly, in most cases, a stromal reaction 
is associated with the tip of the infiltrate at the margin of the 
pancreatic tumor. Conventionally, it was quite difficult to 
analyze a series of carcinogenic processes over time, but in 
2003, a mouse with genetic modification in which activated 
Kras was expressed specifically in a pancreas was reported 
[1] and the situation was changed. This mouse exhibits a 
pancreatic carcinogenesis pattern which is histologically 
very similar to that of human pancreatic cancer. Furthermore, 
a pancreatic carcinogenesis model (KPC mouse) with Kras 
activation and p53 inactivating mutations was also reported, 
and this model produces invasive cancer with marked inter-
stitial hyperplasia and fibrosis similar to human pancreatic 
cancer tissue [2]. And in this model, the carcinogenic process 
also occurred PanIN lesions like human pancreatic cancer.

In the MCA projects, we crossed this KPC mouse with a 
luciferase mouse and created a KPCL mouse. In this mouse, 
the pancreatic tumors emit light with administration of 

luciferin, and it became possible to evaluate the size of the 
tumor and the presence or absence of metastatic foci in a 
live image (Fig. 9.1). Also, using this model, we can analyze 
the time- dependent spatial distribution of luciferase-posi-
tive precancerous cells in pathological images. When we 
slice all specimens fixed as a paraffin block, the distribution 
of PanIN, which is a precancerous lesion, can be visualized 
as a 3D image, and we can perform spatial analysis and 
observe the changes in their distribution. Furthermore, since 
it is possible to perform functional evaluation when we stain 
a marker for the proliferative ability such as Ki67, leading to 
the integration of spatial, temporal, pathological, and func-
tional evaluations. Such integrated analyses of PanIN can 
make us deepen the comprehensive understanding of the 
lesions.

On the other hand, it is extremely difficult to analyze the 
carcinogenic process of human pancreatic cancer. However, 
there is a subtype of pancreatic cancer called intraductal pap-
illary mucinous neoplasm (IPMN). Since this IPMN is a 
lesion with cysts, it is easy to detect it early by ultrasound or 
CT, and it is often found in the state of precancerous lesions. 
However, even if it can be detected early, it is difficult to 
evaluate the malignant potential, so that we often perform a 
surgical operation with extremely high invasiveness even 
though it is a precancerous lesion. Therefore, it is important 
to analyze the tissues of various carcinogenic processes, 
such as precancerous lesions, non-invasive cancer lesions, 
and microinvasive cancer lesions. To date, we examined 
these resected IPMN tissues using micro CT, which is one of 
major technologies of MCA.  Figure  9.2 showed a case of 
total pancreatectomy because IPMN with cystic lesions is 
distributed throughout the pancreas. In this case, the usual 
evaluation method with observation of 5 mm sliced section 
planes is not sufficient to evaluate the important lesions such 
as micro-infiltrates. To improve this situation, we use the 
micro CT to image the whole excised sample, reconstruct 
this cystic lesion as a 3D image, and identify the minute nod-
ular lesions. In the future, micro CT will surely extract the 
lesions that are particularly important in the carcinogenic 
process, and construct a 3D image at the micro level without 
slicing all block samples, staining it, and capturing the path-
ological tissue image with a high-resolution scanner. The 
rapid clinical application of such system is expected.

Also, this IPMN is often followed up due to the high inva-
siveness of pancreatectomy, and its time-dependent change 
is evaluated based on CT and MRI images. When we inte-
grate these images bases on the method derived from MCA, 
it is possible to examine time-dependent morphological 
changes of macroscopic pancreatic tumors (Fig.  9.2). And 
now, we reconstruct a 3D image of resected tissues at the 
pathological level. Soon, based on these results, we will 
combine the preoperative tumor image with the postopera-
tive pathological image of the resected tumor.
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Pancreatic tumors consist of various cell populations such 
as vascular endothelial cells, inflammatory cells, and fibro-
blasts as well as cancer cells. There are also some clonal 
populations of cancer cells, the so-called heterogeneity 
exists, and it has been reported that a small number of cell 
populations called cancer stem cells, which are less than sev-

eral percent, are involved in tumor formation, maintenance, 
and metastasis. Furthermore, it has been suggested that the 
individuality of pancreatic tumors may be closely related to 
the individuality of surrounding stromal cells in addition to 
the individuality of cancer cells themselves. Conventional 
molecular biological analysis has revealed some of the indi-

Primary tumor

Heterogeneity

Peritoneal
dissemination

LN metastasis

LiverLiver

Time-dependent change in tumor using IVIS

3/22 3/29 4/05 4/12 4/19

Detection of micro metastasis

Fig. 9.1 Time-dependent change and heterogeneity in pancreatic tumor and metastatic lesions in KPCL mouse model

Fig. 9.2 Micro CT images of total pancreas with IPMN and 3D-fusion of microMRI and pathological images

9 Clinical Applications of MCA to Surgery



84

viduality of the cancer cells themselves and of the stromal 
cells in the surrounding microenvironment that have strong 
interactions with the cancer cells. However, the overall pic-
ture is not yet fully understood, and individualized treatment 
has not yet been put to practical use. Therefore, to under-
stand the invasion and metastasis process of pancreatic can-
cer, we used MCA models and analyzed them from a 
different perspective from the conventional molecular biol-
ogy method. In this project, we used MCA method with 
time-dependent images of micro CT and micro MRI, and 
reconstructed 3D images to analyze the time-dependent spa-
tial heterogeneity in the tumor. Furthermore, the tumor was 
fixed with formalin together with the surrounding tissue, par-
affin blocks were created, and all blocks were sliced to 
reconstruct a 3D image at the pathological resolution. Then, 
we can observe a non-uniform distribution at the cell level 
(Fig. 9.3). It was also possible to extract only the stroma such 
as collagen by special staining and reconstruct its 3D image. 
Using this MCA-based method, we can evaluate the heterog-
enous distribution of the stroma in the tumor 
microenvironments.

We also performed the analysis based on MCA method 
using human pancreatic cancer tissues. Using the analysis 
along the functional axis in the MCA model, we investigated 
the three-dimensional distribution of cancer cells with prolif-
eration ability, and also investigated its correlation with the 
distribution of the tubular structure of pancreatic cancer cells 
corresponding to the degree of cell differentiation (Fig. 9.3). 
Further, we reconstructed the three-dimensional pathological 
tissue image of normal pancreas, and evaluated the three- 
dimensional expansion of the luminal structure, which was 
previously thought to be a small branch located near the pan-
creatic duct. Then, we identified the pancreatic duct gland 
(Fig. 9.3), which was recently reported to be the specific site 
where precancerous cells exit.

We created an organoid from a resected tissue of pancre-
atic cancer using a 3D model, and made it possible to ana-
lyze cancer cells in a more biological environment. So far, 
we have used this 3D model of pancreatic cancer cells and 
Pancreatic stellate cells (PSCs) and observed pre-invasion of 
PSCs before the invasion of pancreatic cancer cells (Fig. 9.4). 
At that time, such invading PSCs contracted the collagen gel 
layer and changed the fiber direction, revealing that PSCs 
have the role as the leading cells in cancer invasion [3]. Also, 
the disruption of basement membrane is the first step in the 
progression of cancer. Our findings using 3D organoid model 
suggested that there is a leading PSC that directly acts on the 
basement membrane of cancer and leads to its destruction 
[4]. In a pancreatic cancer tissue, a differentiated tubular 
adenocarcinoma has a basement membrane on the side oppo-

Fig. 9.3 3D reconstruction of pathological images of Ki67-staining cancer cells and pancreatic duct gland

Fig. 9.4 The red PSC pre-invaded and lead the invasion of pancreatic 
cancer cells
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site to the lumen, like a normal pancreatic duct. These data 
suggest that the destruction and regeneration of the basement 
membrane may be involved not only when non-invasive can-
cer becomes invasive cancer, but also when invasive cancer 
cells itself invade while maintaining its tubular structure.

The process of invasion or metastasis of pancreatic cancer 
is deeply related to the surrounding microenvironment, and 
its mechanism is expected to vary depending on its localiza-
tion. In the future, it is necessary to clarify the cancer micro-
environment from the biochemical, biomechanical, and 
biophysical aspects as well as molecular biological aspect. 
MCA-based methods are expected to be one of the effective 
methods to support these researches.

9.3  Clinical Application of MCA Model 
in Surgical Treatment

We promoted clinical application of MCA methods in the 
clinical field of oncologic surgery. In particular, we focused 
on pancreas, because the development of both preoperative 
simulation and navigation was behind due to the difficulty in 
segmentation of the pancreas itself. The morphology of the 
pancreas and the main blood vessels and organs around it, 
and their relative position differ from patient to patient. 
Understanding individual anatomy is needed not only to per-
form the surgery for pancreatic disease but also to perform 
lymph node dissection around the pancreas, which is impor-
tant for gastric cancer surgery. Particularly in endoscopic 
surgery, not only the position and shape of the pancreatic 
tumor, but also the shape of the pancreas itself, the running 
structures of blood vessels around it, and their relative posi-
tion are deeply involved in the difficulty of the surgical oper-
ation. Now, we can understand the three-dimensional surgical 
anatomy based on the MCA model that we recently con-
structed, and operate intuitively based on the image informa-
tion necessary for endoscopic surgery. At the same time, it is 
possible to measure the distances and angles of the organs 
and tissues and accumulate them as objective data. 

Understanding such individual anatomy intuitively and accu-
mulation of objective data are useful in assessing the degree 
of difficulty and selecting an appropriate approach or the sur-
gical technique according to the individual anatomy of the 
patient in endoscopic surgery that deals with the periphery of 
the pancreas, contributing to establishing the standard proce-
dures based on the patient individuality.

Moreover, the pancreatic duct in the pancreas can be eas-
ily extracted using the MCA method. In particular, in the 
case where the pancreatic duct is occluded due to cancer 
with the dilated peripheral pancreatic duct or in the IPMN 
case where the pancreatic duct is dilated, the expanded pan-
creatic duct is extracted based on MCA method and we 
reconstructed a virtual pancreatic duct endoscopic images to 
observe the branch duct and the lesion in the pancreatic duct 
from the lumen of the pancreatic duct. The virtual pancreatic 
duct endoscopic images make us comprehend the spread of 
lesions in the pancreas like a real pancreatic duct endoscopic 
image (Fig. 9.5).

In addition, the decision of the resection line of pancreas 
is one of the important processes in pancreatic surgery. In the 
present pancreas simulation based on MCA model, the pan-
creatic cut surface at the planned pancreatic cut line can be 
shown together with the pancreatic duct stump by construct-
ing a 3D image of the pancreatic parenchyma and pancreatic 
duct (Fig. 9.5).

3D printers have already spread widely, and we can get a 
real 3D model based on the constructed 3D image (Fig. 9.6). 
The real full-scale 3D model can be created from the same 
information as the 3D image on the monitor, but we can intu-
itively observe the part which we want to see directly with-
out using the mouse, and imagine the situations encountered 
during surgery more realistically. It is also possible to com-
bine materials of two colors, and the real 3D model colored 
by painting makes it easier to understand the anatomy and is 
more useful from an educational perspective.

With the technology created from MCA methods, it is 
now possible to intuitively understand the relative position 
between the tumor and the main pancreatic duct from  various 

Fig. 9.5 The images of virtual pancreatic duct endoscopy and cross section of pancreatic duct
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angles based on the tumor extraction and the main pancreatic 
duct extraction and we can actually measure the shortest dis-
tance between them (Fig. 9.6). In recent years, laparoscopic 
surgery for benign tumors of the pancreas and low-grade 
tumors has been increasing, and in particular pancreas- 
preserving surgery removing only the tumor called enucle-
ation is increasing. The pancreatic endocrine tumor is one of 
the lesions to which such pancreatic preservation surgery is 
applied, and enucleation is often selected depending on the 
size and localization of the tumor. It is important to obtain 
accurate information such as the absolute distance between 
the tumor and the main pancreatic duct to determine this sur-
gical procedure. Therefore, the clinical application of the 
MCA method in this field is highly expected.

Using MCA models, we investigated the deformation 
simulation of the pancreatic parenchyma. Although there are 
individual differences, the pancreas is an organ that is natu-
rally soft and easily deformed. Deformation of the pancreas 
is an important factor in surgical operations related with the 
pancreas, especially in laparoscopic surgery. To simulate 
deformation of the pancreas, we used MCA models and cal-
culated various factors such as its hardness, shape, and fix-
ability with surrounding tissues. We also created a flexible 
model using a 3D printer and reconstructed the pancreas of 
various hardness by changing the hardness of the material. 
Now, we use this flexible model and simulate an actual pro-
cedure and feedback the results. Therefore, this flexible 
model is not only useful for preoperative planning, but also 
for further development of a deformation model, itself. 
Currently, as one of the results of MCA, it is possible not 
only to automatically extract organs and blood vessels, but 
also to automatically recognize the extracted organs and 
blood vessels and label their names. This system is also use-
ful for medical education. Although such labeling of organ 
names may not be useful to surgeons who are familiar with 
anatomy, this automatic recognition function allows the AI to 

automatically extract individual anatomical features for each 
patient, which can reduce the burden on the surgeon. 
Furthermore, when we link this function with information 
based on the experience of expert surgeons, it will lead to the 
development of a surgical supporting system that suggests an 
appropriate surgical method according to individual 
anatomy.

9.4  MCA-Based Surgical Processing 
Model (SPM)

Although the judgment for surgical procedures is important 
during surgery, it is difficult to carry out it based on the 
objective findings because it is usually performed based on 
the subjective evaluation of the surgeon [5, 6]. Therefore, the 
attempts have been made to clarify them by time-series anal-
ysis of events during surgery, which is called Surgical 
Processing Model (SPM). To establish SPM, AI can play an 
active role, especially in surgical technique training. The 
objective assessment of the most advanced surgical proce-
dure with medical-engineering collaboration is most com-
patible with engineering approaches and contributes to the 
development of SPM.  It is also useful to provide training 
tasks according to surgeons, such as optimization of training 
curriculum. AI-based Measure of the Hand Motions devel-
oped by Uemura et al. [7] is one of AI-based researches for 
evaluation of surgical procedures. They compared the behav-
iors of beginners and experts in operating forceps during sur-
gery, and defined parameters that can be evaluated as an 
expert. Using these parameters, we verified whether an 
expert and a beginner can be separated from different sub-
jects [8, 9]. Using the AI optimized by this verification, they 
could perform surgical technique evaluation automatically. 
Furthermore, using MCA models, we analyzed objectively 
hard-to-commit technology the so-called craftsmanship that 

Fig. 9.6 3D printer model around the pancreas and simulation of the distances between tumor and main pancreatic duct
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relies on the experience and intuition of a skilled surgeons 
through analysis of surgical workflow and applied and devel-
oped an objective and quantitative evaluation method for 
SPM.  Then, MCA-related joint research was conducted 
between Japan and France to establish a global standard for 
surgical technique evaluation methods and training methods 
for achieving safe and accurate surgery. In Japan, we mainly 
performed data collection and SPM verification, and in 
France, they performed surgical skill analysis based on the 
data such as motion data and SPM analysis data, and verified 
its usefulness. Based on these results, we verbalized the sur-
gical technique, arranged it in order and found out the surgi-
cal technique pattern of an expert operator.

9.5  Conclusion

The surgical navigation system, simulation system, robot 
system, AI system, and SPM, which were developed at 
MCA, are extremely important for future medical develop-
ment. The database of surgeon’s judgment in not only actual 
clinical surgery but also surgical training will lead to further 
development of MCA-based medicine for risk management 
of surgery, precision treatment, and individualized 
medicine.
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Clinical Applications of MCA 
to Diagnosis

Shoji Kido, Shingo Mabu, Tohru Kamiya, Yasushi Hirano, 
Rie Tachibana, and Kunihiro Inai

Abstract

In multidisciplinary computational anatomy (MCA), its 
scheme will be expanded in spatial, time series, func-
tional, and pathological axes. Therefore, we have expected 
computer-aided diagnosis (CAD) applications based on 
this scheme are able to support diagnosis for wide range 
of clinical images including not only radiological images, 
but also pathological images and autopsy images. From 
these axes of views, we have developed robust CAD 
methods for pathological lungs such as diffuse lung dis-
eases (DLD), lung nodules, and also colon polyps. In 
addition, we have obtained three dimensional 
(3D)-scanned images of whole lungs as new pathological 
images to assist diagnosis of clinical images.
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10.1  Introduction

In the research of medical imaging, CAD applications target-
ing for breast and colon cancers have achieved a measure of 
success. However, despite strong expectations from clini-
cians for CAD applications, they are not as widespread in 
clinical practice as originally envisioned. One of the reasons 
for this is that the current CAD limits the target to specific 
organs and diseases for the purpose of screening. Clinicians 
pointed out that CAD applications had to be useful for vari-
ous diseases in daily clinical practice. Therefore, we have 
been working on the development of CAD applications those 
can handle multiple organs and multiple diseases. However, 
clinicians pointed out that the developed CAD applications 
were complicated to use in daily clinical practice, because 
they needed to execute different algorithms for each organ 
and disease. One of the reasons was that these CAD applica-
tions were not based on generic anatomical models.

In spatial, time series, functional, and pathological axes, 
MCA models are expanded from computational anatomical 
(CA) models. In the spatial axis, we have expanded the CAD 
scheme from pathological level (cell size) to CT level 
(organs). In the time series axis, we have expanded the CAD 
scheme from living images to postmortem images. We called 
these images as life-time images which include living images 
and autopsy images. In the functional and pathological axes, 
we have also developed our CAD applications. MCA models 
have enormous quantity of information compared with con-
ventional CA models. Therefore, we have expected clinical 
applications based on MCA are able to support diagnosis for 
wide range of clinical images including not only conven-
tional radiological images, but also pathological (micro-
scopic or macroscopic) images, and autopsy images.
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From these points of view, we have developed clinical 
CAD applications based on MCA. One is the classification 
method of DLD opacity patterns on high-resolution CT 
(HRCT) images using a convolutional neural network 
(CNN). These CAD applications can classify normal and 
DLD opacities such as consolidation, ground-glass opacity 
(GGO), honeycombing emphysema, diffuse nodular, which 
reveal typical DLD opacities. However, for realizing high 
accuracy, a large number of images with correct annotations 
are necessary for training CNN. It is quite tough and imprac-
tical task for radiologists to annotate a large number of 
images. Therefore, we have proposed some unsupervised 
learning algorithms without using annotated training data for 
distinguishing DLD opacities. Another solution for small 
number of images to effectively train classifiers is transfer 
learning, where deep neural networks trained in a certain 
domain are fine-tuned in a different domain. In addition, we 
have developed some CAD applications for lung nodules on 
chest CT images. One is an image registration technique and 
a detection algorithm of abnormalities on temporal subtrac-
tion images for lung nodules. The second is an optimization 
of network architecture for deep learning for classification 
algorithm of lung nodules based on 3D-CNN. And, third is a 
deep learning-based method for classification of lung nod-
ules based on medical findings. Moreover, for CAD applica-
tion to detect colon polyps that are submerged in residual 
materials by virtual subtraction of the residual materials 
from CT-colonography (CTC), we have developed a deep- 
learning scheme for performing electronic cleansing (EC). 
As a new challenge, we have collected surface images of 
whole lungs by use of 3D-scanner. The surface images are 
new modality images. For obtaining such images, we have 
made inflated fixed lungs from human resected lungs. And, 
we have registered 3D-scanned images of autopsy lungs with 
micro-CT images as digital autopsy lungs. From the new 
point of view, these images will contribute to autopsy 
imaging.

10.2  Methods

10.2.1  Unsupervised Learning, Semi- 
Supervised Learning, and Transfer 
Learning for Efficient Training 
of Classifiers for DLD Opacities

Deep learning has been widely applied to medical image anal-
ysis. One of the reasons behind the success of deep learning is 
the availability of large application-specific annotated datas-
ets. However, it is difficult to prepare large-scale datasets of 
various organs and diseases because annotation can only be 
performed by qualified field experts and it is tough work for 
them to give annotations to thousands of images.

Therefore, we proposed some unsupervised learning 
algorithms without using annotated training data for distin-
guishing DLD opacities. In [1], unsupervised class labeling 
was realized by the combination of evolutionary data min-
ing and genetic algorithm (GA). This method aims at 
regions-of- interest-based (ROI-based) clustering, where (1) 
we used feature values of {mean, variance, skewness, kurto-
sis} of CT values and three eigenvalues of Hessian matrix 
[2], then (2) frequent attribute (feature) patterns are extracted 
by evolutionary data mining, and (3) ROIs having the simi-
lar attribute patterns are assigned to the same cluster. The 
experimental results showed that the clustering accuracy 
was 47.7% when six types of DLD opacities (consolidation, 
GGO, honeycombing, emphysema, nodular and normal) 
were clustered.

Another unsupervised learning method was proposed in 
[3], where ROI-based clustering was also executed. The 
flow of the method is shown in Fig.  10.1. First, as a pre- 
processing, CT images are divided into 32 × 32 [pixels] ROI 
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Fig. 10.1 Flow of unsupervised and semi-supervised learning. The 
unsupervised and semi-supervised learning methods consist of three 
steps. At step 3, the unsupervised learning implements k-means cluster-
ing and the semi-supervised learning implements iterative semi- 
supervised learning
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images. Then, the feature extraction is executed by combin-
ing step (1) autoencoder and step (2) bag-of-features, and 
each ROI is represented by a histogram of key-point fea-
tures. At step (3), the generated histograms are clustered by 
k-means clustering. This method showed the clustering 
accuracy of 72.8%. Then, this unsupervised learning method 
was extended to semi-supervised learning by changing the 
part of k-means clustering to iterative semi-supervised 
learning. The iterative semi-supervised learning contains 
support vector machine (SVM) classification, self-training, 
and active learning to gradually improve the classifier. At 
the first training iteration, only 1% of the data were anno-
tated by human and used to train SVM. Then, the remaining 
99% testing data were classified by the trained SVM. After 
that, the testing data with more than 99% classification con-
fidence were regarded as new training data (self-training), 
and quite a small number of data with the lowest confidence 
were annotated by human as new training data. The experi-
mental results showed that the proposed method obtained 
98.5% classification accuracy at 507th iteration when 50% 
of the data were annotated by human.

Another solution to effectively train classifiers is trans-
fer learning, where deep neural networks trained in a cer-
tain domain are fine-tuned in a different domain. In [4], 
aiming the efficient learning of CNN, the effects of transfer 
learning were analyzed. We used cifar-10 and cifar-100 
datasets [5] to pre-train CNN. Cifar-10 and cifar-100 have 
patch images with 32 × 32 [pixels] that is the same size as 
ROI images. After training CNN using cifar-10 or cifar-100 
datasets, some fully-connected (FC) layers were added for 
fine- tuning. Here, additional one FC layer, two FC layers, 
and three FC layers were compared to find the best struc-
ture. The experimental results showed that CNN pre-trained 
with cifar-100 and fine-tuned with one additional FC layer 
obtained the best results. Therefore, it was clarified that the 
pre-training dataset with more (various) classes and the 
compact structure for fine-tuning contribute to better accu-
racy in this problem.

10.2.2  Image Registration Techniques 
and Detection of Abnormalities 
on Temporal Subtraction Images

To detect lung nodules and GGO on thoracic multi-detector 
row computed tomography (MDCT) images, CAD systems 
are used in clinical fields. Without the CAD systems, it is a 
difficult task to detect abnormalities for radiologists, since 
subtle lesions such as small lung nodules tend to be low in 
contrast on the CT images. The CAD system from medical 
images provides as a second opinion to radiologists on visual 
screening [6]. In this study, we describe a new method for the 

detection of automatic temporal changes in thoracic multi- 
detector row CT (MDCT) images which is obtained different 
time series and detection of GGO based on machine learning 
technique from The Lung Image Database Consortium 
(LIDC) data sets.

The temporal subtraction image which is obtained by 
subtraction of a previous image from a current one from a 
same subject can be used for enhancing interval changes on 
medical images. Radiologists detect these changes, e.g. size 
and location of regions on both scan images by manually 
comparing on visual screening. To make a temporal subtrac-
tion images, image registration techniques with high accu-
racy are necessary, since subtraction artifacts with low 
accuracy registration images are remained caused misregis-
tration. In the past 5  years, we have developed non-rigid 
image registration techniques and detection of abnormali-
ties on thoracic MDCT images.

To obtain a temporal subtraction image with high accu-
racy, we have proposed a non-rigid registration method [7]. 
There are 2 steps, global matching and local matching. 
Global matching step includes rigid transformation, affine 
transformation, and high order polynomial transformation. 
On the other hand, local matching is a step for the nonlinear 
transform such as a 3D-elastic transformation and voxel 
matching technique [8]. The voxel matching is a non-rigid 
registration technique for reducing the subtraction artifacts. 
Finally, temporal subtraction image is obtained by subtrac-
tion of warping previous image from current one. Figure 10.2 
shows an experimental result. Fig. 10.2a, b, c, and d are cur-
rent, previous, temporal subtraction image with our previous 
method [8] and proposed method [7] from a same patient, 
respectively. Small lung nodules on both images (arrow) 
exist on previous and current images and abnormal shadow 
is enhanced on subtraction image. Most subtraction artifacts 
are removed on both temporal subtraction images (Fig. 10.2c 
and d) significantly. Using our new temporal subtraction 
technique, radiologist can easily detect abnormal shadows 
on a current image.

To detect abnormal areas such as GGO and lung nodules, 
we have proposed automatic detection methods for small- 
sized of lung nodules using on temporal subtraction images 
based on artificial neural networks [9] and current image set 
based on CNN [10]. In [9], we extract statistical features 
based on intensity, gradient, and shape of segmented regions 
from a temporal subtraction image. After that, we classify 
true positives and false positives using Artificial Neural 
Network (ANN) classifier, class featuring information com-
pression (CLAFIC), Mahalanobis distance, and Fisher’s lin-
ear discriminant (FLD) classifier. From the employed 31 
small sized lung nodules, the FROC curve of ANN classifier 
is the closest to the left top and the detection performance of 
ANN classifier is 5.1 false positives per CT at 80.7% sensi-

10 Clinical Applications of MCA to Diagnosis



92

tivity. On the other hand, detection of GGOs on current 
image sets [11] based on CNN [10], we obtained a TP of 
86.05% with 4.8/scan FP.  From the both of experimental 
results, our new technique may be useful for radiologists in 
the detection of abnormalities on visual screening.

10.2.3  Optimization of Network Architecture 
for Deep Learning

As is well known, the deep learning is a powerful tool for 
many applications such as segmentation, classification, and 
image enhancement in the field of medical image analysis. 
However, determination of the network structure to obtain 
the best performance is a very time-consuming work, because 
there are too many hyperparameters that represent the net-
work structure. In many cases, pre-defined networks that are 
published via Internet sites are used, but these networks are 
usually defined for some specific purposes other than medi-
cal purpose. These networks do not necessarily have the best 
performance for the medical purpose. Furthermore, most of 
these networks are built for 2D images, but not for 3D 
images. Therefore, networks for 3D images have to be manu-
ally constructed from scratch.

Although the grid search and the random search can be 
used for optimizing hyperparameters, they are inefficient 
because each search point is evaluated separately. On the 
other hand, the Bayesian optimization [12] is efficient and 
the search point can be located arbitrarily. In the Bayesian 
optimization, better hyperparameters are decided sequen-
tially by iteration of the exploration phase and the exploita-
tion phase. The current search point (=hyperparameters) is 
evaluated in the former phase, and the next search point is 
decided by reference to the results of the previous explora-
tions in the latter phase. As the result of the Bayesian optimi-
zation for deep learning, the optimized network structure and 
the optimized weights are obtained. Figure 10.3 shows the 
training phase of the Deep Learning including the Bayesian 
optimization.

As an example of the Bayesian optimization, we per-
formed a classification of lung nodules into benign and 
malignant by using a 3D-CNN. The hyperparameters to be 
optimized are number of convolution layers, filter size in 
convolution layers, numbers of channels in convolution lay-
ers, type of pooling layers, and number of nodes in fully- 
connected layers. The AUC of the ROC curves by the 
automatically optimized CNN, manually constructed CNN, 
SVM (RBF kernel), SVM (Polynomial kernel), and Random 
forest are 0.816, 0.722, 0.749, 0.736, and 0.680, respectively. 
It is shown that the automatically optimized CNN has the 
highest performance [13]. Currently, the automatic hyperpa-
rameter optimization methods are realized by the python 
libraries [14] and frameworks [15].

10.2.4  Classification of Lung Tumors into 
Benign and Malignant Based 
on Medical Findings Using Deep 
Learning

Generally, CAD systems based on deep learning provide 
only the final decision such as category of the tumors or like-
lihood of malignancy of tumors. The function of these sys-
tems is enough for supporting radiologists’ decision, but not 
for explaining the reasons of malignancy to patients and 
ensuring the validity of the CAD systems. We have been 
developing the deep learning-based system that provides 
both the likelihoods of existence of medical findings and 
likelihood of malignancy of tumors based on them. The med-
ical findings that we used are utilized in clinical practice. 
First, we calculated likelihoods of four medical findings: 
clearness of the marginal region of tumor, circularity of 
tumor, existence of air-bronchogram, and existence of notch. 
Each likelihood of these medical findings was calculated by 
using a 3D-CNN trained and constructed for each medical 
finding. The accuracy of each medical finding is 87%, 68%, 
73%, and 76%, respectively, where existence of each medi-
cal finding was decided by thresholding of each likelihood. 

a b c d

Fig. 10.2 Temporal subtraction image based on non-rigid image registration technique. (a) Current image, (b) Previous image, (c) Subtraction 
image [8], (d) Subtraction image [7]
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Next, the tumors were classified into malignant and benign 
tumors by using a Multi-Layer Perceptron (MLP). The MLP 
we used consisted of one input layer, one hidden layer, and 
one out layer. The likelihoods of the existence of medical 
findings were fed as input values of the MLP. The final accu-
racy of malignancy was 79%. As the comparison with the 
normal CNN that output only the likelihood of malignancy 
of tumors, the accuracy was almost the same. The proposed 
method was superior to the normal CNN in terms that the 
proposed method was able to provide the likelihoods of the 
existence of medical findings.

10.2.5  EC for CTC

EC enables computer-aided detection systems to detect pol-
yps that are submerged in residual materials by virtual sub-
traction of the residual materials from CTC images. 
Previously, we developed a deep-learning scheme for per-
forming EC in dual-energy CTC to overcome the limitations 
of EC in single-energy CTC [16]. Although the deep- 
learning- based method can reduce EC artifacts in single- 
energy CTC, it requires a huge amount of manually annotated 
volumetric images that are difficult to generate. Moreover, it 
was computationally expensive because it was designed for 
analyzing 54 cut-plane images at each voxel.

Generative adversarial network (GAN) is a novel 
machine-learning algorithm that can directly translate an 
input image into an output image without the segmentation 
of a target object. Therefore, we developed a GAN-based EC 
method for improving the quality of EC images in CTC [17].

Based on the pix2pix GAN method [18] that was devel-
oped for 8-bit 2D photos, we developed a 3D-vox2vox GAN 
for performing the EC on 16-bit volumetric CTC images 
using 3D-convolution kernels (Fig. 10.4a and b). Figure 10.4a 
shows an overview of the 3D-vox2vox GAN scheme. The 

3D-vox2vox GAN consists of a generator and a discrimina-
tor network. The generator network, which is based on 
encoder-decoder architecture like 3D U-Net, produces fecal- 
material- cleansed images from an input image with tagged 
fecal materials. The generator consists of seven 
3D-convolutional/deconvolutional layers. The discriminator 
network, which is based on the 3D-PatchGAN [18], attempts 
to differentiate cleansed images that are generated by the 
generator from the images without tagged fecal materials. It 
consists of three-stride convolutional layers, two convolution 
layers, and a sigmoid function. After 3D-vox2vox GAN is 
trained, the resulting generator is used to perform the cleans-
ing of a new unseen CTC volume. As the generator is a fully 
convolutional network, the new case can be cleansed rapidly 
regardless of its size (Fig. 10.4b).

In our pilot study, 200 volumes of interest (VOIs) with 
1283 voxels were extracted from the CTC scans of an anthro-
pomorphic phantom (Phantom Laboratory, Salem, NY) with 
20 and 40 mg/ml contrast agent. The phantom was scanned 
using a CT scanner (SOMATOM Definition Flash, Siemens 
Healthcare) with a single-energy mode, 120 kVp, 68  mA, 
0.6-mm slice thickness, and 0.6-mm reconstruction interval. 
A paired training dataset was sampled from the VOIs of CT 
scans acquired with and without a contrast agent. After the 
3D-vox2vox GAN was trained, the resulting generator was 
used to cleanse a new unseen CTC volume that was scanned 
using a CT scanner (LightSpeed 16, GE Medical Systems) 
with a single-energy mode, 120 kVp, 60 mA, 2.5-mm slice 
thickness, and 1.25-mm reconstruction interval. For a clini-
cal CTC volume with a size of 512 × 512 × 604 voxels, the 
test of the 3D-GAN EC scheme took approximately 1 min-
ute using a single GPU (NVIDIA® GeForce GTX 1080 Ti). 
The test of the deep-learning-based EC scheme took approx-
imately 54  hours using four GPUs (NVIDIA® GeForce 
GTX 1080). Figure  10.4c and d shows an example of the 
virtual endoscopic views before and after the 3D-vox2vox 
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Fig. 10.3 Processing flow of the training phase for the Deep Learning including the Bayesian optimization
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Fig. 10.4 Overview of the 3D-vox2vox GAN EC scheme in the CTC. 
(a) Training based on 3D-vox2vox GAN. (b) Testing based on 
3D-vox2vox GAN. (c, d) An example of virtual endoluminal view 
before/after EC. (c) The original uncleansed CT image. The white 

arrows on a virtual endoluminal image indicate tagged residual fecal 
materials. (d) Virtual endoluminal image after cleansing by the 
3D-vox2vox GAN EC Scheme. A yellow arrow indicates that a polyp is 
clearly visible
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GAN EC method. The 3D-vox2vox GAN was able to make 
a polyp visible as shown in Fig. 10.4d.

Deep-learning-based EC can reduce EC artifacts but 
requires manually annotated training images and intensive 
calculation time. Our novel EC scheme based on 3D-vox2vox 
GAN does not require manually annotated training images 
and is faster in the removal of residual fecal materials than is 
the deep-learning-based EC.  Therefore, the 3D-vox2vox 
GAN-based EC scheme has the potential in providing an 
effective solution for EC of CTC images for clinical use. We 
have further extended the 3D-vox2vox GAN-base EC 
scheme to incorporate a progressive training method [19] 
and developed a self-supervised 3D-GAN EC scheme. This 
EC scheme can generate EC images of higher quality than 
those obtained by use of only a supervised training dataset.

10.2.6  Establishment of 3D-Whole Lungs 
for Medical Image Investigation

Recent progression of 3D-image technique allowed us to 
visualize the stereo views of surface structures of many 
architectures; however, 3D-observation of human organs is 
rarely performed yet. In addition, there is no education tool 

for health care practitioners to observe the internal structure 
of organs in association with their surface structure. We pres-
ent a novel technique how to use the autopsy-resected whole 
lung in combination with autopsy imaging (Ai) [20] for 
future medical image analyses.

Human lungs resected by hospital autopsy were trans-
bronchially prefixed by 15% formalin for 30 min followed 
by the fixation for 7 to 14 days using modified Heitzman’s 
fixative (50% v/v polyethylene glycol 400, 20% ethanol, 4% 
formalin in distilled water) with 10 cm H2O [21] constant 
pressure in a custom-designed continuous infusion device 
(Zek Tech, Osaka, Japan). Then, the fixed lungs were con-
tinuously inflated for additional 4 to 7 days by room air with 
equal pressure via a tube enclosed in the bronchus 
(Fig. 10.5a). The fixation and influx periods were adjusted by 
the organ condition such as size, weight, and in the presence 
or absence of pulmonary diseases.

Figure 10.5b shows the representative 3D-lung images 
established by an Artec Eva 3D-scanner and Artec Studio 
Ver.11 software (Data Design, Nagoya, Japan) according to 
the manufacture’s instruction, which can easily access the 
surface information such as shape, lobes, folds, degree of 
anthracosis of the lung. Following the completion of 
3D-fixation, the lungs were performed conventional CT and 

Normal lung Honeycomb lung

Continuous infusion device Extension fixation Inflation by room air

b

a

c

Fig. 10.5 Procedure making 3D-digital lung content from resected lung. (a) Establishment of a 3D-whole lung preparation. (b) Representative 
3D-surface images captured by a 3D-scanner. (c) Internal micro-CT images from the arbitrary surface of the 3D-normal lung image
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micro-CT scanning (Ai-organ) using a hospital CT and an 
industrial micro-CT apparatus, respectively, and the scanned 
images were superimposed. The data sets were embedded in 
the 3D-lung image by the registration techniques. Figure 10.5c 
represents a representative digital content working on the 
3D-slicer ver.4.6.2. This content can arbitrarily rotate the 
3D-lung image and is capable to overview the outside and 
inside of the lung. Additionally, this content made possible to 
compare the images of conventional CT with those of micro-
CT images on the same cross-section, indicating that this con-
tent would become an e-textbook for understanding the 
internal structure of both normal and pathological lungs.

We established the methodology to make 3D-whole lung 
specimens from the resected lungs at autopsy in order to pre-
serve the anatomical and radiological data sets. Our new 
methods allow us to establish further image analyses as well 
as new medical educations [22].

10.3  Conclusion

We have developed CAD applications for pathological lungs 
such as DLD and nodules, and also for colon polyps. In addi-
tion, we have developed new modality images which regis-
tered 3D-scanned images of whole lungs with micro-CT 
images as digital autopsy lungs. The CAD applications we 
have developed and the digital autopsy lungs are able to 
assist diagnosis for wide range of clinical images.
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Application of MCA across Biomedical 
Engineering
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Abstract

Many surgical robots have been investigated recently. To 
create safe and effective control systems for surgical 
robots, intraoperative biological information is required. 
However, this information is limited, making it difficult to 
predict accurate biological responses. If patient-specific 
models are constructed by combining multidisciplinary 
computational anatomy with intraoperative biological 
information, the robots could be controlled by accurately 
predicting biological responses to the surgery. This 
approach would imply the realization of safer and more 
sophisticated treatments. This formed the background for 
the proposed highly intelligent surgical robot that can 
approach a surgical area using multidisciplinary computa-
tional anatomy and limited intraoperative biological 
information. In this chapter, we will present about our 
research activities based on this idea. We will present 
about (i) study on stapler device control for pancreatic tis-
sue damage suppression, and (ii) navigation and robotic 
system for oral and maxillofacial surgery.

Keywords

Surgical robot · Minimally invasive surgery · 
Intraoperative measurement · Oral and maxillofacial 
surgery

11.1  Introduction

Endoscopic surgery is currently a popular form of minimally 
invasive surgery involving the use of forceps, an endoscope, 
and a trocar. However, although endoscopy has numerous 
merits, it has the disadvantage of limited working flexibility. 
To overcome this obstacle, many surgical robots have been 
studied.

Most of these robots position surgical instruments based 
on preoperative or intraoperative images or surgeon input 
and can support surgery, such as precise positioning and 
scaling of the manipulation. However, if these robots are 
controlled using the properties of the affected organs, safer 
and more effective surgical robots can be created.

To acquire the properties of the organs, intraoperative bio-
logical information is required. However, this information is 
limited, making it difficult to predict accurate biological 
responses. Therefore, we aimed to construct a patient- 
specific model by combining multidisciplinary computa-
tional anatomy with intraoperative biological information. 
Using this approach, the surgical robot could be controlled 
by accurately predicting the biological response to the 
surgery.

Based on this idea, we will present about (i) study on sta-
pler device control for pancreatic tissue damage suppression 
and (ii) navigation and robotic systems for oral and maxil-
lofacial surgery.

11.2  Study on Stapler Device Control 
for Pancreatic Tissue Damage 
Suppression

In distal pancreatectomy, stapler devices are often used. 
However, pancreatic juice leakage because of the mechanical 
damage of pancreas occurs in some cases. We believe that if 
the relationship between the physical properties of the pan-
creas, the compression conditions by the stapler during sur-
gery, and pancreatic juice leakage is known, pancreatic juice 

11

E. Kobayashi (*) · Q. Ma · K. Hara 
School of Engineering, The University of Tokyo, Tokyo, Japan
e-mail: etsuko@bmpe.t.u-tokyo.ac.jp 

D. Kim 
Faculty of Health and Medical Science, Teikyo Heisei University, 
Tokyo, Japan 

J. Wang 
School of Mechanical Engineering and Automation, Beihang 
University, Beijing, China 

K. Masamune 
Institute of Advanced Biomedical Engineering and Science, Tokyo 
Women’s Medical University, Tokyo, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4325-5_11&domain=pdf
https://doi.org/10.1007/978-981-16-4325-5_11#DOI
mailto:etsuko@bmpe.t.u-tokyo.ac.jp


98

leakage can be prevented and safe surgery can be realized. To 
achieve highly safe stapling, the following objectives were 
performed: (1) analysis of pancreatic injury based on 
mechanics and pathology and (2) application to the robotic 
stapler.

11.2.1  Analysis of Pancreatic Injury Based 
on Mechanics and Pathology

To analyze the relation between compression by stapler and 
mechanical damage, the following two studies are essential; 
damage evaluation system and gathering the mechanical 
properties for simulation studies. Therefore, we conducted 
the following three studies. (1) Compression force and pan-
creatic juice leakage measurement system for isolated pig’s 
pancreas, (2) System development for in  vivo and in situ 
organ elasticity measurements, and (3) Compression and 
pathology observation study for human isolated pancreas.

 1. Compression force and pancreatic juice leakage measure-
ment system for isolated pig’s pancreas.

In this research, we developed a force and fluorescence 
measurement system, and compression experiments were 
performed at several compression speeds [1].

For force measurement, a commercialized compression 
testing machine (EZ Test, Shimadzu Scientific) was used. To 
measure the pancreatic juice leakage, a special fluorescence 
probe (a chymotrypsin probe, which reacts only with pancre-
atic juice) was used [2]. For fluorescence measurement, an 
electron-multiplying charge-coupled device camera, an exci-

tation light, and lowpass (490 nm) and bandpass (520 nm) 
filters were used (Fig. 11.1a).

We isolated the pancreas of a pig; the size of the organs 
was approximately 250 × 100 × 25 mm3. We compressed the 
pancreas using our system at three compressing speeds of 
500, 100, and 10 mm/min and evaluated the pancreatic juice 
leakage. The size of the indenter was 10  ×  65  mm2. 
Compression was performed until the pancreas reached 
2 mm in thickness (same as with the stapler).

In the fluorescence experiment, 150 μL of chymotrypsin 
probe was sprayed on the surface of the pancreas before and 
after compression. The fluorescence intensity of each pixel at 
each second was measured for 5 min. We then compared the 
maximum increase rate of the fluorescence intensity at each 
second before and after compression. We considered the 
maximum increase rate because (i) the isolated pancreas was 
already damaged, and some fluorescence was observed 
before compression and (ii) this rate is related to the concen-
tration of the pancreatic juice.

The results showed that in some areas of the pancreas, the 
maximum increase rate of fluorescence intensity was higher 
than before in the pancreas with compression when the reac-
tion force decreases as the membrane breaks (Fig.  11.1b). 
After the compression test, pathological observation was 
also performed. The results indicated that the force and fluo-
rescence measurement system we developed can evaluate 
pancreatic juice leakage. Using this system, we can investi-
gate the proper compression parameters for robotic 
pancreatectomy.

 2. System development for in vivo and in situ organ elastic-
ity measurements.
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An organ’s mechanical properties strongly influence the 
force control system. The relationship between in vivo and in 
situ properties is not yet clear because these properties are 
often measured after isolation or during intraoperative proce-
dures using different methods and parameters. Hence, a mea-
surement instrument that allows consistent measurement is 
needed.

We are developing an instrumentation system for organ 
elasticity measurement which can measure elasticity during 
operation and after isolation [3]. Its manipulator has a servo-
motor (ENC-258101G 1000/3CH, CITIZEN) and an indenter 
plate with a load cell (UNLRS-FG200, unipulse). The load 
cell signal ranges from 0 to 200 N. A photocoupler detects 
the indenter at the adjustable limit of its descending move-
ment. The controller box includes power supplies and an 
Arduino Uno R3 microcontroller board (Arduino Srl) with 
interface modules. Signals are recorded in 10-bit resolution 
and 0.1-s sampling intervals. From the encoder pulse of the 
servomotor, the position of the indenter plate is also recorded.

The system is programmed to run an automatic sequence 
of descend, stop, and ascend phases of the indenter’s move-
ment: the descending movement speed is approximately 
15 mm/min, and it stops at the 15-mm point above the base 
plate so that the organ is pressed to a thickness of 10 mm.

Figure 11.2a shows system testing on the liver of a pig, 
and Fig. 11.2b shows recorded data. We repeated the mea-
surements until 2 h after extraction of the liver. The load cell 
signals were median-filtered, where the filter length was 
0.3  s. The figure plots are aligned with the time when the 
filtered signal rose above zero (at which time the indenter 
was supposed to touch the organ surface). The peak of each 
plot indicates that the indenter stopped compressing at 
15-mm thickness of the liver.

The elasticity right after death was less than that in vivo. 
We suggest that the elasticity decreases owing to the removal 
of blood during isolation. As time goes by, elasticity 
decreases owing to rigor mortis. The difficulty of calibration 
causes differences in elasticity measurements. Because this 
is a single case, more investigation is required.

 3. Compression and pathology observation study for human 
isolated pancreas.

In a first step, we performed a compression experiment 
with the swine pancreas in situ, and in vivo and measured the 
elasticity of the pancreas and the changes in the pancreas that 
occurred upon rupture. With the swine pancreas, we secure a 
number of experiments that cannot be obtained with the 
human pancreas. The swine pancreas is different in shape 
and size from the human pancreas; however, it is necessary 
to find the correlation between them. In this study, we started 
to measure the elasticity of the human pancreas from 
cadavers.

We compressed the pancreas with the measurement sys-
tem we developed and a commercialized stapler. With the 
system, to obtain the viscoelasticity, we compressed the pan-
creas by 5 mm with 1 mm/min speed to avoid any damage to 
the pancreas. The reaction force from the gauge was mea-
sured. We preserved the pancreas under the clamped condi-
tion in formalin and prepared slides for pathological analysis. 
We compressed the proximal part (pancreas body) and distal 
part (pancreas tail).

Figure 11.3 shows the first results of the experiments. As 
we compressed the pancreas, the stress increased exponen-
tially, and relaxation was observed when pausing (shown in 
Fig.  11.3a). We plotted the results (n  =  10) as shown in 
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Fig.  11.3b, and we observed a correlation between peak 
stress and relative thickness except in two cases. The pan-
creas was thin and had some separation from the test table 
according to our observation based on the picture of the pre-
pared slide. There is little study that has investigated the 
mechanical properties of the human pancreas. We will con-
tinue this work and gather the human pancreas mechanical 
properties. Continuation of this study is expected to become 
an important finding for predicting pancreatic damage.

11.2.2  Application to the Robotic Stapler 
and Future Work

We have developed a pancreatic stapling device (PSD) as 
shown in Fig. 11.4. A conventional reload for the Covidien 
Endo GIA Ultra Universal Stapler (Endo GIA) can be 
attached to the PSD. A coreless DC motor with gear head 
(1/36) and optical encoder (NC-185801 Citizen Chiba 
Precision Co., LTD.) is connected to a leadscrew and slider 
(KR1502A THK). The original rod of the Endo GIA is used 
to transfer the force from the slider to the stapler mechanism. 
A load cell is included to measure the force the slider exerts 
on the rod and optionally control that force [4].

The purpose of our research is to achieve a safe pancre-
atectomy. To do this, it is important to clarify the relationship 
between the reaction force during compression by the sta-
pler, mechanical parameters of the pancreas, and damage to 
the pancreas. However, it is very difficult to know the 
mechanical parameters of the living human pancreas accu-
rately. Therefore, it is necessary to estimate the real value 
from the parameters that can be obtained by the experiments, 

such as comparison of in vivo and in situ experimental results 
and comparison of human and pig experiments. For the esti-
mation, we can apply modeling methods studied in the 
research project of MCA. Finally, we would like to realize 
safe treatment with the robot stapler we developed.

11.3  Navigation and Robotic System 
for Oral and Maxillofacial Surgery

Many patients undertake oral and maxillofacial surgery 
(OMS) for diseases treatment and esthetical purposes. The 
surgeon is under a heavy physical and mental burden when 
conducting precise OMS procedures such as drilling the 
screw hole onto the mandible because of the limited 
 observation capability for surgical region and long-time sur-
gical procedures. Therefore, a surgical navigation method 
and a surgical assistance robot have been proposed to guide 
the operation and relieve the surgeon’s workload. We have 
developed marker-based/markerless AR navigation systems 
[5] and a compact OMS robot for precise positioning [6]. 
These two systems have been seamlessly integrated to fur-
ther develop an autonomous surgical system [7], which could 
exchange the roles between surgeons and surgical systems 
by making the robot the primary operator and the surgeon the 
surveillant.

In this section, we describe a summary of the OMS robot 
and a major improvement by updating both the hardware and 
the software of the previous navigation system to develop a 
fundamentally new system. The technical details and perfor-
mance evaluations of the new system and prospects for future 
work are introduced.
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11.3.1  OMS Robot for Precise Positioning 
and Drilling with patient’s Specific 
Safety Mechanism

Preoperative surgical simulations are utilized in orthognathic 
surgery with a patient 3D dataset obtained from X-ray CT 
images. Although the simulations of drill placements are 
used as quantitative information, it is still difficult to reflect 
the precise and numerical preoperative plan in actual surgery 
because of human factors at the operation of the pointer or 
devices in their hands. In addition, esthetically oral and max-
illofacial surgery involves operation on the patient’s oral cav-
ity, which also makes the surgery more difficult.

To solve the above problems, we have been developing a 
compact and lightweight six-DOF surgical robot for precise 
positioning in OMS. Although there have been various surgi-
cal robots developed specifically for oral and maxillofacial 
surgery, the size and weight of these conventional robots pre-
vent their widespread use in clinical practice. Therefore, a 
small and lightweight six-DOF robot was proposed in this 
study to achieve a better positioning performance, as shown 
in Fig.  11.5. This robot adopted a three-DOF orientation 
mechanism, which used the remote center of motion (RCM) 
design to change the end-effector’s rotation angle. It also has 
a three-DOF position mechanism, which used a novel paral-
lel mechanism to change the end effector’s axial coordinate. 
Six motors (1628 024B, Faulhaber, Schönaich 71,101, 
Germany) were used to actuate all movements. All mechani-
cal parts of the robot were made of aluminum to reduce the 
weight. A robot adaptor was used to work as the power unit 
and facilitate the data exchange between the workstation and 
the robot. To mechanically protect the subject from any unin-
tended injury, a driving range limit mechanism (DRLM) was 
proposed to restrict the movement range of the drill tip. The 

DRLM is a hard block fabricated by a 3D printer whose data 
are preacquired from the patient’s anatomical information.

11.3.2  Markerless Navigation System for OMS

Previously proposed navigation systems need to place a real 
maker frame onto the patient’s mouth region to identify the 
pose of patient’s head, which may either affect the naviga-
tion accuracy because of marker’s drift or make the marker 
become obstacle to the operation procedure. Our proposed 
navigation system uses the pose of teeth to reflect the pose of 
skull without using the real marker. This navigation system 
uses the nature of teeth and proposed a novel working con-
cept without using the real marker, which is able to identify 
the pose of teeth to reflect the pose of skull.

The main process of this navigation system includes 
offline phase and online phase. During the offline phase, the 

Encoder/Motor/Gearhead Slider Load cell Rod Leadscrew Reload attachment

Fig. 11.4 Pancreatic stapling device with reload attached

DRLM
block

6DOF
robot

Drill tip
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Fig. 11.5 Overview of the maxillofacial robot
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specific teeth group was segmented from the CT images as a 
STL file. Then the aspect graph of the teeth model was built 
by setting a large number of virtual cameras around the 3D 
object. An oversampling method was used to create a 5-layer 
image pyramid of the obtained 2D images cluster for increas-
ing the online matching speed [5]. During the online phase, 
an exhaustive search was conducted from the top to the bot-
tom layer of the image pyramid to find the best match 
between the real camera image and the model image. Finally, 
the position, rotation, scaling of the matched image was con-
verted into the six-DOF pose as the final result. The matched 
results were displayed as a VR image with the real-time pose 
and latency shown on the monitor (Fig. 11.6).

11.3.3  Integration of Navigation System 
for Compact Robot

The aforementioned robot and navigation method were inte-
grated to work as one functional system, where the naviga-
tion method can dynamically detect the pose of teeth and 
combined with preoperative plan to guide the movement of 
robot. The overview of the newly developed autonomous 
OMS robot is shown in Fig. 11.7. The robot was suspended 
onto the operating table with a mechanical arm. The pose of 
the robot could be freely adjusted to fit the surgical region 
and ensure the teeth within the field of view (FOV) of cam-
era. Once reaching the target region, the mechanical arm 
could be manually locked and the pose of the robot remains 
unchanged during the surgery. The robot used an osteotomy 
device (CORE System, Stryker Corporation, Kalamazoo, MI 
49002 USA) as the end effector and its header can be changed 
based on specific surgical tasks.

A monograph camera (UI-3370 CP, IDS, Obersulm74182, 
Germany) with a resolution of 2048 × 2048 pixels was fixed 
onto the robot base by an aluminum frame for obtaining the 
real-time image. The navigation program was integrated 
with robot control software. The main process of navigation 
could be divided into the offline phase and online phase. The 
STL file of the osteotomy device was obtained by using a 
high-precision 3D scanning system (Artec Space Spider, 
Artech3D, Luxembourg). Then the aspect graph of the teeth 
model was built by setting a large number of virtual cameras 
around the 3D object. An oversampling method was used to 
create a 5-layer image pyramid of the obtained 2D images 
cluster for increasing the online matching speed [5]. During 
the online phase, an exhaustive search was conducted from 
the top to the bottom layer of the image pyramid to find the 
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best match between the real camera image and the model 
image. Finally, the position, rotation, scaling of the matched 
image was converted into the six-DOF pose as the final 
result. The STL file of the osteotomy device was also 
obtained by using a high-precision 3D scanning system 
(Artec Space Spider, Artech3D, Luxembourg). Then a pro-
cess similar to that used for the teeth model was implemented 
to build the aspect group for online matching. The overview 
of the integrated system is shown in Fig. 11.7 [7].

A drilling experiment was designed to verify the usability 
and positioning accuracy of the new system on five 
3D-printed mandible models. The open-source 3D group 
planning software Blender (Version 2.79, Blender.org) was 
used to make preoperative plan. A circular motion path was 
designed to imitate the complexity of the actual drilling 
operation for the robot trajectory, where a first hole was 
located in the center, four holes in the first circle, and eight 
holes in the second circle. The five tested mandible models 
were further scanned by the aforementioned 3D scanning 
system to obtain the 3D image of the holes after the experi-
ment. Then the barycenter of the hole in each scanned man-
dible model STL file of the scanned model was analyzed in 
Blender by using a 3D imaging processing method. Finally, 
the coordinate comparison was made between the planned 
holes and the actual holes to statistically evaluate the drilling 
accuracy.

The actual drilling results and corresponding scanning 
results are shown in Fig. 11.8. The statistical results indicate 
that this OMS robot maintained a high precision with aver-
age positioning accuracy in x- and y-axes of 1.20 ± 0.24 mm 

and 0.04 ± 0.07 mm, respectively. Nevertheless, as listed in 
Table 11.1, Trial 1 and Trial 2 had relatively larger deviations 
than the others, indicating that the pose difference would 
influence the final matching result if it significantly varied 
from the reference pose. Given that the surgical region in the 
second circle had relatively larger values than the first circle 
in terms of surface curvature and offset from the center, we 
also calculated the radius of the holes from the center by 
combining the x- and y-axes values to evaluate the influence 
of the surface condition and the moving distance on the drill-
ing accuracy. The results showed that the average radii of the 
first and second circles were 5.09  ±  0.41  mm and 
10.27 ± 0.27 mm, respectively.

11.3.4  Prospects for the Next OMS Robot 
and Navigation System

This research part proposed an autonomous OMS robot that 
could detect the pose of the skull without a marker and auto-
matically finish the operation under the surveillance of the 
surgeon. Phantom experiments showed that this robot could 
conduct the drilling operation with high accuracy based on a 
preoperative plan. In the next step of this research part, we 
will investigate and quantify the surgeon’s surgical planning 
mechanism by statistically analyzing patient’s preoperative 
and postoperative CT images, which could be used to develop 
a machine learning-based planning program for integration 
with the current robot to achieve a more intelligent surgical 
system.

a b

Fig. 11.8 Drilling results of the tested model (a) and its 3D scanning image (b)

Table 11.1 Errors of x- and y-axes in five mandible drilling trials (Mean ± SEM)

Axis Trail 1 Trail 2 Trail 3 Trail 4 Trail 5
X (mm) 2.97 ± 0.19 3.57 ± 0.23 0.06 ± 0.19 −0.33 ± 0.22 −0.31 ± 0.26
Y (mm) −0.15 ± 0.14 −0.19 ± 0.15 0.07 ± 0.11 −0.18 ± 0.12 0.67 ± 0.15
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11.4  Conclusion

We proposed an intelligent, autonomous surgical robot to 
approach the affected surgical area based on multidisci-
plinary computational anatomy and limited intraoperative 
biological information. As an example of research, (i) study 
on stapler device control for pancreatic tissue damage sup-
pression, and (ii) navigation and robotic system for oral and 
maxillofacial surgery are introduced.
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Three-Dimensional Analyses of Human 
Organogenesis

Tetsuya Takakuwa

Abstract

The three-dimensional (3D) observations are required for 
analyzing complex morphogenetic processes that occur 
during human embryonic development. Serial histologi-
cal sections were utilized not only for histological two- 
dimensional observation, but also for designing 
three-dimensional (3D) plaster or wax models, which 
enable the 3D changes to be visible, since the late nine-
teenth century. Additionally, imaging modalities, such as 
magnetic resonance imaging and phase-contrast X-ray 
computed tomography, have been applied to embryology. 
High-resolution 3D datasets with an adequately large 
number of samples, covering a broad range of develop-
mental periods with various methods of acquisition, are 
key features for the research. These datasets have the 
advantage of morphology, morphometry, and quantitative 
analysis using 3D coordinates. In particular, an adequate 
sample size is required for quantitative analysis using sta-
tistical methods and multidisciplinary computational 
anatomy (MCA) based analysis, which are expected to be 
useful analyzing methods for many unresolved tasks, 
such as quantitative movement (differential growth), 
branching morphogenesis, and information concerning 
physical and structural property. As a future perspective, 
analysis targets using digital imaging data with MCA 
based method may shift from embryonic period to early- 
fetal period (9-12  weeks after fertilization), which can 
apply to prenatal diagnosis using ultrasound. This data 
will timely contribute to improvements in prenatal diag-
nostics by detailing and comparing suitable markers for 
estimating developmental growth.

Keywords

Three-dimensional analyses · human organogenesis · 
imaging modalities · MRI

12.1  Three-Dimensional Analysis 
of Human Development Using 
Histological Sections

The three-dimensional (3D) analysis of human development 
is required for analyzing complex morphogenetic processes 
that occur during human embryonic development. Serial 
histological sections were utilized not only for histological 
two- dimensional observation, but also for designing three-
dimensional (3D) plaster or wax models, which enable the 
3D changes to be visible, since the late nineteenth century 
[1, 2]. Such history of human embryology including mor-
phometrics will be described in Chap. 15.

12.2  3D Analysis of Human Development 
Using Imaging Modalities in High 
Resolution

Remarkable progress has been made in non-destructive 
imaging technologies, such as magnetic resonance imaging 
(MRI) and phase-contrast X-ray computed tomography 
(CT), which have all been applied to embryology [3, 4]. The 
imaging modalities are selected based on their destructive 
versus non-destructive features, the size of the samples, and 
the desired resolution. The technological and historical 
aspects to acquire embryo imaging will be mentioned in 
detail in Chap. 15.

Using MRI and ptychographic X-ray CT, our group 
proceeded the 3D analysis of human embryonic develop-
ment, including organogenesis as research [5] (Fig. 12.1). 
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High- resolution 3D datasets with an adequately large 
number of samples, covering a broad range of develop-
mental periods with various methods of acquisition, are 
key features for this research. These data sets have the 
advantage of morphology, morphometry, and quantitative 
analysis using 3D coordinates. In particular, an adequate 
sample size is required for quantitative analysis using sta-
tistical methods and multidisciplinary computational anat-
omy (MCA) based analysis.

12.2.1  Morphological Observations

The digital data had the following gross merits, which 
increased the efficiency of observations and accelerated the 
speed of morphological observations: (1) The data enabled 
us to analyze classical morphology and morphometry effi-
ciently. (2) The complete 3D external and internal views and 
their reconstructions are easily obtained. (3) The obtained 
images can be resliced and rotated freely on the screen, by 

Embryos

b) Morphometry
      Length, area, volume, angle
measurement
c) Dynamics (quantifying
movement)
d) MCA analysis

2D view

Sequential image Orthogonal imageSegmentation

3D view

Reconstructed image 3D coordinates

Whole image organs

a) Morphological observation
      whole body, interested organs
volume rendering
surface rendering
maximum intensity projection
e) Additional processing using
software modules blueprints for 3D
printer

Database
For students and
Researchers
For preserving the
collections

Researches using imaging modalities
(MRI, phase-contrast X-ray CT, etc.)

Serial histological sectionsFig. 12.1 Three-dimensional 
analysis of human embryonic 
development, including 
organogenesis using digital 
datasets: outline
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which the 3D shapes of the objects and their spatial relation-
ships with the adjacent organs and tissues are easily recog-
nizable. (4) The images from different embryos are 
simultaneously comparable on the screen. (5) Volume- 
rendering data can be utilized for the MCA based analysis, 
which will be described in another chapter.

12.2.2  Morphometry

Name Classical embryology using histological techniques 
provided little morphometric data [6, 7]. For the measure-
ment of spatial distances and angles between anatomical 
landmarks of interest, 3D reconstruction from serial histo-
logical sections was required. The procedure for such mea-
surements was quite laborious with a number of possible 
issues that could arise, such as non-rigid deformation, tissue 
discontinuity, and accumulation of scale change [8]. The 
digital data from MRI and CT have merit for morphometry. 
Precise morphometric data, length, angle, area, and volume 
of target regions and organs can be measured on the screen 
using digitalized data from MRI and CT images. Such mor-
phometric data are useful for demonstrating the development 
features at each stage and for screening abnormally devel-
oped samples.

12.2.3  Quantitative Analysis Using 3D 
Coordinates

A 3D coordinate can be given for each landmark by examin-
ing the position of the voxel on 3D digital data. Application 
of 3D coordinates of anatomical landmarks, especially MCA 
based analysis, is expected to be useful analyzing methods 
for many tasks, which remain to be dissolved as follows:

12.2.4  Quantitative Movements (Differential 
Growth)

Both the external and internal structures of embryos rapidly 
change in size and shape during the period of organogenesis. 
Many dynamic events are traditionally described as migra-
tion in which the position of structures changes from one 
region of the embryo to another. Gasser (2006) [9] recently 
demonstrated most of the positional changes of the develop-
ing structures, such as the sclerotome formation from the 
somite, the spinal ganglion formation from the neural crest, 
and the endocrine glands formation from the pharyngeal 
endoderm, which can be explained by differential growth.

For understanding the positional change of landmarks of 
interest and their relationships during development, the digi-
tized data was advantageous for comparing structures of 

interest between different stages with identical magnifica-
tion, superimposed on the same screen. The 3D positional 
change of interesting landmarks and their relationships dur-
ing development were demonstrated [5, 9–11], which indi-
cated that many dynamic events can be explained by 
differential growth using 3D coordinates (Fig. 12.2).

12.2.5  Shared Mechanism for Human 
Organogenesis (Branching 
Morphogenesis)

Organs, such as bronchi of the lungs, urinary collecting trees 
of the kidneys, the milk ducts of the mammary gland, develop 
from branched tubes during embryonic and fetal develop-
ment. Because of many similarities between these branched 
tube structures, the shared mechanism was assumed. 
Recently, Hannezo et  al. (2017) [12] proposed a unifying 
theory to solve this issue. Namely, the certain tips stop 
 growing in a random manner. For example, the branched 
mammary gland structures stop growing when the tips of the 
structure impinge on neighboring branches. In the kidney, 
this cessation has been proposed to occur when nephrons 
form near the end of the collecting ducts. The unifying the-
ory mainly comes from experimental in  vitro model or 
in vivo animal models. Analysis using human samples with 
3D coordinates is awaited [13] (Figure 12.3a,b). Several 3D 
analyses for shared mechanism for human organogenesis 
based on MCA models will be described in Chap. 14.

12.2.6  Information Concerning Physical 
and Structural Property

Imaging modalities data contain information not only 
regarding 3D morphology, but also regarding physical prop-
erty. Diffusion tensor images MRI has also been applied to 
fetal brain [14] and cardiac muscles in mice [15, 16]. The 
method is applicable to various organs and tissues that are 
anisotropic in nature (Figure 12.3c). Mesenchymal tissues 
consisting of fibers and membranous structures, such as the 
muscles, tendons, arteries, and bones, may be candidates for 
application of this method. These tissues have not been ana-
lyzed vigorously because of technical reason and their large 
target size.

Phase-contrast X-ray computed tomography with Zeff 
imaging methods can be used to recognize and differentiate 
heavy metals, such as iron, aluminum, nickel, and copper 
[17]. The 3D dynamics of such elements during human 
embryonic development are not currently known. 
Hematogenesis of the embryos may be also detectable using 
iron as a trace marker. This information with 3D distribution 
may provide new insight of human development.

12 Three-Dimensional Analyses of Human Organogenesis
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12.3  Perspective

12.3.1  Shift from Embryonic Period to Early- 
Fetal Period (9-12 Weeks after 
Fertilization)

The number of morphological studies on the early-fetal 
period (9-12 weeks after fertilization) is less as compared to 
that on the first 8  weeks after fertilization (at the end of 
Carnegie stage [CS] 23) [2] due to several reasons. First, 
many researchers have been attracted to the dynamic morpho-

genesis in rather earlier developmental stages. Establishment 
of CS may contribute in encouraging studies for the early-
fetal period. Second, it is difficult to apply histological analy-
sis for the entire body of the fetus with a size larger than that 
at CS 23. Therefore, studies conducted on fetal period are 
mainly confined to localized histological analysis. The 3D 
datasets of larger samples corresponding to early-fetal period 
can be acquired with MRI in high resolution, which are worth 
analyzing as they can reveal the 3D development of the entire 
body and organs. Such morphometric data are also valuable 
for connecting and comparing the sonography data.
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Fig. 12.2 Three-dimensional 
analyses of quantitative 
movements (differential 
growth). (a) Lateral view of 
embryos between Carnegie 
stage (CS) 19 and CS 23 
showing the tympanic cavity 
and ear canal (upper) and 
craniofacial morphogenesis 
(lower). The ear canal (ec), 
external ear (Ex), eye (Ey), 
first cervical vertebra (C1), 
internal ear (int), pituitary 
gland (Pg), and tympanic 
cavity (tc). The black line 
indicates the reference axis 
connecting the middle point 
of the bilateral Ey and Pg 
(X-axis). The red line 
indicates the reference line 
connecting Pg and C1. Blue 
arrow indicates the frontal 
side of the face. Note that the 
Exm and Int are observed at 
similar position on the red 
segment. There is a gross 
change of angle between the 
black and red lines used. The 
change of angle may result 
from the formation of the 
mandibular apparatus and the 
structures at the base of the 
skull. (b) Three-dimensional 
graph showing the 
relationship between the right 
external ear (Exm) and 
internal ear (Int) during 
development. Axes and 
anatomical landmarks are 
shown on frontal view of 
volume-rendering images. 
Abbreviations: Carnegie stage 
(CS), external ear (Exm), first 
cervical vertebra (C1). 
internal ear (int), pituitary 
gland (Pg)
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Fig. 12.3 Three-dimensional analysis using digitalized data acquired 
with imaging modalities. (a) Branching morphogenesis of the human 
bronchi during embryonic period. (i) The bronchial tree was extracted 
from ptychographic X-ray computed tomography image. (ii) Centerline 
of the bronchial tree was processed. (iii) Generation number of each 
branch segments was indicated by colors. (b) Branching morphogene-
sis of the human urinary collecting system (UCS) at Carnegie stage 23. 
(i) The UCS was extracted. (ii) Centerline of the bronchial tree was 

processed. The tree was illustrated by rainbow colors from the proximal 
to peripheral branches. (iii) Generation number of each branch seg-
ments was indicated by number and colors. (iv) Position of nascent 
nephrons connected (green) and not connected (red) to UCS are shown. 
(c) The fetal heart ex vivo (crown-rump length = 94 mm). (i) The frontal 
gross view. (ii) Magnetic resonance imaging (MRI)-T1 image. (iii) The 
3D volume-rendering image. (iv) Diffusion tensor images MRI
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12.3.2  Application to Prenatal Diagnosis

The 3D information obtained in classical embryology since 
the late nineteenth century has been used as the basis of pre-
natal diagnosis using ultrasound (US). The use of US for pre-
natal diagnostics has rapidly increased in the past 30 years 
[18]. Moreover, 3D sonography performed with high- 
frequency transvaginal transducers has expanded as 3D 
sonoembryology, which provides a basis for assessing nor-
mal human development and can also be useful in detecting 
developmental anomalies [18, 19].

Prenatal diagnosis using US enables a shift in diagnos-
tics from the second trimester to the first trimester of ges-
tation. At present, an embryo at 9 weeks after fertilization 
or younger can be assessed via morphological and mor-
phometrical analyses, which corresponds to a CS of 
15-16. While abnormal embryos younger than 12 weeks 
after fertilization are observed by chance for clinical indi-
cations, systematic screening using sonographic parame-
ters results in the detection of abnormalities during the 
late first trimester (12-13  weeks after fertilization). 
Analysis using the digital data with MCA based method, 
during early-fetal period could timely contribute to 
improvements in prenatal diagnostics by detailing and 
comparing suitable markers for estimating growth and 
development [20].
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Skeletal System Analysis during 
the Human Embryonic Period Based 
on MCA

Tetsuya Takakuwa

Abstract

During human development, both external and internal 
morphological features change dramatically. External 
features, including those on the body and limbs, provide a 
good basis for determining the staging of each developing 
embryo. The application of three-dimensional (3-D) 
sonography with high-frequency transvaginal transducers 
has expanded and now fosters 3-D sonoembryology, 
which provides a basis for assessing normal human devel-
opment and can also be useful in detecting developmental 
anomalies. The quantitative data of standard morphology 
for each Carnegie stage (CS) and early fetal period is 
required for the evaluation of the body and limbs in clini-
cally obtained data, to allow for better prenatal morpho-
logical diagnosis. Analysis of the skeletal system during 
the human embryonic and early fetal period based on 
MCA will be described, including the rib cage, shoulder 
girdle, pelvis, and femur. The data obtained may contrib-
ute to such evaluations.

Keywords

Human embryonic period · Phase-contrast CT · Skeletal 
system · Rib cage · Femur · Shoulder girdle

13.1  Introduction

During human development, both external and internal mor-
phological features change dramatically. External features, 
including those on the body and limbs, provide a good basis 
for determining the staging of each developing embryo. For 

example, flexion and extension of the body combined with 
the posture of the upper and lower limbs have been inte-
grated into the Carnegie stage (CS), which is universally 
accepted for determining the staging of human embryos [1]. 
Although such qualitative external changes are well 
described in the literature, 3-D quantitative changes in the 
body and limbs have not been well analyzed. The applica-
tion of 3-D sonography with high-frequency transvaginal 
transducers has expanded and now fosters 3-D sonoembry-
ology, which provides a basis for assessing normal human 
development and can also be useful in detecting develop-
mental anomalies [2, 3]. Such technology could contribute 
to more accurate prenatal diagnoses as well as enable a shift 
in the diagnostic time window (from the second to first tri-
mester). Under these circumstances, the quantitative data of 
standard morphology for each CS and early fetal period are 
required for evaluation of the body and limbs in clinically 
obtained data, to allow for better prenatal morphological 
diagnoses. In the present chapter, analysis of the skeletal 
system during the human embryonic and early fetal period 
based on MCA will be described, including the rib cage, 
shoulder girdle, pelvis, and femur.

13.2  Methods

All human embryo and early fetal specimens used are stored 
at the Congenital Anomaly Research Center of Kyoto 
University [4, 5]. The phase-contrast X-ray computed 
tomography (PXCT) and magnetic resonance imaging (MRI) 
were used for 3-D data acquisition [6, 7]. PXCT and MRI 
data from selected embryos were analyzed precisely as serial 
2-D and reconstructed 3-D images using Amira software 
(version 5.5; Visage Imaging, Berlin, Germany). The 3-D 
coordinates were initially assigned by examining the voxel 
position on 3-D images, which were subjected to MCA- 
based analysis such as principal component (PC) analysis 
and Procrustes analysis.
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13.3  Results

13.3.1  Rib Cage

The rib cage mainly consists of 12 pairs of ribs and vertebrae 
as well as the hypaxial muscles on the chest and upper 
abdominal parts of the body. In the early embryonic period 
until CS16, all visceral organs, such as the heart, lung, liver, 
and digestive tract, are covered with soft tissue. However, 
these organs are not protected by the rib cage because no 
cartilage or muscle formation is observed until CS16 [1, 8]. 
Such organs are covered by the rib cage until the end of the 
embryonic period. The rib cage becomes detectable with car-
tilage formation at CS17, expanding outward from the dorsal 
side of the chest-abdominal region [9]. The ribs elongate 
progressively to surround the chest, differentiating into the 
upper and lower rib cage regions by CS20. The ends of the 
corresponding ribs in the upper region elongate toward each 
other, leading to their joining and sternum formation between 
CS21 and CS23, whereas the lower region of the rib cage 
remains widely open. The rib cage can be divided anatomi-
cally and functionally into the upper and lower thoracic 
regions. The upper region is related to the pulmonary part of 
the respiratory system and upper limbs, while the lower tho-
rax is anatomically related to the diaphragmatic part of the 
respiratory system and also closer to the abdominal cavity 
and locomotor apparatus [10, 11]. We aimed to analyze the 
morphogenesis of all ribs from the first to the twelfth rib 
pairs plus vertebrae to compare their differences and features 
according to the position along the cranial–caudal axis dur-
ing the human embryonic period [12].

Seven rib cage landmarks, from the first to the twelfth 
vertebra, and the ribs (for a total of 84 landmarks) were 
located for each sample. A total of 384 sample data from 32 
samples were subjected to process and principal component 
(PC) analyses, using MATLAB (R2017b, MathWorks, USA) 
software-assisted algorithms based on orthogonal coordi-
nates of the voxels at each reference point. PC1 and PC2 
accounted for 76.3% and 16.4% (sum, 92.7%) of the total 
variance, respectively, indicating that the change in shape 
was accounted for by two components (Fig. 13.1a). Changes 
in PC1 resulted in a circular form surrounding the trunk. A 
decrease in PC1 showed closing of the rib tips, while an 
increase in PC1 showed opening of the rib tips. Changes in 
PC2 showed the movement of the lateral projection and dor-
sal convexity of the ribs. An increase in PC2 showed poste-
rior movement of the lateral projection at the middle part of 
the rib, which is related to the dorsal convexity of the ribs, 
while a decrease in PC2 showed anterior movement of the 
lateral projection at the middle part of the ribs.

The distribution of scatter plots of the PC1 and PC2 val-
ues for each rib showed a fishhook-like shape (Fig. 13.1b). 

The distribution was fitted to a quartic equation as follows: 
y  =  0.072X4  +  0.1535X3  +  0.1785X2–0.2976X  - 0.7001; 
R2 = 0.82. PC1 and PC2 plots for each rib moved positions 
along the fitting curve according to the development of CS18 
to CS23. The scatter plots moved in a wide range from the 
center right (quadrant IV) to the left, reached the left end 
(quadrant II) of the fitting curve, and moved slightly back in 
the upper ribs (1–7). However, the scatter plots moved in a 
narrower range from the center right to the center (quadrant 
IV) in the lower ribs. Movement was limited to the right 
(quadrant I) in the 11th and 12th ribs.

PC1 and PC2 values for each rib were plotted close to the 
fitting curve, for which the shape could be determined using 
a single parameter. We denote the fitting curve in the princi-
pal component subspace in Fig. 13.1b by F(Shape), where 
Shape is the arc length parameter along the fitting curve and 
provides a linear scale for shape representation. Thus, the 
right end of the fitting curve (2.0,1.8) was designated as ori-
gin O of F(Shape), while the left end of the curve (−2.3, 1.0) 
was 6.6. PC1 and PC2 plots by rib x can determine the near-
est point X on the fitting curve. The distance XO along the 
fitting curve was defined as the value of rib x for F(Shape).

F(Shape) = 0.5 showed that the paired ribs were on the 
dorsal side of the trunk with the opening of the rib tips 
(Fig. 13.1c). F(Shape) = 2.5 showed that the paired ribs sur-
rounded the dorsal side of the trunk with dorsal convexity of 
the ribs. The rib tips were separated. F(Shape) = 4.5 showed 
that the paired ribs had a circular form that surrounded more 
than half of the trunk, with the lateral projection at the mid-
dle part of the ribs. F(Shape) = 6.5 showed that the paired 
ribs had a circular form surrounding almost all of the trunk 
with the dorsal convexity of the ribs. The bilateral rib tips 
were almost closed. The change in F(Shape) at each rib pair 
is indicated. The development of each rib pair could be indi-
cated as an increase in the F(Shape) scale in almost all condi-
tions (Fig. 13.1d). However, the development of a subset of 
rib pairs (1st–8th) resulted in a plateau or even decrease in 
the F(Shape) scale at the end of the embryonic period 
(between CS22 and CS23).

Our data clearly demonstrated that human embryonic ribs 
all progress through common morphological forms irrespec-
tive of their position on the axis. The data suggested that in a 
parsimonious model, the common series of rib pairs can be 
controlled by a small number of factors.

13.3.2  Femur

The femur is a long bone that develops via endochondral 
ossification. In particular, the human femur first appears as 
mesenchymal condensation between CS16 and CS17. 
Chondrification occurs between CS17 and CS18 and subse-
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Fig. 13.1 Analysis of the rib cage based on MCA. (a) Changes in the 
ribs based on principal component analysis (PC) 1 and PC2. PC scores 
are indicated below each illustration. (b) Scatter plot of PC1 and PC2 

values for all rib pairs (n = 348). (c) Rib morphologies for each F(Shape) 
value. (d) Changes in F(Shape) according to rib number. CS18, purple; 
blue, CS19; green, CS20; red, CS21; orange, CS22; yellow, CS23
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quently proceeds to endochondral ossification between CS22 
and CS23 [1, 8, 13]. The cartilage structure influences bone 
structure formation, as the cartilage structure acts as the 
blueprint replaced by the bone structure. How the morpho-
logical features of the cartilage structure may be replaced by 
those of the bone structure has not been fully demonstrated, 

especially precise quantitative information regarding the 3-D 
form of the femur.

The morphogenesis and internal differentiation process of 
the femur were analyzed in 3-D from the fetus (CRL11–
185 mm, n = 62) [14]. Procrustes analysis was performed to 
distinguish the change in shape from the change in size 

Fig. 13.2 Analysis of the femur based on MCA. (a) Reconstruction of 
the Femur during development. (b, c) Reconstructed Procrustes shape 
coordinates for the proximal (b) and distal (c) epiphysis of the fetal 
femur. FH-f: center of the femoral head fovea; GT-1: most lateral point 
of the greater trochanter; GT-t: top of the greater trochanter; IF: 
Intercondylar fossa; LC-b: lateral condyle (bottom); LC-p: lateral con-
dyle (posterior); LE: lateral epicondyle; LT-b: bottom end of the lesser 
trochanter; LT-t: top of the lesser trochanter; LT-u: upper end of the 

lesser trochanter; MC-b: medial condyle (bottom); MC-p: medial con-
dyle (posterior); ME: medial epicondyle; SL-FH: semi-landmarks from 
the upper end to the lower end of the femoral head along the plane pass-
ing through the midpoint of the femoral head, femoral neck, and greater 
trochanter; SL-L: semi-landmarks along the roundness of the lateral 
condyle from the upper end to the opposite side; SL-M; semi-landmarks 
along the roundness of the medial condyle from the upper end to the 
opposite side
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according to growth using defined landmarks (n = 13) and 
semi-landmarks (n = 3). Centroid sizes at both the proximal 
and distal epiphyses showed a strong positive correlation 
with the ossified shaft length (OSL) (R2 = 0.99 and 0.99). 
The Procrustes shape coordinates for the proximal epiphysis 
indicated that each landmark on the greater and lesser tro-
chanters and femoral head fovea was located in the same 
position irrespective of the OSL (Fig. 13.2a). In comparison, 
semi-landmarks at femoral head (SL-FH), which lined the 
femoral head, moved in accordance with the increase in 
OSL. Procrustes analysis indicated that changes in the femur 
shape after ossification were limited, and were mainly 
detected at the time of initial ossification and shortly thereaf-
ter. In contrast, femoral neck anteversion and torsion of the 
femoral head continuously changed during the fetal period. 
The Procrustes shape coordinates for the distal epiphysis 
indicated that each landmark was located in the same posi-
tion irrespective of the OSL (Fig.  13.2b). semi-landmarks 
along the lateral and medial condyles (SL-L, SL-M) were 
located in different positions according to the OSL, although 
no obvious regularity was noted.

Torsion of the lower leg, including the femur (antever-
sion), was continuously observed during the fetal period and 
after birth [15–17]. Torsion of the femur may be affected by 
repetitive and persistent mechanical forces and the 
 intrauterine position [3]. With respect to mechanical forces, 
muscle tension and local forces exert a rotary stress on the 
epiphysis. Remodeling at the metaphysis and epiphysis dur-

ing the growth of a long bone such as the femur is well 
known as the mechanism that maintains the shape [8]. 
Anatomical landmarks remained in the same relative posi-
tion during subsequent endochondral ossification in the pres-
ent study, indicating that the remodeling system during 
femur shaft growth in the longitudinal direction is 
elaborate.

13.3.3  Shoulder Girdle

The shoulder girdle (pectoral girdle) is the set of bones in the 
appendicular skeleton, which anchors the upper limb on each 
side to the axial skeleton [18, 19]. In humans, it consists of 
the clavicle and scapula. Well and complex movements of 
the shoulder girdle cause difficulty in describing the default 
position of the shoulder girdle. Information about the 3-D 
morphogenesis and position of the entire shoulder girdle 
except for the scapula height during the embryonic and fetal 
periods is limited [20, 21].

The 3-D reconstruction and morphometry in our study 
revealed that all landmarks on the shoulder girdle remained 
at a similar height except the inferior angle, which means 
that the scapula enlarges in the caudal direction and reaches 
the adult position during the fetal period (Fig. 13.3a-b). The 
position of the shoulder girdle during the embryonic and 
fetal periods was unique (Fig. 13.3a and c). In contrast to the 
constant position of the clavicle, the scapula body was 
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rotated internally and upward at the initiation of the morpho-
genesis. Thus, the scapula body of both seems almost paral-
lel. The internal rotation of the scapula was changed 
externally, while the upward rotation remained unchanged. 
Compared with the adults, the scapula was still rotated inter-
nally and upward during the fetal period. The shoulder girdle 
is located in the ventral part of the body (vertebrae) during 
the initial morphogenesis, which changes the position to the 
lateral side of the vertebrae during the late embryonic period 
and fetal growth. The position during the fetal period may be 
consistent with that in adults. Such unique positioning of the 
shoulder girdle may contribute to the stage-specific posture 
of the upper limb, which is an important external feature for 
determining the staging, especially between CS18 and CS23 
[1]. For example, the axial skeleton (vertebrae) becomes 
straight and the upper limb extends vertically to the axial 
skeleton at CS19. The shoulder (humerus head) becomes 
externally evident, and the joint flexed with the elbow is pro-
nated at CS23. The posture may be explained, in part, by the 

unique positional change of the scapula during the embry-
onic period.

13.4  Conclusion

Skeletal system analysis based on MCA may provide a use-
ful standard for morphogenesis and morphometry of the 
skeletal system, which can serve as the basis to better under-
stand embryonic and early fetal development and aid in dif-
ferentiating normal and abnormal development.
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Abstract

The study of human embryology has a long history owing 
to its development in the human embryo collections that 
were first established in the nineteenth century. The first 
established large collection of human embryos was the 
Carnegie Collection, followed by several other major col-
lections. After the Carnegie stages of development were 
defined based on morphological features of developing 
embryos, researchers have conducted morphological 
measurements and analyses to discover new insights 
using the stored specimens efficiently. At present, con-
ducting analysis using nondestructive methods has been 
prioritized, and novel imaging techniques are adopted to 
preserve the specimens and have promoted the use of 3D 
imaging modalities. Visualizing tissues and organs in 
three dimensions has helped understand and characterize 
complex morphogenic changes in the body. The use of 3D 
imaging modalities started in the twentieth century using 
the histological sections for reconstruction, and now, 3D 
image datasets are also used. This chapter describes how 
the collections have been made, to provide new insights 
into human embryonic development, along with details of 
novel 3D imaging techniques for morphological analyses 
and their methods of application.

Keywords

Human embryo · Embryo collection · 3D imaging 
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14.1  History of Human Embryology, 
Embryo Collection, 
and Morphometrics

Research on human embryology began in the nineteenth cen-
tury using human embryo specimens derived from maternal 
deaths, abortion, or surgery [1, 2]. Although animal experi-
mental biology has developed in the past decades, human 
embryo specimens are still mainly used for research owing 
to the ethical restrictions on research using human embryos. 
In the past, some human embryo collections such as the 
Carnegie Collection, Blechschmidt Collection, and Kyoto 
Collection (Table 14.1) have contributed to the establishment 
and progress of human embryology. Resources on human 
development based on the results of research using human 
embryo collections are available and useful for students and 
researchers [9–12]. The details of the three collections men-
tioned above will be stated in the following text.

14.1.1  Human Embryo Collections

The Carnegie Collection is the oldest human embryo collec-
tion, established in 1887 by Franklin P. Mall. The collection 
grew at a rate of about 400 specimens per year, and the num-
ber of samples attained over 8000 by the 1940s. Mall and his 
colleagues prepared serial sections and created hundreds of 
3D models of the embryos using the wax plate technique. 
Eventually, more than 700 wax-based models were created, 
and their drawings are still used as schemes in textbooks on 
human embryology. During this era, several members 
strongly supported their research; Osborne O. Heard worked 
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as an embryo modeler and James D. Didusch as a scientific 
illustrator. The research from the Carnegie Collections was 
compiled in the journal “Contributions to Embryology of the 
Carnegie Institution of Washington” published from 1915 to 
1966. After Mall unexpectedly passed away in 1917, George 
L.  Streeter, George W.  Corner, and Ronan O’Rahilly took 
over the management of the collection. The greatest achieve-
ment of this collection was the establishment of “Carnegie 
stages,” the definition of human-specific developmental 
stages [2], which is widely used today. The collection is now 
preserved at the Human Developmental Anatomy Center 
under the directorship of Elizabeth Lockett in Washington 
D.C. (Fig. 14.1), and many researchers continue to seek col-
laboration. Further details on the Carnegie Collection can be 
found in earlier publications [13, 14] and on the website 
(http://nmhm.washingtondc.museum/collections/hdac/carn-
egie_history.htm).

The Blechschmidt Collection is stored at the Center of 
Anatomy, University of Göttingen, Germany. This collection 
was created in 1948 and named after Erich Blechshmidt, 
who directed the Anatomical Institute from 1942 to 1973. 
The collection contains a histological collection of serial 
sections and model collection reconstructed from the serial 
sections. Approximately 120 human embryos are sectioned 
serially into almost 200,000 serial sections and stored in the 
histology collection. In recent years, two digitization proj-
ects have been performed by the Kyoto Collection [7] and 
the Digital Embryology Consortium [15]. The model collec-
tion comprised 64 large models, which were generated 
from1946 to 1979. Each model is a large-scale polymer plas-
tic reconstruction from regularly spaced histological sections 
at an intermediate magnification [16]. These models are in a 
permanent exhibition housed at the center (Fig. 14.2).

The Kyoto Collection began in 1961 by Hideo Nishimura, 
and currently has over 44,000 human embryo specimens. In 
1975, the Congenital Anomaly Research Center was estab-
lished at Kyoto University. Since then, the collection has 
been stored at the center (Fig. 14.3) and provides a resource 
for international researchers of human embryology. One of 
the characteristics of the collection is that many abnormal 
embryos are included in the collection, such as embryos with 
holoprosencephaly [17]. External appearances of the 
embryos have been examined in detail, but most of the inter-
nal anomalies of the whole samples (meaning “not sectioned 
serially”) remain unchecked. Recent advances in imaging 
technology have enabled detailed imaging of the internal 

organs of the embryos, and multiple imaging techniques 
have been applied to this collection. The Kyoto Collection 
and the applied imaging techniques will be introduced in 
Sect. 14.2 of this chapter.

14.1.2  Classical Morphometrics Using Human 
Embryos and Fetuses

Morphogenesis occurs dramatically during embryonic and 
fetal periods, and microscopic observation of the histological 
sections was the only way to analyze the morphogenetic 
changes until computer-assisted techniques became avail-
able. The morphological shape of the embryo and fetus 
changes in three dimensions(3D); therefore, visualization by 
3D reconstruction using wax plates was significant [18]. The 
resource for the reconstruction was serial sections. Now, the 
digitization of the histological glass slides is used as one 
solution for preserving the collections, which could also 
decrease the maintenance cost for administrators of human 
embryo collections. In 2014, the Digital Embryology 
Consortium, an international partnership, was established to 
digitize, preserve, and disseminate the major embryology 
histological collections for researchers [15].

The next step of morphological analyses is morphomet-
rics; one of the early studies on embryonic and fetal mea-
surement was published by Mall, using the Carnegie 
Collection [19]. In the early era, the researchers measured 
the volume, length, and weight for quantitation. In the late 
twentieth century, quantitative analyses of human embryos 
were still performed based on such measurements [20, 21]. 
Magnetic resonance (MR) imaging and X-ray computed 
tomography (CT) have been developed, and 3D reconstruc-
tion and analyses have become possible. Therefore, to apply 
3D analyses to human embryology, 3D imaging techniques 
are required to obtain high-resolution images of human 
embryos and fetuses, which can be applied to MCA.

14.2  Imaging of Human Embryo and Fetus

As mentioned above, the classical reconstruction method 
was wax modeling, and the technique has evolved into digi-
tized materials and computer graphics (CGs) [22]. Stained 
serial sections were digitized into the color images of TIFF, 
JPEG, or PNG format, and then they are reconstructed into 

Table 14.1 Comparison among major human embryo collections (Based on [3])

Collection Place Number Characteristics Establishment
Collaboration with
the Kyoto Collection

Carnegie Washington DC, USA About 10,000 Human fixed specimens and histology 1887 [4–6]
Belchschmidt Göttingen, Germany About 120 Human histology 1948 [7, 8]
Kyoto Kyoto, Japan About 44,000 Human fixed specimens and histology 1961 –
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3D models using 3D software (Fig. 14.4). Previously, 3D 
software were scarce and expensive, but now many software 
programs are available, some of which are free. For example, 
the embryos in the Kyoto Collection were first reconstructed 
using Cosmozone-2SA [23], next NIH image [24], 
DeltaViewer [22], Volocity [5], Amira [25], and 3D Slicer 
(https://www.slicer.org/). Reconstruction from serial sec-
tions requires registration and is time consuming. In contrast, 
3D imaging allows rapid 3D rendering and digital re- 
sectioning in arbitrary planes and is also convenient for mor-

phometric analyses. However, the serial section created so 
far has a lot of information and is a valuable sample; there-
fore, it should be used effectively. There are some problems 
with the serial sections coming from the process of section-
ing, fixation, and staining; sections are stretched, bent, tore 
during sectioning, folded during fixation, and stained 
unevenly. These problems have disturbed smooth recon-
struction, and a new automatic alignment method is now 
established using nonrigid registration [26] (Fig. 14.4). The 
method is now being improved, and it is expected that smooth 

Fig. 14.1 The Carnegie 
Collection. (Top left) Many 
wax-plate reconstructions are 
stored on the shelf. There are 
several shelves in the center. 
(Top right) Vascular system in 
an embryo is reconstructed. 
(Bottom) Reconstructions of 
the embryo at Carnegie stage 
12. The left one is surface 
reconstruction, and the right 
one is a model with central 
nervous system (CNS) and 
primitive gut. The model seen 
in the back of the desk is 
another embryo 
reconstruction, unrelated to 
the two in the front row
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3D reconstruction from serial sections will become possible 
in the near future.

For unsectioned specimens, 3D imaging methods are 
available. Multiple 3D-imaging modalities have been applied 
to human embryology.

14.2.1  Episcopic Fluorescence Image Capture

Episcopic fluorescence image capture (EFIC) is a 3D-imaging 
method that relies on the embedding of the embryo in paraf-
fin [27] (Weninger and Mohun 2002), followed by sectioning 
of the paraffin block using a sliding microtome. Immediately 
after cutting each section, the surface of the block is imaged 
using tissue autofluorescence. The block is accurately placed 
in the same photo position on the microtome after cutting 
every time; therefore, the obtained 2D image stacks are com-
pletely registered [28]. EFIC is a destructive way to image 

because the sample is sectioned. The resolution is approxi-
mately 2 μm/pixel in the section plane, depending on the 
magnification of the microscope [5]. This method has been 
applied to human embryos of the Kyoto Collection [5].

14.2.2  Magnetic Resonance Imaging, MR 
Microscopy

Magnetic Resonance (MR) imaging is a powerful tool to 
image not only human patients but also chemical-fixed sam-
ples (Fig. 14.5). The resolution of the MR device for clinical 
use is now 200 μm/pixel, which is sufficient for imaging of 
the human fetus. MR devices specialized for shooting small 
objects are called MR microscopes and have been previously 
applied to developmental embryology in a number of animal 
models [29–31]. It is a noninvasive and nondestructive imag-
ing technique; therefore, it is extremely effective for imaging 

Fig. 14.2 The Blechschmidt 
Collection. (Top) The models 
are in a permanent exhibition 
housed in the basement room 
of the center. (Bottom) 
Reconstructions from the 
same embryos (CRL 6.3 mm): 
(Bottom right) surface 
reconstruction, (Bottom left) 
CNS, primitive gut, and 
primitive urinary system
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precious human embryos. Imaging of human embryos by 
MR microscopy was reported using superconducting mag-
nets ranging from 1.0  T to 9.4  T [32–34], and over 1200 
human embryos from the Kyoto Collection were imaged 

using a super-parallel MR microscope operated at 2.34  T 
[35–38].

14.2.3  X-Ray Computed Tomography

X-rays are electromagnetic waves characterized by ampli-
tude and phase. When X-rays pass through a sample, the 
phase shifts, and the amplitude decreases. Conventional 
X-ray imaging (radiography) is based on absorption-contrast 
(amplitude imaging), and phase-contrast X-ray imaging is 
based on phase imaging [39]. Fetal bones, which become 
hard by calcification, can be imaged by conventional X-ray 
imaging, whereas embryonic bones cannot be imaged owing 
to their softness, and X-rays are hardly absorbed by the 
embryo. In contrast, to detect the phase shift, X-rays must 
pass through the sample. Therefore, phase-contrast imaging 
is applied to soft samples such as embryos and is not applied 
to hard samples such as fetuses. The sensitivity of the phase 
shift is approximately 1000 times larger than that of absorp-
tion [39]. In the detection of phase shift, conversion of phase 
shift into X-ray intensity is required by interferometry or dif-
fractometry, and the X-ray intensity can be measured using 
an X-ray camera. Devices based on this principle were devel-
oped [40, 41]. Human fetuses have been imaged by conven-
tional X-ray CT [42], and human embryos have already been 
imaged by phase-contrast X-ray CT [43] (Fig. 14.6).

14.3  Morphometrics of Human Embryos 
Using 3D Imaging

It is said that processing image data obtained by 3D imaging 
is easy, but morphometry for MCA using such 3D data can-
not be performed without segmenting regions of interest 
(ROI). Computer-assisted segmentation technology is in 
progress, and manual segmentation is the most reliable at 
this stage. Some images of human embryos and fetuses in the 
Kyoto Collection have been manually segmented, and they 
are used and analyzed for MCA analyses. Early papers 
focused on two dimensions [44], but soon extended the focus 
to three dimensions [45]. Analyses of dynamic morphologi-
cal changes from the embryonic stage to the fetal period are 
in progress by the method of MCA, and some of the results 
have already been published as follows: changes in the posi-
tion of the eyes on the face [46], complex morphology of the 
collecting duct of the kidney [47], morphological changes on 
the surface of the brain [48], and skeletal system (face [49], 
femur [50], rib [51]). For 3D analyses, it is necessary to set 
reference points that indicate homologous positions for dif-
ferent specimens. During the development of humans and 
other animals, there are problems in which the reference 
points move significantly and the shape changes greatly as a 

Fig. 14.3 The Kyoto Collection. (Top) Storage lookers in the speci-
men room. Formalin-fixed embryos in bottles are stored in bottles. 
(Center) Microscopic room. Many sets of serial sections (approxi-
mately 1000 embryos) are stored. (Bottom) Human embryo specimens 
in glass tubes for MRI scan. (Bottom left) 5 mm tube, (Bottom center) 
10 mm tube, (Bottom right) 20 mm tube
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result, or new points appear owing to the change in the shape. 
Regarding the former, one solution is shown [52]. To resolve 
the latter is important, now and in the future, to understand 

the developmental changes as a continuous phenomenon 
from the MCA perspective.

Fig. 14.5 X-ray CT. (Top) Conventional X-ray CT for a fetus and 
(Center and Bottom) phase-contrast X-ray CT for an embryo. (Center 
Left) Surface reconstruction and (Center Right) midsagittal section; 

(Bottom Left) coronal section in the head region, and (Bottom Right) 
transverse section in the chest region

Fig. 14.4 3D models of human embryos from serial sections. (Top) 
Manual segmentation with manual registration. (Top left) Blood vessels 
are marked with manual segmentation: arteries (red) and veins (blue). 
(Top right) Reconstruction by manual registration. (Bottom) Automatic 

registration of serial images from histological sections. (Bottom left) 
Original image of the human embryo, midsagittal section. (Bottom 
right) midsagittal resection of 3D volume obtained from 2D stack in 
transverse section
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Fig. 14.6 X-ray CT. (Top) 
Conventional X-ray CT for a 
fetus and (Center and Bottom) 
phase-contrast X-ray CT for 
an embryo. (Center Left) 
Surface reconstruction and 
(Center Right) midsagittal 
section; (Bottom Left) coronal 
section in the head region, 
and (Bottom Right) transverse 
section in the chest region
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Abstract

Congenital heart disease (CHD) involves structural abnor-
malities in blood vessels connected to the heart or in the 
heart itself, which are present since birth. Morphological 
abnormalities in CHD lead to abnormalities in blood flow 
and circulatory function. Education and training on car-
diac morphology for medical students and cardiologists 
have traditionally been based on a hands-on experience 
with congenitally malformed cardiac specimens; how-
ever, archives are no longer widely available due to mul-
tiple reasons. This chapter presents several digitalization 
of congenitally malformed heart specimens to address 
this issue. It also introduces several studies on shape mod-
eling for CHD, with a focus on topology.
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15.1  Modeling for Congenital Heart 
Malformation Focused on Topology

15.1.1  Introduction

The heart functions by cycling through contraction and 
expansion, so the morphology and function of the heart are 
closely related [1]. Congenital heart disease (CHD) involves 
structural abnormalities in blood vessels connected to the 
heart or in the heart itself, which are present since birth [2]. 

A CHD results when the heart, or blood vessels near the 
heart, fails to develop normally before birth [3]. The heart 
has a complex three-dimensional (3D) structure, and dis-
eases such as CHD increase that complexity.

Atrial septal defects (ASDs) constitute 8% to 10% of 
CHDs in children [4]. An ASD is a “hole” in the wall that 
separates the left and right atria. It allows oxygen-rich blood 
to leak into the oxygen-poor blood chambers of the heart [3]. 
Thus, morphological abnormalities in CHD lead to abnor-
malities in blood flow and circulatory function. In other 
words, some CHDs alter the topology of blood circulation.

Education and training on morphology for medical stu-
dents and professionals specializing in pediatric cardiology 
and surgery has traditionally been based on a hands-on expe-
rience with congenitally malformed cardiac specimens [5]. 
However, the frequency of autopsies is decreasing globally. 
There are multiple reasons for this, including improved treat-
ments, the development of imaging methods, and the lack of 
pathologists. Archived specimens are damaged by repeated 
use, and there is concern that such specimens, including 
those from patients with CHD, will be lost. Therefore, imme-
diate action is required, and we believe that the digitization 
of specimens is an appropriate and effective way to preserve 
them [6]. A 3D computational shape model of the heart 
would be useful for medical education, and the combination 
of such models with biophysical simulations would contrib-
ute to our understanding, diagnosis, and treatment of com-
plex diseases, including cardiac arrhythmias [6, 7].

This chapter presents several digitalization of congeni-
tally malformed heart specimens to address the above- 
mentioned issues. It also introduces several studies on shape 
modeling for CHD, with a focus on topology.
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15.1.2  Acquisition of Three-Dimensional 
Images of Congenital Heart 
Malformations

Heart specimens with congenital heart malformation can be 
digitalized in 3D using two methods. The first involves stack-
ing a large number of microscopic images, which is known 
as 3D reconstruction: the target part is excised and sectioned 
by a pathologist, stained, and microscopic images are 
acquired. The second method involves the acquisition of 
volumetric data using a medical imaging modality such as 
computed tomography (CT) or magnetic resonance imaging 
(MRI).

The former method allows the acquisition of detailed 
images with high spatial resolution and visualization of 
detailed pathological conditions by staining. However, it is 
generally difficult to reconstruct volumetric data by slice-by- 
slice registration. Also, the specimen is irreversibly lost 
because of the cutting and slicing required. In contrast, 3D 
data acquired using CT or MRI can be obtained without 
damaging the specimen. However, these techniques cannot 
provide information as detailed as that provided by staining, 
and their spatial resolution is also inferior to that of micro-
scopic imaging.

15.1.2.1  Acquisition of Microscopic Images
Virtual microscopy is used in many hospital pathology 
departments. It involves the automatic acquisition of micro-
scopic images of various resolutions of specimens mounted 
on slides and stained. However, it is typically difficult to 
reconstruct volumetric data from a series of such micro-
scopic images. We have reconstructed volumetric data for 
the pulmonary vein (Takayasu disease) [8] and atrioventricu-
lar node (normal) by manual registration [9, 10]. Kugler 
et al. demonstrated automatic volume reconstruction of the 
pancreas of a KPC mouse [11].

15.1.2.2  Acquisition of Macroscopic Images
CT and MRI techniques can provide obtain volume data 
directly and non-invasively, but they have limited ability to 

reflect the physical characteristics of each part of the speci-
men. The acquisition of volume data from isolated hearts 
using imaging devices is also known as ex vivo imaging.

Howard et al. [12] used MRI to image two human hearts 
deemed not viable for transplantation. Neither patient had 
any history of a heart condition that would suggest an atrial 
defect, yet an ASD, a type of CHD, was found in each heart. 
The authors presented images, videos, and 3D reconstruc-
tions to provide a clear view of the anatomy of ASDs. Hill 
et  al. [13] imaged 12 human hearts deemed not viable for 
transplantation, using endoscopic video cameras inserted 
into the cardiac chambers. The Visible Heart Lab at the 
University of Minnesota created a heart database, which it 
has made publicly available on the Internet [14]. Kiraly et al. 
[5] scanned about 400 human cardiac specimens using high- 
resolution micro-CT/MRI to establish a virtual museum of 
congenital heart defects.

Clinical 3D MRI sequences provide good image contrast 
with high spatial resolution. However, the optimal MRI 
sequence for imaging of autopsied human heart specimens 
fixed in formalin, which replaces water in cardiac tissue, is 
uncertain. We compared the visibility of a formalin-fixed 
heart specimen using various 3D MRI sequences to deter-
mine the optimal sequence for obtaining macroscopic images 
and concluded that magnetization-prepared rapid acquisition 
with gradient echo (MPRAGE) is the most adequate sequence 
for obtaining macroscopic images of human-autopsied heart 
specimens with CHDs [15] (Fig. 15.1).

15.1.2.3  Archiving of Images
Archiving of images improves their accessibility and 
increases the value of stored data. As noted above, the Visible 
Heart Lab at the University of Minnesota maintains a heart 
database that is publicly available on the Internet [14], and 
Kiraly et  al. have reported the establishment of a virtual 
museum of congenital heart defects, which contained about 
400 specimens of hearts with CHD [5]. Additionally, the 
National Institutes of Health’s 3D Heart Library provides a 
repository for digital reproductions of human heart anato-
mies, including CHD [16].

a b c d

Fig. 15.1 Comparison of the visibility of a formalin-fixed human heart specimen using various 3D MRI sequences. (a) MPRAGE, (b) FLASH, 
(c) T2-SPACE, (d) True-FISP
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15.1.3  Analysis of Heart Morphology 
and Topology

15.1.3.1  Segmentation and Visualization 
from Volume Data

Segmentation is important for effective visualization. A 
variety of segmentation methods for microscopic and mac-
roscopic images have been proposed. The following discus-
sion introduces the system we have developed for the 
visualization of microscopic images [9, 10] and macro-
scopic images [6].

Formalin-fixed paraffin-embedded tissues taken from 
around the atrioventricular node were serially sectioned, and 
sections obtained at 200 intervals were mounted on glass 
slides and stained with Masson’s trichrome. Next, micro-
scopic images were obtained using an Aperio’s slide scanner. 
The 30 slices were segmented into seven regions, and the 
slices were aligned manually. An iPad application was devel-
oped to import the images and display them in 3D. We used 
Unity™ as the development framework. There is a marked 
difference between the resolution of the slice image 
(0.50  μm) and the slice spacing (400  μm). Therefore, the 
interpolation method and the mesh generation method have a 
considerable influence on the quality and reproducibility of 
the 3D display. A comparison of various methods revealed 
that the Poisson surface reconstruction method [17] it opti-
mal in terms of display quality and operability. We imple-
mented a transparency change function and a 
gyro-sensor-based viewpoint change function in the iPad 
app, which enabled more intuitive operation.

We also developed a system for visualizing macroscopic 
images [6]. We obtained MRI data from an isolated heart 

specimen using MPRAGE sequences (FOV 320, voxel size 
of 1.0 × 1.0 × 1.0 mm). For this, we used a three clinical 
machine (MAGNETOM Verio, Siemens AG Healthcare 
Sector, Erlangen, Germany). Next, we performed an interac-
tive volumetric segmentation using VoTracer2 software [18]. 
Another iPad application was developed to visualize the seg-
mented MRI volume data. We used the Unreal Engine™ [19] 
as the software development framework. Figure 15.2a pres-
ents an overview of the iPad application. Users can freely 
zoom and change the viewpoint by means of touch and 
pinch-in/out operations; the application also has translucent 
display and cross-section display functions. Users can visu-
alize MRI datasets obtained from macroscopic specimens.

15.1.3.2  Interactive Extraction of Graph-like 
Structure from Volume Data

CHD causes abnormalities in hemodynamics by altering the 
connections between the heart chambers and blood vessels. 
Consequently, insufficient blood reaches the lungs, resulting 
in the circulation of oxygen-poor blood [20]. A “graph” is a 
mathematical representation used to model the pairwise rela-
tionships between objects, making it suitable for represent-
ing the characteristics of CHD. Conventional computational 
organ models involving voxels, polygons, or statistical 
shapes, are poor representations of heart functions such as 
hemodynamics. Therefore, we are developing interactive 
software for extracting graph-like structures representative 
of heart morphology and function [21]. Figure 15.2b pres-
ents an overview of the system. The input to the system is an 
MRI dataset obtained from macroscopic specimens. The sys-
tem generates supervoxels using the simple linear iterative 
clustering (SLIC) segmentation algorithm [22]. The output is 

a b

Fig. 15.2 Visualization and analysis of volume data, (a) iPad Viewer (b) system for extracting graph-like structures
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the optimal path between two supervoxels specified by the 
user. We intend to enable the user to extract the graph-like 
structure embedded in the volume data.

15.1.4  Ontology of Congenital Heart 
Malformations

For a computer to process the graph structure data 
described above according to its semantics, an ontology is 
needed. By referencing such an ontology, we can link 
topology (morphological information) to the knowledge of 
the disease (conceptual information) in a machine-read-
able database. An ontology of congenital heart malforma-
tion may allow identification of a disease from topology or 
generation of morphological information from the name of 
the disease.

The Foundational Model of Anatomy (FMA) [23] is an 
ontology that expresses the anatomical structure of a healthy 
human body. The FMA ontology contains approximately 
75,000 classes and over 120,000 terms, over 2.1 million rela-
tionship instances. Although the FMA is comprehensive, it 
contains only healthy anatomical structures and not diseased 
structures or functional information such as blood flow. 
Several ontologies of “diseases” or “abnormalities” are 
available [24, 25], but they do no include the relationship 

between morphological and functional abnormalities in 
CHD. Therefore, we have developed a new ontology of con-
genital heart malformation by extending the FMA. We used 
Protégé software [26] as an ontology construction support 
tool. Figure 15.3 presents a sample description of structural 
and functional abnormalities and their relationships in cases 
of ASD.

15.1.5  Conclusion

The availability of heart specimens with congenital heart 
malformations has been reduced dramatically as a result of 
stricter data protection regulations, fewer autopsies, natural 
attrition, and improved treatments [5]. The digitalization of 
macroscopic and histological specimens could overcome 
this issue.

“Graph” is important in computational cardiac modeling 
because graphs can represent the morphology, function, and 
structure of the heart.
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Fig. 15.3 Sample of an ontology of congenital heart malformation
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A Technique for Measuring the 3D 
Deformation of a Multiphase Structure 
to Elucidate the Mechanism of Tumor 
Invasion

Yasuyuki Morita

Abstract

Cancer is a leading cause of death worldwide and over 
90% of cancer-related deaths are due to metastasis. 
Therefore, understanding the mechanism of metastasis is 
an important goal for treating cancer patients. Metastasis 
is initiated by the invasion of cancer cells from a primary 
lesion via the interstitial extracellular matrix (ECM). 
Metastasis involves biomechanical interactions between 
the ECM and a single cancer cell or cancer cell aggrega-
tion (cancer spheroid) as it makes its way through ECM 
collagen fibers. It is important to quantify the ECM defor-
mation fields produced in this process to clarify the bio-
mechanical interactions. We visualized the dynamic 
deformation of the ECM using a digital volume correla-
tion (DVC) method. As a result, my research group quan-
tified the three-dimensional ECM deformation caused by 
a single cancer cell or cancer spheroid. This work would 
be contributory to construct a fundamental knowledge of 
metastasis suppression when investigated using the multi-
disciplinary computational anatomy (MCA) techniques.

Keywords

Cancer · Metastasis · Extracellular matrix (ECM)  
Epithelial–mesenchymal transition (EMT) · Digital 
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16.1  Introduction

Cancer has been the leading cause of death in Japan since 
1981, followed by cardiac disorders and vascular brain dis-
ease [1]. The number of fatalities due to the last two disor-

ders have remained stable or decreased with the development 
of treatments. By contrast, cancer has been increasing con-
sistently since the end of World War II and this trend is pre-
dicted to continue, as in other developed countries [2]. 
Recent studies have revealed that 90% of cancer deaths are 
due to metastasis [3, 4].

Briefly, cancer progresses as follows (Fig. 16.1):

 (i) The primary lesion gains necessary nutrients by attract-
ing blood vessels.

 (ii) Cancer cells proliferate and grow in the primary lesion.
 (iii) Some cancer cells leave the lesion and invade the inter-

stitial extracellular matrix (ECM).
 (iv) These cells metastasize to other tissues through the 

intravasation and extravasation of blood or lymph 
vessels.

Cancer is a disorder of cellular function. When cancer 
cells proliferate only in a primary lesion [processes (i) and 
(ii) above], this is a benign growth, which we can cure. If 
cancer cells in the primary lesion acquire invasive capacity 
through epithelial–mesenchymal transition (EMT) and 
invade the ECM [process (iii)], they metastasize to other tis-
sues through blood or lymph vessels [process (iv)]. This is 
malignant growth and is difficult to control. We can say that 
invasion of the ECM by cancer cells is the initiation of 
metastasis. This invasion is a biomechanical interaction, 
since cancer cells migrate through the ECM network of col-
lagen fibers by pushing and pulling the fibers. Knowledge of 
the biomechanical interaction between cancer cells and the 
ECM is important for elucidating the biomechanical mecha-
nism of metastasis. However, most studies of these 
 relationships have studied two-dimensional (2D; cancer cells 
on hard plastic dishes) or 2.5-dimensional (2.5D; cancer 
cells on a soft gel) cultures [5–8]. The outcomes of such 
studies do not reflect the actual biomechanical interaction, 
since the primary metastasis microenvironment (the ECM) is 
a 3D-fiber-rich collagen network. Cellular behavior is very 
different in 2D and 3D environments [9]. Therefore, the bio-
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mechanical interaction in a 3D environment must be eluci-
dated, but few studies have examined this due to the 
difficulties involved [10, 11]. My research group hopes to 
contribute to clarifying the biomechanical mechanism of 
metastasis by visualizing the 3D deformation of the ECM 
caused by a single cancer cell or cancer cell aggregation 
(cancer spheroid). The standard treatments for metastatic 
cancer are chemotherapy and radiation therapy, although 
both have adverse effects. We believe that an understanding 
of the biomechanical interaction between cancer cells and 
the ECM will enable the development of new methods to 
control metastasis.

16.2  Biomechanical Interaction between 
a Single Cancer Cell and the ECM

The human cervical cancer cell line HeLa (RCB0007; 
RIKEN BRC, Tsukuba, Japan) was used as a typical epithe-
lial cancer cell. EMT was induced in the cells using trans-
forming growth factor-β1 (TGF-β1). EMT typically changes 
epithelial cancer cells into mesenchymal cancer cells, which 
have higher metastatic potential [12, 13]. Many triggers can 
induce EMT, such as SNAIL excitation [5, 14] and biochem-
ical interaction with cancer-associated fibroblasts (CAFs) 
[15]. TGF-β is often used to induce EMT [6–8, 13, 16], 
because it has the broadest effects among the cytokines pro-
duced in the cancer environment, and influences many 
aspects of tumorigenesis [17]. We added 20 ng/mL TGF-β1 
(PeproTech, Rocky Hill, NJ, USA) to the culture medium. 
Figure 16.2 shows the levels of markers for the cells treated 
with TGF-β1. TGF-β1 treatment upregulated the expression 
of fibronectin 1 (Fn1), a mesenchymal cell marker, by more 
than 11-fold. As a cellular adhesion molecule, Fn1 is impor-
tant in EMT interactions [18]; its high expression is likely to 
contribute greatly to the reconstruction of the ECM. In addi-
tion, the addition of TGF-β1 reduced the epithelial 
 characteristics of the HeLa cells, shown by the slight decrease 
in expression of the epithelial cell marker keratin 19 (Krt19) 
[19]. qRT-PCR results indicated that the addition of TGF-β1- 
induced EMT in the HeLa cells. Consequently, the migration 

speeds of HeLa cells in the gel roughly doubled from 80 to 
180 nm/min with the addition of TGF-β1 (data not shown). 
The full-field 3D deformation of the collagen gel around a 
cancer cell was determined using the digital volume correla-
tion (DVC) method [20, 21]. When the cancer cells were 
embedded in a 3D collagen gel, 7.0% carboxylate-modified 
fluorescent polystyrene microspheres (FluoSpheres F8821, 
1.0-μm diameter, red dye; Thermo Fisher Scientific, 
Waltham, MA, USA) were dispersed randomly in the gel. 
The movement of the microspheres reflects gel deformation, 
since the carboxyl group of the microspheres binds cova-
lently with collagen fibers [22]. Immunofluorescence stain-
ing with actin–green fluorescent protein (GFP; Life 
Technologies, Carlsbad, CA, USA) was used to examine the 
location and morphology of cancer cells in the gel using con-
focal laser scanning microscopy (A1Rsi; Nikon Instech, 
Tokyo, Japan). Figure 16.3 shows representative examples of 
the ECM deformation caused by HeLa cells. The maximum 
displacement and deformation of the ECM were greater in 
the HeLa cells with TGF-β1. Once the deformation field of 
the ECM around a cell was determined, the strain tensor of 
the ECM was computed using a displacement gradient tech-
nique [23]. Material constitutive equations describing the 
relationship between the strain and stress tensors were used 
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Fig. 16.2 mRNA expression in HeLa cells in the presence of TGF-β1. 
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to determine the traction stress of the cell [24]. The ECM 
collagen gel can be considered a linear elastic material, since 
the strain was ≤10% [25, 26]. Figure 16.4 plots the ratio of 
the traction forces of the cancer cell. EMT was induced by 
the addition of TGF-β1 and the resulting traction forces 
roughly doubled. Therefore, the enhanced migration speed 
and traction forces induced by EMT contribute to the 
increased invasiveness and metastasis of cancer cells.

16.3  Biomechanical Interaction between 
Cancer Spheroids and the ECM

My group has also been investigating deformation of the 
ECM surrounding a cancer spheroid, which is a model of 
actual cancer tissue. In this study, the cancer spheroids con-
sisted of aggregations of pancreatic adenocarcinoma cells 
(PANC-1). The spheroids were embedded in a collagen gel, 
and the deformation of the collagen ECM caused by the 
spheroid was determined using the DVC method [20, 21]. 
Figure 16.5 shows a representative ECM deformation field. 
The deformation increased with time. Once the deformation 
field around the spheroid was determined, the bulk strain of 
the ECM was calculated using a displacement gradient tech-
nique. Figure 16.6 shows the bulk strain of the ECM. The 
cancer spheroid formed a fluctuating deformation field in the 
surrounding ECM, implying that there was pushing and pull-
ing deformation of the ECM (Fig. 16.6a). Finally, contrac-
tion dominated the deformation of the ECM (Fig. 16.6b) and 
this was particularly high around the tip of the invasive pro-
trusion of the spheroid (dotted circles in Fig. 16.6b).

16.4  Conclusion

My research group quantified the 3D deformation fields in the 
ECM exerted by a single cancer cell or cancer spheroid. Now, 
we hope to elucidate the mechanism of cancer metastasis by 
studying the detailed biomechanical interaction between can-
cer cells and the ECM. Consequently, the knowledge of the 
biomechanical interaction will make it possible to predict 
metastatic pathways of the cancers, and then suppress and 
control cancer progression by observing the in-situ deforma-
tion field in the tissue around cancer with time using the mul-
tidisciplinary computational anatomy (MCA) techniques.

10
0 
mm

327 mm
327 mm

[mm]

D
is

pl
ac

em
en

t

5

4

3

2

1

0
x

z
y

a b

Fig. 16.3 ECM deformation field induced by a HeLa cell: (a) before and (b) after adding TGF-β1. The black spheres show the cell’s location

Without
TGF-b1

With
TGF-b1

***

n = 12

R
at

io
 o

f t
he

 m
ax

im
um

tr
ac

tio
n 

st
re

ss
, [

kP
a]

3

2

1

0

4

Fig. 16.4 Ratio of the maximum traction force exerted by a HeLa cell 
without and with TGF-β1. Data are normalized to the corresponding 
maximum traction force exerted by a Hela cell without TGF-β1 (defined 
as 1). ***p < 0.001

16 A Technique for Measuring the 3D Deformation of a Multiphase Structure to Elucidate the Mechanism of Tumor Invasion



142

References

 1. The Ministry of Health, Labour and Welfare in Japan, Annual 
reports of Vital Statics (in Japanese), 2018.

 2. The National Institute of Population and Social Security Research 
in Japan, Reports of World’s Vital Statics (in Japanese), 2019.

 3. Steeg PS. Targeting metastasis. Nat Rev Cancer. 2016;16:201–18. 
https://doi.org/10.1038/nrc.2016.25.

 4. Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat 
Rev Cancer. 2006;6:449–58. https://doi.org/10.1038/nrc1886.

 5. Ghosh D, Dawson MR. Microenvironment influences cancer cell 
mechanics from tumor growth to metastasis. In: Dong C, Zahir N, 
Konstantopoulos K, editors. Biomechanics in oncology, vol. 1092; 
2018. p. 69–90. https://doi.org/10.1007/978- 3- 319- 95294- 9_5.

 6. Nalluri SM, O'Connor JW, Virgi GA, Stewart SE, Ye D, Gomez 
EW. TGFβ1-induced expression of caldesmon mediates epithelial- 
mesenchymal transition. Cytoskeleton. 2018;75:201–12. https://
doi.org/10.1002/cm.21437.

 7. Mekhdjian AH, Kai FB, Rubashkin MG, Prahl LS, Przybyla LM, 
McGregor AL, et al. Integrin-mediated traction force enhances pax-
illin molecular associations and adhesion dynamics that increase the 
invasiveness of tumor cells into a three-dimensional extracellular 
matrix. Mol Biol Cell. 2017;28:1467–88. https://doi.org/10.1091/
mbc.E16- 09- 0654.

 8. Lam CRI, Tan C, Teo Z, Tay CY, Phua T, Wu YL, et al. Loss of 
TAK1 increases cell traction force in a ROS-dependent manner to 
drive epithelial-mesenchymal transition of cancer cells. Cell Death 
Dis. 2013;4:e848. https://doi.org/10.1038/cddis.2013.339.

 9. Pedersen JA, Swartz MA.  Mechanobiology in the third dimen-
sion. Ann Biomed Eng. 2005;33:1469–90. https://doi.org/10.1007/
s10439- 005- 8159- 4.

 10. Koch TM, Munster S, Bonakdar N, Butler JP, Fabry B. 3D traction 
forces in cancer cell invasion. PLoS One. 2012;7:e33476. https://
doi.org/10.1371/journal.pone.0033476.

 11. Indra I, Undyala V, Kandow C, Thirumurthi U, Dembo M, 
Beningo KA.  An in  vitro correlation of mechanical forces and 
metastatic capacity. Phys Biol. 2011;8:015015. https://doi.
org/10.1088/1478- 3975/8/1/015015.

 12. Voulgari A, Pintzas A. Epithelial-mesenchymal transition in can-
cer metastasis: mechanisms, markers and strategies to overcome 
drug resistance in the clinic. Biochim Biophys Acta-Rev Cancer. 
1796;2009:75–90. https://doi.org/10.1016/j.bbcan.2009.03.002.

 13. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial- 
mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96. 
https://doi.org/10.1038/nrm3758.

 14. McGrail DJ, Mezencev R, Kieu QMN, McDonald JF, Dawson 
MR.  SNAIL-induced epithelial-to-mesenchymal transition pro-
duces concerted biophysical changes from altered cytoskeletal gene 
expression. FASEB J. 2015;29:1280–9. https://doi.org/10.1096/
fj.14- 257345.

 15. Giannoni E, Bianchini F, Masieri L, Serni S, Torre E, Calorini L, 
et  al. Reciprocal activation of prostate cancer cells and cancer- 
associated fibroblasts stimulates epithelial-mesenchymal transition 
and cancer stemness. Cancer Res. 2010;70:6945–56. https://doi.
org/10.1158/0008- 5472.CAN- 10- 0785.

 16. Yoshie H, Koushki N, Molter C, Siegel PM, Krishnan R, Ehrlicher 
AJ. High throughput traction force microscopy using PDMS reveals 
dose-dependent effects of transforming growth factor-β on the 
epithelial- to-mesenchymal transition. J Vis Exp. 2019;148:e59364. 
https://doi.org/10.3791/59364.

 17. Ikushima H, Miyazono K.  TGFβ signalling: a complex web in 
cancer progression. Nat Rev Cancer. 2010;10:415–24. https://doi.
org/10.1038/nrc2853.

12

a b

6

D
is

pl
ac

em
en

t

0
2 h0 h

Cancer
spheroid

z

x
100 µm

[µm]Fig. 16.5 ECM deformation 
field induced by a PANC-1 
cancer spheroid: (a) initially 
(0 h) and (b) 2 h later

0.4(b) 2 h(a) 0 h

z

x

y

Cancer
spheroid

200µm

0.2

B
ul

k 
st

ra
in

0

-0.2

-0.4

Fig. 16.6 Bulk strain field of 
ECM induced by a PANC-1 
cancer spheroid: (a) initially 
(0 h) and (b) 2 h later

Y. Morita

https://doi.org/10.1038/nrc.2016.25
https://doi.org/10.1038/nrc1886
https://doi.org/10.1007/978-3-319-95294-9_5
https://doi.org/10.1002/cm.21437
https://doi.org/10.1002/cm.21437
https://doi.org/10.1091/mbc.E16-09-0654
https://doi.org/10.1091/mbc.E16-09-0654
https://doi.org/10.1038/cddis.2013.339
https://doi.org/10.1007/s10439-005-8159-4
https://doi.org/10.1007/s10439-005-8159-4
https://doi.org/10.1371/journal.pone.0033476
https://doi.org/10.1371/journal.pone.0033476
https://doi.org/10.1088/1478-3975/8/1/015015
https://doi.org/10.1088/1478-3975/8/1/015015
https://doi.org/10.1016/j.bbcan.2009.03.002
https://doi.org/10.1038/nrm3758
https://doi.org/10.1096/fj.14-257345
https://doi.org/10.1096/fj.14-257345
https://doi.org/10.1158/0008-5472.CAN-10-0785
https://doi.org/10.1158/0008-5472.CAN-10-0785
https://doi.org/10.3791/59364
https://doi.org/10.1038/nrc2853
https://doi.org/10.1038/nrc2853


143

 18. Griggs LA, Hassan NT, Malik RS, Griffin BP, Martinez BA, Elmore 
LW, et al. Fibronectin fibrils regulate TGF-β1-induced epithelial- 
mesenchymal transition. Matrix Biol. 2017;60-61:157–75. https://
doi.org/10.1016/j.matbio.2017.01.001.

 19. Flozak AS, Lam AP, Russell S, Jain M, Peled ON, Sheppard KA, 
et al. Beta-catenin/T-cell factor signaling is activated during lung 
injury and promotes the survival and migration of alveolar epithe-
lial cells. J Biol Chem. 2010;285:3157–67. https://doi.org/10.1074/
jbc.M109.070326.

 20. Morita Y, Kawase N, Ju Y, Yamauchi T. Mesenchymal stem cell- 
induced 3D displacement field of cell-adhesion matrices with dif-
fering elasticities. J Mech Behav Biomed Mater. 2016;60:394–400. 
https://doi.org/10.1016/j.jmbbm.2016.02.025.

 21. Franck C, Hong S, Maskarinec SA, Tirrell DA, Ravichandran 
G.  Three-dimensional full-field measurements of large deforma-
tions in soft materials using confocal microscopy and digital volume 
correlation. Exp Mech. 2007;47:427–38. https://doi.org/10.1007/
s11340- 007- 9037- 9.

 22. Bloom RJ, George JP, Celedon A, Sun SX, Wirtz D. Mapping local 
matrix remodeling induced by a migrating tumor cell using three- 
dimensional multiple-particle tracking. Biophys J. 2008;95:4077–
38. https://doi.org/10.1529/biophysj.108.132738.

 23. Franck C, Maskarinec SA, Tirrell DA, Ravichandran G.  Three- 
dimensional traction force microscopy: a new tool for quantify-
ing cell-matrix interactions. PLoS One. 2011;6:e17833. https://doi.
org/10.1371/journal.pone.0017833.

 24. Fung YC. Biomechanics: mechanical properties of living tissues. 
New York: Springer Science & Business Media; 2013.

 25. Arevalo RC, Kumar P, Urbach JS, Blair DL.  Stress heterogene-
ities in sheared type-I collagen networks revealed by boundary 
stress microscopy. PLoS One. 2015;10:e0118021. https://doi.
org/10.1371/journal.pone.0118021.

 26. Motte S, Kaufman LJ.  Strain stiffening in collagen I net-
works. Biopolymers. 2013;99:35–46. https://doi.org/10.1002/
bip.22133.

16 A Technique for Measuring the 3D Deformation of a Multiphase Structure to Elucidate the Mechanism of Tumor Invasion

https://doi.org/10.1016/j.matbio.2017.01.001
https://doi.org/10.1016/j.matbio.2017.01.001
https://doi.org/10.1074/jbc.M109.070326
https://doi.org/10.1074/jbc.M109.070326
https://doi.org/10.1016/j.jmbbm.2016.02.025
https://doi.org/10.1007/s11340-007-9037-9
https://doi.org/10.1007/s11340-007-9037-9
https://doi.org/10.1529/biophysj.108.132738
https://doi.org/10.1371/journal.pone.0017833
https://doi.org/10.1371/journal.pone.0017833
https://doi.org/10.1371/journal.pone.0118021
https://doi.org/10.1371/journal.pone.0118021
https://doi.org/10.1002/bip.22133
https://doi.org/10.1002/bip.22133


145© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
M. Hashizume (ed.), Multidisciplinary Computational Anatomy, https://doi.org/10.1007/978-981-16-4325-5_17

Construction of Classifier of Tumor  
Cell Types of Pancreas Cancer Based 
on Pathological Images Using  
Deep Learning

Naoaki Ono, Chika Iwamoto, and Kenoki Ohuchida

Abstract

Recently, computer-aided diagnosis methods based on 
machine learning, mainly using Deep Leaning, have been 
studied and developed very rapidly. Especially image rec-
ognition based on Convolutional Neural Networks 
showed high accuracy in diagnosis problems when they 
are given the huge amount of training data. Those meth-
ods are not only helpful for classification but also useful 
for feature extraction from given images. Here we intro-
duce a new classification method to find the features of 
tumor tissues from histopathology images by unsuper-
vised clustering based on Information Maximization Self- 
Augmented Training. Moreover, to evaluate fibrosis and 
classify tumor cells, we used histopathological images 
with different staining methods as concatenated inputs. 
Using this approach, we can quantify integrated features 
based on multimodal imaging using deep learning. In this 
study, we analyzed pathological images of pancreas can-
cers and optimized to classify the patches of the images 
into the categorize with different features, which are con-
sistent with annotation of the medical doctors. It can also 
provide a map to visualize the probability where cell 
types are categorized into specific classes according to the 
given pathological images.

Keywords

Deep Learning · Convolutional Neural Networks · 
Pathological images · Unsupervised Clustering

17.1  Introduction

Pathologists inspect a huge number of visual samples every 
day and make a diagnosis, detect lesions, classify tumors and 
so on. It requires a huge amount of experience to train those 
skills, and it can be a bottleneck that the shortage of skilled 
pathologists. Computer-aided diagnosis has not been to 
replace human doctors, but it can provide useful tools to help 
diagnose and improve efficiency and accuracy of those 
human pathologists by showing, for example, possible areas 
of images to be focused on [1, 2].

There have been many studies to propose computational 
methods for image analysis and feature extraction of medical 
images [3]. Note that most studies of those image processing 
are based on supervised learning using heuristically designed 
models that need appropriate labels according to the task, the 
prediction from the model changes depending on how to 
label it. Since these heuristic annotations cost a lot of time 
for clinical doctors, it is desirable to construct a model that 
automatically classifies given images into certain categories, 
for example, to evaluate the types and stages of the tumor in 
order to decide the appropriate treatment plan. To address 
this problem, we introduce an approach to image classifica-
tion using an unsupervised clustering model based on 
Information Maximizing Self Argument Training (IMSAT) 
[4]. We applied this model to evaluate pathological images of 
pancreas cancer and showed that this model could automati-
cally learn the patterns of tumor cells and classification, 
which are consistent with the categorization made by medi-
cal doctors.

Pancreatic cancer is known as one of the worst prognosis 
cancers due to the difficulty of early detection, the fast pro-
gression stages and the frequency of distant metastasis, etc. 
Therefore, estimation of medical features of tumor cells, 
such as the proliferation rate, metastatic state, etc., will pro-
vide much advance to lead to better treatment. Generally, 
Hematoxylin and eosin (H&E) stain is a standard for histo-
pathological imaging for diagnosis, and to visualize other 
detail status of tissues such as fibrosis, various staining meth-
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ods such as Masson’s Trichrome (MT) staining are used for 
diagnosis. MT stain visualizes the interstitium of collagen 
fibers with blue. It is possible to detect the infiltrative area 
more clearly than HE staining because it can be used for dis-
crimination of the degree of progress. In this study, we ana-
lyzed multi-stained pathological images of the pancreas 
obtained from the KPC model mouse [5].

Tumor tissues are generally heterogeneous, composed of a 
mixture of various types of cells, it implies that the tumor 
futures should be recognized from the local variation of mor-
phological features of the cells, such as the shapes and distri-
bution of cell types in each region in order to help a doctor’s 
judgement. Applications based on deep learning are very 
promising for image recognition; however, it is still a black 
box and difficult to understand the process of the trained neu-
ral networks. In previous studies [6], we proposed a method to 
visualize the “latent space” learned by feature extraction. 
Based on those models, pixels of given images are transformed 
into a vector of variables that represents the informative fea-
tures of the original images. These latent variables extracted 
from the model will be important to elucidate the behaviour of 
extracted features in the histopathological images.

In our study, we analyze the pancreatic histopathological 
image using Convolutional Neural Network (CNN) that 
trained two different dying methods, i.e., H&E and MT 
staining images registered with the help of Hontani and oth-
ers [7], to evaluate a degree of fibrosis. Using this model, we 
extract morphological patterns that contribute to predicting 
the malignancy of pancreatic cancer.

17.2  Methods of Unsupervised Image 
Classification

Applications of image analysis using deep learning have 
been rapidly developing. The convolutional neural network 
is a popular model of deep learning mostly applied for image 
classification. In the competition of ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) held in 2012, a 
model of deep learning named AlexNet won with over-
whelming results. The diagnostic application of deep learn-
ing has been already shown successful results, for example, 
detections of tumors, identification of CoViD-19 from CT 
images, classification of skin melanomas [8] but the illnesses 
that can be dealt with are also limited due to the difficulty of 
obtaining a teacher label. Careful annotation by a specialist 
is necessary.

We constructed a model of cluster analysis using 
Information Maximizing Self-Augmented Training (IMSAT) 
to obtain clusters using extracted features by CNN. Although 
IMSAT is unsupervised learning, it can perform clustering 
with high accuracy. It is based on Self-Augmented Training 
and maximization of mutual information. When data is dis-
torted by any affine transformation and perturbations, local 
representations in the latent space depart greatly from the 
predictions of original data points. Using SAT, it can be close 
the predictions of perturbed data points to original data 
points. KL divergence DKL is used as the distance between 
original and distorted distribution. We choose Virtual 
Adversarial Training (VAT) [9] and typical data augmenta-
tion such as random contrast enhancement, rotation, flipping, 
and scaling as distortion in SAT. Adversarial perturbations 
are generated in VAT. These disturb the prediction distribu-
tion greatly and can be computed from multiplying random 
normalized vectors according to the gradient of the KL 
divergence of the prediction using the perturbed input to the 
original input in the latent space. The scheme of the VAT is 
illustrated in Fig. 17.1.

17.3  Results

To construct a model of IMSAT, we first need to determine 
the number of possible classifications. In this study, we 
tested different number of clusters k = 4, 8, 16, and 32, then 
evaluated comparing the images in each obtained cluster. 
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And we chose k = 8 since it was most consistent with annota-
tions of medical doctors. When the number of clusters was 
small (k = 4), many different types of cells were included 
within the single category, and when k was larger than 8, 
some classes were almost blank, i.e., the model could not 
find samples to distinguish so detail.

Figure 17.2 shows the example of the patches classified 
into different categories using this model. Each row repre-
sents the clusters which are automatically optimized by the 
IMSAT method. It is clear that the features and density of the 
cells are different between the categories, and they can be 
annotated as dense tumor cells, gap between cells, acinar 
cells, blood vessels, etc.

Since the output of the discriminator is normalized by the 
softmax function, we can evaluate the probability to catego-
rize each category at each site of the original image. 
Figure 17.3 shows an example of a heatmap of the probabil-
ity where the cell types are categorized to dense tumor cells, 
represented by the 8 th (indexed by 7) row in Fig. 17.2. To 
provide this quantitative evaluation will greatly help inter-
pretations by medical doctors.

Analyzing pancreatic cancer pathological images using 
IMSAT. Using CNN, it is possible to extract features based 

on the morphological characteristics of the tissue in addition 
to the brightness value. For pathological images with hetero-
geneous cell types, it is more interpretable to encode them 
into discrete representations. Therefore, as a result of cluster-
ing using IMSAT, we obtained clusters involved in differen-
tiation. IMSAT is considered to be the most suitable model 
for pathological image analysis since it can provide a plau-
sible heatmap of the probability distribution of cell types. 
There have been some models of unsupervised clustering 
model [10] that achieves higher accuracy in classification. It 
is considered that more cohesive clustering is possible by 
analysis. On the other hand, an evaluation index of the opti-
mum number of clusters applicable to a clustering model 
based on a neural network has not yet been developed, and 
pathology.

17.4  Discussion

We constructed the unsupervised classification model using 
deep learning based on IMSAT in order to evaluate and 
quantify pathological images with different staining meth-
ods. This approach can be applied for quantitative evaluation 
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Fig. 17.2 Examples of the automatically classified patch images. Left: 
HE stained images, and Right: MT stained images are patches at the 
corresponding areas of the contact slices. Each row represents different 

types of cell categories classified by the IMSAT model. Corresponding 
patches in the left and the right were taken from the same position in the 
original images
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of various types of multimodal analysis. Although integrated 
analysis of multidisciplinary computational anatomy often 
requires complex models in a high dimensional data space, 
feature extraction using IMSAT itself can be regarded as 
optimization of embedding from given training data into a 
reduced latent space that represents manifold of sample data. 
Moreover, this method can be incorporated with other mod-
els of deep learning such as autoencoders, style-GAN 
(Generative Adversarial Networks), etc. One of the difficul-
ties of the implementation of IMSAT is its high computa-
tional cost since it requires a large amount of sample data. 
And when enough training sample is not available, the 
embedded latent space may not properly represents the latent 
space. Multiplying training samples using data augmentation 
or training the model using a similar data sample which is 
plentifully available and applying transfer learning will help 
to address this difficulty.

Immunostaining that can specifically bind to and visual-
ize specific gene-related proteins is also widely used. This is 
because many biomarkers related to malignancy and pro-
gression can be detected by immunostaining. It has already 
been clarified in clinical studies that the expression level of 
specific proteins and transcription factors is predominantly 
correlated with clinical stage classification, lymph node 
metastasis, and tissue differentiation and is involved in pre-
dicting prognosis.

Another characteristic of the data set used this time is that 
it focuses on structural irregularities such as the cyclic struc-
ture formed by the cancer cell population and does not con-
sider the degree of detailed irregularities. In the actual 
diagnosis of pancreatic cancer, in addition to structural mal-
formations, evaluation is performed by evaluating nuclear 
cell malformations. In the future, if predictions are made at a 

level close to that of a pathologist, use high-magnification 
images. It is considered necessary to perform learning based 
on cell morphology. Already, by using supervised CNN for 
pathological image data sets by the magnification of 40 to 
400 times, it is possible to identify cancer classification with 
high accuracy. Diseases that are difficult to annotate by clus-
tering based on potential features in pathological images, 
such as those used in this study, using datasets cut out at vari-
ous magnifications. It is possible to perform pathological 
image analysis considering structural malformations and cell 
malformations, and it is thought that a predictive model of 
cancer malignancy and progression can be constructed that 
will contribute to diagnostic support in the future.
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Multi-Modal and Multi-Scale Image 
Registration for Property Analysis 
of Brain Tumor

Takashi Ohnishi

Abstract

Analyses of the relationships between physical properties 
and the microstructure of human tissue have been widely 
conducted. In particular, the relationships between acous-
tic parameters and the microstructure of the human brain 
fall within the scope of our research. In order to analyze 
the relationships between physical properties and micro-
structure of the human tissue, accurate image registration 
is required. To observe the microstructure of the tissue, a 
pathological (PT) image, which is an optical image cap-
turing a thinly sliced specimen, has generally been used. 
However, spatial resolution and image features of PT 
images are markedly different from those of other imag-
ing modalities. This study proposes a modality conver-
sion method from PT to ultrasonic (US) images, including 
a downscaling process using a convolutional neural net-
work (CNN). Namely, the constructed conversion model 
estimates the US signals from the patch image of the PT 
image. The proposed method was applied to PT images, 
and it was confirmed that the converted PT images were 
similar to the US images by visual assessment. Image reg-
istration was then performed with the converted PT and 
US images measuring the consecutive pathological speci-
mens. Successful registration results were obtained for 
every pair of images. Analysis methods using PT and US 
images were also developed. First, several tissue densities 
were calculated from PT images, and useful parameters 
associated with tumor grade were investigated. A CNN- 
based nuclear density estimation method from acoustic 
characteristics was then developed. The estimated nuclear 
densities from the attenuation were highly correlated with 
those calculated from the PT image.

Keywords

Modality conversion · Pathological image · Ultrasonic 
image · Convolutional neural network

18.1  Introduction

To diagnose and determine the tumor region is an important 
process, but it is difficult in brain tumor resection. Physicians 
have to depend on their skills or experience in diagnosing 
brain tumors. For instance, color or stiffness plays an impor-
tant role in tumor diagnosis. If we understand the physical 
properties of brain tumors more deeply, it can help establish 
a new quantitative index for diagnosing brain tumors, and it 
can also provide useful information for treatment. Our plan 
is to develop a diagnostic system for brain tumors using 
small ultrasonic probes. First, we measure stiffness or other 
correlated parameters from an ultrasound (US) signal. Then, 
a precise diagnosis can be made based on these parameters. 
To accomplish this system, we must analyze the relationship 
between US signals and tissue information.

In recent years, the physical properties of human tissue, 
such as mechanical, optical, and acoustic properties, have 
been widely measured. In addition, these properties have 
been compared with the microstructure of tissue, such as the 
distribution of the cell nuclei and the running directions of 
nerve fibers [1–3]. The microstructure of tissue can be 
acquired from pathological (PT) images, which are optical 
images of thinly sliced specimens. Methodologies of multi- 
modal analysis using such PT images and other modal 
images have been widely developed. We have also been ana-
lyzing the relationships between acoustic characteristics and 
the microstructure of the human brain using PT images and 
microscopic ultrasonic (US) images. To compare the physi-
cal properties and the microstructure at the same location 
using multi-modal images, accurate image registration is 
required. Previous studies used landmark-based or semiauto-
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matic methods [4–7]. However, correction of local differ-
ences was too difficult because tissue characteristics in the 
PT image are not taken into consideration in these methods, 
which makes detection of the corresponding landmarks dif-
ficult. In this case, intensity-based registration may be more 
promising.

When intensity-based registration is performed, the spa-
tial resolution of the PT image can be an obstacle because it 
is much higher than that of other image modalities such as 
computed tomography, magnetic resonance imaging, and US 
imaging. For example, the highest spatial resolution of the 
PT image is approximately 230 × 230 nm2, whereas that of 
the US image measured by a US microscopic system is 
approximately 8 × 8 μm2 at most. Therefore, when a pixel is 
selected on the US image during the registration process, the 
corresponding pixel value is calculated from 35 × 35 pixel 
regions in the PT image. In this situation, the spatial resolu-
tion of the PT image is generally adjusted to be almost the 
same as that of another image using an averaging and down- 
sampling technique before image registration. However, 
such a simple downscaling processing eliminates micro-
scopic patterns that each organ inherently possesses and 
leads to a decline in registration accuracy.

To enhance each structural component in the PT image 
and achieve highly accurate image registration, we intro-
duced a modality conversion method combined with the 
downscaling process. This study tuned a conversion method 
assuming image registration between PT and US images. 
Additionally, as an initial study, a tissue density calculation 
method was constructed to conduct a relationship analysis of 
PT and US images. The obtained tissue densities were com-
pared with the acoustic characteristics at corresponding 
regions.

18.2  Materials

Brain tumor samples were resected from six patients as nor-
mal clinical procedures. After the surgery, the resected tumor 
samples were further dissected into some pieces. These 
obtained pieces were named macro-specimens S1 to S6. This 
study was approved by the Ethical Review Board of our 
University, and informed consent was obtained from all six 
patients who participated in the study. Each resected macro- 
specimen then underwent formalin fixation, tissue process-
ing, and paraffin embedding. Thinly sliced specimens with 
8-μm thickness were then obtained from paraffin-embedded 
specimens using a microtome. These thinly sliced specimens 
were deparaffinized with xylene and cleaned with ethanol. 
For US measurement, the images of specimens in this status 
were captured. These specimens were further stained with 
hematoxylin-eosin (HE), and the PT images of the stained 
specimens were then captured.

For macro-specimen S1, sectioning by microtome was 
performed repeatedly, and 19 consecutive pathological spec-
imens were obtained from the paraffin-embedded specimen. 
Both US measurement and PT image acquisition were per-
formed on only the first pathological specimen. A pair of PT 
and US images acquired in this process was used to construct 
the conversion model. For the other pathological specimens, 
US and PT images were acquired from odd and even num-
bered pathological specimens, respectively. As for macro- 
specimens S2–6, one pathological specimen was obtained 
from each macro-specimen, and a pair of US and PT images 
was acquired in each macro-specimen just as the pair of PT 
and US images of S1.

For US measurement, two ultrasonic microscopic sys-
tems were used. One was a modified version of a commercial 
product (AMS-50SI, Honda Electronics Co., Ltd., Toyohashi, 
Japan) and was used for S1. The other was an in-house devel-
oped system that was used for S2–6. In both systems, a ZnO 
wave transducer (Fraunhofer IMBT, St. Ingbert, Germany) 
with a center frequency of 250 MHz was commonly used. 
This transducer was attached to the X-Y stage and scanned 
with 8-μm pitch in each direction. Echo amplitude, speed of 
sound, and attenuation were calculated from the acquired RF 
echo signal at each scan point and used as the pixel value of 
each image. Image size and pixel size were 300  ×  300 to 
800 × 800 pixels and 8.0 × 8.0 μm2/pixel. The detailed calcu-
lation method for the acoustic characteristics has previously 
been described [8, 9].

For PT image acquisition, HE stained pathological speci-
mens were digitalized with a virtual slide scanner 
(NanoZoomer S60, Hamamatsu Photonics K.K., Hamamatsu, 
Japan). The image and pixel sizes were approximately 
12,000 × 12,000 pixels and 228 × 228 nm2, respectively.

18.3  Modality Conversion 
from Pathological Image to Ultrasonic 
Image

18.3.1  Construction of the Conversion Model

The proposed method consists of two steps: model construc-
tion and actual registration steps. In the model construction 
step, landmark-based registration with PT and US images 
was conducted. The US image was moved to the coordinate 
system of the PT image in this registration process. If the 
imaged area of the original PT image was too large com-
pared with that of the US image, a region of interest was set 
in the PT image. A rescaled PT image was generated using 
the simple average method and then binarized with the dis-
criminant analysis method. The landmarks were detected by 
AKAZE feature detector [10] from the binarized PT image 
and US image. Outliers for the landmarks were removed by 
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random sampling consensus [11]. These registration results 
had to be visually confirmed by the operator. The conversion 
model was constructed with the original PT image and the 
registered US image. Figure 18.1a shows the flow for con-
version model construction using a convolutional neural net-
work (CNN) [12]. Some patch images were extracted from 
the original PT image. The conversion model estimates a US 
signal from each small region on the patch image. Estimated 
US signals pk were compared with actual US signals lk. CNN 
was optimized until the loss function was minimized. The 
mean absolute error defined as follows was used as the loss 
function:

 
loss

N
p l

k

N

k kP L,( ) = −
=
∑1

1  
(18.1)

Here, k and N represent the index of the patch image and 
the total number of patch images input into the CNN, respec-
tively. These processes were repeated until the epoch number 
reached a predefined limit. In terms of the framework of the 
CNN, there were two convolution layers and two pooling 
layers followed by dropout and fully connected layers. CNN 
construction had to be conducted once before the actual 
registration.

In the actual registration step, the PT images for image 
registration were converted by the constructed model. Affine 
registration including shift, rotation, and scaling operations 
was then conducted. The normalized cross correlation (NCC) 
and Powell-Brent methods were used as a similarity measure 
between converted PT and US images and an optimization 
method, respectively.

18.3.2  Studies of Modality Conversion 
and Image Registration

In this study, two kinds of experiments were conducted. In 
the first experiment, the applicability of the conversion 
model was evaluated with PT and US images obtained from 
the same macro-specimen S1. A conversion model was con-
structed with a pair of PT and US images and applied to the 
other nine PT images. Image registration was then per-
formed. The first US image was used as a reference image, 
and the other images were registered into the first US image. 
To evaluate the versatility of the conversion model, another 
experiment was conducted with images S2–6. A conversion 
model was constructed with the images of S2 and applied to 
the PT images of S3–6. The patch size for the conversion 
model was set to 32 × 32 pixels. Namely, the pixel size after 
conversion was 7.30  ×  7.30  μm2. The number of epochs, 
batch size, learning rate, and dropout rate for CNN were set 
to 20,000, 100, 1.0 × 10−3, and 0.5, respectively.

Figure 18.1b shows a result of the conversion model con-
struction. Black spots are clearly enhanced after conversion. 
On visual assessment, the converted PT image was similar to 
the US image when compared with the PT image. The con-
structed conversion model was applied to other PT images. It 
was confirmed that the features of all converted images were 
similar to those of the US images. In addition, image regis-
tration was performed with the US and converted PT images. 
All US images were registered into the neighboring PT 
images. Figure  18.1c shows the registration results with 
pathological specimens #3–5 of S1. All images including 
both US and PT images were successfully registered using 
the original US images and the converted PT images on 
visual assessment.

A conversion model was constructed with the image data-
set of S2 and applied to the image datasets of S3–6. The 
resultant images are shown in Fig. 18.1d. Some structures in 
the converted PT image of S2 were slightly enhanced. For 
the image dataset of S3, the tendency for the conversion 
result was similar to that for S2. The effect of modality con-
version was confirmed. However, it was less than that in the 
previous experiment. Although the effectiveness of the pro-
posed method could not be visually confirmed, the histogram 
or spatial distribution of pixel values was similar to that of 
the US image. From these results, it can be expected that the 
proposed method can produce better registration than the 
simple downscale method.

18.4  Property Analysis

18.4.1  Investigation of Effective Properties

To identify an effective parameter for estimating tumor 
grade, tissue microstructure and acoustic characteristics 
were compared using the registered US and PT images. The 
densities of nuclei and red blood cells are important, and are 
associated with tumor grade as pathological diagnostic infor-
mation. Therefore, a calculation method for tissue densities 
was developed. The tissue densities were calculated for high- 
and low-grade regions of PT images, and the property that 
could effectively estimate tumor grade was investigated.

The areas of nuclei and red blood cells were individually 
extracted from PT images using a deep learning method [13]. 
These extraction models were previously constructed for 
each target tissue using the original PT and annotation 
images. The regions of nuclei and blood cells were removed 
from PT images, and the color space for the residual regions 
was translated to the HSV color space. The residual region 
was divided into glass and cytoplasm regions by applying the 
maximum entropy threshold method [9] for the saturation 
channel. Finally, the tissue density was calculated from the 
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binary images of nuclei, red blood cells, and cytoplasm. The 
tissue density ρ was defined as follows:

 
ρ = ×

A

A
target

all

100
 

(18.2)

Here, Atarget and Aall represent the number of pixels in the 
target tissue region and the whole area of the patch image, 
respectively.

Each tissue density was compared between high- and 
low-grade regions using a t-test. The comparison results for 
the nuclear density are shown in Fig. 18.2a. The nuclear den-
sity between low- and high-grade regions showed a signifi-
cant difference (p < 0.01). The nuclear density appears to be 
a useful parameter for estimating the tumor grade.

18.4.2  Pathological Properties from Acoustic 
Characteristics

From the results of subsection 18.4.1, it might be possible to 
assess the tumor grade indirectly if the nuclear density is 
obtained. As an initial study, a CNN was used to estimate the 
nuclear density from the acoustic characteristics. Small 
regions were extracted from US images and input into the 
CNN.  The CNN estimated the nuclear density lk. On the 
other hand, a corresponding small region was extracted from 
the PT image, and its nuclear density pk was calculated, in a 
similar manner to that described in subsection 18.4.1. The 
CNN for the nuclear density estimation was constructed with 
4 residual blocks and a fully connected layer. All convolution 
layers in the residual blocks consisted of a 7 × 7 kernel with 
16 channels. Four pairs of PT and US images, S3–S6, were 
divided into 4884 pairs of patch images. The attenuation 

image was used as a US image in this experiment, and 4096 
pairs and 788 pairs of patch images were used for network 
training and testing, respectively. Training conditions, such 
as the loss function and optimization method, were the same 
as for the modality conversion.

Figure 18.2b shows a scatter plot, in which the horizontal 
and vertical axes describe the nuclear densities calculated 
from the PT image and estimated from the US image using 
the constructed CNN, respectively. This graph indicates that 
the CNN could roughly estimate the pathological character-
istics from the acoustic characteristics. Although the estima-
tion accuracy should be improved, the feasibility of this 
approach was shown, because the correlation coefficient was 
0.85. Additionally, we would like to improve the CNN to 
identify the tumor grade from the acoustic characteristics.

18.5  Conclusion

To conduct image registration with pathological (PT) and 
ultrasonic (US) images, a CNN-based modality conversion 
method for PT images was proposed. On visual assessment, 
converted PT images were similar to the US images when 
compared with the original PT images. Therefore, highly 
accurate registration results can be obtained without addi-
tional intelligent and/or complicated registration methods. 
Because it was ensured that the registration results were 
promising for the analysis application, analysis methods 
were also developed, and some analyses to estimate the 
tumor grade from acoustic characteristics were conducted. 
First, the tissue densities were compared between low- and 
high-grade regions. The analysis results showed that nuclear 
density was an effective parameter for determining tumor 
grade. Additionally, a CNN-based nuclear density estimation 
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method from US images was developed. The estimated 
nuclear densities from the attenuation were highly correlated 
with those calculated from PT images.

In the present study, two analysis methods were con-
structed to indirectly determine the tumor grade from the 
attenuation image through the nuclear density. A speed of 
sound image will be introduced into the nuclear density esti-
mation as well in future studies. In addition, we will try to 
directly determine the tumor grade from the US characteris-
tics using a CNN-based method. To evaluate the contribution 
to tumor grade estimation, the relationship with other tissue 
densities will be investigated again. To conduct such advanced 
analyses, we need to increase the size of the dataset.

In the Multidisciplinary Computational Anatomy project, 
a multi-modal analysis is one of the key methodologies to 
understand the human body over various axes defined in this 
project. Our achievement indicated the possibility that analy-
sis by using ultrasonic and pathological images. Although 
further improvements are still required depending on the 
analysis purpose, the concepts of the modality conversion 
and the property analysis might be applicable and transfer-
able for other researches.
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Brain MRI Image Analysis Technologies 
and its Application to Medical Image 
Analysis of Alzheimer’s Diseases

Koichi Ito

Abstract

Statistical analysis using large-scale brain magnetic reso-
nance (MR) image databases has observed that brain tis-
sues have presented age-related morphological changes. 
This result indicated that the age of a subject could be 
estimated from his/her brain MR image by evaluating 
morphological changes in healthy aging. We explore 
brain local features, which are useful for analyzing brain 
MR images. The brain local features are defined by vol-
umes of brain tissues parcellated into local regions defined 
by the automated anatomical labeling atlas. Age is esti-
mated by the machine learning approach with brain local 
features extracted from T1-weighted MR images. In addi-
tion, we consider using the convolutional neural network 
(CNN) to extract brain features, where any medical 
knowledge is not required to define local features. We 
evaluate the performance of the proposed approaches 
using large-scale MR image databases. We also consider 
applying the above approaches to identify Alzheimer’s 
disease from brain MR images.

Keywords

Magnetic resonance · Brain · T1-weigted image · Age 
estimation · Feature extraction · Alzheimer’s disease · 
Convolutional neural network

19.1  Introduction

Morphological changes in the human brain have followed a 
specific pattern of growth and atrophy in the process of brain 
development and healthy aging. Statistical analysis using 
magnetic resonance (MR) images such as T1-weighted 

images has demonstrated that age-related changes are found 
in gray matter (GM) volume, white matter (WM) volume 
and cerebrospinal fluid (CSF) [1–4]. GM volume monotoni-
cally decreases with age from 20s to 70s, WM volume shows 
small changes, and CSF monotonically increases with age 
from 20s to 70s in contrast with GM. Such volume changes 
make it possible to estimate the age of subjects from 
T1-weighted images. This fact might help in early identifica-
tion and diagnostic support of age-related brain disorders 
since neurodegenerative diseases such as Alzheimer’s dis-
ease (AD) have caused the accelerated aging process, i.e., 
accelerated brain atrophy. As mentioned above, this chapter 
introduces the temporal and pathological axes of the brain in 
multidisciplinary computational anatomy. This chapter also 
explores MCA-based medicine and artificial intelligence 
(AI) through a comparison of conventional medical image 
analysis-based and AI-based approaches.

19.2  Age Estimation Methods 
from T1-Weighted Images

Table 19.1 summarizes age estimation methods from 
T1-weighted images. In the early years of the study, global 
or local features extracted from T1-weighted images are 
used to estimate the age of subjects [5–9]. Lao et  al. [5] 
defined brain morphological signature (BMS), which is a 
feature vector combined with GM, WM, and CSF, where 
each brain tissue is divided into 101 pieces based on the 
manually set region of interests (ROI). Neeb et al. [6] defined 
features based on voxel water content (VWC), reduced its 
dimension by principal component analysis (PCA) and esti-
mated age using linear regression analysis of VWCs. Franke 
et al. [7] employed GM volume whose dimension is reduced 
by PCA and estimated age using relevance vector machine 
(RVM) [13]. Wang et  al. [8] used surface features of the 
brain such as cortical thickness, mean curvature, Gaussian 
curvature, and surface area and estimated age using 
RVR.  Kondo et  al. [9] employ brain local features (BLF), 
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which are defined by regional volume from local regions of 
GM, WM, and CSF parcellated by the automated anatomical 
labeling (AAL) atlas [14, 15], and estimated age using RVR 
as well as other methods. In recent, a convolutional neural 
network (CNN) [16] was used to improve the accuracy of 
age estimation. Huang et al. [10] employed the 2- dimensional 
(2D) CNN to extract features and estimate the age from 
T1-weighted images automatically. Cole et al. [11] and Ueda 
et al. [12] used 3-dimensional (3D) CNN [17] to extract fea-
tures from the whole T1-weighted images. We describe two 
approaches of brain MR image analysis: (i) brain local fea-
tures and (ii) CNN in the following.

19.3  Brain Local Features

This section describes BLF extracted from T1-weighted 
images proposed in [9]. The preprocessing [18] is applied to 
T1-weighted images in order to extract local features of each 
brain tissue using statistical parametric mapping (SPM)1 and 
voxel-based morphometry (VBM).2 We empirically con-
firmed that SPM2 and VBM2 are effective for MR images 
acquired by a 0.5 T MR scanner, while SPM12 and CAT12 
are effective for MR images acquired by 1.5 T and 3 T MR 
scanner. In the following, the process of using SPM2 and 
VBM2 is described. Note that the processes are almost the 
same in other versions of SPM and VBM. The preprocessing 
using SPM2 and VBM2, which is illustrated in Fig. 19.1, is 
described in the following. First, all the T1-weighted images 
are transformed into the Talairach stereotactic space by 
aligning each of the images to the template. The ICBM 152 
template, which approximates the Talairach space [19], is 
used in this process. The deformation field is estimated using 
GM to prevent any contribution of non-brain voxels and per-

1 https://www.fil.ion.ucl.ac.uk/spm/
2 http://dbm.neuro.uni-jena.de/wordpress/vbm/

form optimal spatial normalization of brain tissues. The 
T1-weighted image is normalized using the estimated defor-
mation field. Next, the normalized images are segmented 
into each brain tissue such as GM, WM, and CSF using the 
SPM2 default segmentation procedure, where a mixture 
model cluster analysis with a priori knowledge of the spatial 
distribution of tissues is used. The brain tissues are then 
modulated by the Jacobian determinants derived from spatial 
normalization to correct volume changes in spatial normal-
ization. Finally, each brain tissue is parcellated into 1024 
local regions defined by the 1024 AAL atlas [15]. The GM 
volume in each parcellated local region is calculated as the 
regional GM volume (RGMV). The regional WM volume 
(RWMV) and the regional CSF volume (RCSFV) are 
obtained in the same way. BLF is obtained as a feature vector 
combined with RGMV, RWMV, and RCSFV. RVR [13] is 
used to estimate an age using BLF.

19.4  Age Estimation Using 2D-CNN

Any technical knowledge of brain science is not required 
when developing brain image analysis methods using CNN- 
based approaches. If there are much training data, CNN- 
based approaches can be used to estimate the age from 
T1-weighted images. This section describes the early 
approach using 2D CNN proposed in [10]. The 2D CNN- 
based method consists of two steps: (i) preprocessing and (ii) 
age estimation using CNN. The step (i) is normalization that 
all the images are transformed into the standard space by 
aligning images into the ICBM template, which is the same 
as BLF as mentioned above. The step (ii) is age estimation 

Table 19.1 Summary of age estimation methods from T1-weighted 
images

Method Features
# of subjects (Age 
range [y/o]) MRI

MAE 
[y/o]

Lao et al. [5] BMS 153 (56 ∼ 85) 1.5 T –
Neeb et al. [6] BWM 44 (23 ∼ 74) 1.5 T 6.3
Franke et al. [7] PCA for 

GM
547 (19 ∼ 96) 1.5 T, 

3 T
4.61

J. Wang et al. [8] Surface 
of GM 
and WM

663 (7 ∼ 82) 1.5 T, 
3 T

4.57

Kondo et al. [9] BLF 1096 (20 ∼ 80) 0.5 T 4.24
Huang et al. [10] 2D CNN 1096 (20 ∼ 80) 0.5 T 4.0
J.H. Cole et al. [11] 3D CNN 2001 (18 ∼ 90) 1.5 T, 

3 T
4.16

M. Ueda et al. [12] 3D CNN 1096 (20 ∼ 80) 0.5 T 3.2
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Fig. 19.1 Flow of preprocessing used in BLF extraction [9]
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using CNN, whose architecture is based on VGG-16. 
Figure 19.2 shows the network architecture of 2D CNN for 
age estimation. This architecture is inspired by VGG-16 
[20], which is usually used in object recognition. The fea-
tures of VGG-16 is the small size of convolution layers, i.e., 
3  ×  3 kernels, to reduce the number of parameters and 
enhance the accuracy of CNN. This architecture is designed 
according to the same idea. In the fully-connected layers, 
drop-out layers are introduced to prevent overfitting, where 
all the units in the fully-connected layers are randomly cut 
off during training. The network weights are trained to mini-
mize the mean squared error (MSE) using the stochastic gra-
dient descent (SGD) optimization with momentum. The loss 
function L is defined by

 
L

N
t y W= −( ) +

1 1

2

2 2

n
n n λ ,

 
(19.1)

where N is the number of the data, tn is the actual age of the 
n-th subject, yn is the predicted age of the n-th subject, λ is 
the weight decay, and W is the weights to be trained. The loss 
function includes the regularization term to prevent overfit-
ting in training. The regularization term is calculated by the 
weight decay and L2 norm of all the weights. The learning 
rate η is determined for every epoch as follows:

 

η
η

η

=
+ ×( )′

0

1 epoch decay  
(19.2)

where η0 is the initial value of learning rate, decayη is the 
learning rate decay, and epoch is the number of epochs. All 
the training data have to be augmented to improve the accu-
racy of age estimation methods. For example, we employ the 
three augmentation methods: (i) flipping, (ii) scaling, and 
(iii) shifting. Note that the augmentation methods should add 
only realistic variation to T1-weighted images. We empiri-
cally confirmed that the estimation accuracy is decreased by 
other augmentation methods such as rotation, noise, defor-
mation, etc. The method (i) flips input images horizontally 
with a probability of 0.5. Method (ii) randomly crops input 

images within [0, 10] voxel around and resizes them to the 
original size. Method (iii) randomly shifts input images 
within [−8, 8] voxels. The input for 2D CNN is a set of slice 
images extracted from T1-weighted images. We empirically 
confirmed that all the slices are not always effective for esti-
mating age. For example, the adjacent slices have almost the 
same information, and upper and lower slices do not have 
any effective information. Therefore, the best accuracy of 2D 
CNN-based method is obtained by selecting the optimal 
slices for age estimation.

19.5  Age Estimation Using 3D CNN

The 2D CNN-based method exhibited a higher prediction 
accuracy than conventional methods using manually defined 
local features. 3D features may not be utilized in age estima-
tion since 2D convolution was used to extract features from 
slice images of volume data. This section describes the recent 
approach using 3D CNN proposed in [12]. The 3D CNN- 
based method consists of two steps: (i) preprocessing and (ii) 
age estimation using CNN. Preprocessing has to be applied 
to T1-weighted images before age estimation. We empiri-
cally confirmed that preprocessing improves the accuracy of 
age estimation as well as 2D CNN [10]. Preprocessing used 
in the proposed method consists of the following three steps. 
First, all the T1-weighted images are aligned with the stan-
dard template using the procedure proposed by Good et al. 
[18] as well as the 2D CNN-based method. Next, the aligned 
images are resized to 95 × 79 × 7 voxels to reduce the com-
putation time and memory usage. Finally, the voxel values 
are normalized to have zero mean and unit variance. 
Figure 19.3 illustrates a 3D-CNN architecture used for age 
estimation from brain T1-weighted images. This architecture 
has 4 convolution blocks consisting of a 3D convolutional 
layer (kernel size: 3  ×  3  ×  3, stride: (1), a 3D batch- 
normalization layer, a rectified linear unit (ReLU) activation 
layer and a max-pooling layer (kernel size: 2 × 2 × 2, stride: 
(2). The number of feature channels is 8, 16, 32, and 64 for 
each block, respectively. The last three layers are fully con-
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nected layers to combine the feature vectors. The output is a 
scalar value of the predicted age. This architecture is designed 
to be simple, taking into account the large computation time 
and the large memory usage in 3D-CNN. The loss function 
for 3D CNN is the same as that for 2D CNN in Eq. (19.1). 
The three data argumentation methods are also applied to 
T1-weighted images.

19.6  Performance Evaluation Using 
a Large-Scale Dataset

This section describes performance evaluation using a large- 
scale T1-weighted image dataset. T1-weighted MR images 
collected by the Aoba Brain Imaging Project (Aoba 1) in 
Sendai, Japan [21] and the Tsurugaya Project (Tsurugaya 1) 
in Sendai, Japan are used in the experiment. T1-weighted 
images were taken by the same 0.5  T MR scanner (Signa 
contour, GE-Yokogawa Medical Systems, Tokyo) in both 
projects, where the image size is 256 × 256 × 124 voxels. 
The image size is changed to 189 × 157 × 156 voxels after 
alignment with the ICBM 152 template and then is resized to 
95 × 79 × 78 voxels. The subjects of both projects were all 
healthy and had neither present illness nor a history of neu-
rological disease, psychiatric disease, brain tumor, or head 
injury. 1101 subjects aged from 20 to 80 years from the data-
set are used in the experiment. We randomly select 768 sub-
jects for the training data and also select the remaining 333 
subjects for test data. We evaluate the accuracy of age esti-
mation using the mean absolute error (MAE), the root mean 
square error (RMSE), and the correlation coefficient (Corr.). 
We evaluate the accuracy of age estimation for methods: 
PCA [7], BLF [9], 2D CNN [10], and 3D CNN [11, 12]. The 
hyperparameters for 2D and 3D CNNs are shown in 
Table  19.2. Table  19.3 shows a summary of experimental 
results. The CNN-based methods exhibit higher estimation 
accuracy than the handcrafted feature-based methods [7, 9]. 

The accuracy of 3D CNN methods is much higher than that 
of 2D CNN [10] since the 3D CNN-based method can fully 
utilize volume data in age estimation.

19.7  Analysis

We analyze effective local regions in the age estimation in 
order to discuss the medical implication of the experimen-
tal result. We add the random noise to one local region of 
T1-weighted images and then estimate the age using BLF 
[9], 2D CNN [10], and 3D CNN [12]. If the MAE increases, 
the effectiveness of the masked local region is high. If the 
MAE decreases, its effectiveness is low. The masked region 
is determined by the 90 AAL atlas [14] or the 1024 AAL 
atlas [15]. The use of the above procedure makes it possible 
to evaluate the effective local regions in the CNN-based 
approach although, in general, it is difficult for CNN-based 
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Table 19.2 Hyperparameters for 2D CNN and 3D CNN used in 
training

Hyperparameter 2D CNN [10] 3D CNN [12]
Learning rate 0.0001 0.00005
Learning rate decay 0.0001 0.0001
Weight decay 0.001 0.0001
Momentum 0.9 0.9
Batch size 28 16

Table 19.3 Summary of experimental results of age estimation from 
healthy subjects for each method

Method MAE [y/o] RMSE [y/o] Corr.
Franke et al. [7] PCA 5.56 6.95 0.92
Kondo et al. [9] BLF 4.39 5.57 0.94
Huang et al. [10] 2D CNN 4.18 5.31 0.94
Cole et al. [11] 3D CNN 3.73 4.73 0.95
Ueda et al. [12] 3D CNN 3.23 4.18 0.96

K. Ito
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approaches to explain which local features are effective. 
Figure 19.4 shows effective local regions for each method. 
Effective local regions are concentrated in the frontal asso-
ciation area, the Wernicke’s area, the angular gyrus and the 
primary motor cortex. The frontal association area takes on 
the function of behavioral decisions and working memory. 
The functions of Wernicke’s area include language compre-
hension, semantic processing, language recognition, and 
language interpretation. The angular gyrus takes on the 
functions related to language, spatial cognition, memory 
retrieval, attention, and theory of mind. The above regions 
take on the high-order function compared with other 
regions and hence are impaired with aging. The primary 
motor cortex exhibits high effectiveness in age estimation, 
although this region takes on the low-order function. The 
location of the primary motor cortex is close to that of the 
central sulcus. The central sulcus becomes dilated by atro-
phying the frontal area, and the primary motor cortex also 
becomes dilated, which looks like atrophy. On the other 
hand, ineffective local regions are concentrated in the pari-
etal lobe and the occipital lobe. These regions take on the 
low-order function and hence are robust against aging. The 
above result corresponds to the statistical analysis of age-
related morphological changes [4]. The proposed method 
shows a clearer trend than other methods, although all the 
methods indicate almost the same trend in the statistical 
analysis.

19.8  Application to AD Identification

In this section, we explore the performance of age estima-
tion methods in identifying AD using the database released 
by the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI),3 which includes patients with AD. We evaluate the 
effectiveness of age estimation methods in supporting the 
diagnosis of Alzheimer’s disease by estimating the ages of 
Alzheimer’s patients and healthy individuals and compar-
ing estimation errors. MRI images in the ADNI datasets are 
divided into healthy subjects (Normal or Control: CN), 
mild cognitive impairment (MCI), and Alzheimer’s disease 
(AD) based on the cognitive assessment. We use 
T1-weighted images with 192  ×  192  ×  160 voxels in 
ADNI1, which are acquired by 1.5  T MR scanners. 
Randomly selected 462 CNs are used as training data, and 
the remaining CN, MCI, and AD are used as test data. We 
evaluate the average of MAE and standard deviation (SD) 
for actual and estimated age. Table  19.4 shows the sum-
mary of experimental results for ADNI. In all the methods, 
the estimation errors of MCI and AD were larger than those 
of CN. The age of CN is estimated by an error of ±10 years, 
while MCI and AD have a large error. In particular, there is 
a large margin of error for MCI and AD subjects with 
respect to the actual age of subjects under 70 years of age. 

3 http://adni.loni.usc.edu/
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Fig. 19.4 Effective local regions in age estimation for each method
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This indicates that the changes in brain morphology in MCI 
and AD are not caused by normal aging. On the other hand, 
there was no difference in estimation error between MCI 
and AD subjects and CN in the data over the 80s. The brain 
atrophy of the elderly is more pronounced with normal 
aging, and it is difficult to distinguish MCI and AD from 
CN in the brain. Therefore, it may lead to the early detec-
tion of brain diseases at a relatively young age.

19.9  Conclusion

In this chapter, we have described the potential applications 
of age estimation and AD identification from T1-weighted 
images as examples of brain MR image analysis, which is a 
part of the temporal and pathological axes in MCA model. 
With the rapid development of deep learning, MR image 
analysis is shifting from handcrafted features to features 
automatically extracted by CNN. Since the availability of 
enormous amounts of training data is a critical factor in the 
performance of CNNs, the most important issue is how to 
collect such data. In addition, how to collect data on a small 
number of diseases is also a major challenge for medical 
imaging applications. In the field of machine learning, sev-
eral methods have been investigated, such as a learning 
method using only normal data, a learning method using a 
small amount of disease data, and a data augmentation 
method to increase the number of data, and these methods 
are also expected to be useful in medical image analysis. In 
the future, the interdisciplinary integration of machine 
learning and medical image analysis will be essential, and 
great progress can be expected.

References

 1. Jernigan T, Archibald S, Fennema-Notestine C, Gamst A, Stout 
J, Bonner J, Hesselink J. Effects of age on tissues and regions 
of the cerebrum and cerebellum. Neurobiol Aging. 2001;22: 
581–94.

 2. Allen J, Bruss J, Brown C, Damasio H. Normal neuroanatomical 
variation due to age: the major lobes and a parcellation of the tem-
poral region. Neurobiol Aging. 2005;26:1245–60.

 3. Terribilli D, Schaufelberger M, Duran F, Zanetti M, Curiati P, 
Menezes P, Scazufca M, Amaro E Jr, Leite C, Busatto G.  Age- 
related gray matter volume changes in the brain during non-elderly 
adulthood. Neurobiol Aging. 2011;32:354–68.

 4. Taki Y, Thyreau B, Kinomura S, Sato K, Goto R, Kawashima 
R, Fukuda H.  Corre- lations among brain gray matter volumes, 
age, gender, and hemisphere in healthy individuals. PLoS One. 
2011;6(7):e22734–1–e22734–13.

 5. Lao Z, Shen D, Xue Z, Karacali B, Resnick SM, Davatzikos 
C.  Morphological classi- fication of brains via high-dimensional 
shape transformations and machine learning methods. NeuroImage. 
2004;21(1):46–57.

 6. Neeb H, Zilles K, Shah NJ. Fully-automated detection of cerebral 
water content changes: study of age- and gender-related H2O pat-
terns with quantitative MRI. NeuroImage. 2006;29(3):910–22.

 7. Franke K, Ziegler G, Kloppel S, Gaser C. Estimating the age of 
healthy subjects from T1-weighted MRI scans using kernel meth-
ods: exploring the influence of various parameters. NeuroImage. 
2010;50(3):883–92.

 8. Wang J, Li W, Miao W, Dai D, Hua J, He H. Age estimation using 
cortical surface pattern combining thickness with curvatures. Med 
Biol Eng Comput. 2014;52(4):331–41.

 9. Kondo C, Ito K, Wu K, Sato K, Taki Y, Fukuda H, Aoki T.  An 
age estimation method using brain local features for T1-weighted 
images. In:  Proc. Int’l Conf. IEEE Eng. Med. Biol. Soc; 2015. 
p. 666–9.

 10. Huang TW, Chen HT, Fujimoto R, Ito K, Wu K, Sato K, Taki Y, 
Fukuda H, Aoki T. Age estimation from brain MRI images using 
deep learning. In:  Proc. Int’l Symp. Biomed. Imaging; 2017. 
p. 849–52.

 11. Cole JH, Poudel RPK, Tsagkrasoulis D, Caan MWA, Steves C, 
Spector TD, Mon-tana G. Predicting brain age with deep learning 
from raw imaging data results in a reliable and heritable biomarker. 
NeuroImage. 2017;163:115–24.

 12. Ueda M, Ito K, Wu K, Sato K, Taki Y, Fukuda H, Aoki T. An age 
estimation method using 3D-CNN from brain MRI images. In:  
Proc. Int’l Symp. Biomed. Imaging; 2019. p. 380–3.

 13. Tipping ME.  Sparse Bayesian learning and the relevance vector 
machine. J Machine Learn- ing Research. 2001;1:211–44.

 14. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, 
Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomi-
cal labeling of activations in SPM using a macro- scopic anatomi-
cal parcellation of the MNI single-subject brain. NeuroImage. 
2002;15(1):273–89.

 15. Zalesky A, Fornitoa A, Hardinga I, Cocchia L, Yucela M, Pantelisa 
C, Bullmorect E.  Whole-brain anatomical networks: does the 
choice of nodes matter? NeuroImage. 2010;50(3):970–83.

 16. Goodfellow I, Bengio Y, Courville A.  Deep learning. The MIT 
Press; 2016.

 17. Ji S, Xu W, Yang M, Yu K. 3D convolutional neural networks for 
human action recognition. IEEE Trans Pattern Anal Mech Intell. 
2013;35(1):221–3.

 18. Good CD, Johnsrude IS, Ashburner J, Henson RNA, Friston KJ. A 
voxel-based morphometric study of ageing in 465 normal adult 
human brains. NeuroImage. 2001;14(1):21–36.

 19. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human 
brain. George Thieme Verlag. 1988;

 20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for 
large-scale image recog-nition. CoRR abs/1409.1556 (2014).

 21. Sato K, Fukuda H, Kawashima R.  Neuroanatomical database of 
normal Japanese brains. Neural Netw. 2003;16(9):1301–10.

Table 19.4 Summary of experimental results for ADNI, where the 
value indicates MAE SD for each method

Method CN MCI AD
Franke et al. [7] 1.90 ± 2.37 5.57 ± 6.66 5.67 ± 6.99
Kondo et al. [9] 1.25 ± 1.76 4.96 ± 6.26 5.32 ± 6.43
Huang et al. [10] 1.68 ± 2.24 5.14 ± 6.21 5.50 ± 6.30
Cole et al. [11] 1.65 ± 2.23 5.02 ± 6.04 5.68 ± 6.13
Ueda et al. [12] 2.16 ± 2.77 5.10 ± 6.21 5.77 ± 6.30

K. Ito



163© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
M. Hashizume (ed.), Multidisciplinary Computational Anatomy, https://doi.org/10.1007/978-981-16-4325-5_20

A Computer-Aided Support System 
for Deep Brain Stimulation 
by Multidisciplinary Brain Atlas 
Database

Ken’ichi Morooka, Shoko Miyauchi, and Yasushi Miyagi

Abstract

Our research group has been constructing a 3D digital 
atlas of a Japanese brain (Fukuda et  al, Neurosci Res. 
67:260–265, 2010, Miyauchi et  al. Proc. Computer 
Assisted Radiology and Surgery. 232, 2017). The purpose 
of our project is to develop a support system for Deep 
Brain Stimulation using the brain atlas. Practically, the 
support system estimates a patient brain atlas by using a 
multidisciplinary brain atlas database based on our 3D 
brain atlas. To achieve this, we have been developing two 
fundamental techniques. The first is to deform our brain 
atlas nonlinearly to estimate a reliable atlas of a patient 
with acceptable accuracy for practical medical cases. The 
second is to determine the correspondences among the 
atlases of different individuals to construct the brain atlas 
database.

Keywords

Brain atlas · Deep brain stimulation

20.1  Introduction

Stereotactic neurosurgery is a minimally invasive surgery in 
which an electrode is inserted deeply into the brain from an 
arbitrary position on the skull of a patient, and an electrical 

stimulus was placed to a target neural structure through the 
electrode. Recent researches have reported the high thera-
peutic benefit of stereotactic neurosurgery on intractable 
movement disorder, epilepsy, and central pain. Therefore, 
the number of stereotactic neurosurgery cases has been 
increasing every year. Moreover, electrical neurostimulation 
therapies, most of which are performed in stereotactic neuro-
surgery, have been applied to various kinds of neural circuit 
disorders, such as anorexia or bulimia nervosa, major depres-
sion and obsessive-compulsive disorder.

In order to guide the electrode to the target neural structure 
of a patient, classical human brain atlases are used to identify 
the patient brain structure. There are two famous classical 
brain atlases widely used for stereotactic neurosurgery: the 
atlases made by Schaltenbrand and Wahren [1], and Talairach 
and Tournoux [2]. Each of the atlases is derived from the 
brain preparations of some Westerners. In the atlas construc-
tion, the preparations are divided into left and right hemi-
spheres, and each hemisphere is serially sliced into one of 
three planes: coronal, horizontal, or sagittal planes. For each 
slice, the contours of the brain surface and neural structures 
are manually extracted from the slice. Therefore, the brain 
atlas is the set of the extracted contours from all the slices.

Each person has a different brain structure from the oth-
ers. Therefore, when the brain atlas is applied to estimate the 
patient brain structure, the atlas needs to be deformed to fit 
the brain structure of the individual patient to be treated. The 
atlas deformation is made by simple scaling along each axis 
to make the anatomical feature points of the brain atlas be 
fitted to their corresponding points of the patient’s brain.

However, the classical atlases contain the following prob-
lems when applying to real clinical cases. Coronal, horizon-
tal, and sagittal slices of the classical atlases are obtained 
from different persons. As mentioned above, there are differ-
ences in the brain structures of individuals. Therefore, when 
the 3D brain atlas is constructed from all its slices, the coor-
dinates of the same structure are often in conflict with those 
from the different slices. Moreover, the brain morphology 
varies significantly in individual, age, gender, and probably 
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race [3]. Owing to these factors, the atlas deformation is 
regarded as the complex and nonlinear mapping of the atlas 
onto the patient brain make. However, since the patient brain 
structure is estimated by changing simply the scale of the 
atlas, the estimation accuracy is not acceptable for real ste-
reotactic neurosurgery.

On the other hand, the recent development of medical 
imaging devices, such as PET scan and fMRI, provides the 
structure and activity of a human brain. However, our knowl-
edge about morphological details of the human brain has not 
been advanced so much from observations by Brodmann one 
hundred years ago, who discriminated some forty-five dis-
crete areas in the human cerebral cortex and established a 
complete map of the cortex. One of the reasons for this situ-
ation is that human brains are too large in size to be subjected 
to sophisticated studies as have been done in rodent brains. 
Moreover, few clinical equipments can deal with a whole 
brain of human. Therefore, most of the previous basic 
researches has focused on animal brains, whereas clinical 
researches for revealing anatomo-functional interrelation in 
human brains still rely on classical knowledge on Brodmann 
areas.

In the last few decades, there are some projects to create 
digital databases for human anatomy, including the visible 
human project [4] and the Korean project [5]. These projects 
use 1-meter-large microtome and a freezer in which the box 
with length 2 [m] can be stored. However, preparing such 
expensive equipment and research environments are not 
realistic in general laboratories. As the more serious prob-
lem, the research using the whole body of the cadaver for 
the above purpose is very difficult in Japan because of the 
legal, social, and ethical limitations specific to Japanese 
culture.

We have been studying the construction of a digital 
Japanese brain atlas [6, 7]. This is the first attempt to create 
the complete brain atlas of Japanese. Figure 20.1 shows our 
digital brain atlas constructed from a brain of a cadaver, 
89-year-old male Japanese. The whole surface of the brain 
was scanned by a 3D digitizer. Using the specially designed 
brain-cutting machine, the brain embedded in agar was 
divided into serial blocks, each 1 cm in thickness. Moreover, 
each block is partitioned into three sub-blocks. The sub- 
blocks were further sliced into serial 100[μm]-thick sections 
with a vibrating microslicer. After staining the sections with 
Nissl-and myelin-stainings, experienced neurosurgeons 
traced manually the contours of the section and the internal 
neural structures from all the section images. Each contour 
model includes its structure name, the set of the 3D points on 
the contour, and the connection of the points. Our digital 
brain atlas is generated by collecting all the contours in the 
sub-blocks as shown in Fig. 20.1.

The purpose of our project is to construct a support sys-
tem using our digital brain atlas for Deep Brain Stimulation 

(DBS), one of the stereotactic neurosurgeries. To achieve 
this, we have been developing two fundamental tech-
niques. The first is to deform our brain atlas nonlinearly to 
estimate a reliable atlas of a patient with acceptable accu-
racy for practical medical cases. The second is to deter-
mine the correspondences among the atlases of different 
individuals to construct the brain atlas database.

20.2  Patient Brain Atlas Estimation by 
Deep Neural Networks

We have been developing a new method for deforming the 
brain atlas using multiple deep neural networks (DNNs) [8] 
(Fig.  20.2). Each DNN, called a nodal behavior estimator 
(NBE), estimates the behavior of one node in the mesh model 
of the atlas. By connecting many DNNs, our method esti-
mates a whole deformation of the atlas.

The NBE of a target node trains by observing many pat-
terns of the node behavior. Practically, the input of the NBE 
is the displacement and stress of the node and its neighbor 
nodes and the relative velocities and accelerations between 
the node and its neighbor nodes. When the data of the node 
at time t is given, the NBE outputs the displacement and 
stress of the node at time (t-1). In the NBE construction, 
stacked autoencoder is applied to obtain the initial weights 
between two sequential layers. Moreover, the NBE is fine- 
tuned by using backpropagation. Finally, the system for esti-
mating the whole deformation of the atlas is generated by 
integrating all the NBE of the nodes in the mesh model of the 
atlas.

Fig. 20.1 Our digital brain atlas generated from a Japanese cadaver
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Similar to our method, there are methods for simulating 
the object deformation. Among them, the finite element 
method (FEM) is one of well-known techniques for simulat-
ing the behavior of real objects accurately. To estimate more 
accurate deformations of an object, FEM needs the object 
mesh model with many nodes. However, the increase in the 
number of nodes leads to a heavy computational burden. 
Several studies tackled the problem in FEM by replacing the 
nonlinear constitutive equations in FEM with their linear 
approximated equations. However, the use of the approxi-
mated computations sacrificed the accuracy of estimating the 
deformation. Hence, in conventional techniques for object 
deformation simulation, there is a trade-off between the esti-
mating accuracy and the computational cost.

Unlike the conventional methods for speed up FEM, the 
computations in DNNs are the weighted sum of the simple 
nonlinear functions. Moreover, since the behavior of each 
node is estimated independent of other NBEs, our method 
enables to efficiently estimate the atlas deformation by simu-
lating the behaviors of all the NBEs simultaneously while 
keeping the accuracy of estimating the tissue deformation.

To validate the applicability of our proposed method, we 
made experiments using a triangular mesh model of putamen 
that is a neural structure of the brain atlas. The putamen 
model (29  ×  59 [mm]) consists 59 internal nodes and 42 
nodes on the contour of the model. We simulate the deforma-
tions of the putamen when 48 types of external forces act on 
each active node. Therefore, for each node, 33,744 (= 
37  ×  48  ×  (N  - 1)) nodal behavior patterns are obtained. 
Moreover, we use as test data another 7030 (= 37 × 10 × (N - 
1)) patterns generated by using 10 force vectors. Here, the 
forces used in the test data generation are chosen randomly 
from the range of the external forces used in the generation 
of the behavior patterns of the putamen.

The proposed NBE is evaluated by the difference between 
the deformation results estimated by the proposed NBE and 
the original FEM. Here, for each NBE, the difference to the 
original FEM is measured by an L2 distance between the 

displacements (or the stresses) estimated by the NBE and the 
FEM when each input data is given. The differences for the 
displacement and stress are 3.2  ±  1.4 [mm  ×  10−2] and 
2.8  ±  1.2 [N/mm2], respectively. From these experimental 
results, the proposed method can estimate the node behavior 
accurately compared with FEM.

20.3  Brain Atlas Database Construction

One of the main problems for constructing the database of 
brain atlases is to determine the correspondence among the 
atlas models. Here, a human brain has complex internal neu-
ral structures, including lateral ventricle and thalamus. 
Therefore, we need to establish the two factors: (1) the cor-
respondence among both the surfaces and internal structures 
of brains of different individuals; (2) the spatial relationships 
among the internal structures.

To solve these problems, we have proposed a volumetric 
Self-organizing Deformable Model (vSDM) [9]. vSDM 
maps the brain volume model onto its target volume so that 
the surface of the brain is fitted to that of the target volume 
while each internal structure of the organ is deformed to fit 
its corresponding local target. When the vSDM is applied to 
all the brain models, all the brain volume models can be rep-
resented with a unified structure of the common target vol-
ume. The use of such brain models makes it easy to find the 
correspondences among the brain models. Moreover, vSDM 
preserves geometrical properties of the original brain volume 
model before and after the mapping. These characteristics 
allow to obtain the reliable correspondence among the brain 
volume models easily. Also, vSDM includes a process for 
correcting inverted tetrahedral by moving vertices without 
changing the mesh structure of the brain volume model. 
From this process, when shape deformation caused by the 
control of the mapping positions is small, the mapped model 
by the vSDM has no inverted tetrahedra. Owing to these fac-
tors, the use of our vSDM mapping results enables us to 
recover models with acceptable accuracy for determining the 
correspondences among the models.

20.3.1  Volumetric Self-Organizing Deformable 
Mode (vSDM)

In vSDM, a tetrahedral volume model Mv of a human brain 
is used as an initial vSDM. The external surface of Mv is 
regarded as the outer model surface (OMS) of the vSDM. 
vSDM contains the volume models of the internal structures 
inside the OMS. When some of the internal structures are 
selected to analyze their shapes, the surfaces of the selected 
internal structures are used as the inner model surfaces 
(IMSs) of the vSDM. As an example of the initial vSDM, a 
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Fig. 20.2 Concept of the brain atlas deformation by deep neural 
networks
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brain volume model is shown in Fig. 20.3 (a-c). The brain 
volume model consists of brain surface (the pink part in 
Fig.  20.3 c) and two internal structures: the set of lateral 
ventricle and third ventricle (the blue part), and fourth ven-
tricle (the green part). In this example, the brain surface is 
used as the OMS while the surfaces of the set of lateral ven-
tricle and third ventricle, and the fourth ventricle are used as 
the IMSs.

The vertices in Mv are classified into three types. The ver-
tices on the OMS and IMSs, respectively, are named as the 
OMS and IMS vertices, while the rest vertices are regarded 
as the inner vertices. For each vertex except the OMS verti-
ces, its 1-ball region is the set of the tetrahedra containing the 
vertex.

When vSDM is mapped onto a target volume, the external 
surface of the target volume, called the outer target surface 
(OTS), is the mapping destination of the OMS. The target 
volume includes inner targets within the OTS. Each IMS is 
mapped onto its corresponding inner target surface (ITS). 
Here, the position of the initial vSDM is determined so that 
the OMS and the OTS overlap each other as large as possi-
ble. As an example, a target volume used in our experiment 
is a volume model with an average shape of brain surfaces 
(the light blue region in Fig. 20.3 (d and e)). The target vol-
ume contains two inner targets: a volume model with an 
average shape of the sets of lateral ventricle and third ven-
tricle (the yellow regions in Fig. 20.3 e) and an ellipsoid (the 
orange regions in Fig. 20.3 e). In this case, the OTS is the 
average surface of the brain surfaces, while the ITSs are the 
ellipsoidal surface and the average surface of the sets of lat-
eral ventricle and third ventricle.

The algorithm of vSDM deformation is as follows.

 1. Map the OMS vertices of the initial vSDM onto the OTS 
by step S1, S2, and S4 of mSDM deformation [11].

 2. For each vertex except the OMS vertices, move the vertex 
toward the centroid of its polyhedron. Here, the polyhe-
dron of a vertex v is generated by removing from its 1-ball 
region the vertex v and the edges connecting with v. This 
movement process is repeated until no vertex is moved.

 3. Correct inverted tetrahedra.
 4. Perform an angle- and/or volume-preserving mapping by 

moving the vertices except for the OMS vertices.
 5. For each IMS,

• Determine the position and pose of the corresponding 
ITS by using the mapped IMS vertices.

• Map the IMS vertices onto the ITS by step S1, S2, and 
S4 of mSDM deformation.

 6. Move each inner vertex toward the centroid of its polyhe-
dron. This movement process is repeated until all inner 
vertices are not moved.

 7. Correct inverted tetrahedra.
 8. Perform an angle- and/or volume-preserving mapping by 

moving only the inner vertices while fixing the OMS and 
IMS vertices.

We made mapping experiments by using the volume 
models of six patient brains (average age: 42.2) shown in 
Fig.  20.3 (a-c). To construct each brain model, an experi-
enced neurosurgeon manually extracts the contours of OMS 
and IMSs from medical images. A common target volume is 
shown in Fig. 20.3 (d-e) has 15,000 points on the OTS and 
ITSs averagely. The position and pose of each ITS are deter-
mined manually based on the positions of its corresponding 
IMS vertices. The final mapping results are shown in 
Fig. 20.3 f, show the mapped brain volume models onto the 
target volume. Here, in this figure, the mapping results are 
represented with the shape of the target volume.

The mapping results are evaluated by two criteria. The 
first is the number of inverted tetrahedra in the final resulting 

a b c d e

f

Fig. 20.3 (a) The surface of the brain volume model; (b) The brain 
volume model cut by a virtual plane for the interior visualization; (c) A 
cross-section of the OMS (pink), IMS1 (blue), and LMS2 (green); (d) 
The surface of the target volume; (e) A cross-section of the OTS (light 

blue), ITS1 (yellow), and ITS2 (orange); (f) Final mapping result of a 
brain volume model: from left, its OMS, its cross-section, a cross- 
section of its OMS and IMSs, and IMSs viewed from front and top 
(published from [10])
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models. From our mapping results, the number of the 
inverted tetrahedra is 27 at most, although the mapping posi-
tions of lateral ventricles with complicated shapes are con-
trolled. Moreover, one mapping result has no inverted 
tetrahedra.

The second criterion is the mapping accuracy of OMS and 
IMSs. The accuracy is measured by the distance between the 
surfaces and internal structures of the brain model and their 
target surfaces. When the distance is closed to zero, the sur-
face fits its target surface completely. The average value for 
IMS1s and IMS2s are 0.3 and 0.2 [mm], respectively. Here, 
the mean width, height, and length of ITS2s are 39.9 
[mm] × 14.4 [mm] × 22 [mm]. Compared with the sizes of 
the ITS2s, the values for IMS1s and IMS2s are small enough. 
Therefore, vSDM mapping enables to map of brain volume 
models to their target volumes while fitting the OMS and 
IMSs to their corresponding OTS and ITSs.

20.4  Conclusion

We proposed two fundamental techniques for constructing 
our multidisciplinary brain atlas database. The first is to 
deform our brain atlas nonlinearly to estimate a reliable atlas 
of a patient with acceptable accuracy for practical medical 
cases. The second is to determine the correspondences 
among the atlases of different individuals to construct the 
brain atlas database. Now we have been developing the two 
techniques, and our research project can be contributed to the 
development of human brain analysis and the establishment 
of new neurosurgeries.

Now, we have been developing our multidisciplinary 
brain atlas database. The use of the database helps neurosur-
geons to understand the 3D structure of a patient brain. 
Therefore, our brain atlas database is a powerful and useful 
tool for safe and accurate neurosurgery, including DBS. Our 
current brain atlas consists of the 3D surface anatomy and 
internal structures of a human brain. Moreover, other infor-
mation about the human brain, such as its functional 
 connectivity and genomic information, can be incorporated 

into our brain atlas. This means the brain atlas database is 
used as a platform for various researches of the human brain. 
Accordingly, the brain atlas database can be contributed to 
the development of human brain science.
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Integrating Bio-metabolism 
and Structural Changes for 
the Diagnosis of Dementia

Yuichi Kimura

Abstract

We introduce some aspects to develop an algorithm to 
diagnose dementia diseases, such as Alzheimer’s disease. 
First, we present specific points of dementia. Dementia 
follows a long period of more than 20 years and is irre-
versible. Therefore, we need to detect the onset of demen-
tia before any occurrence of neurological symptoms. To 
satisfy this aspect, functional information derived from 
PET and anatomical or structural information derived 
from MRI are incorporated for feature values to diagnose 
dementia. Recently, Alzheimer’s disease, which is the 
most common dementia disease, has been the target, and 
PET with an amyloid β probe is useful for diagnosing 
Alzheimer’s disease. We focus on PET as a source of the 
features. MRI is also an attractive modality, and we 
describe some data preprocessing procedures for MRI. A 
statistical modeling or AI-based algorithm is the key to 
realizing CAD for dementia, but the issue is how to col-
lect an adequate number of training images. We discuss 
this point in which the generative adversarial network 
algorithm is applied.

Keywords

Dementia · Alzheimer’s disease · PET · MRI  
CycleGAN

21.1  Introduction

Dementia is a degenerative disease, and it causes loss of cog-
nitive function. Because of improvements in medical ser-
vices, particularly in developing countries, patients and 
potential people who have dementia are increasing. WHO 
estimated the number of patients to be 150 hundred million 
worldwide before 2050 [1]. Dementia has an extremely nega-
tive impact on human society. Hence, we need to develop a 
method to diagnose dementia. Major diseases presenting with 
dementia are Alzheimer’s disease; more than 50% of patients 
with dementia have Alzheimer’s disease. The disease- 
modifying drug aducanumab [2] is under development and is 
being put on the market. I introduce some aspects to diagnose 
dementia diseases, including Alzheimer’s disease.

21.2  Specific Points to Diagnose Dementia

Dementia follows more than 20 years and is irreversible. In 
the case of Alzheimer’s disease, deposition of amyloid β 
causes Alzheimer’s disease [3], as presented in Fig.  21.1; 
amyloid β demolishes nerve cells. In typical cases, the depo-
sition starts in the 50s in potential patients with Alzheimer’s 
disease. During the first 10 years, no significant neurological 
symptoms were observed. In the next 10  years, a non- 
negligible number of nerve cells lost their functionality 
because of continued amyloid β deposition, and they suf-
fered from mild cognitive infarction, followed by Alzheimer’s 
disease. It is not adequate to diagnose dementia after pre-
senting any neurological symptoms, and we should detect 
functional and structural changes in the brain; they may be 
slightly before the occurrence of symptoms.

Various modalities can be used to diagnose dementia. MRI 
provides an image of the anatomical structure with fine resolu-
tion, such as 1-mm3 regions. Dementia causes cerebral atro-
phy, and MRI can be visualized clearly owing to its resolution. 
PET is a powerful tool for diagnosis because it can visualize 
various brain functionalities quantitatively. Two radiopharma-
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ceuticals are applied with PET for dementia: 18F-FDG and 
amyloid probes. FDG is a fluorine-labeled deoxyglucose that 
is an analog of glucose. It is trapped in a brain cell in its phos-
phorylated form [4], and the voxel where high glucose metab-
olism is observed presents high radioactivity. Therefore, we 
acquired an image of glucose metabolism that reflects neuro-
nal activity via FDG-PET. Amyloid probes can bind to amy-
loid β molecules specifically, and its spatial distribution can be 
visualized quantitatively or semi- quantitatively [5]. Because 
amyloid β causes Alzheimer’s disease, amyloid PET is a pow-
erful tool to diagnose it. If high radioactivity is observed in 
some cerebral regions, amyloid β deposition begins and the 
patient may suffers from Alzheimer’s disease.

To diagnose dementia, we need to freely use these modal-
ities to detect the onset of dementia in very early phases.

21.3  Feature Values in a Functional Image

We can derive functional features from PET that can be uti-
lized to diagnose dementia, such as neuronal activity and the 
amount of depositing amyloid β. We should consider the sta-
bility and noise in the PET voxel value.

Dementia follows a long period of more than 20 years, 
and we need to monitor its progression periodically, e.g., 
every year. Stability along the time axis is important for its 
application in diagnosing dementia. This issue was discussed 
in [6], in which the authors concluded that a binding poten-
tial [7] is better than SUVR. The binding potential is a quan-
titative measure of the density of amyloid β, which is usually 

used in PET neuroreceptor imaging [8]; however, we should 
conduct a dynamic PET scan that involves multiple scans, 20 
or 30 scans for 60 or 90 min after the administration of PET 
radiopharmaceutical. On the other hand, SUVR is a semi- 
quantitative version of a binding potential derived from a 
static PET scan. This is a single PET scan conducted 60 min 
after the administration. Hence, SUVR is favorable for an 
exact clinical situation. Although the binding potential is 
computed by considering a regional blood flow [8], SUVR is 
affected by a fluctuation in regional blood flow that is 
unavoidable. Moreover, we used the cerebellar gray matter 
as a reference region to compute the binding potential and 
SUVR, and systematic algorithms to define the region for the 
binding potential were proposed [9, 10].

Noise in PET images is another issue. If we develop a 
diagnostic algorithm for dementia with an adequate clinical 
impact, the algorithm should detect the onset of dementia 
before dementia symptoms occur. Therefore, we should 
detect small and faint changes in the brain. In particular, the 
noise in PET images is problematic. If we can administer 
high radioactivity, noise statistics in the image can be devel-
oped; however, it is clinically impractical because of radia-
tion exposure to the patient and a medical staff attending a 
PET scan; a PET image is noisier than MRI and CT images. 
Consequently, the noise reduction algorithm should be 
applied to a PET image. An ordinary noise reduction algo-
rithm smooths an original PET image spatially, averaging 
neighboring voxels. This causes a loss of spatial resolution 
and makes the small and faint amyloid β deposit undetect-
able. Another approach was proposed based on the kinetics 
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Fig. 21.1 Degenerative dementia disease, such as Alzheimer’s disease 
(AD), follows a long time history. The horizontal axis denotes the age, 
and vertical axis represents the advancement of the pathological condi-
tion. Amyloid β is the agent of AD, and around 10 years after the onset 
of the deposition, the brain structure begins to deteriorate. After the next 

10  years, dementia symptoms appear. Dementia is irreversible, and 
therefore, we need to detect the onset when no significant dementia 

symptoms are observed. The figure is the modified version of Fig. 2 [3]
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of the administered amyloid probe. If we measure the time 
history of radioactivity concentration in the brain that can be 
acquired to conduct multiple PET scans after the administra-
tion of the radiopharmaceutical, which is a dynamic scan, we 
can obtain some information on the kinetics of the adminis-
tered radiopharmaceutical. If the brain tissue is rich in spe-
cific binding sites or amyloid β, the time history decreases 
slowly. The kinetic-based idea was proposed in [11] and 
applied to amyloid imaging [12]. Another approach was pre-
sented [13] in which an unsupervised clustering algorithm 
was invoked.

In general, first, a functional disorder occurs, and subse-
quently, an anatomical structure is impaired. In this context, 
PET is better than MRI because MRI is used to image ana-
tomical structures. However, MRI has a higher resolution 
than PET (1  mm3 for MRI, and 5 or 6  mm3 for PET). 
Moreover, we can carry out an MRI scan easily and more 
inexpensively than PET because PET scans require radio-
pharmaceutical. Accordingly, MRI can be used as a feature 
for dementia.

Another issue is the individual differences in the shape of 
the brain. Overall, the shape is common, but details are dif-
ferent individually. Moreover, brain function is localized; 
every local region in the brain has a different function. One 
approach to handle the shape difference is “template.” A rep-
resentative template is the AAL Atlas [14], in which the brain 
is parcellated to 120 regions. More fine versions are avail-
able, with around 1500 regions [15]. An individual MRI or 
PET scan is superimposed onto a standard brain on which 
the template is defined, and the averaged voxel values in each 
ROI are then applied as feature values.

21.4  Statistical Modeling and  
Training Images

As aforementioned, diagnosing dementia means monitoring 
the deterioration of cognitive functions in its very early 
phase. It may be useful to apply a statistical model to incor-
porate the information derived from various modalities. We 
can account for the time history of the progression of demen-
tia. However, the elapsed time after the onset of dementia is 
difficult because there are no significant symptoms in the 
early stage of dementia.

Another drawback of investigating the statistical model for 
dementia is the difficulty in collecting an adequate number of 
clinical images. We can expect a statistical inference algo-
rithm or an AI-based algorithm to be a powerful tool to diag-
nose dementia. However, thousands of images are required to 
train the algorithm [16]. It is challenging to consider the time 
history because it is difficult to gather an adequate number of 
clinical images for various stages of dementia. We can use a 
large dataset of amyloid imaging from the ADNI project, 

Alzheimer’s Disease Neuroimaging Initiative, but we do not 
have such datasets in the public domain that contain other 
dementia diseases, such as dementia with Lewy bodies or 
frontotemporal lobar degeneration. An AI-based algorithm 
for Alzheimer’s disease with good performance has been 
published. For example, the algorithm of [15] can diagnose 
such cases of mild cognitive impairment that progress to 
Alzheimer’s disease with 83% accuracy. We cannot ignore 
other dementia diseases than Alzheimer’s disease to realize 
CAD for dementia because the incidence rates for the two 
dementia diseases are around 20% and 10%, respectively. 
Here, an AI-based algorithm to synthesize images has been 
tried to tackle this issue. It is a generative adversarial network 
(GAN) [17] applied to the CycleGAN algorithm [18] to syn-
thesize CT images using MRI for radiotherapy. Kimura et al. 
[19] was a preliminary work to synthesize dementia PET 
images from healthy images. Frid-Adar et  al. [20] applied 
GAN to train the CNN for liver classification.

21.5  Conclusion

Research on the use of CAD algorithms for dementia is 
increasing [21] owing to the coming aging society and 
improvement in medical services. PET and MRI are useful 
for deriving features for the diagnosis. We can utilize various 
algorithms, and more investigations are required to realize a 
huge image set to train the algorithm.
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Normalized Brain Datasets 
with Functional Information Predict 
the Glioma Surgery

Manabu Tamura, Ikuma Sato, and Yoshihiro Muragaki

Abstract

The goal of this study is to transform to the digitized 
intraoperative imaging and the compiled brain-function 
database for predicting glioma surgery that is based on the 
patient’s future perspective depending on the tumor resec-
tion rate as well as the postoperative complication rate. 
Firstly, we successfully acquired log data with the loca-
tion of medical device integrated into intraoperative MR 
image and digitized brain function was converted to a nor-
malized brain data format in 20 cases with acceptable 
accuracy. There were totally 22 speech arrest (SA), 10 
speech impairment (SI), 12 motor, and 7 sensory responses 
(51 responses). Secondly, we simulated the projection of 
the normalized brain data to the individual pre- and intra-
operative MR image. These image integration and trans-
formation methods for brain normalization should 
facilitate practical intraoperative brain mapping. In the 
future, these methods may be helpful for preoperatively 
and/or intraoperatively predicting brain function.
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Brain mapping · Digitization · Transformation  
Normalization · Predictive surgery

22.1  Introduction

In recent papers on glioma surgery, the extent of resection has 
shown positive correlations with patients’ survival [1–4]. On the 
other hand, aggressive tumor resection carries a risk of causing 
postoperative complications, so various methods of intraopera-
tive monitoring have been developed to reduce the risk of neu-
rological deterioration in motor, sensory, and language functions 
[5, 6]. After having made an appropriate evaluation of current 
surgical conditions, it became evident that MRI was needed to 
choose the optimal treatment method and procedure, as well as 
maximize the preservation of neurological function, in glioma 
surgery. We have developed the optimal surgery system in two 
major areas in which this method can provide with assistance. 
First, in 2000, an MRI unit was installed in the operating theatre, 
enabling surgeons to use intraoperative MRI to evaluate the 
extent of tumor resection in the operating theatre. A navigation 
system that promptly updates these MR images and can accu-
rately localize the surgeon’s procedure for tumor removal and 
provide an understanding of the position of the surgical area has 
been implemented, providing groundbreaking precision-guided 
surgery in over 2000 operations [7]. Second, starting in 2004, a 
dedicated device, IEMASTM (Intraoperative Examination 
Monitor for Awake Surgery), has been used when performing 
brain mapping in awake craniotomy, providing a time- 
synchronized recording display with electric stimulation, 
updated navigation system, and patient conditions while exam-
ining linguistic function [8]. This system has now been used in 
over 508 brain tumor removals for eloquent lesions during 
awake craniotomy without interruption of intra- operative surgi-
cal manipulations [9, 10]. However, this visualization using 
IEMAS is limited to analog information that has been recorded 
on video and seen with the naked eye. In addition, because the 
position of the probes used for electrical stimulation on the brain 
surface is unclear, this information cannot be integrated with 
intraoperative MRI during brain mapping.

With the goal of developing a new approach to solve this 
problem, the electrical stimulation probe results are recorded 
as log (digitized) data, and together with task information, 
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electrical stimulus conditions, and patient response during 
mapping, they are stored in an integrated dataset as digital 
information [11]. The purpose of this study was to transform 
brain mapping analog data into a digitized intraoperative 
MRI and integrated brain-function dataset for predictive gli-
oma surgery considering tumor resection volume, as well as 
the intraoperative and postoperative complication rates.

22.2  Methods

The first steps of our system include performing MR acquisi-
tion with a strong magnetic field (3T) scanner (ACHIEVA, 
Philips Medical Systems) for patients scheduled in awake 
surgery due to tumor localization, accumulate 3D volumetric 
axial T1-weighted image (WI) images (TE: 4.6  ms, TR: 
6.8 ms, voxel size 1 × 1 mm) of thin slices (2 mm), and pre-
pare for tumor resection preoperatively. The acquired MRI 

images are analyzed based on object-based morphometry, 
which can provide sulci analysis that gets to the core of brain 
development and cortical dysplasia. For the analysis, the 
BrainVISA software developed by Jean François Mangin, a 
cooperative researcher in the Computer-Assisted 
Neuroimaging Laboratory, Neurospin, was used. This soft-
ware firstly extracts elementary cortical folds using geomet-
ric and topographic features from preoperative T1-weighted 
MRI. The folds are then pattern-recognized comparing the 
models and labeled automatically [12]. In daily clinical prac-
tice, preoperative a 3D brain image produced by automati-
cally labeled sulcus and gyrus analysis is always used and 
because this accurately displays the position of the elemen-
tary sulci (e.g., central sulcus, anterior/ascending lateral fis-
sure), the position of motor and language areas can be 
estimated, which is crucial prior preparation for brain map-
ping during tumor removal (e.g., Fig. 22.1, left lower image 
of brain surface).

Fig. 22.1 Illustrative case (Case 20 in Table 22.1): Projection of point 
(B) on Japanese type normalized-MRI to intra-operative MRI via pre- 
operative MRI (ref. Fig. 22.4). After pre-processing, (B) is converted to 
(B′) on pre-operative MRI and then converted to (B″) on intra-operative 
MRI.  This pre- and intra-operative simulated case with the left pre- 
central glioma reveals the MRI is firstly converted to the modified 

3D-surface map with functional plots on the pre-operative brain (pre- 
operative simulation). Then, this integrated dataset is converted to the 
intra-operative MRI (intra-operative simulation), confirming the map-
ping result retrospectively. Practical speech function was recorded near 
the projected imaginary speech functional dataset on the 3D-surface 
map of intra-operative MRI

M. Tamura et al.



175

Brain-function database using preparatory mapping and 
IEMASTM, is transformed to normalized brain digitized brain 
mapping localization with the modified electric stimulus 
probe [13] (Fig.  22.2). Normalized brain with functional 
information (Fig.  22.3) is projected to individual patient’s 
brain and predicted brain function (Fig.  22.4). Then, 
 structural and functional digitized data predict an intraopera-
tive brain information. Finally, the normalized brain with 
functional information is projected to the individual patient’s 
brain for prediction of brain function (Fig. 22.5). The ethics 
committee of Tokyo Women’s Medical University approved 
brain mapping during tumor removal, and each patient pro-
vided informed consent before surgery.

Generally, video analysis using IEMASTM for visualiza-
tion of mapping processes during awake craniotomy was 

conducted. The area where the electrical stimulus is applied 
by the surgeon and position where a response occurred is 
visualized alongside testing tasks conducted by the exam-
iner (mainly number counting, picture naming (n), verb 
generation (v), and reading (r) kanji characters and hira-
gana, calculation) and electrical current values from 2 to 
8 mA. The electrical stimulus conditions were as follows: 
biphasic stimulus using an Ojemann cortical stimulator 
(OCS-1TM; Integra Radionics, Inc., Burlington, MA) and 
bipolar electrode probe with interpolar distance of 5  mm 
and tips diameter of 1 mm (Unique Medical Corporation), 
frequency: 50 Hz, pulse width: 0.5 ms. The evaluation con-
firmed whether there was any speech arrest (SA) and/or 
speech impairment (SI) following electrical stimulation, 
and the area stimulated, task presented, and stimulus cur-

Fig. 22.2 The study protocol for a transformation to normalized brain 
is showed. Step 1: The brain-function database was stored using prepa-
ratory mapping process analysis by referring to IEMAS (intra-operative 
examination monitor for awake surgery). Step 2: Brain mapping log 
data of the electrical stimulus probe is acquired using neuronavigation 
system (BRAINLAB CurveTM) that provides updated intra-operative 
MRI was installed on the electrical stimulus probe with interpolar dis-
tance of 5 mm and tips diameter of 1 mm (Unique Medical Corporation). 
Step 3: Reading in images and position information log in a digital for-

mat was performed in the 3D-Slicer image analysis software. Illustrative 
case (Case 3 in Table 22.1) of digitization of a sterilized electrical stim-
ulation probe to localize the mapping point (Plot A). From an intra- 
operative analog mapping report, in which a plot A stimulus included a 
speech arrest response, the plot A point was tagged digitally on intra- 
operative MRI. Secondly, after pre-processing, plot A is converted with 
the physical-based non-rigid registration to plot A′ on pre-operative 
modified MRI. Plot A′ is then converted with the physical-based non- 
rigid registration to plot A″ on Japanese-type normalized MRI
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rent were determined through the video records [14]. The 
visualized data is entered into the electrical stimulus 
probe’s database and is also essential for map creation on a 
normalized brain.

More specifically, a sterilized instrument that could be 
read into the navigation system (BRAINLAB Corporation) 
that provides updated intraoperative MRI (0.4 Tesla mag-
netic field, AIRIS II, Hitachi Medical Corporation) was 
installed on the bipolar electrode probe. Reading in images 
and position information was performed using the 
3D-Slicer [15] image analysis software, and the position 
information log of the electrical stimulus probe was 
acquired in a digital format using a method we developed. 
A coordinate transformation to convert the digital function 
information into the MNI-icbm normalized brain data for-

mat (voxel size 1  ×  1  ×  1  mm) [16], and plot it on a 
3-dimensional brain image for visualization was carried 
out (Fig.  22.2). Do not convert brain function response 
points from the intraoperative MRI (T1-WI, TE: 10  ms, 
TR: 27 ms, voxel size 0.9 × 0.9 mm) [13] during surgery 
directly into normalized brain data, and first convert using 
the nonrigid registration [17] for each patient to the preop-
erative MRI.  Each preoperative MRI is converted to our 
Japanese-type normalized format using the nonrigid regis-
tration [13, 17]. Preoperative and normalized brain data 
3-dimensional images are created using BrainVISA soft-
ware [12]. In the final step, the Japanese-type normalized 
brain with functional information is projected to the indi-
vidual patient’s brain for prediction of brain practical 
function (Fig. 22.4).

Fig. 22.3 SA, SI and NM language, motor and sensory response plots 
onto normalized brain in color map. Speech arrest (SA, red), speech 
impairment (SI, green), negative motor language (NM, yellow), and 
motor-sensory (blue) responses in 20 cases are plotted onto the Japanese 
type normalized 3D-brain map including color-labelled information of 
the mapping threshold (from low [2 mA] to high [6 mA] stimulus inten-

sity). Language function (SA and SI) is distributed widely from the 
ALA near Broca to PLA near Wernicke and crosses the motor/sensory 
function area near the NM area. The ALA is located not only in Broca 
on the inferior frontal gyrus, but also in the middle frontal gyrus. Motor- 
sensory function is clearly distributed along the leg, hand, oro-facial 
and tongue response areas from the vertex
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22.3  Result

For all 20 cases with 32 SA/SI and 19 motor/sensory plots, 
the intraoperative electro-stimulator position data were used 
in combination with preoperative MRI for conversion to the 
normalized brain data format (Table  22.1). All functional 
responses in the 20 cases were integrated into digitized func-
tional datasets on a Japanese-type normalized 3D brain map 
(Fig.  22.3). There was variation in the distribution of the 
mapping response (SA, SI, NM, Motor-Sensory) including 
color-labelled information of mapping threshold (from low 
[2  mA] to high [8  mA] electrical stimulus intensity). 
Language function (SA and SI) was distributed from the 
ALA (anterior language area) near Broca to the PLA (poste-
rior language area) near Wernicke and crossed  motor/sen-
sory function in the NM (negative motor) area [10]. The 
interesting thing is that the ALA was located not only in so- 
called Broca on the inferior frontal gyrus, but also in the 
middle frontal gyrus. Motor or sensory function was clearly 
distributed with leg, hand, orofacial, and tongue responses 
from the vertex direction.

According to the evaluation of transformation accuracy 
for the three subjects, referring to (1) each two neighbor-
ing sulci on the electro-stimulator position and (2) the 
cortex surface near each tumor, the first transformation 
from intra- to preoperative MRI with nonrigid registration 
was calculated at (1) 2.6 ± 1.5 mm and (2) 2.1 ± 0.9 mm 
in average, while the second transformation from preop-
erative to normalized brain with nonrigid registration was 
calculated at (1) 1.7  ±  0.8  mm, (2) 1.4  ±  0.5  mm in 
average.

Finally, Japanese-type normalized MRI was converted 
backward to individual MRI and projected to the patient’s 
brain to predict the patient’s intraoperative brain function. 
For example, in Fig. 22.1, a left precentral glioma patient’s 
MRI was converted to the modified 3D-surface map with 
functional plots in the preoperative brain. Then, the inte-
grated datasets were converted to the intraoperative MRI, 
and the mapping record was confirmed retrospectively. 
Practical motor function was recorded near the projected 
imaginary hand-motor functional datasets on the 3D-surface 
map of intraoperative MRI.

Fig. 22.4 Transformation (Projection) of point (B) on Japanese type 
NMI-MRI to intra-operative MRI via pre-operative MRI.  After pre- 
processing, (B) is converted with the physical based non-rigid registra-
tion to (B′) on pre-operative MRI. (B′) is then converted with the 

physical based non-rigid registration to (B″) on intra-operative 
MRI.  Japanese type NMI-MRI is converted backwards to individual 
MRI and projected onto the patient’s brain to predict the patient’s intra- 
operative brain function
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22.4  Discussion

22.4.1  Cortical Brain Mapping

With the positive-response 20 cases of cortical brain map-
ping, the area and precision of SA event observation could 
vary depending on the type of tasks presented during the lan-
guage examination (n, v, r). The required current strength for 
the cortical stimuli varied from 2 to 6 mA for the ALA, PLA, 
and NM areas. These values were determined using the 
 mapping stimulus conditions implemented at our facilities 
(f: 50 kHz, D: 0.5 ms, biphasic stimulation), and they differ 
from the values reported at other facilities [18, 19].

In our institution (unpublished data), out of the 85 
patients for which cortical language mapping was per-
formed, SA in the ALA was examined in 54 subjects, and 

observed near Broca’s area in 34 subjects. The testing tasks 
during which SA occurred were confirmed as naming in 31 
cases and verb generation in 11 cases (including multiple 
events), and the average stimulus current threshold was 
4.6 ± 1.3 mA. In the NM area, the average stimulus current 
threshold was confirmed as 5.1  ±  1.3  mA for 16 subjects 
(30%), and in 7 cases (13%), there were no clear SA events 
confirmed on the brain surface, even at the tumor surface. In 
the frontal language area, SA was observed in 47 cases 
(87%), differentiated from 40 cases (74%) in the NM and 
Broca’s area locations.

Because there is no fixed standard for mapping stimula-
tion intensity, further investigation is required in this area. 
The method of confirming SA with direct cortical electrical 
stimulation is the gold standard technology and the only 
method by which language function can be confirmed [20]. 

Fig. 22.5 Normalized brain datasets with functional information proj-
ect the predictive glioma surgery. With the collaboration concerning 
image registration regarding to normalization of shifted brain and elec-
trical distribution simulation for cortical brain mapping regarding to 
physics, we aim at the intra-operative brain mapping assistance using 
projected patient’s MRI. A case simulation of predictive glioma surgery 

(Case 6, in Table  22.1) is demonstrated; Left column: navigation of 
intra-operative MRI fused the electrical stimulation probe. Middle 
upper: functional regions are plotted on the individual patient’s intra- 
operative 3D surface image brain. Middle lower: time-synchronized 
representation of electrical probe movement as well as an imitation 
probe in middle upper
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However, further efforts are required to consider false posi-
tives, as well as safety and standardization of the results, 
using this testing method [21].

22.4.2  Conversion of Digitized Information 
to Normalized Brain Data Format

The response points are first extrapolated from the intraop-
erative MRI and applied to the preoperative MRI, then con-
version is applied with the normalized brain data precision 
retained, creating normalized brain data based on the com-
plete brain function database. The use of this data is not 
limited to individual tumor patients. Through the accumu-
lation of cases, a standard brain format map for functional 
areas such as the motor area and language area can be built. 
This data would allow an explanation for standard function 
positions to be developed and converting backward from 
this normalized brain to individual patient’s MRI would 
probably enable the creation of functional maps for indi-
vidual patients’ brain function pre- and intraoperatively 
(Fig. 22.1).

22.4.3  Predictive Glioma Surgery Based 
on Database

As above mentioned, this backward conversion was tried 
and now we evaluate the accuracy of the projection compar-
ing the practical brain function. Our goal, predictive sur-
gery, is based on the database (including brain function, 
tumor location, and mapping threshold), and would allow 
explanations of each expected resection rate linking survival 
rate and postoperative neurological complication and high-
level brain function damages that can hinder reintegration 
into society.

Functional region on normalized brain was plotted on a 
patient’s intraoperative 3D surface image and the patient of 
left frontal cortical mapping is simulated as the practical 
mapping (Case 6  in Table  22.1, Fig.  22.5). Now, this is a 
simulated case, however, it has a strong potential to drive this 
concept in the real-time operating theatre when we will pre-
pare an accurate and rapid intraoperative system to realize 
the predictive glioma surgery.

We aim for clinical application while deepening the 
localization of spatial structure and brain function by using 

Table 22.1 Patient characteristics, cortical mapping results

Case Age/sex Pathology, WHO grade
Initial or 
additional Side/location

Object for 
mapping

Cortical mapping results

SA SI
Motor/
sensory

1 38, M Anaplastic astrocytoma, 3 Initial Lt-Insula- 
Temporal

B, M No Bn(3) No

2 28, F Anaplastic astrocytoma, 3 Initial Lt-Temporal W, M Wnvr(3) No No
3 24, M Diffuse astrocytoma, 2 Additional Lt-Insula- 

Temporal
B, M Bn(3) No No

4 42, F Oligodendroglioma, 2 Initial Lt-Temporal W Wnr(2,3), Wn(2), 
Wr(2)

No No

5 37, F Anaplastic oligo- astrocytoma, 3 Initial Lt-Frontal B. M NMn(3) No M(6)
6 56, M Anaplastic oligodendroglioma, 3 Initial Lt-Frontal B, M Bn(6), Bv(6) Bv(3) No
7 60, M Oligodendroglioma, 2 Initial Lt-Frontal B, M Bn(3) Bn(3,6), Bv(4) No
8 19, M Anaplastic oligodendroglioma, 3 Initial Lt-Temporal W No Wnr(3,4) No
8 37, M Diffuse astrocytoma, 2 Initial Lt-Frontal B, M Bnv(4), NMv(3) No P(2)
9 44, F Anaplastic astrocytoma, 3 Initial Lt-Frontal M No No P(3–4)
10 35, F Oligodendroglioma, 2 Initial Lt-Frontal M No No M(2–3)
11 36, M Oligodendroglioma, 2 Additional Lt-Frontal B, M Bn(3) Bn(6), Bn(6) No
12 37, M Oligodendroglioma, 2 Initial Lt-SMA B, M No No M(2)
13 31, F Oligoastrocytoma, 2 Initial Lt-Frontal B, M Bn(6) No M(2)
15 22, M Anaplastic astrocytoma, 3 Additional Lt-Front- 

Parietal
B, M No Bnv(3) No

16 37, F Anaplastic astrocytoma, 3 Recurrent Lt-Parietal W Wn(6) No P(3)
17 42, F Oligodendroglioma, 2 Initial Lt-Frontal B, M Bnv(6,6), Bv(6) No No
18 45, M Anaplastic oligodendroglioma, 3 Initial Lt-Frontal M No No M(3)
19 44, M Anaplastic oligodendroglioma, 3 Recurrent Lt-Frontal B, M Bn(6,6,6) Bc(3) No
20 47, M Anaplastic astrocytoma, 3 Initial Lt-Frontal B, M Bnv(5,6), Bn(6) No No

Lt Left, SMA supplementary motor area, Object for Mapping (B: frontal language, W: posterior language, M: motor-sensory), Tasks for language 
examination (n: naming, v: verb generation, r: reading) and cortical mapping results (SA: speech arrest, SI: speech impairment, NM: negative 
motor, P: Sensory) with mapping threashold in (mA) are shown as a same item. Some cases include multi-response lesions
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MRI, and the computational anatomy based on the multidi-
mensional axis including the pathological axis of brain 
tumor. To predict complications associated with individual 
tumor removal from the normalized brain based on data-
base and to make full use of highly intelligent preoperative 
diagnosis, we develop applications for predictive surgery. 
We should also consider sharing a database in which all 
researchers involved in brain tumor to solve clinical multi-
faceted problems such as brain shift during craniotomy, 
movement / plasticity of functional sites in tumor recur-
rence, and temporal change of pathological image informa-
tion due to genetic change.

22.5  Conclusion

Within the limited stimulation time in awake craniotomy, 
brain mapping accuracy is always evaluated to clarify brain 
function for glioma surgery. Digitized intraoperative datasets 
for cortical brain mapping should be acquired precisely, and 
integrated image fusion and transformation on normalized 
datasets that compiled brain function can lead to predictive 
glioma surgery based on our new concept to the projection of 
the normalized brain.
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MCA Analysis for the Change 
in the Cardiac Fiber Orientation Under 
Congestive Heart Failure
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Abstract

We developed the structure tensor analysis methods to 
investigate the cardiac fiber orientation from Micro-focus 
X-ray CT (μCT) imaging (Oda et  al., J Med Imaging 
(Bellingham) 7(2):026001, 2020). Using this technique, 
we analyzed the cardiac fibers and sheets orientation of 
canine hearts under normal and congestive heart failure 
(HF) conditions. The average cardiac fibers orientation of 
the normal and HF canine model was not different, but the 
standard deviation of the angle was more diverse in 
HF. The sheet angle to the horizontal plane was more ver-
tical in HF than in normal.

Keywords

Micro CT · Cardiac fiber orientation · Cardiac sheet 
Heart failure · Dilated cardiomyopathy

23.1  Introduction

The spiral orientation of cardiac fibers relates directly to sys-
tolic & diastolic function [1]. Heart failure (HF) may cause 
the changes of fibers orientation of the left ventricle (LV) 

from spiral (±60°) to more horizontal angel [2, 3]. Diffusion 
tensor magnetic resonance imaging (DT-MRI) is commonly 
used to investigate the cardiac fibers orientation [4, 5]. 
However, long acquisition time and technical difficulty for 
DT-MRI make it for limited use.

We are focusing on using micro-focus X-ray CT (μCT), 
which has much higher spatial resolution and faster acquisi-
tion time than DT-MRI. We developed the structure tensor 
analysis to track the cardiac fibers from μCT images [6]. 
Using this technique, we planned to compare the cardiac 
fiber and sheet orientation of the canine heart under normal 
and HF conditions.

23.2  Materials and Methods

 (a) Heart Preparation: Animal experimental protocol was 
approved by the IRB of Nagoya University, Graduate 
School of Medicine. The canine heart was harvested 
from normal or HF model. The HF canine model was 
created by rapid atrial pacing at 230 bpm for 8 weeks, 
which resulted in the left ventricular (LV) diastolic 
diameter 25 mm and LV ejection fraction 19%. 20 ml of 
10% KCl solution was injected into the aortic root for 
euthanasia. 10% formaldehyde solution was injected 
into the aortic root after excision of the heart. We kept 
the heart in 7.5% I2KI solution for 1 day to enhance car-
diac fibers contrast in μCT volumes [7]. The heart was 
put into a plastic cage and scanned by a μCT scanner, 
inspeXio SMX-90CT Plus (Shimadzu).

 (b) Analysis of Cardiac Fiber Orientation by μCT
For each CT volume, fiber orientation at a point is 

estimated by using the structure tensor analysis [6]. 
From each estimated fibers orientation vector, the incli-
nation angle that commonly used in anatomical studies 
[4] is computed. On comparison-target points that are 
defined as grid patterns in the LV, we compare the mean 
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and standard deviation of angles between normal and 
HF models. The trajectories are colored by the inclina-
tion angle. This allows us to observe how cardiac fibers 
are structured visually.

23.3  Results

Fiber tracking results of normal and HF canine heart are 
shown as 3D images in Fig.  23.1 (3D). Fiber inclination 
angle versus the depth from the center of the wall at the 
equator point of these hearts was shown in Fig. 23.2. The 
average inclination angles from inner to outer layer were 
similar in normal and HF hearts (Fig. 23.3). However, the 
inclination angles of HF hearts were much diverse than the 
normal one. Cardiac sheet inclination angle to horizontal 
plane at equator position was also analyzed as the patch 
angles constructed by the stacks of extracellular matrix 
region, which is expressed as low CT number (Fig. 23.4). 
Histograms of sheet inclination angles at equator point 
shows that more vertical angle sheet existed in HF than in 
normal (Fig. 23.5).

23.4  Discussion

To our knowledge, this is the first report that cardiac fibers 
orientation of HF heart becomes divergent under similar 
average fibers orientation in normal and HF hearts. These 
findings were only accomplished by the high spatial reso-
lution of μCT images, not by DT-MRI. Divergency of car-
diac myofibers should result in weaker force generation 
than convergent fibers orientation, which exacerbates car-
diac function with reduced cardiomyocytes. These results 
also match the disarrangement of cardiac fibers observed 

in the histologic specimen of dilated cardiomyopathy 
(DCM) patients.

The cardiac sheet inclination angle of the HF heart had a 
more vertical position than that of the normal heart. Helm 
et  al. reported [8] that the orientation of laminar sheets 
become more vertical in the early-activated septum in dys-
synchronous failing canine hearts using DT-MRI.  These 
changes are accompanied by LV chamber dilation and LV 
wall thinning. Therefore, the vertical shift of cardiac sheet 
angles may not be the cause but the result from LV chamber 
dilatation and wall thinning.

We could not confirm the latter part of Buckberg’s the-
sis that the cardiac shape changes from the natural ellipti-
cal form into a spherical contour, causing the systolic 
dysfunction of DCM, as global ventricular stretch trans-
forms the normal 60° helical fiber orientation into a more 
transverse geometric configuration [6, 8]. Although 
tachycardia- induced HF canine model is well-established 
method to investigate the dilated cardiomyopathy [9–11], 
a longer pacing time may be required to establish the struc-
tural change.

This work mainly extends over the Multidisciplinary 
Computational Anatomy (MCA) axes: space and pathology. 
For the space axis, we explored high-resolution cardiac 
imaging using μCT, which allowed us to observe with the 
micro-meter-level spatial resolution. Using computational 
image processing by structure tensor analysis [6] from these 
data, it is now possible to analyze cardiac fiber structures in 
3D. Our discoveries offered the methodologies for investi-
gating the microscopic structure changes under pathological 
processes such as heart failure, which contributes to the 
pathology axis of MCA.

This is the preliminary experiment of a small sample size. 
We are planning to analyze additional normal and HF canine 
hearts to validate our preliminary findings.

Normal Heart Failure

+90°

-90°

0°

Fig. 23.1 3D view of cardiac fibers orientation in normal and HF canine heart Fiber angles are expressed by color
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Normal Heart Heart failure
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Fig. 23.2 2D view of cardiac fibers angles at equator line of normal and HF canine hearts
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samples shift from around −70°at outer side to around +50°at inner side. Angles in HF hearts are more diverse than normal heart
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23.5  Conclusion

The cardiac fibers orientation analysis by μCT will be a pow-
erful tool to investigate the three-dimensional microscopic 
structural changes under congestive HF.
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Computerized Evaluation of Pulmonary 
Function Based on the Rib 
and Diaphragm Motion by Dynamic 
Chest Radiography
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Abstract

The respiratory system is essential to maintain life but 
can be affected by many types of diseases. Thus, a better 
understanding of pulmonary structure, function, and 
physiology is critical to solving the universal problems 
associated with peoples’ health in the respiratory system. 
In this chapter, we focus on the rib and diaphragm 
motion, as well as the lung density, closely related to the 
pulmonary function. As an effective tool for comprehen-
sively understanding pulmonary function, dynamic chest 
radiography (DCR) and its findings in animal and clini-
cal studies are introduced, followed by a proposal of 
cross- disciplinary approaches based on DCR in the respi-
ratory system.

Keywords

Pulmonary function · Rib · Diaphragm · Lung density  
Dynamic chest radiography

24.1  Introduction

The respiratory system is essential to maintain life but can 
be affected by many types of diseases. Therefore, a better 
understanding of pulmonary structure, function, and physi-
ology is critical for dealing with the universal problems 
associated with peoples’ health in the respiratory system. 
The knowledge of respiratory physiology was established in 
the mid-nineteenth century mainly based on the findings in 
pulmonary function test (PFT) and lung scintigraphy [1]. 
After that, medical imaging technology has significantly 

improved and is now providing multidimensional informa-
tion regarding the respiratory system, ranging from the cell 
level to the organ level. For example, micro-computed 
tomography (μCT) provides extremely high-resolution 
images of samples and can be employed as a non-destruc-
tive inspection tool [2]. Recent advancements in computed 
tomography (CT) and magnetic resonance imaging (MRI) 
technologies have facilitated functional lung imaging. 
Dynamic 4-dimensional CT and dual-energy CT allow the 
estimation of lung ventilation based on Hounsfield unit val-
ues [3]. Conversely, cine MRI provides regional ventilation 
differences based on lung signal [4], as well as lung volume 
and diaphragm motion [5]. On the other hand, dynamic 
chest radiography (DCR) provides sequential images with a 
large field of view (FOV) during respiration at a high imag-
ing rate of 15–30 frames/s [6, 7]. Based on this information, 
multidisciplinary computational anatomy (MCA) might 
innovate respiratory medicine and surgery. In this chapter, 
we focus on the rib and diaphragm motion, as well as the 
lung density, closely related to pulmonary function. As an 
effective tool for comprehensively understanding the pul-
monary function, DCR, and its findings in animal and clini-
cal studies are introduced, followed by a proposal of 
cross-disciplinary approaches based on DCR in the respira-
tory system.

24.2  Dynamic Chest Radiography (DCR)

Recent digital radiography technology allows DCR with a 
total exposure dose comparable to that of conventional chest 
radiography. DCR is a flat-panel detector (FPD) based on 
functional lung imaging that can be performed in a general 
X-ray room [6, 7]. The imaging system has been commer-
cialized, receiving FDA approval in 2019.

Sequential chest radiographs are obtained during forced 
respiration with use of a dynamic FPD system and X-ray 
generator capable of pulsed irradiation (15 frames/s). The 
large FOV of FPDs permits real-time observation of the 
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entire lungs and simultaneous right-and-left evaluation of 
diaphragm kinetics. Except for breathing manner, imaging is 
performed in the same way as is the conventional chest 
examination, i.e., the standing position and the PA (postero-
anterior) direction. The total patient dose is adjustable by 
changes in the imaging time, imaging rate, and source to 
image distance (SID) and can be less than the dose limit for 
two projections (PA + LA) recommended by the International 
Atomic Energy Agency (IAEA) (1.9 mGy). Although over-
lapping lung structures have been disturbing quantitative 
analysis of lung dynamics on 2D projection images, the bone 
suppression (BS) image-processing technique has allowed 
us to separate bones from soft tissue in a chest radiograph [8, 
9]. DCR combined with the BS technique has the potential to 
allow a rapid and better understanding of respiratory changes/
motions of each lung structure [10].

24.3  What Is Reflected on Dynamic Chest 
Radiographs?

Dynamic chest radiographs contain a wealth of functional 
information, such as rib and diaphragm motion, cardiac 
motion, pulmonary ventilation, and circulation. In particu-
lar, respiratory muscle function has a direct association 
with pulmonary function, and one of the functional disor-
ders appear the other one. For example, pulmonary impair-
ments alter lung behavior, resulting in a phase shift or/and 
extension of the respiratory period [11–14]. On the other 
hand, bone fracture and diaphragm disorders limit lung 
mobility during respiration, resulting in a decrease in vital 
capacity (VC) [15–17]. In addition, contraction of the dia-
phragm alone accounts for about 75% of inspiration. 
Muscles of the thoracic wall (intercostal muscles) and 
selected muscles of the neck and abdomen also can partici-
pate in inspiration and assist the diaphragm, especially dur-
ing active breathing (e.g., during exercise) [1, 17]. 
Therefore, an understanding of rib and diaphragm kinemat-
ics is crucial to evaluate pulmonary function and treatment 
effects. The other important information is a change in 
radiographic lung density during respiration and cardiac 
beating. The changes are caused by relative increases and 
decreases in the volume of lung vessels and bronchi per 
unit of lung volume [18, 19]. Therefore, pulmonary impair-
ments can be detected as reduced changes in radiographic 
lung density, even without the use of contrast media or 
radioactive medicine.

However, their interpretation is challenging for radiolo-
gists; therefore, computerized methods have been developed 
for the evaluation of pulmonary function on dynamic chest 

radiographs [6, 7]. The following findings have been revealed 
by DCR through animal and clinical studies.

24.3.1  Diaphragm Motion

Pulmonary function is generally assessed by PFT as a total 
lung capacity, such as forced expiratory volume and forced 
vital capacity. While, analysis of diaphragm motion allows 
for the evaluation of pulmonary function in each lung 
because pulmonary function directly reflects on diaphragm 
motion. In normal subjects, there is a high correlation 
between diaphragm excursion and tidal volume and no sig-
nificant difference in diaphragm excursion between both 
lungs [20, 21]. In contrast, lungs with atelectasis indicate a 
significant reduction in diaphragm excursion (P  <  0.05). 
Temporal cross-sectional image is useful for a better under-
standing of such a diaphragm motion [22]. Some clinical 
studies report that pulmonary impairments could be detected 
based on abnormal diaphragm motion, such as no/reduced 
motion, time-lagged motion, and paradoxical motion [22]. In 
addition, unilateral pulmonary impairment can be detected 
based on reduced diaphragm excursion in a patient with nor-
mal findings in PFT. Dynamic analysis of diaphragm motion 
is helpful for following the progress of a patient with pulmo-
nary diseases and assessing the results of treatment.

24.3.2  Rib Motion

Abnormal rib motion can be detected as asymmetrical distri-
bution of local velocity in the lungs. For this purpose, 
dynamic bone images created by BS technique are useful to 
quantify and distinguish movements of ribs from those of 
other lung structures [10]. Previous studies indicated that 
normal controls show the symmetrical distribution of rib 
movement in both the velocity vector maps and velocity 
magnitude maps. On the other hand, in many patients with 
respiratory disease and/or lung cancer, limited rib mobility 
appears as a reduced velocity field, resulting in an asymmet-
rical distribution of rib motion in both maps. Therefore, 
abnormal cases are more likely to show large variations of 
vector sum in the horizontal direction throughout all frames 
[10]. Furthermore, paradoxical rib movements can be 
observed in some frames, resulting in less synchronous 
between the vector sum in the vertical direction with the 
respiratory phase, and no correlation with the diaphragm 
movements. Dynamic analysis of rib motion is expected to 
be an effective index for predicting pulmonary function, 
especially in a patient with scoliosis with limited rib motion.
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24.3.3  Pulmonary Ventilation and Circulation

Changes in lung volume and circulation dynamics are 
observed as temporal changes in radiographic lung density 
on dynamic chest radiographs [18, 19]. Therefore, the pul-
monary function can be evaluated by time-series analysis of 
radiographic lung density [23–30]. Previous animal and clin-
ical studies indicated that trapped air, limited airflow, and 
pulmonary embolism could be detected as reduced changes 
in pixel value in the lung regions on dynamic chest radio-
graphs [31, 32]. In addition, there is high linearity between 
changes in radiographic lung density and tidal volume, as 
well as blood volume in the lungs (r = 0.99). Areas of atelec-
tasis or pulmonary embolism displayed significantly reduced 
changes in pixel values (P < 0.05). Furthermore, the color- 
mapping visualization technique provides new functional 
images, which is useful for understanding slight changes in 
radiographic lung density during respiration and cardiac 
pumping. DCR is capable of ventilation- and perfusion- 
related parameters based on temporal changes in radio-
graphic lung density, even without the use of radioactive 

agents or contrast media. DCR allows real-time observations 
of pulmonary function so that it might be applied for emer-
gency medicine and supporting operations in the future.

24.4  Pulmonary Function Evaluation 
Based on MAC

In Fig. 24.1, we illustrate the concept of the pulmonary func-
tion evaluation based on MCA, which is realized by integrat-
ing a variety of information. The 2D/3D image registration 
technique is essential for MCA in the respiratory system, for 
example, to recover the time-series information from 3D 
static data. In a preliminary study, it was indicated that the 
rib motion could be reproduced using combination of DCR 
and one-time-phase CT; accordingly, the rib motion could be 
comprehensively understood [33]. MCA enables the further 
utilization of the information existing in clinical settings, 
thereby introducing new findings into the respiratory system. 
Cross-disciplinary approaches play a key role in the evalua-
tion of pulmonary function based on MCA.
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Computer-Aided Diagnosis 
of Interstitial Lung Disease on  
High- Resolution CT Imaging Parallel 
to the Chest

Shingo Iwano, Hiroyasu Umakoshi, and Shinji Naganawa

Abstract

Interstitial lung diseases (ILDs) are conditions in which 
inflammation and fibrosis diffusely affect the pulmonary 
interstitium and parenchyma and include a variety of sub-
sets, such as idiopathic interstitial pneumonia (IIP), col-
lagen vascular disease-related ILD and chronic 
hypersensitivity pneumonitis. High-resolution computed 
tomography (HRCT) is essential for visual assessment. 
Additionally, high-speed multi-detector row CT can pro-
vide high-resolution images of the whole lung. However, 
evaluation of the entire lung field on a lot of axial HRCT 
images can be complicated even for expert radiologists. 
To resolve these difficulties, we developed a novel 3D 
imaging system of curved HRCT (3D-cHRCT) that only 
targets the peripheral lung field where is the predominant 
location of ILDs, especially usual interstitial pneumonia 
(UIP). The 3D-cHRCT can evaluates visually an image 
depicting the zone of the peripheral lung where there are 
little pulmonary vessels or bronchi. Therefore, we 
attempted to visually and quantitatively assess ILDs using 
the 3D-cHRCT at a constant depth from the chest wall.

Keywords

Interstitial lung disease · Interstitial pneumonia · COPD  
High-resolution CT · Computer-aided diagnosis

25.1  Introduction

Interstitial lung diseases (ILDs) are conditions in which 
inflammation and fibrosis diffusely affect the pulmonary 
interstitium and parenchyma and include a variety of subsets, 

such as idiopathic interstitial pneumonia (IIP), collagen vas-
cular disease-related ILD and chronic hypersensitivity pneu-
monitis [1, 2]. High-resolution computed tomography 
(HRCT) is essential for visual assessment. Additionally, 
high-speed multi-detector row CT can provide high- 
resolution images of the whole lung. However, evaluation of 
the entire lung field on a lot of axial HRCT images can be 
complicated even for expert radiologists. To resolve these 
difficulties, we developed a novel 3D imaging system of 
curved HRCT (3D-cHRCT) that only targets the peripheral 
lung field where is the predominant location of ILDs, espe-
cially usual interstitial pneumonia (UIP). In this study, we 
adapted the MCA model to the combination of three- 
dimensional space and pathological findings.

25.2  3D-cHRCT

All preoperative CT scans were performed using a 
64- multidetector row CT scanner in the craniocaudal direc-
tion during inspiratory apnea. Axial thin-section CT images 
of the whole lung were reconstructed with a slice thickness 
of 0.5-mm or 1-mm at the same increment using a high- 
spatial frequency algorithm. The axial HRCT imaging data 
of the study patients were transferred to the 3D-workstation 
that automatically used our original software to reconstruct 
each 3D-cHRCT image of the lung at a constant 1-cm depth 
from the chest wall [3]. Figure 25.1 shows the overall scheme 
of the 3D-cHRCT reconstruction procedure and examples of 
3D-cHRCT images.

25.3  Visual Assessment of ILDs

In September 2018, a guideline for the clinical recommenda-
tions for the diagnosis of idiopathic pulmonary fibrosis (IPF) 
was provided [4, 5]. Therefore, we reviewed the HRCT 
images of 27 patients with or without ILDs (Figs. 25.2, 25.3, 
25.4, and 25.5). The concordance rate between the conven-
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Fig. 25.1 Overall schematic 
diagram of the three- 
dimensional, curved 
high-resolution CT 
(3D-cHRCT) image at a 
constant depth from the chest 
wall [3]. Axial HRCT image 
and dashed line indicating 
1-cm depth from the chest 
wall; multiple-view 
3D-cHRCT images showing 
the 3D distribution of 
interstitial pneumonia 
infiltrates; left lateral view, 
posterior view,  
right lateral view

Fig. 25.2 A case of 3D-cHRCT of definite UIP pattern
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Fig. 25.3 A case of 3D-cHRCT of probable UIP pattern

Fig. 25.4 A case of 3D-cHRCT of indeterminate for UIP pattern

25 Computer-Aided Diagnosis of Interstitial Lung Disease on High-Resolution CT Imaging Parallel to the Chest
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tional axial HRCT and 3D-cHRCT was 89% (24/27) with 
excellent reproducibility (k = 0.855, p = 0.001, Table 25.1).

25.4  Visual Assessment of Lung Cancer

Frequently, patients with IPF occur primary lung cancer as 
complications because of their smoking history. Although 
most of the lung cancers develop spherically, subsets of 
peripheral lung cancers show flattened shape because the 
progression is prevented by the chest wall. However, even in 
such a case, a tumor may show round shape on 3D-cHRCT 
images of the lung at a constant 1-cm depth from the chest 
wall. Therefore, we tried to diagnose peripheral lung cancer 
(Fig. 25.6).

25.5  Quantification of Emphysema and IP 
by CAD

Smoking-related diffuse pulmonary diseases such as emphy-
sema and interstitial pneumonia (IP) often occur in combina-
tion with primary lung cancer [1]. Patients with combined 
pulmonary fibrosis and emphysema (CPFE), which is a 
unique disorder of the lungs that comprises upper lung 
emphysema and lower lung fibrosis, are especially at high 
risk for lung cancer and have a poor prognosis [6]. Pulmonary 
function testing (PFT) is usually performed for the evalua-
tion of preoperative respiratory function. However, the 
 percent vital capacity (%VC) and the ratio of forced expira-
tory volume in 1 s to forced vital capacity (FEV1/FVC) are 
often normal in patients with CPFE, whereas diffusion 

Fig. 25.5 A case of 3D-cHRCT of alternative diagnosis pattern. Upper or mid-lung distribution is shown in 3D-cHRCT

Table 25.1 Cross-reference Table for axial HRCT and 3D-cHRCT in ILDs pattern diagnosis

3D-cHRCT
Definite UIP Probable UIP Indeterminate for UIP Alternative diagnosis Normal

Definite UIP 2
Probable UIP 8

Axial HRCT Indeterminate for UIP 1 5 1
Alternative diagnosis 2
Normal 1 7

S. Iwano et al.
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capacity for carbon monoxide (DLCO) is low [6]. Then we 
attempted to quantify the extent of comorbid emphysema 
and IP in patients with lung cancer using 3D-cHRCT and 

compare the results to visual assessment of IP and the results 
of PFT [3].

The total area (TA) of the lung and low-attenuation area 
(LAA) (<−950 HU), which denotes emphysema, on the 
3D-cHRCT images were calculated by the CAD program on 
the workstation. The percentage of low-attenuation area 
(%LAA) was defined as follows: %LAA = LAA/TA * 100 
(%). In a similar fashion, the percentage of the high- 
attenuation area (%HAA) (higher than the threshold value 
[>−500 HU]), which denotes IP, was defined as follows: 
%HAA = HAA/TA * 100 (%). Fifty-one patients with pri-
mary lung cancer and IP were selected, and their DLCO was 
reviewed.

Figure 25.7 shows the 3D scatter diagrams of %LAA, 
%HAA, and %DLco. Both %LAA and %HAA were signifi-
cantly and negatively correlated with %DLco. That is, the 
%HAA and %LAA values computed using 3D-cHRCT 
images at a 1-cm depth from the chest wall were significantly 
correlated with DLco, and may be important quantitative 
parameters for IP, emphysema, and CPFE. Furthermore, TA, 
HAA, and %HAA ratios at 2-cm showed significant correla-
tions with physiologically progressive ILD [7].

25.6  Conclusion

We have proved that the 3D-cHRCT image can evaluate dis-
ease condition and progression of ILDs quantitatively. 
Additionally, it was also useful for the morphological clas-
sification of ILDs. It was recognized that the 3D-cHRCT 
could add new findings to diagnosis by conventional axial 
HRCT images. In the near future, 3D-cHRCT can be applied 
to the diagnosis of peripheral lung cancer.

Fig. 25.6 A case of peripheral lung cancer in the left upper lobe. The 
upper row is conventional axial HRCT and the lower row is 
3D-cHRCT.  The tumor shows a flattened shape on the axial image, 
although it shows a round-like shape on the 3D-cHRCT image. 
Additionally, the correlation with a major fissure line (arrow) is 
obvious
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diagrams show the correlation 
between %DLCO and 
quantitative 3D c-HRCT 
parameters. Both %HAA 
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(p < 0.001 and p < 0.001, 
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Postoperative Prediction of Pulmonary 
Resection Based on MCA Model 
by Integrating the Temporal Responses 
and Biomechanical Functions

Fei Jiang, Xian Chen, Kazuhiro Ueda, and Junji Ohgi

Abstract

The goal of this research is to predict postoperative com-
pensatory growth of the residual lung based on preopera-
tive anatomical information by integrating biomechanical 
functions into the lung anatomical model along the time 
axis in the framework of multidisciplinary computational 
anatomy. We first develop a biomechanical simulation 
system for the human respiratory system. After con-
structing a finite element model of the respiratory system 
including lung, trachea, rib cage, intercostal muscles and 
diaphragm, the behavior of muscle contractions was rep-
resented by introducing a Hill-type transversely isotropic 
hyperelastic continuum material model, while the lung, 
including the airflow, was characterized as porous hyper-
elastic materials based on a multiphasic model using 
mixture theory. The developed numerical respiratory sys-
tem is able to reproduce the data in terms of thorax dis-
placement, diaphragm movement as well as lung 
deformation by introducing contraction of the respiratory 
muscle. The results were validated by comparing the tho-
rax deformation with the four-dimensional computed 
tomography (4D-CT) images during normal quiet breath-
ing. We also proposed a voxel-based flow simulation 
approach directly based on the medical CT images by 
using the lattice Boltzmann method. This approach 
enables us to provide detailed airflow information in the 
lung bronchus. With this simulation platform of the 
human respiratory system, the respiratory function recov-
ery and compensatory lung growth can be evaluated from 

the information of stress and strain distribution by the 
virtual lobectomy simulation.

Keywords

Virtual lobectomy simulation · Finite element method  
Biomechanics

26.1  Introduction

Lobectomy and stereotactic radiotherapy are performed as 
treatments for lung cancer. In the former case, the problem is 
the reduction of respiratory function after treatment. In the 
latter case, deformation of the lung due to respiration causes 
tumor migration and results in difficulty in focusing irradia-
tion only on tumor cells. In recent years, simulation 
approaches of lung deformation due to respiration have been 
proposed. However, in previous researches, the lung defor-
mation was represented by shape reconstruction using medi-
cal images or by prescribing boundary conditions rather than 
represented based on physiological phenomena. To predict 
the respiratory function after lobectomy and postoperative 
compensatory growth of the residual lung, we aim to develop 
a biomechanical simulation method for the whole respiratory 
system.

The prediction of residual lung dilation may help to deter-
mine the minimum amount of lung resection necessary for 
lung cancer treatment, because lung function lost in pulmo-
nary resection for lung cancer treatment is recognized to be 
compensated by expansion of the residual lung after surgery 
[1]. Recent research has revealed that the biomechanical 
state of the residual lung, which depends on the intrathoracic 
mechanical environment, affects the expansion of the resid-
ual lungs [2]. Therefore, the residual lung expansion may be 
predicted by combining the biomechanical state in the resid-
ual lung with dynamic anatomical information.

In this study, we first developed a biomechanical simula-
tion approach for the human respiratory system. Then, we 
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carried out a biomechanical simulation based on time series 
medical images before and after lung resection surgery to 
investigate the biomechanical state in the lung and pulmo-
nary function change. The final stage is to achieve the goal of 
predicting postoperative residual lung expansion based on 
preoperative anatomical information by integrating the bio-
mechanical function into the lung anatomical information 
along the time axis. In this work, the biomechanical and ana-
tomical information are integrated not only along the time 
axis but also the cross function axis. The approach proposed 
in this research makes it possible to extract the physical 
information of the living human body from anatomical infor-
mation based on medical images. Therefore, this study con-
tributes to the aim of a comprehensive understanding of the 
living human body based on medical images.

26.2  Methods

To simulate the postoperative compensatory growth of the 
residual lung, a platform establishing an integrated computa-
tional mechanics model of the human respiratory system has 
to be developed first. This platform includes a finite element 
model of respiration system including sternal, rib, vertebral 

bones, intercostal muscle, diaphragm, heart and lung and a 
voxel model for the bronchus. A voxel dataset of the chest 
was first segmented from CT slices of a male volunteer. 
Based on this dataset, we constructed a 3D model of the nor-
mal respiratory system, including lung, bronchi, rib cage, 
intercostal muscles, and diaphragm (Fig.  26.1). Since it is 
difficult to segment the intercostal muscles and diaphragm 
from CT slices, the 3D models of intercostal muscles were 
created by connecting the muscle attachments between upper 
and lower rib bones, and the diaphragm was generated to 
attach the lung bottom by referencing the anatomy textbook 
[3]. The finite element meshes (424,304 tetrahedra elements 
and 92,841 nodes) were then generated from the 3D models 
by using mesh generation software ANSYS ICEM CFD 
(ANSYS, Inc.). To reproduce reasonable chest movement, 
the fiber direction of muscles has to be carefully determined 
for contraction. The fiber direction of intercostal muscles 
was assigned based on the experimental data from Loring 
[4]. For the diaphragm, reference to the anatomy textbook 
[3], the fiber directions were determined by assuming that 
the fiber distribution has a radial pattern from the center of 
the top to the bottom edge.

The transversely isotropic hyperelastic material model 
proposed by Martins et al. [5] was adopted as the constitutive 

CT images

Heart

LungBronchiIntercostal muscleBone Diaphragm

Fig. 26.1 A 3D model of the normal respiratory system including lung, bronchi, rib cage, intercostal muscles and diaphragm
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model for reproducing the mechanical behavior of intercos-
tal muscles and diaphragm. In this model, the traditional 
Hill’s three-element muscle model is extended to three- 
dimensional cases. In this three-element muscle model, the 
parallel element PE and series element SE is nonlinear 
springs representing passive behavior. The third contractile 
element, CE produces contractile force when the muscle is 
excited. The muscles were modeled as incompressible trans-
versely isotropic hyperelastic materials, such that the strain 
energy function can be written as follows:
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where UI and Uf stand for the strain energies stored in the 
isotropic hyperelastic matrix and muscle fiber, respectively. 
λ f  is the stretch ratio in the fiber direction, T0

M  denotes the 
maximum muscle stress determining the maximum muscle 
contraction force, α represents the muscle’s activation level 
that ranges from 0 to 1. The 2nd Piola-Kirchhoff stress tensor 
can be derived as:
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All the degrees of freedom at the bottom of the vertebra 
were fixed as displacement boundary conditions, and the 
simulations were performed with a nonlinear finite element 
analysis program developed in-house. The compliance of the 
costovertebral joint was set at relatively small in order to 
eliminate the influence from the compliance of the costover-
tebral and interchondral joints and model a neutral position 
of the rib cage during breathing. All the material parameters 
used for the intercostal muscles, the diaphragm, bone, and 
other tissues can be found in the reference paper [6].

To evaluate the pulmonary function, acquiring detailed 
information of the airflow inside bronchi is also important 
for the reason that pulmonary function reduction is highly 
related to the local flow velocity distribution, flow pattern, 

etc. To simulate the airflow, a voxel airway model was 
directly constructed from the total data set of the chest. We 
built a 10-generation airway model consisting of a fluid mesh 
with 500,573 cubes measuring 0.4 mm3. The term “genera-
tion” indicates the number of branches from the trachea to 
the outermost peripheral airways. As the CT data consist of 
voxels aligned in Cartesian coordinates, a computational 
mesh can be directly generated from the CT data using a 
Cartesian mesh. Simulation with many generations involves 
thousands of peripheral airways. It becomes impossible to 
mark out all the peripheral outlet boundaries manually. An 
efficient detection algorithm [7] is adopted to automatically 
select the outermost peripheral airways voxels for applying 
the boundary conditions of outlets. With this airway model, 
the pulmonary airflow was simulated by using the lattice 
Boltzmann method (LBM), which is a fully explicit incom-
pressible flow solver. The fluid velocity and pressure are set 
to zero for the initial condition. No-slip boundary conditions 
are set at the 3D airway walls. To drive the flow, we used an 
inflow boundary condition at the inlet and specified pressure 
outlet boundary conditions at all terminal bronchi.

With this simulation platform of the human respiratory 
system, we performed biomechanical simulation of the 
respiratory cycle by contracting intercostal muscles and dia-
phragm based on physiological phenomena. The lobectomy 
operation was numerically reproduced by virtually removing 
a lobe of the lung from the constructed respiratory system 
(Fig.  26.2). By simulating the behavior of the respiratory 
system after the virtual operation, reduction of respiratory 
function can be evaluated. The distribution of the residual 
lung surface curvature and the equivalent nodal concentrated 
area obtained from the surface nodal information of the 
residual lung mesh model and the distribution of the equiva-
lent nodal concentrated volume calculated for all the remain-
ing nodal points can be used to represent the anatomy 
characteristics of postoperative lung. In the simulation after 
lung resection, the surface area and the volume change rates 
can be evaluated from the deformation of the lungs due to the 
contraction of the intercostal muscles and the diaphragm. By 
comparing such biomechanical information with the 
 information from the medical image, it becomes possible to 
associate the physical state with the anatomy characteristics. 
In addition, the effect of resection on the airflow in the lung 
can be evaluated by performing airflow analysis after repro-
ducing changes in the airway due to resection of the lung. 
Furthermore, by reproducing the deformation of the residual 
lung due to the contraction of the intercostal muscles and the 
diaphragm, it is possible to make the mechanical factors 
clear by investigating the distribution of strain and stress in 
the residual lung.

26 Postoperative Prediction of Pulmonary Resection Based on MCA Model by Integrating the Temporal Responses…
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26.3  Results

The simulation was performed by assuming a normal quiet 
breathing. During inspiration, by the contraction of external 
intercostal muscle and diaphragm, the thoracic cavity and 
lung were expanded. Therefore, the low pressure in the lung 
was generated to allow the air to move into the lung. 
Conversely, the intercostal muscle and diaphragm were 
relaxed during expiration to produce a pressure in the lung 
higher than atmospheric pressure thus, the air was expelled. 
Our proposed numerical respiratory system is able to repro-
duce the data in terms of thorax displacement, diaphragm 
movement, airway flow as well as lung deformation by intro-
ducing contraction of the respiratory muscle. Our results 
show that the diaphragm was not only descended depending 
on contraction but also deformed by the rising of the thorax. 
This is validated by comparing the thorax deformation with 
the four-dimensional computed tomography (4D-CT) images 
during normal quiet breathing [8]. Furthermore, simulation 
results for the variations of alveolar, pleural pressures and 
lung volume during normal breathing are compared with the 
reference data [9] for the validation of the proposed multi-
phasic model for lung parts.

To estimate the respiratory function decrease, we per-
formed a virtual lobectomy on the developed respiratory sys-
tem. The lobectomy operation was numerically reproduced 
by virtually removing a lobe of the lung from the constructed 

respiratory system (Fig. 26.2). By simulating the behavior of 
the respiratory system after the virtual operation, we first 
evaluated the reduction of respiratory function by comparing 
the airway flow rate before and after the operation. The flow 
rate in the trachea dropped about 30% immediately after 
operation. To maintain the same respiratory function, a more 
negative alveolar pressure is necessary. From our airway 
flow simulation, a 50% lower value of alveolar pressure is 
required to produce the same flow rate before operation. The 
change of airway flow patterns between pre-operation and 
post-operation is illustrated in Fig.  26.3. The airway flow 
velocities are much higher after lobectomy operation due to 
the cut of the airway tree in the affected lobe. Furthermore, 
increasing the airflow in the bronchus in the remaining lung 
was obtained. It is considered that the decreased airflow due 
to the loss of bronchi in the resected lung lobe was compen-
sated by the bronchi in the remaining lung lobe.

The respiratory function recovery and lung compensatory 
growth have been investigated from the information of stress 
and strain distribution obtained by the virtual lobectomy 
simulation. After the virtual operation, the lung expands in 
shape post-upper lobectomy to conform to the apical part of 
the chest wall. It was confirmed that the volume change rate 
due to the deformation was also large in the place where the 
residual lung surface curvature was high, which shows the 
possibility that there is an anatomical relationship between 
the feature and the deformation. Regards to the stress distri-

Fig. 26.2 Virtual lobectomy operation by removing a lobe of the lung
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bution after the operation, the top of the expanded lung 
showed a high-stress state. The pleural pressures post- 
operation become more negative at the apex than at the pul-
monary base. Since it is assumed that the space of the 
removed lung lobe is filled with air, it is considered that the 
resistance to the deformation of the diaphragm was reduced 
and thus resulted in the reduction of the pleural pressure. The 
more negative pleural pressures help recovering the respira-
tory function according to the airway flow simulation. On the 
other hand, the tortuosity of the bronchi becomes higher due 
to the deformation of the lung lobe. High tortuosity of the 
bronchi results in low airflow velocities. Therefore, the respi-
ratory function deteriorated after the lobectomy operation.

26.4  Conclusion

A platform for establishing an integrated computational 
mechanics model of the human respiratory system has been 
developed. This platform includes a finite element model of 
respiration system including sternal, rib, vertebral bones, 
intercostal muscle, diaphragm, heart and lung and a voxel 
model for the bronchus.

The physiologically based simulation of respiration was 
carried out by achieving the chest movement with the con-

traction of the intercostal muscle and diaphragm. The chest 
deformation modes were obtained compatible with the con-
ventional inference. The intrathoracic and intrapulmonary 
pressures were also obtained consistent with clinical obser-
vation. The effectiveness of the proposed computational 
model was demonstrated. In addition, the respiratory func-
tion was evaluated by airflow simulation performed before 
and after the virtual lobectomy. The mechanism of respira-
tory function recovery and lung compensatory growth were 
investigated from the relationship between biomechanical 
information (e.g., stress and strain distribution) and morpho-
logical change of the lung.

Our developed numerical respiratory system has great 
potential for not only providing useful information in terms 
of predicting accurate lung tumor position for the radiation 
therapy but also estimating the respiratory function for post-
operative period of lobectomy. On the other hand, establish-
ing clinically useful postoperative prediction of pulmonary 
resection requires simulations for many cases to make clear 
the relationship between physiological and biomechanical 
indices. Since creating simulation models takes much time 
and long period is necessary for accumulating postoperative 
clinical data, the postoperative prediction has not reached a 
clinically practical level in this study. However, by establish-
ing the methodology of postoperative prediction of lung 
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resection, we believe that the final purpose of this study can 
be achieved by performing simulations based on as many 
clinical cases as possible in the future.
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Analysis in Three-Dimensional 
Morphologies of Hepatic 
Microstructures in Hepatic Disease

Hiroto Shoji

Abstract

Microstructures in the liver primarily composed of hepa-
tocytes, hepatic blood, and biliary vessels. Each hepato-
cyte comes in contact with both vessels; hence, these 
vessels form three-dimensional (3D) periodic network 
patterns. In this chapter, we present an estimation of 3D 
gaps by using a reaction-diffusion algorithm. The pro-
posed method realizes a reliable tool for image segmenta-
tion for 3D periodic network patterns. We also applied 
this approach to examine the 3D sinusoidal network pat-
terns of rats fed a high-fat/high-cholesterol diet; these rats 
exhibited pathological features similar to those of human 
patients with nonalcoholic steatohepatitis related to meta-
bolic syndrome. Significant difference was found in diffu-
sion scaling parameter among the experimental groups. 
Moreover, extending the RD mechanism, we have devel-
oped the method to segmentation the sinusoidal network 
and bile canaliculi at the same time. Therefore, this 
approach may have the power not only for image segmen-
tation of 3D network patterns but also for pattern recogni-
tion problems in diseased animals.

Keywords

Sinusoid · Bile canaliculi · Turing · Reaction-diffusion

27.1  Morphology of 3D Microstructures 
in Hepatic Lobules

The liver handles several chemical reactions in the body such 
as protein synthesis, nutrition storage, detoxification action, 
and bile synthesis necessary for digestion of food [1]. The 
liver is constructed of basic units called hepatic lobule, which 

stack in hexagonal columns with a diameter of one to two 
mm to form a polygonal prism [2]. Hepatic lobules are pri-
marily composed of hepatocytes, hepatic blood vessels, sinu-
soids (SDs), and the biliary system (bile canaliculus (BC)). 
Hepatocytes have abundant eosinophilic cytoplasm and 
nuclei. They are arranged in cords that are one or two cells 
thick. These cords are separated by SDs, which are the capil-
lary networks that supply the nutrients to hepatocytes. In 
addition, each hepatocyte is in contact with BC, which are 
thin tubes that collect bile secreted by hepatocytes. These are 
formed by modification of the contact surfaces of liver cells. 
Therefore, hepatocytes partly face SDs, and partly face BC, 
with the adjacent hepatocytes. As each hepatocyte is in con-
tact with both the networks as described above, these micro-
structures constitute a 3D conformation [2, 3]. These 
structures are arranged in such a way that they cannot be 
written in a plan two-dimensional (2D) image plan. We have 
elucidated 3D morphology of SDs and BC of liver in dis-
eased rats based on mathematical view, and have developed 
a pattern recognition method of a 3D structures of micro-
structures to apply to each process of Multidisciplinary 
Computational Anatomy, MCA.  In this chapter, we intro-
duce the reaction–diffusion (RD) algorithms to extract a 3D 
SD and BC network efficiently and mathematically.

27.2  Reaction–Diffusion Algorithm 
for Segmentation of 3D Sinusoidal 
Networks

Confocal microscopy has been used to analyze 3D structures 
of cells and tissues after immunofluorescence staining that 
allows for the examination of the relationship between cell 
arrangement and metabolic function [1, 2]. Animal experi-
ments were performed using 6-week-old male Wistar rats. 
All rats were sacrificed, and their livers removed. An immu-
nofluorescence technique was applied to 50-μm-thick frozen 
sections of liver. Confocal Z-stack images were obtained 
using an Olympus FV 1000 confocal microscope running 
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Fluo View version 2.0 c software (Olympus, Tokyo, Japan). 
For each 3D fluorescence image, 50 frames (640 × 640 pix-
els) were obtained with a length of 0.50 μm between pixels 
and frames. Sinusoids are formed by sinusoidal endothelial 
cells, and these cells can be imaged by immunostaining 
using confocal microscopy. Therefore, to analyze the 3D 
sinusoidal network structures, explicitly segmenting the 
sinusoidal networks is necessary.

The segmentation process can be very time consuming; 
thus, it is fundamental to choose the right techniques for 
properly filtering images [4]. Furthermore, it is necessary to 
perform appropriate noise removal suitable for the image 
processing that follows [4]. On the other hand, several exam-
ples of signal processing algorithms employing biological 
pattern formation mechanisms, such as the RD model, have 
been proposed [5]. In relation to these, Alan Turing, in 1952, 
demonstrated that spatially heterogeneous patterns can be 
formed out of a completely homogeneous field, in which two 
kinds of diffusive chemical substances, called morphogens, 
react with one another and diffuse through fields, if certain 
conditions are met [6, 7].

3D sinusoidal segmentation have carried out based on a 
Turing RD model [8]. In this system, the fascinating phe-
nomenon of Turing pattern formation has been reported [8]. 
The method used for image segmentation was based on the 
RD model (FitzHugh-Nagumo equation), with modifications 
as follows:
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where Du, Dv, α, β, and ε are positive constants; δ is the con-
trol parameter; the variable u r t



,( )  and v r t


,( )  are local con-
centrations of the activator and inhibitor, respectively; and 
U r
( )  indicates the intensity of 3D fluorescence images of 

sinusoid endothelial cells. We first scaled the [0, 255] scale 
image into the [−0.5, 0.5] range linearly. The initial condi-
tions of u r t



,( )  and v r t


,( )  were given the equilibrium value 
of reaction terms with white noise without any spatial cor-
relations. Parameters were selected as satisfying conditions 
for self-organizing periodic patterns.

In the case where ε = 0, self-organized patterns were gen-
erated. Figure 27.1a–c shows the time evolution of the distri-
butions of u and v in one dimension. Previous studies have 
shown that static periodic patterns are self-organized. 
Furthermore, 3D Turing patterns have previously been stud-
ied. In cases in where ε  >  0, self-organized patterns were 
entrained to the distribution of U r

( ) . Figure 27.1d–f shows 
the time evolution of the distributions of u and v with exter-
nal data U r

( )  in one-dimension. Considering the situations 
in which local differences in intensities of fluorescence 

images exist and the distributions are kink type, with dents 
and different periodicities, the prepared distribution of U was 
utilized, as shown in Fig.  27.1d–f. Figure 27.1f shows the 
obtained distribution. Although the prepared distribution U 
was bumpy and exhibited spatially different amplitudes, the 
amplitude of the obtained distribution u was identical after 
the numerical calculation.

To extend this method to 3D spaces, numerical simula-
tions were carried out in 3D space. The chosen space size 
was the same size as the image size of 3D images obtained 
by confocal microscopy (640  ×  640  ×  50, 
320 μm ×320 μm ×25 μm). We performed calculations of Eq. 
(27.1).

The parameter choice of δ introduced in the diffusion 
coefficient is one of the crucial problems. Changing the 
parameter δ changes the spatial period of the self-organized 
pattern. In order to select the most suitable δ for fluorescence 
imaging, the spatial–autocorrelation function between u and 
U were calculated. The simulation was repeated by changing 
the parameter δ. The δ takes the largest correlation extracted 
as the chosen parameter δ∗ and adopted it as a parameter for 
segmentation. Figure  27.1g–k is an example of segmenta-
tions performed.

This method is a new one that differs from the conven-
tional linear image processing utilizing filters. Additionally, 
we have also developed an application that uses the parame-
ter for generating an index for detecting the pathological 
characters described below.

27.3  Developing an Index of Liver Disease 
Progression

Utilizing the parameter δ∗ described above, we performed 
morphological comparison of sinusoidal networks in fatty 
livers of rats fed a high-fat/high-cholesterol (HFC) diet. 
These rats exhibited pathological features similar to those of 
human patients with nonalcoholic steatohepatitis related to 
metabolic syndrome [2, 3, 9]. The parameter δ∗ captured the 
variations in feeding patterns for rats fed HFC diets.

The HFC groups were fed an HFC diet for 3, 6, 9, 12 
weeks (HFC 3, 6, 9, 12 w), and the control groups were fed 
the control diet for 3, 6, 9, or 12 weeks (Cont 3, 6, 9, 12 w). 
The livers of each of the three animals were removed, and 
confocal microscopy images were obtained, and their δ∗ val-
ues were examined.

Figure 27.2a–h shows representative results for 3D seg-
mentation of the SD network from fluorescence pixel infor-
mation utilizing the RD algorithms. Changing the parameter 
δ in Eq. (27.1), we calculated δ∗ = 1.00, 1.05, 1.10, and 1.10 
for Cont at 3, 6, 9, and 12 weeks, and δ∗ = 1.10, 1.45, 1.65, 
and 1.70 for HFC at 3, 6, 9, and 12 weeks, respectively. We 
independently calculated δ∗for four segmentations of SD 
networks for each three individuals. We calculated 12 δ∗ for 
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each experimental group. Significant differences were 
observed between Cont and HFC at 3, 6, 9, and 12 weeks, 
and δ∗ were increased depending on the number of weeks of 
HFC diet, as shown in Fig. 27.2i.

Here, we mention the proposed index described above. 
Since the parameter δ∗ is related to the period of the patterns 
obtained using Eq. (27.1), it is possible that the periodicity of 
the 3D network pattern is essential to detecting differences 
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Fig. 27.1 The 3D reconstructed confocal image of liver from rats uti-
lizing the RD algorithm. (a–f) Formation of spatial patterns in one 
dimension obtained from Eq. (27.1). The thick red line, the thick blue 
line, and the dotted line indicate u r t



,( ) , v r t


,( ) , and U r
( ) , respec-

tively. Since the patterns in (d–f) were generated much faster than that 
for (a–c). The time of the patterns is different between (b) and (e), and 
between (c) and (f). (g–k) An example of 3D segmentation of sinusoi-
dal network patterns of HFC6w. (g), (h): 3D segmentation patterns 
using raw pixel data of the fluorescence image of sinusoidal endothelial 
cells, and (i), (j): 3D segmentation patterns obtained by RD processing 

of Eq. (27.1) with δ∗ = 1.35. (g) and (i) show the 3D segmentation pat-
terns of sinusoidal network (red tubes), and (h) and (j) indicate the 
slices at the middle position of the z-axis from (g) and (i), where the 
white area indicates the positions inside the sinusoids. (k) indicates the 
spatial variations of the distributions of pixel data (black line) and the 
scaled distribution (red line) after RD processing of Eq. (27.1) along the 
black arrow in (h) and (j). The dotted line shows the threshold of seg-
mentations in the image processing, where the values above the red line 
were considered to be inside the SD
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Fig. 27.2 Application and expansion of RD algorithm. (a–h) Example 
of 3D segmentation of sinusoidal networks utilizing Eq. (27.1). (a–d): 
Cont, and (e–h): HFC, (a) and (d): 3 weeks, (b) and (f): 6 weeks, (c) 
and (g): 9 weeks, (d) and (h): 12 weeks. The red area indicates the 
sinusoidal veins. (i) Change in δ∗ with the largest correlation function. 
The number of stars shows the statistical level of significance (filled 

star: p < 0.05, double filled star: p < 0.01) in the Mann-Whitney U-test 
test between HFC and Cont at each week. (j–o) Formation of spatial 
patterns in one dimension obtained from Eq. (27.2). The thick red line, 
the thick blue line, the dotted red line, and the dotted green line indicate 
u r t1



,( ) , u r t2



,( ) , U r
( ) , and V r

( ) , respectively.
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among the obtained patterns. However, strong localities in 
periodicities of 3D sinusoidal network patterns were 
observed. Therefore, it was not possible to detect clear peri-
odicities in 3D SD patterns using calculations such as the 
Fourier analysis or spatial correlation analysis.

27.4  Two-Layer Reaction–Diffusion Model 
for an Evaluation of Two Types 
of Networks

In the previous sections, we have considered the reaction–
diffusion model that captures the morphology of sinusoidal 
networks. However, as described above, the hepatocytes 
partly face SDs, and partly face biliary canaliculi, with adja-
cent hepatocytes. They also have a portion adjacent to the 
canaliculi that attach to the neighboring hepatocytes [2]. 
Namely, two types of 3D networks with different thick-
nesses, SD and BC, are self-organized, and do not cross each 
other.

Bile salt export pump of the canalicular membrane trans-
porter in bile canaliculi can be also imaged by immunostain-
ing using confocal microscopy. Therefore, in this section, we 
study the following type of RD model for self-organizing 
two types of 3D networks with different thicknesses.

3D SD and BC network segmentation was based on the 
following a Turing RD model. The method for image seg-
mentation was based on the RD model with modifications as 
follows:
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where Du1, Du2, Dv1, Dv2, a, b, α, and ε are positive constants; 
δ1 and δ2 are the control parameter; the variable 
u r t u r t v r t1 2 1

  

, , ,( ) ( ) ( ), , , and v r t2



,( )  are local concentra-
tions of the activator for the sinusoid layer, inhibitor for the 
sinusoid layer, activator for the bile canaliculus layer and 
inhibitor for the bile canaliculus layer, respectively; and 
U r
( )  and V r

( )  indicate the intensities of 3D fluorescence 
images of sinusoid endothelial cells and bile salt export 
pump. Following the same manner described above, we 
scaled the fluorescence image scale into the range of the RD 
distributions, and the initial distributions of 
u r t u r t v r t1 2 1

  

, , ,( ) ( ) ( ), , , and v r t2



,( )  were given.
In the cases where ε  =  0, self-organized patterns were 

generated. Figure  27.2j–l shows the time evolution of the 

distributions of u and v in one dimension. As shown in the 
previous section, in cases where ε > 0, self-organized pat-
terns were entrained to the distribution of U r

( )  and V r
( ) . 

Figure 27.2m–o shows the time evolution of the distribution 
of u r t u r t1 2

 

, ,( ) ( ), with external data U r
( )  and V r

( )  in 
one dimension.

Following the manner described in the previous section, 
numerical simulations were carried out in 3D space. In the 
case where ε = 0, self-organized patterns were formed so that 
they do not intersect and were orthogonal to each other. In 
cases where ε > 0, self-organized patterns were entrained to 
the distribution of U r

( )  and V r
( ) . Therefore, as we choose 

appropriate thresholds for segmentation of SD and BC in the 
image processing, where the values above the red line and 
green line were considered to be inside the SD and BC, 3D 
SD and BC segmentation can be carried out.

27.5  Future Outlook

In this chapter, we have introduced a Turing reaction–diffu-
sion algorithm for extracting complicated 3D SD and BC 
network patterns. Using this mechanism, we proposed a 
method for segmentation of 3D sinusoidal networks using a 
Turing RD model and information interpolation for compli-
cated SD and BC network patterns.

On the other hand, it is known that the physiology of 
hepatocytes differs slightly depending on their position 
within the hepatic lobule [2, 3]. While developing these tech-
niques and gaining a resolution of the sub-micrometer order 
size that is equal to the structure of the BC network, we 
would like to advance the detailed analysis using the 
expanded area information about 3D conformations of SDs, 
BC, and hepatocytes.
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Abstract

With the aim of early diagnosis of chronic hepatitis, we 
investigated a noninvasive method to quantify hepatic 
fibrosis and fat deposition with high sensitivity. In order 
to quantitatively evaluate hepatic fibrosis, we examined 
the effect of changes in the liver fibrous structure on shear 
wave dispersion by modeling the mechanical properties 
of hepatic tissues using hepatitis specimen sections. 
Simulation analysis indicated that the influence of liver 
fibrous structure cannot be ignored in the evaluation of 
liver viscosity, and that combining the dispersion slopes 
estimated at different frequency ranges is suitable for vis-
coelasticity analysis to evaluate fibrosis progression in 
chronic hepatitis diagnosis.

Fat deposition was evaluated using photoacoustic 
imaging technology by modeling the optical properties of 
different lipid concentrations in liver tissues. The fatty 
liver models were composed of mixing different lipid per-
centages and homogenized livers. We proposed the “spec-
tral ratio” as an index of fatty deposition. We demonstrated 
that the spectral ratio reflected lipid percentage and veri-
fied the feasibility of an ex vivo experiment using a non-
alcoholic steatohepatitis (NASH) mouse model. The 
results confirmed the usefulness of this system in the 
evaluation of fatty liver.

Keywords

Tissue characterization · Ultrasound elastography  
Photoacoustic imaging · Chronic hepatitis · Liver fibrosis  
Fatty metamorphosis · Nonalcoholic steatohepatitis

28.1  Introduction

Diagnosing chronic liver disease in the early stage is neces-
sary for the treatment of liver disease because chronic hepa-
titis C virus disease progresses towards cirrhosis, which 
often leads to liver cancer [1]. In addition to chronic viral 
hepatitis, recently, the incidence of nonalcoholic steatohepa-
titis (NASH), a malignant fatty liver disease is increasing. 
NASH can also develop into progressive liver fibrosis, lead-
ing to cirrhosis and an increased risk of cancer [2, 3]. At 
present, the gold standard for the assessment of liver fibrosis 
is liver biopsy, which is invasive, causes patient discomfort, 
and a concomitant disease risk. In addition, the accuracy of 
liver biopsy is limited because of significant intra- and inter- 
observer variability and sampling errors [4, 5]. Thus, there is 
a need for a noninvasive method to quantify hepatic fibrosis 
and fat, which is a biomarker for hepatic disease and meta-
bolic syndrome.

A positive correlation has been demonstrated between 
liver stiffness and hepatic fibrosis stage in chronic hepatitis 
[6–8]. Therefore, ultrasound elastography has been devel-
oped to evaluate fibrosis progression from shear wave speeds. 
Recently, it has been hypothesized that viscosity analysis, in 
addition to elasticity measurement, could improve the accu-
racy of fibrosis staging. Recent studies have used shear wave 
elastography to evaluate viscosity by the dispersion slope of 
shear wave phase velocity [9–10]. However, the shear wave 
cannot propagate properly when the thickness of the subject 
is less than the shear wavelength. Therefore, the shear wave 
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dispersion is expected to be affected not only by viscosity, 
but also by fibrous structure.

Photoacoustic imaging has attracted attention in recent 
years as an in vivo imaging method for visualizing details of 
the neovascularization structure of tumors and the distribu-
tion of oxygen saturation, which is related to the tumor 
grade. It presents the benefits of deep imaging of ultrasound 
with high contrast and resolution, which are merits of optical 
imaging [11]. Photoacoustic imaging is also applicable for 
diagnosing properties of various tissues, such as fat related to 
arteriosclerosis, fatty liver, and fibrous tissues related to hep-
atitis [12–16].

Therefore, with the aim of early diagnosis of chronic hep-
atitis, we investigated a noninvasive method to quantify 
hepatic fibrosis and fat deposition with high sensitivity as 
shown Fig. 28.1. In order to quantitatively evaluate hepatic 
fibrosis, we examined the effect of changes in the liver 
fibrous structure on shear wave dispersion by modeling the 
mechanical properties of hepatic tissues using hepatitis spec-
imen sections derived from patients with chronic hepatitis 
C. Fat deposition was evaluated by photoacoustic imaging 

technology by modeling the optical properties of different 
lipid concentrations of liver tissues.

28.2  Evaluation of Viscoelasticity Related 
to Fibrosis Structure

Based on the positive correlations between liver stiffness and 
hepatic fibrosis stage, ultrasound elastography is now applied 
to noninvasively differentiate mild-to-moderate fibrosis from 
advanced fibrosis and cirrhosis [17, 18]. However, soft tis-
sues are viscoelastic; therefore, viscosity is also necessary to 
characterize tissue properties. In particular, early diagnosis 
of NASH is expected using both the properties, elasticity, 
and viscosity, of tissues [9, 10]. Several studies have exam-
ined the frequency-dependent shear wave properties for vis-
coelasticity evaluation. However, it is not clear how the 
frequency-dependent behavior of shear wave propagation or 
dispersion affects the diagnostic utility of shear wave 
elastography.

Therefore, for quantitative evaluation of hepatic fibrosis, 
we investigated the mechanism by which fibrosis progres-
sion affects the estimation of viscoelastic properties by using 
a mechanical model based on hepatitis histological specimen 
sections [19].

28.2.1  Evaluation of Shear Wave Dispersion

In shear wave elastography, shear waves are generated by 
acoustic radiation force (ARF) near the measurement points 
and propagate along the lateral direction. First, the shear 
wave phase velocity is estimated from the phase difference 
(Δθ) of the shear waves and the distance (Δd) between two 
reference pixels [A, B in Fig. 28.2a, b] located at the same 
depth. The phase difference is measured by Fourier trans-
forming the shear wave particle velocity in time.

The shear wave phase velocity, cs(f) is obtained by Eq. 
(28.1).

 
c f

d

fs ( ) = ∆
∆θ π/ 2  

(28.1)

This procedure is repeated for the entire pixel area of the 
particle velocity data to estimate the distribution of the shear 
wave phase velocity. Second, the averaged shear wave phase 
velocity at each frequency is plotted on a graph as repre-
sented in Fig. 28.2c, and parameterized for a linear disper-
sion model defined as:

 
c f c

dc

df
fs

s( ) = +0  
(28.2)

ULTRASOUND ELASTOGRAPHY

PHOTOACOUSTIC IMAGING

Liver
Fibrosis

Fat deposition
high sensitivity
evaluation

Early diagnosis of Chronic hepatitis
(Diagnosis of NASH)

.Model : Mechanical property
fi Viscoelasticity

.Model: Optical property
fi Tissue characterization

Lipid concentration

+

Fig. 28.1 Quantitative evaluation of hepatic fibrosis and fat deposition 
by modeling the mechanical properties of liver tissues using ultrasound 
elastography and the optical properties with photoacoustic technology
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where cs(f) denotes the shear wave phase velocity at each 
frequency, f expresses the frequency, c0 signifies the inter-
cept, and dc/df stands for the dispersion slope. The intercept 
and dispersion slope were estimated by performing a linear 
regression of the phase velocity as a function of frequency. 
The slope value dc/df is evaluated as the dispersion slope. In 
the linear regression, a frequency range needs to be selected; 
in this case, it ranges over 30–450 Hz [20].

28.2.2  Mechanical Model Analysis of Liver 
Fibrosis

First, the structural model is formed in accordance with the 
fibrosis binary image in the 40 mm × 40 mm 2-dimensional 
area derived from the chronic hepatitis C specimen section, 
as shown in Fig. 28.3. Next, the elasticity values are assigned 
to models based on elasticity values measured by transient 
elastography, for example, parenchyma as 3 kPa and fiber as 
75  kPa. Histological models were created from multiple 
specimens, that is, three specimens for fibrosis stages F0, F1, 

F2, F3, and two specimens for F4. Each model was shifted 
horizontally, vertically, or transposed to increase the variety 
of models. Consequently, 12 models for F0, F1, F2, F3, and 
8 models for F4 were generated for the simulation. The aver-
aged elasticity values for each stage are shown in Table 28.1.

28.2.3  Analysis of Shear Wave Dispersion by 
Fibrous Structure

We investigated how the shear wave dispersion is affected by 
fibrous structure. Shear wave propagation within this model 
was simulated using the open-source k-Wave MATLAB tool-
box. The simulation area was 40 mm × 40 mm, and the ARF 
excitation was set at 7.5 mm from the left side of the model. 
Plane wave excitation was performed by a 1-mm wide 
Gaussian function. The simulation time was 20 ms, the sam-
pling frequency was 50  MHz, and the tracking PRF was 
50 kHz. The shear wave velocity is determined for each model 
based on the elasticity value at every pixel in each model, 
using E = 3ρcs

2, where E is Young’s modulus, ρ is density, and 
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Fig. 28.2 Estimation of shear wave phase velocities and their disper-
sion slope in shear wave elastography. (a) Shear wave generated by 
acoustic radiation force of push pulse beam and its propagation. (b) 
Particle velocity detected at two points A and B. (c) Phase as a function 
of frequency, which is calculated by Fourier transforming waveform in 

(b). (d) The phase difference of shear waves obtained from (c). (e) 
Shear wave phase velocity versus frequency calculated by Eq. (28.1) 
and dispersion slope estimated by a linear regression of phase velocity 
based on Eq. (28.2)
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cs is shear wave velocity. Tissue viscosity was set to zero to 
examine the effect of the liver fibrous structure alone. The 
shear wave dispersion slope in the range of 100–600 Hz is cal-
culated from the simulated shear wave particle velocity. The 
calculation area is 2-dimension Fourier transformed after per-
forming the Turkey window function. Then, the data are direc-
tionally filtered and inverse Fourier transformed. The shear 
wave phase velocity is calculated by the phase spectroscopy 
method in the ROI picked up from the calculation area. The 
phase velocity is calculated from the phase difference and 
interval between two points parted by 0.3 mm.

Dispersion analysis requires the averaged phase velocity 
from every point in the ROI at each frequency. At each fre-
quency, the data with a standard deviation over 50 is excluded 
from the analysis; a linear regression of the remaining data is 
performed to determine the dispersion slope using the least- 
square method. The dispersion slope is derived from the 
approximation straight line, frequency vs. averaged shear 
wave phase velocity.

The relation between shear wave phase velocity at 200 Hz 
and the dispersion slope at 100–600 Hz frequency range are 

summarized at each stage in Fig. 28.4. The average values of 
the phase velocity at 200  Hz and dispersion slope at each 
fibrosis stage are tabulated in Table 28.2. These results show 
that both the dispersion slope and shear wave phase velocity 
at 200  Hz tend to increase with hepatic fibrosis stage 
progression.

28.2.4  Tissues Viscoelasticity Evaluation by 
Shear Wave Propagation

Shear wave propagation with viscoelastic materials was sim-
ulated based on a viscoelastic model that is similar to the 
Voight model as shown below [19].
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Fig. 28.3 An example of histological binary fiber image from hepatic histological specimens derived from patients of chronic hepatitis C.  
(a) Fibrosis stage F1, (b) F2, (c) F3, (d) F4

Table 28.1 Averaged elasticity in fibrosis model

Fibrous stage F0 F1 F2 F3 F4
Histological model (kPa) (n = 12 or 8) 4.56 ± 0.24 6.60 ± 0.97 10.63 ± 0.61 18.42 ± 1.01 25.55 ± 7.94
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(28.5)

where μ1 and μ2 denote the shear moduli and η represents the 
viscosity. A liver fibrosis progression model was developed 
based on reference studies [21]. The average Young’s modu-
lus of these models is given in Table 28.1. Viscosity η was set 
homogeneously and was varied over 0.1, 0.5, 1.0, 1.5, and 
2.0  Pa.s to conduct simulations in various viscoelastic 
materials.

The two-dimensional model, which was 40  ×  40  mm2, 
included 400  ×  400 elements. The element size was 
0.1  ×  0.1  mm2. Gaussian envelope excitation with 1  mm 
FWHM is applied to the model for 0.5 ms to initiate plane 
shear wave propagation. The shear wave phase velocities 
were measured, and the dispersion slope was estimated from 
the average shear wave phase velocity in the ROI, as shown 
in Fig. 28.5.

Dispersion slope estimation requires a certain frequency 
range to calculate the dispersion slope. Some studies have 
used different frequency ranges. We used frequency ranges 
of two types: low frequency and high frequency. The low- 
frequency range is 25–100  Hz; the high-frequency range 
extends from 200  Hz to a selected frequency because the 
shear wave phase velocity has different linearity in the two 
frequency ranges with frequency changes between 100 and 
200 Hz, as shown in Fig. 28.5a.

Figure 28.5b, c shows the averaged dispersion slopes in 
the low-frequency range and high-frequency range, 
respectively.

These results show that the dispersion slope depends par-
ticularly on viscosity in the high-frequency range. In addi-
tion, the results of the comparison between the homogeneous 
and fibrosis models show that the effect of the liver fibrous 
structure is almost not in the dispersion slope in the high- 
frequency range. These results indicate that estimating the 
dispersion at low frequency is expected to be suitable for 
fibrosis staging considering the degree of the fibrous struc-
ture, while the dispersion at high frequency can be used for 
the evaluation of viscosity.

28.3  Tissue Characterization of Fatty Liver 
Using Photoacoustic Imaging

To evaluate the feasibility of using photoacoustic methods for 
tissue characterization of fatty liver, we investigated the rela-
tionship between photoacoustic spectra and lipid percentage 
using the fatty liver model. The fatty liver models were com-
posed of mixing lipid and homogenized chicken liver. Models 
with different lipid percentages, 0–30%, were developed.

Figure 28.6a shows the experimental setup. A sample of 
each model embedded in the 2% agar base material was irra-
diated with nanosecond pulses of laser light (800–1300 nm 
wavelength, 5 nm step, 30 Hz repetition rate, 1–4 mJ/pulse). 
Photoacoustic signals of respective wavelengths were 
obtained using a linear array ultrasound probe (4–15 MHz).

The photoacoustic spectra of liver and lipid in the near- 
infrared region were measured. The liver has a peak around 
900 nm in the photoacoustic spectrum, while lipid has a peak 
around 930 and 1200  nm. Figure  28.6b shows the photo-
acoustic spectra of the fatty liver models for different per-
centages of lipids.

The results show that all models have a peak around 900 
and 1200 nm in the spectra, which reflect the properties of 
their components. To extract the feature regarding lipid per-
centage, a parameter, spectral ratio κ, was defined as shown 
in Eq. (28.6):

 

κ =
( )
( )

P

P

1200

900  
(28.6)

where P(1200) and P(900) represent the amplitude of the 
photoacoustic spectra at 1200 nm and 900 nm, respectively.

Figure 28.6c shows the relation between the spectral ratio 
κ and lipid percentage, which are calculated using three sets 
of data. The results indicate that the spectral ratio strongly 
correlates with lipid percentage and suggest the possibility 
of estimating lipid percentage by spectral ratio.

4

3

2

1

0
0.5 1 1.5 2 [m/s]

Shear wave phase velocity

F4

F3

F1
F2

D
is

pe
rs

io
n 

sl
op

e 
[m

/s
/k

H
z]

Fig. 28.4 Increment in dispersion slope and average shear wave phase 
velocity at 200 Hz as fibrous stage progresses

Table 28.2 Dispersion slope and phase velocity

Fibrous stage Phase velocity (m/s) Dispersion slope (m/s/kHz)
F1 (n = 12) 1.060 ± 0.015 −0.007 ± 0.136
F2 (n = 12) 1.111 ± 0.018 0.338 ± 0.395
F3 (n = 12) 1.295 ± 0.096 1.671 ± 0.785
F4 (n = 8) 1.720 ± 0.414 2.795 ± 1.423
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Next, we conducted ex  vivo experiments using control 
and two fatty liver model mice, as shown in Fig. 28.7.

Figure 28.7b shows tissue sections of mouse liver, which 
indicate that the livers of NASH model mice include many 
spots of fatty deposition compared with the control. B-mode 
images of the liver of normal or control mouse and NASH 
model mouse are shown in Fig. 28.7c, while the photoacoustic 
images for the control and NASH mouse models are repre-

sented in Fig. 28.7d. It can be observed that the photoacoustic 
signal from the liver boundary of the NASH model mouse is 
stronger than that of the control mouse, which reflects the pho-
toacoustic spectrum of the fatty tissue, as shown in Fig. 28.5b. 
The photoacoustic spectra of the control and NASH mouse 
models are shown in Fig. 28.7d, e, respectively.

Next, the spectral ratios [defined in Eq. (28.6)] for the 
control and NASH mouse models were obtained from 

Fig. 28.7 Ex vivo experiment with livers of control and NASH mice 
models, with ultrasound B-mode and photoacoustic (PA) imaging. (a) 
Experimental setup (b) Tissue section of mouse liver (c) Ultrasound 

B-mode (d) PA image (at 1210 nm) (e) PA spectra of control mouse (f) 
PA spectra of NASH model mouse
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Fig. 28.7d, e. Finally, by applying these values to the rela-
tionship between spectral ratio and lipid percentage in 
Fig.  28.6c, the fat concentration of liver was estimated: 
23–32% for the NASH model vs. 6–10% for the control.

28.4  Conclusion

We performed tissue viscoelasticity evaluation by modeling 
the shear wave propagation; according to in vivo measure-
ments in NAFLD patients [3], dispersion slope values range 
from 0 to 10 m/s/kHz, from F0 to F4 stage. Our results shown 
in Table 28.2 are about 30% of the dispersion slope in in vivo 
measurements. Therefore, these results suggest that the influ-
ence of liver fibrous structure cannot be ignored while evalu-
ating liver viscosity. The results of the simulation analysis of 
shear wave propagation with a viscoelastic tissue model 
indicate that the dispersion slope in the high-frequency range 
reflects the viscosity change, while dispersion at low fre-
quencies reflects the progress of the fibrosis stage. Therefore, 
we infer that combining the dispersion slopes estimated at 
different frequency ranges is suitable for viscoelasticity anal-
ysis to evaluate fibrosis progression in the diagnosis of 
chronic hepatitis.

To evaluate the characteristics and functional properties 
of liver tissues by photoacoustic imaging, we demonstrated 
that the spectral ratio reflects lipid percentage and verified 
the feasibility of an ex vivo experiment using a NASH mouse 
model. The results confirmed the usefulness of this system in 
the evaluation of fatty liver. Experiments using more realistic 
models featuring subcutaneous tissues, optimization of irra-
diated light intensity, selection of appropriate wavelength, 

and signal processing to improve SNR must be conducted in 
future studies.
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MCA Analysis for Hepatology: 
Establishment of the In Situ 
Visualization System for Liver Sinusoid 
Analysis

Keiichi Akahoshi, Takeshi Ishii, and Atsushi Kudo

Abstract

The liver sinusoid has important role to maintain the func-
tion of the liver. By combining a microscope, a high- 
speed camera and a new Particle Image Velocimetry 
software “Flownizer2D,” we established the in-situ visu-
alization system for liver sinusoid analysis. This system 
enabled us to measure small changes in the motion of red 
blood cells in the liver sinusoids of rats. This system has 
multiple potentials to evaluate the effects of selective 
hepatic artery or portal vein clamping on the sinusoidal 
flow and is expected to contribute to clarify the function 
of liver sinusoids.

Keywords

In situ visualization · Sinusoidal flow · Flownizer2D

29.1  Introduction

The liver is a vital organ that performs multiple critical 
functions in vertebrates. It produces bile. It detoxifies vari-
ous drugs. It converts nutrients into forms that can be used 
by the body and stores the nutrients. These amazing multi-
ple functions are maintained by the liver sinusoid. The liver 
sinusoid is a type of capillary that has the fenestrated endo-
thelium that permits blood plasma to touch with hepato-
cytes. Thus, to analyze the change of the liver sinusoid is 
very important to investigate the functions of the liver. We 

have started to try to observe sinusoidal flow 15 years ago. 
First, we visualized the sinusoidal flow of rats by using a 
microscope. However, the quality to visualize the blood 
flow in the liver sinusoid was not adequate, as red blood 
cells are tiny and the width of the liver sinusoid is only 
5 μm. At that time, we evaluate the change of sinusoidal 
flow in the post-warm ischemic rat liver by counting the 
number of perfused midzonal sinusoids [1]. Some research-
ers proposed similar intra-viral microscopic systems [2]. 
Recently, we utilized a new Particle Image Velocimetry 
software, “Flownizer2D” (DITECT, Japan). Flownizer2D 
can instantly process the sequential image provided from 
the intravital videomicroscopic system into digital data with 
a new computer architecture and accurately can trace the 
motion of red blood cells in the liver sinusoids [3]. By using 
this system, we became to detect the precise and tiny change 
of the sinusoidal flow in the rat model.

29.2  Animal Preparation

Male Wister rats (weight 270–320 g) were housed in cages 
under a 12 h light/dark cycle with access to food and water 
ad libitum. Under subcutaneous urethane anesthesia (2  g/
kg), laparotomy was performed. Ligamentous attachments 
from the liver to the diaphragm and abdominal wall were 
dissected. The lateral lobe of this rat was placed on the table 
of the microscope.

29.3  Structure of the In Situ Video 
Microscopic System

An inverted system microscope (IX71, OLYMPUS, Japan) 
and a high-speed camera (HAS-L1, DETECT, Japan) 
were prepared. The high-speed camera was connected 
with the eyepiece lens of the microscope. And, the real-
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Fig. 29.1 Establishment of the in situ visualization microscopic system

a b

Fig. 29.2 Image capture of liver sinusoids of rats. (a) Raw data (×200), (b) The data analyzed by Flownizer2D. The motion and its speed of each 
red blood cell are visualized by allows

time imaging view of the camera was sent to the computer 
unit. This system enabled us to watch and record real-time 
sinusoidal flow (Fig. 29.1). After recording the sinusoidal 
flow, the data was analyzed by using a Particle Image 
Velocimetry software “Flownizer2D” (DITECT, Japan).

29.4  Observation of the Sinusoidal Flow

As shown in Fig. 29.2, the sinusoidal flow of rats was clearly 
visualized by this microscopic system (Fig. 29.2a). Then, the 
Flownizer2D can trace the motion of each red blood cells in 

the sinusoids and quantify the speed of red blood cells 
sequentially (Fig. 29.2b).

29.5  Examples of Sinusoidal Flow Analysis

When we measured the sequential change of sinusoidal 
flow of rats, the average maximum velocity was 
26.1 mm/s, and the flow was a pulsatile flow of 97 times/
min. The respiratory rate of the rats was about 100, sug-
gesting that they were affected by the respiration of the 
rat (Fig. 29.3).
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29.6  Conclusion

The novel in situ visualization system for liver sinusoid anal-
ysis was established by combining a current microscope, a 
high-speed camera and particle image velocimetry software. 
This system enabled us to perform a multidisciplinary 
 computational anatomical approach to investigate the func-
tion of liver sinusoids, physically, physiologically, patholog-
ically, and sequentially.
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Simulation Surgery for  
Hepatobiliary- Pancreatic Surgery

Yukio Oshiro

Abstract

Purpose: In April 2012, “Image-assisted navigation in 
liver resection” was covered by the Japanese medical 
insurance and was widely used in many institutions in 
Japan. In recent years, three-dimensional (3D) image- 
assisted surgery has been expanded to not only liver sur-
gery but also biliary and pancreatic surgery. We have 
developed computer-aided surgery (CAS) systems in 
hepatobiliary-pancreatic surgery by utilizing knowledge 
of multidisciplinary computational anatomy.

Methods: We have independently developed various 
computer-aided surgery (CAS) systems for hepatobili-
ary and pancreatic surgery: (1) a surgical simulation 
using 3D printing in hepatectomy, (2) a 3D virtual hepa-
tectomy simulation combined with real-time deforma-
tion, (3) development of our original 3D captured 
hepatectomy navigation system using 3D camera, and 
(4) development of our original simulation system for 
biliary-pancreatic surgery.

Results: The 3D liver print model, the surgical simula-
tion system that enables organ deformation, the 3D cap-
tured hepatectomy navigation system using 3D camera, 
and the biliary pancreatic surgery simulation system that 
fuses CT and MRCP, which we have originally devel-
oped, have greatly contributed to our safe surgery and the 
improvement of surgical results.

Conclusion: Based on the multidisciplinary computa-
tional anatomy, we have developed and introduced vari-
ous CAS systems for hepatobiliary-pancreatic surgery. 
Our novel CAS systems have contributed to safe and 
secure surgeries. It is expected that the possibilities of 

CAS will continue to expand, as multidisciplinary com-
putational anatomy develops.

Keywords

3D · Computer-aided surgery (CAS) · Simulation surgery  
Navigation surgery · Hepatobiliary-pancreatic surgery

30.1  Introduction

Surgical imaging support, such as three-dimensional (3D) 
simulation and navigation surgery based on the patient’s inde-
pendent medical image, has made rapid progress with the 
development of computer-aided surgery (CAS) in the last 10 
years [1–6]. In Japan, image-assisted hepatic surgery has been 
covered by medical insurance since 2012. Since then, 3D sim-
ulation of liver resection before surgery has been widely used 
throughout Japan. Currently, in many institutions in Japan, it is 
a standard process for surgeons to share visual information 
using 3D images reconstructed from patient multidetector 
computed tomography (MDCT) datasets. In recent years, 3D 
image-assisted surgery has been expanded to not only liver 
surgery but also biliary and pancreatic surgery [1, 7, 8]. In 
recent years, a real-time navigation system similar to the 
neuro-navigator (Mizuho Medical Industry Co., Ltd., Tokyo), 
which has been developed and used in head and neck region 
surgery, and navigates surgery like car navigation, is expected 
to be used in abdominal surgery. In addition, indocyanine 
green (ICG) fluorescent navigation surgery using an infrared 
light observation image system of fluorescence imaging tech-
nology has recently become popular in gastroenterological 
surgery [9, 10]. In this report, our team reviewed the history of 
hepatobiliary- pancreatic surgery using CAS and reported our 
research to date.
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30.2  Progress of 3D Medical Image 
Processing and 3D Surgical 
Simulation

In April 2012, “Image-assisted navigation in liver resection” 
was covered by the Japanese medical insurance and was 
rapidly used in many institutions in Japan. The development 
and popularization of 3D medical image processing work-
stations such as SYNAPSE VINCENT (Fuji Film Medical 
Co., Ltd.), Ziostation (Ziosoft Co., Ltd.), and AZE 
VirtualPlace (AZE Co., Ltd.), have contributed greatly to 
image-assisted navigation in liver resection. “Image-assisted 
navigation in liver resection” does not mean a navigation for 
the operator during surgery like a car navigation; rather, a 
3D model is constructed from the computed tomography 
(CT) scan of the patient before surgery. Virtual liver resec-
tion volume is measured using volumetry, surgical planning 
is performed, the simulated cut surface is shared by the sur-
gical team, and the surgery is performed by comparing the 
3D simulation image with the surgical field. There are few 
studies that have reported on the utilization of 3D surgical 
simulations; however, many studies have reported new 
knowledge of the unique liver anatomy using 3D simulation 
[1–6]. In biliary and pancreatic surgery, simulation meth-
ods, such as integrated images of magnetic resonance chol-
angiopancreatography (MRCP) and CT [1, 7, 8], integrated 
images of the bile duct, and CT visualized with CO2 [11], 
have been reported. In esophageal and gastric surgery, simu-
lations using 3D CT angiography have been performed [12, 
13], and in colon surgery, 3D CT angiography and virtual 
endoscopic images have been integrated [14–16]. There 
have also been reports on methods using virtual reality (VR) 
and augmented reality (AR) technology that superimposes 
preoperative 3D images on the abdomen and organs, and 
navigation surgery that uses a head-mounted display [17, 
18]. In Germany, MeVisLab (MeVis, Bremen) and in 
France, 3DVSP (IRCAD, Strasbourg) have been used to 
perform surgical simulations [19, 20]. Although the organs 
of the digestive system have the property of deformation, 
AR navigation for laparoscopic surgery using magnetic res-
onance imaging (MRI) images taken during laparoscopic 
surgery in the open MRI surgery room have been developed 
[21]. In addition, for the purpose of real-time navigation for 
liver resection, such as car navigation, a method of synchro-
nizing intraoperative ultrasound image and preoperative CT 
using a magnetic sensor has been reported [22]. Furthermore, 
a method for synchronizing the display image of an actual 
laparoscopic hepatectomy with a 3D liver model using an 
infrared sensor has been performed [23, 24]. There have 
been reports on real-time navigation using infrared sensors 
for laparoscopic hepatectomy and da Vinci robotic hepatec-
tomy [25].

30.3  3D Surgical Simulation for Liver 
Surgery

30.3.1  Liver Resection Simulation Using 
SYNAPSE VINCENT

SYNAPSE VINCENT (Fuji Film Medical, Tokyo, Japan) is 
a 3D image processing software. This software helps in 
understanding the complex structure of intrahepatic vessels 
and allows the assessment of the liver volume supplied by 
the blood vessels. We used the SYNAPSE VINCENT to per-
form 3D visualization and virtual resection of the liver. 
Based on the patient’s CT, the liver parenchyma, inferior 
vena cava, portal vein, hepatic vein, and tumor were traced 
by the function of automatic and manual segmentation of the 
SYNAPSE VINCENT. Then, the 3D reconstructed liver was 
completed (Fig. 30.1). Regarding the benefits of liver resec-
tion using 3D surgical simulation with the SYNAPSE 
VINCENT, several reports have suggested that it is useful for 
performing subsegmentectomy of the liver and [3] that the 
operation time was shortened [26].

30.3.2  Utilization of Our Original 3D Printing 
for Surgery

Recent advances in sophisticated 3D printing technology 
have made it possible to create 3D models as accurate 3D 
prints. The 3D model of the liver including the liver paren-
chyma, portal vein, hepatic vein, and inferior vena cava 
reconstructed using 3D analysis software such as the 
SYNAPSE VINCENT has been output as a stereolithography 

Fig. 30.1 3D reconstructed liver model using the SYNAPSE 
VINCENT: The 3D reconstructed liver is completed using the 
SYNAPSE VINCENT
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file, and 3D printed as a real model using a 3D printer. 
Preoperative simulations, rehearsals, and surgical planning 
are performed using these 3D prints [27]. In addition, a surgi-
cal training system has been developed and put into practical 
use; it uses the chest and abdominal contours, and the organ 
model that represents the texture of the living body created 
with 3D printing based on the patient’s CT data [28]. For 
methods of 3D surgical simulation, 3D images are generally 
displayed and observed on a two-dimensional (2D) screen; 
however, many of the advantages of 3D images on a 2D 
screen are lost. The 3D-printed model has a great advantage 
in that we can grasp the spatial structure on our hands [27].

In the conventional 3D-printed liver model, structures 
such as intrahepatic vessels and tumors are made of opaque 
or colored resin. Additionally, the liver parenchyma that fills 
the inside of the liver is created using transparent acrylic 
resin as the loading material (Fig. 30.2). In the conventional 
model because the shape of the liver is not flat and the trans-
parent resin is affected by the refraction of light, the blood 
vessels inside the liver are distorted and difficult to observe. 
Moreover, because acrylic resin is very expensive, the high 
cost of the material is a problem. In 2015, the University of 
Tsukuba developed a frame model in which the inside of the 
liver was hollowed out without using loading materials and 
the surface of the liver was surrounded by a nylon frame 
(Fig. 30.3). In this frame model, the amount of resin has been 
greatly reduced, and low cost has been achieved. In this 
frame model because we can directly observe the blood ves-
sels inside the liver, it is easy to see the complicated vascular 
structure and the spatial relationship between the blood ves-
sels and the tumor can be understood only in our hands. In 
addition, this frame model has the property of enhancing the 
effects of image sharing within the surgical team, preopera-
tive simulation, and intraoperative navigation [29].

30.4  Development of Our Original 
Hepatectomy Simulation Software

30.4.1  3D Virtual Hepatectomy Simulation 
Combined with Real-Time Deformation, 
“Liversim”

As mentioned above, although image analysis software, such 
as SYNAPSE VINCENT, has become popular, the 3D liver 
model is a rigid model and does not deform. The liver is gen-
erally soft and deforms during surgical procedures. With 
conventional software, it is possible to visualize the shape of 
the cut surface of the liver and the appearance of blood ves-
sels; however, it is impossible to visualize the process of 
resection of the liver. Therefore, we have developed a novel 
surgical simulation software that allows virtual surgery of 
the liver on a computer screen [30].

In addition to the functions of conventional software, the 
main functions of Liversim are the deformation and resec-
tion of a 3D liver model and the visualization and cutting of 
intrahepatic blood vessels that appear on the liver’s cut sur-
face. We can cut the liver parenchyma linearly at any set 
depth by placing a resection line on a 3D liver model using a 
PC mouse. Similar to the actual surgery, pulling the liver 
parenchyma on both sides of the resection line outward 
makes it easier to see the cut surface of the liver (Fig. 30.4). 
The 3D liver model is reconstructed using the SYNAPSE 
VINCENT based on the patient’s CT data. The STL data of 
the 3D liver model reconstructed using the SYNAPSE 
VINCENT is the input for Liversim, and subsequently, a vir-
tual hepatectomy deforming the liver can be quickly per-
formed. With Liversim, it is easier to understand the depth of 
blood vessels and the timing of their appearance than with 
conventional software. Liversim is also useful for young sur-
geons and medical students to understand the spatial recog-

Fig. 30.2 The conventional 3D-printed liver model: As the shape of 
the liver is not flat and the transparent resin is affected by the refraction 
of light, the blood vessels inside the liver are distorted and difficult to 
observe

Fig. 30.3 3D-printed frame model of the liver: It is easy to see the 
complicated vascular structure and the spatial relationship between the 
blood vessels and the tumor
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nition of liver anatomy and the resection processes of various 
surgical procedures before surgery.

30.4.2  Intraoperative Navigation Using 
Liversim

We can perform virtual surgery on a PC using a patient’s 
independent 3D liver model before surgery, which is exactly 
a rehearsal of the surgery. Furthermore, it is a useful naviga-
tion method to continuously replay a rehearsal video recorded 
before surgery on a screen during surgery and refer to it dur-
ing surgery. Regarding the accuracy of Liversim, there were 
no discrepancies in the depth, direction, and positions of the 
portal and hepatic veins during the liver resection process 
compared to the actual liver resection. Liversim is also very 
useful in subsegmentectomy because the volume of the sub-
segment area can be measured using the volumetric function 
and the demarcation line of the measurement area, which 
facilitates the preoperative simulation [30].

30.5  Movement to Navigation Surgery

Preoperative simulation of hepatectomy has been performed 
in many institutions, and clinical application of real-time 
navigation technology is desired in the future. Recently, ICG 
fluorescence navigation surgery using an infrared light 
observation image system has become popular in gastroen-
terological surgery [31, 32]. Since liver tumors with accumu-
lated ICG fluoresce when exposed to infrared light, 
fluorescence-guided surgical navigation is performed in liver 

resection (Fig. 30.5). Fluorescence imaging has the advan-
tage of clearly distinguishing surgical anatomy. The ICG 
fluorescent navigation system is already on the market and 
has been approved as a medical device. In the fiscal year 
2018, intraoperative blood vessel imaging was covered by 
the Japanese medical insurance, hence, its use is expected to 
spread rapidly for gastrointestinal surgery, particularly for 
the esophagus, stomach, and large intestine surgery.

Recently, as a research and development of real-time navi-
gation surgery such as car navigation, trials of navigation sur-
gery in laparoscopic hepatectomy and laparoscopic 
gastrectomy using infrared sensors have been performed [33]. 
Real-time navigation surgery requires integration and accurate 
registration between the real world and virtual objects. 
Although NeuroNavigator (Applied Neuroscience Inc.) has 
already been commercialized in the field of head and neck sur-
gery, it is difficult to realize the integration of virtual objects 
into the real world in gastrointestinal surgery that deals with 
moving and deformable nonrigid organs. Research on non-
rigid registration has been reported, but breakthroughs based 
on new ideas such as deep learning are expected in the future.

30.6  Development of Our Original 
Hepatectomy Navigation System

30.6.1  Original 3D Reconstruction of Surgical 
Field and Development of Surgical 
Navigation System

Liversim is a simulation software that enables liver deforma-
tion, where surgeons can simulate the operation plan on a 
computer system. Even though Liversim can display a 
deformed liver image, it is far different from a navigation 
system such as car navigation [30]. A car navigation system 
uses GPS to measure the location and provide feedback to 

Fig. 30.4 3D virtual hepatectomy simulation combined with real-time 
deformation, “Liversim”: We can cut the liver parenchyma linearly at 
any set depth by placing a resection line on a 3D liver model using a PC 
mouse

Fig. 30.5 Indocyanine green (ICG) fluorescence navigation surgery 
using an infrared light observation image system: The fluorescence- 
guided surgical navigation is performed in liver resection
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the map system to show the current locations on the map. 
However, the Liversim simulation system does not have such 
a sensing system. Therefore, we aim to develop a surgical 
navigation system for hepatectomy similar to a car naviga-
tion system based on Liversim. An overview of this system is 
as follows. First, the real-time capture of the surgical field by 
the 3D camera system will be performed to reconstruct a 3D 
model of the liver and calculate the resection state. Second, 
the resection and orientation information of the 3D liver 
model will be sent to the LiverNavi system. Lastly, the liver 
resection status is reflected in LiverNavi showing the prog-
ress of the surgery and the deformed liver to be displayed 
during the surgery.

30.6.2  Configuration of the Novel 3D Captured 
Liver Resection Navigation System

This system consists of two 3D camera sensors for real-time 
3D capture of the liver in the surgical field: a G-Capture soft-
ware that analyzes, captures data, and extracts the resection 
line; and a LiverNavi software, which is an extended version 
of Liversim for navigation use. LiverNavi can show a 
deformed liver by resection using resection and orientation 
information from the G-Capture software (Fig. 30.6).

• A G-Capture software: The G-Capture software analyzes 
the 3D shape data of the liver captured by the 3D camera 
and extracts the information about the resection line. To 
cooperate with LiverNavi, calibration between the real 
space and the simulation space is required. Therefore, 
G-Capture has the function of calibrating the space and 
orientation of the simulation 3D liver model (LiverNavi 
space) with the reconstructed liver 3D model space (real 
space). Along with the progress of the surgery, G-Capture 
can extract the information of the resection and orienta-

tion from the captured 3D model and send the data to the 
LiverNavi system. With this data, LiverNavi shows the 
resection process and the deformed liver model as a surgi-
cal navigation (Fig. 30.7).

• A LiverNavi software: The planned resection line of the 
liver needs to be set in advance. This planned resection 
line can be set by anatomical analysis of the patient’s liver 
stereolithography file and preset the three marks required 
to calibrate with G-Capture’s 3D model space. The three 
marks consist of the origin (the intersection of the resec-
tion line and the edge of the liver), the arbitrary point on 
the resection line from the origin, and the arbitrary point 
on the resected liver edge from the origin. By using these 
three marks on both the simulation liver model and the 
reconstructed 3D liver model, the calibration process will 
mostly be done automatically. Subsequently, LiverNavi 
displays the progress of resection of the liver based on the 
resection line information from G-Capture. In addition, 
the orientation information from G-Capture enables 
LiverNavi to match the viewpoint of the simulation liver 
to the surgeon’s view (Fig. 30.7).

30.6.3  Clinical Application of the Novel  
3D Captured Liver Resection 
Navigation System

As a clinical application, it was used as a trial in 10 cases of 
liver resection: two right hepatectomies, three left hepatecto-
mies, two posterior segmentectomies, two anterior segmen-
tectomies, and one lateral segmentectomy. As described 
above, with this navigation system, the point cloud of the 
liver captured by the 3D camera was made into a polygon, 
and the surface and normal lines were calculated, from which 
the resection line could be extracted. The calibration of the 
real space and simulation space was simplified by setting 

G-Capture

LiverNavi

Fig. 30.6 A novel original 
3D captured liver resection 
navigation system 
configuration: This system 
consists of two 3D camera 
sensors, a G-Capture software 
and a LiverNavi software
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three marks. Therefore, real-time automatic resection of the 
liver could be performed with LiverNavi, based on the 
 posture data of the liver and resection line data obtained by 
the abovementioned system (Fig.  30.8). However, some 
problems with this system have become apparent. It was 
found that the depth of the resection line cannot be measured 
with the current method when the resection line becomes 
deep and the resection surface becomes large, frequent cali-
brations arise for surgical procedures that require liver mobi-
lization. In the future, we aim to solve these problems and 
make more practical improvements.

30.7  Development of Our Original 
Simulation for Biliary-Pancreatic 
Surgery

30.7.1  Surgical Simulation for Biliary- 
Pancreatic Surgery

In hepatobiliary and pancreatic surgery with complicated 
anatomical variations, an accurate understanding of surgical 

anatomy is essential for performing safe surgery. Therefore, 
preoperative 2D images such as MDCT and MRCP are 
examined in detail to grasp the positional relationship 
between the lesion and surrounding organs. However, con-
structing a 3D anatomical image from the 2D modality often 
depends on many surgical experiences. It is difficult for a 
young hepatobiliary-pancreatic surgeon with little experi-
ence in surgical anatomy to accurately understand anatomy 
with preoperative images constructed from a 2D MDCT. We 
usually use 3D MDCT for a detailed evaluation prior to sur-
gery and also project it as a guide during surgery on a large 
screen in the operating room.

In addition, we evaluated the usefulness of pancreatic 
resection using a 3D surgical simulation in which MDCT and 
MRCP are fused [34, 35]. The SYNAPSE VINCENT was 
used to create a 3D model from 2D CT data. We have enabled 
the fusion technology of CT and MRCP by aligning the nor-
malized mutual information between two different modalities 
[1]. This 3D fusion image contains blood vessels as well as 
bile ducts and pancreatic ducts, and accurately represents the 
surgical anatomy of individual cases [36]. Therefore, at the 
preoperative conference, it became possible to determine the 

3D camera A 3D camera B

cutting line data

posture data of
the liver

3D liver mode in
Liversim

UI-1 UI-3

UI-2

LiverNavi

G-Capture

Fig. 30.7 A data flow of 3D captured liver resection navigation sys-
tem. 1. Registration of the images of two 3D cameras and 3D image 
creation (UI-1): A measuring gauze is used to automatically register the 
captured images of the two cameras. The 3D images from the two reg-
istered 3D cameras are composited in real time. 2. 3D image analysis 
(UI-2): The data of the cut surface and the resection line of the liver are 

extracted. The extracted resection line data are sent to UI-3. 3. Fusion 
screen (registration of real space and virtual space) (UI-3): The registra-
tion of the real space and the virtual space of Liversim is performed. 
The organ posture data and the resection line data are sent to LiverNavi, 
and the navigation image that reflects the resection process is displayed 
on the LiverNavi screen
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appropriate surgical procedures by estimating the bile duct 
and pancreatic duct anatomy using these 3D images. In addi-
tion, we can confirm the 3D anatomy displayed in the operat-
ing room, and navigation surgery can be performed while 
confirming the anatomical critical points by the surgical team.

The fusion method involved four steps. First, the Heavily 
T2-weighted MRCP and the thin slice 3D-T1 TFE cross- 
sectional image were fused, and then the thin slice 3D-T1 
TFE cross-sectional image and the CT cross-sectional image 
were fused. Therefore, the fusion of the MRCP image and CT 
image using as an intermediary, the thin-slice 3D-T1 TFE 
cross-sectional image was completed. Third, we focused on 
the hilar region and made a rough correction of the position of 
the bile duct in the fusion image. Fourth, we set three check-
points and checked that there was no gap in the positional 
relationship between the portal vein and the bile duct. The 
three checkpoints were as follows: (1) the main portal vein, 
(2) the umbilical portion of the left portal vein (whether the 
lateral segment bile duct runs in front of the umbilical portion 
or not), and (3) the right portal vein (whether the posterior 
segment bile duct runs in front of the right portal vein) [1].

30.7.2  Surgical Simulation for Biliary- 
Pancreatic Surgery

The patient was a 72-year-old man who was referred from 
a local hospital complaining of jaundice. Abdominal CT 
showed a low-concentration tumor measuring 18 mm in the 
middle bile duct, which invaded the right hepatic artery and 
the right wall of the portal vein. MRCP showed severe ste-
nosis in the middle bile duct and dilation of the intrahepatic 
bile duct. Therefore, he was diagnosed with middle bile 
duct cancer, T4, N1, M0, Stage IIIa. We created a 3D fusion 
image using CT and MRCP and performed the surgical 
simulation (Fig. 30.9a). In the 3D fusion image, it was easy 
to grasp the positional relationship of the tumor, bile duct, 
portal vein, and hepatic artery spatially, and to share the 
image with the surgical team. The volume of the remaining 
liver after right hepatectomy was approximately 30%. 
Hence, after right portal vein embolization, right hepatic 
lobectomy with extrahepatic bile duct resection, portal vein 
resection, and reconstruction were planned and performed 
(Fig. 30.9b).

Fig. 30.8 Real-time automatic resection of the liver with LiverNavi: Real-time automatic resection of the liver could be performed with LiverNavi 
based on the posture data of the liver and resection line data
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30.7.3  Usefulness of 3D Simulation 
in Pancreatic Resection

For 117 patients who underwent pancreaticoduodenectomy 
(PD), operation time (min), blood loss (g), complications, 
pancreatic fistula, and postoperative hospital stay (day) were 
compared before and after the introduction of the 3D surgi-
cal simulation. Statistical analyses were performed using the 
chi-squared test or unpaired t-test. Therefore, in the group 
after the introduction of 3D simulation, a significant decrease 
in blood loss was observed (group before introduction of 3D 
simulation, 1174  ±  862  g; group after introduction of 3D 
simulation, 810 ± 668 g, p = 0.012). However, no significant 

difference was observed between other perioperative factors 
before and after the introduction of 3D simulation [35].

30.7.4  Deformable Pancreatectomy 
Simulation

We are using the “Liversim” simulation software that allows 
deformation of organs to visualize the surgical process, not 
only for the liver but also for pancreatic surgery [30]. 
Figure 30.10 shows a 3D surgical simulation of laparoscopic 
distal pancreatectomy and a surgical photograph. It was con-
firmed that the spatial relationship between the splenic artery 
and splenic vein when the pancreas was elevated was similar 
to that in the simulation. This is not possible with existing 
software that cannot deform the pancreas.

30.8  Conclusion

Based on the knowledge of multidisciplinary computational 
anatomy, we have developed and introduced various CAS for 
hepatobiliary and pancreatic surgery. Our newly developed 
CAS has contributed to safe and secure surgeries. It is 
expected that the possibilities of CAS will continue to expand 
as multidisciplinary computational anatomy develops.
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a b

Fig. 30.9 Surgical simulation for biliary-pancreatic surgery. (a) 3D 
fusion image using CT and MRCP.  It is easy to grasp the positional 
relationship of the tumor, bile duct, portal vein, and hepatic artery spa-

tially. (b) A surgical photograph. The right hepatic lobectomy with 
extrahepatic bile duct resection, portal vein resection, and reconstruc-
tion are planned and performed

Fig. 30.10 Deformable pancreatectomy simulation: 3D surgical simu-
lation of laparoscopic distal pancreatectomy is performed
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Development of Multiple Skeletal 
Muscle Recognition Technique in the 
Thoracoabdominal Region for 
Respiratory Muscle Function Analysis

Naoki Kamiya

Abstract

This chapter describes the purpose and summary of our 
achievement in the research work about respiratory mus-
cle segmentation as respiratory function analysis. Our 
goal is to develop a complex segmentation technique of 
the skeletal muscle in the thoracoabdominal region for 
respiratory function analysis using skeletal muscle. Here, 
we aim to develop complex segmentation and analysis 
technology of thoracoabdominal respiratory muscle by 
improving automatic segmentation method of deep mus-
cle and surface muscle region that we already estab-
lished. Specifically, we construct direction and shape 
models of the respiratory muscle based on muscle fibers, 
and realize automatic site-specific segmentation of respi-
ratory muscle. This makes it possible to clarify the infor-
mation of respiratory muscle of each part and the 
relationship between skeletal muscles necessary for elu-
cidating the relationship between respiratory function 
and skeletal muscle. Then, we generate a respiratory 
muscle mathematical model applicable to three axes 
(space, function, and pathology). First, we constructed a 
sternocleidomastoid muscle and intercostal muscle 
model. In addition, we performed two-dimensional seg-
mentation of the spinal column erector, which is closely 
related to COPD, which is one of respiratory diseases. 
Then, we proposed a three- dimensional segmentation 
method of spinal column erector muscles as the main tar-
get. In particular, we propose a method based on machine 
learning and compared it with a method based on deep 
learning. These results were shared with the group 
“Function integrated diagnostic assistance based on 
MCA Models” and contributed to the fusion of deep 
learning and model-based methods.

Keywords

Skeletal muscle · Musculoskeletal analysis  
Musculoskeletal segmentation · Respiratory muscle  
Random forest · FCN · 2D U-Net · 3D U-Net

31.1  Introduction

Skeletal muscles are present throughout the human body. It 
applies not only to the surface part but also to the deep parts. 
For this reason, skeletal muscles are often drawn on images in 
images of various modalities photographed for diagnosing 
organs. However, automatic segmentation of the skeletal mus-
cle is one of the difficult tasks, as their structure (shape and 
distribution) is complex, as well as differences among indi-
viduals are large. In particular, since skeletal muscle and other 
organ regions are similar in gray value distribution, skeletal 
muscle segmentation is an important task as with organ seg-
mentation. For skeletal muscle segmentation, various methods 
such as methods focusing on the shape of skeletal muscle and 
statistical features have been proposed, but there is no estab-
lished method yet. In order to develop the advanced systems, 
our goals in this project are to develop anatomical and func-
tional muscle segmentation methods for diagnosis of muscu-
loskeletal functions in thoracoabdominal regions.

In the previous project, we developed computational anat-
omy models of various muscles in torso CT images [1]. In 
this project, we not only continue to improve model con-
struction and application but also focus on establishment of 
muscular models for functional imaging. These muscle mod-
els can be effectively combined to process multidisciplinary 
information. There are also several studies on skeletal mus-
cle segmentation in the MCA project. In particular, Fujita 
et al. are working on functional analysis of surface muscles 
for whole-body CT and torso CT, and Sato et al. are working 
on segmentation in the lower limb. Our roles in this project 
are to investigate image muscle segmentation methods in 
thoracoabdominal region and to establish methodologies of 
computer-aided diagnostic (CAD) systems for respiratory 
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muscle function analysis from the aspect of the musculoskel-
etal segmentation. Figure 31.1 shows the schematic diagram 
of our research achievement, thoracoabdominal muscle seg-
mentation for analysis of respiratory muscle function.

In this study, to target the respiratory muscles. Respiratory 
diseases are the 4th and 5th largest causes of death in the 
world [2]. The respiratory muscles consist of a number of 
muscles, many are present in the chest and abdomen region. 
Then, the relationship between chronic obstructive pulmo-
nary disease (COPD), which is one of respiratory diseases, 
and muscles have been clarified in part, and the correlation 
between the cross-sectional area of the spinal column erector 
muscle and the prognosis of COPD is shown [3]. In this 
research, in order to elucidate not only the respiratory mus-
cle but also the relationship between respiratory disease and 
skeletal muscle, we propose a segmentation method of skel-
etal muscle of the thoracoabdominal part. The major topics 
will be reported in the following sections.

31.2  Model Generation for Respiratory 
Muscle Function Analysis

 1. Purpose: Model-based segmentation has also been shown 
to be effective in skeletal muscle segmentation. In this 
project, a model of sternocleidomastoid muscle and inter-
costal muscle was constructed.

The sternocleidomastoid muscle is one of the respira-
tory muscles. In our group, muscle analysis targeting 

ALS (amyotrophic lateral sclerosis), which is a difficult- 
to- treat disease using whole-body CT images, is per-
formed. In addition, the sternocleidomastoid muscle is 
also a part susceptible to ALS. Here, we use automatic 
probabilistic atlas to automatically recognize sternoclei-
domastoid muscle.

Intercostal muscles attached between the upper and 
lower ribs, perform vertical motion of the ribs. In other 
words, the intercostal muscle is a muscle, which expands 
and contracts the thorax and performs exhalation/inspira-
tion movement. The intercostal muscles consist of the 
interior and exterior intercostal muscles and are distrib-
uted in layers. Not only related to the respiratory func-
tion, it can also occur damage to the muscle itself. In this 
study, in order to analyze the motor function of the inter-
costal muscle, we considered not only the accurate seg-
mentation of the intercostal muscle region but also the 
running of the muscles.

 2. Method: Our study was approved by the institutional 
review board. Twenty normal cases of non-contrast CT 
images were collected. We generated sternocleido- 
mastoid muscle model based on probabilistic atlas and 
proposed an automatic segmentation method using this 
atlas on torso CT images (Fig. 31.1a left).

Next, our scheme of the intercostal muscle model con-
sisted of the following steps: (1) costal cartilage segmen-
tation, (2) landmarks detection and boundary detection, 
and (3) muscle fiber modeling. In the first step, costal car-
tilage is recognized using CT value. Costal cartilage rec-
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Fig. 31.1 Schematic diagram of thoracoabdominal muscle recognition 
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ognized here is for use as a boundary of the internal and 
external intercostal muscles, precision extraction of cos-
tal cartilage was not carried out. The boundary of this 
costal cartilage is the boundary of each intercostal mus-
cle. Next, anatomical landmarks are recognized on each 
rib. Anatomical landmarks are detected on each rib and 
costal cartilage and become the intercostal muscle bound-
ary and attachment point. Finally, connect the upper and 
lower ribs, which are origin and insertion, to obtain a 
muscle running model simulating running of the muscle 
fibers (Fig. 31.1a right).

 3. Results: We successfully segmented the major area of the 
sternocleidomastoid muscle. This is because the atlas of 
sternocleidomastoid muscle deformed using the informa-
tion of bone anatomical location and edge of the sterno-
cleidomastoid muscle is fitted in the shape of the 
individual muscle [4].

Since it is difficult to exactly observe the running of 
the intercostal muscle fibers on the CT image, we visually 
evaluated whether the position and running of the inter-
costal muscle were correctly obtained. By 2-D slice and 
3-D volume rendering, the adhesion position and the run-
ning of the muscle fibers at the origin and insertion were 
confirmed. We did not address precise segmentation of 
bone features such as rib nodules, so we could express 
muscle running in the intercostal muscle region necessary 
for segmentation of the intercostal muscle although it was 
not strictly distinguishable between the internal and 
external intercostal muscles [5, 6].

 4. Conclusion: An automated scheme was proposed to gen-
erate the muscle model of sternocleidomastoid and 
intercostal muscle. Muscle model can detect initial 
region of each muscle. The results suggest the effi-
ciency of the muscle running model-based image inter-
pretation. Muscle running as muscle fiber direction is 
needed for muscle segmentation. In the next step, it is 
necessary to generate stratified muscle fiber running 
model based on the detection of the precise feature 
point on the skeleton.

31.3  Automated Segmentation 
of the Erector Spinae Muscle in Torso 
CT Images and Its Segmentation 
Based on Muscle Bundle Model

 1. Purpose: Although the erector spinae muscle is not a 
respiratory muscle, the cross-sectional area of the erector 
spinae muscle in the 12th thoracic cross section is corre-
lated with the prognosis of respiratory disease COPD [3]. 
However, its automatic segmentation has not been real-
ized. In addition, since the erector spinae muscle is com-
posed of a large number of muscle groups, it is considered 

difficult to apply the proposed skeletal muscle segmenta-
tion procedure. Therefore, in this research we aim to 
automatically recognize the erector spinae muscle in 2-D 
cross-sectional area (Fig.  31.1b) and 3-D volume 
(Fig. 31.1c).

 2. Methods: We performed automatic segmentation of the 
erector spinae muscle using machine learning. In the 
method based on machine learning, random forest-based 
method is used. We learned using the original image and 
the correct image of the bone region and manually seg-
mented the spinal erector region. In the A02-3 group is 
also try to segment this muscle using deep CNN. However, 
the region of the spinal erector muscle is large, and it 
takes a huge amount of time to prepare a correct answer 
image necessary for learning.

In addition, we proposed a method to integrate deep 
learning and model-based methods. In particular, in 
large muscles such as the spinal column erector muscle, 
it is often composed of multiple anatomical muscles. 
As already mentioned, it is a very difficult task to pre-
pare a correct image of a plurality of muscles constitut-
ing the spinal column standing muscle as well as 
preparing a correct image of the spinal column standing 
muscle itself. Therefore, firstly, the muscle bundle of 
the muscle group constituting the spinal column erector 
is modeled. Then, by applying a model of the muscle 
bundle to the spinal column erector muscle recognized 
by machine learning, it is a method of classifying the 
spinal column erector muscles into muscles of different 
parts (Fig. 31.1d).

 3. Results: In the automatic segmentation of the erector spi-
nae muscle based on the running of the muscles, the con-
cordance, recall, and relevance rate in the 12th thoracic 
vertebra were 78.5%, 93.8%, and 83.1%, respectively [7]. 
Next, in the method using machine learning, the concor-
dance, recall, and relevance rate in the 12th thoracic ver-
tebra were 87.0%, 96.4%, and 89.9%, respectively [8]. 
Also, with the deep CNN based method collaborate with 
A02-3, the accuracy of coincidence rate, recall rate and 
relevance rate by 3-D volume were 80.9%, 93.0% and 
86.6%, respectively [9].

We automatically recognized attachment areas on the 
bone of the muscle from the area of the spinal column 
standing muscle recognized by machine learning. Then, a 
model of the muscle bundle was fitted to the attachment 
region on the bone, and classification of the skeletal mus-
cle obtained by machine learning was realized (Fig. 31.1d) 
[10, 11].

 4. Conclusion: In this study, automatic segmentation of 
erector spinae muscle correlated with COPD prognosis of 
respiratory disease was performed. The results suggest 
the possibility of applying a quantitative image analysis. 
In the method using machine learning, it is possible to 
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recognize with 3-D volume, and high segmentation rate 
was obtained even in the region other than the 12th tho-
racic cross section. On the other hand, in the method 
using muscle fiber modeling, clinically useful informa-
tion such as each muscle group segmentation and muscle 
attachment region can be used.

31.4  Current Status and Future Issues 
in Thoracoabdominal Skeletal  
Muscle Recognition

Though skeletal muscle segmentation of thoracoabdominal 
region for the respiratory muscle function analysis was 
described by the previous section, it is considered that the 
compartmentation with deep learning is necessary in future. 
Figure 31.2 shows an example of our current efforts. In deep 
learning, it is important to make an annotation image, but it 
is very time consuming and labor consuming to paint a part 
of skeletal muscle in detail. In order to realize a more 
detailed recognition of site-specific skeletal muscles, it is 
considered that muscles and global structures which can be 
painted by manual work as shown in the previous section 
are recognized by deep learning and used in combination 
with a model- based method [12]. In addition, we have pro-
posed a method to recognize surface muscles in the whole-
body by learning voxel patches composed of a limited 
number of slices which obtained by selectively [13], and are 
tackling skeletal muscle recognition by an approach from 
the whole to the detail.

31.5  Conclusion

Our progress in developing the methods for constructing the 
multidisciplinary muscle models and applying the models 
for muscle image segmentation and its analysis were 
described. The results obtained so far are promising, which 
convince us the success of our research project.

In the next step, it is to promote muscle analysis by fusion 
of DCNN and model-based method which is our recent 
research topic (Figs. 31.1d and 31.2). This is an indispens-
able technology not only for respiratory muscles but also for 
muscle function analysis and relationship analysis with dis-
ease where it is difficult to prepare a large number of correct 
answer images.
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Morphometric Analysis 
for the Morphogenesis 
of the Craniofacial Structures 
and the Evolution of the Nasal 
Protrusion in Humans

Motoki Katsube

Abstract

The facial morphology of humans, which is very compli-
cated in three dimensions, is closely related to various 
functions, such as support of the brain and the eyeball and 
formation of the mastication apparatus and respiratory 
system. Such a complicated shape is acquired by mid- 
fetal life. The early stage of this developmental process, 
the embryonic stage, is closely related to many congenital 
anomalies. Various studies have been conducted on the 
morphogenesis of the face during this period. However, 
specimens in the late stage of facial morphogenesis, the 
early fetal period, are too large to be sectioned for the 
histological analysis and have been difficult to study 
using traditional medical imaging modalities, such as 
X-rays, because the facial skeleton has not been calcified. 
The development of medical imaging modalities has 
allowed us to obtain high-definition images of these early 
fetal facial skeletons. In addition, geometric morphomet-
rics have enabled us to perform three-dimensional mor-
phological analyses and visualize the growth trait in the 
early fetal life.

Keywords

Geometric morphometrics · Facial morphogenesis · Fetus  
Nasal septum · Mid-face

32.1  Introduction

In the process of human ontogenesis, the shape of the organs 
drastically changes until 10 weeks of gestation, which is the 
embryonic period, and acquires almost the normal morphol-
ogy. The maturation process of organs occurs during the fetal 

period following the embryonic period. As for the facial 
morphogenesis in the embryonic period, the medial nasal 
process, lateral nasal process, maxillary process, and man-
dibular process are fused precisely. If these fusions are 
impaired, congenital anomalies, such as cleft lip and palate, 
develop. Most congenital anomalies arise from dysplasia 
during the embryonic period. However, as shown in Fig. 32.1, 
the facial morphology is still very immature, even at the end 
of the embryonic stage. In the mid-fetal period, the fetuses 
acquire neonatal-like facial features.

32.1.1  Nasal Protrusion in Humans

The facial morphology of humans has unique features com-
pared to primates, such as the anteriorly protruding forehead 
and protruding chin and nose. These appearances have 
changed with various functional adaptations over the course 
of human evolution of approximately 7 million years. In 
early developmental stages, such as the embryonic stage, the 
facial morphology is similar to that of other primates, and the 
human-specific morphology is acquired with growth. The 
greatest contribution to this is presumed to occur during the 
early fetal period [1–3].

32.1.2  Nasal Septum Development in Human 
Ontogeny

As a human-specific facial appearance characteristic, nasal 
protrusion is supported by the nasal septum. Disturbances in 
the development of the nasal septum in the early prenatal 
period can cause severe deformity of the nose, called the flat 
nose, which is a main characteristic of the Binder phenotype 
[4, 5]. The development of the nasal septum is widely known 
to be a major factor for the growth of the nose in childhood 
and for the thrusting force of the midface in the forward and 
downward directions with growth [6, 7]. Epidemiological 
studies have reported that maternal exposure to warfarin dur-
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ing the first trimester of pregnancy could cause the Binder 
phenotype, called warfarin embryopathy [8–12]. Therefore, 
the development of the nasal septum during the first trimester 
of pregnancy could be considered a major factor affecting 
nasal protrusion; however, this has not been well analyzed 
embryologically.

32.1.3  Two-Dimensional Morphometric 
Analysis for Nasal Septum Growth 
Allometry

Only a few studies have been carried out using human fetuses 
and have shown that the nasal septum maintains an almost 
isometric shape with growth during the second trimester of 
pregnancy [13, 14]. The morphometric analysis involved a 
linear measurement called traditional morphometrics, which 
was the application of multivariate statistical analyses to sets 
of quantitative variables, such as length, width, and height. 
While multivariate morphometrics combined multivariate 
statistics and quantitative morphology, it is difficult to find 
the shape difference because of the loss of the geometric 
relationships among the variables. For instance, the oval 
shape and rectangular shape objects could have the same 
maximum length and maximum width, although they are 
clearly different in shape. In the late 1980s, a morphometric 
analysis that captured the geometry of the morphological 
structures of interest and preserved this information through-
out the analyses was developed [15]. This approach is called 
geometric morphometrics (GM).

Katsube et al. [1] quantified the shape of the nasal septum 
of human embryos and fetuses using magnetic resonance 
(MR) images (Fig. 32.2) by applying GM. They carried out 

a generalized Procrustes analysis, followed by the principal 
component analysis. The allometric shape vector indicating 
the “growth vector” was calculated from the multivariate 
regression of PCs 1–3 on the centroid size (CS) [16]. 
According to the transformation of the deformation grids 
and MR images along the allometric shape vector, the nasal 
septum developed mainly in the anteroposterior direction 
and was not isometric (Fig. 32.3). Furthermore, the plots of 
all specimens in the PC space were projected onto an allome-
tric shape vector, and their scores were plotted as allometric 
shape scores (ASS) against CS. The scatter plot showed that 
the ASS rapidly increased as CS increased in the smaller 
specimens, while the change was almost constant in the 
larger specimens (Fig. 32.4). The switch point was found to 
occur at 14.2 weeks of gestation according to Sahota’s equa-
tion [17]. Thus, the nasal septum expanded in the anteropos-
terior direction until around 14 weeks of gestation, developing 
with an almost constant profile after this period.

32.1.4  Nasal Protrusion

Anteroposterior expansion, or longitudinal growth, of the 
nasal septum plays an important role in enabling protrusion 
of the nose and development of the anterior nasal spine 
(ANS); disturbances in this process could cause a low nasal 
profile, including the Binder phenotype. Two mechanical 
forces have been reported to contribute to the development of 
the ANS. The anterior growth of the nasal septum beyond the 
anterior edge of the premaxilla provides a growing force to 
the premaxilla, which contributes to the morphogenesis of 
the ANS via the septo–premaxillary ligament [18]. In addi-
tion to the anteroposterior development of the nasal septum, 

5mm 5mm 5mm

Embryo Fetus Postnatal

Fig. 32.1 The lateral view of three-dimensional images reconstructed 
from the magnetic resonance (MR) imaging data during the end of the 
embryo and the early fetal period. MR images were obtained by using 

a 7-T MR system (Biospec 70/20 USR, Bruker Biospin MRI Gmbh, 
Ettlingen, Germany)
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the stability of the premaxilla, which results from the fusion 
of the premaxillary–maxillary suture, has been reported to 
contribute to the development of the ANS [19]. Interestingly, 
the timing of fusion of the premaxillary–maxillary suture 
varies among humans, contributing to the mid-facial profile 
[19, 20]. A population with a low nose generally has a smaller 
ANS, and a population with a high nose generally has a 
larger ANS [21]. Mooney and Siegel [19] reported that the 
timing of fusion of the suture is earlier in people of European 
origin than in people of African origin. The nasal septum and 

the premaxilla-maxilla suture may play a key role in the pro-
truding human nose.

32.1.5  Morphogenesis of the Mid-Face

Congenital anomalies in the midface usually represent the 
conspicuous disharmony, often require multiple treatment 
procedures, and remain a challenging condition for craniofa-
cial surgeons [22]. The skeleton of the midface is a complex 

Fig. 32.2 Three-dimensional and mid-sagittal images are reconstructed from the MRI data of a human fetus

a P
C
2

P
C
2

P
C
2

b

c

PC1

PC1

PC1

Fig. 32.3 The deformation 
grids and MR images from 
(a) to (c) are located on -2 
SD, origin, and +2 SD 
(indicated by red stars) on the 
allometric shape vector (black 
arrow), respectively. These 
deformation grids and MR 
images show that the shape of 
the nasal septum expands 
mainly in the anteroposterior 
direction along with the 
allometric shape vector
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of various facial bones. In addition, several types of essential 
and functional organs are packed in small spaces. 
Accordingly, the shape of the midfacial skeleton is a very 
complicated three-dimensional structure. The shape of the 
midfacial skeleton has been reported to change drastically; it 
is presumably established during the early fetal period [1, 13, 
23, 24]. Most of congenital craniofacial anomalies are 
induced by impairment of the normal growth trait, such as 
that in the cleft lip and palate or midfacial hypoplasia. 
Therefore, understanding the normal growth trait during the 
early fetal period could elucidate the pathogenesis of con-
genital craniofacial anomalies. However, the mechanisms 
underlying these phenomena remain unclear.

32.1.6  Traditional Morphometric Studies 
for the Mid-Facial Development

Diewert [25] investigated the craniofacial growth during 
7–10 weeks of the gestational age using mid-sagittal histo-
logical sections in the morphometric analysis, such as cepha-
lometry, and found that the mandibular growth was faster 
than the nasomaxillary complex and the cranial base angula-
tion and maxillary position to the cranial base develop during 
the late embryonic period. Burdi [13, 14] reported the naso-
maxillary growth during 12–24 weeks of gestation using the 
mid-sagittally sectioned head of human fetuses in the mor-
phometric analysis, such as cephalometry, and found that 
almost isometric expansion occurred and the upper face grew 
in downward and forward directions. Trenouth [26] investi-

gated the craniofacial growth during 10–22 weeks of gesta-
tion using photographs and radiographs in the linear analysis 
and found that relative growth rates were greater in cranial 
length, height, and width in the order, and greater in facial 
length, width, and height in the order.

32.1.7  Three-Dimensional Morphometric 
Analysis for the Mid-Facial 
Development

Recent developments in medical imaging modalities, e.g., 
MR imaging and/or computed tomography (CT), allowed us 
to study these small specimens in three dimensions. 
Furthermore, GM enables us to grasp three-dimensional 
shape changes. Katsube et al. [2] investigated the allometry 
of the mid-facial skeleton during the early fetal period using 
7 and 3 T MR images. The sample size was 60, including one 
embryo and 59 fetuses. They carried out the GM analysis in 
3D and calculated the allometric shape vector and visualized 
the warped surface model along the vector. The transforma-
tion of the mid-face along the AS vector showed a shape 
change as follows: In the anterior view, the width of the alve-
olar arch changed a little while the middle to upper part of 
the maxilla was reduced in width, accompanied by a reduc-
tion in the relative size of the nasal cavity. In the lateral view, 
the zygoma drastically expanded in the anterolateral dimen-
sion; a structure such as the malar prominence was formed 
from the greater development in the superolateral portion of 
the zygoma compared to the inferior portion, the lateral part 
of the maxilla developed forward while the central part of the 
maxilla and the nasal developed little. The shape of the cra-
nial base changed as follows: From a superior view, the ante-
rior cranial base expanded in the anteroposterior direction, 
and the central part of the middle cranial fossa was reduced 
in width and length of the clivus (Fig. 32.5). Their results 
suggested that the shape of the facial structure related to the 
primary organs, such as the orbit, alveolar arch, and nasal 
cavity, has already been established before the fetal period; 
on the other hand, the zygoma drastically expanded in the 
anterolateral direction in the fetal period. Furthermore, they 
found a close correlation between the growth centers, includ-
ing the nasal septum and spheno-ethmoidal synchondrosis 
with mid-facial growth.

32.1.8  Ontogenetic Allometry of the Face

The ontogenetic allometry of the facial shape results from 
the complex interaction between the genetic and epigenetic 
actions [27]. In the very early embryonic stage, specific 
genomes were presumed to regulate the morphogenesis of 
the central nervous system and the facial shape. The impair-
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Fig. 32.4 The scatter plot of the allometric shape scores (ASS) against 
the centroid size (CS) shows that the ASS rapidly increased as CS 
increased in the smaller specimens, while the change was almost con-
stant in the larger specimens. The switch point (X0) between these 
groups was calculated using a regression equation
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ment of such gene expression causes severe congenital 
anomalies, such as holoprosencephaly [28]. Moss suggested 
the influence of the epigenetics on facial growth as a func-
tional matrix hypothesis and stated that “Bones do not grow; 
bones are grown” [29–31]. He divided the matrix into perios-
teal and capsular matrices. According to the study of Katsube 
et al. [2], in the ontogenetic allometry of the human facial 
skeleton, the capsular matrix, such as the cranial base, orbit, 
or nasal cavity, develop first, followed by the periosteal 
matrix, such as zygoma, was developed later. The mastica-
tion muscle activity, observed as the mouth opening from 
around 11 weeks of gestation [32], probably influences on 
the zygoma as the periosteal matrix. Thus, epigenetic factors 
play an important role in the morphogenesis of the face.

The complexity of the facial skeleton is closely related to 
its various functions, such as support of the brain and eyeball 
and formation of the mastication apparatus and respiratory 
system. Therefore, elucidating its morphogenesis remains 
challenging. Application of GM will probably enable us to 
grasp the complicated facial morphogenesis in three 
dimensions.

The results of our study demonstrated the morphological 
changes along the time axis and its integration with func-
tional axis in early fetal life. The results will also contribute 
to understand the pathology of the congenital facial 
anomalies.
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Development of Bone Strength 
Prediction Method by Using MCA 
with Damage Mechanics

Mitsugu Todo

Abstract

The goal of this research project was to establish an effec-
tive prediction method of bone strength using CT-FEM. In 
the present study, three sub-projects were conducted, 
namely, deformation analysis of micro-CT image-based 
cancellous bone model, comparison of CT-FEA with 
cadaveric experiment, and analysis of the correlation 
between vertebra strength and lumbar YAM.

Keywords

Computer tomography · Finite element method  
Bone strength

33.1  Introduction

Osteoporosis has been one of the most important diseases in 
the current aged society of Japan. It has been known that 
osteoporosis easily causes bone fractures such as vertebral 
compression fracture (VCF), and such spontaneous bone 
fractures have become one of the most important issues in 
the field of recent orthopedics [1, 2]. In the current clinical 
situations, the degree of osteoporosis is examined on the 
basis of bone mineral density (BMD) measured by X-ray, 
such as the dual-energy X-ray absorptiometry (DEXA). 
Doctors then try to use a medical index YAM to diagnose the 
patient with the osteoporotic symptom. YAM can be recog-
nized as the percentage ratio of the measured BMD to the 
average of young BMD (20–44 y.o.). In general, low YAM 
values are well correlated with a high risk of bone fracture; 
however, such averaged material property is not enough to 

predict bone strength which is a mechanical property and 
strongly related to the micro- and macro-structures of bone.

In recent years, as a field of multidisciplinary computa-
tional anatomy (MCA), CT-image based finite element 
method (CT-FEM) has widely been utilized to develop com-
plicated 3D bone models using CT images and to analyze 
their mechanical performance. Furthermore, BMD distribu-
tion within the bone models can be estimated from CT values 
of the CT images by assuming a linear relationship between 
them. Once distributed BMD values are obtained, the elastic 
modulus (Young’s modulus) can be estimated using Keyak’s 
or Keller’s method [3–5]. In their methods, the relationship 
between BMD and modulus is expressed by empirical equa-
tions in which the modulus is expressed as an exponential 
function. Those equations were obtained from cadaveric 
experiments. Damage mechanics-based analysis method can 
be incorporated with CT-FEM code to analyze microscopic 
damage formation behavior and therefore, bone fracture 
problems [6, 7]. Our research group has actively been work-
ing on the application of CT-FEM with damage mechanics to 
clinical biomechanical problems of the femur [8, 9] and 
spine [10, 11].

The objective of this study was to develop a computa-
tional method for bone strength analysis using MCA, such as 
CT-FEM combined with damage mechanics. There were 
three primary researches involved in this project. The first 
one was the deformation analysis of micro-CT image-based 
cancellous bone model that was conducted to understand the 
micro-deformation mechanism of porous cancellous bone. 
The second was the comparison of CT-FEA with the cadav-
eric experiment that was performed to assess the applicabil-
ity of the standard Keyak’s method to cadaveric experimental 
results and to develop a more accurate method to predict 
elastic modulus. The third research was the analysis of the 
correlation between vertebra strength and lumbar YAM using 
patient’s data. Total 244 vertebrae were analyzed by CT-FEM 
to estimate their compressive strength and correlated with 
BMD data of the patients.
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33.2  Deformation Analysis of μ-CT Image- 
Based Cancellous Bone Model

Micro-CT images of a femoral head of osteoarthritis (OA) 
patient was prepared for the finite element (FE) modeling of 
cancellous bone. A cubic 3D-FE model of cancellous bone 
was then constructed from these images using Mechanical 
Finder Software (RCCM, Inc). The size of the cubic model is 
350 μm3. The Young’s modulus and Poisson’s ratio of the 
model were set to 18 GPa and 0.3, respectively. The model 
was then sandwiched between two plates, and distributed 
compressive load of 10 N was applied to the top surface. A 
damage model was also introduced to predict microscopic 
damage accumulation in the cancellous bone structure.

Distribution patterns of strain energy density (SED) and 
damaged elements are shown in Fig. 33.1. It is well known 
that SED is thought to be related to bone remodeling and has 
been used as a control parameter in bone remodeling analy-
sis. Localized SED concentrations are seen in the figure. 
Most of the damage modes are related to compressive fail-
ures, yielding, and fracture.

33.3  Comparison of CT-FEA with  
Cadaveric Experiment

In this research, CT-FEA results of mechanical tests of femur 
were compared with the corresponding experimental results 
of cadaveric femurs to assess the prediction method of the 
relationship between bone mineral density and Young’s mod-
ulus. A modified prediction method was also proposed in this 
study. Four different femurs retrieved from cadavers were 
tested in Chiba University Hospital with the approval of the 
ethics committee. CT images of the femurs were also 
obtained prior to the tests. Then, 3D femoral models were 

developed from the CT images using Mechanical Finder 
Software. The boundary conditions were set to imitate the 
experimental testing conditions.

It was found that the load-displacement curves obtained 
from the experimental testing were very different from each 
other. These load-displacement curves were tried to be pre-
dicted by CT-FEM, and the results showed that the experi-
mental load-displacement curve cannot be predicted by 
using Keyak or Keller equations very well, although their 
equations have widely been used in bone analysis world-
wide. A new prediction method was then proposed by con-
sidering the distribution of bone mineral density within the 
femurs. This equation to predict the relationship between 
BMD and Young’s modulus was based on the Keller equa-
tion for vertebrae. The FE results are shown in Fig. 33.2. It is 
clearly seen that the initial slope of the load-displacement 
curve corresponding to the stiffness was well predicted by 
the newly proposed method.

33.4  Analysis of Correlation Between 
Vertebra Strength and Lumbar YAM

The degree of osteoporosis of an elderly patient has clini-
cally been determined on the basis of DEXA result, which 
corresponds to the averaged bone mineral density, although 
osteoporosis has been defined as a disease characterized by a 
reduction of bone strength. In this study, strength values of 
244 vertebrae of 84 patients were examined by CT-FEM, and 
the correlation between the strength and YAM was assessed. 
CT data of the total 103 patients were examined, and 84 data 
were chosen for CT-FEA of vertebra strength. 3D-models of 
total of 244 vertebrae, including T11, T12, L1, L2, and L3, 
were constructed from the CT images using Mechanical 
Finder CLINIC software (RCCM, Inc). The 3D models were 

Strain energy density Damaged elements

Fig. 33.1 Distributions of strain energy density and damaged elements
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then analyzed under compressive loading conditions, and the 
strength was evaluated from FEA with damage mechanics. 
In general, a low BMD value corresponds well to osteoporo-
sis, and therefore, YAM can be recognized as a useful param-
eter in clinical situations. Two kinds of osteoporosis index 
were newly defined by:

 OPI YAMBMD = /70  (33.1)

 OPI Vertebra strength NBS = /2500  (33.2)

Thus, OPIBMD < 1 corresponds to the clinical determina-
tion of osteoporosis and OPIBS < 1 corresponds to high risk of 
vertebra compression fracture (VCF). The relationship 
between OPIBMD and OPIBS is shown in Fig. 33.3. It is seen 
that strong correlation does not exist between the two indexes. 
It is very important to note that some vertebrae exhibited low 
OPIBS (<1) with high OPIBMD (>1), suggesting the following 
misleading: the patients having these vertebrae will be exam-
ined as no osteoporosis because of their high YAM values, 
although their vertebrae have a high risk of VCF.

33.5  Conclusions

In this 2-year project, three different researches were con-
ducted mainly, and the results were obtained as follows:

 1. 3D model of cancellous bone was developed using micro-
 CT images of an OA femur, and FEA was performed to 

understand the deformation mechanism of the porous 
structure. Localized SED distribution was clearly 
observed, suggesting localized failure of microstructures. 
Such localized damage accumulation was also analyzed 
by introducing the damage mechanics for bone.

 2. CT-FEA results of three cadaveric femurs were compared 
with their experimental results. It was clearly shown that 
the standard Keyak or Keller methods cannot be used to 
predict the macroscopic load-displacement behavior. A 
modified Keller method was proposed, and the prediction 
of stiffness was dramatically improved.

 3. Compressive strength values of 244 vertebrae of 84 
patients were evaluated by CT-FEM, and their correla-
tions with YAM values were examined. It was worth not-
ing that some vertebrae exhibited high risk of vertebra 
fracture, although the corresponding YAM values were 
considered as normal conditions. These results suggest 
that we need to introduce the strength-based diagnostic 
method along with the standard BMD-based methods.
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Development of a Generation Method 
for Local Appearance Models of Normal 
Organs by DCNN

Shouhei Hanaoka

Abstract

The objective of this chapter is to describe how to develop 
generation methods for statistically modeling the local 
appearances of normal organs. Mainly we focus upon 
abnormality detection tasks, which is the main applica-
tion of such local appearance models. Firstly, we devel-
oped an unsupervised anomaly detection system with an 
autoencoder in emergency head CT volumes. In the sys-
tem, an autoencoder encodes the normal local appear-
ances of the brain. Using this autoencoder, various 
abnormalities in the given emergency CT datasets were 
detected. Secondly, we developed abnormality detection 
system for chest FDG-PET-CT images and residual 
network- based unsupervised temporal image subtraction 
for highlighting bone metastases.

Keywords

Deep convolutional neural network · Emergency head 
CT · FDG PET-CT · Bone metastasis · Unsupervised 
deep learning

34.1  Introduction

Manual labeling of each abnormal lesion for supervised 
machine learning is a time-consuming work. Therefore, 
manual labeling is a factor hindering the improvement of 
CAD performance. However, that time-consuming work can 
be avoided if the method can be trained in an unsupervised 
manner.

Therefore, we prefer a general anomaly detection method 
to a combination of lesion detection methods designed to 
detect individual disorders separately.

The purpose of this chapter is to show several methods/
tasks to detect various abnormal findings in medical images. 
As you will see later, building a normal appearance model is 
critically important in such tasks. We used deep learning- 
based appearance models to solve this problem.

34.2  Detection of Abnormalities in Head 
CT Volumes

Abnormal findings of head emergency CT may be over-
looked in busy emergency situations. Therefore, people 
working in an emergency department desire a computer- 
assisted detection system for emergency head CT.

The target disorders of emergency head CT are wide- 
ranging, such as infarction, intracerebral hemorrhage, sub-
arachnoid hemorrhage, extradural hemorrhage, subdural 
hemorrhage, and tumors. Moreover, multiple disorders may 
be found at the same time.

Many studies have investigated the lesion detection meth-
ods in the head CT. Some studies have focused on acute isch-
emic stroke [1–3], and other studies have focused on cerebral 
hemorrhage [4, 5]. Merkowa et  al. [6] used deep convolu-
tional neural networks to recognize 30 traits in CT head 
images. A few studies have focused on anomaly detection 
methods in emergency head CT [7–9].

An autoencoder is a neural network to train the features of 
a dataset in an unsupervised manner. An autoencoder is 
trained by minimizing the reconstruction error between the 
input data and its reconstruction. After training by normal 
cases, the reconstruction error calculated by the autoencoder 
can interpret as an abnormality of input data. Therefore, we 
can use the reconstruction error for anomaly detection. Some 
studies used reconstruction error as an abnormality.

The purpose of this study was to propose an unsupervised 
anomaly detection method in emergency head CT using an 
autoencoder and to evaluate the anomaly detection perfor-
mance of our method in emergency head CT. To the best of 
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our knowledge, this [10] is the first study of the potentialities 
of an autoencoder in anomaly detection in CT.

34.2.1  Methods

We used a 3D convolutional autoencoder (3D-CAE) to detect 
anomaly lesions of emergency head CT.  In the training 
phase, we trained the 3D-CAE using 3D patches extracted 
from normal cases. In the test phase, we calculated abnor-

malities of each voxel in the emergency head CT (normal or 
abnormal) and evaluate the likelihood of anomaly existence.

34.2.1.1  Construction of Our Autoencoder
The autoencoder used in this study as 3D convolutional neu-
ral network (3D-CNN) block and 3D deconvolutional neural 
network (3D-deCNN) block. The 3D-CNN block contains 
11 convolutional layers, and the 3D-deCNN block has six 
deconvolutional layers. A schematic diagram is shown in 
Fig. 34.1.
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34.2.1.2  Patch Extraction
Each CT volume was rescaled to 1 × 1 × 1 mm3/voxel. We 
extracted the intracranial region automatically by using 
global thresholding and morphological operations. We 
extracted 3D partial volume patches of 64 × 64 × 64 voxels 
whose center point was each voxel in the intracranial region.

34.2.1.3  Training Process
We utilized 10,000 3D patches from 50 cases of normal head 
CT and trained the 3D-convAE to minimize reconstruction 
errors, which were calculated by mean squared errors (MSE). 
The training was stopped when the reconstruction error 
stopped to improve.

34.2.1.4  Evaluation Process
Using the trained 3D-CAE, we calculated the MSE of each 
3D patch extracted from our test CT cases (normal and 
abnormal). We considered that MSE as the patch abnormal-
ity. Then we defined an abnormality of a case as the maxi-
mum of all patch abnormalities in the case. Receiver 
operating characteristic (ROC) analysis was performed to 
determine the threshold to differentiate between normal CT 
cases and abnormal ones.

34.2.1.5  Dataset
We utilized 50 emergency head CT volumes of normal cases 
for training 3D-convAE and other 38 emergency head CT 
volumes for evaluation. Twenty-two of 38 evaluation cases 
were abnormal ones. We determined the ground truth label 
of each CT case (i.e., as normal or abnormal) by the corre-

sponding diagnostic report written by radiologists. Abnormal 
cases contained two acute infarctions, six old infarctions, 
seven intracerebral hemorrhages, two brain injuries, six sub-
arachnoid hemorrhages, two subdural hemorrhages, five 
intraventricular hemorrhages. The original voxel size of each 
CT volume was 0.43 × 0.43 × 1.0 mm.

34.2.2  Results

Figure 34.2 shows that the 2D exploded views of input and 
output 3D patches. Images with noise removed and relatively 
clear white matter, gray matter, cerebrospinal fluid, cerebral 
sickle, and bones were output.

Figure 34.3 shows examples of the abnormality map gen-
erated by the 3D-convAE corresponding to a single slice of 
CT images. Figure 34.4 shows a ROC curve of abnormalities 
among the 38 evaluation cases. This method achieved a sen-
sitivity of 68% and specificity of 88%, with the area under 
the curve (AUC) of the ROC of 0.87.

34.2.3  Discussion

The results show that our method has a moderate accuracy to 
distinguish normal CT cases from abnormal ones. This 
means that 3D-CAE has potentialities for anomaly detection 
in emergency head CT. According to the results, a part of the 
structure not in the normal brain was calculated by this 
method with a high degree of abnormality.

Fig. 34.2 An example of exploded views of input 3D patch (top row) and output (bottom row). The left column shows enlarged views
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Fig. 34.3 Examples of the abnormality map generated by the 3D-CAE corresponding to a single slice of CT images. Arrows indicate hemorrhage 
lesions
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The small lesions make them difficult to detect by our 
method. The small old infarct lesion is partially similar in 
shape to structures such as the ventricles and the cerebral 
vasculature.

34.2.4  Conclusion

We proposed an unsupervised anomaly detection in emer-
gency head CT using a 3D convolutional autoencoder. 
According to the evaluation, the AUC of our method achieved 
0.87. This shows that autoencoder has potentialities for 
anomaly detection in emergency head CT.

34.3  Abnormality Detection System 
for Chest FDG-PET-CT Images

In this study [11], we developed an abnormality detection 
system for PET-CT. Because only images from normal cases 
were used in the training process, the proposed method 
requires no manual input of abnormal lesions.

The proposed method is based on 3-D ResNet [12] with-
out any pooling layer. The network is illustrated in Fig. 34.5. 
The training and detection were performed using a sliding 
window method in which each voxel in the chest region was 
evaluated one by one. The input of the network is a partial 
VOI (volume of interest) around the target voxel extracted 
from the CT volume. The outputs of the network were an 
estimated mean and standard deviation of the SUV (stan-
dardized uptake value) of the target voxel in the correspond-
ing PET volume. In other words, the network estimates the 
probability distribution of the SUV value of the center voxel 
of the VOI as a normal distribution, using the CT values of 
the voxels within the VOI. Using this estimated distribution, 
a z-score of the SUV value at each voxel is calculated and 
used as an abnormality score.

The proposed method was trained using 498 normal FDG 
PET-CT cases from our health-check program in our hospi-
tal. In each dataset, the lung regions were extracted auto-
matically. Then, the network was trained using a sliding 
window method, in which a VOI is placed and moved across 
all the chest voxel. In evaluation, 28 PET-CT datasets with 
abnormal FDG uptake lesion(s) were used. A radiological 

Fig. 34.5 The network diagram
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expert manually segmented the lesions (these label images 
were used for the evaluation purpose only). The Z-score of 
each voxel in the lung fields was calculated and binarized 
using a threshold of 3.0. The final output is connected to 
components of the binarized z-score. The likelihood of each 
connected component was determined as the maximum 
value of z-scores within the connected component. Using 
these likelihoods, an FROC (free-response receiver operat-
ing characteristic) analysis was performed (Fig. 34.6).

The number of false positives was three per case. 
Figure 34.7 shows an example of the z-score maps. Note that 
the z-score image clearly visualized the lesion when it is 
compared to the SUV image.

In conclusion, we developed a novel system for an abnormal-
ity detection system for FDG-PET-CT of lung fields. It showed a 
fair sensitivity without any abnormal training datasets.

34.4  Residual Network–Based 
Unsupervised Temporal Image 
Subtraction For Highlighting Bone 
Metastases

34.4.1  Purpose

The purpose of this study [13] is to develop a system to high-
light bone metastasis lesions in a couple of time-series CT 
volumes. Using two time-series of CT datasets, our algo-
rithm maximizes the information of the intertemporal differ-
ences and highlight the metastases.

34.4.2  Methods

In our previous study [14], bony landmark detection and 
landmark-based demons algorithm, which can register two 
bony images, had been established. Furthermore, the bony 
regions (the spine and the pelvis) are automatically seg-
mented. Using these methods, the previous and current CT 
volumes are registered and segmented. Then, the subtrac-
tion is performed by the Residual network-based method. 
Firstly, from every voxel x in the given previous CT vol-
ume, a 15  ×  15  ×  15 adjacent voxel set Nprevious(x) is 
extracted. This input is processed by a ResNet-based net-
work illustrated in Fig. 34.8 right. Finally, this network out-
puts not only the estimated mean of the current CT image 
μ(x), but also the estimated standard deviation of the cur-
rent CT image σ(x).

In the training phase, this network only uses normal tem-
poral pair cases (without bone metastasis)—the proposed 
network estimates Nprevious(x) → μ(x), σ(x). Here, let the CT 
value of current CT volume (which has been registered to the 
previous volume) at x be Inew(x). It is assumed that 
I x x xnew ,( ) ( ) ( )( )~  µ σ . Then, the proposed  
ResNet- based [11] network estimates the best couple  
of μ and σ by minimizing the loss function 
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In other words, our ResNet estimates two functions 
Nprevious(x) → μ(x) and Nprevious(x) → σ(x) simultaneously so as 
to minimize L. Again, note that this loss function minimiza-
tion is performed only via normal temporal CT pairs in 
which no metastasis occurred. Thus, this study is a kind of 
unsupervised learning.

In the test phase, if there is a metastasis at the position x 
in the current volume, the estimated z score 

z x
I x N x

N x
( ) =

( ) − ( )( )
( )( )

new previous

previous

µ

σ
 should be a large positive 

(e.g., osteoblastic) or negative (e.g., osteolytic) value. Thus, 
in our implementation, after a sliding window method that 
makes a 3D z-score volume, both of these positive and nega-
tive value are highlighted by using maximum and minimum 
intensity projection (MIP and MinIP) techniques. Finally, a 
color map that illustrates both osteoblastic and osteolytic 
lesions is generated.

The training phase was performed with 50 normal CT 
temporal pairs. The test was performed with 40 CT temporal 
pairs in which bone metastases have occurred between the 
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Fig. 34.7 An example of detection. Left: the cross-sections and a maximum intensity projection (MIP) image of the SUV values. Right: the cross- 
sections and a MIP image of the z-scores outputted by the proposed method. The arrow indicates an abnormal legion
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Fig. 34.8 The outline of the proposed method
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previous and current CT acquisitions. For each test dataset, 
colored MIP and MinIP images are created to grasp the 
entire bony lesion in one glance.

34.4.3  Results

The exemplar results of the proposed method are illustrated 
in Fig. 34.9. As illustrated, the proposed method could high-
light both osteolytic and osteoblastic lesions. Among 40 test 
cases, 12 cases had image distortion/false positive due to 
large registration errors. However, most of the false positives 
were suppressed due to the introduction of the standard devi-
ation σ. All of the 40 cases, the metastases were clearly 
highlighted.

34.4.4  Conclusion

A method to emphasize bony metastatic lesions is presented. 
Because the proposed method is unsupervised, it can be 
readily applied to the daily clinical environment. Therefore, 
we consider that the proposed method is beneficial in routine 
CT examinations for patients with cancer.
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Abstract

Medical images with a variety of modalities are helpful 
for better understanding the changes of the human anat-
omy. Multidisciplinary computational anatomy (MCA) 
provides a platform of mathematical analysis for a com-
prehensive and useful understanding of both static anato-
mies of human organs and its dynamic properties. In this 
chapter, we explored a method to generate synthetic brain 
images using generative adversarial networks (GANs). In 
medical image analysis, the exchange of clinical image 
data is a crucial issue for the implementation of diagnos-
tic support systems. This relic is a demanding and vital 
task to produce realistic medical images that are entirely 
different from the original ones. At the same time, it is 
difficult for researchers to obtain medical image data due 
to the personalized information contained in it. Recent 
studies opened a scope to distribute training images with-
out seeing actual image data using GAN models where 
the artificially recreated images have anonymized per-
sonal information completely. These synthetically created 
images can be used as training images for the classifica-
tion of medical image, encouraging medical image analy-
sis as a feasible choice. Instead of collecting a large 
amount of MR image data, an approach to image genera-
tion has been implemented in this chapter. In order to gen-
erate neonatal brain image, we exploit progressive 
growing GAN (PGGAN), a method that can be used for 
brain MR image classification and brain development dis-
ease prediction tasks. The PGGAN slowly discovers the 
related features in MR images by adding new layers dur-

ing the training phase. The method of synthetic image 
generation shows that it can produce brain MR images 
avoiding artificial artifacts and have clinical characteris-
tics of the target symptom.

Keywords

Generative adversarial network · Synthetic medical 
image generation · PGGAN · Neonates · MR image

35.1  Introduction

In research works related to medical imaging, a set of mul-
tiple images is usually required to find a desired output. 
For instance, for accurate diagnosis and segmentation of 
cerebral disease detection, multiple MR contrast such as 
T1-weighted, post-contrast T1 weighted, T2 weighted, and 
T2-FLAIR are required. Tactlessly, the complete set of input 
data are often difficult to obtain due to the different acquisi-
tion protocol at each organization, lengthy acquisition time, 
operative errors, or patient movement during the data acqui-
sitions. Furthermore, it is often impossible to use contrast 
agents for neonates. Without the complete contrast, the sub-
sequent analysis can be susceptible to significant biases and 
errors that can decrease the numerical efficiency, and the 
accurate segmentation of the neonatal brain may not be 
feasible.

Furthermore, in some circumstances, although multiple 
contrast images are available, some of the images suffer from 
systematic errors. For example, a synthetic MR imaging 
technique called Magnetic Resonance Image Compilation 
(MAGiC, GE Healthcare) [1] allows the generation of the 
various contrasts MR images using a Multi-Dynamic Multi- 
Echo (MDME) scan which can provide clinically useful syn-
thetic MR images various contrasts. Unfortunately, it is often 
stated that sometimes synthetic contrasts have readily recog-
nizable with artifacts [2]. Particularly, the characteristic 
granulated hyperintense artifacts apparent in the margins 

35

S. B. Alam (*) 
Department of Electrical and Electronic Engineering, IUBAT- 
International University of Business, Agriculture and Technology, 
Dhaka, Bangladesh
e-mail: saadiabinte@ieee.org 

S. Kobashi 
Graduate School of Engineering, University of Hyogo,  
Kobe, Japan
e-mail: kobashi@amec-hyogo.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4325-5_35&domain=pdf
https://doi.org/10.1007/978-981-16-4325-5_35#DOI
mailto:saadiabinte@ieee.org
mailto:kobashi@amec-hyogo.org


270

along the cerebrospinal fluid (CSF)–tissue boundaries on 
MAGiC FLAIR can be mistaken for true pathologic condi-
tions. Also, flow and/or noise artifacts are more common on 
MAGiC FLAIR than conventional FLAIR. This leads to fur-
ther MR acquisition to confirm the diagnosis, which requires 
massive amount of cost and patient inconvenience, espe-
cially for neonates.

Hence, rather than re-acquiring all data as a complete set 
in this unforeseen situation, it is often vital to fill the missing 
data with substituted data. In statistical writings, this process 
is often mentioned as missing data imputation. Once all data 
have been credited, the dataset can be used as an input for 
standard analysis. Recently, the field of image imputation 
has been expressively progressive due to the massive success 
of deep neural networks [3–5].

For medical image generation methods that allow the gen-
eration of meaningful synthetic information, researchers are 
being able to develop and validate more sophisticated tech-
niques for the recognition of images. Typically, the scenario 
can be formulated as an image translation problem from one 
domain to another domain [6, 7], whose performance has 
been greatly improved with [8]. The core purpose of GAN 
architecture is to generate realistic samples/images. The use 
of synthetic data would lead to image recognition tasks for 
minor inspections that include sharing and updating clinical 
data. In this study, we targeted neonatal brain MRI images 
for the diagnosis of brain disorder disease onset prediction.

In this chapter, we exploit PGGAN, a progressively grow-
ing Generative Adversarial Network. This featured method 
studies how to distribute the target data and how to produce 
the image after distribution from a latent space. Hence, cre-

ated synthetic images are not linked to individual patient 
image information and can easily be used by researchers to 
construct support systems.

We addressed two problems; which GAN architecture is 
well adjusted for practical medical image generation and 
how can we treat MR images with distinctive intra- sequence 
variability. So our contribution in this chapter is to explore 
PGGAN and see if it can produce realistic brain MR images, 
which can potentially lead to effective clinical applications 
for data augmentation for machine learning and medical 
imaging tasks. This work observes the way to use medical 
images with an underlying intra-sequence variation to maxi-
mize GAN-based synthetic data generation for medical 
imaging.

35.2  Preliminary

35.2.1  Generated Adversarial Network

Characteristically, GAN consists of two neural networks: a 
generator and a discriminator. The discriminator tries to find 
the features to differentiate false image from real images, 
while the generator learns to synthesize images so that the 
discriminator face difficulty to judge as real or fake. After 
training both neural networks, the generator produces realis-
tic outputs, which cannot be distinguished as fake samples 
by the discriminator. Both simulators are trained at the same 
time as a stochastic gradient descent (SGD) algorithm. The 
training actions can be seen as a two-player min–max step 
with the following objective function:

 
min max log log~ .X Y a p aV X Y X a X Y z, E

data z-p s( ) = ( )  + − ( )(( ) ( )1
1 ))( )



  (35.1)

In the above Eq. (35.1), the discriminator X attempts to 
maximize V(X, Y) and the generator Y attempts to minimize 
it. In other words, the discriminator X separates the images in 
a pdata from those of Y(z), while the generator Y produces 
samples to fool the discriminator X. Since the introduction of 
the original, many inventive additions have appeared. For 
example, for the translation between two domains A and B, 
CycleGAN constructs two generators, GA → B and GB → A, 
and two discriminators, DA and DB, so that the images 
between two domains can be fruitfully translated by cycle 
consistency loss [9]. In another variation, to handle the mul-
tiple domains more than two, StarGAN utilized the shared 
feature learning by means of a single generator and a single 
discriminator. Using the concatenated input image with tar-
get domain vector, the generator produces the fake image, 
which is classified as the target domain by the 
discriminator.

In the sense of conditional image creation, the principle of 
GANs has also been applied to supervised and unsupervised 
image domain transformations. For example, pix-to-pix 
attains image-to-image translation using paired data sam-
ples. In order to address the problem of collecting paired data 
samples, UNIT [10], CoGAN [11], CycleGAN [12], and 
DiscoGAN [13] have suggested unpaired image-to-image 
translation. Yet, the two-player objective function leads to 
difficult training associated with inauthenticity and mode 
collapse [14], especially in high resolution.

Due to the stable training results generated by Deep 
Convolutional GAN (DCGAN) [15], several multistage gen-
erative training methods have been proposed: Composite 
GAN feats multiple generators to separately generate differ-
ent parts of an image [16]. The PGGAN implements multiple 
training procedures from low to high resolution in order to 
incrementally generate a realistic image [17]. In addition, 
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current domain classification-based GANs that monitor the 
characteristics of the generated images by consecutively cre-
ating a latent distribution have shown encouraging results.

35.3  Method

35.3.1  Data Preprocessing

In this study, we used 12 neonatal brain data which are man-
ually segmented from raw MR images. The images are of 
320 × 320 pixels and each of which has approximately 200 
slices. We pick the slices from number 30 to number 120 
from all the slices to omit the initial or final slices, since they 
relay a marginal amount of useful information and can nega-
tively impact the training of PGGAN.

35.3.2  PGGAN Implementation

In this study, the Wasserstein loss PGGAN architecture with 
gradient penalty has been used. In general, the discriminator 
X belongs to the set of 1-Lipschitz functions, Pr is the distri-
bution of the data by the true data sample y, and Pg is the 
distribution of the model by the synthetic sample produced 
by the conditioning of the image noise samples y using a 
uniform distribution in [−1, 1].

Mathematically, we can represent it as follows:
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(35.2)

The last word of the term is the gradient penalty for the 
random sample ŷ  ∼ Pŷ . The training lasts 20,000 steps with 

a batch size of 4 and 2.0 × 10−4 learning rates for the Adam 
Optimizer. Once in three times, we flip the real/synthetic 
labels of the discriminator for robustness.

It is important to categorize between irregular and normal 
characteristics when trying to generate synthetic images for 
the task of classification. Though, abnormal brain MR 
images frequently vary marginally from normal brain MR 
images and are difficult to understand; to distinguish the 
subtle differences between abnormal and normal images, we 
use progressive growing adversarial network (PGGAN) 
architecture. PGGAN training starts with low-resolution 
images. After that, it gradually increases resolution by add-
ing new layers to the generator and the discriminator. Our 
networks with a low resolution of 4 × 4 pixels.

Network architecture is shown in Fig.  35.1. PGGAN 
learns the outlines of the training images at the low- resolution 
level. In the high-resolution phase, our PGGAN learns the 
detailed regions of the training images through progressive 
training methods, the generator will learn the features from 
training images. Conditional information is also added to 
generate synthetic images in a high-resolution phase.

35.4  Experiment

35.4.1  Experimental Settings

For experimental purpose, 12 neonate MR images were used. 
All images were in grayscale and 320 × 320 pixels, separated 
into several patches of 256  ×  256 pixels. The scale of the 
patches has been determined through experimental observa-
tions. For the image generation procedure, these patches 
have been resized during training session. We constructed 
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our image generation training data set through random selec-
tion of images from original data. Evaluation metrics, such 
as Inception Score [18], Fréchet Inception Distance (FID) 
[19], and Sliced Wasserstein Distance (SWD)] [20], have 
been proposed for evaluation of the quality of the images 
created. But, these benchmarks are not suitable for assessing 
images for problems with classification and prediction. 
GAN-train measures the classification performance of a 
classifier trained on generated synthetic images and tests the 
output of a set of real images.

35.4.2  Result

In this research, the support vector machine (SVM) was used 
as an estimator for the MR image classification in the GAN 
train. A deep learning-based estimator is the first choice in 
terms of precision. However, such an estimator has many 
parameters, and the efficiency of the classification heavily 
count on parameters settings. As a result, we implied the 
simplest SVM as our estimator to correctly evaluate the 
effectiveness of the images generated. Variation in features 
also affect the performance of the classification. Manually 
crafted features are an old-fashioned approach. In this inves-

tigation, we extracted high-level semantic features from the 
pre-trained deep model, namely the pre-trained VGG-16 
models. Sensitivity (Sen), specificity (Spe), and harmonic 
mean Sen and Spe (HM) were used for the evaluation. These 
parameters can be defined as follows;

 
Sensitivity Sen TP TP FN( ) = +( )/  

 
Specificity Spe TN TN FP( ) = +( )/  

Harmonic Mean (HM)  =  (2  ×  (Sen  ×  Spe)/Sen  +  Spe) 
here, TP is the numbers of true positive samples, TN is true 
negative samples, FP is positive samples, and FN is false 
negative samples, respectively.

The goal of our method is to generate realistic synthetic 
images as is shown in Fig. 35.2. It is assumed that the synthe-
sis anonymized data will be as successful as the real classifi-
cation problems data. We demonstrated the efficiency of the 
MR image classification using synthetic data as a quantita-
tive evaluation. The results of the GAN-train classification 
are given in Table 35.1. From the results, we can understand 
that PGGAN outperformed the relative conventional method 
in MR image classification efficiency. One fact to be noted 
that, performance does not outperform when actual images 
were used as training data. Also, the model trained at 

DCGAN
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Original Image

Original Image

PGGAN
Generated

Fig. 35.2 Synthetic brain generation results. It shows that DCGAN can generate brain images with low-image resolution and quality while our 
proposed image generation method PGGAN can generate high-resolution synthetic images from original MR images
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DCGAN generated images cannot correctly identify the 
actual data. As a Whole, we have shown that the progres-
sively growing network architecture is successful in detect-
ing real data distribution.

35.5  Conclusion

It is known that, if a set of images can be generated by an 
optimized GAN model that captures the target distribution 
perfectly, they are indistinguishable from the original train-
ing set. As anonymized generated images were castoff for 
classification in our analysis, we used GAN-train as our eval-
uation index.

In this chapter, a synthetic brain MR image generation 
approach with gradually increasing adversarial learning 
PGGAN has been explained. It is a high-quality image gen-
eration system for easier understanding, sharing, and upgrad-
ing of clinical data based on deep learning techniques. 
Besides the fact that our anonymized generated images were 
useful for the classification of MR images, it sheds light on 
diagnostic and prognostic medical applications.

There are some limitations of this research. The classifi-
cation performance of MR images in this study is not suffi-
cient for clinical applications. In the experiment, instead of 
using deep neural networks that involve complicated param-
eter tuning processes, we used the simplest SVM models as 
our estimator since we focused on assessing the quality of 
the images produced. Our future work will address these 
issues.
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Prediction of Personalized 
Postoperative Implanted Knee 
Kinematics with Statistical Temporal 
Modeling

Belayat Hossain and Syoji Kobashi

Abstract

One of the extension axes of multidisciplinary computa-
tional anatomy (MCA) is the temporal axis. This chapter 
introduces a temporal prediction model of MCA 
approaches to predict postoperative implanted knee kine-
matics of a patient before total knee arthroplasty (TKA) 
since it is necessary for surgery plans and for patients to 
more readily understand the TKA result. The primary 
challenge includes quantifying individual varieties of the 
kinematic patterns. This study proposes a statistical fea-
ture extraction method from a set of paired pre- and post-
operative kinematics data and then derive a mapping 
function from preoperative to postoperative feature space 
using the machine learning technique. The statistical fea-
ture extraction method is a temporal version of the statis-
tical shape model (SSM). We employed a CT-free 
navigation system to measure the kinematics because of 
its popularity in the TKA. The method is applied to two 
types of kinematics patterns and tested by cross-valida-
tion procedure. The experiment result shows that it is pos-
sible to predict the postoperative kinematic patterns by 
measuring the preoperative pattern using CT-free naviga-
tion system and predictive analytics.

Keywords

Total knee arthroplasty · Implanted knee · Knee  
kinematics · Machine learning

36.1  Introduction

Total knee arthroplasty (TKA) is a common practice in knee 
surgery for the treatment of knee osteoarthritis (OA), rheu-
matoid arthritis (RA), and other complications. Because it 
resurfaces an injured entire knee joint with artificial one to 
regain normal functionality of patient’s knee within a few 
weeks after surgery, and also to diminish severe knee joint 
pain [1]. The artificial knee joint (TKA prosthesis) has three 
main components—femoral, tibial, and tibial insert. The 
TKA prosthesis can be divided into three major types—such 
as cruciate-retaining (CR), posterior stabilized (PS), and cru-
ciate substituting (CS). There are some functional differ-
ences among prostheses and also among providers. 
Anatomical morphology and function of the knee joint vary 
from patient to patient, therefore, an appropriate TKA 
implant should be chosen for each individual for personal-
ized treatment. However, currently, the surgeon has to select 
a TKA surgery method among many types and a prosthesis 
product model without any quantitative analysis of its post-
operative performance [2, 3].

Existing studies on investigating implanted knee kinemat-
ics (i.e., postoperative knee function) can be divided into two 
major categories—(a) invasive [4] and (b) non-invasive tech-
nique, which is the most popular due to patient safety, and its 
mainly based on image matching and/or sensor-based tracker 
technique [5]. In 2-D/3-D image registration technique, a 
3-D computer- aided implant design is matched to 2-D X-ray 
digital radiograph image or movie [6–8]. Such in-vivo 3-D 
kinematics quantification of the implanted knee is essential 
for evaluating 3-D design of TKA prosthesis and surgical 
technique of a TKA patient [9], because the good fitting of 
prosthesis implies less-postoperative complication [10, 11]. 
Onsem et al. [12] proposed a prediction model for predicting 
patient’s satisfaction before the surgery because some 
patients are dissatisfied with the operation outcome. The pre-
diction of postoperative knee kinematics before the TKA 
was studied in [13–16].
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Multidisciplinary computation anatomy (MCA) has been 
integrated with the information related to spatial axis, time 
series axis, functional axis, and pathological axis [17]. It has 
been applied to organ segmentation, disease detection, out-
come prediction, etc. In this chapter, we discuss a statistical 
temporal model, which is a temporal version of statistical 
shape model (SSM) [17], and machine learning approach for 
predicting postoperative personalized implanted knee kine-
matics before TKA operation to evaluate the knee functional 
mobility with minimally acquired data, i.e., preoperative 
knee function using a navigation system. We employ the sta-
tistical features extraction method to quantifying individual 
varieties of the knee kinematics using high- dimensional clin-
ical data, and then predictive models are constructed using a 
machine learning (ML) algorithm. We also compare their 
performance to find the best ML method because the charac-
teristics features of the kinematic pattern differ from each 
type.

36.2  Kinematics Measurement Using 
CT-Free Navigation System

Computer-assisted OrthoPilot CT-free navigation system 
(B. Braun Aesculap, Tuttlingen, Germany) supports clini-
cians in achieving optimal implant alignment and 
enhanced surgical workflow [18] (Fig.  36.1a). It repre-
sents gold standard that allows for intraoperative visual-
ization of the leg axis, real time intraoperative measurement 
of 3-D kinematics inspection aided by special software 

for 3-D kinematic analysis before and after surgery, both 
at the tibiofemoral and patellofemoral joints [19]. Knee 
kinematics are measured in 3D space in navigation, fol-
lowing Grood’s  coordinate system (Fig. 36.1b). Three ori-
entation angles are—flexion-extension (f-e), valgus-varus 
(v-v), and internal-external (i-e), and respective three 
position coordinates along the X, Y, and Z axes are called 
medial-lateral (M-L), anterior-posterior (A-P), and supe-
rior-inferior (S-I).

Firstly, patient’s anatomical reference planes are regis-
tered (referencing) by the surgeon into the machine using 
trackers and pointers. Then the A-P translations and the 
i-e rotations were measured for every 10° f-e angle (i.e., 
10°, 20°, … 100°) by passively flexing the knee joint from 
zero degrees of extension to maximum flexion with the 
patient in a supine position under a non-load-bearing con-
dition and the implants are attached using cement, if 
required, known as A-P and i-e patterns, respectively, 
because those two patterns are typically measured for bet-
ter implant fitting during TKA.  Intraoperative passive 
flexion 3D-kinematics were measured using the dedicated 
software (OrthoPilot TKA Version 4.2 Kobe version). 
During the kinematic measurement, the assistant surgeon 
held the thigh to align it perpendicularly while the operat-
ing surgeon gently held the heel and passively moved the 
knee from full extension to full flexion by inducing uncon-
strained motion. The kinematics measurements were 
taken both before (preoperative) and after the TKA sur-
gery (postoperative) of every patient in the operating 
room using the OrthoPilot system (Fig. 36.1c).
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36.3  Method

The method constructs predictive models using a set of pairs 
of clinical preoperative kinematics and postoperative 
implanted knee kinematics data. In the first stage, the vari-
ability of knee kinematics pattern among individuals in the 
training dataset is quantized using statistical techniques such 
as principal component analysis (PCA) [20], and then super-
vised ML algorithm is trained on the extracted features of 
pre- and postoperative data. Multiple models are trained to 
forecast the entire postoperative knee functions with opti-
mized performance.

36.3.1  Feature Extraction

Let fpr be training data of preoperative kinematic of size, 
Ns × Nm, (Eq. 36.1),
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where Ns, total subjects, Nm, total measurement points, and 
f ji
pr ( ) represents reading (A-P translation, i-e rotation) of 

subject i at the measurement point, j, i.e., each row repre-
sents a preoperative kinematic of one subject. Likewise, 
training data of postoperative kinematic (fpo) of the paired 
subjects is also structured.

PCA is a linear dimensionality reduction technique for 
extracting features from a high-dimensional space by pro-
jecting them into a lower dimensional sub-space. It preserves 
significant features of maximum variation of the data and 
removes less-essential features with the fewer variant. We 
use PCA as feature extraction method for removing data 
redundancy in kinematics pattern (of Ns × Nm dimensions) in 
order to increase ML model performance.

At first, training data of preoperative (fpr) and postopera-
tive (fpo) kinematics are projected individually into a lower 
dimensional sub-space using PCA (with scaling). Later on, 
let us say principal components (PCs), principal axes (PAs), 
and mean kinematic pattern to be λpr of size Ns × Nm, Vpr of 
size Nm × Nm, and μpr of size Nm × 1 for preoperative training 
data, and let λpo, Vpo, and μpo are same parameters and size 
represented above but relating to postoperative training 
data.

36.3.2  Machine Learning Algorithms

A supervised ML method is applied for predictive model 
construction by deriving a mapping function to quantify 
individual variability between paired pre- and postoperative 
kinematics features in the PCA space. Features from pre- 

and postoperative kinematic patterns are defined as predic-
tive variable and response variable, respectively.

36.3.2.1  Generalized Linear Regression
A predictive model based on a generalized linear model 
(GLM) [21] is constructed from PCs features of first Dpr-PAs 
of preoperative and PCs features of first PAs of postoperative 
kinematic. The regression model is given by Eq. (36.3),

 Y X= β  (36.2)

here predictor variables,

 

X =
…








x x x

x x x

x x x

D

D

N N N D

1 1 1 2 1

2 1 2 2 2

1 2

, , ,

, , ,

, , ,

�

� � � �
�

pr

pr

s s s pr















 

(36.3)

are defined from first Dpr-PCs taken from λpr. xi, j is the jth 
PCs of subject i; where i  =  1, 2, … Ns, j  =  1, 2, … Dpr. 
Response variable, Y is given by Eq. (36.4), obtained from 
PCs of first PAs taken from λpo.
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Regression coefficients vector, ββ = ( )β β β1 2, , ,
pr

 D

T

 is 
estimated from the training data. Akaike’s Information 
Criterion (AIC) [22] is used to test statistically significant 
predictor variables during learning for optimizing the 
model.

36.3.2.2  Artificial Neural Network (ANN)
In ANN for regression, neurons at the output layers produce 
values that represent target values of continuous real numbers. 
A target function is learned during the training stage by adjust-
ing the weights of the NN, and the tuning of the weight is 
performed by minimizing an optimization function (LSE, 
SGD, etc.) through back-propagation algorithm. For our kine-
matic problem, we exploit a three-layer feedforward ANN—
input, hidden, and output layer. There are five input neurons to 
match 5-dimensional input PCs features, 30 hidden neurons 
and one output neurons to produce predicted results of the 
kinematics features in our NN for regression analysis. Back-
propagation method with stochastic gradient descent (SGD) 
optimization is used by training the network with a set of pre-
operative PCs features of sample pairs for learning the net-
work weights. A well-trained ANN can be thought of as an 
“expert” to grasp the entire kinematics of the test patient.

36.3.2.3  Support Vector Regression
Support vector regression (SVR), a supervised ML technique 
to perform regression analysis [23], includes all main features 
of SVM that characterize the maximum margin algorithm. In 
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epsilon-SVM regression, let training dataset includes predic-
tor variables (xn) and response values (yn) of pre-and postop-
erative PCs features. The objective in SVR is to derive a 
function, f(x), that deviates from yn by a value not larger than 
ε (deviation bound) for each training point x, and also as flat 
as possible. It does not consider errors as long as they are less 
than ε. For a particular training set (xi, yi), i = 1, 2, … n, it 
minimizes the following function,
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In non-linear SVR, data are transformed into higher 
dimensional feature space by kernel function (i.e., polyno-
mial, radial basis function) to make it feasible for linear sep-
aration. Thus SVR is controlled by the parameters instead of 
the dimensionality of the feature space.

36.3.3  Postoperative Kinematics Prediction

Using PCA, the first predictive model (m1) is made between 
first Dpr preoperative PCs as predictive variables with first 
postoperative PCs as response variable. Likewise, Dpo pre-
dictive models (m2,… mDpo

) are constructed to predict the 
whole postoperative knee functions with optimized perfor-
mance by considering subsequent 3rd, …, and Dpoth postop-
erative PCs as response and the first Dpr predictor variables. 
Algorithm 36.1 is used to derive postoperative kinematic 
patterns from the preoperative PCs of maximum Dpr dimen-
sions and postoperative PCs of Dpo dimensions.

36.4  Experimental Study

36.4.1  Subjects and Dataset

We employed knee joint kinematics of 35 OA patients (24 
females, 11 males; age 74.08 ± 6.90, mean ± standard devia-
tion (SD)). Two experienced surgeons carried out the TKA 
surgery of the subjects with posterior stabilized (PS) type 
implant (Vega, Aesculap, B/Braun, Germany). The local 
Ethics Committee has approved our study, and each subject 
provided informed consent.

Each type of pattern (A-P and i-e pattern) has 35 pairs of 
samples. Each pair consists of one preoperative and one 
postoperative kinematic of the same patient. Kinematic pat-
terns of each sample include non-linearity, and discrete (A-P/
i-e values) features found among preoperative and 
postoperative kinematic. No direct relationships among the 
patterns are found to be represented by any general algebra 
equation.

36.4.2  Experiments

Firstly, the A-P or i-e kinematics of preoperative and postop-
erative data were organized as shown in (36.5). Any missing 
value was estimated by mean calculated from consecutive 
elements.
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Here, subject’s number, i = 1, 2, … 35; measurement 
points, j = 1, 2, … 10. fap ie

pr
/  and fap ie

po
/  were defined as 

the preoperative and postoperative A-P (or i-e) training 
data matrices, respectively. Then following experiments 
were performed individually for both patterns (A-P or 
i-e).

Experiment 36.1 Training Without PCA (nPCA)
Regression models were trained without extracting fea-
tures by PCA-10 models (1 for each variable) were con-
structed using predictive and response variables from the 
pre-and postoperative kinematic data (Eq.  36.5), 
respectively.

Experiment 36.2 Training with Features Extracted from 
PCA (wPCA)
We used PCA to project pre- and postoperative kinematics 
(Eq. 36.5) data individually into a lower dimensional space. 
Predictor variables in each predictive model were defined 
from the first 5-PCs feature of preoperative (Dpr = 5), and 
first PCs feature of postoperative as the response variable. 
Therefore, three prediction models (Dpo  =  3) were con-
structed to consider the entire kinematic pattern.

Algorithm 36.1 Prediction of Postoperative Implanted 
Kinematics of a Test Patient
Input: Preoperative kinematic ( fnew

pr )
Output: Predicted postoperative kinematic ( fpo

pred )
i = 1, 2, …, Nm (total measurement points)
j = 1, 2, …, Dpr (total PAs at preoperative)
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36.5  Results and Discussion

We used statistical R Package v.3.2.2 [24] to implement our 
method. In Exp. 36.1, we did not apply PCA and trained 10 
models (each for every f/e angles of 10° interval) from the 
paired pre-and post-op kinematics data. In Exp. 36.2, firstly, 
we applied PCA for feature reduction, and the ML models 
were trained with the extracted features (i.e., PCs). We varied 
PCA dimensions (1–10) to optimize prediction performance 
with high mean Pearson’s correlation coefficient (cc), and 
low mean root mean squared error (RMSE) over all subjects 
for regression analysis. In this work, the best results were 
obtained with PCA dimension of 5 for preoperative and 3 for 
postoperative, retaining >95% of the total variance. In Exp. 
36.1, a new patient’s kinematic is directly (no need of features 
(PCs) vector to kinematic conversion) predicted from the 

trained models; however, for Exp. 36.2, we firstly predicted 
postoperative PCs of the test patient and then converted the 
PCs to the kinematic pattern (Algorithm 36.1).

Here we trained three popular ML predictive models 
(GLM, NN, SVR) separately for constructing to test their per-
formance in predicting the most likely postoperative kinemat-
ics before the surgery. A test patient’s predicted kinematics 
curves are shown in Fig. 36.2, and it confirms that the predic-
tion performance differs from ML models. We found that 
PCA-based feature extraction (Exp. 36.2) outperforms over 
the without feature extraction (Exp. 36.1) (Table 36.1). We 
observed from Exp. 36.2, the predicted postoperative pattern 
follows most like the ground truth postoperative pattern, and 
its shape varies from subject to subject, which implies mod-
els’s good capability of grasping pattern variability during the 
learning phase due to extracted good features.
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Fig. 36.2 Kinematics patterns prediction of a test patient using the ML method

Table 36.1 Prediction performance comparison among ML methods

A-P pattern
cc/ RMSE

i-e pattern
cc/RMSE

ML model
Exp. 36.1
(nPCA)

Exp. 36.2
(wPCA)

Exp. 36.1
(nPCA)

Exp. 36.2
(wPCA)

GLM 0.71 ± 0.26/3.99 ± 1.91 0.84 ± 0.15/3.55 ± 1.83 0.86 ± 0.17/4.55 ± 2.32 0.88 ± 0.12/4.43 ± 1.98
NN 0.72 ± 0.39/5.59 ± 2.95 0.84 ± 0.17/3.45 ± 1.79 0.85 ± 0.16/3.27 ± 1.42 0.87 ± 0.20/4.71 ± 2.36
SVR (radial) 0.70 ± 0.34/5.19 ± 2.82 0.84 ± 0.13/4.22 ± 2.75 0.82 ± 0.20/3.30 ± 1.38 0.84 ± 0.23/4.94 ± 2.89
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In SVR, among the four kernel tricks [16], the radial basis 
was chosen because it offers high prediction performance in 
terms of pattern shape (high cc value) for both patterns. For 
A-P pattern, all methods in Exp. 36.2 had comparable perfor-
mance (nearly same cc value); however, NN provided the 
smallest prediction error (3.45 ± 1.79 mm). In contrast, GLM 
was superior (prediction error, 4.34  ±  1.98°) to others for 
predicting i-e pattern and also offered optimized prediction 
performance in both types of pattern. Therefore, we observed 
prediction performance of the predictive models somewhat 
varies among three algorithms (SVR, GLM, NN). One prob-
able cause could be quantifying the individual varieties of 
the kinematic patterns, which differ from each type. The 
kinematics pattern predicted by the methods (GLM and NN) 
has a good correlation (high CC value) which implies the 
shape of the predicted pattern has good agreement with that 
of the actual pattern. Therefore, the best method can predict 
the postoperative outcome of a new patient with a Pearson’s 
CC of 0.84 ± 0.17 and RMSE of 3.45 ± 1.79 mm (NN) for 
A-P pattern, and a CC of 0.88  ±  0.12 and RMSE of 
4.34 ± 1.98° (GLM) for i-e pattern.

This study could help the surgeon to examine a patient’s 
postoperative outcome before surgery using a CT-free navi-
gation system, and the prediction result of personalized kine-
matics could also serve as an inspiration to patients to carry 
on with TKA surgery. The method was validated here in PS 
type implant, which could be appropriate for other types as 
well, because knee kinematic definition is the same for all 
types of the implant in a CT-free navigation system. 
Additionally, our method can be extended in the future to 
select appropriate TKA implant in personalized knee surgery 
in TKA planning, if the model is trained by the kinematics of 
other prosthesess and by surgery code. Our study is valid for 
both load- and non-load bearing conditions, because basic 
kinematic patterns are similar for both conditions [25].

We assumed the same calibration of the anatomical coor-
dinate of the patient’s knee in the CT-free navigation during 
both pre-and postoperative pattern measurement; however, 
in some cases, surgeon has to revise the coordinate intention-
ally with some rotation angle to ensure good knee joint 
alignment and it could affect the zero-position and orienta-
tion of the coordinate system. This limitation of calibration 
in those cases could be improved by measuring kinematics 
after few months of the surgery using 2D/3D image registra-
tion technique [6, 7].

36.6  Concluding Remarks

This study introduced PCA-based statistical feature 
extraction and ML-based approach to predict personal-
ized postoperative kinematics in TKA before the surgery 

by measuring preoperative knee functions using CT-free 
knee navigation. We achieved this by quantifying individ-
ual varieties of the kinematic patterns using the statistical 
features extraction method from a set of paired pre-and 
postoperative kinematics followed by ML algorithm and 
validated the method for two types of kinematic patterns, 
and satisfactory performance was accomplished. This 
study suggests the best ML method (NN for A-P pattern 
and GLM for i-e pattern) with high prediction perfor-
mance for predicting postoperative kinematics of a 
patient. Finally, this work could help clinicians to choose 
the optimal treatment and to patients better understand 
TKA outcomes. By integrating additional training data, 
calibration error-free data, and investigating preoperative 
kinematics, the model’s performance could be improved 
in the future.
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Sparse Modeling in Analysis 
for Multidisciplinary Medical Data

Jain Wang, Yutaro Iwamoto, Xian-Hua Han, Lanfen Lin, 
Hongjie Hu, and Yen-Wei Chen

Abstract

Multi-phase CT images, which is also known as dynamic 
CT images, are widely used for the diagnosis of focal 
liver lesions. In addition to 3-dimensional spatial infor-
mation, the multi-phase CT image also has temporal 
information. In this chapter, we propose a tensor-based 
sparse coding model for the efficient representation of 
multi-phase CT images and apply it to classification and 
content-based medical image retrieval of focal liver 
lesions. The effectiveness of the proposed method has 
been validated by experiments.

Keywords

Sparse coding · Tensor · Multi-phase CT image · Focal 
liver lesion · Content-based medical image retrieval

37.1  Introduction

In recent years, with the remarkable progress of medical 
imaging devices and computer technologies, various high 
definition medical images can be obtained, and image-based 
computer-aided diagnosis or multidisciplinary computa-
tional anatomy (MCA) plays an important role in medicine 
and healthcare. Unlike 2-dimensional natural images, medi-
cal images (i.e., CT images) are volumetric images. In addi-
tion to 3-dimensional spatial information, some medical 

images, such as multi-phase CT images, have temporal 
information. Efficient representation of such multi- 
dimensional medical images is a key issue for MCA-based 
computer-aided diagnosis and multidisciplinary computa-
tional anatomy. In this chapter, we focus our study on the 
efficient representation of focal liver lesions (FLLs) in multi- 
phase CT images and the classification of FLLs.

Liver cancer is one of the leading causes of death world-
wide [1]. Early detection of liver cancers by analysis of med-
ical images is a helpful way to reduce death due to liver 
cancer. Multi-phase contrast-enhanced computer- 
tomography (CT) images are widely used for the diagnosis 
of focal liver lesions (FLLs). In the multi-phase contrast- 
enhanced CT scan procedure, non-contrast-enhanced (NC) 
phase images are obtained from scans before contrast injec-
tion. Three additional phase images are obtained after con-
trast injection, i.e., arterial (ART) phase in 25–40 s, portal 
venous (PV) phase in 60–75 s, and delayed (DL) phase in 
3–5 min after contrast injection, respectively. Typical exam-
ples of five types of FLLs (CYST, Focal Nodular Hyperplasia 
(FNH), Hepatic Cell Carcinoma (HCC), Hemangioma 
(HEM), metastatis (METS)) on three-phases are shown in 
Fig. 37.1. As we can see that different types of FLLs exhibit 
different enhancement patterns after intravenous contrast 
injection.

Extracting effective features and incorporate multi-
phase information into feature descriptors is a fundamental 
issue for computer-aided diagnosis of FLLs. One of the 
popular methods or characterization of FLLs is the bag of 
visual words (BoVW) method [2–7]. The BoVW method 
represents an image by using a normalized histogram of 
visual words, which is based on codebook learning using 
training images. In conventional BoVW, the K-means 
method is the most widely used for codebook learning, 
which can be considered a hard assignment. In this chapter, 
we present a sparse modeling method for soft assignment 
of BoVW to improve the representation of multi-phase CT 
images of FLLs. Furthermore, we present a tensor-based 
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sparse modeling method to extract spatial-temporal fea-
tures, in which the multi-phase CT image is treated as a 
tensor.

37.2  Sparse Modeling-Based BoVW

As a generalization of the K-means algorithm, the sparse 
coding technique employs a linear combination of code-
words for the representation of each signal, which means 
more than one non-zero entry in coding, and the weights can 
be calculated to be arbitrary values but not limited to 1. The 
intuitive way for the sparse coding problem can be formu-
lated to optimize the following objective function:

 
argmin , . .

,D X
Y DX X− ≤

2

2

0
s t Kα

 

where X is the sparse approximation of signals, Y on code-
book D. 𝛼 is a sparsity measure, which is a ratio between the 
number of non-zero entries in x𝑖 and the total number of 
codewords in D. α∗𝐾 controls the maximum number of 
codewords that can be used for approximation of the input 
signal y𝑖.

Similar to realization of K-means algorithm, there are two 
stages: sparse coding stage and codebook update stages, in 
the codebook learning of sparse coding. In consideration of 

simplicity and efficiency, we employ the Orthogonal 
Matching Pursuit (OMP) algorithm for coefficient calcula-
tion and K-SVD method for codebook updating in the two 
stages, respectively.

With the fixed codebook, OMP algorithm is a simple and 
efficient way to solve the sparse approximation problem, 
which is NP-hard because of the overcomplete codebook D. 
K-SVD was proposed for generating a dictionary of spare 
representation via singular value decomposition (SVD) [8, 
9]. It is a generalization of the K-means clustering method. 
K-SVD works by iteratively alternating between the coeffi-
cient calculation of the input data based on the current dic-
tionary and updating the atoms in the dictionary to fit the 
data better.

We validated the representation accuracy of sparse coding 
comparing to K-means method. In this evaluation, we used 
5000 local patches from training ART images and approxi-
mated them with K-means and sparse coding methods with 
codebook size 100 for both. Then the reconstruction errors 
(RE) can be calculated for all the selected patches, and the 
distributions of the RE of the samples using both methods 
are plotted in Fig. 37.2 [10]. As illustrated in Fig. 37.2, the 
sparse coding method achieves smaller reconstruction errors 
than using K-means method, which means more accurate 
approximations, and thus more accurate diagnosis perfor-
mance can be expected.

FNH HCC HEM METSCyst
Type

Phase

NC

ART

PV

Fig. 37.1 Typical enhancement patterns of five types of FLLs (CYST, FNH, HCC, HEM, METS) on three-phases
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37.3  Tensor Sparse Modeling-Based BoVW

37.3.1  Tensor Codebook Learning

Given a set of tensor training samples ,  we proposed a 
K-CP method to learn tensor codebook .  Implementation 
of the proposed K-CP method also comprises two iterated 
stages: calculation of sparse coefficients, assuming that the 
codebook is fixed, and codeword update based on the calcu-
lated sparse coefficients. The first stage can be solved easily 
by using the tensor generalization of OMP algorithm. In tensor 
OMP, given a collection of samples   = [1 , 2 , ..., N ], 
where i  is an Mth-order tensor, and   is an (M + 1)th- order 
tensor. Suppose a codebook   comprises of K Mth- order 
tensor codewords k .  Then,   is a (M + 1)th-order tensor. 
The tensor OMP can be formulated as follows:

 
i N x x T i

x i M i i
i

= … − × ≤ ∀+( )1 2 1
2

2

0
, , , min ,,Y D s.t.

In the codeword update stage, each tensor codeword is 
updated individually. To update codeword k , we first find 
the row vector xk

T  in  , in which each entry corresponds to 
the coefficient of a sample in   to k . Then, we define the 
approximation error without using codeword k  as 
follows:
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where ° denotes the outer product. The total reconstruction 
error can be written as follows:

 
Y D X E D− × = −+( )

°
M k k k

Tx1

2

 

Our aim is to find the optimal k  that well approximates 
the reconstruction error k , which can be solved easily by 
applying CP decomposition on k . CP (CANDECOMP/
PARAFAC decomposition) decomposes a Pth-order ten-
sor   into a sum of rank-one tensors [11].
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We suppose the vector dp
r is normalized to unit length, 

and the weight of each rank-one tensor is λr.
The process of applying the CP decomposition to the 

residual reconstruction tensor is executed K times to update 
each of the K tensor codewords in each iteration. Thus this 
method is called K-CP method. The above two stages are 
iterated until a pre-specified reconstruction error is achieved 
or the maximum iteration number is reached.

37.3.2  FLL Spatiotemporal Feature Extraction 
Using Tensor Sparse Modeling

To capture the temporal feature of multi-phase CT images, 
corresponding slices from triple-phase CT images were 
center- aligned according to the tumor masks and stacked to 
form three-layer volumes. By this operation, the temporal 
co-occurrence information is transformed into spatial infor-
mation in the third dimension of the constructed volumes. A 
spatiotemporal codebook can be learned by applying our 
proposed method on the tensor training samples, which are 
local descriptors extracted from three-layer volumes. The 
spatiotemporal feature of each medical case can be then cal-
culated by summarizing the representations of local descrip-
tors using the mean pooling method.

37.3.3  Results

We compared the classification performance of the tensor- 
based sparse modeling method with the conventional sparse 
representation method over multi-phase medical images, sin-
gle-phase medical images with 2-dimensional patches, and 
single-phase medical images with 3-dimensional patches, as 
shown in Fig. 37.3. It is interesting that both two methods got 
exactly the same results using single-phase images. The accu-
racy is more significantly improved, however, by the tensor-
based sparse modeling method than the conventional one 
when using multi-phase images, which emphasizes that the 
tensor-based method is more effective in capturing the tem-
poral information from multi-phase images [12].
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Fig. 37.2 Distribution of sample RE using the sparse modeling and 
K-means method

37 Sparse Modeling in Analysis for Multidisciplinary Medical Data



286

37.4  Conclusion

Multi-phase medical images contain both spatial and tempo-
ral information. In this chapter, we propose a tensor sparse 
modeling method for the efficient representation of multi- 
phase CT images and apply it to FLL classification and 
retrieval. Experimental results show that the tensor-based 
method achieved much more significant improvement from 
single-phase to multi-phase images than the conventional 
sparse representation method, which illustrated the effective-
ness of the tensor sparse modeling method on capturing spa-
tial and temporal features.
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Super Computing: Creation of  
Large-Scale and High-Performance 
Technology for Processes of MCA 
by Utilizing Supercomputers

Takahiro Katagiri and Daichi Nakajima

Abstract

In this study, we develop the parallelization and high- 
performance implementation of an application program 
for multidisciplinary computational anatomy (MCA) with 
a message passing interface (MPI). We also adapt the pro-
gram to a supercomputer and evaluate its performance 
using advanced technologies for code optimization and 
parallel processing. To establish high-performance com-
putations, we adapt loop collapse techniques for the target 
loops of a typical MCA program, called large deforma-
tion diffeomorphic metric mapping (LDDMM). The loop 
collapse enables us to obtain a high thread execution 
using OpenMP. In addition, we adapt an advanced parallel 
execution style, called hybrid MPI/OpenMP execution, to 
maximize the execution performance in a supercomput-
ing environment. Hybrid MPI/OpenMP execution enables 
us to reduce the MPI communication time. This is crucial 
for massively parallel execution in a current supercom-
puter environment. The results of our implementation 
indicate that 18-day sequential processing can be reduced 
to a 43  h using eight nodes of a Fujitsu PRIMEHPC 
FX100, which is installed in the Information Technology 
Center, Nagoya University Japan.

Keywords

LDDMM · Hybrid MPI/OpenMP execution  
Loop collapse · Supercomputing

38.1  Introduction

A model of multidisciplinary computational anatomy (MCA) 
has been constructed on computers and applied to medical 
images from four different axes, namely, space, time, func-
tion, and pathology. With respect to the space axis, huge 
amounts of data are processed to treat three-dimensionalized 
data from a micromodel, such as a microscope, to a micro-
model, such as Magnetic Resonance (MR). For example, 
three-dimensionalizing 2000 images of 2D data having a 
resolution of 20,000 pixels × 10,000 pixels requires several 
TBs for each 3D image. According to this increase in data, the 
computation time is also dramatically increased. Thus, such a 
task cannot be processed with a personal computer (PC).

By contrast, the progress made in supercomputing tech-
nologies has been remarkable, with the K-computer illustrat-
ing such progress. The supercomputer “Fugaku”, which is 
predicted to achieve an EXA-FLOPS capability by the 2021 
Financial Year, has been planned for installation in the 
RIKEN Center for Computational Science (R-CCS), Japan. 
High-performance computing (HPC) technologies for sys-
tem software for I/O and parallelization have also progressed. 
Hence, a breakthrough in the processes for MCA is expected 
to be achieved by applying advanced HPC technologies.

In this study, we aim to make a breakthrough in the execu-
tion time by collaborating with researchers in the fields of 
HPC and MCA to develop novel algorithms and implementa-
tions. The representative of the project, Professor T. Katagiri, 
has been studying HPC technologies and auto- tuning (AT) [1] 
for supercomputers for 15 years, which is one of the major 
topics in the HPC field. In addition, Professor Hontani has 
provided major contributions toward the construction of a 
pancreas model for the imaging of a KPC mouse model [2]. 
By collaborating with both researchers from these different 
fields, we aim to establish a breakthrough in the execution 
time for MCA applications and create large-scale and high-
performance parallel algorithms and implementations by 
applying advanced supercomputing technologies.
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The present paper provides the following:

 1. A discussion of non-rigid image registration, large defor-
mation metric mappings, and tensor completion from the 
viewpoint of HPC to clarify the effective parallel algo-
rithms and HPC implementations.

 2. A clarification of the performance of supercomputers for 
achieving their implementation based on the results of the 
discussion in item 1.

 3. A clarification of the effectiveness of the performance using 
real problems incurred through the application of MCA.

38.2  LDDMM Code

The target code is a registration processing code developed 
by Hontani Group, Nagoya Institute of Technology, Japan. 
The algorithm of the code for registration is based on large 
deformation diffeomorphic metric mapping (LDDMM) [3].

The Hontani Group developed a new method, i.e., par-
tially rigid large deformation diffeomorphic metric mapping 
(PR-LDDMM). Given two images, this method can compute 
large deformation diffeomorphic metric mapping, in which 
pre-specified regions (tumor regions) in a source image are 
rigidly mapped. A source image is non-rigidly deformed, 
and the peripheral regions are matched with the correspond-
ing regions in the target image, whereas the region maintains 
its shape and rigid alignment with the corresponding region.

The PR-LDDMM method requires iterative computations 
of LDDMM, which necessitates an extremely large compu-
tational complexity compared with the memory space com-
plexity. Hence, our group is collaborating with Professor 
Hontani in parallelizing the process of LDDMM and has 
realized efficient computations of PR-LDDMM using 
supercomputers.

By contrast, the following four STEPs are major aspects 
of the computational complexity of the LDDMM code.

 1. STEP 1—Calculate the Jacobians
 2. STEP 2—Apply backward integration
 3. STEP 3—Update the velocities; and
 4. STEP 4—Update the paths and landmarks

We focus on STEP 1 through STEP 3 for adaptation of the 
parallelization because these steps require more than 90% of 
the total execution time of the LDDMM code.

38.3  Parallelization Method

38.3.1  MPI Process Parallelization

Because the program requires a high computational com-
plexity rather than a large memory space, as mentioned ear-
lier, we apply the following methodology to the LDDMM 
code for a 3D registration problem for MPI process 
parallelization.

 1. Allocate memory space in a manner comparable to that of 
a sequential program.

 2. Separate computations into each message passing inter-
face (MPI) process by changing the loop length.

 3. Store partially computed results in step 2 to sending 
buffer.

 4. Gather the results in step 3 using MPI_Allgather.

The following code shows an overview of the above 
methodology.

// STEP 1 - Calculate Jacobians.
for (unsigned int t=0; t<M; t++) {
  for (int n=nhead; n<=ntail; n++) {
    float w1x = LINT::linterp3(L[t][n].x[0]+1,L[t]

[n].x[1],L[t][n].x[2],B[t].v[0],x,y,z);
    float w1y = LINT::linterp3(L[t][n].x[0]+1,L[t]

[n].x[1],L[t][n].x[2],B[t].v[1],x,y,z);
    float w1z =LINT::linterp3(L[t][n].x[0]+1,L[t]

[n].x[1],L[t][n].x[2],B[t].v[2],x,y,z);
          …
   Some Computations;
        MPI Communication (1);
  }
MPI Communication (2);
}

The details of the MPI Communication (1) part are as 
follows:

  nsend[c++] = (w1x-w4x)/2;
  nsend[c++] = (w2x-w5x)/2;
  nsend[c++] = (w3x-w6x)/2;
   …

In addition, the following are the details of the MPI 
Communication (2) part.

T. Katagiri and D. Nakajima
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  MPI_Allgather(nsend, itmp[2], MPI::FLOAT, 
nrecv, itmp[2], MPI::FLOAT, MPI_COMM_WORLD);
  c = 0; cc = 0;
  for (int i=0; i<pe*2; i=i+2) {
   c = itmp[2]*cc;
   for (unsigned int t=0; t<M; t++){
     for (int n=norder[i]; n<=norder[i+1]; n++) {
     L[t][n].Dv[0][0] = nrecv[c++];
     L[t][n].Dv[0, 1] = nrecv[c++];
     L[t][n].Dv[0, 2] = nrecv[c++];
       …
     }
   }
   cc++;
  }

The main loop divides each MPI process using n=nhead; 
n<=ntail;, where nhead indicates a starting index, and ntail 
indicates an ending index for each MPI process. Let p be the 
number of MPI processes, x be the loop length, and i be the 
MPI rank number. The values of nhead and ntail can be cal-
culated as follows:

  nhead = floor (x / p) * ( i – 1 );
  if ( i != p – 1 )
   ntail = floor (x / p) * i;
  else
   ntail = x;

38.4  OpenMP Thread Parallelization 
and Loop Collapses for Code 
Optimization

In STEP 3, shown in Sect. 38.2, approximately 90% of the 
execution time is taken up by the LDDMM code. Hence, the 
code of STEP 3 is the heaviest among the computational ker-
nels. We focus on the kernel to optimize the code.

We optimize the original LDDMM code using a code 
optimization technique, which is called a loop collapse. The 
following code shows the loop collapse for the code of STEP 
3 in PR-LDDMM.

  for (unsigned int t=0;  t<M;  t++) {
  ...
  #pragma omp parallel for private(…)
  for (i=0; i<x; i++)  {
    for (j=0; j<y; j++)  {
     for (k=0; k<z; k++)  {
       for (unsigned int n=0; n<N; n++)  {

         float f1 = L[t][n].x[0] - (float)i;  float 
f2 = L[t][n].x[1] - (float)j;

         float f3 = L[t][n].x[2] - (float)k;  float 
f4 = (f1*f1 + f2*f2 + f3*f3)/Sigma;

        if (f4 > minExp) {
          float f0 = fexp(f4);  Kx += f0*K[n][0];
          Ky += f0*K[n][1];  Kz += f0*K[n][2];
        }
     }
      B[t].v[0][i][j][k] -= Epsilon*(2*B[t].v[0]

[i][j][k] - Rho*Kx);
      B[t].v[1][i][j][k] -= Epsilon*(2*B[t].v[1]

[i][j][k] - Rho*Ky);
      B[t].v[2][i][j][k] -= Epsilon*(2*B[t].v[2]

[i][j][k] - Rho*Kz);
  }
  }

For OpenMP thread parallelization, we can specify the 
OpenMP directive to the outer loop because there is natural 
parallelism in the code. See the directive of #pragma omp 
parallel for in the code above.

With the above code, a loop collapse for a twofolded loop 
can be written as follows:

  …
  #pragma omp parallel for private(…)
  for (int ij=0; ij<x*y; ij++){
    unsigned int i = ij / y;  unsigned int j = ij 

% y;
   for (int k=0; k<z; k++) {
     …
   }
  }

The threefolded loop can be described as follows:

  …
  #pragma omp parallel for private (…)
  for (int ijk=0; ijk<x*y*z; ijk++) {
   unsigned int i = ijk / ( y*z );
   unsigned int j = (ijk / z) % y;
   unsigned int k = ijk % z;
   …
  }

According to the above codes, the loop length to an 
OpenMP parallelization when adapting a loop collapse 
becomes longer than that of original loops (e.g., x versus x*y 
or x*y*z). Hence, the parallelism of the thread execution in 
the collapse codes increases to the parallelism of the original 
loop. Thus, there is adequate room to obtain a speedup for 
the collapsed loops when the loop length is small.
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38.5  Performance Evaluation

38.5.1  Computer Environments

We use the Fujitsu PRIMEHPC FX100 (hereafter, denoted as 
FX100) at the Information Technology Center, Nagoya 
University. In the FX100, the SPARC64 XIfx processor or a 
single compute node is composed of two core memory groups. 
The specifications of the SPARC64 XIfx are as follows: 1.1264 
TFLOPS, a 2.2-Ghz clock frequency, 32 cores, 2 assistant cores, 
a memory capacity of 32 GB per node, and a theoretical mem-
ory bandwidth of 480 GB/s. For the networking of the FX100, 
the Tofu Interconnect2 (six- dimensional Torus) with a theoreti-
cal networking bandwidth of 12.5 GB/s (in both directions) is 
used. The total system of the FX100  in Nagoya University 
includes 3.2 PFLOPS and 2880 nodes (92,160 cores).

The SPARC64 XIfx configuration uses “Non-Uniform 
Memory Access (NUMA) nodes” or “sockets.” Each socket 
consists of 16 cores, an assistant core, and 12 MB of shared 
L2 cache and is equipped with 16  GB of its own local 
memory.

38.5.2  Problem Size and Estimated Execution 
Time for Final Target

The problem size comes from the target 3D medical image 
sizes of the pixels. In this performance evaluation, we apply 
x * y * z and 100 × 100 × 100.

The target loop of the MPI parallelization is an x loop. In 
the problem, x is set to 100. Note that in this problem, 100 is 
the maximum parallelism if we do not apply a loop 
collapse.

We check the execution time of the original code using 
the FX100. The size is set to 100 × 100 × 100, and the time 
step is set to 50. Under this condition, it takes approximately 
26  min for a sequential execution. To process the actual 
problems, a problem size of 100 × 100 × 100 and a time step 
of 1000 are required. In addition, at least 49 input data are 
needed. Hence, we need 26 min × (1000/50) time steps × 49 
input data = 18 days to process the actual problem.

38.5.3  Results and Discussion

In this session, a parallel LDDMM code with a pure MPI 
execution and a hybrid MPI/OpenMP execution is 
evaluated.

First, Fig. 38.1 shows the speedup ratios of pure MPI exe-
cutions with one node on the FX100. Because the FX100 has 
32 cores, the number of MPI processes can reach up to 32.

According to Fig.  38.1, the two- and threefolded loops 
have several better performance aspects than an execution 
without a loop collapse. The maximum speedup ratios of 
two- and threefolded loops as compared to without a loop 
collapse are 1.09 and 1.07, respectively. One of the reasons 
for the decreased performance is an increase in the cache 
miss hit ratios owing to non-continuous access by a loop col-
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lapse from the viewpoint of each thread. However, we found 
that a twofolded loop collapse gives us an advantage in per-
formance during a pure MPI execution.

Second, Fig.  38.2 shows the speedup ratios of hybrid 
MPI/OpenMP executions with eight nodes of the FX100. By 
adapting a hybrid MPI/OpenMP execution, we can take sev-
eral combinations of numbers between the MPI processes 
and OpenMP threads. The notation aP × bT represents MPI 
processes and b OpenMP thread executions per MPI 
process.

Figure 38.2 shows that all hybrid MPI/OpenMP execu-
tions can obtain speedups to a pure MPI execution (256Px1T) 
with a loop collapse. The maximum speedup factors for a 
pure MPI execution without a loop collapse among the no- 
collapse and two-folded collapse and three-folded collapse 
conditions are 1.48x (8Px32T), 1.52x (16Px16T), and 1.56x 
(16Px16T), respectively. One of the contributions toward a 
speedup is reducing the MPI processes while increasing the 
OpenMP threads to reduce the communication time of such 
processes.

In addition, a gain in speedup for a loop collapse is high, 
as shown in Fig.  38.2. As one of the reasons for this, the 
speedup achieved by increasing the number of OpenMP 
threads is higher than the speedup achieved by increasing the 
number of MPI processes because of the shorter loop length 
compared to the loop lengths from two- and threefolded 
collapses.

Through the above two performance evaluations, we 
demonstrate that a loop collapse is an effective technique for 

optimizing the LDDMM code. Moreover, a hybrid MPI/
OpenMP execution is also a crucial way to speed up the 
LDDMM code.

38.6  Conclusion

In this chapter, we describe the development of a parallel and 
high-performance implementation for the application of 
MCA with an MPI. In addition, we adapted the program for 
use on a supercomputer and evaluated its performance.

The results of the performance evaluation indicate that an 
18-day sequential processing, as shown in Sect. 38.5.2, can be 
reduced to (1) 64 h with a 0.87× speedup in pure MPI execu-
tion (256 MPI processes × 1 OpenMP thread) and (2) 43 h 
with an 11.52× speedup in hybrid MPI/OpenMP execution 
(16 MPI processes × 16 OpenMP threads), when using eight 
nodes of the Fujitsu PRIMEHPC FX100, which is installed in 
the Information Technology Center, Nagoya University, Japan.

The above results show an example of small-scale paral-
lelism, because the eight nodes in the FX100 apply 256 par-
allelism. However, the increase in speed is significant. With 
respect to the full nodes used in the FX100 at Nagoya 
University, 2880/8 nodes = 360 sets can be processed within 
43 hour. This has led to enormous computing power in the 
medical image processing field.

This is only one example showing a breakthrough in the 
execution time for applications of MCA achieved through col-
laborations with computer scientists and researchers in this field.
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For future studies, we need to adapt other high- performance 
techniques, such as a modification of the data structures. An 
adaptation of auto-tuning technology [4] for selecting the best 
implementation of the computational kernels of the LDDMM 
code is also an important area of future study.
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MRI: Quantitative Evaluation 
of Diseased Tissue by Viscoelastic 
Imaging Systems

Mikio Suga

Abstract

Magnetic resonance elastography (MRE) and ultrasound 
elastography (USE) are imaging techniques that non- 
invasively quantify the mechanical properties of tissue by 
using magnetic resonance imaging and ultrasound imag-
ing systems. In this study, we aim to develop a system that 
can quantitatively obtain details such as the viscoelasticity 
of small organs and tissues in the body by using clinical 
magnetic resonance imaging (MRI) and MR microscopy. 
By evaluating MRE and USE using a soft tissue-equiva-
lent gel phantom with a known viscoelastic coefficient, we 
aim to investigate the characteristics of both devices and 
promote their standardization. The purpose of this study is 
to confirm the frequency characteristics of the developed 
phantom and optimize the scatterer material for ultrasound 
measurement. We confirmed that the phantoms are in good 
agreement with a physical model of the liver, and the 
developed phantoms are considered effective for the quan-
titative assessment of the MRE and USE systems.

Keywords

Magnetic resonance imaging · Magnetic resonance 
elastography · Ultrasound elastography · Phantom  
Quantitative assessment

39.1  Introduction

The mechanical property of a tissue is related to physiological 
and pathological states. Magnetic resonance elastography 
(MRE) and ultrasound elastography (USE) are imaging tech-
niques that non-invasively quantify the mechanical properties 

of tissue by using magnetic resonance imaging and ultrasound 
imaging systems [1, 2]. It is expected that measuring the 
mechanical properties of tissues will be useful in the diagnosis 
of diseases such as hepatic fibrosis and cancer. MRE visualizes 
shear-wave patterns within a tissue using a modified phase-
contrast MR sequence. In order to generate shear waves within 
the tissue, external vibration systems are used (Fig. 39.1). The 
local quantitative values of tissue viscoelasticity (stiffness) are 
calculated from the shear-wave pattern by using an inversion 
algorithm [3–5]. We have been developing an MRE system 
using clinical MRI and MR microscope for measuring visco-
elasticity at multi-scale and multi-frequency (Fig. 39.2) [6, 7].

The measured viscoelasticity can be used as an imaging 
biomarker [8]. A quantitative phantom is required to assess 
the accuracy and repeatability of elastography systems. We 
have been developing tough and stable polyacrylamide 
(PAAm) gel phantoms for this purpose [9–12]. We devel-
oped a phantom with viscoelasticity close to that of living 
tissue by using glycerin as a solvent. For ultrasonic measure-
ments, a scatterer is necessary for the phantom. The material 
and concentration of the scatterer are related to the stability 
of ultrasonic measurement and uniformity of the MRI image.

In this study, we compared the mechanical properties of 
our phantoms with those of living tissue and optimized the 
scatterer material and concentration for ultrasound measure-
ment with the developed MRE system and commercial USE 
system.
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39.1.1  Development of a Tissue-Mimicking 
Viscoelastic Phantom for Quantitative 
Assessment of MRE

We fabricated gel phantom sheets with high loss moduli 
(G″). The phantom sheets were designed to have a storage 
modulus (G′) of 1.5 kPa and a loss tangent (tan δ = G″/G′) 
greater than 0.2 at 60 Hz [13]. The storage and loss moduli 
of the phantom and a fresh in vitro bovine liver were mea-
sured using a parallel-disc rheometer (MCR302, Anton- 
Parr). We repeated the measurements on these three samples 
with the strain amplitude set to 1% (Table 39.1).

The phantom (diameter: 120 mm, height: 150 mm) was 
measured with MRE using 3-T MRI (MAGNETOM Skyra, 
Siemens) at 30, 40, 50, and 60 Hz (Table 39.2) by spin-echo- 
EPI-MRE pulse sequence (work in progress) and the vibra-
tion from a pneumatic driver system with active driver to a 
passive driver to create the shear wave in the phantom. The 
passive driver with a diameter of 18 cm was placed on the 
center of the phantom. The fresh in vitro bovine liver (width: 
135  mm, height: 70  mm, length: 250  mm) was measured 
with MRE using 0.3-T MRI (Hitachi) at 31.25, 62.5, 100, 
and 200  Hz (Table  39.3) by spin-echo-EPI-MRE pulse 
sequence (a motion encoding gradient (MEG) was added to 

SE-EPI using the sequence development environment of 
Hitachi) and ultrasound system (ACUSON S3000, Siemens) 
with virtual touch IQ (VTIQ). At high-frequency measure-
ment of the fresh in vitro bovine liver (width: 15 mm, depth: 
15  mm, height: 50  mm), MRE using 1-T MR microscope 
(MR-MICRO, MRTecnology) was used (Table 39.4).

To evaluate the temporal changes, the phantom designed 
to have a storage modulus of 3 kPa was examined by MRE 
for the duration of 1 year.

Fig. 39.2 Multi-modality 
equipment for measuring 
viscoelasticity at multi-scale 
and multi-frequency

Table 39.1 Rheometer measurement parameters

Frequency Hz 1–30
Strain amplitude % 1
Normal force N 0.7
Diameter mm 50
Thickness mm 1.5–2.0 (phantom)

2.0–2.7 (liver)
Temperature °C 23

Table 39.2 Multi-frequency MRE imaging parameters by 3-T MRI

Sequence Spin-echo-EPI-MRE (work in 
progress)

Vibrational frequency Hz 30 40 50 60
Repetition time (TR) s 4.5 4.5 3.0 3.0
Echo time (TE) ms 97
FOV mm2 384 × 384
Matrix size pixel 128 × 128
Pixel size mm 3
Number of slices 15
Slice thickness mm 3
Temperature °C 23

Table 39.3 Multi-frequency MRE imaging parameters by 0.3-T MRI

Sequence Spin-echo-EPI-MRE
Vibrational frequency Hz 31.25 62.5 100 200
Repetition time (TR) s 4.8
Echo time (TE) ms 67
FOV mm2 348 × 348
Matrix size pixel 116 × 116
Pixel size mm 3
Number of slices 15
Slice thickness mm 3
Temperature °C 23
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39.1.2  Ultrasound-Based Shear-Wave Speed 
Measurement on a Highly Viscous 
Embedded Phantom

The PAAm gel is composed of a three-dimensional network 
polymer and a large amount of liquid. The storage modulus 
(stiffness) of the PAAm gel depends mainly on the quantity 
of acrylamide. Additionally, the density of the three- 
dimensional network polymer depends mainly on the quan-
tity of cross-linker. The loss modulus (viscosity) depends 
mainly on the ratio of water and glycerin. To make compati-
ble phantoms for MRE and USE, the aluminum oxide pow-
der was added to the PAAm gel for the scatterer.

A highly viscoelastic embedded phantom was measured 
with US-based shear-wave elastography (SWE). The 
 phantom composed square soft part (background part; width: 
130 mm, depth: 130 mm, height: 160 mm) and embed two 
cylindrical hard parts (embedded part; length: 130  mm, 
diameter: 10 mm and 20 mm). The weight percent of acryl-
amide in the embedded part is 1.5 times higher than the 
background part. In addition, we have created a homoge-
neous phantom that is content the same as the embedded 
part.

The SWS was measured with virtual touch quantification 
(VTQ) and VTIQ (Table 39.5). VTQ provides only single- 
point SWS measurement, and VTIQ provides two- 
dimensional color-coded SWE (2D SWE), which displays 
2D color velocity maps and allows for multiple measure-
ments to be obtained. The stiffness is proportional to squar-
ing of the SWS.

We measured the embedded parts, and the background 
parts were 5  mm apart from the outline of the embedded 
ones. VTIQ measurements were repeated 4 points on the 
same depth and three times at each part, VTQ measurements 
were repeated five times at each part, and the mean value and 
SD of the SWS were calculated. Reference values of the 
embedded part were measured in a homogenous phantom 

made with the same material component. The reference 
value of the background part was measured at a deeper area 
of the embedded phantom.

39.2  Results

39.2.1  Development of a Tissue-Mimicking 
Viscoelastic Phantom for Quantitative 
Assessment of MRE

Figure 39.3 shows the stiffness (square root of the sum of 
squares of the storage and loss modulus) obtained with MRE, 
the rheometer, and USE. The stiffness of the phantom and 
bovine liver increased with frequency. Figure 39.4 shows the 
change in the mechanical properties of the phantom over a 
year. The change in the storage and loss modulus during the 
1-year period was within ±3%.

39.2.2  Ultrasound-Based Shear-Wave Speed 
Measurement on a Highly Viscous 
Embedded Phantom

Table 39.6 shows the SWS in the embedded part and back-
ground part. In the background part, the SWS was equivalent 
to the reference value. The SWS of the embedded part with a 
diameter of 20 mm in a highly viscous phantom was mea-
sured accurately with the SWE; however, with a diameter of 
10  mm was lower than the reference value. Figure  39.5 
shows the B-mode image and the VTIQ image around the 
embedded part with a diameter of 10  mm. On the VTIQ 
image, the embedded part was demarcated from the back-
ground; however, the border was not sharp. In addition, the 
embedded part on the VTIQ was visualized to be larger than 
the part on the B-mode image. This phantom has the  potential 
to be used as a quality control phantom to mimic living 
tissues.

Table 39.4 MRE imaging parameters by 1-T MR microscope

Sequence Spin-echo-MRE
Vibrational frequency Hz 200
Repetition time (TR) s 0.5
Echo time (TE) ms 21
FOV mm2 25 × 25
Matrix size pixel 128 × 128
Pixel size mm 0.2
Number of slices 1
Slice thickness mm 1.8
Average 3
Temperature °C 23

Table 39.5 SWE measurement parameters

Probe 9 MHz linear (9 L4)
Depth range cm 0.3–4.0
Detect pulse MHz 6.0
Method VTIQ VTQ
ROI size mm2 1.5 × 1.5 5 × 5
Push pulse MHz 4.4, 5.7 4.0
Number of measurement 4 × 3 5
Depth cm 2
Temperature °C 22

39 MRI: Quantitative Evaluation of Diseased Tissue by Viscoelastic Imaging Systems
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Table 39.6 Results of SWS measurement

Embedded part Background part
VTIQ VTQ VTIQ VTQ

10 mm 3.0 ± 0.2 2.5 ± 0.0 2.3 ± 0.1 2.0 ± 0.2
20 mm 3.3 ± 0.1 2.8 ± 0.0 2.3 ± 0.1 2.0 ± 0.2
Reference values 3.4 ± 0.2 2.8 ± 0.2 2.3 ± 0.1 2.0 ± 0.2

a b

Fig. 39.5 Image of the phantom containing an embedded part with a diameter of 10 mm. (a) B mode image. (b) VTIQ image
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39.3  Conclusion

The purpose of this study was to confirm the frequency char-
acteristics of the developed phantom with commercial USE 
system and the developed MRE system at multi-scale and 
multi-frequency. We confirmed that the phantoms are in 
good agreement with a physical model of the liver, and the 
developed phantoms are considered effective for the quanti-
tative assessment of the MRE and USE system.

Furthermore, an MRE system using an MR microscope 
and clinical MRI was developed. We succeeded in perform-
ing measurements at multiple frequencies. These developed 
systems allow quantitative multi-scale and multi-parameter 
imaging of diseased tissues.
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US: Development of General 
Biophysical Model for Realization 
of Ultrasonic Qualitative Real-Time 
Pathological Diagnosis

Tadashi Yamaguchi

Abstract

In order to quantitatively evaluate the properties of bio-
logical tissues from the body surface using ultrasound, it 
is necessary to comprehensively understand the acoustic 
properties of both microscopic acoustic properties at the 
cell level and tissues with macroscopic structure. This 
chapter introduces the results of evaluating the frequency 
dependence of the speed of sound of multiple organs 
using ultrasound in an extremely wide frequency band.
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40.1  Introduction

Medical ultrasound is widely used as a diagnostic tool in 
clinical applications because it is non-invasive and provides 
images in real time. Research on medical ultrasound con-
ducted around the world has led to the development of quan-
titative diagnostic methods for various diseases of biological 
tissue such as the liver, mammary glands, and lymph nodes 
[1–4]. For this reason, many studies have focused on quanti-
tative ultrasound (QUS) diagnosis rather than qualitative. 
One example of such a QUS method is shear-wave elastog-
raphy, which involves the generation of shear waves in the 
measurement object and the quantitative evaluation of the 
stiffness of the tissue based on the propagation of the waves 
[5, 6]. Furthermore, understanding the relationship between 

acoustic characteristics and tissue structure, which are quan-
titative evaluation metrics obtained from the echo signal, is 
being promoted more fundamentally. Several research 
groups have measured the speed of sound (SoS), attenuation, 
and backscatter coefficients in tissue using ultrasound with 
center frequencies ranging from 1  MHz to approximately 
50 MHz [7–9].

In addition, many studies have been carried out at a cel-
lular or subcellular scale that are finer than the connecting 
tissue structures. These studies used scanning acoustic 
microscopy (SAM) systems with an ultrasound band of sev-
eral hundred megahertz, which enables the discrimination of 
different cell organelles to measure the SoS and acoustic 
impedance of biological tissue [10–14]. The spatial resolu-
tion of SAM is close to that of optical microscopy, and the 
relationship between acoustic and optical characteristics has 
been researched [15]. Therefore, it is possible to seamlessly 
integrate QUS metrics into diagnosis by understanding how 
the cell-level acoustic characteristics of a tissue relate to their 
optical characteristics and considering them in the whole 
organ. These correspond to the research area called tissue 
characterization, which uses ultrasound to understand the 
properties of tissues.

However, conventional SAM systems have a limited mea-
surement area (the upper limit is only several square milli-
meters) because they have typically been used to observe 
targets that are, at most, the same size as optical microscopy 
slides. This measurable size is extremely small compared to 
clinical echo information. In other words, to apply SAM to 
the required organ level observations in QUS, it would be 
necessary to build a novel SAM system that can measure the 
whole organ without sacrificing the cell-level information. In 
our study, a new SAM system that can observe 100 mm2 area 
was developed to enable this type of multiscale measure-
ment. In addition, the conventional analysis method was 
modified to realize SoS analysis over a wide area.

In this chapter, the effectiveness of acoustic characteris-
tics analysis in a wide area is introduced by exemplifying the 
results of SoS evaluation by observing rat kidneys with the 
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newly developed SAM.  Additionally, the SoS evaluation 
result from microscale resolution to macro-scale resolution 
by several kinds of frequencies in rat livers is also intro-
duced. By comparing the SoS in each organ evaluated 
obtained at wideband frequencies, the spatial resolution of 
each transducer and the relationship between the center fre-
quency and the SoS of the liver were investigated.

40.2  SoS Evaluation in High Resolution 
and High Region Using New SAM

In the developed SAM system, the moving pitch range of the 
XY linear stage controlled by a computer is 0.1  μm to 
100 mm for each direction. The center frequency of trans-
mission and reception can be set in the range of 1–500 MHz 
by changing the transducers. For acquiring the RF echo sig-
nal from an excised rat kidney, a ZnO membrane focuses 
transducer that has a 250-MHz center frequency was installed 
to SAM. The spatial resolution of the 250 MHz transducer is 
7  μm (lateral) and 50  μm (depth). The spatial resolution 
defined for the transducer was within −6 dB from the maxi-
mum value of the sound pressure, and it is good enough to 
visualize the details of the tissue structure or cell-level infor-
mation. To acquire RF echo signals from a sliced specimen 

on the glass plate, a two-dimensional (2D) scan was obtained 
by the transducer on the moving stage. In this observation, 
after scanning in the x-direction along each scan line, the RF 
echo signal was first passed through an attenuator, a high- 
pass filter (41–800  MHz), and a low-pass filter (DC- 
720 MHz) and then transferred from a digitizer to a computer. 
The bandwidth of each filter was determined so that noise 
could be effectively removed in consideration of the 
 frequency characteristics of the transducer. The amplified RF 
echo data from each scan line were acquired with a sampling 
frequency of 2.5 GHz and digitized with 12 bits.

The surface and bottom echoes of the tissue sample were 
detected from the observed RF echo signal using a fifth- 
order AR model to estimate the SoS. The components of the 
echo signal from the tissue sample area were roughly divided 
into three. The first was the echo component from the surface 
of the tissue sample, the second was the echo component 
from the bottom of the tissue sample (sample–glass inter-
face), and the third was the echo component of multiple 
reflections from the bottom of the sample surface. The RF 
echo signals were separated by including two random noise 
components generated during electrical and digitizing in 
addition to the three echo components above [12, 16].

Figure 40.1 shows the evaluated SoS image and the his-
tological image of the excised healthy kidney of a 17-week-

Fig. 40.1 SoS image and histological image of excised healthy rat kidney
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old rat (SLC:SD, male). It was fixed with formalin, 
infiltrated with paraffin, and sliced to a thickness of 7 μm. 
After the paraffin was removed, the sliced specimen was 
placed on a glass plate and submerged in a water tank filled 
with degassed water. The scanning area was 
21  mm  ×  16  mm, which encompasses the whole kidney, 
and the scanning intervals in both the x- and y-directions 
were 10 μm. That is, three- dimensional (3D) RF data asso-
ciated with scanning line information on the 2100 × 1600 
sampling points was acquired. After scanning, the sliced 
specimen of kidney was stained using the hematoxylin–
eosin (HE) method, and a digital histological image was 
observed using a virtual slide scanner.

The difference of texture (difference of tissue density) 
and boundaries of the renal cortex and renal medulla are 
clearly shown with the SoS image of the whole kidney in 
the wide-field image. The structures inside the renal cor-
puscles can be observed in the zoomed micro image. The 
structures in the renal corpuscle are assumed to be glom-
eruli. Because it is difficult to recognize this structure in the 
corresponding histological images, the SoS map can be 
said to reveal physical properties that are not observable by 
staining. The average and standard deviation of the SoS 
obtained at 250 MHz was 1591.7 ± 106.8 m/s in the renal 
medulla, and 1678.1 ± 131.6 m/s in the renal cortex. These 
average values are close to the conventional evaluation 
result of the biological SoS in a normal kidney fixed with 
formalin and infiltrated with paraffin [17]. This result 
shows that the SoS of biological tissue can be evaluated 
with high accuracy over the macro-region while ensuring 
cell-level resolution.

40.3  Evaluation of Frequency Dependency 
and Tissue Structure Dependency 
of SoS

The realization of a SAM capable of observing a wide area 
has made it possible to evaluate the acoustic characteristics 
of biological tissues on a multiscale. In this section, the 
results of evaluating the frequency dependence of the SoS in 
rat liver using ultrasound in an extremely wide frequency 
band are introduced. As mentioned earlier, our SAM allows 
observation of samples (that is, acquisition of RF echo sig-
nals) with ultrasound of various frequencies by exchanging 
ultrasonic transducers. Of course, the setup of various ampli-
fiers and digitizers will change depending on the type of 
transducer. Live observation for in vivo tissue is also possi-
ble at frequencies below 25 MHz, which are used clinically.

Immediately after being removed, the whole rat livers 
(normal and fibrosis) were first observed by PZT 5  MHz 
(most frequently used frequency in clinic) unfocused trans-
ducer, and then at a high frequency of 15 MHz. The defini-

tion of spatial resolution does not apply because they transmit 
and receive plane waves without setting the focus. The scan-
ning interval of the transducer for the XY-plane was 30 μm 
for each transducer. The amplified RF echo data from each 
scan line were acquired with a sampling frequency of 
100  MHz and digitized with 12 bits. After observation by 
15 MHz, each liver was fixed with formalin, infiltrated with 
paraffin, and sliced to a thickness of 7 μm as same as the case 
of the kidney. The sliced specimens were observed by PVDF- 
TrFE 60 and 80  MHz focused transducers, and by ZnO 
250 MHz focused transducer. The spatial resolution of the 
60, 80, 250 MHz transducers are 28, 20, 7 μm (lateral) and 
300, 200, 50 μm (depth), respectively. The scanning interval 
was set to 2  μm considering the spatial resolution of the 
250 MHz transducer, which has the highest spatial resolu-
tion. The amplified RF echo data from each scan line were 
acquired with a sampling frequency of 2.5 GHz and digitized 
with 12 bits. From the three-dimensional RF echo data 
acquired by five transducers, the speed of sound of the target 
liver was evaluated.

Figure 40.2 shows the evaluated SoS image and the histo-
logical image of the excised rat livers of a 10-week-old 
healthy rat (SLC:SD, male) and 10-week-old fibrosis rat 
which was injected with a mixture of carbon tetrachloride 
twice a week for 4 weeks. In both livers, the texture of the 
speed of the sound image is blurred at 60 MHz; however, 
even the difference between the cell nucleus and the cyto-
plasm can be confirmed at 250 MHz. The difference in the 
contrast of the texture in the liver depending on the frequency 
is clearly greater in fibrosis than in the normal liver. As can 
be seen from the fact that the structure of the fibers, which is 
difficult to recognize at 60 MHz, can be clearly confirmed at 
80  MHz or more, the frequency (spatial resolution) also 
strongly influences the physical property evaluation in 
microscopic ultrasound observation.

In Fig. 40.3, the results of the macroscopic evaluation of 
the liver as in the clinical diagnosis are compared with the 
results of the microscopic evaluation shown in Fig. 40.2. As 
the first feature, it can be confirmed that there is a small dif-
ference in speed of sound between clinically equivalent fre-
quencies of 5 and 15 MHz, as is known in the past, whereas 
a strong frequency dependence is exhibited at frequencies 
above 60 MHz. It has been confirmed that there is no differ-
ence in speed of sound at a general frequency of 5 MHz, a 
high frequency of 15 MHz, and ultrahigh frequencies of over 
60 MHz in a homogeneous medium such as an agar phantom 
in our pilot study. In other words, it can be said that Fig. 40.3 
shows the characteristics peculiar to liver tissue. However, it 
should be noted that the difference in speed of sound between 
15 and 60 MHz includes the effect of formalin. Another fea-
ture is that there is a difference in the frequency dependence 
of the speed of sound between normal liver and cirrhotic 
liver at the ultrahigh frequency. If only the spatial resolution 
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is different, the average value of the speed of sound will be 
similar in each liver. However, the results in Fig. 40.3 do not 
represent a simple average value because the mixing ratios 
and distributions of cytoplasm, cell nucleus, and fibers with 

their respective value of the speed of sound differ. The char-
acteristic speed of sound of each tissue can be obtained by 
comparing the SoS image and the histological image by one- 
by- one matching [12].

Fig. 40.2 SoS image and histological image of excised frat livers
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40.4  Conclusion

An SAM system was constructed that enables the multi-
scale evaluation of the acoustic characteristics of biological 
tissue using ultra-wideband ultrasound. The system is also 
allowed to function like a clinical ultrasound equipment. 
Although the results of speed of sound evaluation were 
introduced in this chapter, the acoustic impedance, scat-
terer density, backscattering coefficient, etc. can also be 
evaluated on a multiscale by applying other signal acquisi-
tion and analysis methods. It is also possible to construct 
3D acoustic characteristic maps by observing multiple tis-
sue sections and use it as a simulation model for sound 
wave propagation analysis.
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OCT: Ultrahigh Resolution Optical 
Coherence Tomography at Visible 
to Near-Infrared Wavelength Region

Norihiko Nishizawa and Masahito Yamanaka

Abstract

Optical coherence tomography (OCT) is an imaging 
modality using a low coherence interferometer with a 
spectrally broadband light source, which allows us to per-
form non-invasive observations of internal structures of 
living samples with a micrometer-scale resolution. Since 
recent advancements of OCT technologies have offered 
significant improvement in image acquisition speed, OCT 
is now used in a wide variety of medical fields, especially 
in ophthalmology. In our group, we have been working on 
the development of ultra-broadband light sources, so- 
called supercontinuum (SC) light sources, and ultrahigh- 
resolution OCT systems with the SC light sources. While 
the 0.8 μm wavelength window is typically used for OCT 
systems and 0.8 μm, OCTs offer high axial resolution in 
tissue imaging, and the 1.7 μm wavelength window has 
begun to be recognized as an excellent choice to achieve 
high penetration depth due to the lower scattering coeffi-
cient and the existence of a local minimum of light 
absorption by water in the wavelength band. In this chap-
ter, we give a brief overview of the basic principle of OCT 
imaging and our recent works in the development of 
ultrahigh- resolution OCT imaging techniques.

Keywords

Optical coherence tomography (OCT) · Non-invasive  
Supercontinuum · Optical coherence microscopy (OCM)

41.1  Introduction

Optical coherence tomography (OCT) is an optical imaging 
technique that allows us to observe internal structures of bio-
medical specimens, such as the human eye, skin, and living 
small animals, with sub-μm to 10-μm axial resolution in 
non-contact and non-invasive manners [1]. Since OCT is a 
significantly useful technique to visualize retinal structures 
in patients, this technique is currently widely used for clini-
cal diagnosis in ophthalmology.

Figure 41.1 shows a comparison of the various major non- 
invasive imaging techniques to observe the internal struc-
tures of biomedical specimens. Ultrasonography is one of 
the representatives and familiar clinical imaging modalities. 
In ultrasonography, although a sensor to detect ultrasound 
waves is required to be placed in contact with a surface of 
specimens, the penetration depth usually reaches several 
centimeters, and the millimeter-scale spatial resolution is 
achieved. Currently, Ultrasonography is used for a medical 
health checkup, fetal diagnosis, and so on. X-ray CT and 
MRI provide a larger penetration depth, but they require 
large-scale equipment. In addition, there are safety issues, 
and the spatial resolution is typically not so high in standard 
systems. Optical microscopy is known as a high-resolution 
imaging technique to provide several 100  nm to a few 
micrometer resolutions. However, generally, it is difficult to 
achieve a penetration depth of more than 1 mm in in-vivo 
imaging.

As mentioned previously, OCT techniques provide non- 
contact, non-invasive, and in-vivo imaging capabilities of 
internal micrometer-scale structures of biomedical speci-
mens. Generally, sub-μm to 10-μm axial resolution and few- 
millimeter penetration depth was achieved in OCT.  In 
addition, recent improvement of OCT image acquisition 
speed has made it possible to perform real-time OCT cross- 
sectional imaging and rapid volumetric imaging with an 
acquisition time of a few seconds to few tens seconds.
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The basic optical setup for OCT is shown in Fig.  41.2 
light beam output from a spectrally broadband light source is 
divided into a sample and reference arms by a beam splitter. 
Backscattered and reflected light from a sample is interfered 
with light returned from the reference arm. The interfered 
light is detected with a photodetector. The example of an 
interference signal is also shown in Fig. 41.2. A spectrally 
broadband light consists of a lot of waves at different wave-
lengths. Therefore, only when the optical path length differ-
ence between the sample and reference arm is zero, the 
phases of all wavelength components are matched, meaning 
that all wavelength components interfere constructively and 
the highest intensity of an interference signal is achieved. 
Then, with the increase of the optical path length difference 
between the sample and the reference arm, the intensity of 
the interference signal is reduced due to the phase mismatch 

of wavelength components. Assuming that the spectral shape 
of a broadband light source is Gaussian, a full-width at half 
maximum (FWHM) of an interference signal (∆z) is,
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where λ is a center wavelength, ∆λ is a spectral width of a 
light source, and n is a refractive index. ∆z is corresponding 
to a coherence length determined by the spectral width of a 
light source [1]. As shown in Eq. (41.1), ∆z is proportional to 
the square of the center wavelength and inversely propor-
tional to the spectral width. Therefore, by using a light source 
with broader spectral width, it is possible to achieve a higher 
axial resolution. In addition, although the intensity of signal 
light (a backscattered and reflected light) from a sample is 
usually significantly weak, high signal detection sensitivity, 
such as 100 dB, is achieved in OCT. This is because an inter-
ference signal is achieved as the result of the product of sig-
nal light and strong reference light, meaning that the signal 
intensity is enhanced by the strong reference light. The sen-
sitivity of 100 dB means that it allows us to detect pW level 
signal light under 1 mW light illumination on a sample.
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Figure 41.3 shows the principle of cross-sectional imaging 
by OCT. The spectrally broadband light is focused on a sam-
ple with a low numerical aperture (NA) objective lens 
equipped in a sample arm. A backscattered and reflected light 
from a sample is collected with the same objective lens, and 
the collected light interferes with the reference light. The sig-
nal intensity distribution along the depth direction is achieved 
by scanning the optical path length of the reference arm 
because an interference signal appears when the optical path 
length between the sample and the reference arm is matched. 
Then, by scanning a sample along the horizontal direction 
and achieving the depth intensity distribution at each horizon-
tal scanning position, a cross-sectional image is obtained.

41.2  Time and Fourier-Domain OCT

As shown in Fig. 41.4, there are several types of OCT sys-
tems, which are mainly classified into OCT systems with 
Time-domain (TD) and Fourier-domain (FD) detection 
schemes. In TD-OCT, depth information is achieved as the 
function of time. On the other hand, in FD-OCT, depth infor-
mation is extracted from spectrally resolved interference 
fringes in recorded signals.

The example of an experimental setup for TD-OCT is 
illustrated in Fig. 41.5. An interferometer consists of optical 

fiber devices (optical fiber couplers) operating in a wide 
wavelength range. In the fiber couplers, the light output from 
a broadband light source is separated into the sample and 
reference arms. In the sample arm, the light beam is focused 
on a sample with a low NA objective lens (achromatic lens) 
and X–Y scanning is performed with a two-axis galvanom-
eter scanner. Backscattered and reflected light from a sample 
is collected with the same objective lens and is coupled into 
the fiber couplers. Then, light from the sample and reference 
arms is made to interfere in the fiber coupler and then 
detected with a balanced detector. Depth information of a 
sample is achieved by scanning the optical path length of the 
reference arm with a corner cube prism mirror mounted on a 
single-axis galvanometer scanner.

Because a spectrally broadband light is used for OCT, the 
difference of the wavelength dependence on the refractive 
index between a sample and reference arms affects the 
FWHM and intensity of an interference signal. To cancel out 
the difference of the wavelength dependence, additional 
glass plates are usually utilized. In Fig. 41.5, glass plates are 
placed in the reference arm. This is called chromatic disper-
sion compensation. By performing this chromatic dispersion 
compensation and matching polarization states in two arms 
with polarization controllers, it is possible to achieve a strong 
interference signal with a narrower FWHM. Interference sig-
nals are recorded with a PC and are processed to construct an 
OCT image. In TD-OCT, the signal detection sensitivity of 
around 100 dB is achieved.

In TD-OCT, the image acquisition speed is restricted by a 
relatively low-speed mechanical scanner in the reference 
arm. To overcome this limitation, FD-OCT was developed. 
In FD-OCT, interference signals are measured with a spec-
trometer and so on. Because FD-OCT does not require a 
mechanical scanner to achieve interference signals, image 
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acquisition speed has been significantly improved. There are 
mainly two types of FD-OCT, which are (1) spectral-domain 
(SD) OCT using a broadband light source and spectrometer 
equipped with a high-speed line camera and (2) swept-source 
(SS) OCT using a high-speed wavelength-tunable light 
source, respectively.

The example of an experimental setup for SD-OCT is illus-
trated in Fig.  41.6. A spectrometer consists of a diffraction 
grating, lens, and a high-speed single line scan camera. In 
SD-OCT, spectral interference fringes in a detected spectrum 
are recorded. By performing a Fourier transform of the 
detected spectrum, an OCT signal intensity profile along the 
depth direction is achieved. This depth information is achieved 
by a single spectral measurement. Typically, a high-speed sin-
gle line scan camera offers a line rate of 40 kHz. Therefore, 
when a cross-sectional image is constructed by 512 spectral 
measurements, it is possible to achieve about 80 cross-sec-
tional images per second. A three- dimensional volumetric 
image is also achieved within a few seconds to few tens sec-
onds. Even though signal averaging is applied to improve the 
signal-to-noise ratio in imaging, the image acquisition speed is 
still high enough to perform in- vivo observations.

In SS-OCT, instead of a broadband light source and spec-
trometer, a high-speed wavelength-tunable light source with 
a narrow spectral linewidth is used. In this case, signals are 
detected with a balanced detector, and then interference 
fringes on the optical spectrum are recorded as the function 
of time. Because optical power is concentrated at a specific 
wavelength and a certain time, it is known that the highest 
signal detection sensitivity among the various OCT methods 
is achieved. However, it is still challenging to achieve a high 
axial resolution in SS-OCT because there are technical issues 
in the development of spectrally broadband and high-speed 
wavelength-tunable light source with a narrow spectral 
linewidth.

41.3  Ultrahigh-Resolution OCT 
in the 0.8 μm Wavelength Window 
and Retinal Imaging

In OCT imaging, the axial resolution (longitudinal resolution) 
depends on the wavelength of a light source. Figure  41.7 
shows the relationship between the spectral bandwidth of the 
light source and axial resolution at each wavelength window. 
As indicated in the Eq. (41.1), under the condition where the 
spectral bandwidths of light sources at different wavelengths 
are the same, a light source at a shorter wavelength window 
provides a higher axial resolution. On the other hand, when the 
wavelength of light sources is the same, a light source with a 
broader spectral bandwidth offers a higher axial resolution.
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The use of the 0.8 μm wavelength window for OCT pro-
vides high axial resolution imaging capability and is widely 
utilized for retinal diagnosis due to the low light absorption 
coefficient of water. Figure 41.8a shows the optical spectrum 
of our high-power spectrally broadband light source, so- 
called supercontinuum (SC) light source, in the 0.8  μm 
wavelength window [2]. Figure 41.8b shows the representa-
tive interference signal obtained by using this SC light source 
light for the OCT system shown in Fig. 41.5. This SC light is 
generated by utilizing optical nonlinear effects in optical 
fibers. By coupling ultrashort pulsed light with the pulse 
width of about 100 fs into optical fibers, the spectrum of the 
input pulsed laser is broadened due to optical nonlinear 
effects, and then SC light with a single-peaked smooth spec-
tral shape is achieved as shown in Fig. 41.8a. The shape of 
interference signals depends on the shape of the spectrum of 

the SC light source. Therefore, the use of the better spectral 
shape of the SC light for OCT enables us to suppress the 
sidelobes in interference signals and artifacts, such as ghost 
images. Here, the spectral bandwidth of the 0.8 μm SC light 
was 140 nm, and the theoretical limit of the axial resolution 
is 3 μm in air. Since the coherence length is inversely propor-
tional to the refractive index, as shown in Eq. (41.1), the 
axial resolution becomes higher when the refractive index 
becomes higher. When using the 0.8 μm SC light for the 
TD-OCT system shown in Fig. 41.5, the axial resolution of 
2.9 μm in the air (a refractive index n  =  1) was achieved, 
which corresponds to 2.0 μm in the tissue under the assump-
tion of n = 1.38.

Figures 41.9 and 41.10 show the cross-sectional images of 
the human retina around the fovea, rat airway and cartilage, 
and brain of swimming young medaka fish obtained with the 
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0.8 μm ultrahigh-resolution OCT system. As shown in the 
OCT images, our ultrahigh-resolution OCT systems clearly 
revealed the layer structures of the human retina and cross-
sectional structures of rat airway and cartilage. We also 
applied the 0.8 μm SC light for the SD-OCT system shown in 
Fig. 41.6 and confirmed that the 0.8 μm ultrahigh- resolution 
SD-OCT system allows us to perform real-time observations 
of the brain structures of swimming medaka fish.

Figure 41.11 shows the OCT images of rat lung tissue. In 
this measurement, because the difference of the refractive 
indices between air and the alveolar membrane is large and 
significantly reduced the penetration depth of OCT imaging, 

phosphate-buffered saline was instilled into the lung to 
reduce the difference of the refractive indices. In the result, 
as shown in Fig. 41.11, alveoli, alveolar sac, alveolar mem-
brane, etc., in the deep part of rat lung tissue were success-
fully visualized with the high axial resolution.

In Fig. 41.12, OCT images of normal rat lung and pulmonary 
disease (COPD) rat lung are shown. The 3D images were con-
structed by using the 3D display/analysis software NewVES, 
which is developed in Mori’s group in Nagoya University. As 
shown in the 3D images, the volume of alveoli became larger in 
rat lungs with COPD than those in normal rat lungs. From these 
3D data, the volume of alveoli was also successfully estimated.

epithelium

annular
ligament

cartilage

a

200 µm200 µm

tlto

ts

b
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41.4  Ultrahigh-Resolution OCT 
in the 1.7 μm Wavelength Window

In tissue samples, light absorption and scattering coefficients 
strongly depend on an incident light wavelength because 
there are various substances, such as hemoglobin, lipid, 
water, etc. As shown in Fig.  41.13, hemoglobin strongly 
absorbs light in the shorter wavelength region, and water 
strongly absorbs light in the longer wavelength region. So 
far, for bioimaging, light sources in the 0.8–1.3 μm wave-
length window have been widely utilized. For retinal imag-
ing, because an eyeball in front of a retina is so thick and 
contains a huge amount of water, the wavelength window of 
0.8–1.06 μm is often used. For imaging of turbid scattering 
tissues, such as skin and brain, 1.3 μm wavelength window is 
commonly chosen to reduce the attenuation effect by light 
scattering.

One of the challenges in OCT developments is the 
improvement of the penetration depth. Currently, the 1.7 μm 
wavelength window is considered as a promising choice to 
enhance the penetration depth because the light scattering 
coefficient becomes smaller, and there is a local minimum of 
light absorption coefficient by water in the wavelength win-
dow. This wavelength window is now called the third optical 
tissue window (first: 0.65 to 0.95 μm, second: 1.0 to 1.35 μm). 
In our group, we developed a high-power SC light source in 
the 1.7 μm wavelength window and realized an ultrahigh- 

resolution TD-OCT and SD-OCT system in the 1.7  μm 
wavelength window for the first time [3].

Figure 41.14 shows the cross-sectional and en-face 
images of mouse brains obtained with the 1.7  μm 
 ultrahigh- resolution SD-OCT system. The studies of the 
attenuation length in brain samples reported that the largest 
penetration depth would be achieved in the 1.7 μm wave-
length window. As shown in the OCT images, the hippocam-
pus at the depth of 1.7 mm from the sample surface is clearly 
observed. By using this SD-OCT system, a volumetric image 
is achieved within a few seconds to several tens seconds.

a b

Fig. 41.12 3D OCT images of (a) normal rat lung and (b) pulmonary disease (COPD) rat lung
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Recently, our group also developed optical coherence 
microscopy (OCM) in the 1.7 μm wavelength window. OCM is 
the 3D high-resolution imaging modality based on OCT and 
confocal microscopy with a high NA objective lens [4]. 
Although the depth of focus is dramatically reduced by using a 
high NA objective lens and confocal detection scheme, 3D 
high spatial resolution is achieved in OCM. While the lateral 
resolution of our 1.7 μm ultrahigh-resolution OCT system was 
around 50 μm, the lateral resolution of 3.4 μm was achieved in 
our 1.7 μm OCM system. The axial resolution of our 1.7 μm 
OCM system was 3.8 μm in tissue (n = 1.38). In OCM, although 
it is not possible to record a large 3D volume image with a 
single image acquisition like OCT imaging, a 3D high-resolu-
tion en-face image at a certain depth is achieved. As shown in 
Fig. 41.15, we confirmed that the 1.7 μm OCM system allows 
us to observe the distribution of myelin fibers (myelinated 
axons), which was not observable in OCT imaging.

41.5  Future Direction

Optical coherence tomography (OCT) is a non-invasive 
imaging technique of small internal structures in biomedical 
specimens and has been currently utilized for a wide variety 
of studies in biomedical fields. To apply OCT imaging to 
visualize various parts inside human bodies, fiber optic 
probes have been intensively developed.

Figure 41.16 shows a photograph of the fiber optic probe 
for intraoperative intraocular diagnosis, which was devel-
oped in collaboration with our group, a group in the medical 
school in Nagoya University, and a company. The diameter 
of the fiber optic probe is 0.6  mm. By rotating the lens 
equipped inside the fiber optic probe, surrounding structures 
around the fiber optic probe are observed. It is highly 
expected that further advancement of this kind of technology 
would open the door for the widespread applications of OCT 
in medical studies.

As mentioned in this chapter, OCT is useful to diagnose 
for non-invasive, real-time cross-sectional imaging. Our 
research of OCT contributes to the MCA as the highly func-
tional future technology in medicine.

Fig. 41.14 OCT images of mouse brain obtained with the 1.7  μm 
ultrahigh-resolution SD-OCT system. (a) Cross-sectional and (b) en-
face images
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MRI: Magnetic Resonance Q-Space 
Imaging Using Generating Function 
and Bayesian Inference

Eizou Umezawa, Yukiko Sonoda, and Itsuki Itoshiro

Abstract

Diffusional kurtosis imaging provides the kurtosis for the 
diffusion displacement of water molecules in  vivo. 
Kurtosis-related metrics demonstrate high sensitivities in 
several disease diagnoses; however, they contain large 
systematic and statistical errors. The systematic error can 
be caused by the truncation of series expansions of the 
generating functions used for fitting to provide the diffu-
sion parameters, and the cause of the statistical error is 
overfitting. If we increase the truncation order to reduce 
the systematic error, overfitting becomes increasingly 
severe. Hence, a Bayesian approach is developed, in 
which the arbitrariness regarding the determination of the 
posterior distributions or the regularization parameter is 
excluded as much as possible. The Bayesian approach 
effectively prevents overfitting and reduces imaging noise 
in kurtosis maps, thereby enabling the use of higher-order 
terms in the fitting. Our simulation shows that the use of 
higher-order terms reduced truncation-derived systematic 
errors in kurtosis estimation.

Keywords

Diffusion MRI · Kurtosis · Bayesian inference

42.1  Introduction

Q-space imaging (QSI) is a diffusion magnetic resonance 
imaging (MRI) that uses the statistical properties of the 
thermal motion of water molecules [1]. Diffusional kurto-
sis imaging (DKI), which is a light version of QSI, is used 
to obtain the kurtosis of diffusion displacement and can 
be implemented using few MRI data [2–4]. Since the kur-
tosis varies depending on the microstructure of tissues, 
DKI is a promising diagnostic and biofunctional imaging 
tool [5–7]; however, the kurtosis map tends to be noisier 
than the conventional diffusion coefficient map. 
Furthermore, the estimated kurtosis contains considerable 
systematic errors.

The causes of these errors are as follows. The magnetic 
resonance (MR) signal of QSI corresponds to the charac-
teristic function of the diffusion displacement, and its 
logarithm is the cumulant generating function, which are 
generating functions for moments [3] and cumulants [2], 
respectively. These functions are expressed as a series of 
b-values and used as fitting functions for the measured 
MR data. The simplest diffusion MRI analysis uses only 
the first-order terms of this series, whereas the conven-
tional DKI uses up to the second-order terms. The statisti-
cal error is caused by overfitting owing to the increment 
of fitting parameters, resulting in a noisy DKI map. 
Meanwhile, although the conventional DKI analysis is the 
next-to-leading-order approximation, truncation after the 
second order still causes systematic errors in kurtosis 
estimations.

A simple solution to reduce systematic errors is to use 
higher-order terms of the generating functions; however, the 
further increment in model parameters worsens the overfit-
ting problem. Therefore, we developed a Bayesian approach 
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[8, 9] as an accurate and robust method to measure the 
descriptive statistics of the diffusion displacement.

In developing the Bayesian approach, we excluded the 
arbitrariness related to the determination of posterior 
 distributions or the regularization parameter as much as 
possible. This approach can be widely applied to this 
arbitrariness problem that exists in optimization tasks in 
general, and reconciles the trade-off between fitting per-
formance and generalization ability.

This study aims to construct a method for obtaining 
microanatomical information from MR signals and to under-
stand the mathematical properties in the truncation approxi-
mation of the cumulant expansion for model fitting. These 
are related to one of the objectives of MCA, which is to real-
ize a new imaging method and to establish a mathematical 
analysis basis for it.

42.2  Theory

42.2.1  DKI Algorithm

The logarithm of the normalized QSI signal intensity is 
expressed as [4]
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where b is the b-value, ni is the i-th component of a unit 
direction vector n oriented in the diffusion gradient direc-
tion, and the Einstein notation is used: a summation over 
repeated indices is implied. The diffusion and kurtosis ten-
sors are defined, respectively, as follows:
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where Ri is the i-th component of the diffusion displacement 

vector, E[⋅] is the expectation value, D Dii=
1

3 , and 

td = Δ − δ/3, with Δ/δ being the separation/duration of the 
diffusion gradient pulses. For an isotropic diffusion, 
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of Dij and Wijkl was 6 and 15, respectively; hence, 21 mea-
surement points in the q-space other than the origin (b = 0) 
with 15 diffusion gradient directions were required at the 
least. For the full estimation of tensors appearing in higher 
order terms than the second, a larger number of diffusion 
gradient directions are required. To avoid this increment in 
the diffusion direction, we adapted the method proposed in 
[10, 11], in which the following rotational invariant, known 
as the mean kurtosis, was estimated:
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where W(n) = ninjnknlWijkl. From
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we have
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is the quantity composed of the measured signals, and  
n(1) = (1,0,0)T, n(2) = (0,1,0)T, n(3) = (0,0,1)T, n

T1 0 1 1 2+( ) = ( ), , / ,  

n
T2 1 0 1 2+( ) = ( ), , / ,  n

T3 1 1 0 2+( ) = ( ), , / ,  n
T1 0 1 1 2−( ) = ( ), , / ,

,
 

n
T2 1 0 1 2−( ) = −( ), , / , and n

T3 1 10 2−( ) = −( ), , / . Using Eq. 

(42.6), we can obtain D  and W  using the nine different  
diffusion gradient directions, even if higher-order b terms 
were used.
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42.2.2  Maximum Likelihood (ML) Estimation

The Gaussian likelihood function is expressed as

 
p AX BX A BX A

T     
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where BX A
 

−  is the residual vector composed of the statis-
tical errors in the measured signals, and Σ is the variance–
covariance matrix, which will be defined later. The vector 
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where M is the total number of non-zero b-values. The vector 


X  is
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where V D W= 2 , cn is the coefficient parameter of term bn 
on the right-hand side of Eq. (42.6), and Nt is the truncation 
order: higher-order terms than Nt in Eq. (42.1) and Eq. (42.6) 
are truncated. Matrix B is
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The variance–covariance matrix is the following diagonal 
matrix:

 
Σ =  diag σ σ σ1
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assuming δS(b, n)  =  δS(0). For the signal values in Eq. 
(42.13), we used the measured values. Maximizing Eq. 
(42.8) is equivalent to minimizing
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The solution to the minimization problem is [9]
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where
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It is noteworthy that Σ˜  is independent of the factor 
δS(0)/S(0), and an ML estimation is not required to obtain 
the value.

42.2.3  Bayesian Estimation

Bayes’ theorem gives the posterior distribution as

 
p X A p AX p X
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We assume that the prior distribution p X
( )  is Gaussian:
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The method used to determine 


X  and Σp will be ex plained 
in the next subsection. The posterior distribution becomes
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where
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(42.20)

We used the expectation value of 


X  as the estimate, 
which is the same as the solution of the minimization prob-
lem of f X

( )  expressed in Eq. (42.20). f X
( )  can be consid-

ered as the sum of the objective function defined in Eq. 
(42.14) and regularization terms. The solution to the minimi-
zation problem is [9]
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In contrast to ML estimation, we must determine the fac-
tor {δS(0)/S(0)}2 to calculate 

��X . This factor corresponds to 
a quantity proportional to the hyperparameter of the regular-
ized least squares method (LSM), which is a multiplication 
factor of the regularization term and modulates the degree of 
the effect. In fact, when we factor out {δS(0)/S(0)}−2 on the 
right-hand side of Eq. (42.20), the first term becomes inde-
pendent of the factor, and the second term is multiplied by 
{δS(0)/S(0)}2. Whereas the hyperparameter is artificially 
selected in many cases of the regularized LSM, the parame-
ter is determined by the signal-to-noise ratio (SNR) at b = 0 
(S(0)/δS(0)) in the Bayesian approach. The method to obtain 
{δS(0)/S(0)}2 is described in the next subsection.

42.2.4  Statistic Signal Errors and Prior 
Distribution

To obtain the values of 


X , Σp, and δS(0)/S(0) in Eq. 
(42.21), we first implemented ML estimation, i.e., we 
obtained 

��X 0  using Eq. (42.15) for all voxels in a slice, 
except those indicating subnoise signals and have the set 
��X 0{ } . We assign the median and the normalized interquar-

tile range (NIQR) of 
��X 0{ }  to 



X  and Σp, respectively.
The factor {δS(0)/S(0)}2 is obtained by [9]
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where 
��X 0  is defined by Eq. (42.15). The expectation value 

in Eq. (42.22) was estimated as the median for a slice.

42.2.5  Updating of Prior Distribution 
and Successive Estimation

After one Bayesian estimation, we have a set of 
��X , from 

which a new prior distribution of 


X  can be obtained. We 
successively estimated 

��X  using the same procedure as in 
Sects. 42.2.3 and 42.2.4 with the updated prior distribution. 
The Bayesian update was performed until all prior distribu-
tions remained unchanged.

42.3  Method

42.3.1  Human Data Study

The MRI data of a normal human brain available at https://
doi.org/10.5061/dryad.9bc43 [12, 13] were used to test the 
proposed method. The data acquisition apparatus and the 
conditions were as follows [12]: A Siemens Trio 3 T equipped 

with a 32-channel head coil and a double-spin echo diffusion 
weighted (DW) echo planar imaging sequence. DW image 
data were recorded at b = 0 and b = 200–3000 mm/s2 in steps 
of 200 mm/s2 along 33 DW directions. Cerebrospinal fluid 
suppression (inversion recovery) was performed. 
TR/TE/TI  =  7200/116/2100  ms, and 19 consecutive slices 
were acquired with isotropic resolution, 2.5 mm; matrix size, 
96 × 96; phase encoding direction, A–P; SNR at b = 0, 39. 
We used the DW image data of b-values increasing from 200 
to 2400 s/mm2 in increments of 200 s/mm2 in nine DW direc-
tions of n(i), n(i+)

, and n(i−) (i = 1,2,3) with one b = 0 image. 
The mean kurtosis maps were produced for truncation orders 
Nt = 2–6.

42.3.2  Numerical Phantom Study

We created several numerical phantoms corresponding to 
certain brain tissues by assuming multicomponent models 
comprising free and restricted diffusion signals [14–16]. 
Herein, we only present the results for white matter (WM). 
The simulated signal is expressed as
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and q b t= / d . This is the signal model for a microstructure 
in which cylindrical fibers are arranged along the z-axis. f, 
R1, Din, and D are adjusted such that the mean kurtosis of the 
WM obtained from the human data study can be reproduced 
using natural values and S0 is arbitrary. The region of interest 
(ROI) for the WM is shown in Fig.  42.2b. Rician random 
noise (SNR  =  39) was added to the simulated signal. The 
sample size was 104.

42.4  Results

Figure 42.1 shows the mean kurtosis maps of the normal 
human brain. When Bayesian estimation was not applied, the 
maps obtained using higher-order terms (Nt  >  2) became 
extremely noisy. When Bayesian estimation was applied, the 
noise has been improved on all maps, especially for Nt > 2. 
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Furthermore, the figure shows that the estimated mean kurto-
sis increased with the truncation order (see the legend bar of 
each map).

Figure 42.2 shows the truncation order dependence of the 
mean kurtosis estimated for the numerical phantom and nor-

mal brain WM. The plot and error bars denote the median 
and NIQR, respectively. The numerical phantom study 
results were obtained for the following model parameters: 
f  =  0.815, R1  =  4.50  μm, Din  =  1.5  ×  10−3   mm2/s, and 
D  =  3.30  ×  10−3   mm2/s. These results approximate the 
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results of the human data study, and the kurtoses approached 
the true value as the truncation order increased.

42.5  Discussion

When the truncation order was large, the mean kurtosis maps 
became extremely noisy unless Bayesian estimation was 
applied. The noise was generated from overfitting caused by 
the increase in the fitting parameters. The Bayesian approach 
effectively suppressed this overfitting and hence enabled the 
use of a large truncation order.

The medians of the Bayesian mean kurtosis maps were 
similar to those obtained by the non-Bayesian estimation 
(not shown). This implies that although the Bayesian 
approach improved the precision, it did not affect the 
accuracy.

Increasing the truncation order was expected to decrease 
the truncation error. We confirmed that the estimated kurtosis 
approached the true value as the truncation order increased 
by using a numerical phantom that reproduces the results of 
the human data study. Although the numerical phantom that 
reproduces the estimates of the human data study is not 
unique, this result suggests that the use of higher-order terms 
improved the accuracy.

In the proposed method, the repetition of the Bayesian 
update was terminated when all prior distributions 
remained unchanged. The procedure excluded the arbi-
trariness of the repetition number in Bayesian kurtosis 
estimation.

When the Bayesian update completed, the variances of 
the prior distributions for coefficients of higher order terms 
than the second become zero, whereas those of the first- and 
second-order term coefficients remained non-zero. This 

means that the higher-order term coefficients were fixed to 
certain constants in the fittings. In the conventional method 
(Nt = 2), the coefficients of all higher-order terms were fixed 
to zero. Thus, the proposed method can be said to generalize 
this zero fixing to non-zero fixing. Although the fixed coef-
ficients for the higher-order terms may be unrealistic, the 
non-zero fixing was a better approximation than the conven-
tional uniform zero fixing, and onsequently produced more 
accurate estimates.

An interesting phenomenon was obtained in the noiseless 
simulation of the higher-order coefficient estimations for 
Nt = 3–30: when Nt > 6, the estimated higher- order coeffi-
cients fluctuated with the truncation order, whereas the esti-
mated first- and second-order term coefficients (i.e., the 
diffusivity and kurtosis) maintained their true values (not 
shown). A mathematical understanding of this phenomenon 
should be endeavored.

42.6  Conclusions

Bayesian estimation reduces the overfitting-derived statisti-
cal error in the mean kurtosis estimation, thereby enabling 
the use of large truncation order for the kurtosis estimation. 
The increasing truncation order decreases the truncation-
derived systematic error. Hence, DKI analysis using higher-
order cumulant terms with Bayesian updating provides a 
robust and accurate kurtosis estimation.
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Micro-CT and Lungs

Shota Nakamura

Abstract

Micro-computed tomography (μCT) provides extremely 
high-resolution images of samples as a non-destructive 
inspection tool, and then we can obtain images compara-
ble with microscopic images. We have attempted to take 
high-resolution images of the human lung using μCT. In 
future, if histopathological diagnoses of pulmonary nod-
ules can be obtained by μCT with the living body, there 
will be no need for lung cancer patients to be examined 
for bronchoscopic or surgical lung biopsy preoperatively. 
We compared μCT images with microscopic images. 
Resected human lungs were fixed by the Heitzman meth-
ods, and after then were taken by μCT.  Those images 
gained by conventional HRCT and μCT were compared 
in details. Alveolar ducts and pulmonary alveoli could be 
identified on the μCT images. The resolution of these 
images was comparable with that of images gained by × 
40 magnification on HE-stained samples. On μCT images, 
ground glass opacity areas on HRCT were seen as thick 
walls of alveoli, and those areas were corresponded with 
lepidic growth pattern microscopically. μCT images well 
divided the resected lung into normal lung area and tumor 
area. This article provides an overview of our study find-
ings regarding the μCT and lungs.

Keywords

Micro-CT · Pulmonary resection · Histopathological 
diagnosis · Lung cancer · High-resolution CT (HRCT)  
Lepidic growth pattern · Ground Glass Opacity (GGO)

43.1  Micro-CT and Lungs

In recent years, Micro-computed tomography (μCT) has 
been developed, and it provides high-resolution images in 
μ-meter order of small samples and can be employed as a 
non-destructive inspection tool. It also enables those μ-scale 
images in sectional or three dimensional. In the past, pre-
pared slides for histological diagnosis were made by labora-
tory technicians spent many hours and put much effort. We 
believe it is possible to make a more accurate, fast, and three- 
dimensional histological diagnosis of lung diseases using 
this new imaging modality. In other words, establishing this 
histological diagnostic technique allows the preparation pro-
cess of making tissue specimens to be substantially omitted. 
Although pleural or vascular invasion could only be observed 
in fragments up until now, this technology enables us to eval-
uate them throughout the entire tumor in addition to poten-
tially understanding invasion of the tumor and measuring the 
tumor diameter in three dimensions. If the μCT can show 
images of a living body in the future, conventional invasive 
examination may be omitted such as a bronchoscopic biopsy 
and open lung biopsy under general anesthesia for histopath-
ological diagnoses prior to treatments. To achieve these 
goals, we have studied to gain clear images by μCT and ana-
lyzed images of excised lungs. This article provides an over-
view of our study findings regarding the μCT and lungs.

43.2  Motivation and Findings of Study

We have investigated the relationship between CT imaging 
and histological findings in lung cancer with great interest [1]. 
As our study collaborator, the group of Prof. Kensaku Mori 
et al. at the Faculty of Information of Nagoya University has 
been working on studies involving Multidisciplinary 
Computational Anatomy [2]. One of these includes 
Micro-CT. If we can image the excised lungs in our routine 
practice with Micro-CT and make a histological diagnosis 
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from these images, we will be able to reduce the time spent on 
the preparation of histopathological specimens requiring a lot 
of time and processing. Based on this idea, we conducted a 
study called “Establishing Histological Diagnostic Technology 
using Micro-CT Imaging.” One achievement so far is that we 
were able to obtain highly precise Micro-CT images of the 
excised lungs and discovered the fixation conditions and imag-
ing conditions of the lungs. We also found that regions exhibit-
ing a lepidic growth pattern, as a subcategory of lung 
adenocarcinoma, could be identified using Micro-CT imag-
ing. In addition, we were able to three- dimensionally match 
the positions of high-resolution CT (HRCT) images used in 
clinical practice, Micro-CT images, and histopathological 
images [3]. Where do regions in the HRCT images match in 
the histological images? Regarding this question, the exis-
tence of Micro-CT between the two images can deepen the 
understanding of the relationship between the two. This dem-
onstrates the current clinical importance of Micro-CT images. 
We will use actual images to explain this.

43.3  Precision of Images

In order to obtain precise Micro-CT images of excised lung 
specimens obtained from surgery, we have repeatedly 
improved the method of extending and fixing the specimens 
along with the conditions of Micro-CT imaging. As a result, 
we have obtained the most precise Micro-CT images ever 
among those which have been reported for the lungs. Method 
of collection of specimens, method of extension/fixation of 
specimens, and imaging conditions are shown below. These 
study activities (specimen collection/extension and fixation/
Micro-CT imaging/analysis and publication) are conducted 
upon receiving approval from the bioethics review commit-
tee at our facility as well as the informed consent of patients.

Collection of specimens: Among the excised specimens, 
the parts required for the diagnosis and treatment of the 
patients are used to prepare histopathological samples for 
histopathological diagnosis after extension/fixation using 
formalin. Among the other parts not associated with histo-
pathological diagnosis, a part sized 2 cm × 2 cm × 1 cm in 
which the border between tumor margin and the normal lung 
can be observed in the center is excised and collected.

Method of extension/fixation: Based on the Heitzman 
method as a classical lung extension/fixation method [4], we 
improved the drug ratio by raising the viscosity slightly for 
extension/fixation. The mixing ratio of the solution for exten-
sion/fixation was 11:5:2:2 (polyethylene glycol 400: 95% 
ethyl alcohol: 40% formalin: water). After injecting the 
extension/fixation solution with a syringe into the specimen 
by avoiding the area most wanted to observe, pressure was 
applied to 30 cm H2O and the specimen was dipped in the 
solution. The specimen was removed from the extension/

fixation solution after three days, wrapped gently with soft 
water-absorbing paper, in practice, wrapping with commer-
cial tissue paper in multiple layers, then wrapping with 
KimWipes in multiple layers and sealing in a plastic con-
tainer. After 3 days of dehydration, the creation of a speci-
men fixed for imaging was completed (Fig. 43.1).

Imaging device and conditions: The Micro-CT used for 
imaging is the “inspeXio SMX-90CT Plus,” (Fig.  43.2) a 
desktop microfocus X-ray CT system made by Shimadzu 
Corporation. Conventional CT devices take images using the 
difference in the “degree of absorption” of X rays transmit-
ting through the subject, then non-destructively imaging the 
internal structure of a subject after reconstruction process-
ing. On the other hand, Micro-CT uses a microfocus X-ray 
device capable of focusing on an extremely small subject at 
the X-ray source; therefore, it is able to obtain a high- 
resolution image by geometrical enlargement. This allows 
images of the inside of the subject with a high resolution to 

Fig. 43.1 Specimen of the resected lung after fixation

Fig. 43.2 We used this desktop microfocus X-ray CT system for taking 
images produced by Shimadzu CO.LTD. “inspeXio SMX-90CT Plus” 
http://www.an.shimadzu.co.jp/ndi/products/x_rylk/inspexio1.htm
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be non-destructively obtained. The device used in this study 
realizes spatial resolution up to 6 μm and with high contrast, 
allowing it to be used in R&D, quality control, and accident 
analysis in a variety of fields. For medical purposes, it is 
mainly used for research purposes, focusing on bones. For 
the lungs, being an organ with a high contrast under pneu-
matic conditions, imaging studies using this device are con-
ducted around the world. Regarding the imaging conditions, 
the noise is lowest and the resolution highest at an X-ray tube 
voltage of 90 kV and X-ray tube current of 110 μA. Imaging 
specimens are shot in a stick bin. The vibration of device 
may be passed to the specimens in order to blur the image or 
dislocate the specimens. As a measure, X-ray transmitting 
Styrofoam is stuffed as a fixative in the stick bin so that the 
specimens are not dislocated. We used a 3D printer to create 
a fixture having the shape of the cap of the stick bin contain-
ing the specimens. When taking pictures, the specimens 
were fixed with the fixture to prevent blurred images.

Micro-CT image: Terminal bronchioles and alveolar 
walls, as the terminal units of the airway, could be observed 
(Fig. 43.3). We used this image data for 3D construction and 
could observe the inside of the air space as desired (Fig. 43.4).

43.4  Histological Diagnosis of Lung Cancer 
Using Micro-CT Imaging

The images taken by Micro-CT of lung adenocarcinoma 
showing Ground Glass Opacity (GGO) in HRCT images, 
made it visually clear those of differences between the nor-
mal lungs and the lung cancer region in thickness of alveolar 
wall (Fig. 43.5). Lung adenocarcinoma visualized as a GGO 
lesion on HRCT images is a proliferation form characteristic 
of a subtype of lung adenocarcinoma, histopathologically 
called a lepidic growth pattern. It is equivalent to the part in 
which the cancer cells are growing along the normal alveolar 
wall. With the alveolar space maintaining aeration, the alve-
olar wall became thicker than the normal alveolar wall. This 
is visualized as GGO lesions in HRCT images. The HRCT 
images cannot visualize the thickness of the alveolar wall 
with any degree of certainty. We are only able to recognize 
regions with slightly reduced permeability called Ground 
Glass Opacity. The HRCT image can visualize the normal 
alveolar wall thinly and the alveolar wall equivalent to the 
GGO lesions thickly, clearly differentiating the division of 
the two. In order to demonstrate this numerically, we com-
pared the “thickness” of the normal alveolar wall and the 
thick alveolar wall equivalent to GGO lesions. For the alveo-
lar wall thickness, we took measurements at 10 locations 
each for normal alveolar walls and the alveolar wall equiva-
lent to GGO lesions. The average value was defined as the 
alveolar wall thickness. A total of 10 specimens were com-
pared using the student t-test. The WHO classification of 
lung adenocarcinoma is shown as follows: three cases of 
non-invasive adenocarcinoma (one case of adenocarcinoma 
in situ, two cases of minimally invasive adenocarcinoma); 
and seven cases of invasive adenocarcinoma (three cases of 
papillary predominant, four cases of lepidic predominant). 
Upon measurement, the median of the normal alveolar wall 
thickness was found to be 0.039 (0.025–0.060) mm, while 
the median of the thickness of alveolar wall equivalent to 
GGO lesions was 0.088 (0.069–0.102) mm. The thickness of 
the alveolar wall was significantly different (p < 0.001). In 

Fig. 43.3 Terminal bronchioles and alveolar walls, as the terminal 
units of the airway, could be observed on micro-CT images

Fig. 43.4 Normal lung around the lung cancer. Pleural indentation was 
seen

43 Micro-CT and Lungs
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addition, matching of the positions in HRCT images/
Micro-CT images/histopathological images demonstrated 
that regions with thick alveolar walls in the Micro-CT images 
match those histopathologically exhibiting the lepidic growth 
pattern [5]. Based on these results, the regions visualized as 
GGO components in the HRCT images were visualized as 
alveolar walls with thickened stroma. This scientifically 
clearly differentiated between the division of the normal 
alveolar wall and the alveolar wall as the GGO component. 
In other words, the Micro-CT can differentiate the regions 
histopathologically demonstrated as cancer and the normal 
regions, as the first step in the histological diagnosis of can-
cer by Micro-CT.

43.5  Micro-CT Playing a Role in Filling 
the Gap Between HRCT Images 
and Histopathological Images

We were able to match the anatomical positions in Micro-CT 
images, histopathological images, and the HRCT images 
used in clinical practice [6] (Fig. 43.6). Based on this, the 
regions recognized as lung cancer in Micro-CT images can 
be histopathologically diagnosed as lung cancer and it can be 
confirmed whether the two diagnoses were consistent. In 
fact, Micro-CT imaging enabled the diagnosis of a lepidic 
growth pattern, as an advanced form of lung adenocarci-
noma. “How regions of lesions recognized on histopatho-
logical images are visualized in HRCT images” could be 
more accurately grasped by matching the positions of the 

three images using Micro-CT images as an intermediate 
between the two. Not only does this mean that if Micro-CT 
becomes capable of imaging living bodies in the future, it 
would be a very useful medical device, but also that Micro-CT 
plays a role in filling the gap between HRCT images and 
histopathological images. For example, for HRCT images 
and histopathological findings for diagnosis of interstitial 
pneumonia, the diagnosis method and sites are not related to 
each other. Using Micro-CT images as an intermediate 
between them may contribute to the pathological clarifica-
tion and diagnosis of interstitial pneumonia.

43.5.1  Future of Micro-CT and the Lungs

The greatest advantage of Micro-CT is that it can non- 
destructively visualize the internal part of the subject in 
detail. When applied to lung imaging, the most important 
research enables imaging of living bodies and the realization 
of histological diagnoses without invading the human body. 
In other words, we believe that the major goal in the near 
future should be omitting conventional invasive tests, such as 
bronchoscopic biopsy and open lung biopsy under general 
anesthesia, performed for pre-treatment histological diagno-
sis for lung lesions. Moreover, by combining histopathologi-
cal diagnosis using Micro-CT for living body imaging and 
operation navigation techniques, we may be able to histo-
pathologically completely remove cancers without remnants 
during surgery.

Furthermore, Micro-CT images may facilitate our under-
standing of lung disease by filling the gap between HRCT 
images and histopathological images, as stated above. 
Among the previously reported studies of lung diseases 
using Micro-CT, some observed alveoli and terminal bron-
chioles, while others conducted image analyses on small 

Fig. 43.5 We can visually recognize the difference in thickness of the 
alveolar wall between the normal lungs and the lung cancer region

Fig. 43.6 We were able to match the anatomical positions in Micro-CT 
images, histopathological images, and the HRCT images used in clini-
cal practice

S. Nakamura
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airway diseases (cystic fibrosis and COPD) and reported 
them as useful in order to elucidate the pathology of these 
diseases [7, 8]. This may also be applied to the diagnosis of 
rejection responses in the early stages of interstitial pneu-
monia and after lung transplantation. Although the histo-
logical diagnosis of excised lungs using Micro-CT has 
nearly been achieved, there are some challenges. To realize 
the histological diagnosis of lung lesions by Micro-CT, 
detailed images of the inside part of the alveolar stroma and 
the tumor must be obtained. This requires the evolution of 
Micro-CT itself, improvement of the method of extension/
fixation and imaging conditions, and adding contrast inside 
the specimen. We must also prepare for the imaging of liv-
ing bodies using Micro-CT. It is necessary to establish the 
grading system in the order of features that are most likely 
to be cancer on μCT images. This requires the collection and 
analysis of a large amount of specimens and image data. 
Above all, the evolution of the Micro-CT device itself is 
awaited, particularly improvement of the resolution, minia-
turization, and improved technology for living body imag-
ing. We believe these will be accomplished in the near 
future, so we need to prepare for it under the given 
conditions.

43.6  Conclusion

Based on previous studies of the Micro-CT on pulmonary 
images, Micro-CT must contribute to the elucidation of lung 
diseases. Using advanced image processing techniques from 
the information engineering field, a large amount of data 

obtained from images of excised lungs by Micro-CT can 
directly lead to histological diagnosis and be reflected and 
applied to clinical practices. This area may also contribute to 
the accelerated development of Multidisciplinary 
Computational Anatomy defined by space axis, function 
axis, and pathology axis.
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Real-Time Endoscopic Computer  
Vision Technologies and Their 
Applications That Help Improve 
the Level of Autonomy of Surgical 
Assistant Robots
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Abstract

As AI technologies develop at a rapid rate, studies about 
the autonomy of surgical assistant robots are drawing 
increasing attention. In this chapter, we briefly introduce 
new endoscopic computer vision technologies (a stereo 
matching engine and a surgical instrument tracking sys-
tem) and their applications (calculation of the distance 
between the tip of the instrument and the organ surface, 
and estimation of the load of the tip of the instrument dur-
ing counter-traction against the organ) for the autono-
mous control of surgical assistant robots.

Keywords
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Counter-traction

44.1  Introduction

As AI technologies develop rapidly, studies about the auton-
omy of surgical assistant robots are drawing increasing 
attention [1]. Chinzei et al. discussed the importance of risk 
analysis for auto-diagnosing devices with AI technologies 
and AI-based surgical robots from the viewpoint of regula-
tory science [2]. Based on the six levels of auto-driving cars 
[3] defined by the Society of Automotive Engineers 

International, Yang et al. [4] proposed six levels of autonomy 
(LoAs) for surgical robots and Haidegger [1] revised them: 
LoA 0 (no autonomy), LoA 1 (robot assistance), LoA 2 
(task-level autonomy), LoA 3 (supervised autonomy), LoA 4 
(high-level autonomy), and LoA 5 (full autonomy). 
According to a recent study that gives an overview of cur-
rently available autonomous functions in surgical robots [1], 
even the da Vinci (Intuitive Surgical Inc.) [5], the most 
widely used surgical assistant robot, belongs to LoA 1. 
Therefore, LoA improvements for surgical assistant robots 
are becoming important areas. In this chapter, we first intro-
duce the two fundamental real-time computer vision sys-
tems: (1) a high-performance stereo matching engine that 
calculates depths from any stereoscopic endoscope output 
and (2) a vison-based maker-less surgical instrument track-
ing system applicable to different endoscopic surgeries. 
Then, we describe their applications (calculation of the dis-
tance between the tip of the instrument and the organ sur-
face, and estimation of the load of the tip of the instrument 
during counter-traction against the organ). These applica-
tions demonstrate that our approach may help improve the 
LoAs of surgical assistant robots.

44.2  Technology I: Calculation of Depths

Suppose that a stereoscopic endoscope observes a three- 
dimensional (3D) object point during surgery. Without loss 
of generality, we can assume a standard (parallel) stereo 
endoscope realized through image rectification (Fig. 44.1a). 
In this case, we can denote the projected positions of the 3D 
point onto the right and left images, and the corresponding 
binocular disparities can be denoted by (i,h), (j,h), and 
d = j − i (Fig. 44.1b). Detecting the disparities d by stereo 
matching, we can easily calculate the depths (the distance 
between the endoscopic camera and the object) as bf/d, 
where b and f indicate the baseline and focal lengths, respec-
tively. As has been known for more than 35 years, dynamic 
programming (DP) can be used to match each pixel on the 
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left image with the corresponding pixel on the right image 
[6]. Suzuki et al. [7] developed high-performance DP stereo 
matching engine that controlled the trade-off between the 
correct-match percentage and the processing speed. This 
engine achieved correct-matching rates of 94.4% and 92.1% 
on typical stereo images in the Middlebury Stereo Datasets 
[8] at processing speeds of 21.0 MDE/s and 198.3 MDE/s, 
respectively (MDE/s denotes one million disparity estima-
tions per second). Suzuki’s group then showed that this 
engine was also applicable for calculating the depths of 
organ surfaces and surgical instruments simultaneously, 
from any stereoscopic endoscope output. Figure 44.1c shows 
a stereo–image pair during laparoscopic surgery, and 
Fig.  44.1d shows the disparity detection result (disparity 
map) of the proposed system.

44.3  Technology II: Instrument Tracking

A new visual tracking method for the tips of surgical instru-
ments is developed in this research as an important reference 
for the autonomous control of endoscope-holding robots. 
The position of the tip of surgical instruments in endoscopy 
is important. In this technology, only RGB images are used; 
no external sensor or instrument-mounted marker is needed. 
Unlike the conventional vison-based, marker-less surgical 
instrument tracking methods [9] and recent deep-learning- 
based methods [10], our method is applicable to different 
endoscopic images, such as cholecystectomy and sigmoidec-
tomy images, and the simultaneous detection and tracking of 
more than one surgical instrument are feasible. First, bina-
rization is applied to detect the instrument region. The pro-
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Fig. 44.1 Calculation of depths from a stereoscopic endoscope output. 
The standard stereo camera geometry (a), projections of a 3D point and 
disparities (b), example of a stereo–image pair (c), and the disparity 

detection result (d) (Images courtesy of Prof. Hisashi Suzuki and Dr. 
Hitoshi Katai)
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posed binarization algorithm focuses on the relative 
relationships among the R, G, and B values of the organ sur-
face and detects the non-organ region as the instrument 

region. The binarization processes for endoscopic images in 
cholecystectomy and sigmoidectomy are formulated as Eqs. 
(44.1) and (44.2), respectively.
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In Eqs. (44.1) and (44.2), rjh, gjh, and bjh (in our case, rjh, 
gjh, bjh ∈ {0, 1, 2, ⋯, 255}) indicate the R, G, and B values of 
the two-dimensional (2D) endoscopic image coordinates 
(j,h) (Fig.  44.1b). pjh is the binarization result, and in our 
case, threshold is set to 10. After the binarization, the con-
ventional morphological operations (dilation followed by 
erosion) and labeling are conducted. Then, the instrument 
region is narrowed down to the region that satisfies the fol-
lowing conditions: (i) the area of the region is more than a 
threshold (in our case, 300 pixels), (ii) the region contacts the 
image boundary, and (iii) (np − nb)/nb > 1, where np indicates 
the perimeter of the region and nb indicates the number of 
pixels that contact the image boundary. After the relabeling 
of the remaining instrument region, the centroid, principal 
axis, and tip position are calculated per instrument region, 
and region matching between adjacent frames is conducted 
based on the Euclidean distance between the centroids. 
Figure 44.2 shows an example of the use of four kinds of 
image sequences: #1, #2, #3, and #4 (100 frames each). In 
this technology, the mean pixel error (mean Euclidean dis-
tance between the tip position of the surgical instrument and 
its actual value) is below 35 pixels (the image sizes are either 
300 × 225 pixels or 400 × 225 pixels). The average image 
processing time is 3.6 ms/frame. As for the detection rate of 
instruments, three out of four image sequences show 100%, 
and the overall detection rate is 94%.

44.4  Application I: Controlling a Surgical 
Instrument-Holding Robot

With the integration of a stereo camera with the depth calcu-
lation function described in Sect. 44.2 and an optical 3D 
measurement device, two fundamental technologies for con-
trolling surgical instrument-holding robots were developed 

in this research. Their functions are as follows: (1) estima-
tion of the distance between the tip of the surgical instrument 
and the organ surface (the insertion direction distance), and 
(2) directional control of the instrument. The proposed sys-
tem uses the commercial optical tracking system Polaris 
(Northern Digital Inc.) [13] to measure the 3D position/pose 
of both the instrument and the endoscope in real time and 
virtually project any point on the longitudinal axis of the 
instrument onto the stereoscopic endoscopic images without 
any image processing techniques under the assumption that 
the instrument is a rigid body (deformation is zero) [14]. To 
do this, precise camera calibration (calculation of the 3D–2D 
projection matrix) is required in advance. We performed this 
using Zhang’s method [15]. The most beneficial feature of 
this technology is that we can obtain two pieces of disparity 
information (real and virtual) simultaneously using the ste-
reo camera and 3D measurement device, respectively. As 
shown in Fig. 44.3a, we can estimate the intersection of the 
longitudinal axis of the instrument and the organ surface as 
the point at which the two disparities (real and virtual) are 
the same. Thus, we can calculate the distance between the tip 
of the surgical instrument and the organ surface (the inser-
tion direction distance), which is essential for controlling 
surgical instrument-holding robots. Based on the above tech-
nology, two functions were installed in ZEUS (Computer 
Motion Inc.) [16], an instrument-holding surgical robot nor-
mally categorized as LoA 1 (Fig.  44.3b): (1) autonomous 
control for adjusting any out-of-sight instrument to the cen-
ter of the image and (2) calculation and display of the inser-
tion direction distance such that a target point on the image, 
given by one mouse click, can be tracked by the robot. These 
new functions have received positive comments from sur-
geons, which indicates that they are definitely needed in 
practice and successfully promote a robot to LoA 2 (task- 
level autonomy).
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Fig. 44.2 Visual tracking of the tips of surgical instruments. The left 
figures show the detected instrument regions, and the right figures show 
the estimated instrument tip positions. Example from porcine cholecys-
tectomy sequence #1 (a), example from human cholecystectomy 

sequence #2 (b), example from human sigmoidectomy sequence #3 (c), 
and example from human sigmoidectomy sequence #4 (d) (Images 
courtesy of Mr. Wataru Endo). Original image sequences #2 and #4 are 
available in DVD-ROM from published books [11, 12], respectively

a

b

c
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44.5  Application II: A Tip Load Calculation 
System for Surgical Instruments

A tip load calculation system for surgical instruments that 
uses an optical 3D measurement device and image process-
ing was developed with consideration for the autonomous 
control of instrument-holding robots. As described in Sect. 
44.4, with the use of the commercial optical tracking system 
and the conventional camera calibration technique, the posi-
tion of the tip of the instrument projected onto endoscopic 
images can be precisely predicted under the assumption that 
the deformation of the instrument is zero. In our system, the 
real 2D and 3D positions of the tip of the instrument can also 
be extracted from the real images using the techniques 
described in Sects. 44.2–44.3. When the instrument is not 
contacting the organ (such as in Sect. 44.4), the predicted tip 
position based on the 3D optical tracker will coincide with 
the real tip position (Fig. 44.4a). When the instrument pro-
vides counter-traction against the organ, however, gaps arise 
between the virtual and real positions (Fig. 44.4b) because 
the instrument would bend (Fig. 44.4c, d). We can calculate 
the 3D gaps, called “deflection (say v),” if we have the ste-
reoscopic endoscope described in Sect. 44.2. In this case, the 
load on the tip of the instrument can be estimated as follows. 
As the surgeon always holds the handle part of the instru-
ment during surgery, the instrument can be basically mod-
eled as a cantilever under concentrated load (say Pfree) at the 
tip end. In practice, we can directly obtain the relationship 
between Pfree and v by fitting a regression line in advance. 
That is, once the deflection v is measured, the load Pfree(v) is 
estimated. For real endoscopic surgery, the instrument should 
be modeled as a cantilever with support at the trocar port 
under concentrated load (say Psupport) at the tip end part. In 
this case, we have

 

P v a
L

a L a
P vsupport free,( ) =

+( ) ( )4

3

3

2
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(44.3)

In Eq. (44.3), L means the length of the instrument and a 
indicates the insertion length from the trocar port, which can 
be easily estimated by measuring the 3D positions of the port 
(fixed) and the tip of the instrument simultaneously with the 
optical tracking system during surgery. Since the instrument 
length L is known in advance, once the deflection v and the 
insertion length a are measured, the load Psupport is estimated. 
Experiments are conducted to show the difference between 
an expert surgeon and novices, with a focus on the difference 
in their counter-traction (Fig.  44.4e). The counter-traction 
load Psupport of the expert is more stable, and his task comple-
tion time is the shortest; the relationship between the counter- 
traction and dissection quality is thus confirmed. Therefore, 
the system is applicable for surgical education and training 
in addition to surgical robots. Kawai et al. developed LoA 1 
forceps-holding robots for grasping and pulling organs [17, 
18]. The counter-traction force estimation function is useful, 
especially for keeping the pulling state after the organ is 
grasped, which may help improve the LoA.

44.6  Conclusion

This chapter briefly reports the research progress about the 
improvement of the LoAs of surgical assistant robots. The 
stereo endoscope system developed through this study is an 
intraoperative 3D reconstruction system that can probably be 
a new modality in the construction of a multidisciplinary 
computational anatomy (MCA) model. The integration of 
other MCA modalities is promising for the further improve-
ment of LoAs in robotic surgery.

d

Fig. 44.2 (continued)
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[Normal case] The predicted tip position
coincides with the real tip position.
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[Counter-traction case] Gaps arise between
the virtual and real tip positions.
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Fig. 44.4 Estimation of the load of the tip of the surgical instrument. 
Comparison of the integration of 3D measurement and image process-
ing when the instrument is not tugging the organ (a) and when it is 
tugging the organ (b), example of deflection on the image (c), deflection 

diagram of the instrument (d), and the counter-traction force estimation 
results (e) (Photos courtesy of Mr. Shougo Kumaou, Dr. Yuji Nishizawa 
and Prof. Toshikazu Kawai)
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Endoscopy: Computer-Aided  
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Abstract

The quality and quantity of endoscopic images that physi-
cians obtain are dramatically increasing along with the 
recent advance in imaging technologies. However, bene-
fits coming from these rich data may not be effectively 
utilized by all the endoscopists due to the lack of shared 
knowledge and experience. The use of artificial intelli-
gence (AI) as a decision support during endoscopy is 
catching great attention as a measure to overcome this 
issue. In the colonoscopy field, AI is expected to facilitate 
polyp detection, prediction of polyp pathology, and pre-
diction of invasion depth of colorectal cancer. With the 
use of AI technologies, the macroscopic anatomy (i.e., 
endoscopic view) is matched or fused with microscopic 
findings (i.e., pathological finding) in real time during the 
endoscopic examination. This new methodology allows 
clinical doctors to make a decision much easier than the 
conventional method. These research concepts and results 
well fit in the anatomy-pathology axis of the multidisci-
plinary computational anatomy (MCA) model.
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45.1  Interpretation of Endoscopic Images: 
Challenging!

The quality and quantity of endoscopic images that physi-
cians obtain are dramatically increasing along with the recent 
advance in imaging technologies available in endoscopy 
units. However, benefits coming from these rich data may be 
effectively utilized only by expert endoscopists because con-
siderable expertise in image interpretation is required to 
effectively utilize the value of the data. It is broadly known 
that endoscopists miss around 20–40% polyps during colo-
noscopy [1] and many endoscopists cannot identify neoplas-
tic change of colorectal polyps with the accuracy of over 
90% [2]. AI tools are catching attention as an attractive mea-
sure to overcome these limitations which inherently exist in 
endoscopy practice. They are expected to bridge the gap 
between advanced technology and physician interpretation 
skill. Theoretically, excellent AI tools are expected to con-
tribute to excellent standards of diagnosis irrespective of 
endoscopists’ skill; however, there are a lot of hurdles for us 
to address before enjoying valuable benefits from the use of 
AI in real colonoscopy practice.

In this chapter, we would like to go over the current status 
of research and development in AI for colonoscopy and share 
some of the challenges we are facing in this academic field.

45.2  AI Tools in Colonoscopy

AI tools designed to help colonoscopy practice can be largely 
classified into three categories: (1) polyp detection 
(Fig. 45.1), (2) prediction of poly pathology (Fig. 45.2), (3) 
prediction of invasion depth of colorecta cancer (Fig. 45.3). 
Colonoscopy is the hottest area of research in the field of AI 
in endoscopy; multiple prospective studies have already been 
reported and multiple AI tools have already been on the mar-
ket. Thus, understanding the situation in AI tools for colo-
noscopy can help have a future perspective on AI-assisted 
endoscopy in general.
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45.2.1  Automated Polyp Detection

From the 2000s, methodologies to detect polyps by utilizing 
various image features (e.g., edge, texture, energy map) were 
thoroughly investigated in the engineering fields. However, 
their diagnostic performance seldom reached a 90% accu-
racy. What is more, in vivo implementation of AI was not 
realized due to a lack of computational power [3, 4]. Recently, 
the development of high-spec graphic processing units 
(GPUs) which could be used for general calculation rather 
than image processing and the emergence of deep learning 
algorithms had completely changed this situation. Improved 
algorithm of deep learning with an aid of GPUs could allow 
highly accurate detection of colorectal polyps during ongo-
ing colonoscopy practice.

Misawa et al. firstly reported in a medical journal that use 
of a convolutional neural network that incorporated time 
effect in its calculation model could allow polyp detection 
with a 90% sensitivity and a 63% specificity according to 
frame-based analysis [5]. Subsequently, Urban et al. showed 

Fig. 45.1 Artificial intelligence tool designed to detect a colorectal 
polyp. The location of the polyp is identified with a bounding box with 
a probability of confidence

Neoplastic: 99 %
Non-neoplastic: 0.0 %

NBIFig. 45.2 Artificial 
intelligence tool that can 
identify neoplastic change. 
This algorithm was developed 
for images obtained with 
endocytoscopy

Non-neoplastic: 5 %

11 %

85 %

Adenoma:
Invasive Cancer:

Fig. 45.3 Artificial 
intelligence tool that can 
predict cancer invasion. This 
algorithm was developed for 
images obtained with 
endocytoscopy

Y. Mori and K. Mori



339

much higher accuracy (i.e., a 93% sensitivity and a 93% 
specificity for polyp detection) by using highly variable 
endoscopic images as learning material [6]. However, these 
studies were ex  vivo researches that used retrospectively 
composed test data; the study results were likely to be in 
favor of the use of AI. Actually, the first prospective study in 
which endoscopists used the AI in a real-time fashion during 
colonoscopy showed controversial results for the use of AI; 
in this study, Klare et al. evaluated the performance of AI in 
55 patients who underwent colonoscopy [7]. The adenoma 
detection rate (ADR, a rate of colonoscopies in which one or 
more adenomas are detected. ADR is considered one of the 
most important quality measures in colonoscopy) was 
29.1%, not a bad value; however, a quarter of the polyps that 
endoscopists could identify were actually missed by the AI 
tool.

However, six randomized controlled trials conducted 
between 2019 and 2020 have turned over the previous 
study results dramatically and provided a strong and posi-
tive impression for the use of AI for polyp detection [8–13]. 
All the RCTs were conducted to compare the ADR between 
colonoscopy with and without AI and provided favorable 
results for the use of AI during colonoscopy. Wang et  al. 
randomized 1058 patients which were allocated into the two 
groups and found colonoscopy with AI yielded a 29% ADR 
while the control group showed a 20% ADR [9]. The results 
of the remaining five RCTs were basically in line with this 
study. Among them, only one study was conducted in a mul-
ticenter fashion while the others were single-center trials; 
Repici et al. conducted the multicenter trial in collaboration 
with three Italian hospitals including a total of 685 patients 
[11]. The participants of the trial underwent colonosco-
pies for various indications such as screening colonoscopy, 
surveillance colonoscopy after polypectomy, diagnostic 
colonoscopy as a follow-up exam to positive fecal immu-
nochemical testing, which means the participants had a 
relatively high risk for the presence of adenomas. This RCT 
revealed a 55% ADR in the colonoscopies with AI while 
a 40% ADR in the standard colonoscopies. The use of AI 
 contributed to the statistically significant increment of ADR 
by approximately 1.3 times.

On the other side, we may find some limitations of the AI 
tools in polyp detection. According to Wang et al., increment 
of ADR was largely attributed to the increased detection of 
tiny (<= 5 mm) adenomas which are considered to have less 
malignant potential compared to bigger ones [9]. This ten-
dency was also confirmed in the study by Repici et al.; the 
use of AI actually did not play any role in the detection of 
clinically more relevant lesions such as polyps larger than 
9 mm in size. Thus, it is not currently expected for AI tech-
nology to find out polyps that are easy to be missed but bio-
logically severe lesions such as non-granular type, laterally 
spreading tumors.

45.2.2  Prediction of Polyp Pathology

45.2.2.1  AI Designed for Magnified Endoscopy
Many researches had been conducted to evaluate the possi-
bility of AI to predict polyp pathology based on magnified 
endoscopy images. Preliminary studies were done in the 
2000s which were focused on the interpretation of pit pattern 
findings under magnified chromoendoscopy [14, 15]. 
Subsequently, magnified narrow-band imaging (NBI, images 
captured with narrow-band spectrum light, which enhances 
vessel appearance and glandular structure) became the next 
popular target of the research [16]. Some of the researchers 
in this area achieved real-time interpretation of the images 
with an aid of AI during ongoing colonoscopy [15, 17]. The 
central idea of the image-interpretation algorithm was to col-
lect the image features as a “bag of features” concept and 
construct the prediction model by analyzing these features 
with a support vector machine. According to the prospective 
trial reported by Kominami et  al., 118 polyps from 41 
patients received a real-time assessment of the AI tool. Their 
pathologies were predicted with a 93% sensitivity and a 93% 
specificity for neoplasm [18].

In this area, use of deep learning is also enthusiastically 
investigated [19, 20]. Chen et al. and Byrne et al. reported 
that their developed software allowed tumor identification 
with over 90% sensitivity. Improvement of the diagnostic 
power and their implementation will be expected as the num-
ber of images used for machine learning increases.

The AI tools designed for magnified endoscopic images 
are considered to harbor two hurdles to be overcome before 
its implementation. First, it is required for endoscopists to 
indicate the area of interest manually for the AI tool to cor-
rectly analyze the relevant polyp. The second hurdle is the 
lack of evidence. Given, only one small prospective study 
exists in this field, it would be too early to conclude the ben-
efits of the use of AI in the optical diagnosis of colorectal 
polyps. Once these barriers are cleared, AI tools for the opti-
cal diagnosis will be widely utilized in clinical practice.

45.2.2.2  AI Designed for Endocytoscopy
Endocytoscopy (520-fold contact-microscope, Olympus 
Corp.) may be one of the most suitable devices for AI appli-
cation because of the following reasons. (1) The contact 
microscopic observation allows that the whole image is sub-
ject to analysis of AI, which is a simple principle. (2) Big 
difference between endomicrosopic imaging and conven-
tional imaging makes it easy for the AI tool to identify 
images that should be analyzed.

The research consortium consisted of Showa University, 
Nagoya University, and Cybernet System Corporation devel-
oped the AI software by utilizing these features of AI tools 
and confirmed it can differentiate neoplastic changes with 
more than a 90% sensitivity in multiple benchmark tests 
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[21–26]. Following these preliminary studies, Mori et  al. 
conducted a large-scale prospective study to evaluate the 
performance of the AI tools in a real-time fashion [27]. The 
study included 791 patients who received colonoscopies 
with the use of endocytoscopy supported by the AI tool. A 
total of 466 diminutive polyps were assessed with a sensitiv-
ity of 93% and specificity of 90%, which is considered 
acceptable performance in clinical use. This software 
(EndoBRAIN®) was approved by the regulatory body in 
Japan as the first medical device using the AI concept. To 
obtain regulatory approval, the research team conducted 
multicenter benchmark testing [28].

Confocal laser endomicroscopy (Cellvizio, Mauna Kea 
Technologies) is another endomicroscopy on the market. 
There were researches to explore the application of AI for 
this endomicroscope; however, the quality and quantity of 
the researches were limited [29, 30].

45.2.2.3  AI for Autofluorescence Endoscopy
There are roughly two kinds of researches on the use of AI 
for autofluorescence endoscopy. One is for autofluorescence 
spectroscopy (WavSTAT4, Pentax, Japan), while the other is 
for autofluorescence imaging (Olympus Corp., Japan). Two 
small prospective trials were conducted to assess the first 
product with controversial results [31, 32]. However, it is not 
widely used so far although it has secured regulatory approval 
in the USA and Europe.

Various studies were actively conducted to develop and 
evaluate the AI tools designed to interpret the images taken 
by Olympus’s autofluorescence endoscopy mainly in Japan 
from 2013. Two prospective studies have been conducted; 
Aihara et al. reported the system showed 94% sensitivity and 
89% specificity in predicting neoplastic changes in the sub-
ject of 102 colorectal polyps [33]. Subsequently, Horinouchi 
reported 80% sensitivity and 95% specificity in predicting 
neoplastic changes in 258 lesions [34]. This favorable results 
in two prospective trials can support future implementation 
of this promising modality.

45.2.2.4  AI Designed for Conventional 
Endoscopy

Non-magnifying normal endoscopy is the basis of endo-
scopic observation and the easiest way to evaluate colorectal 
lesions. However, research and development of AI tools 
designed for conventional endoscopy have not been as 
advanced as those for the other endoscopic modalities listed 
above [35]. Komeda et al. developed the deep learning-based 
AI tools to interpret the conventional endoscopy images to 
enable accurate tumor differentiation; however, its perfor-
mance was limited to 75% accuracy in the cross-validation 
method [36]. Renner et al. also tried to tackle this challenge, 
however could not achieve a diagnostic yield of over 80% in 
terms of sensitivity and specificity [37]. These unfavorable 

results may come from the fact that the quantity of the data 
which conventional endoscopy image contains are less than 
those of magnifying endoscopy and endocytoscopy. On the 
other hand, some researchers showed non-deep learning 
algorithms (i.e., hand-crafted feature-based algorithms) pro-
vided excellent diagnostic discrimination capability with a 
sensitivity of 92% and a specificity of 89% [38]. Deep learn-
ing usually, but not always, outperforms the hand craft-based 
feature extraction, which should be considered according to 
the subjects one tackles [39].

A Korean research team recently conducted a first-in- 
world study to clarify the additional value of the use of AI 
during colonoscopy. [40] According to their study, which is a 
benchmark test using prospectively constructed test data, the 
AI tool improved the discrimination capability of neoplastic 
change from 74% to 86% in endoscopists who did not have 
enough competence in the optical diagnosis of polyps, a 
main target of the AI tool in practice.

45.2.3  Predicting Invasion Depth

Pre-treatment identification of submucosal invasion of 
colorectal neoplasia is considered important because treat-
ment options differ according to the depth of its invasion. 
Usually, submucosally invasive colorectal cancers with min-
ute invasion are subject to endoscopic treatment because of 
their minimum risks of metastasis, while deeply invasive 
submucosal cancers should be removed surgically together 
with surrounding lymph nodes. However, endoscopists can 
actually differentiate deeply invasive submucosal cancer 
with less than 80% accuracy even with highly advanced 
endoscopic imaging modalities [41], which should be 
addressed further. Therefore, AI is emerging modalities that 
people expect help precisely identify cancer invasion. Tamai 
et al. developed the AI tool to identify deeply invasive sub-
mucosal cancer with a sensitivity of 84% and a specificity of 
83%, which was a clinically encouraging result [42].

Takeda et al. also developed the AI tool to identify inva-
sive submucosal cancer. They utilized features of the endo-
cytoscopic images of cancer cells that were exposed on the 
surface of the tumor for constructing the prediction model 
[43]. The AI model provided a sensitivity of 89% and a spec-
ificity of 99%; however, prospective evaluation will be 
needed.

Itoh et al. and Lui et al. explored the possibility of the AI 
tools in predicting the cancer invasion based on non- 
magnified images with the use of deep learning methodol-
ogy. Ito et al. achieved a sensitivity of 68% and a specificity 
of 89% in discrimination cancer invasion [44], while Lui 
et al. developed software that enabled identification of endo-
scopically curable lesions (i.e., well-differentiated adenocar-
cinoma with no lymphatic and venous invasion whose 
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invasion depth is less than 1000 μm) with a sensitivity of 
88% and a specificity of 78% [45]. They were preliminary 
studies investigating limited numbers of samples; however, 
they may be a strong solution to overcome the challenges 
that current clinical practice harbors in pre-treatment assess-
ment of invasive cancer in the future.

45.3  Regulatory Approval of AI Tools 
in Colonoscopy

As we go over in the above sections, many researches have 
been conducted in this field. However, there are big barriers 
to the use of these AI tools in clinical practice. They should 
secure official approval as medical devices from the respon-
sible regulatory body in each country before clinical use. 
This is because the use of AI is considered to harbor various 
clinical risks. In 2018, a working group endorsed by the offi-
cial regulatory body in Japan (PMDA) published a statement 
regarding the approval process of AI-related medical devices 
[46]. According to this paper, AI-related medical devices 
were classified into five categories according to their harbor-
ing risks. They defined the medical device with a risk level of 
3 or more have severe clinical risks if they provide incorrect 
prediction during ongoing clinical practice. The American 
regulatory body (FAD) also announced a similar idea in the 
public statement. They categorized the AI-related medical 
device into four categories according to their clinical risks 
and the hurdles for the regulatory assessment differ accord-
ing to their risks.

As of June 2020, there were two AI-related software for a 
colonoscopy that have secured regulatory approval 
(EndoBRAIN® and EndoBRAIN®-EYE; Cybernet System 
Corp.) in Japan. Outside Japan, there are four AI-related 
software for colonoscopy that have secured regulatory 
approval (WavSTAT4, Pentax Corp.; GI Genius, Medtronic 
Corp.; DISCOVERY, Pentax Corp.; CAD-EYE, Fujifilm 
Corp.). The number of approved AI-related devices is dra-
matically increasing in these couple of years, thus they are 
expected to be widely adopted spread in routine practice.

45.4  Role of the Research Topic 
in the Concept of Multidisciplinary 
Computational Anatomy (MCA)

By introducing AI, the macroscopic anatomy (i.e., endo-
scopic view in our project) is matched or fused with micro-
scopic findings (i.e., pathological finding) in real time during 
the endoscopic examination. This new methodology allows 
clinical doctors to make the decision easier than the conven-
tional method. This research concept and results well fit in 
the anatomy-pathology axis of the MCA model.

45.5  Summary

We share the latest information regarding the AI tools 
designed for colonoscopy in this chapter. Nowadays, the role 
of AI in routine practice is increasing as the number of 
approved devices increases; however, most of the products 
lack supporting evidence. Especially, we should recognize 
the number of prospective studies is not sufficient in the field 
of automated polyp characterization (i.e., prediction of polyp 
pathology). On the other hand, we have encouraging evi-
dence for the use of automated polyp detection software.

We should use the AI-assisted software with well under-
standing of its advantage and limitation, which may contrib-
ute to enhancing the quality of patient care.
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Endoscopy: Application of MCA 
Modeling to Abnormal Nerve Plexus 
in the GI Tract

Masakuni Kobayashi and Kazuki Sumiyama

Abstract

A series of GI disorders with abnormal gastrointestinal 
(GI) motility are associated with morphological changes 
of enteric nervous system (ENS). Pathological analysis 
that evaluates an isolated area harvested from the GI tract 
has been the standard examination for the morphological 
analysis of ENS.  However, it is suboptimal to evaluate 
discrete changes in ENS morphology in motility disorder 
cases. Recently, our group reported a novel ENS observa-
tion method using a confocal laser endomicroscopy 
(CLE). In a previous ex vivo study using surgically 
resected sections of the gut wall considered as normally 
innervated, we demonstrated the topical use of a fluores-
cent agent, cresyl violet (CV), enabled ENS to be visual-
ized as bright ladder-like structures within an CLE image. 
Nuclei of neuron-like cells located in the ganglion were 
also visualized as dark oval dots and easily identifiable.

Hirschsprung’s disease is a pediatric digestive disease 
with a congenital abnormality of the ENS in the distal 
intestine with morphological abnormality or a lack of 
ENS in diseased colon segments. In CLE image acquired 
from the same technique as the above study, ENS in the 
normal segment of Hirschsprung’s disease was also visu-
alized as a ladder-like structure in common with normal 
ENS cases. Meanwhile, only the smooth muscle fibers 
were visualized in the dysfunctional segments. Evidence 
obtained from prior studies show the technical feasibility 
of in vivo endoscopic visualization of ENS. CLE is a less- 
invasive visualization approach that evaluates ENS over a 
wider area than conventional pathological analysis. The 
technology could be an innovative and provide new 
insights into neural GI disorders.

Keywords

Enteric nervous system · ENS · Confocal laser endomi-
croscopy · CLE · Cresyl violet · Hirschsprung’s disease

46.1  Introduction

Gastrointestinal (GI) motility is regulated with the electro-
physiologic function of the enteric nervous system (ENS). 
ENS is composed of neuronal cells, glial cells, submucosal 
plexus (Meissner’s plexus), and myenteric plexus 
(Auerbach’s plexus) [1]. Morphological changes of ENS 
accompany a series of GI disorders, such as achalasia, gas-
trointestinal motility disorders, gastroparesis, Hirschsprung’s 
disease. Hirschsprung’s disease is characterized as a con-
genital abnormality of ENS with a lack of ganglion cells in 
the distal colon and rectum [2–4]. Surgical resection of a 
difunctionally innervated portion of the colon is clinically 
required in most of cases of the disease. At present, patho-
logical analysis is the sole technique available to evaluate the 
morphology of ENS. However, the ENS forms finely meshed 
structures along the entire GI tract and therefore it would be 
challenging to precisely investigate discrete ENS abnormali-
ties with the pathological analysis even using surgically sam-
pled specimens [2]. Obviously, sampling a wider area of the 
ENS, such as with a full-thickness biopsy sample, would 
provide more information than a single point area. For 
instance, in surgery for Hirschsprung’s disease, the abnormal 
area of colon with a lack or denaturation of ganglion cells 
needs to be surgically resected according to an intraoperative 
pathological diagnosis using frozen sections of a surgically 
sampled full-thickness of the gut wall. However, the patho-
logical information obtained from randomly selected areas is 
inherently restricted and requires multiple full-thickness 
biopsy during surgery. Therefore, a commonly practiced 
intraoperative pathological analysis is suboptimal as an on- 
site surgical navigation technique [5]. Our group previously 
reported a novel and less-invasive ENS observation method 
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using a confocal laser endomicroscopy (CLE) [2, 5]. CLE 
provides a real-time histological analysis of surface struc-
tures of GI mucosa during routine endoscopy and has been 
widely used to evaluate GI neoplasia as an alternative to con-
ventional forceps biopsy [6–8]. In order visualize tissues 
with CLE, use of fluorescent dye is mandatory. Fluorescein 
sodium is a solely approved fluorescent dye for clinical use 
and most of available clinical evidences for GI observation 
with CLE are based on intravenous administration of fluores-
cent sodium. However, when we explored the technical fea-
sibility of muscularis layer observation with fluorescein 
assisted CLE, the fluorescein sodium was not well-absorbed 
into the muscular tissues and ENS was not visualized, 
although the leakage of the stain into the connective tissues 
in the muscularis propria distinctly silhouetted the intricately 
running smooth muscle fibers [9]. In our preceding animal 
studies, various fluorescent dyes with known neuronal affin-
ity such as NeuroTrace, FM 1–43, acriflavine, and cresyl 
violet (CV) were tested for ENS visualization and all of them 

successfully visualize the ladder-like anatomy of ENS [2, 3, 
5, 10–12]. The clinical feasibility of ENS visualization with 
the topical application of acriflavine onto post therapeutic 
ulcers after endoscopic resection of colonic mucosal lesions 
was confirmed in a case series under IRB approval with two 
different clinically available; CLE systems, a probe type 
CLE system (CellVizio Mauna Kea Technologies, Paris, 
France) and a scope-embedded type CLE (Optiscan, Pentax, 
Japan) [12]. However, the safety profile of acriflavine is still 
unclear especially for inherent mutagenic potential of the 
nuclear staining. Meanwhile, CV, one of the Nissl-stains, has 
been used for neuropathological analysis and also used in in 
vivo for magnifying chromoendoscopy for colorectal lesions 
since the 1980s in Japan [13, 14]. So far, clinically signifi-
cant side effect and adverse event after the topical use of the 
stain have not been reported. In addition, CV is a fluorescent 
agent with an excitation peak at 585  nm and an emission 
peak at 630 nm [15], therefore CV was used as a fluorescent 
dye in inaugural clinical trials of CLE [16, 17] (Fig. 46.1).

a b c
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Fig. 46.1 Representative CLE and pathological images. (a) 
Representative CLE image in a human specimen considered as nor-
mally innervation. ENS was visualized as a white ladder-like structure 
in the image. Part of a forked or branching shape ENS was observed. 
(b) Horizontally sliced pathological image of a human specimen con-
sidered as normally innervation. ENS with neuron-like cells inside was 
observed as a meshed network pattern. (c) CLE image of a 
Hirschsprung’s disease specimen in a normal segment. Although ENS 
was visualized as a white ladder-like structure as normally innervation 

colon specimens, ENS was slender. (d) Horizontally sliced pathological 
image of a Hirschsprung’s disease specimen in a normal segment. ENS 
and neuron cells appeared smaller than those of normally innervation 
colon specimens. (e) CLE image of a Hirschsprung’s disease specimen 
in an abnormal segment. ENS was not identified and only smooth mus-
cle fibers were observed. (f) Horizontally sliced pathological image of 
a Hirschsprung’s disease specimen in an abnormal segment. ENS and 
neuron cells were not observed
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46.2  ENS Visualization 
with CV-Assisted CLE

Our group further investigated details of CLE visualiza-
tion of ENS using CV in an in vivo study using transgenic 
mouse model and an ex vivo study with surgically sampled 
human specimens [2]. A probe-based CLE system deliv-
ering excitation laser at 488 nm wavelength. The external 
diameter of the CLE probe used (GastroFlex-UHD: Mauna 
Kea Technologies, Paris, France) was 2.5 mm and the field-
of- view of acquired image was 240  μm in diameter. The 
imaging rate and the image depth were fixed at 12 frames/s 
and 55–65 μm, respectively. In the in vivo animal study, a 
transgenic mouse in which neural crest-derived cells were 
labeled with green fluorescent protein (GFP) within various 
tissues, including the gut was used. The CLE observation 
without tissue staining was performed by gently applying 
onto the serosal side of the colon via a frontal abdomi-
nal incision in the transgenic mouse. The CLE was then 
repeated after trans-serosally applying 0.1% CV (Muto 
Pure Chemicals Co., Ltd., Tokyo, Japan). Consequently, the 
ladder like structures of ENS and spotty round defects pre-
sumed as nucleus of ganglionic or glial cells were observed 
in all models. The ENS structures acquired CV-assisted 
CLE image was morphologically reminiscent of a histologi-
cal image of an endogenous GFP-positive network in the 
transgenic mouse. Thereby, we could confirm that CV could 
be well-absorbed into neural fibers and ganglionic cells at 
high contrast in the darker backgrounds of the smooth mus-
cle layer.

In the ex vivo study using human specimens assumed with 
normal innervation, 11 patients (mean age was 5.7 years old) 
who underwent intestinal resection for treatment such as 
imperforate anus, Meckel’s diverticulum, jejunal atresia 
were enrolled. Six small intestines and eight colon speci-
mens in 11 patients were evaluated. The CLE probe was gen-
tly attached to the specimens and manually scanned from the 
serosa, dyed by topically applying 0.1% CV. Acquired CLE 
images were then assessed for the presence or absence of 
ENS.  All examined specimens were pathologically evalu-
ated as a gold standard. As a result, CV-assisted CLE visual-
ized ENS as a white ladder-like structure. Clusters of spotty 
unstained areas were observed at transaction areas of the 
ladder-like structures of ENS. ENS was identified using CLE 
in 85.7% (12/14) with sensitivity and specificity of 92.3% 
and 100%, respectively. In the pathological analysis of hori-
zontal slices of the muscularis propria, ENS appeared as a 
finely meshed network and its morphologically reminiscent 
of CLE images of ENS. We considered the morphology of 
normal ENS could be observed with CLE in this study, since 
the specimens were sampled from benign diseases without 
visible anatomical changes.

46.3  ENS Visualization of Hirschsprung’s 
Disease

Previous studies have demonstrated that CV-assisted CLE 
visualized ENS as a white ladder-like structure. This pro-
cedure visualizes ENS in a less-invasive manner; therefore, 
CV-assisted CLE has the potential to replace neuropatho-
logical diagnosis. Although, neuropathological diagnosis 
analyzes ENS at a particular point in time, CV-assisted CLE 
has the potential to temporally evaluate ENS. Theoretically, 
CLE can visualize ENS repeatedly with less-invasiveness, 
thereby allowing the assessment of ENS changes over time. 
In our research we applied ENS visualization technology 
to diagnose Hirschsprung’s disease because intraoperative 
pathological diagnosis to identify the abnormal ENS area in 
Hirschsprung’s disease has a variety of technical challenges 
[5, 18]. The information obtained from an unselectively sam-
pled specimen is too exiguous to evaluate widely spreading 
ENS structures. Tedious multiple tissue samplings as well as 
meticulous histopathological analysis for every specimen are 
inevitable to assure radical removal of an unfunctional por-
tion of the colon. Therefore, if there is an endoscopic tech-
nique to visualize ENS in real-time, the full-thickness tissue 
sampling associated with surgical trauma would be unneces-
sary just for anatomical analysis of ENS within the muscu-
laris propria. We surmised that morphological ENS analysis 
with CV-assisted CLE to identify the ENS abnormality would 
be greatly beneficial as a navigation method during surgeries 
for Hirschsprung’s disease. As preclinical trial of CV-assisted 
CLE visualization of ENS in cases of Hirschsprung’s disease 
we conducted an ex vivo study using surgical specimens [5]. 
Nine patients (mean age was 5.3-month-old) who under-
went pull-through surgery for Hirschsprung’s disease were 
enrolled. Each specimen contained both abnormally and 
normally innervated segments. As results, ENS was visual-
ized as a white ladder-like structure in the normal segments 
of the colon of Hirschsprung’s disease cases equivalent to 
ENS visualized in the normal colon. Although the ladder-like 
structures of ENS could be identified even in the transition 
zone between normal and aganglionic segments, the diam-
eter of the plexus was slender compared with the normal 
ENS. Meanwhile, in aganglionic segments, the smooth mus-
cle fibers were more brightly visualized and the ladder-like 
structures of ENS was not observed. For each observation, 
the accuracy of the ENS visualization was 88.4% (61/69), 
the sensitivity was 78.6% (22/28), and the specificity was 
95.1% (39/45). We also compared the width of nerve strands 
located between ganglions between 9 Hirschsprung’s disease 
cases (57 specimens) and 11 control cases (14 specimens). 
The maximum average width of nerve strands of ENS in 
Hirschsprung’s disease cases was slender compared with 
those in normal cases (35.0 μm vs 70.5 μm, p = 0.03) [18].
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46.4  Existing Technical Limitations 
and Future Perspectives for the ENS 
Observation with CLE

The probe type CLE system used for the ENS imaging was 
designed to be compliant to any type of flexible endoscope. 
Therefore, it is technically challenging for surgeons to man-
ually scan tissues by stabilizing the tip of the flexible probe 
at a target on mobile serosal surface of the colon during oper-
ation. The focal plane of the probe-based CLE system is 
restricted to 10 μm. In order to visualize ENS, a thin layer of 
ENS needs to be adjusted into the range of focal plane depth. 
The scope-embedded type CLE has an adjustable scanning 
depth from 0 to 250 μm and would be more preferable for the 
ENS imaging. However, the system is not commercially 
available in current.

Recently, our research on the ENS visualization with 
CV-assisted CLE was promoted only for the serosal approach 
to ENS, because ENS exists shallower to the serosal surface 
than to the mucosal surface. However, we initially explored 
the endoluminal approach with a flexible endoscopy guid-
ance, which allows access to ENS in a less-invasive fashion 
without need for laparotomy creation [9]. In order to directly 
apply the tip of the CLE probe onto the muscularis propria, 
we endoscopically created an artificial space within the sub-
mucosal layer or a mucosal defect. The endoluminal 
approach could be applicable to any GI diseases associated 
degeneration of ENS such as achalasia and gastroparesis and 
may provide their novel etiological information. However, 
we recognized the residual submucosal tissues could fre-
quently hinder the CLE visualization of the muscularis pro-
pria and ENS. As a solution of the technical limitation with 
the access to the muscularis, Samarasena and colleagues 
used a needle-based CLE (nCLE) system, in which the imag-
ing probe is passible through a 19-gauge needle. They 
inserted the nCLE probe into the muscularis propria of the 
esophagus under an ultrasonic guidance and succeeded to 
obtain CLE images of CNS with NeuroTrace tissue staining 
in porcine models [11].

We considered that CV would be one of most promising 
fluorescent stains for the ENS visualization and we have 
started clinical introduction in surgical volunteer cases, in 
whom a stained portion of the gut was eventually excised. 
However, the long-term biosafety profile should be carefully 
evaluated to expand indications to the endoluminal observa-
tion for benign diseases by tattooing CV into tissues.

The CLE system currently available for clinical use 
scans only one focal point of the target. While the current 
CV-assisted CLE evaluates ENS with only a two- 
dimensional (2D) image, it is possible to construct a three-
dimensional (3D) image of ENS by scanning at multiple 
focal points with confocal imaging technology. The con-
ventional pathological analysis only evaluates ENS run-

ning through the entire GI tract with a 2D image, however, 
we consider that the construction of 3D ENS images using 
the CLE system is theoretically feasible and urges the 
development of new technology. We believe that 3D 
images will provide a more accurate morphological ENS 
analysis.

If CV-assisted CLE can resolve the various technical 
challenges of morphological diagnosis of ENS, novel ENS 
diagnosis that considers the time axis may be possible. 
Accordingly, we consider that this novel diagnostic approach 
can contribute to the pathophysiology and/or therapeutic 
strategy of GI diseases. For instance, ENS analysis that con-
siders the time axis has the potential to provide information 
on age-related and disease progression related changes to 
ENS in GI motility disorders. In addition, computer technol-
ogy allows CLE images captured from ENS to be evaluated 
in detail. The in vivo CLE images are unaffected by factors 
associated with section preparation in a pathological analy-
sis; therefore, morphological findings or width of nerve 
strands is accurately evaluable. For instance, in our study, we 
compared nerve strand widths between normal ENS and 
abnormal Hirschsprung’s disease ENS by computer 
software.

46.5  Conclusion

CV-assisted CLE is an innovative diagnostic approach to 
gastrointestinal diseases. The technique evaluates a wider 
range of ENS than pathological analysis and has the poten-
tial to assess ENS changes over time in a less-invasive man-
ner. Although the novel imaging has still some challenges to 
be resolved for broad clinical application, we believe that 
CV-assisted CLE would provide new insight into the gastro-
enterology field, especially for neuro-functional gastrointes-
tinal disorders.
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Optical Fluorescence: Application 
of Structured Light Illumination 
and Compressed Sensing to High-speed 
Laminar Optical Fluorescence 
Tomography

Ichiro Sakuma

Abstract

Spiral wave is known as a cause of arrhythmia. However, 
there is no report that a filament that is the center of the 
spiral wave (SW) in three dimensions was experimentally 
observed. Obtaining sufficient recording speed to observe 
cardiac excitation propagation remains a major challenge. 
We proposed an optical method called Compressed LOT 
(CLOT) which adapted compressed sensing to Laminar 
Optical Tomography (LOT) in order to estimate the three- 
dimensional membrane potential distribution inside the 
myocardial tissue. We examined the performance of the 
proposed method of identifying the location of SW three- 
dimensional membrane potential reconstructed with 
CLOT in simulation. We used phase variance analysis for 
the determination of SW filament. Obtained results show 
that the method can estimate the location of SW filaments 
up to 2.5 mm depth. We also constructed an experiment 
system to verify the principle of CLOT using optical 
phantoms containing fluorophores. We used a digital mir-
ror device (DMD) with high-speed pattern switching 
capability (with an interval of 1  ms). Optical phantom 
mimicking biological tissue with fluorophore was pre-
pared. Fluorescent dye contained in a capillary with an 
internal diameter of 1.4 mm was immersed in light scat-
tering and absorbing medium contained intralipid. 
Reconstruction accuracy at the deep position (depth: 
1.875  mm) was less than 04  mm. It is considered that 
accurate measurement of the optical constant is required 
for better reconstruction accuracy.

Keywords

Optical mapping · Laminar optical tomography  
Compressed sensing

47.1  Introduction

In the field of Multidisciplinary Computational Anatomy 
researches, integration of physiological information with 
structural/anatomical information in three-dimensional 
space is important. For this purpose, a mapping method of 
physiological information is required. As an example of the 
technology, we have investigated three-dimensional map-
ping of electrophysiological information in Langendorff per-
fused rabbit hearts. The spatial organization and dynamics of 
reentrant activity in three-dimensional (3D) cardiac muscle 
is important to understanding arrhythmia such as ventricular 
tachycardia and fibrillation. Spiral reentry in three- 
dimensional space is called a scroll wave, and the scroll wave 
turns around a filament having a string shape connecting the 
centers of vortices of a two-dimensional space [1, 2]. Optical 
mapping using voltage-sensitive dye together with a high-
speed video camera enables measurement with high spatial 
resolution and has been used in electrophysiological studies 
[3]. Optical mapping method can only acquire signals from 
the surface layer (~250  μm) of cardiac tissue. Several 
attempts to visualize scroll waves in actual myocardial tis-
sues have been reported [4, 5]. Laminar optical tomography 
(LOT), which is a microscopic form of diffuse optical tomog-
raphy, has been developed in the field of biomedical imaging 
[6, 7]. It can measure the 3D fluorescence distribution in tis-
sue at the microscopic level. However, obtaining sufficient 
recording speed to determine rapidly changing dynamic flu-
orescence signals, such as fluorescence signals obtained in 
optical membrane potential mapping for cardiac excitation 
propagation measurements, remains a major challenge. The 
compressed sensing (CS) technique, which can reconstruct 
the original information from fewer measurements, is now 

47

I. Sakuma (*) 
Medical Device Development and Regulation Research Center, 
School of Engineering, The University of Tokyo, Tokyo, Japan 

Department of Precision Engineering, School of Engineering,  
The University of Tokyo, Tokyo, Japan 

Department of Bioengineering, Graduate School of Engineering, 
The University of Tokyo, Tokyo, Japan
e-mail: sakuma@bmpe.t.u-tokyo.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4325-5_47&domain=pdf
https://doi.org/10.1007/978-981-16-4325-5_47#DOI
mailto:sakuma@bmpe.t.u-tokyo.ac.jp


350

widely used for many imaging applications. In the chapter, a 
new LOT method using CS theory which is called CLOT is 
proposed for the measurement of three-dimensional mem-
brane potential in a heart wall [8, 9].

47.2  Methods

47.2.1  Compressed Laminar Optical 
Tomography (CLOT)

Details of the method are available in the references [6–8]. 
The excitation light laser enters at the position rs. The inci-
dent light diffuses inside the tissue and excites the dye 
located at position r where fluorescence is generated which 
also scatters inside the tissue and exits from the position rd 
on the tissue surface as shown in Fig. 47.1a. Change in fluo-
rescence ∆Fx, m(rd, rs,t) of voltage-sensitive dye due to change 
in membrane action potential ∆V(r, t) at position r in cardiac 
muscle as shown in Fig. 47.1a can be expressed as follows:

 
∆ ∆F r r t w V r t H r r E r r d rx m d s x s m d, ,, , , ,( ) = ∫ ( ) ( ) ( ) 3

 (47.1)

where, Hx(r, rs) represents the excitation light intensity at 
location originated from the incident excitation light with 
unit intensity at location rs, and Em(r, rd) represents the 

intensity of fluorescence light scattered in the tissue detected 
at location rd originated from fluorescence with unit inten-
sity at location r. w is the scaling factor between quantum 
yield of the fluorophore and membrane action potential 
V(r, t). Hx(r, rs) and Em(r, rd) can be estimated by Monte 
Carlo simulations describing optical diffusion process in 
biological tissues. When the volume of tissue is discretized 
with the assumption of spatially homogeneous absorption 
and scattering properties, this Eq. (47.1) can be a linear 
equation [9]:

 
∆ ∆F J Vx m, =  (47.2)

Compressed sensing is to restore a high dimensional sig-
nal with sparsity (nature with many zero components) from 
a small observation value. By applying wavelet transform, 
we will be able to transfer 3D action potential distribution 
into sparse vector by applying wavelet transform since elec-
trophysiological excitation wave is spatially localized having 
low spatial frequency components. By adopting a random 
excitation light pattern such as shown in Fig. 47.1c, J will 
have random property. We can transform the 3D action 
potential distribution into sparse vector by applying wavelet 
transform.

 
∆ ∆ ΨF J V Jx m, = = α  (47.3)

Random illumination
pattern

Laser expander
Incident light source Dichroic Mirror

Photo detector

Lense

objectiveDM

mirror

Excitation light

FluorescenceCCD camera

a

b

c

DMD

lens

filterImage intensifier

rs
rd

r

DFx.m J V

J Y aDFx.m

DMD Chip

Array of Micromirrors

Glass capillary tube
Z

Y
X

DMD
ROl

Intraliped

Acrylic box

Fluorescent dye

Fig. 47.1 Principle of CLOT and configuration of experimental CLOT system. (a) Optical scattering model to obtain fluorescence signals from 
fluorophore in a turbid medium. (b) Schematic representation of the equation of CLOT. (c) Experimental optical system of CLOT

I. Sakuma



351

where Ψ is the discrete wavelet transformation matrix 
(Fig. 47.2b). We can get solution of equation by solving the 
following optimization problem by applying a compressed 
Sensing algorithm:

 

argmin F J

subject to F J V J

x m

x m

1

2 2

2

1
∆ Ψ

∆ ∆ Ψ

,

,

− +







= =

α α
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47.2.2  Simulation Study

We created a temporally continuous three-dimensional mem-
brane potential distribution based on as a measurement 
object. We assumed amplitude of change in fluorescence sig-
nals due to membrane action potentials as large as 9% refer-
ring to typical experimental data found in optical mapping 
experiments using voltage-sensitive dye Di-4-ANEPPS (Ex. 
532 nm, Em. 610 nm). We calculated 2D fluorescence image 
ΔF corresponding to the specific illumination pattern and 
three-dimensional membrane action potentials distribution 
based on optical diffusion model using Monte Carlo simula-
tion. The size of the tissue model was 20 mm × 20 mm × 
5  mm. We discretize the 5  mm thickness into 8 layers. 
Absorption and scattering coefficient of the tissue for the 
excitation light (532  nm) were 0.160 [mm−1] and 8.820 
[mm−1] respectively. Those for fluorescence (610 nm) were 
0.095 [mm−1] and 8.830 [mm−1], respectively.

Three-dimensional distributions of membrane action 
potentials were reconstructed from simulated ΔF using 
CLOT. Phase analysis was conducted on true value data and 
reconstructed three-dimensional membrane potential distri-
bution to generate a phase map. We used phase variance 
analysis for the determination of SW filament described in 
[9]. An appropriate threshold is set, and a filament region 
was estimated. Finally, we calculated the average minimum 
distance error between the true value and the estimated 
filament.

47.2.3  Experimental System of CLOT 
for Optical Phantom Study [10]

The experimental optical measurement system as shown in 
Fig. 47.1c consisted of an excitation laser (SSL-532-1000- 
10TM-D-LED, Shanghai Sanctity Laser Technology, max 
output power: 1  W), a laser expander (BEHP-10-532, 
Optosigma), a dichroic mirror (DM) (Di 02-EM CCD cam-
era (ADT-100, Flovel), a Digital Mirror Device (DMD) 
(DLP 6500, Texas Instruments), and lens system. The ran-
dom pattern of 6 mm square generated by DMD was then 
enlarged to 10  mm square by an objective lens and was 
reflected by the dichroic mirror and irradiated onto the mea-
surement object every 1  ms. Fluorescence light passed 
through a dichroic mirror and a long pass filter and was 
recorded by the EMCCD camera.
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Fig. 47.2 Results of filament estimation in the simulation study. Upper 
left panel: Three-dimensional spiral reentry in a simulation model. 
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direction. Membrane voltage map, phase map, phase variance map, and 
detected filament location are displayed at each layer along the depth 
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Optical phantom mimicking biological tissue with fluoro-
phore was prepared. Fluorescent dye contained in a capillary 
with an internal diameter of 1.4 mm was immersed in light 
scattering and absorbing medium contained intralipid. The 
specification of the phantom and its optical constant are 
shown in Table 47.1. The capillary was placed at depth of 
0.625 mm and 1.875 mm from the surface.

47.3  Results and Discussion

47.3.1  Simulation Study

Figure 47.2a shows the result of estimating the filament and 
the average distance error for each layer along the depth 
direction. The absolute values of fluorescence signals were 
not accurate as shown in Fig.  47.2b. However, changes in 
spatio-temporal patterns of three-dimensional membrane 
potential distribution could be reconstructed to some extent. 
Thus, the phase map that can visualize the changes in tempo-
ral signal information regardless of its amplitude can be 
reconstructed until the fourth layer (2.5 mm). Consequently, 
the location of the filament of the spiral wave could be esti-
mated with distance errors less than 0.625 mm that was the 
size of the voxel in the simulation. It was considered that the 
time change in each voxel of the three-dimensional mem-
brane potential distribution could be reconstructed until the 
fourth layer (2.5 mm).

47.3.2  Optical Phantom Study

We have constructed an optical system for CLOT with ran-
dom excitation illumination patterns generated by a digital 
mirror device (DMD) with high-speed pattern switching 
capability (every 1 ms). The CLOT was applied to identify 
the location of capillary obtaining fluorophore immersed in 
an optical scattering medium with intralipid. The reconstruc-
tion accuracy at the deep position (depth: 1.875  mm) was 
less than 0.4 mm. On the other hand, that at the shallow posi-

tion was as large as 1 mm. Variation in fluorescence lumi-
nance value might be influenced by optical absorption 
properties. Thus, it is necessary to accurately measure the 
optical constant of the object to improve reconstruction 
accuracy.

47.4  Conclusion

Compressed sensing method was applied to high-speed lam-
inar optical fluorescence tomography for identifying spatio-
temporal patterns of optical mapping of cardiac action 
potential measurement. The basic concept of the proposed 
method was investigated with simulation studies and optical 
phantom studies. In the simulation study, we demonstrated 
that the filament can be estimated from the three-dimensional 
membrane potential reconstructed by CLOT down to 2.5 mm 
in the depth direction by using phase variance analysis. 
These results indicate the possibility of measurement with its 
speed sufficient for measuring the excitation propagation of 
the heart by applying compression sensing to LOT. We have 
constructed an optical system for CLOT where random exci-
tation illumination patterns were generated using a digital 
mirror device (DMD) with high-speed pattern switching 
capability (with an interval of 1 ms). The CLOT was applied 
to identify the location of capillary obtaining fluorophore 
immersed in an optical scattering medium with intralipid. 
The reconstruction accuracy at the deep position (depth: 
1.875 mm) was less than 0.4 mm. Variation in fluorescence 
luminance value might be influenced by optical absorption 
properties. Thus, it is necessary to accurately measure the 
optical constant of the object for increasing reconstruction 
accuracy in the actual experiment system.

References

 1. Pertsov A, Vinson M. Dynamics of scroll waves in inhomogeneous 
excitable media. Phil Trans R Soc Lond A. 1994;347(1685):687–701.

 2. Qu Z, Kil J, Xie F, Garfinkel A, Weiss JN. Scroll wave dynamics in 
a three-dimensional cardiac tissue model: roles of restitution, thick-
ness, and fiber rotation. Biophys J. 2000;78(6):2761–75.

 3. Efimov IR, Nikolski VP, Salama G. Optical imaging of the heart. 
Circ Res. 2004;95(1):21.

 4. Bernus O, Mukund KS, Pertsov AM. Detection of intramyocardial 
scroll waves using absorptive transillumination imaging. J Biomed 
Opt. 2007;12:014035.

 5. Hyatt CJ, Zemlin CW, Smith RM, Matiukas A, Pertsov AM, Bernus 
O. Reconstructing subsurface electrical wave orientation from car-
diac epi-fluorescence recordings: Monte Carlo versus diffusion 
approximation. Opt Express. 2008;16(18):13758–5772.

 6. Hillman E, Bernus O, Pease E, Bouchard MB, Pertsov A. Depth- 
resolved optical imaging of transmural electrical propagation in 
perfused heart. Opt Express. 2007;15(26):17827–41.

 7. Hillman EM, Burgess SA.  Sub-millimeter resolution 3D optical 
imaging of living tissue using laminar optical tomography. Laser 
Photonics Rev. 2009;3(1-2):159–79.

Table 47.1 Specification of the optical phantom used and its optical 
constants

Fluorescence 
dye

DY-521 XL (Excitation: 523 nm, Fluorescence: 
668 nm)

Capillary Outer diameter:1.5 mm, Inner diameter 1.3 mm, 
Length: 75 mm

Intralipd 0.5%
Optical Properties
Wavelength Absorption 

Coefficient 
[mm−1]

Absorption 
Coefficient 
[mm−1]

Anisotropic 
parameter

532 nm 0.267 0.460 0.9
610 nm 0.110 0.424 0.9

I. Sakuma



353

 8. Harada T, Tomii N, Manago S, Kobayashi E, Sakuma I. Simulation 
study on compressive laminar optical tomography for cardiac action 
potential propagation. Biomed Opt Express. 2017;8(4):2339–58.

 9. Tomii N, Yamazaki M, Arafune T, Honjo H, Shibata N, Sakuma 
I.  Detection algorithm of phase singularity using phase variance 
analysis for epicardial optical mapping data. IEEE Trans Biomed 
Eng. 2016;63(9):1795–803.

 10. Sakuma I, Kobayashi T, Seno H, Akagi Y, Nakagawa K, Yamazaki 
M et al., editors. Application of Structured Light Illumination and 
Compressed Sensing to High Speed Laminar Optical Fluorescence 
Tomography. Latin American Conference on Biomedical 
Engineering; 2019: Springer. pp. 1216–1219.

47 Optical Fluorescence: Application of Structured Light Illumination and Compressed Sensing to High-speed Laminar Optical…



355© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
M. Hashizume (ed.), Multidisciplinary Computational Anatomy, https://doi.org/10.1007/978-981-16-4325-5_48

Magneto-stimulation System for Brain 
Based on Medical Images

Akimasa Hirata and Jose Gomez-Tames

Abstract

This chapter presents an individualized diagnosis system 
for non-invasive transcranial magnetic stimulation. The 
feature of this proposal is that highly-accurate cortical 
localization method in the magnetic stimulation is devel-
oped after validating the procedure by comparing with the 
clinical data obtained in neurosurgery. The method is 
based on the computation of individualized TMS-induced 
electric field on the brain based on physical head models 
developed from magnetic resonance images, and thus it 
can be applied to an individualized treatment system. This 
personalized method allows TMS localization with high 
precision, such as in preoperative mapping that can per-
mit reduce time identifying the functional regions during 
intraoperative phase in brain surgery. Also, the proposed 
method allows the evaluation of TMS coil characteristics 
and coil positioning for daily clinical protocols.

Keywords

Transcranial magnetic stimulation · Computational 
model · Electric field · Personalized stimulation  
Magnetic resonance imaging

48.1  Introduction

Transcranial magnetic stimulation (TMS) is one type of non- 
invasive brain stimulation technologies aimed to generate or 
modify brain activity by placing a magnetic coil on the sur-
face of the head [1]. The injected electric current through the 
coil windings produces time-varying magnetic fields that 

cause eddy currents in the brain that can effectively stimulate 
brain neurons. The generation of neuronal responses to TMS 
permits applications on therapy, diagnosis, and assessment 
of brain functions.

One application of TMS is brain function mapping in 
which the targeted cortical region is associated with the 
motor responses (measured as motor evoked potential: MEP) 
or speech (measured as linguistic arrest) produced by the 
stimulation. Preoperative mapping of brain functions is one 
application as a prescreening test to intraoperative mapping 
that uses direct electrical stimulation (DES). The preopera-
tive mapping technique by TMS can help to delineate the 
tumor from cortical tissue in a non-invasive way instead of 
directly and invasively stimulating the brain cortex by elec-
trodes as DES. If precise localization can be achieved by a 
preoperative procedure, time to identify the functional 
regions can be reduced in the intraoperative phase [2]. Also, 
it can impact the neurosurgical decision-making and lead to 
the modification of the initial treatment strategy [3]. It has 
been reported improved surgical and oncological outcomes 
in patients after the adoption of nTMS mapping [4, 5].

However, it is often reported that the estimated target area 
by TMS is somewhat different from the actual area confirmed 
by the direct electric stimulation (DES) in the neurosurgery. 
According to recent studies (e.g., [6]), this mislocalization of 
the target area is caused by the complicated anatomy of the 
brain, especially because of the existence of the cerebrospinal 
fluid whose conductivity is much higher than the remaining 
brain tissues. So far, the only method that permits in-vivo and 
real-time estimation of the target regions is via electromag-
netic computational techniques. To estimate the exact stimu-
lation location on the cortical region, it is essential to use 
medical images to construct a computational electromagnetic 
model of a human head (e.g., [7]).

This chapter presents an individualized diagnosis system 
for non-invasive transcranial magnetic stimulation. In the 
first part, we investigated the effects of coil design and posi-
tioning on targeting specific brain regions. In the second 
part, a highly-accurate localization method in the magnetic 
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stimulation was developed after validating the procedure by 
comparing it with the clinical data obtained in neurosurgery 
using individualized patients model.

48.2  Modeling Methods

The modeling methods are based on the computation of the 
induced electric field as a metric of stimulation [8]. The fol-
lowing steps are considered to develop the computation 
model to determine the TMS-induced electric field in the 
brain. First, the development of a digital individualize human 
head model from MRI (magnetic resonance image) is pre-
sented. Second, electromagnetic computation of the induced 
electric field is described. Consideration of the magnetic coil 
modeling and location relative to the scalp is important to 
estimate the correct location.

48.2.1  Development of Human Head Models

Anatomically based human head models are developed from 
magnetic resonance images. The detailed procedure for gen-
erating head models is described in our previous study [9] 
and others [10–12]. Segmentation and surfaces of brain tis-
sues are obtained via FreeSurfer image analysis software 
[13, 14] from T1-weighted MRIs [13] while a mesh of non- 
brain tissues is generated from T1- and T2-weighted MRIs 
via the FSL software library [15]. In our research group, 
non-brain tissues are obtained by using a semi-automatic 
procedure that includes region-growing and thresholding 
techniques. The head models are segmented into 14 
 anatomical tissues/fluids (skin, fat, muscle, outer skull, inner 
skull, gray matter, white matter, cerebellar gray matter, cer-
ebellar white matter, brainstem, nuclei, ventricles, cerebro-
spinal fluid, and eye tissues) using T1 and T2 MRIs. The 
final volume conductor models were represented in a grid of 
cubical voxels with a resolution of 0.5 mm. The electrical 
conductivities of the tissues were determined at 10 kHz.

48.2.2  Computational Electromagnetic 
Method

The computational procedure is identical to that in our previ-
ous study [16]. The frequency component of typical pulses 
used in TMS is below 100  kHz or lower, and thus the 
magneto- quasi-static approximation was applicable. Under 
the approximation, the electric displacement current is 
ignored, and the induced currents in the human body are 
assumed not to perturb the external magnetic field.

The magnetic vector potential specific to the TMS coil 
under study in each voxel of the head model was computed 
by FEKO (EMSS-SA, Stellenbosch, South Africa), a com-
mercial software package that is based on the method of 
moments. The electric fields induced in the human head by 
the magnetic vector potential were then determined using an 
in-house magneto-quasi-static solver by the scalar potential 
finite difference (SPFD) [16]. It was solved iteratively by the 
successive-over-relaxation method and a multigrid method 
[16]. The electric field along the edge of the voxel was 
obtained by dividing the difference in the potential between 
the nodes of the voxel by the distance across the nodes and 
adding the vector potential.

48.2.3  Experimental Protocol

Two datasets were used in the analysis. For the part of the coil 
evaluation, ten anatomical head models were constructed from 
T1- and T2-weighted images acquired from a magnetic reso-
nance image scanner. For the evaluation of high-accuracy 
TMS localization for preoperative mapping, eight patients 
(29–64 years, four women) participated [17, 18]. The patients 
had intra-axial brain neoplasms located within or close to the 
motor eloquent area. Peritumoral mapping was conducted in 
the tumor-containing hemisphere (affected hemisphere). A 
TMS navigation system (nTMS, Brainsight, Rogue 
Resolutions, Canada) was used to record the orientation and 
position of the coil relative to the head position in real time 
during presurgical mapping. The sites in the brain cortex stim-
ulated by DES during surgery were recorded using an optical 
tracking system as ground truth of the estimated values by 
computational model (Polaris, Northern Digital Instruments 
Co., Canada). The anatomical head model and coil position/
orientation were used to estimate the target cortical site.

48.3  Evaluation of TMS Coils

We discuss the variation of focality and targeting variability 
among different coils and subjects, as shown in Fig. 48.1a. 
Three different coils (figure-8 coil, figure-8 with isolation, 
and eccentric coils) were placed in the C3 position over the 
scalp according to International 10–20 EEG system among 
the ten different subjects. The C3 was chosen to target the 
hand motor area that is usually investigated for allowing 
measurements of physiological response to TMS. 
Localization on the same scalp landmark for all subjects is 
known as “one-for-all” placement approach, in which the 
coil localization is not based on the anatomical differences 
of each subject’s head.
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Figure 48.1b provides the computed group-level elec-
tric field strength of the 10 subjects mapped on a stan-
dardized brain model for coils with a radius of 20 mm and 
60 mm [19]. Also, it presents the locations of the maxi-
mum electric field strength of each subject. It is confirmed 
that the electric field distributions are distributed around 
the target area and concentrated in particular when the 
coil radius is small. Similarly, the inter-subject variability 
of the peak electric field is smaller for a coil with a small 
radius as compared to a coil with a large radius. The prob-
ability that more than 90% of the times the hotspot is 
inside the target area is almost the same between the vari-
ous coils with a minor higher focality when the radius of 
coils is smaller. Hence, we found that focality could be 
improved only to some extent when selecting the coil 
radius or type.

The individualized computation of the induced electric 
field indicates that one-for-all localization allows targeting 
with a certain dispersion of maximum values in the region of 

interest within subjects [20]. However, precise targeting is 
required in applications, such as preoperative mapping. The 
next section discusses high-accurate targeting in personal-
ized stimulation.

48.4  High-Accurate TMS Localization

High-precision localization method is presented for the 
motor area using a post-processing method that combines 
computed electric fields for TMS that delivered high MEPs 
during peritumoral mapping. Peritumoral mapping by TMS 
was conducted on patients who had intra-axial brain neo-
plasms located within or close to the motor speech area. The 
method was compared to the stimulation site localized via 
intraoperative direct DES during awake craniotomy for the 
tumor-containing hemisphere navigated TMS. The localiza-
tion method is described, and comparison with experiments 
is presented.

Electric Field
strength

a b
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target area r = 20 mm
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40 mm 60 mm
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Fig. 48.1 TMS coils evaluation for one-for-all localization. (a) 
Commonly used figure-8 coil, figure-8 coil with isolation (covered by a 
magnetic sheet), and eccentric figure-8 coil with inclination (top-to- 
bottom order). (b) Induced electric field strength averaged over ten sub-
jects on the standardized brain surfaces. The field strengths are 

normalized by the maximum value of each coil. Positions where peak 
induced field are indicated by dots (left hemisphere) and cross (right 
hemisphere) for each subject (10 subjects for each case). The target area 
(hand motor area) is indicated by a black circle
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48.4.1  Localization Method

Multiple stimulation locations are considered using a com-
monly used figure-8 coil. MEPs with the highest peak were 
selected from more than thirty stimulations using different 
coil positioning and angles during peritumoral mapping by 
TMS (hereinafter, a sample refers to each peritumoral 
 stimulation coil configuration). The induced electric field Ei 
for each sample, i, was multiplied to find the cortical regions 
where the electric fields were high for all samples (

 
E Ei ifocal = Π  (48.1)

The rationale for this approach was that, if all samples 
with the highest MEPs activate the same cortical region, the 
electric fields in the activated region should also be high for 
each sample. In this study, the hotspot area corresponds to 
the cortical surface area where Efocal is larger than the thresh-
old (0.7 × max(Efocal)). The estimated target area decreased 
with the number of samples and fell below 50 mm2 from the 
fourth sample.

48.4.2  Localization in Healthy Hemisphere

Hotspot areas of eight non-affected hemispheres were deter-
mined, as shown in Fig.  48.2a [17]. The hotspots of each 
subject were registered on a standard brain space. The regis-
tered hotspots were summed and normalized to the maxi-
mum Ei. The resulting hotspot was compared with the 
location of the hand motor area in non-affected hemispheres. 
As seen in Fig.  48.2a, the hotspot can be detected in the 
crown of the precentral gyrus. The location is in agreement 
with data from the literature and agrees with the well-known 
position of the “hand-knob” as a landmark for neural ele-
ments involved in the motor hand function [21].

48.4.3  Localization in Hemisphere  
Containing Tumor

Peritumoral mapping was conducted in the tumor-containing 
hemisphere in four subjects [17]. Figure  48.2b shows the 
hotspot localization by DES, nTMS, and the proposed 
method. The hand motor areas estimated by the proposed 
method (22.1 ± 12.3 mm2) were included in the hotspot area 
obtained by DES in the four cases. Hotspots predicted by 
nTMS were within DES area in two out of four cases. 
Euclidean distance between the proposed method at the cen-
ter of gravity (CoG) and DES was 4.95 ± 0.72 (standard error 
[SE]). The distance between nTMS and DES was 7.78 ± 1.99 
(SE) mm. We found that the proposed method was more 
accurate than nTMS. In the particular case of subject 3, there 
were two apparent hotspots. In this case, the criterion fol-
lowed dictated that only hotspots located in the primary 
motor cortex were considered.

48.5  Conclusion

A high-precision localization method for TMS targeting a 
specific motor area was presented. The strategy was to esti-
mate a stimulated area by synthesizing computed non- 
uniform current distributions in the brain during multiple 
stimulations considering the measurements of the 
MEP.  This developed computational system was able to 
achieve a highly-accurate cortical localization method after 
validating the procedure with clinical data obtained in neu-
rosurgery. The proposed method is much easier to use in 
clinical practice and may reduce the number of measure-
ments required during preoperative mapping as compared 
to the original protocol. More importantly, a more accurate 
localization mapping method may benefit neurosurgical 
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Fig. 48.2 High-accurate personalized localization for TMS. (a) Average mapping of the hand motor area in a healthy hemisphere. (b) Hotspot 
areas on the tumor-containing hemisphere for the proposed method, direct electrical stimulation (DES), and navigated TMS (nTMS)
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decision-making in the surgery strategy. In contrast to high-
accurate estimation method, we showed that one-for-all 
TMS localization could be used to generated high-electric 
fields distributed around the target region in which the con-
centration may be reduced by the coil design to a certain 
extend. Finally, the proposed computational method was 
able to detect the hotspot in the gyral crown of the motor 
area based on the electric field strength in agreement with 
the intraoperative DES experiment. Future work includes 
applying the proposed localization method to non-motor 
regions, such speech area.
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AI: A Machine-Learning-Based 
Framework for Developing Various 
Computer-Aided Detection Systems 
with Generated Image Features

Mitsutaka Nemoto and Naoto Hayashi

Abstract

A computer-aided detection (CADe) system identifies 
features on a medical image and brings them to the radi-
ologist’s attention. However, the spread of CADe systems 
in clinical sites is limited. Our aim is to establish a gener-
alized framework for developing various CADe systems. 
The framework would provide opportunities for many 
clinicians without the CADe system expertise to develop 
and use such systems that meet their specific needs. We 
proposed a pilot version of the framework, including four 
pretrained algorithms: preprocessing, extraction of a can-
didate area, candidate detection, and candidate classifica-
tion. We experimentally confirmed that two different 
types of CADe system were developed successfully 
through the generalized framework using two different 
datasets. We also proposed two feature generation meth-
ods to improve the generalized framework. One is the use 
of multiple deep convolutional autoencoders (DCAEs) 
trained with a normal dataset. The other is by transfer 
using a deep convolutional neural network (DCNN) pre-
trained with an anatomical landmark dataset from whole- 
body CT. An evaluation of these methods using head MR 
angiography datasets shows that the DCAEs could extract 
useful features for lesion classification.

Keywords

Computer-aided detection (CADe) · Generalized 
framework for CADe development · Deep learning  
Transfer learning · Anatomical landmark

49.1  Introduction

Computer-aided detection (CADe) systems often speed up 
medical diagnosis, reduce diagnostic errors, and improve 
quantitative evaluation [1]. However, CADe systems are 
challenging to develop. The development requires special-
ized knowledge such as image processing, machine learning, 
and radiology. Generally, a CADe system consists of four 
components: preprocessing, candidate search area extrac-
tion, candidate detection, and candidate classification. Most 
of the algorithms in a CADe system must be manually 
designed according to the detection target, image modality, 
and so on. Machine learning methods are used to optimize 
some algorithms in a CADe system [2, 3]. It is difficult for 
clinicians to develop their own CADe system and use it. A 
new method of developing CADe systems easily is necessary 
for clinicians without expertise in medical image analysis.

We conceived an idea of a generalized framework to 
develop various CADe systems without any manual design 
of algorithms. When developing a CADe system using the 
framework, developers need to make a CADe training data-
set, which is an annotated medical image dataset. The anno-
tations in the CADe training dataset include the types of 
lesion and the areas of the lesion in medical images. The 
framework includes some pretrained algorithms. Those algo-
rithms are designed generally and are prepared for each com-
ponent of the CADe system. The pretrained algorithms can 
be optimized by machine learning methods with the CADe 
training dataset. With the help of the framework, users with-
out technical knowledge can develop an arbitrary CADe sys-
tem by only collecting the CADe training dataset.

In this study, we engaged in the establishment of the gen-
eralized framework for developing any CADe systems 
(Fig. 49.1). We developed a pilot version of the generalized 
framework and evaluated its feasibility [4]. We also devel-
oped a method of generating local image features by multi-
ple deep convolutional autoencoders (DCAEs) for 
2.5-dimensional images [5, 6]. The generated features could 
be used in some component algorithms of the CADe system. 
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Moreover, we studied another feature generation method, 
that is the transfer of a deep convolutional network pretrained 
with the local appearance of anatomical landmarks (LMs) to 
CADe tasks [7]. An LM is a unique local structure having 
anatomical meanings and plays a crucial role in analyzing 
medical images [8, 9]. LMs are the key aspects to understand 
patient anatomy in a medical image.

49.2  Generalized Framework 
for Developing CADe Systems

The proposed pilot version of the generalized framework for 
developing CADe systems (Fig. 49.2) [4] includes four pre-
trained algorithms: preprocessing, candidate search area 
extraction, candidate detection, and candidate classification. 
The algorithms are designed to have a generality applicable 
to various diagnostic tasks. Most of the component algo-
rithms are based on voxel classifications that could be opti-
mized by machine learning and feature selection. In feature 
selection, a large-scale feature bank including a wide variety 
of voxel features is used.

 1. Preprocessing: The first processing is for scaling input 
volume to isotropic volume by trilinear interpolation. The 
isotropic voxel size is automatically determined by the 
size of the lesions in the CADe training dataset.

 2. Candidate search area extraction: The second processing 
is for extracting the search area for lesion candidates in 
which target lesions are likely to exist. The candidate 

search area is extracted using a cascade [10] of voxel 
classifier ensembles. The ensembles consist of single or 
multiple weak classifiers, which are decision stumps [11] 
based on the voxel features from the feature bank. The 
ensembles are trained with the cost-sensitive [12] 
AdaBoost [4, 13] to classify the lesion-related voxels. 
The parameters of the classifier ensembles, such as the 
thresholds of the ensemble outputs, are optimized to 
achieve 99.95% voxel sensitivity. The numbers of weak 
classifiers included in the first nine ensembles are prede-
termined as 1, 10, 10, 25, 25, 50, 50,100, and 100.

 3. Candidate detection: The third processing is for detecting 
the lesion candidate points from the extracted candidate 
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search area. A candidate point is a local maximum of the 
lesion voxel likelihood. The lesion voxel likelihood, 
which is calculated at every voxel in the candidate area, is 
the output value of a voxel classifier ensemble consisting 
of 200 decision stumps. The voxel classifier ensemble is 
trained with the cost-sensitive AdaBoost. Each of the 
decision stumps is based on the voxel features from the 
feature bank or the outputs of the ensembles within the 
cascade for the candidate search area extraction.

 4. Candidate classification: The fourth processing is for 
classifying the true positive lesion candidates and the 
false positives using a candidate classifier ensemble. The 
ensemble is constructed from 200 decision stumps. Each 
of the decision stumps is based on a pooling feature [14], 
which is calculated by applying a max-, min-, or average- 
pooling operator to a voxel feature. The voxel feature is a 
member of the feature bank or the output of the ensemble 
used in the candidate area extraction or the candidate 
point detection. The candidate classification ensemble is 
trained with the cost-sensitive AdaBoost.

To evaluate the feasible applicability of the generalized 
framework, we performed two experiments with two differ-
ent CADe training datasets: (i) the head MR angiography 
dataset with cerebral aneurysms and (ii) the chest CT dataset 
with pulmonary nodules. The developments of the CADe 
systems using the framework and the performances of the 
developed systems were evaluated by threefold cross- 
validation. FROC curves and ANODE scores [15] were cal-
culated to evaluate the lesion detection performances.

The CADe systems for detecting cerebral aneurysms in 
the brain MRA were successfully developed using the brain 
MRA volume dataset with cerebral aneurysms. The average 
time to develop the CADe systems in the cross-validation 
was 28.7 h with a standard deviation (SD) of 3.0 h. Since the 
dataset for developing CADe system changed with each vali-
dation, the development time varied. The cerebral aneurysm 
detection processes for all 300 sets were completed without 
any problems. The ANODE score had an average of 0.239 
with an SD of 0.062. The average detection time per case 
was 106.2 s with an SD of 19.6 s.

The CADe systems for detecting lung nodules in chest 
CT were also successfully developed using the chest CT vol-
ume dataset with pulmonary nodules. The average time to 
develop the CADe systems in the cross-validation was 22.5 h 
with an SD of 0.4 h. The lung nodule detection process for 
all 129 sets was completed without any problems. The 
ANODE score had an average of 0.218 with an SD of 0.058. 
The average processing time per case was 200.2 s with an SD 
of 22.5 s.

The results of this study show promise of a new paradigm 
for CADe system development. This system would enable 
clinicians without expertise in medical image analysis to 

develop CADe systems for use in clinical settings. Anyone 
with access to an appropriate medical image dataset could 
develop various CADe systems required for their particular 
clinical situation. However, the CADe systems developed 
using the pilot version of the generalized framework are infe-
rior to the state-of-the-art CADe system. One of the reasons 
is that the features were derived from a feature bank with a 
limited number of voxel features. Feature generation meth-
ods will be effective for obtaining the optimal features for 
the target lesion detection and for improving the performance 
of the CADe systems.

49.3  Feature Generation Using Multiple 
Deep Convolutional Autoencoders

The feature generation is essential for improving the general-
ized framework for developing CADe systems. Recently, 
deep learning has received worldwide attention. The use of 
deep learning algorithms provides not only the accurate pat-
tern classifier but also the useful feature extractor. Various 
CADe studies using deep learning show accurate results 
[16]. However, deep learning often requires a large-scale 
training dataset. It is challenging to prepare a significant 
amount of lesion data, especially around the beginning of 
CADe system development. It is necessary to develop a fea-
ture generation method that could be trained with a small 
dataset, including limited data of lesions.

We have proposed a feature generation method using 
multiple DCAEs [5, 6]. The DCAEs are among the most 
commonly used deep neural networks and are trained with 
an unsupervised algorithm [17]. In the proposed method, the 
DCAEs are used to encode input volume patches as latent 
variable vectors. The main idea of the proposed method is 
based on anomaly detection. It is expected that the DCAEs 
trained with only the normal (not lesion) volume patches fail 
the encoding of the lesion volume patches. Moreover, the 
DCAEs are trained with the 2.5-dimensional (2.5D) volume 
patches [18], including three images: the axial, coronal, and 
sagittal slices passing across the center of the original vol-
ume patch. The 2.5D patch has a smaller number of voxels 
than the original 3D patch. It is expected that the application 
of the 2.5D patches reduces the difficulty in training the 
DCAEs.

To improve the convergence of DCAE learning, each 
DCAE should have a simple structure including three convo-
lutional layers, two max-pooling layers, and a full- connection 
layer. To apply various types of lesion and image modality, 
four types of 2.5D projection technique are applied: the max-
imum intensity projection (MIP), the minimum intensity 
projection (Min-IP), the mean intensity projection (Mean-IP), 
and the extraction of center slices (Cent). These four types of 
2.5D patch are encoded by a specific DCAE individually. 
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The number of latent variable dimensions is optimized 
experimentally by each DCAE. The features generated by a 
DCAE are described as follows:

 1. The latent variables of the input image patch,
 2. The mean squared error between pixel values of the input 

patch and the reproduced patch from the latent variables,
 3. The Mahalanobis distance from the normal dataset in the 

latent variable space, and.
 4. Nine types of pixel value statistics of the difference image 

between the input patch and the reproduced patch.

To evaluate the DCAE feature generation performance, 
we use the generated features for classifying cerebral aneu-
rysm patches and normal vessel patches extracted from the 
head MRA dataset including data on 150 cases. The 2.5D 
patch has an image size of 32 pixels × 32 pixels × 3 channels 
and an isotropic image resolution of 0.78 mm. In the experi-
ments, feature generation was successfully performed 
regardless of the training dataset scale. The AdaBoosted 
ensemble with the DCAE features showed sufficient classifi-
cation performance, equal to the performance of the aneu-
rysm CADe system used in clinical settings. The experimental 
evaluation also showed that the proposed method could 
accurately generate image features from a small-scale train-
ing dataset including from 10 to 30 cases.

49.4  Feature Extraction Using the Deep 
Convolutional Neural Network 
Pretrained with Local Anatomical 
Structures in Medical Images

The deep transfer learning has recently attracted increasing 
attention from medical image analysis researchers and is 
applied to many clinical domains. Generally, general image 
datasets such as CIFER and ImageNet are usually used to 
pretrain deep convolutional neural networks (DCNNs). 
However, the difference between a pretraining domain and a 
target clinical domain often causes a negative transfer.

In this study, a DCNN pretrained with local anatomical 
structures on medical images is used to transfer to a 
computer- aided detection task. The volume patch dataset, 
including anatomical LM appearances on CT, is used as the 
pretraining dataset. Generally, collecting the LM appearance 
patch data is easier than collecting lesion appearance patch 
data, because the LM appearance patch data can be collected 
from a large amount of normal case data obtained by group 
examinations. In this pilot study, the pretrained DCNN is 
used as an image feature extractor for lesion classification. 
Its use does not require an adequate dataset to fine-tune the 
pretrained DCNN and easily provides image features for the 
target domain.

The deep CNN used in this study has a VGG-like struc-
ture [19], including thirteen convolutions layers, five max- 
pooling layers, and two full-connection layers. The input is a 
2.5D patch; the size is 32 × 32 pixels. The batch normaliza-
tion and the dropout are also appropriately inserted in the 
CNN layers. The output of the first full-connection layer, 
which consists of 512 units, is extracted as the image feature 
set. In the pretraining, the LM patch dataset, including 
twenty types of LM data and not-LM class data (21 classes 
in total), is used. The dataset is extracted from CT data on 80 
cases and consists of about 1600 LM-related patches and 
about 24,000 not-LM patches. The isotropic resolution of 
every patch data is 2 mm.

The DCNN pretrained with the LM dataset (LM-DCNN) 
was applied to classify the aneurysm lesion patches and nor-
mal vessel patches extracted from the head MRA dataset 
with data on 150 cases. The patch classification was per-
formed by an AdaBoosted classifier ensemble consisting of 
decision stumps with LM-DCNN based features. The area 
under the ROC curve reached 0.942 due to the classification 
with only the 20 decision stump classifiers. The decision 
stump is a thresholding function for one of the features cal-
culated by the LM-DCNN. The experimental result showed 
that the obtained LM-DCNN features included a few effec-
tive features for the aneurysm classification.

49.5  Conclusion

We proposed a pilot version of the generalized framework to 
develop CADe systems without any manual design for various 
types of target detection. We experimentally confirmed that 
two different types of CADe system were developed success-
fully through the generalized framework using two different 
datasets. We also proposed a feature generation method using 
multiple DCAEs to improve the generalized framework. 
Additionally, we proposed a deep transfer using the LM-DCNN 
to obtain a useful feature set for analyzing medical image pat-
terns. The evaluations using head MR angiography reveal that 
the DCAEs and the DCNN could extract useful features for 
lesion classification. The future works include the improve-
ment of the generalized framework by the proposed feature 
generation and the LM appearance classification.
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Radiomics: Artificial Intelligence-Based 
Radiogenomic Diagnosis of Gliomas

Manabu Kinoshita

Abstract

Radiogenomics is a rapidly emerging research field. It is 
expected to aid molecular or prognostic diagnosis of can-
cer patients by radiological images. Gliomas, one kind of 
brain cancer, can be thought of as a “touchstone” for pur-
suing and expanding this research area. In this chapter, I 
would like to address the background, methods, and cur-
rent challenges of radiogenomics in glioma.
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50.1  The Necessity of Radiomics in Glioma 
Treatment

Recent research using large-scale cohorts has rapidly uncovered 
the impact of genetic signatures on treatment decisions and prog-
nostic prediction in glioma. Clinicians have long recognized that 
some low-grade astrocytoma patients do better than others. It 
was the discovery of IDH mutation in WHO grade 2 and 3 astro-
cytomas that highlighted for the first time that gliomas should be 
diagnosed based on molecular signatures on top of pathological 
diagnosis [1]. The WHO 2016 CNS tumors classification system 
now divides WHO grade 2 and 3 gliomas, namely lower-grade 
gliomas (LrGG), into three major subgroups:

 1. Diffuse or anaplastic astrocytoma IDH-mutant.
 2. Diffuse or anaplastic astrocytoma IDH-wildtype.
 3. Oligodendroglioma or anaplastic oligodendroglioma 

IDH-mutant and 1p/19q co-deleted.

Furthermore, a deeper understanding of this neoplasm 
from a molecular biology standpoint is rapidly adding new 
subcategories into the classification system, which move-
ment is inevitable in the era of precision medicine [2]. As the 
prognosis of glioma patients dramatically differs according 
to the genetic signatures of the tumor [3–6], clinicians desire 
a secure method that can triage high-risk patients. Among 
various “pretreatment” information, radiological images 
have always played a pivotal role in glioma treatment. 
Magnetic resonance images (MRI) are the primary choice of 
modality as it provides a vast amount of information from 
the anatomical presentation of the lesion to the functional 
condition of the surrounding brain. In recent years, the 
neuro-oncology community has started to focus on develop-
ing technologies that enable the non-invasive molecular 
diagnosis of gliomas using pretreatment MRI [7–20]. 
“Radiomics” is a rapidly expanding research field in radiol-
ogy, aiming to simultaneously and automatically analyze 
numerous imaging parameters within a single session. 
Combined with machine learning algorithms and artificial 
intelligence, “radiomics” is expected to provide a novel diag-
nostic strategy and clinical workflow in glioma treatment. 
This section aims to describe the current state of radiomics in 
the field of glioma.

50.2  IDH Mutation and 1p19q Co-deletion 
as Prognostic Biomarkers in Lower- 
Grade Gliomas

It has long been known that some portions of glioma patients 
present a favorable prognosis. Among lower-grade gliomas 
(LrGG), oligodendroglioma had been recognized as one of 
the most favorable glial tumors. Co-deletion of chromosome 
1p and 19q was furthermore identified as a significant prog-
nostic and predictive biomarker. Several retrospective and 
prospective studies showed that patients with 1p19q co- 
deleted tumors show more prolonged survival and benefit 
from chemoradiation. On the other hand, astrocytomas, 
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another subtype of LrGG, were known to contain tumors that 
present an abysmal and relatively favorable prognosis. The 
discovery of IDH mutation in astrocytomas was able to beau-
tifully explain this phenomenon from a genetic point of view. 
Various cohorts have repeatedly confirmed the importance of 
1p19q co-deletion and IDH mutation in LrGG, and the cur-
rent most updated WHO classification for CNS tumors fully 
utilizes these genetic markers in their diagnosis workflow. It 
is important to note that patients harboring diffuse or ana-
plastic astrocytoma IDH-wildtype, present a dismal progno-
sis similar to that seen in glioblastoma. The treatment goal 
will be completely different between patients who cannot 
expect a survival time as short as 2 years and those who can 
expect longer than 5–10  years. Poor prognostic patients 
should be offered rapid and intensive treatment. On the other 
hand, favorable prognostic patients should be treated, taking 
both overall survival time and quality of daily life (QOL) 
into consideration. As presumed pretreatment diagnosis will 
significantly impact the treatment strategy of LrGG, a diag-
nostic method that enables to provide qualitative information 
of the tumor is desired in the neuro-oncology community.

50.3  Radiological Determination of IDH 
Mutation and 1p19q Co-deletion 
in LrGG

The unique feature of IDH mutation in oncology is that 
mutated IDH impacts the tumor’s metabolic state rather than 
stimulating cell cycles such as common oncogenes. The 
mutated IDH disturbs the tricarboxylic acid (TCA) cycle, 
which leads to the malfunction of converting isocitrate to 
alpha-ketoglutarate (α-KG) and grains new function to con-
vert α-KG to 2-hydroxyglutarate (2HG) [1]. As a result, the 
intracellular concentration of 2HG elevates within IDH 
mutated tumors, and direct detection of 2HG via MRI has 
been explored [21]. Several reports have provided evidence 
that 2HG is detectable on magnetic resonance spectroscopy 
(MRS) and that this is a promising technique for the non- 
invasive radiological diagnosis of IDH mutation [22]. 
However, this technique is still not widely distributed in clin-
ical practice, and its real-world value is still under investiga-
tion. Another approach for detecting IDH mutation via MRI 
is by investigating the perfusion of the tumor. IDH-wildtype 
tumors tend to be more abundant in vascularity compared to 
IDH-mutant tumors. As perfusion MRI can directly assess 
tissue vascularity, several reports have proposed using perfu-
sion MRI for discriminating IDH-wildtype from IDH-mutant 
tumors. Although this is a clinically applicable technique, 
diagnostic accuracy will significantly depend on cut-off val-
ues, which could differ in each institution. Radiomics, on the 
other hand, is thought to be, in a way, more robust as it ana-
lyzes images acquired in routine clinical practice, such as 

contrast T1-weighted images (GdT1WI) and T2-weighted 
images (T2WI) or fluid-attenuated inversion recovery 
(FLAIR). However, the problem of radiomics lies in the fact 
that analytical pipelines and the analyzed cohort that each 
institution has significantly impact texture analysis methods 
and diagnostic modeling. These issues will be discussed in 
further detail in the “Radiomics for gliomas” section.

Moving on to 1p19q co-deletion, the most famous radio-
logical feature of 1p19q co-deleted gliomas is calcification 
on computer tomography (CT). Although several other 
pathologies exhibit calcification on CT, this feature has long 
been used among neuroradiologists as a highly specific 
image marker for a 1p19 co-deleted oligodendroglioma. As 
the biological function of 1p19q co-deletion is not well 
described, direct or indirect detection of this biological fea-
ture using the radiological lens has not been easy, which situ-
ation is different from IDH mutation.

50.4  Radiomics for Gliomas;  
the Basic Methods

The image analysis workflow is presented in Fig. 50.1. The 
following four sequences are essential for glioma diagnosis 
and treatment; T1WI, T2WI, FLAIR, and GdT1WI. Diffusion- 
weighted images (DWI) and diffusion tensor images (DTI) 
are now routinely acquired in many neuro-oncological insti-
tutions worldwide. However, the detailed image acquisition 
and processing procedures differ among institutions, and 
images reproducibility and robustness are inferior to those 
mentioned above. Conventional radiomics in glioma aims to 
obtain multiparametric image texture features from the four 
images discussed above. Current MRIs, however, do not pro-
vide absolute values of T1 or T2 relaxation time on their 
images but provide only qualitative and relative metrics on 
the image. This issue must be solved before moving forward, 
as the variabilities of images obtained from different institu-
tions or scanners are substantial. Various kinds of “intensity 
normalization” methods are proposed, and it is up to the 
researcher which method to choose. After image-intensity- 
normalization is completed, all four image sequences will be 
co-registered for further analysis.

The operator will then have to identify the lesions on the 
image and create regions-of-interest (ROI) that contains the 
lesion. ROI can be built either in two (2D) or three dimen-
sions (3D). One should be aware that the annotating lesion is 
subjected to operator-dependent variability. Defining abnor-
mal from healthy tissues within the MRI is a more challeng-
ing task than one might think. The diffusive nature of glioma 
renders it challenging to determine the tumor border as the 
signal change from tumor to healthy brain tissue occurs 
gradually. In glioma radiomics, two types of ROI are usually 
created. One is created on GdT1WI that mainly contains the 
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contrast-enhancing part of the lesion. The other is created on 
T2WI or FLAIR that represents a non-enhancing part of the 
lesion or brain edema due to compression of a healthy brain 
by the tumor. As LrGG tends to lack contrast enhancement, 
ROI concerning the contrast-enhancing lesion can be omit-
ted specifically for LrGG.

Once the ROIs are defined for each case, image process-
ing will then move onto calculating and retrieving radiomics 
parameters. Radiomic parameters will include, but not be 
limited to, features regarding shape, location, histogram, and 
texture analysis. The “histogram” analysis mainly consists of 
parameters related to the image’s data distribution within the 
ROI. More specifically, histogram analysis includes param-
eters such as average, median, standard deviation, skewness, 
and entropy. Parameters concerning “shape” include volume, 
surface area, volume-to-surface ratio, and others. In addition 
to these basic image metrics, radiomics may analyze second-
ary texture features. Texture feature analysis investigates the 
“patterns” within images. Haralick texture features are one 
of the most commonly used methods for analysis. This anal-
ysis requires intensive image processing, as described in the 
following.

First, images usually in 256 grayscale must be “down- 
graded” into 16 or 8 gray scales to enable repetitive pattern 
analysis. This “down-grading” enables pattern analysis in 
cases where the texture of the target region consists of sig-
nals with substantial fluctuations. On the other hand, this 
procedure is again user-dependent, and the magnitude of 
degrading grayscale images is arbitrary. One should be fully 
aware that there is still no community standard that defines 
how radiomic parameters are calculated, and published data 
should be interpreted with great care in this regard.

Recent studies further utilize an “automated” approach to 
retrieve radiomic features via a convolutional neural network 
(CNN). CNN is classified among one of the deep-learning 
algorithms mainly designed for image analysis. This 
approach allows to analyze various features of images such 
as edges or textures without an a priori knowledge. Thus, this 
approach renders defining radiomics features before analysis 
obsolete and relies on the capability of the CNN to automati-
cally search significant image features that represent abnor-
mality of the region in interest.

Finally, the obtained radiomic features, whether by con-
ventional texture feature analysis or by CNN, are subjected 

Fig. 50.1 Illustration showing the workflow for image analysis. Two 
types of VOIs were created based on Gd enhancement of the tumor and 
edema lesion identified on T2-weighted images. Both VOIs were co- 
registered and VOIcore and VOIedema were generated. Subsequently, 

intensity normalization of all images was performed and first-order and 
second-order texture analysis, VOI shape analysis, and location analy-
sis were performed
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to building machine learning algorithms that aim to predict 
biological characteristics in interest such as specific genetic 
mutations or prognosis of the patient.

The current state of radiogenomics in LrGG.
The prediction accuracy of IDH mutation is currently the 

most often used benchmark addressing the built algorithm’s 
performance. Most publications claim to achieve 80–90% 
accuracy. It is crucial to take caution in the type of cohort 
that each study uses to build its diagnostic algorithm. For 
example, if the analyzed cohort consists of both LrGG and 
glioblastoma (GBM), the diagnostic accuracy for detecting 
IDH mutation will be higher than in cases where the cohort 
was built upon solely on LrGG. The representation of GBM 
and LrGG on MRI is so different that the developed algo-
rithm can easily distinguish IDH-wildtype GBM from IDH- 
mutant LrGG, resulting in a much higher diagnostic accuracy 
than real-world scenario. Another critical factor that should 
be taken into consideration is the clinical background of the 
cohort. IDH-mutant tumors arise more often in younger 
patients than in the elderly. Thus, simple clinical information 
such as age can significantly help to distinguish IDH-mutant 
from wildtype tumors. In a previous report, the authors were 
able to show that the diagnostic accuracy of IDH-mutation 
was as high as 80% by age alone. Adding radiomic analysis 
improved the diagnostic accuracy by less than 10% [12]. 
Thus the “real” positive effect of radiomics in predicting 
IDH-mutation was only 10% in this report, while our 
research showed that age was able to predict IDH mutation 
with an accuracy of as low as 60%, and IDH mutation was 
predicted with 80% accuracy with MRI alone. These research 
discrepancies emphasize the importance of looking into the 
characters of the cohort that is analyzed. Ideally, a more “dif-
ficult” cohort to solve is preferred to build a robust and uni-
versal prediction algorithm.

50.5  Current Limitation and Future 
Direction of Radiogenomics

When clinicians encounter LrGG patients, he or she will try 
their best to estimate the molecular characteristics of the 
tumor. Pretreatment knowledge of the tumor will triage high- 
risk patients and facilitate further intervention. During this 
process, clinicians are searching for clues in patients’ neuro-
logical symptoms, present and past medical histories, clini-
cal information such as age, and radiological images. 
Whether radiomics can outperform expert clinicians in diag-
nostic accuracy is an essential question that determines the 
future of this new research field. One research attempted to 
answer this question by comparing radiomics and expert 
neuro-radiologist in predicting 1p19q co-deletion status. 
While radiomics outperformed non-experts in diagnostic 
accuracy, expert neuro-radiologists were able to achieve as 

precise a diagnosis as radiomics [23]. This result demon-
strates that current radiomics can offer diagnostic accuracy 
of expert clinicians at their best and are not capable of out-
performing them and provide something magical.

Another critical issue is the generalizability of the built 
model for prediction. Machine learning is known to depend 
on the cohort with which it was trained. One algorithm that 
exhibits superb performance may not be applicable for a dif-
ferent data set. This issue also relates to the problem that 
there is no community standard for radiomics analysis. It 
seems that it is high time that the research community defined 
technical standards for radiomics analysis.
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4D—Four-Dimensional Dynamic 
Images: Principle and Future 
Application

Naoki Suzuki and Asaki Hattori

Abstract

This chapter touches on the acquisition of four- 
dimensional (4D) phenomena in living organisms and 
their clinical application. Originally, the human body is a 
subject that undergoes 4D changes in every part, that is, 
undergoes spatial and temporal changes. We think that 
measuring this 4D change of the human body quantita-
tively and making it possible to analyze the data in spatio-
temporal space will open up a new frontier in medicine. 
Therefore, we have been developing measurement devices 
and analysis methods for those purposes. First, we show 
the measurement result of the cardiac dynamics by the 
development of the 4D X-ray CT device for measuring 
the 4D phenomenon of the living body, and the MRI mea-
surement result of the dynamics of the thigh muscle in the 
repetitive movement of the lower limbs with supportive 
equipment. Then, in order to visualize the whole-body 
motion in virtual space, we describe how we developed a 
whole-body model with anatomical features for each 
patient and how we developed a Dynamic Spatial Video 
Camera (DSVC) that can measure the surface shape of the 
whole-body motion without restraint. The spatiotemporal 
changes of the living body that occur within a short time 
such as heartbeat and movement of limbs are not the only 
4D phenomena. Slow changes of the living body that 
occur over several months and years are also 4D phenom-
ena. Therefore, at the end of this chapter, we will also 
discuss an example of the development of a method for 

visualizing changes in human growth, changes in the 
treatment process of the liver and lungs, and the predic-
tion of pathological conditions in the near future using 
this method.

Keywords

Times · Four-dimensional · 4D measurement  
4D analysis

51.1  4D imaging

Humans, like any other living things, exhibit four- 
dimensional (4D) phenomena in every part of their bodies. A 
typical example of this is the heart, which is a structure made 
of muscle tissue with a unique shape that has four internal 
lumens. The appearance of blood flow with different pres-
sures in each blood vessel is a 4D phenomenon with a spatio-
temporal spread. Furthermore, even the brain, which is often 
thought to be the most static organ, actually exhibits a four- 
dimensional phenomenon in which it slightly expands and 
contracts with the pulsation of the heart. Likewise, it is a 4D 
phenomenon, with voluntary and involuntary movements 
generated by muscles. From a spatiotemporal perspective, 
any small part of a living body can be regarded as displaying 
a 4D phenomenon.

However, modern science has not advanced enough to 
quantitatively measure all 4D phenomena. Therefore, we 
thought to combine several scientific methods to clinically 
acquire 4D phenomenon data of the living body. The virtual 
space in the computer plays an important role as a space for 
displaying a 4D image of the living body and allowing the 
user to recognize it.

The 4D image referred to here can be defined as images 
that have the function that can measure the temporal changes 
of a three-dimensional (3D) subject by manipulating the spa-
tial axis and the temporal axis to understand, and measure 
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the state, if necessary, and generally analyze the temporal 
and spatial changes of the subject.

At present, the acquired quantitative numerical data of 4D 
phenomena is expressed as a group of 3D images arranged in 
time series. So, we took the changes in the anatomical struc-
ture derived from the patient and the structure of the lesion of 
the individual patient on the time axis to try to construct 4D 
imaging technology and to apply it to clinical trials to utilize 
the 4D dynamics of the patient for diagnosis and treatment.

51.2  Trial for Measurement of 4D 
Phenomenon

Recently, with the progress of biometrics technology and 
faster processing, it has become possible to directly mea-
sure the 4D phenomenon of live body parts. We can collect 
4D data of body parts by temporal resolution, by spatial 

resolution, and although in different measure ranges, by 
MDCT, 4D ultrasound tomography, and MRI using a high-
speed tomographic sequence. We also started the develop-
ment in 1998 of a high-speed cone-beam X-ray CT device 
that can obtain 4D information of cardiac dynamics or 4D 
X-ray CT and completed the prototype of the device in 
March 2002. With this device, using the projection data 
obtained by 10 s of imaging, we reconstructed 180 sets of 
volume data (512 × 512 × 216) in time series and evalu-
ated its clinical usefulness, and especially evaluated the 
observation and analysis of the dynamics of the human 
heart [1–3]. Figure 51.1a shows 3D images of 4D data in 
time series obtained from transvenous imaging of normal 
human volunteers.

Next, we show an example of our development of a mea-
surement method to visualize in 4D, muscle deformation 
using MRI. With the current MRI capabilities, it is still dif-
ficult to acquire 4D data with anatomically sufficient spatio-

a

b

Fig. 51.1 Dynamic 4D image examples. (a) 4D imaging of normal human volunteer’s heart dynamics measured by the developed 4D X-ray CT. 
(b) 4D imaging of deformation of major thigh muscles during flexion and extension of the lower limbs measured by MRI
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temporal resolution for one motion in the space covering the 
thigh. Therefore, we had the thigh repeatedly flex and extend 
using a supportive device and took images of it moving the 
tomographic plane. In this way, we obtained 25 time-series 
volume data and acquired the dynamics of the thigh muscle 
group as 4D data (Fig. 51.1b).

51.3  Development of a 4D Human Body 
Model with Dynamic Deformation

We think that the human body can be comprehensively 
understood by grasping and analyzing the dynamics of the 
human body in 4D. In other words, if such a 4D model can 
be constructed for each individual patient, it will be possible 
to grasp the state of the illness in more diverse ways than 
before, and it will be possible to obtain more information for 
a detailed diagnosis of the illness and better determine how 
to cure it.

Therefore, we tried to construct a 4D human body model 
in which it includes not only the skeletal structure but also 
soft internal structure such as major organs, blood vessels, 
and skeletal muscles. We attempted to drive this model in 
virtual space and manipulate it in real time so that we could 
observe and analyze its dynamics. We used MRI consider-
ing the invasiveness to the subject’s body and constructed a 
whole-body model that has each individual’s anatomical 
shape. It has a function that drives each model using each 
subject’s motion data using motion capture. We used the 
linear blend skinning method for the deformation of the 
whole- body model other than the skeleton model [4].

The advantage of this method is that for a living body 
subject with a layered structure such as skin, skeletal mus-
cle under it, and skeletal system under that, the inversion 
of layers is maintained and the protrusion of the internal 
structure does not occur and the deformation similar to the 
dynamics of the living body can be generated while main-
taining high- speed calculation and volume of the target 
object.

We used VICON 612 (Vicon Motion Systems, UK) to 
measure the whole-body motion of the subject. We attached 
42 optical markers to the whole body of the subject to mea-
sure the motion of the subject and drove the whole-body 
model constructed from the measurement.

Figure 51.2a shows a video image of the subject’s move-
ments, as well as a display image of the whole-body model 
driven by the motion-captured data during walking move-
ments. The whole-body model displays the body surface, skel-
eton, blood vessels, and skeletal muscles of the lower limbs.

In Fig. 51.2b, we show the whole-body model from a dif-
ferent viewpoint. We show how the internal structure such as 

the main organs of the thoracoabdominal region is deformed 
by the movement, and show how the skin deforms in its natu-
ral state as it houses those internal structures.

The primary purpose of this method is to visualize the 
mutual changes of skeletal structure and skeletal muscles 
and use it for motion analysis, but we believe there is a pos-
sibility of wider medical application.

51.4  4D Observation of Human Body 
Motion by DSVC

A new image method has been developed that enables the 
movement of an arbitrary viewpoint in the filming space by 
such methods as View-independent Scene Acquisition using 
multiple cameras. However, most of these studies are aimed 
at the acquisition of image information for communication 
methods such as telepresence, and they do not take into con-
sideration the quantity of the subject. Therefore, we devel-
oped a Dynamic Spatial Video Camera (human body motion 
spatiotemporal imaging device, DSVC) for quantitative spa-
tiotemporal analysis of the 4D dynamics of human body 
motion, with the whole-body motion as its maximum range 
[5]. The motion of the human body was captured by 65 syn-
chronized digital video cameras, and a function was added to 
allow the user to select a viewpoint from any camera to 
observe the series of motions recorded. Among them, 60 
cameras were fixed in a metal ring with a diameter of 4 m, 
and 5 cameras were installed above. This ring was hung by a 
mobile crane and was enabled to follow the movement of the 
subject to bring the cameras to their appropriate positions. 
Figure 51.3a shows the external view of the completed sys-
tem. The results measured using this system are shown in 
Fig. 51.3b. This figure shows a state in which a motion at a 
certain moment at an arbitrary time is observed from around 
the subject. Furthermore, in Fig. 51.3c, the result of superim-
posing the human body model including the subject’s skele-
ton and the simple muscle model on the image of the subject’s 
walking DVSC is shown. It can be said that this 4D model 
makes it possible to simultaneously capture changes in the 
surface shape of each part and movements of the internal 
structure of the subject in a time series, enabling quantitative 
analysis of human movements.

51.5  4D Visualization of Body Surface 
and Skeleton Dynamics by DSVC

With the development of DSVC, we were able to observe 
human motion from the entire circumference in 4D from the 
viewpoints of arbitrary cameras. In this development, we 
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a

b

Fig. 51.2 Results of driving a 4D human body model using motion capture data during walking. (a) Video image of the subject (top) and human 
body model (bottom). (b) Viewpoint changed to the front
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a

b

c

Fig. 51.3 Dynamic Spatial Video Camera (DSVC) and its applica-
tions. (a) The exterior of DSVC. (b) Measurement result by 
DSVC.  Display of a certain moment of gymnastics ribbons perfor-

mance action from various viewpoints. (c) Results of superimposing the 
skeleton and simple muscle model on the image of walking measured 
by DSVC

51 4D—Four-Dimensional Dynamic Images: Principle and Future Application



378

also aimed to record the movements of a human’s whole- 
body movement in a completely unconstrained state such as 
without using optic markers, and to create a 4D body model 
from it. In addition, we aimed to visualize the changes in the 
internal skeletal muscles and skeletal structures in respect to 
the body surface during human motion [6, 7].

Therefore, we extracted the subject’s area from the con-
secutive images of 65 cameras and modeled the shape of the 
subject’s body surface at each instant based on the param-
eters such as the posture, position, and focal length of each 
camera. From this, we constructed a time-series model group 
of 3D models at 15 fps, i.e., a 4D model of the subject’s body 
surface. This 4D model has color because it is constructed 
from images in the visible light region, and it includes facial 
expressions, clothes colors and patterns as well as body 
surface and hair colors. Figures show the estimated results 
of the body surface shape during swinging the right foot 
(Fig. 51.4a) and walking (Fig. 51.4b), and the driven inter-
nal skeleton. By using the subject’s body surface shape and 
skeleton model acquired by DSVC, we think we were able 
to estimate and visualize the 4D dynamics of the subject’s 
whole-body skeletal structure under unrestrained conditions.

51.6  Understanding the 4D Change that 
Occurs Over a Long Period of Time

We attempted to develop a method that visualizes phenom-
ena that occurs over a long period of time such as human 
growth and changes in pathological conditions in 4D images 

so that it could be used for diagnosis and treatment. We used 
multiple X-ray CT data sets that were measured discretely on 
a time axis of a patient, or common anatomical features from 
MRI data sets, and calculated the growth curve (variant 
amount) of each body part. From this, we developed a 
method to visualize as a 4D image of volume data that con-
tinuously changes on the time axis, and made it possible to 
predict the state of the future of the latest dataset from the 
amount of change.

We show the result of the visualized changes of the post- 
surgical state over several years using X-ray CT data of chil-
dren after living donor liver transplantation (LDLT) and 
congenital diaphragmatic hernia (CDH) treatment. In the 
case of a child with LDLT (Fig. 51.5a), we displayed using 
X-ray CT data taken between the ages of 3 and 9 years. In the 
case of a child with CDH (Fig. 51.5b), segmentation of the 
lung region is performed and displayed for four X-ray CT 
data in the 3 years from one month to the age of 3 years. In 
this case, the affected (right) lung rapidly grew about 1 year 
after the operation, and the process in which the lung volume 
increased with the expansion of the rib cage could be visual-
ized in detail. The growth curve obtained from past data is 
used to predict the state one year later, as shown in the right-
most image of Fig. 51.5b. We think that such near-future pre-
diction is important for determining treatment policies such 
as whether or not the patient needs surgery in the future. 
Also, in Fig. 51.5c, we focused on the left lung and showed 
an example of how the upper lobe and lower lobe grow rap-
idly over the course of 3 years, along with structural changes 
inside the lung.
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a

b

Fig. 51.4 4D estimation results. (a) Estimated body surface shape and internal skeleton drive status when swinging the right foot. (b) Results of 
estimated body surface shape and driving situation of the internal skeleton during the walking motion

51 4D—Four-Dimensional Dynamic Images: Principle and Future Application



380

51.7  Conclusion

It has become gradually possible to collect 4D phenomena of 
a living body as 4D data and analyze them spatiotemporally 
by developing measurement methods and analysis devices. 
We believe that by visualizing and analyzing live body 4D 
motion not only in orthopedics and sports medicine but in 
any area of medicine, more accurate diagnosis and treatment 
can be realized in the field of cardiovascular dynamics, mus-
cle dynamics, and digestive system dynamics.
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Fig. 51.5 4D changes over a long period of time. (a) Results of visual-
izing changes that occurred 6 years after living donor liver transplanta-
tion. (b) Results of visualizing changes that occurred 3  years after 
surgery for congenital diaphragmatic hernia. The right end is the result 

of predicting the state one month after the last X-ray CT scan. (c) Only 
the left lung is displayed, the upper lobe is rendered in blue using the 
segmented data, and the lower lobe is rendered with the original X-ray 
CT data

N. Suzuki and A. Hattori

https://doi.org/10.1097/01.rct.0000151189.80473.2e
https://doi.org/10.1097/01.rct.0000151189.80473.2e
https://doi.org/10.1097/01.rct.0000173844.89988.37
https://doi.org/10.1080/02841850500479669
https://doi.org/10.1080/02841850500479669
https://doi.org/10.3233/978-1-61499-625-5-396
https://doi.org/10.3233/978-1-60750-938-7-346
https://doi.org/10.3233/978-1-60750-938-7-346
https://doi.org/10.1007/s11548-006-0010-3
https://doi.org/10.1007/s11548-006-0010-3


381© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
M. Hashizume (ed.), Multidisciplinary Computational Anatomy, https://doi.org/10.1007/978-981-16-4325-5_52

Cloud XR (Extended Reality:  
Virtual Reality, Augmented Reality, 
Mixed Reality) and 5G Mobile 
Communication System for Medical 
Image-Guided Holographic Surgery 
and Telemedicine

Maki Sugimoto

Abstract

In the field of medical image processing, three- 
dimensional image analysis has been further advanced 
and extended reality (XR) technologies such as virtual 
reality (VR), augmented reality (AR), and mixed reality 
(MR) have been applied to support 3D and spatial diagno-
sis and surgery by wearing smart XR goggles. We devel-
oped a cloud-based XR application “Holoeyes MD” for 
analyzing the patient individual medical images in 3D by 
CT, MRI, and US.  The shape data of these organs is 
exported to polygons, the 3D shapes are digitized into 
coordinates. The 3D structures such as the depth and size 
of the organs usually used to be incompletely understood 
on a flat monitor screen. The introduction of the cloud- 
based XR and 5G has made it possible to understand more 
intuitively the 3D positional relationship of various anat-
omy and doctor’s presence and existence in online tele-
medicine and remote space sharing.

Keywords

Extended reality · Virtual reality · Augmented reality  
Mixed reality · Telemedicine

52.1  Introduction

Recently, the digital transformation of medical informatics 
including medical imaging has been rapidly progressing in 
the clinical setting. In the field of medical image processing, 
three-dimensional (3D) image analysis has been further 

advanced and extended reality (XR) technologies such as 
virtual reality (VR), augmented reality (AR), and mixed real-
ity (MR) have been applied to support 3D and spatial diagno-
sis and surgery [1, 2] (Fig. 52.1). They are widely used in 
clinical, academic, and educational fields because high- 
specification computers and versatile applications are now 
commercially available.

In the past, the only way to utilize such digital informa-
tion was to browse the data by using the flat monitor or smart 
device. However, nowadays, the XR experience is being 
introduced into clinical practice by wearing smart devices 
such as a head-mounted display, goggles, and smart glasses 
and superimposing them on the real world. The digital trans-
formation of medicine and healthcare is progressing mainly 
in the surgical field [3–5].

52.2  Methods

We have developed an application that digitally analyzes CT 
and MRI data of individual patients, automatically extracts 
feature points of the organ shape with artificial intelligence 
(AI), converts them into polygons, and views these organ 
shape coordinates as VR.

Then, using the mixed reality technology, the coordinates 
of the organ shape and the position of the real space calculated 
by the position sensor were integrated and displayed in the real 
world using a wearable holographic spatial computer. We have 
practically used these XR for simulation of surgery, support 
for treatment, surgical training, and medical education.

Based on patient-specific DICOM data from MDCT, after 
generating its surface polygons using OsiriX application, 
particularly abdominal organs can be segmented as polygo-
nal selections from several 2D CT images. Polygon (.stl, .
obj): 3D model format OBJ is a geometry definition file for-
mat, which is open and has been adopted by many 3D graph-
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ics application vendors. STL is also a file format native to the 
stereolithography CAD software created by 3D systems 
(Fig. 52.2).

Wearable devices such as a head-mounted display,  
goggles, and smart glasses that allow users to experience XR 
are already available in the market mainly for games and 
entertainment, and thus can be purchased at a low price.

At first, to use these devices for medical imaging, the 
individual medical images of patients are analyzed in 3D by 
CT, MRI, and ultrasonography (US). The shape data of 
these organs is exported to polygons, the 3D shapes are digi-

tized into coordinates. These are combined with the coordi-
nates of the real space, the user’s position, and motion. 
When the organs and lesions are then superimposed on the 
real space, they can be experienced as an immersive XR 
application.

We developed a cloud-based medical XR imaging service 
Holoeyes MD (Holoeyes Inc. Tokyo, JAPAN) [6]. We con-
ducted this technology for more than 100 surgeries in brain, 
liver, biliary duct, pancreas, esophagus, stomach, colon, 
lung, heart, kidney, prostate, uterus, spine, bone, artery, vein, 
muscular, and sensory organs.

XR
Extended reality

VR
Virtual reality

AR
Augmented reality

MR
Mixed reality

Fig. 52.1 Segmentation and exporting organ polygon files from DICOM sequence of the CT data

Fig. 52.2 Medical application of extended reality (XR)
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52.3  Results and Discussions

52.3.1  XR in Spatial Diagnostic Imaging 
and Image-Guided Surgery

Using our cloud service, the 3D structures such as the depth 
and size of the organs usually used to be incompletely under-
stood on a flat monitor screen. The introduction of the XR 
technique has made it possible to understand more intuitively 
the 3D positional relationship of various organs, blood ves-
sels, and the complex positional relationship of fat and mus-
culature (Fig. 52.3).

In VR, the position of the organ and the user’s gaze were 
corrected by three-dimensional stereoscopic vision using a 
position sensor, and displayed on the VR headset as if it were 
always in stereoscopic space. When this was linked to the 
movement of the surgeon, the immersive sense for under-
standing the patient’s anatomy improved dramatically, and 
three factors were improved: three-dimensional spatiality, 
real-time interaction, and self-projection.

Particularly, VR for telemedicine enabled a more intuitive 
mode of interacting with information, and as a flexible envi-
ronment that enhances the feeling of physical presence dur-
ing the interaction. Users can feel as if they are floating in the 
air in front of their eyes, which is a 3D constructed image of 
CT, MRI, and ultrasonography (UC). Users could feel the 
presence and existence as if they were floating in the air.

Some XR wearable devices are capable of gesture- 
controlled user interfaces and can be operated while wearing 
a sterile glove during surgery. In particular, not only one user 
can view the device alone, but several people can share vir-

tual and real space at the same time, leading to smooth tele-
communication. Also, multiple users can share the experience 
of treatment planning and surgical simulation at the same 
time and achieve rich reproducibility.

In spatial holography by MR, 3D data was presented to a 
translucent wearable glass as a guide to support organs, sur-
gical devices, and procedures. Using multiple sensors that 
measure the position and the movement inside during the 
surgery, using a transparent holographic wearable glasses 
with built-in IR position sensors (HoloLens and Magic Leap 
One), surgeons could watch the floating organ models 
beneath the surgical field.

This is effective in a sterilized environment, and even dur-
ing surgery, the hologram of the organs could be confirmed 
from all directions in the air of the operative field. The loca-
tion information of multiple MR devices was shared under 
the same Wi-Fi reception, multiple surgeons could view the 
same anatomy in the same air, improving their communica-
tion (Figs. 52.4 and  52.5).

The ability to spatial awareness for understanding the 
extent of resection, blood vessel processing, lymph node dis-
section, and sutures were improved before and after surgeries. 
We designed to guide surgeons through potentially complex 
procedures giving them step-by-step contextually accurate 
instructions. This can be used for guidance in complex sur-
geries for young surgeons and medical students. It could also 
be used for advanced training for skilled surgeons during 
actual surgery.In endoscopic surgery, this holography- guided 
spatial navigation system based on patient-specific CT/MRI 
improved surgeons’ spatial recognition for overcoming limi-
tations of visual field and forceps movement (Fig. 52.6).

Fig. 52.3 Virtual reality 
using a standalone headset

52 Cloud XR (Extended Reality: Virtual Reality, Augmented Reality, Mixed Reality) and 5G Mobile Communication System…
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52.3.2  Online Telemedicine and Remote Space 
Sharing Using Cloud XR and 5G

In recent years, online medicine has been attracting much 
attention in Japan because the revision of the national medi-
cal payment system was revised in 2020 and the scope of 
reimbursement has expanded. At the same time, the expan-
sion of COVID-19 has become a social problem, and medi-
cal services have been converted to contactless and remote 
services. However, there are a lot of institutions that can 
apply only telephone correspondence without Internet or 
video chat. Under such a situation, voice-only information 
may lead to miscommunication in diagnosis that requires 
face-to-face or palpation.

The fifth generation of mobile technologies (5G) is 
expected to connect people, things, data, and applications in 

smart networked communication environments. It should 
transport a huge amount of data much faster, reliably connect 
an extremely large number of devices, and process very high 
volumes of data with minimal delay. 5G is promising to be a 
ubiquitous force in our daily lives. One such area that has 
experienced several recent 5G developments in the medical 
field, where experts are changing the way doctors do their 
jobs and how patients receive care.

5G is 20 times faster than 4G. Its latency is 1/tenth of that 
of 4G, and it is said to be able to provide many simultaneous 
connections with ten times the number of connections at the 
same time. This is expected to advance online medical care 
and emergency services and reduce the disparity in the qual-
ity of care.

5G and cloud XR bring together cloud-based technolo-
gies and XR to deliver superior experiences that revolution-

Fig. 52.4 Mixed reality in 
prostate cancer surgery using 
wearable holographic 
computer (HoloLens2)

Fig. 52.5 Mixed reality for 
hepatic surgery using 
wearable holographic 
computer (Magic Leap 1)
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ize the use of content in both the doctors and patients. The 
system can not only transmit medical information of patients 
but also capture the motion of doctors and patients by sens-
ing their movements and make them appear as avatars in the 
space.

Medical images and information on medical records are 
shared simultaneously with the movements of multiple peo-
ple and spatial backgrounds, and a high degree of freedom 
and natural and intuitive communication, which is not possi-
ble with a flat-screen, can be realized in cloud XR (Fig. 52.7).

On the other hand, there are some problems such as cost, 
safety, and risk due to multiple simultaneous connections, 
and the need to learn new equipment and technology.

However, the expansion with 5G and XR using cloud 
technology will more quickly increase medical care cover-
age. The introduction of 5G with cloud XR is expected to 
improve the way of working of medical staff by solving the 
problems caused by the shortage of doctors and medical 
facilities, uneven distribution of doctors, medical disparity, 
and other issues (Fig. 52.8).

Fig. 52.6 Mixed reality and 
surgical guide in spine 
surgery using wearable 
holographic computer 
(HoloLens2)

Fig. 52.7 Virtual session in 
real-time for telemedicine
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52.3.3  Medical Education and Training 
Through XR

On-the-job training (on-JT) is widely used in medical educa-
tion and training, which takes place in the actual clinical set-
ting alongside their job. Depending on the opportunity for 
experience, the number of cases, time limitations, and facili-
ties, there is a difference in the skills that can be learned, and 
the accuracy of those skills. In the clinical setting, patient 
safety and medical accuracy have the highest priority, on-JT 
has its limits in actual practice. There is a lot of tacit knowl-
edge based on experience. Therefore, XR technology is used 
for off-the-job training (off-JT) to accurately reproduce the 
patient’s condition and diagnostic and therapeutic techniques.

In the actual clinical situation, medical images of indi-
vidual patients, movements of limbs, surgical procedures, 
and surgical plans can be reproduced and memorized along 
with visual information in virtual space through XR. In this 
way, the techniques of skilled doctors are quantified in terms 
of time and space. Medical technology can be formalized 
and handed down easily through XR (Fig. 52.9).

52.4  Prospects for Cloud XR Medicine

In the field of medical XR, there is a demand for enriched 
content, low-cost devices, high functionality, high variety, 
lightweight, small size, and simple operation. Furthermore, 

Fig. 52.8 The realistic 
avatar-based 3D visualization 
system for telemedicine

Fig. 52.9 VR education 
system using a smartphone 
and a 3D VR headset 
constructed of cardboard
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it is expected to be versatile enough to be used not only in 
medical facilities but also in the health care field. For this 
purpose, it is necessary to enhance the infrastructure, liter-
acy, and environment of the equipment such as networks and 
devices. It is expected that the digital transformation will be 
promoted with an emphasis on corporate governance and 
compliance, while thoroughly protecting the security of the 
collection, management, and utilization of medical big data 
such as patient information (Fig. 52.9).

52.5  Conclusion

We developed a patient-specific cloud-based XR surgical 
navigation. This is highly effective in improving spatial rec-
ognition for surgeons in any kinds of surgery. These results 
are expected to share the technical gap between surgeons by 
formalizing the tacit knowledge of surgical techniques. This 
can further develop “Precision Medicine” into “Precision 
Surgery,” which selects individual analysis and establishes 
the optimal treatment for each specific population.
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Smart Cyber Operating Theater (SCOT): 
Strategy for Future OR

Yoshihiro Muragaki, Jun Okamoto, Ken Masamune, 
and Hiroshi Iseki

Abstract

Digitization or digital transformation (DX) is finally pro-
gressing in the field of surgery. Historically, digitization 
of surgical record images from videotapes to ROMs and 
hard disks was regarded as DX.  More recently, robots 
have begun to perform surgery via digital signals and arti-
ficial intelligence (AI) analysis of surgical procedures as 
part of DX.  However, it is a system in which only the 
input (imaging diagnosis) and the output (surgical robot) 
are digital. The analog is mixed. Since mixed analog 
information poses a barrier, maximum efficiency cannot 
be expected. This type of DX is far from the connected 
machines featured in the internet of things (IoT).

We have made various developments in neurosurgery 
to improve the effectiveness of glioma resection and 
reduce its complications. The basis of this is DX. The pro-
cess involves a surgical operation or surgical method that 
can make judgments based on objective and reproducible 
digital information, rather than analog judgments based 
on subjectivity and experiences. This journey started in 
1995 with the development of navigation and has since 
led to the development of an intelligent operating room 
where intraoperative MRI can be performed (2000) and a 
smart treatment room in which medical equipment in the 
operating room is connected by a network (2016). 
Through this process, the IoT was realized. With the 
introduction of IoT, the smart treatment room has become 
a “medical device” that diagnoses and performs treatment 
as a single device, unlike the conventional operating room 
which only provides a sterilized space.

The smart treatment room digitizes almost all the 
information necessary for surgical decision-making and 

aims to analyze the currently accumulated digital data, 
make predictions using AI, and perform treatment using 
new robotic equipment. In this way, a digitized treatment 
system inclusive of all phases of input, analysis, and out-
put is made possible. The room supports the decision- 
making of the surgeon by displaying the three-axis 
information of multi-dimensional computational anatomy 
in an integrated manner in time synchronization.

In this chapter, we report the development process of 
the smart treatment room SCOT (Smart Cyber   Operating 
Theater: SCOT) and the actual conditions of the three 
types of SCOT. The future SCOT will also be described. 
The SCOT was developed with the support of the Japan 
Agency for Medical Research and Development (AMED).

Keywords

Intraoperative imaging · Internet of things · Digital 
transformation (DX) · Brain tumor · Artificial intelligence

53.1  Introduction

The operating room is a place that provides a space for per-
forming surgical procedures that currently require sterilization. 
In addition to basic surgical equipment, necessary equipment is 
brought in according to the department and the type of surgery 
being performed. Moreover, even for the same function, differ-
ent surgeons may use different models and have specific prefer-
ences. Therefore, a wide variety of surgical medical devices are 
stocked. In addition, various new intraoperative diagnostic and 
treatment devices have been introduced into modern surgery. 
Some surgeries require more equipment. The situation is fur-
ther exacerbated by the potential risk of a mixture of old and 
new surgical equipment. At the time of the 2014 survey, 747 
operating room medical devices were in stock at our hospital.

In 2013, Weerakkody et al. reviewed and analyzed a paper 
that quantitatively evaluated operating room safety [1], and 
reported that the average number of “errors” in one proce-
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dure was as high as 15.51. Of these, 23.5% were due to mal-
functions or failures of the equipment or technology, 37% 
did not have the necessary equipment or equipment, 43% 
had a combination of setting errors, and 34% were related to 
failures in the equipment itself.

We consider the potential risk of mixing old and new 
devices to be the main cause of errors in the operating room. 
To reduce this risk and improve the effectiveness of surgery 
and procedures, we developed the Smart Cyber Operating 
Theater (SCOT), with the support of the Japan Agency for 
Medical Research and Development (AMED).

Unlike the conventional operating room that only pro-
vides a sterilized space, the SCOT actually becomes the 
“medical device” that diagnoses and performs treatment as a 
single device. In this paper, we will explain and outline each 
element necessary for its realization, and describe the devel-
opment of artificial intelligence (AI).

53.2  Smart Cyber Operating Theater 
(SCOT)

53.2.1  Overview and Development 
Requirements

The SCOT is different from the conventional operating room 
that provides a sterilized space because the entire SCOT 
becomes a “medical device” that performs diagnosis and 
treatment as a single device. Specifically, the necessary basic 
equipment is selected and packaged with the intraoperative 
diagnostic imaging device as the core packaging. The indoor 
medical equipment which is the component is connected to 

the network by the industrial middleware open response 
interface for networking (ORiN) (networking). The visual-
ized data is then integrated and displayed via the network, 
and the information necessary for intraoperative decision-
making is presented (informationization). With the devel-
oped robot, we aim to realize ultra-minimally invasive and 
highly reproducible precision-guided therapy (robotization). 
By packaging, the above-mentioned surgical errors and risks 
will be reduced, and data will be integrated into an informa-
tion database by the “internet of things (IoT)” that connects 
reality and cyberspace. Then, by robotizing the device, the 
overall surgical effect is improved, by integrating the entire 
process from diagnosis to treatment.

This was a 5-year AMED project which started in 2014. 
Different SCOTs have been installed and verified for each 
developmental element. In 2016, we introduced the basic 
SCOT, which was packaged as equipment, to Hiroshima 
University, and in 2018, we introduced the standard SCOT, 
in which all equipment, was networked to Shinshu University. 
In addition, the robotized hyper-SCOT was installed as a 
prototype in 2016 (Fig. 53.1), and as a clinical research ver-
sion in 2019, at Tokyo Women’s Medical University.

53.2.2  The Predecessor Intelligent Operating 
Room and Packaged Basic Smart 
Treatment Room (Basic SCOT)

The first step in establishing a basic SCOT is device packag-
ing. We have experience in packaging an intelligent oper-
ating room that centered on intraoperative MRI [2, 3]. To 
improve the removal rate of malignant brain tumors, the 

Fig. 53.1 High-performance 
smart treatment room 
prototype (hyper SCOT). 
With the intraoperative MRI 
as the core, all medical 
devices are connected by a 
network, and information is 
displayed on the navigation in 
time synchronization. It is 
also equipped with a 
robotized microscope, a 
robotized operating table, and 
a robot that supports the 
operator’s hands. A clinical 
version was installed to start 
operation at Tokyo Women’s 
Medical University in 2019
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SCOT is used to determine the presence or absence of resid-
ual tumors by intraoperative MRI, and the MRI-compatible 
operating tables, anesthesia machines, surgical microscopes, 
monitoring devices, etc. are prepared for the actual surgery. 
All of these had to be integrated. Since 2000, 2023 cases of 
neurosurgery have been performed, mainly for glioma. In 
this “classic” SCOT, it is possible to perform surgery based 
on objectively visible information-information-guided sur-
gery rather than rely on judgment based on conventional 
experience and intuition. For example, the mapping and 
motor evoked potential (MEP) by awake surgery is centered 
on anatomical information from the intraoperative MRI 
(AIRISII, 0.3 Tesla, Hitachi, Tokyo) and navigation devices 
updated with intraoperative images. Functional information 
is used for confirming the preservation of brain function, 
histological information is used for intraoperative rapid 
diagnosis, and intraoperative flow cytometry is used to deter-
mine whether the tissue is a tumor or its surroundings. Thus, 
SCOT is a treatment room where malignant brain tumors 
can be removed using information from 3 of the 4 axes of 
multi-dimensional computational anatomy below. The three 
axes are (1) the spatial axis from the cell level to the organ 
level-anatomical information, (2) the functional axis such as 
imaging modality, physiology, and  metabolism- functional 
information, and (3) the pathological axis from normal to 
disease-histological information.

As a result of classic SCOT, the average removal rate of 
primary glioma was 89%, and the 5-year survival rates for 
WHO grades 2, 3, and 4, were 89%, 74%, and 18%, 
respectively.

The classic SCOT packaged intraoperative MRI and 
MRI-compatible equipment in a single product production. 
A basic version of SCOT (basic SCOT) was packaged as a 
system in 2016 for the Hiroshima University Neurosurgery 
department (Professor Kaoru Kurisu, part- time employee Dr. 
Taiichi Saito introduced SCOT to the doctors). To date, 23 
patients have been operated upon and it has been used not 
only for brain tumors but also for epilepsy and bone tumors. 
Furthermore, lateral expansion has also begun. It was also 
been applied to external projects in several facilities, includ-
ing private hospitals.

53.2.3  Networked Standard SCOT

In a conventional operating room, the devices are not inde-
pendently connected by a network. The data remains inside 
the device, and the internal clock of the devices differ from 
each other making it extremely difficult to integrate the data. 
Networking is not possible in an environment where a wide 
variety of medical devices from many companies are intro-
duced. In contrast, in the basic SCOT, the target model is 
selected, and information from a variety of sources, but it is 

not networked. Therefore, we focused on the ORiN, which is 
an industrial middleware (managing software between the 
OS and apps) that connects a large number of robots to a 
network and controls them efficiently at the factory. If you 
create a software (provider) that corresponds to a device 
driver for personal computer peripherals, you can connect to 
the network without changing the inside of the device and 
control data input/output and robots. We have developed 
OPeLiNK (Denso, Aichi), which is a medical middleware 
for the SCOT project and have connected more than 30 
devices using this software so far. This OPeLiNK aims for a 
global standard. It is a future goal to expand to include ICUs 
and wards, as well as operating rooms [4].

If each device can be networked, independent information 
can be integrated and time-synchronized. Moreover, if com-
bined with navigation position information, spatial informa-
tion can also be added. We have developed a strategy desk 
system that can display each piece of information alone and 
also integrate information together. From these, we created an 
application for removing malignant brain tumors. The MEP 
value was given as functional information, and the intraopera-
tive flow cytometry value was given as histological informa-
tion to the operation site on the navigation. As data between 
the devices are time-synchronized, the operation site where 
the risk of postoperative paralysis is high and the MEP value 
is low can be recorded on the navigation system. If the pro-
portion of cells in the proliferative phase is high by flow 
cytometry, then, the malignancy is high. The identified part 
can be presented on navigation. The former is the integration 
of functional and anatomical information, and the latter is the 
integration of histological and anatomical information.

In 2018, standard SCOT, which is a network of almost all 
devices by OPeLiNK, was introduced at Shinshu University 
(Professor Kazuhiro Hongo, Lecturer Dr. Tsuya Goto). In 
the future, we will explore its effectiveness in clinical 
research.

53.2.4  Robotized High-performance Smart 
Treatment Room Hyper-SCOT

The packaged basic version and the networked standard ver-
sion focus on acquiring and integrating information. In other 
words, it is the development of equipment and systems that 
should become the surgeon’s new eyes and new brain, but in 
the future, surgery and procedures will be replaced by new 
robotized treatment methods as surgeons’ new hands. In the 
hyper-SCOT, we introduced a robotized operating table and 
microscope and introduced a hand-held robot that supports 
the surgeon [5–7]. The robotized operating table automati-
cally places the tumor in the center of the operating room. 
The robot moves the microscope so that the tip of the tool is 
at the center of the microscope field of view, and the hand-
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held robot reduces the operator’s tremors and fatigue. In 
2016, we developed a prototype that embodied this idea 
(Fig. 53.1).

A clinically usable hyper-SCOT was installed at Tokyo 
Women’s Medical University in 2019, and currently, a clini-
cal trial to evaluate its efficacy has been started.

53.3  Internet of Things and Artificial 
Intelligence Utilization in SCOT

In the networked standard SCOT, a new mechanism called 
“IoT” will be launched. It is a system in which various 
“things” (medical devices) themselves are connected, and 
like the Internet, these “things” exchange information and 
control each other. Therefore, time-synchronized informa-
tion is displayed on the map (location information), and con-
gestion information and parking lot availability information 
are displayed on the navigation map. It becomes possible to 
support the decision-making of the operator (Fig.  53.2). 
More advanced surgical decisions require not only intraop-
erative information but also prognostic information [8]. For 
example, in the final phase of tumor removal, decision- 
making on whether or not to perform further removal to 
improve the survival rate requires historical data, which is 
the basis for predicting the extension of survival time due to 
the improvement in the removal rate. Currently, we are con-
structing a database (data warehouse) that makes it easier to 
analyze electronic medical record data. Risk maps may also 
be used to predict complications. It collects records of 
manipulation sites in the brain when the MEP drops [9], and 
displays the locations where there were many cases of statis-
tically significant drops.

If prognosis prediction and risk map analysis progress 
and a large amount of structured data can be accumulated 
[10], it will be possible to support decision-making using AI 
in the future, such as machine learning and deep learning. 
We have also begun research on AI and have succeeded in 
predicting when the white blood cell count will drop the 
most in anti-cancer drugs [11]. We also created a risk map of 
areas that are likely to cause higher brain functions.

Furthermore, hyper-SCOT aims to use IoT to operate 
medical devices themselves via a network, similar to operat-
ing home appliances remotely from mobile phones. At first, 
the shadowless lights are turned on and off, and the operating 
bed is moved, but in the future, it will be possible to operate 
robotized treatment equipment.

In the operating room, the SCOT could realize the world 
that Industry 4.0 strives for, which is to operate the real world 
better by closely linking the real world with the network of 
various sensors and the high computer power of cyberspace. 
We believe that the SCOT will revolutionize the therapeutic 
world of Medicine 4.0.

53.4  Summary

We advocate precision-guided therapy as the goal of surgery 
in the twenty-first century. It integrates and analyzes various 
visualized information (surgeon’s new eyes) as a strategy to 
support decision-making (surgeon’s new brain) and performs 
ultra-minimally invasive treatment with new robotized treat-
ment equipment (surgeon’s new eyes and new hands). The 
SCOT is the place to perform this precision-guided treatment.

The SCOT not only performs surgery and treatment cen-
tered on intraoperative MRI for parenchymal organs such as 

Fig. 53.2 Strategy desk 
consolidating time- 
synchronizing data tagged 
with location. Most medical 
devices are connected by 
network (OPeLiNK). 
Time-synchronized 
information is displayed on 
the map (location 
information). Values of motor 
evoked potentials (pink and 
red) and rapid flow cytometry 
(blue) were tagged with 
navigation. It becomes 
possible to support the 
decision-making of the 
operator
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malignant brain tumors, but also intravascular surgery and 
treatment for vascular lesions, and luminal organs such as 
the stomach and intestines. It can be applied to targeted sur-
gery and treatment. In addition, OPeLiNK, which can con-
nect medical devices from different companies, has the 
potential to spread not only to operating rooms, but also to 
ICUs, wards, and hospitals as a whole. International stan-
dardization will be key in the future [12].

We chose to refer to “a smart treatment room” instead of 
“a smart operating room” because this treatment room should 
be a single treatment device where doctors perform all inva-
sive procedures and treatments, not just surgery. We hope 
that the doctors from each specialty will be able to extract the 
diseases effectively in the SCOT and discuss with us what 
kind of information are necessary to optimize the treatment; 
and in so doing, expand various lateral developments.
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