
Chapter 61
Comparative Study of Application
of Artificial Neural Networks
for Predicting Engineering Properties
of Soil: A Review

Arun W. Dhawale and Shailendra P. Banne

Abstract The primary aim of the synthetic neural network approach was to unravel
the issues similarly that a person’s brain would. The artificial neural network system
was extensively applied in geotechnical engineering. Geotechnical engineering prop-
erties of soil hold the solidity of engineering structures. The engineering properties
of soils are much worried about the distortion and strength of bodies of soil. Engi-
neering properties of soil which measure the engineering behavior of soils. This
review paper presents a quick overview of artificial neural network (ANN) appli-
cations of engineering properties of soil, viz. optimum moisture content, maximum
dry density, permeability, shear strength parameters, and unconfined compressive
strength. The review suggests that ANN with different models can predict the engi-
neering properties of soil accurately. The survey recommends that the ANNs had
been exceptionally valuable in effectively interpreting inadequate input information.
This study shall help the researchers those working in the area of applications of
ANN on soil behavior.

Keywords ANN ·Maximum dry density · Optimum moisture content · Shear
strength · Permeability · Unconfined compressive strength

1 Introduction

Artificial neural networks (ANNs) have broad applicability to unravelmanyproblems
in the engineering field. ANNs are best at identifying patterns, trends in data; they
are well used for prediction purposes in geotechnical engineering. ANN consists of
three layers: the input layer represents to provide raw information to the network, the
hidden layer establishes between the input and output of the algorithm, and hidden
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Fig. 1 Working principle of
ANN

layer takes action with its input and weights from the preceding layer and applies a
nonlinearity to it and sends to the output layer. The output layer in a neural network
accumulates and transfers the information in a designed way. Figure 1 shows the
simple working principle of the artificial neural network.

The geotechnical index and engineering properties of soils influence each other,
and it depends on laboratory testing, time effects, loading effects, inherent soil vari-
ability, construction effects, human errors, errors in soil boring, sampling. From
the year 1990, ANN has been utilized in various fields in geotechnical engineering
like predicting soil behavior, predicting pile capacity, on earth retaining structures,
site characterization, liquefaction analysis, slope stability analysis, tunnels, under-
ground openings, and landslides assessment. The present review paper discussed
applications of the artificial neural networks on different engineering properties of
soil. Engineering properties of soil useful for engineering applications comprise
permeability, compressibility, and shear strength parameters of the soil. Engineering
properties of soils are those properties that may be used for quantifying the engi-
neering behavior of soils. Engineering properties (Behavior of soil after application
of load) of soil depends on Soil Classification, Atterbergs limits, Water content
(index properties). So, the determination of those engineering properties of soil in
the laboratory is a time-consuming, tedious, costly, and difficult process. The present
review paper focuses on the application of various ANN models for predicting engi-
neering properties, viz. maximum dry density (MDD), optimum moisture content
(OMC), permeability, unconfined compressive strength (UCS), and shear strength
parameters. These engineering properties depend on water content, dry density, bulk
density, mineralogy present in the soil, liquid limit, plastic limit, plasticity index,
linear shrinkage, grain size distribution, particle shape, and lots of other parameters.
In ANN, these parameters were used as input parameters to predict the engineering
properties of soils.
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2 Literature Review

Many researchers have developed several ANN models to work out the engineering
properties of various sorts of soils. The stress is given on the literature supported
ANN models, input parameters; output parameters, model checking performance
parameters of engineering properties of soils.

2.1 Compaction Parameters

Soil compaction is that the mechanical process whereby soil particles are forced
and compress. The compaction parameters (optimum moisture content—OMC and
maximum dry density—MDD) of the soil have significant importance for attaining
the engineering properties of soil like bearing capacity, strength, permeability, and
compressibility. OMC and MDD are determined in a laboratory for various sorts
of soil called standard proctor test and modified proctor test in geotechnical engi-
neering. ANN is often to predict the compaction parameters from different index
properties of soil. Many researchers used different models, charts, curves to predict
compaction parameters. “Gunaydin [1] estimates the compaction parameters using
simple multiple analysis and artificial neural network. He developed five ANN
models on nine different types of soils, which have several input parameters. The
simplest best results were obtained from model II; input parameters were relative
density (G), liquid limit (wL), plastic limit (wP), and grain size.” “Suman et al. [2]
made an exertion to create a prediction model to work out maximum dry density
(MDD) and unconfined compressive strength (UCS) of cement stabilized soil. They
developed three networks: functional networks (FN), multivariate adaptive regres-
sion splines (MARS), and multilinear regression model (MLR). Prediction models
for both MDD- and UCS-supported FN and MARS are very inclusionary. Recently,
researchers have used ANN for predicting properties of stabilized soil.” Abdel-
Rahman [3] developed the empirical equations to forecast compaction parameters of
graded cohesionless soils. He compared the forecasted values using ANN and empir-
ical equations with a group of laboratory tests (modified proctor tests). The ANN
model grows using the computer program MATLAB 6.5. The input parameters for
the ANN model were percentage passing soil from different sieves (20, 5, 2, 0.4,
0.08 mm). He concluded that based on the investigation, the notable factor which
affects theMDDwas the percentage passing through sieve 0.4mm(grains of fine sand
and smaller), and for OMC, the significant factor was the percentage passing through
sieve 0.4 and 0.08 mm (grains of clay and silt). Tipza et al. [4] highlighted prediction
models of some geotechnical properties of soil using their index parameters. A total
of 580 numbers of knowledge sets have complied. Maximum dry density (MDD),
optimum moisture content (OMC), permeability, and angle of internal friction were
predicted using input parameters, viz. specific gravity, grain size distribution, and
Atterberg limits. A multilayer perceptron (MLP) artificial neural network sets of
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input files on to a group of appropriate outputs. Differential statistical approaches
like the coefficient of determination (COD), root mean square error (RMSE), coef-
ficient of residual mass (CRM) were used to estimate the performance of prediction
models. They concluded that laboratory tests to work out engineering properties of
soil are laborious and time-consuming; it is helpful to develop forecastmodels to esti-
mate engineering properties using their index properties which are easy to measure.
ANN models come up with accurate predictions with experimental results. “Das
et al. [5] were developed ANN models using different training algorithms; Leven-
berg–Marquardt algorithm (LMNN), Bayesian regularization algorithm (BRNN),
and differential evaluation algorithm (DENN). LMNN was a widely used algorithm
in geotechnical engineering. They concluded that BRNN has limited uses [6, 7], and
still there is a wide scope of DENN algorithm in geotechnical engineering. They also
used support vector machine (SVM) models for predicting MDD and UCS. SVM
models are supported by statistical learning theory. The supported study developed
LMNNmodel was best for predictingMDD and followed by BRNN andDENN. The
statistical performance of SVMmodels is found superior to ANN models.” “Shahiri
and Ghasemi [8] were performed laboratory tests to work out MDD and UCS with
cement and copper slag stabilized soil. They investigate the impacts of copper slag
and cement with different percentages of dosages on MDD and UCS. After experi-
mental testing, the ANNmodel has been developed using eight input parameters, viz.
dry density, water content, liquid limit, plastic limit, PH, copper slag content, cement
content, and Curing age. In the sensitivity analysis, it had been observed that water
content was the influential parameter and liquid limit, plastic limit as the least impor-
tant ones. They concluded that the ANN model was ready to anticipate the elastic
modulus of stabilized soil.” “Alavi et al. [9] used modified ANN models to predict
MDD andOMCof chemically stabilized soil.Multilayer perceptron (MLP)was used
with input parameters like linear shrinkage, liquid limit, plastic limit, percentage of
clay, silt, gravel, and three stabilizing additives: cement content, lime content, asphalt
content. They evaluate the performance ofANNmodels using the coefficient of deter-
mination (R2), mean squared error (MSE), and mean absolute error (MAE). They
developed two separate ANN-based models, one for MDD and one for OMC, and
also developed one combined model to see the effect. Separate models for OMC
and MDD give satisfactory results with experimental results. They concluded that
modified ANN models were less massive than the other models.” “Salahudeen et al.
[10] expand MLP models to predict MDD and OMC of cement kiln dust stabilized
black cotton soil. The ten input parameters were used, viz. linear shrinkage, specific
gravity, free swell,D10,D30,D60 (effective soil particle sizes), coefficient of curvature
(Cc), coefficient of uniformity (Cu), liquid limit, and plastic limit. They concluded
that simulation results are satisfactory with experimental results. The same statistical
parameters (Alavi et al. [9]) were used for checking the performance of models.”
Sinha and Wang [11] developed prediction models to predict MDD, OMC, and
permeability of the soil. A total of 55 different mixes were prepared with compo-
nents of limestone, bentonite, dust, sand, and gravel. For training of ANN models,
the program NeuralWare (2001) was used. The accuracy of the prediction models
was checked using R2 and RMSE. They concluded that, compared with experimental
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test results, predictions within a 95% confidence interval. ANN forecasting models
become a systematic tool for the design of compacted soil earthwork. Table 1 shows
the detailed summary of artificial neural networks used on compaction parameters
of soil.

2.2 Permeability

Permeability is a capacity of soil to permit water passes through it. Permeability is an
extremely important engineering property of soil because the designer should know
the standards of liquid flow, as groundwater conditions are frequently experienced on
construction projects. Permeability is determined in the laboratory for various sorts
of soil using a constant head and falling head permeability test. ANN can be used
to predict permeability from index parameters of soil. In the present review paper,
Tipza et al. [4] and Sinha et al. [11] already discussed prediction of permeability in
2.1.

“Erzin et al. [12] developed ANN andMRAmodels for determining the hydraulic
conductivity of fine-grained soil. They performed a falling head permeability test on
silty sand and marine clays in the laboratory. ANN models were developed individ-
ually on silty sand and marine clays and one generalized model developed which
contains different soils compacted to different states using experimental data. The
input parameters were water content, dry density, D10, D30, D60, D85, D100. The
performance of both models was checked by the coefficient of correlation, vari-
ance (VAF), and RMSE. They concluded that ANN models are better than MRA
for determining the hydraulic conductivity of varied soils.” Chapuis [13] assessed
methods to predict the saturated hydraulic conductivity, permeability of sand and
gravel. Recently, researchers have used neural networks, fuzzy logic, and regres-
sion to work out the permeability of coarse and fine-grained soils. El-Sebakhy et al.
[14] present functional networks are good to approach towork out the permeability of
soils. Permeability prediction has been a provocation for geotechnical engineers. In
this study, functional networkswere used to predict permeability in a carbonate reser-
voir. They concluded that developed functional networks give reliable and proper
results.

2.3 Shear Strength Parameters

The ability of soil to help a stacking from a structure, or to help its overburden, or
to sustain a slope in equilibrium is governed by its shear strength. There are two
shear strength parameters called cohesion (c) and the angle of internal friction (F).
Shear strength parameters are used for earth and rockfill dam design, earth pressure
problems, highway and airfield design, foundation design, and stability of slopes.
Cohesion depends upon water content, the grain size of soil particles, minerals,
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and promise between the particles, whereas angle on internal friction depends upon
water content, particle size distribution, dry density, the shape of particles, and surface
texture. These parameters were determined in the laboratory using a direct shear test,
triaxial test, vane shear test, and unconfined compression test. ANN can predict the
parameters accurately of various sorts of soils. Table 2 shows the detailed summary
of artificial neural networks used on shear strength parameters of soil. “Mousavi et al.
[15] developed new nonlinear solutions to work out shear strength parameters using
linear genetic programming (LGP). An experimental database was established after
conducting unconsolidated undrained and unsaturated triaxial tests. They concluded
that LGP models were better than regression models. The factors, viz. fine-grained
content, D30, Cu, wL, water content, and dry soil unit weight, represent the behavior
of shear strength parameters. Out of that water content and dry soil unit weight
effectively affects shear strength parameters.” Iyeke et al. [16] were 83 soil samples
collected from Nigeria. They concluded the appliance of those models will help to
scale back cost and time. ANN predicts the shear strength parameters for lateritic
soils exceed the empirical methods. Kiran and Lal [17] investigated the MLP model
to work out cohesion and angle of internal friction. They used soil within the state of
Jharkhand (India). Input parameters should be the sameas earlier researchers, but they
used bulk density (BD) and dry density (DD) separately. The model showed the best
performance for the prediction of cohesion and angle in internal friction. Eidgahee
et al. [18] evaluated shear strength parameters of granulated waste rubber using
the group method of data handling (GMDH) algorithm. GMDH gives well-founded
results for shear strength and vertical strain. “Kayadelen et al. [19] conducted consol-
idated drained triaxial tests (CID) in a laboratory and predict the angle of shearing
resistance (F) using gene expression programming (GEP), ANN, andANFISmodels.
This study shows that GEP models give exceed results than ANN and ANFIS.”

Khan et al. [20] predicted residual friction angle using SVM, ANN, and FN
models. They concluded that FN is best thanANN for predicting the residual strength
of clay. “Khanlari et al. [21] utilized MLP and radial basis function (RBF) approach
to predict friction angle and cohesion of soils. They used different percentages of
soil passing on sieve No. 200, 40, 4, PI, and bulk density as an input layer. This study
gives the results of the MLP-ANN model performed better than RBF-ANN.” Lee
et al. [22] developed ANNmodels to estimated unsaturated shear strength (Apparent
Cohesion Cmax). Test investigations of unsaturated soils are exorbitant, tedious, and
hard to lead; for that purpose, they formulated the connection between nonlinear
unsaturated shear strength and matrix suction in a hyperbolic form. Ly et al. [23]
developed a support vector machine (SVM) for prediction of cohesion and angle of
internal friction. SVM models performed well prediction and moisture content, wL,
wP were found most affected factors on soil shear strength. “Sezer [24] utilized three
different algorithms scaled conjugate gradient (SCG), gradient descent method with
momentum term (GDM), Levenberg–Marquardt (LM) for predicting shear devel-
opment in clean sand. The input parameters are counting on the particle shape, i.e.,
roundness, sphericity, area-perimeter fractal dimension, etc. Tests were employed on
33 differing types of sands.” Sezer [25] again performed the estimation of the angle
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of shearing resistance (F) of uniform sands using ANFIS and multiple correlation
models (MRM).

2.4 Unconfined Compressive Strength

The unconfined compressive strength is that the load per unit area at which the
cylindrical specimen of a cohesive soil falls after applying pressure. The undrained
shear strength of the soil is one half of the unconfined compressive strength and it
is determined in the laboratory. Suman et al. [2], Das et al. [5], and Shahiri et al.
[8] also worked on the application of ANN on Unconfined compressive strength
which is already discussed in 2.1. Narendra et al. [26] developed MLP, RBF, and
genetic programming (GP) mathematical models to predict the unconfined compres-
sive strength of cement stabilized soft ground soil. The input parameters were curing
period, water content, wL, liquidity index, clay water-cement ratio, cement content.
The MLP network gives better results compared to RBF and GP for predicting the
unconfined compressive strength of clayey soil.

3 Discussion and Conclusions

The engineering properties of soil depend on soil structure, permeability, swelling,
pore water pressure, shrinkage, compressibility, stress–strain relationship, and shear
strength parameters. The evolution of accurate engineering properties is a difficult
task. The review confirms the application of ANNs completing a spread of classi-
fication, prediction, optimization, and modeling-related task in geotechnical engi-
neering. The accuracy for predicting the engineering properties of soil depends on
the input parameters. ANN algorithm is favorably used for predicting the engineering
properties of soil. The important input parameters which affect the MDD of soils
were water content, liquid limit, plastic limit, percentage of fine-grained soil, and
relative density, whereas, on OMC, input parameters were the percentage of gravel,
percentage of sand, coefficient of uniformity, coefficient of curvature,D10,D30,D60,
additive content. For cohesion, the most affected factors were water content, grain
size distribution, and liquid limit of soil. Most researchers were to see the model
performance using statistical approaches like coefficient of determination (R2),MSE,
RMSE, and MAE. Laboratory tests to work out engineering properties of soil are
laborious and time-consuming; it is desirable to develop prediction ANN models to
estimate these properties using index parameters.
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