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2.1 Introduction

On the global level the plant diseases are known to cause huge losses in terms of
quality and quantity (Agrios 2005; Strange and Scott 2005; Chakraborty and New-
ton 2011; Savary et al. 2012). Plant pathologists are making their best efforts to
reduce these losses by using the different strategies of plant disease management
singly or in combination. But each one has its own advantages and disadvantages in
different host-pathogen interaction systems. E.g. in some crops the resistance
sources are not available, in some crops good number of resistance sources is
available but due to continuous evolution of the pathogen(s) that does not last
long. In some diseases especially seed and soil borne diseases, the seed or soil
treatment with biocontrol agents or biofugicides are effective (Akhmedovich et al.
2020) but in some biological control is restricted to laboratory. Fungicides are giving
good management of plant diseases but in case of soil borne diseases it is not
possible to use large amount of fungicides to treat the soil due to problem of
persistence and harmful effects on non-target soil borne organisms. In some diseases
due to polycyclic nature of the pathogen or fast multiplication, the chances of
fungicide resistance development will increase (Lucas et al. 2015). Moreover due
to increased public awareness and environmental issues etc. the application of
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fungicides is restricted although their application has given a boom to the yield in
almost all the crops. Above all the irrational or non-optimal use of the fungicides/
pesticides leads to an economic loss to farmers, as well as crop and land quality.
Most recently a draft on the banning of 27 pesticides has been released by the Indian
Government due to their ill effects on humans, animals and environment etc. (The
Economic Times 2020). So the efforts of the plant pathologists are targeted towards
the integrated disease management to minimize the use of fungicides. Wherever
other management practices don’t work properly, and use of fungicides is the only
option; in that case judicious use of fungicides i.e. application at proper time with
exact dose, spray volume and right kind of spray pumps and nozzle is desirous.
Timely application of fungicides based on the epidemiology of the particular disease
results in effective management of that particular disease otherwise the application
goes waste. Both in case of monocyclic (Head Blight, Septoria Blight) and polycy-
clic diseases (Rusts) several epidemiological models have been developed in differ-
ent crops for timely plant protection measures. In simple words the plant disease
forecasting is the prediction of the occurrence or changes in severity levels of plant
diseases in relation to weather, crop, or pathogen. The process of forecasting
involves all the activities like ascertaining and notifying the growers of community
that conditions are sufficientlyfavorable for certain diseases, the timely application
of control measures will result in economic gain. Different reviews on the various
aspects of disease epidemiology and modeling of plant diseases (Zadoks and
Rabbinget 1985; Teng 1985; Madden 2006; Savary et al. 2018) has been published
which clearly described the types of modeling approaches starting from intial
equations to linked differential equation models (Madden 1980; Madden 2006;
Madden et al. 2007).

The principle behind plant disease forecasting systems is to determine the risk
that a disease will pose, or the the intensity of the disease will increase (Campbell
and Madden 1990). Norton et al. (1993) stated the possible objectives for modelling
in fungal epidemiology include (1) Predicting the timing of an event i.e. when
disease infection is likely to occur; (2) Predicting the scale of an event; such as the
severity of disease infection or crop loss; (3) Estimating the frequency or the
probability of an event, such as monocyclic (Karnal Bunt) or polycyclic epidemics
(Rusts); (4) Assessing and comparing the performance of different management
strategies. So, basically the epidemiologists are detectives which watch the each and
every activity of the pathogen and each step of the disease development critically.
Wade Hamptom Frost, the dean of American epidemiologists in 1927 stated that
“The nature and spread of a disease may often be established quite firmly by
circumstantial evidence well in advance of experimental confirmation” (Stolley
and Lasky 1995).

The predictive systems are of two different types i.e. the one that predict disease
and the other that predicts infection (Bourke 1955). All the prediction models can be
further categorized on the basis of their development i.e. empirical or fundamental.
The empirical predictive systems are developed by studying and comparing histori-
cal records of disease occurrence and concurrent weather conditions in the same or
approximate locality. Such systems usually result in the formulation of “rules” or
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specific meteorological conditions that must be fulfilled before disease development
can take place. The fundamental predictive systems are developed based on the data
obtained experimentally in the laboratory or field regarding the relationships of
biological and environmental conditions governing host-pathogen interactions.
The utility of the predictive systems can be assessed by three different overlapping
criterions i.e. conceptual utility, developmental utility, and the output utility (useful-
ness of the model to the farmer).

The success of forecasting system depends upon its reliability i.e. it should be
based on the sound biological and environmental data, simple, developed for the
disease of economic importance with risk of spreading on the larger area if not
controlled at initial stages. The necessary information about the components of the
models should be available, should be of multipurpose applicability, and above all it
should be cost effective. Most of the disease forecasting systems available till date
are based on reducing the initial inoculum (soil borne diseases/monocyclic diseases)
and in polycyclic diseases with large amount of initial inoculum and lesser number
of secondary cycles) or controlling the apparent infection rate(in polycyclic diseases
with low initial inoculums and more number of secondary cycles/inoculums) and
hence provide information on how a grower’s management decisions can help to
avoid initial inoculum or to slow down the rate of an epidemic. These two concepts
are of utmost importance as they are able to differentiate the risk for a monocyclic
disease (having only one cycle of infection) versus polycyclic disease, where there
are multiple infection cycles, and a forecasting system can be used to time appropri-
ate management tactics. (Madden et al. 2007). Some forecasting models focus both
on avoiding primary inoculum and also on reducing the rate of the epidemic
development during the season especially in case of diseases in which more initial
inoculum is present and also they multiply rapidly with more number of secondary
generations. (Agrios 2005; Campbell and Madden 1990). Better understanding of
the host, and environment and its influence on the pathogen and disease develop-
ment, available detection technology for that particular disease/pathogen and in
depth knowledge about the disease and pathogen dynamics helps in the development
of a successful forecasting model with sufficient accuracy. After the development of
the forecasting model the proper validation is the key criterion for its wider adoption.
There is increased interest among plant disease modelers and researchers to improve
cost benefit ratio through validation based on quantifying the cost of a model making
false predictions (positive and/or negative). An economic validation of a plant
disease forecasting system requires the examination of two false predictions
(a) false positive predictions, in which a forecast was made for a disease when in
fact no disease was found in a location, and (b) false negative predictions, in which a
forecast was made for a disease not to occur when in fact the disease was found.
These two have different economic effects for producers (Madden 2006). Flexibility
of the model, its accuracy, statistical representation of interaction and contact
assumptions, defining the critical threshold of transmissibility, methods followed
to model disease dynamics incase of pathogens which can travel long distances with
the help of air and identification of natural scale to trackmovement and interaction
with host are the key challenges for advancing the models (Newbery et al. 2016).
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Since the focus of the chapter is on forecasting of wheat diseases and crop is
known to be affected by different diseases among them the important ones are rusts
(stripe, stem and leaf) foliar blights, smuts and bunts, Fusarium head blight and
Blast. These diseases are known to cause huge losses annually at global level (Reis
et al. 2000; Hovmøller 2001; Kohli et al. 2011; Savary et al. 2012; Newbery et al.
2016; Jindal et al. 2012). In wheat diseases especially in case of rusts the main goal
of the wheat breeding always remains to increase host resistance by deploying
variety of resistance genes which decrease the chances of resistance breakdown by
the pathogens (Ojiambo et al. 2017). But development of new races with more
virulence, aggressiveness and better adaptability to high/low temperature gives a
new direction to the crop breeding programme. In the absence of the effective
resistance cultivars the role of fungicides becomes prominent for the management
of the quick spreadingdiseases like rusts. In such cases decisive system is needed for
the timely application of fungicides to reduce economic cost, environmental impacts
and yield losses. Under these situations the importance of epidemiologists increases
to have good and effective disease forecasting models applicable for single disease
or multiple diseases in same crop or different crops. The discipline of epidemiology
gained its status after the publication of book, Plant Diseases: Epidemiology and
Control in 1963 by Vander Plank. In this period of around 57 years the concept of
disease pyramid (Disease triangle+Time + human activity) has evolved from disease
triangle (Host, pathogen and Environment) (Fig. 2.1) and the discipline has gained
much application in terms of technological advancements for the development of
disease prediction models. The computer based systems has increased the speed and
accuracy of the forecasting models.

This book chapter will focus on the various forecasting models designed by
various researchers for different wheat diseases (Fig. 2.2), insights into those models
and challenges before the epidemiologists to develop more accurate, reliable and
cost effective forecasting models in wheat crop under different agro-climatic zones

Fig. 2.1 Components for the
development of plant disease
epidemic
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for a single disease or for prediction of multiple wheat diseases. Like all other crops
three different types of disease prediction models i.e. Empirical (based on field
observations); Simulation models (based on theoretical relationships) and general
circulation models (based on fixed changes in temperature or precipitation to predict
disease expansion range) are used for wheat disease forecasting.

2.2 Rusts

Rusts are the known to cause the significant economic damage in cereals worldwide.
All the stages of rust development staring from landing of the uredospores, followed
by their germination, penetration into host, reproduction, colonization, symptom
development, disease severity and secondary spread of the pathogen all are affected
by the weather parameters such as temperature, relative humidity, wind speed and
direction etc. Rust diseases develop and spread rapidly under favourable conditions.
Three different types of rusts; stem rust/black rust (Puccinia gramins tritici) leaf/
brown rust (Puccinia recondita), yellow/stripe rust (Puccinia striiformis tritici)
affect wheat crop from seedling stage to maturity (Bhardwaj et al. 2016; Kaur
et al. 2018). Each Puccinia species has particular environmental requirements that
include presence of free film of water on the leaf surface (due to intermittent rains or
heavy dews) and temperatures optimum for the germination and growth of thefungus
(Marsalis and Goldber 2017). Puccinia spp. causing rust diseases in wheat are
polymorphic in nature and produce five different types of spores namely,

Fig. 2.2 Main wheat diseases for which forecasting models have been discussed
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picniospores/spermatia, aeciospores, uredospores, teliospores and basidiospores.
Vast number of spores is produced by the rust fungi which travel long distances
with the help of wind (Visser et al. 2019) and in the presence of susceptible host and
favorable weather conditions can cause huge losses or can lead to epidemic like
situation in very short period of time (Leonard 2001). For the rust diseases the top
priority of the wheat breeder is always to have a cultivar(s) with good yield and rust
resistance to achieve sustainable crop yield. Owing to fast multiplication of the
pathogen and continuous evolution the new races of the fungus with enhanced
virulence, aggressiveness and better adaptation develop which most of the times
overcome the resistance. Moreover the effectiveness or performance of some of the
resistance genes is also affected by the environmental conditions but the basis for
which is poorly understood (Bryant et al. 2014). Many epidemics have been reported
globally due to the wheat rusts which resulted in big yield losses. Best approach in
the absence of resistance is the timely application of fungicides. Incase of rusts the
fungicide application must generally occur during the early stages of epidemics, and
at sufficient rates. Over-application is costly and creates added selection pressure for
more fungicidal tolerant strains; while under-application may also be cost-
prohibitive in regions where expected yield is lower (Chen 2007). In such cases
the disease prediction models help to take the decision that when to apply the
fungicide and where to apply i.e. targeted application of fungicides. In case of
wheat rusts most of the disease prediction models are based on environmental
conditions as numerous environmental factors are there and their affect on disease
development vary with growth stages, season to season and region to region. So the
identification of the critical factors involved in the initiation of disease and develop-
ment at different growth stages of the crop in different regions help to predict the
disease accurately by working out the correlation coefficients between each environ-
mental variable and the observed “target variable” i.e. disease severity level
(Gouache et al. 2015). These results serve to improve the understanding of the
studied pathosystem and provide useful knowledge for managing the disease
(Gouache et al. 2015). For wheat rusts till date many disease prediction models
have been developed in different countries by using the different parameters and
different approaches which included simple regression analysis (Eversmeyer et al.
1973), discrimination analysis (Chen et al. 2006), principal component analysis
(Naseri and Sharifi 2019), grey model forecast method (Pu 1998), neural networks
(Wang and Ma 2012), support vector machine (Wang and Ma 2011), Markov
forecast method (Qiang 1999) etc.

2.2.1 Stripe Rust of Wheat

A number of studies have been conducted throughout the world for predicting stripe
rust of wheat early in the season (Zeng 1962; Coakley et al. 1982; Murray et al.
1994; Hu et al. 2000; Fan et al. 2008; Wang et al. 2016; Mulatu et al. 2020). Each
study has its own data requirements and complexities which are summarized in the
Table 2.1 and only a few are discussed below. The prediction of stripe rust of wheat
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Table 2.1 Disease prediction models developed globally for stripe rust of wheat caused by
Puccinia striiformis tritici

Year
Parameters taken into considerations/
Methods used Area/Country References

1962 Number of rainy days, precipitation and
mean temperature of 10 days from
11March to 20 April.

China Zeng (1962)

1981 Temperature(January, April and June),
precipitation in June and positive as well
as negative degree days

Pullman Coakley and
Line (1981)

1982 Standardized degree days positive and
negative (PDD& NDD)

US Pacific northwest Coakley et al.
(1982)

1983,
1984

PDD, NDD, Julian day of spring US Pacific northwest Coakley et al.
(1983, 1984)

1983 Disease development data to calculate
yield loss due to rust attack at soft dough
stage

Victoria Brown and
Holmes
(1983)

1987 Temperature and wet period Australia Dennis (1987)

1988 PDD, NDD, Julian day of spring, mean
max.Temperature, total precipitation,
precipitation frequency, number of days
with temperature more than 25 �C and
number of days with temperature less than
0 �C

US Pacific northwest Coakley et al.
(1988)

1994 Affected area at early milk stage, time and
daily maximum temperature(seven days
before to one days after early milk stage)

Australia Murray et al.
(1994)

1995 Temperature, dew duration & wetness France De
Vallavieille-
Pope et al.
(1995)

2000 Amount of pathogen inoculum in autumn
of the last year, amount of pathogen
inoculum in spring, average temperature &
precipitation in April and area under
susceptible variety

Hanzhong in Shaanxi
Province/China

Hu et al.
(2000)

2003 Disease on lower canopy of plants UK Young et al.
(2003)

2007 Temperature, dew formation, cultivar
resistance rating, frost, seed treatments and
foliar fungicide applications

England Gladders et al.
(2007)

2007 Diseased fields (%) in autumn in preceding
year, area under susceptible variety,
average tem. In January and maximum
temperature in march

Longman mountainous
area in southern
Gansu/China

Xiao et al.
(2007)

2007 Precipitation in middle 10 days of April
and last 10 days of may, precipitation in
middle and last 10 days of may & average
relative humidity in may

Shanxi Province Fan et al.
(2007)

(continued)
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Table 2.1 (continued)

Year
Parameters taken into considerations/
Methods used Area/Country References

2008 Average temperature in march,
precipitation in march–may and area under
susceptible varieties.

Gangu, Gansu/ China Fan et al.
(2008)

2008 Temperature from February to June and
rainy days

UK Beest et al.
(2008)

2008 Weather correlations with disease severity
and predictions were made using BP
neural network with its network structure
simplified through PCA and with its initial
weights and threshold optimized by GA.

China Zeng and Luo
(2008)

2009 Incidence is correlated to temperature in
Feb. & march and severity is correlated to
precipitation in Jan & Feb and temperature
in June

S. Sweden Wiik and
Ewaldz
(2009)

Disease prevalence in spring, amount of
over-summering pathogen, total
precipitation in September-october

Pingliang region in
eastern Gansu

2010 Precipitation in last 10 days of July in the
preceding year, sunlight in the first 10 days
of November and march in the preceding
year,, average temperature in the middle
10 days of April and precipitation in the
last 10 days period of April.

Jincheng region in
Shanxi Province

Cheng et al.
(2010)

2013 Web based geographical information
system (WeBGIS)

China Kuang et al.
(2013)

1994 Assessment yield losses due to stripe rust
at different growth stages from end of
heading to late milk in relation to
temperature

Australia Murray et al.
(1994)

2006 Discrimination analysis for the forecast of
wheat stripe rust based on the occurrence
data of this disease and the climate data

China Chen (2007)

2011 Neural networks China Wang and Ma
(2011)

2014 Hyperspectral reflectance data India Krishnaa et al.
(2014)

2016 Hyper spectral data acquired using a
black-paper-based measuring method

China Wang et al.
(2016)

2017 Stepwise regression analysis showed
existing of low temperature (10–12 �C),
high relative humidity (90%) along with
intermittent rainfall was conducive for
disease onset. Thermic variables
(atmospheric, canopy and soil
temperature) along with age of crop in the
selected varieties showed significant
positive correlation with disease severity

India Gupta et al.
(2017)

(continued)
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based on weather variables is as old as the science of epidemiology is (Zeng 1962).
During the year 1978 a disease prediction model EPIPRE (EPidemics PREdiction
and PREvention) for stripe rust of wheat was launched in Netherland and Belgium
promoted after the heavy epidemics of yellow rust in 1975 and 1977 in Netherland
and is a kind of simulation model which works on field-by-field basis(Rabbinge and
Rijsdijk 1983). EPIPRE is a system of supervised control of diseases and pests in
winter wheat. In this system the participating farmers do their own monitoring of
diseases and pests and send that information related to field, crop stage and disease/
pest to the data bank which then fed into the computer based model. Field data
updated daily and by simple simulation models expected damage/loss were calcu-
lated and used in making decision i.e. to spray or not to spray. Initially this model
was operational in Netherland and Belgium for stripe rust only later on it was used
for making decisions related to leaf rust, powdery mildew, septoria blight, glume
blotch and aphid during the successive years (Smeets et al. 1994). Shtienberg et al.
(1990) developed a threshold level forecasting model and finally on the basis of the
pathological parameters and weather forecasts developed a Wheat disease control
advisory (WDCA), a computerized decision support system for septoria blotch, leaf
rust, and yellow rust, under the semi-arid conditions of Israel. In the decision making
process, the system take into consideration the economic, agronomic, phytopatho-
logical and both recorded and forecasted weather. It provides a recommendation for
fungicidal action to reduce the diseases efficiently in time after analyzing the effects
of thevarious factors on the benefits of disease control. The advisory system was
tested over 4 years in 81 field experiments by the developers and commercial
growers. In managed fields as per advisories of WDCA, a significant increase of
0.78 t/ha in yield, or US $ 92.70 per ha in net profit, was obtained relative to the
common management policy. El Jarroudi et al. (2017a) in Luxembourg developed a
threshold-based weather model for predicting stripe rust. In this model first, by using
the Monte Carlo simulation method based on the Dennis model, the range of
favorable weather conditions were characterized. Then, the optimum combined
favorable weather variables (air temperature, relative humidity, and rainfall) during

Table 2.1 (continued)

Year
Parameters taken into considerations/
Methods used Area/Country References

2019 Air temperature, icy and rainy days,
relative humidity

Iran Naseri and
Sharifi (2019)

2020 Rainfall, relative humidity, and air
temperature conditions

Morocco El Jarroudi
et al. (2020)

2020 Rainfall, relative humidity and
temperature were by machine learning
tools

Ethopia Mulatu et al.
(2020)

2020 Non linear prediction model (classification
regression tree (CART) using night
temperature, dew point temperature,
relative humidity data

Mexico Rodriguez
Moreno et al.
(2020)

2 Forecasting of Wheat Diseases: Insights, Methods and Challenges 29



the most critical period of infection (May–June) were identified and then were used
to develop the model. Uninterrupted hours with such favorable weather conditions
over 10-day period during the months of May–June were also considered while
building the model. A combination of relative humidity >92% and 4 �C < tempera-
ture< 16 �C for a minimum of 4 continuous hours, associated with rainfall�0.1 mm
(with the dekad having these conditions for 5–20% of the time), were optimum to the
development of a wheat stripe rust epidemic. The model accurately predicted
infection events: probabilities of detection were � 0.90 and false alarm ratios were
� 0.38 on average, and critical success indexes ranged from 0.63 to 1. Naseri and
Sharifi (2019) used Principal component analysis (PCA) to identify climatic
variables associated with occurrence and intensity of stripe rust epiphytotics in
Iran. They found that disease epidemic intensity was linked to the number of rainy
days, the number of days with minimum temperatures within the range of 7–8 �C
and relative humidity (RH) above 60%, and the number of periods involving
consecutive days with minimum temperature within the range of 6–9 �C and RH%
> 60% during a 240-day period, from September 23 to May 21. Sadar et al. (2019)
firstly developed wheat rust (stripe and stem rust) early warning system (EWS) in
which near real-time field survey observations and advanced numerical weather
prediction (NWP) meteorological forecast data, Lagrangian spore dispersion
forecasts along with detailed environmental suitability model forecasts, and wide-
ranging communication methods were used collectively to predict near real-time
risks of disease occurrence in Ethopia.

El Jaroudi et al. (2020) made efforts to couple the use of artificial intelligence
algorithms with weather based models for predicting in season development of stripe
rust of wheat. They used mechine learning techniques such as random forest, naïve
bayes alogrithims and multivariate adaptive regression alpines for stripe rust predic-
tion in Morocco. A combined effect of relative humidity >90%, rainfall �0.1 mm,
and temperature ranging from 8 to 16 �C for a minimum of 4 continuous hours (with
the week having these conditions for 5–10% of the time) during March–May were
optimum to the development of WSR epidemics. Dong et al. (2020) developed an
automatic system for Crop Pest and Disease Dynamic Monitoring and Early
Forecasting of stripe rust of wheat and locust based on web GIS platform. Wheat
rust index (WRI) was constructed based on plant senescence reflectance index
(PSRI) and red-edge vegetation stress index (RVSI) to monitor wheat yellow rust,
for which WRI could consider wheat growth, chlorophyll content and their variation
characteristics. Then, integrated with disease habitat information including land
surface temperature (LST, MODIS product), rainfall and wind (meteorological
data), also historical data, Disease Index (DI) was constructed for wheat yellow
rust habitat monitoring based on previous work. Rodríguez-Moreno (2020) in
Mexico explored the use of the classification and regression tree (CART), a type
of nonlinear prediction model, to know the key weather–disease links in case of
stripe and leaf rust of wheat.

Comparisons of different types of models for their efficacy, accuracy were done
by various workers in. Nei et al. (2014) did the comparison of methods for
forecasting yellow rust in winter wheat at regional scale. They compared the
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Bayesian network (BNT), BP neural network (BP), support vector machine (SVM),
and fisher liner discriminant analysis (FLDA) used to develop YR forecasting
models and found that three methods of BNT, BP neural networks and SVM are
of great potential in development of disease forecasting model at a regional scale.
Gouache et al. (2015) used Window Pane analysis for identifying synthetic weather
variables over overlapping time frames for eachgrowing season. The correlation
coefficients between each variable and the observed “target variable”i.e. the disease
level at the end of a season were calculated and critical periods were identified during
which the variation in specific environmental variable(s) lead to variations in level of
disease expression. Newlands (2018) evaluated the two models; CLR model, which
is a simple, site-specific model, and hhh4 model; a complex and spatially-explicit
transmission model. The ability of these models to reproduce an observed infection
pattern is tested using two climate datasets with different spatial resolution-a reanal-
ysis dataset (�55 km) and weather station network township-aggregated data
(�10 km). Thehhh model using weather station network data had the highest
forecast accuracy and reliability under heterogeneous modeling assumptions.

Many prediction models have been developed for forecasting of stripe rust of
wheat. However, each model has its own advantages and shortcomings and certain
application conditions. According to the region or actual conditions suitable model
should be selected for application. Prediction model system for yellow/stripe rust of
wheat could be built to collect the prediction models into one computer system
through programming the models. It could make easier to choose suitable model.
Integrated prediction model could be established using different models and
methods according to the needs in the future.

2.2.2 Leaf Rust

For the forecasting of leaf rust two different approaches have been used by many
researchers throughout the world; firstly considering the influence of weather
parameters on the disease (regression equations/disease indicies/flow charts etc)
and secondly forecasting disease severity on the basis of epidemic dynamics i.e.
from growth rate of the disease. Like stripe rust, again the temperature, relative
humidity and rain fall are the key weatherparameters, which are known to influence
the disease development and forms the basis for predicting WLR by various disease
modelers (Table 2.2) starting from 1969 by Eversmeyer and Burleigh to 2020 by
Rodrigues Moreno, a few has been discussed below.

In India during 1980, Nagarajan et al. gave a biclimatic model for prediction of
leaf rust in northwestern India. They reported that the following criteria need to be
satisfied if an epidemic is to occur. 1. During the period of January 15 to January
20, a wheat disease survey in UP and North Bihar should detect infections in at least
five or six sites, separated by a minimum of 25� 5 km. 2. The number of rainy days
from January to mid April over northwestern India should be at least double the
normal of 12 days. 3. Over northwestern India the weekly mean maximum tempera-
ture during March to mid April should be �1 �C of normal (26 �C).
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Table 2.2 Disease prediction models developed globally for Leaf rust of wheat caused by
Puccinia triticina

Year Parameters taken into considerations
Area/
Country Reference(s)

1969 Weekly uredospore number,commulative
uredospore numbers, temperature, hours of free
moisture as dew or rain/day and precipitation

USA Eversmeyer and
Burleigh (1969)

1972 Developed stepwise linear equation using number of
spores trapped, temperature, wheat growth stage,
fungal growth function, infection function, hours of
free moisture and precipitation

USA Burleigh et al.
(1972)

1981 Linear equation model for predicting rust severity India Srivastava
(1981)

1983 EPIPRE (EPIdemic PREdiction and PREvention) Netherland Rabbinge and
Rijsdijk (1983)

1983 Higher temperature results in shorter latent and
infectious perid

USA Tomerlin et al.
(1983)

1989 AUDPC, incubation period, Commulative degree
days,hours of leaf wetness per day

USA Suba Rao et al.
(1989)

1990 Date of inoculation, weather variables, host
susceptibility

USA Rao et al. (1990)

1997 Meteorological conditions and uredospore cycles
(RUSTDEP)

Italy Rossi et al.
(1997a)

1997 Weekly and monthly air temperature and rainfall. Mississippi Khan and
Trevathan (1997)

1997 Step wise regression using weekly maximum and
minimum temperatures, rainfall, relative humidity,
wind speed and 24 hr. wind movement leaf rust
severity.

Pakistan Khan (1997)

1998 Daily deviations from the 10-year average maximum
and minimum temperature, fungal temperature
equivalence function, cumulative fungal temperature
function, precipitation, cumulative precipitation, and
snow cover averaged for 10-day periods prior to date
of inoculum forecast

USA Eversmeyer and
Kramer (1998)

1999 Weather parameters & resistance level of the variety Argentina Moschini and
Pérez (1999)

2007 PUCTRI: Air temperature, relative humidity and
precipitation.

Netherland Rader et al.
(2007)

2008 Weather parameters(temperature, RH, precipitation) Pakistan Umer et al.
(2008)

2014 Night weather conditions i.e. temperature, RH &
Rainfall

Europe El Jarroudi et al.
(2014)

2014 Humid thermal ratio (HTR), maximum temperature
(MXT) and special humid thermal ratio (SHTR)

India Kumar (2014)

2015 EPIWHEAT, a generic simulation model based on
weather variables, healthy, latent, infectious, and
removed sites, and lesion expansion etc

France &
Europe

Savary et al.
(2015)

(continued)
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A simulation model was developed for the prediction of brown rust on winter
wheat by Rosii et al. (1996) based on the uredospore cycle. The interaction between
the host, weather, and infection process were transformed into model parameters by
curve fitting, corrections and empirical assumptions. The model was validated by a
backward method and the model outputs were compared with actual data collected at
eight sites in Italy over 4 years. The model gave a good simulation of the establish-
ment of primary infections of leaf rustand showed 93% accuracy. Air temperature
and leaf wetness were identified as the critical factors for infection establishment.
Rosii et al. (1997a) developed a simulation model for the development of leaf rust
epidemics which blends the two earlier approaches i.e. RUSTDEP (RUST Develop-
ment of EPidemics) model and WHEGROSIM (WHEat GROwth SIMulation)
model. The model simulates the progress of disease severity level, expressed as a
percentage of rusted leaf area on individual leaves, over the course of a growing
season, with a time step of one day, as a result of the increase in the diseased area
caused by each infection cycle. Information about the interactions between stages of
disease cycles, weather variables and host characteristics are incorporated into a
system dynamic model. The variables used in this model are leaf area with latent
infections, infectious leaf area, no longer infectious leaf area, total rusted leaf area,
daily increase of RLA, infection efficiency of uredospores (0–1), failure rate of latent
infections (0–1), eruption rate of uredia (0–1) and exhaustion rate of uredia
alongwith Auxiliary and intermediate variables namely germination of uredospores
on leaves (0–1), appresssorium formation (0–1), penetration into leaves (0–1),leaf
area (green leaf area), affectable leaf area, leaf area no longer vulnerable to infection,
latent period (days), infectious period (days), leaf wetness, wheat growth phase
Constants and parameters like maximum leaf area, host effect on DRLA (number
< 1), daily mean temperature, hourly temperature, hourly relative humidity and
hourly amount of rainfall. This model allows simulating the progress of rust severity
well in a wide range of conditions. The hold out method was used for validation and
resulted in 80 per cent of the simulated disease severity which fall into the confi-
dence interval of the observed data.

Rosii et al. (1997b) designed an advisory system for the control of leaf rust on
winter wheat by combining three simulation models previously elaborated and
validated with the networks of weather station, spore collection and field monitoring
by combining the three models. The presence of weather conditions conducive to

Table 2.2 (continued)

Year Parameters taken into considerations
Area/
Country Reference(s)

2020 Solar radiation, total precipitation, average wind
speed, maximum wind speed, minimum air
temperature, maximum air temperature, minimum
relative humidity and maximum relative humidity

Egypt El-Orabey and
Elkot (2020)

2020 Non linear prediction model (classification
regression tree (CART) using night temperature,
dew point temperature, relative humidity data

Mexico Rodriguez-
Moreno et al.
(2020)
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infection establishment is then checked by RUSTPRI (RUST PRimary Infection)
model, especially when uredospores could be washed onto the ground by rainfall
from the cloud of spores in the air. When the infection might be established, the days
when uredia could appear in the field are determined and the technicians take action:
they intensify surveys in the pilot-fields to note rust appearance. With disease onset
they assess disease severity, as an input for RUSTDEP together with the meteoro-
logical data and the simulation from WHEGROSIM. The outputs of epidemic
simulation are then used in order to advise growers.

El Jarroudi et al. (2014) made predictions of wheat brown rust infection and
progress of the disease based on night weather variables (i.e., air temperature,
relative humidity, and rainfall) and a mechanistic model for leaf emergence and
development simulation (i.e., PROCULTURE) and used this information to deveop
a decision support system.. They also reported that even a single fungicidal applica-
tion based on the DSS gave a good protection of the upper three leaves incase of
susceptible cultivars under field conditions with predominant leaf rust occurrences
and the grain yield was not significantly different from that of the plots sprayed twice
or thricewith fungicides. Gouache et al. (2015) studied the impact of weather
variables on the severity of brown rust in wheat using data from unsprayed plots
during 1980–2011. They calculated logistic regressions between theweather
parameters derived from the temperature, precipitation, solar radiation and evapo-
transpiration. They followed the window pane analysis for selecting the weather
parameters.. The window algorithm was developed by Coakley et al. (1988) to
predict stripe rust severity on winter wheat using weather parameters. The window
pane algorithm helps in automatically selecting the weather variables of different
overlapping time windows and searches for multiple linear regressions of the
variables and the disease severity. With this approach they received a root-mean-
squared-error of 0.29 representing 22.4% of occurred disease severity values and a
ROC Area Under the Curve value of 0.85. Savary et al. (2015) developed a model
known as EPIWHEAT for mapping the epidemics of leaf rust and spot blotch of
wheat. This model chiefly included the parameters namely lesion size, lesion
expansion, number of infectious sites, temperature, duration of wetness, rainfall
and area under disease progress curve for predicting the wheat diseases. Chai et al.
(2016) discussed about the use of CLIMEX model to know the global climate
suitability for P.triticina causing leaf rust of wheat. The distribution of leaf rust is
strongly influenced by land use in terms of host availability and irrigation. In this
CLIMEX model the parameters were fitted based on the biology of leaf rust
pathogen and adjusted according to its known distribution using natural rainfall
scenario/irrigation schedule. Garin et al. (2018) made an effort for modeling interac-
tion dynamics between two foliar pathogens of wheat i.e. Septoria blight and leaf
rust because both the fungi have contrasting traits in terms of colonization of leaf
tissues and of spore dispersal. This modeling framework comprised of three
sub-models:1.geometric model of lesion growth and interactions at the leaf scale;
2: model of lesion growth with global interactions at leaf scale 3: epidemiological
model with interactions at canopy scale. They found that the simulated epidemics of
brown rust were greatly affected by the presence of septoria, but the reverse was not
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the case. A weather based approach to predict leaf and stripe rust in winter wheat has
been deployed by Rodríguez-Moreno et al. (2020). They used Classification and
regression trees (CARTs) for data analysis, in which an hourly weather variables
data, and a 3 year field disease data of winter wheat rust were integrated to forecast
the presence/absence of pathogens. Theyobserved the association of leaf rust sever-
ity with a night temperature of <14.25 �C and global radi-ation of <521.67 Wm�2,
while the estimated dataset showed that its severity is better explained by the dew
point temperature of <13.7 �C and a mean temperature of <19.06 �C. The analysis
indicated the pathogen’s preference for non-dry ambient conditions and the prefer-
ence of stripe rust pathogen for humid and warmer temperatures than leaf rust.

2.2.3 Stem Rust of Wheat

Eversmeyer et al. (1973) predicted the severity of stem rust by weekly and
commulative number of uredospores deposited per cm2, cultivar, growth stage of
the crop, minimum and maxiumum temperature, fungal temperature growth function
and fungal infection function. They used the stepwise multiple regression analysis to
find out the meterological and biological factors responsible for variation in stem rust
sverities. In India, detailed studies have been conducted by Nagarajan and his
co-workers for the prediction of stem rust of wheat. The important ones like
“Indian stem rust rules”; a set of synoptic conditions for prediction of setm rust
was given by Nagarajan and Singh (1975) as described under:

1. A storm/depression should be formed either in the Bay of Bengal or in the
Arabian Sea between 65�--85�E and 10�--15�N and should dissipate over central
India.

2. A persistent high-pressure cell must be present over south-central India (not far
from the Nilgiris).

3. A deep trough extending up to south India and caused by the onward movement
of a western disturbance should occur. If one or a combination of these conditions
is satisfied, it is likely that uredospores will be transported to central India and
deposited there in rain.

For predicting infections of wheat stem rust 20–25 days before the appearance of
the disease on the crop a method was also described by Nagarajan and Singh (1976)
in which the application of linear equations aided in the local decision making for
successive disease management operations in the likely areas and times of disease
appearance are known. Based on field epiphytotic studies, a linear model for
prediction of stem rust severity 7 days in advance was developed by Nagarajan
and Joshi (1978):

Y ¼ �29.373 3 + 1.820 Xx + 1.7735 X2 + 0.2516 X3.
where Y ¼ expected disease severity after 1 week,
Xx ¼ mean disease severity for the past week,
X2 ¼ mean weekly minimum temperature (�C) expected for the next week,
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X3 ¼ mean maximum relative humidity expected in the next week and –.
29.373 3 is a constant.
This model was further tested by multilocation test (Karki et al. 1979). Hernandez

Nopsa and Pfender (2014) developed a latent period duration model for stem rust of
wheat. They formulated a mathematical model to predict latent period duration based
on temperature, the model can be applied to data consisting of varying temperature
readings measured at any desired time increment and can help in estimating epi-
demic development, and also in improving understanding epidemiologyof stem rust.
Recently many modelers have tracked the spore transport events and spread
probabilities in case of stem rust in different parts of the world (Meyer et al. 2017;
Visser et al. 2019). Prank et al. (2019) made certain attempts to study the impact of
climate change on spread potential of stem rust and reported that warmer climate
with lower relative humidity and enhanced turbulence will lead to�40% increase in
the urediniospore emitting potential of an infected field as global average. Allen
Sader et al. (2019) developed an early forewarning system for mitigation of stripe
and stem rust of wheat in Ethopia. The EWS comprised of a sophisticated framework
which integrates field and surveillance data, spore dispersal and disease environ-
mental suitability forecasting and further communicatethe information to policy-
makers, advisors and smallholder farmers. The system involves daily automated data
flow between two continents during the wheat season in Ethiopia. The system works
oninter-disciplinary approach (biology, agronomy, meteorology, computer science
and telecommunications). This EWS is the first system which combines near real-
time field survey observations, advanced numerical weather prediction (NWP)
meteorological forecast data, Lagrangian spore dispersion forecasts along with
detailed environmental suitability model forecasts, and wide-ranging communica-
tion methods to predict near real-time risks of disease occurrence in a developing
country context.

Mulatu et al. (2020) developed a nonlinear modelfor prediction of stripeand stem
rust based on historical weather and disease data during 2010 to 2019. The weather
variable such as daily rainfall, temperature (minimum & maximum) and humidity
were used. The intial disease incidence and severity were assessed at 3 days interval
and the data was combined with mean values of weather parameters and correlation
was worked out. The presence or absence of the disease was predicted using WEKA
software machine learning tool with J48 decision tree algorithm for data analysis.
J48 un-pruned decision tree algorithm and J48 pruned decision tree algorithm were
used respectively to develop stripe rust and and stem rust prediction model.

2.3 Karnal Bunt

Karnal bunt (KB) is an important disease of wheat caused by a fungal species Tilletia
indica Mitra. Eventhough Karnal bunt is a minor disease but it is always significant
with respect to its quarantine importance worldwide. Besides, soil, seedas well as air
borne nature of the fungus makes its management quite difficullt (Mitra 1937;
Mundkur 1943; Bedi et al. 1949). In India, the germination of teliospres took
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place from the middle of February to the middle of March under optimum tempera-
ture (18–25 �C) and relative humidity (>70%) to produce primary sporodia (Mitra
1937; Mundkur 1940; Holton 1949; Krishna and Singh 1981). The secodary sporidia
are produced by primary sporidia which are air borne and lodge onto plant surfaces
by air currents and rain splash or monkey jumping of sporidia from the soil surface to
the ear heads. They may germinate and produce additional generations of secondary
sporidia on the wheat heads and cause infection (Bedi 1989; Bains and Dhaliwal
1989; Dhaliwal and Singh 1989; Gill et al. 1993; Nagarajan et al. 1997). Wheat
spikes are susceptible from early head emergence to late anthesis (Duran and
Cromarty 1977; Warham 1986; Bondeet al. 1997). Sporidial germ tubes penetrate
through stomata of glumes, lemmas and palea. In some cases, there may be direct
penetration of immature seed (Aujla et al. 1988; Dhaliwal et al. 1988; Goates 1988;
Salazar-Huerta et al. 1990). The various stages of the life cycle of the fungus right
from the initiation till the development is highly dependent on suitable weather
conditions during flowering which is most susceptible stage to infection. There are
number of studies which proved the effect of weather parameters on different stages
of life cycle of the fungus Tilletia indica (Purdy and Kendrick 1957; Munjal 1975;
Bains (1992); Bansal et al. 1983; Zhang et al. 1984; Smilanick et al. 1985; Aujla
et al. 1986; Singh 1986; Dhaliwal and Singh 1989; Smilanick et al. 1989; Aujla et al.
1990; Bedi et al. 1990; Schall 1991, Ratan and Aujla 1992; Gill et al. 1993; Singh
and Aujla 1994; Nagarajan et al. 1997; Kaur et al. 2002a; Sharma and Nanda 2002;
Sharma and Nanda 2003; Murray 2004, Goates and Jackson 2006; Sansford et al.
2008; Bedi 1989; Dhaliwal and Singh 1989; Bains and Dhaliwal 1989; Siddhartha
et al. 1995).

If we know the exact weather parameters, the disease can be easily controlled by
chemicals (Sharma et al. 2004). Various studies have been conducted in this regard
(Table 2.3) and most of them are from India. Intitally, the role of high humidity, low
temperature, continuous rainy/foggy and cloudy weather from ear emergence to
anthesis have been reported to be responsible for disease epiphytotics in different
years at many places (Munjal 1971; Aujla et al. 1977; Singh and Prasad 1978).

In a comparative study of KB epiphytotic years and KB free years it was indicated
that more number of foggy days, reduced sunshine hours and rainfall during
flowering stage were the characteristics of epidemic years. On the basis of this
analysis, thumb rule to forecast the disease in endemic areas was postulated by
Aujla et al. (1991) as described in Table 2.3. Number of rainy days at flowering stage
in February at Mexico was found to be positively correlated while the amount of
rainfall showed weak positive relation and temperaturehad negative coorelation with
Karnal bunt incidence (Nagarajan 1991). Multiregression Model based on dfferent
weather parameters was developed and Karnal bunt infection can be predicted using
multiple regression models with reasonable reliability (Mavi et al. 1992; Singh et al.
1996). Jhorar et al. developed a disease prediction model for Karnal bunt disease on
the basis of 20 year data. In their study HTI (Humid Thermal Index) was generated
as a single compound variable for more than 90% disease variation fitting a
quadaratic function. Smiley (1997) stressed the importance of suitable rain and
humidity events and defined conditions for Karnal bunt occurrence. Both the models
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Table 2.3 Weather parameters/models for development of Karnal bunt over the years

Parameters/Models
Specific Conditions/
Equations Year Country References

Relative humidity
(RH), temperature,
continuous rainy /
foggy and cloudy
weather from ear
emergence to anthesis

Humiditymore than70%
low temperature (19–23
�C), continuous rainy /
foggy and cloudy
weather for >13 days

1971–1978 India Munjal
(1971), Aujla
et al. (1977),
Singh and
Prasad (1978)

Cloudy weather,
temperature, relative
humidity and rains
during last week of
February

At heading satge, 1) sky
remained overcast, 2)
temperature was 15–22
�C, 3) RH >40% and up
to 80% and high
showering

1991 India Aujla et al.
(1991)

Number of rainy days,
amount of rainfall and
high temperature in
February

– 1991 Mexico Nagarajan
(1991)

Humid thermal index
(HTI)
Evening relative
humidity (ERH)
Maximum temperature
(TMX)

HTI ¼ ERH/ TMX
Disease incidence
(DI) ¼ �0.85 + 1.5 HTI

1992 India Jhorar et al.
(1992)

Multiregression model
based on maximum
temperature (Tmax),
sunshine duration
(SSD), evening relative
humidity (RHe) and
rainy days (RD)

Plant disease incidence
(PDI)
¼4.12–0.10*Tmax
+0.10*RHe-0.115*SSD
+ 0.076*RD

1992 India Mavi et al.
(1992)

Multiple regression
model using different
weather parameters

– 1996 India Singh et al.
(1996)

Suitable rain and
humidity events

1) more than 3 mm rain
on each of two or more
successive days, 2) at
least 10 mm being
collected within the
2 days interval and 3)
more than 70% average
daily RH during both
rainy day

1997 USA Smiley
(1997)

Humid thermal index
(HTI) and suitable
rains events (SRE)

– 2002 Australia Stansbury
and McKridy
(2012)

Temperature, rainfall
amount and frequency

Z ¼
6.6X1–9.45X2–1.12X3,
X1 is average maximum
temperature, X2 is

2008 Texas Workneh
et al. (2008)

(continued)
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developed by Jhorar et al. (1992) and Smiley (1997) were compared by Stansbury
and McKridy (2012). They suggested that data on HTI and SRE (Suitable Rains
Events) during the susceptible period every year may be more suitable in determin-
ing climatic suitability for Karnal bunt in comparison to long term, average data.
Workneh et al. (2008) again used temperature, rainfall amount and frequency to
predict the disease in Texas. An HTI based GeoPhytopathology Model was devel-
oped by Wei-chuan and Gui-ming (2010) in China. Recently, total rainfall, evening
relative humidity was defined as the most critical factors for KB development. The
model resulted in a coefficient of determination of 0.88 and D. W value of 1.54 (Bala
et al. 2015). Singh and Karwasra (2016) established a significant correlation between
KB infection and rainfall frequency (0.71), total rainfall and HTI for identifying the
KB positive and KB negative crop seasons during susceptibility period i.e. ear head
emergence to anthesis stage.

All these studies indicated that there is an unexplained variation in Karnal bunt
incidence over the periods. Variable environmental conditions over the periods at the
susceptible stage of host may result in such variations in Karnal bunt incidence.
However, such variation has also been observed under artificially epiphytotic
conditions created for screening of germplasm. This suggests that several other
aspects of pathogen biology i.e.inoculum threshhold level, pathogen fitness at
every stage and probability of encounters between compatible sporidia may also
contribute to disease escape or variation in Karnal bunt incidence over the period.

Table 2.3 (continued)

Parameters/Models
Specific Conditions/
Equations Year Country References

average rainfall amount,
and X3 is average
rainfall frequency for the
18-day period

GeoPhytopathology
model (GPMTI) based
on HTI

HTI ¼ ERH/TMX (5 �
T � 35 and 60% � RH
� 95%), HTI ¼ 0 (T <
5 or T > 35 or RH <
60% or RH > 95%)

2010 China Wei-chuan
and Gui-ming
(2010)

Total rainfall in the
month of march and
evening relative
humidity of February

DI ¼ 6.873(0.0962
(FmT)-0.132
(FmxT)-0.34
(Frhm)-0.056((Frhe) +
0.040(Mtrf) + 0.065
(MmxT)-0.132(MRd)

2015 India Bala et al.
(2015)

Rainfall frequency,
total rainfall and HTI
during susceptibility
period i.e. ear head
emergence to anthesis
stage

LogitY ¼ �5.245 +
0.0279total rainfall ¼
0.0449 rainfall
frequency/rainy days
+0.239 heat thermal
index

2016 India Singh and
Karwasra
(2016)
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2.4 Fusarium Head Blight

Fusarium head blight is an important disease of cereals which mainly affects wheat,
barley, corn and oats (Schmale and Bergstrom 2003). It is the second biggest disease
problem in USA, Canada and parts of South America (Savary et al. 2019) and is also
known by names such as wheat scab, head scab or simply scab. It affects floral ear
heads and is primarily caused by Fusarium graminearum Schwabe [teleomorph
Gibberella zeae (Schwein.) Petch] (Parry et al. 1995). Around 17 species of Fusar-
ium, are known to be associated with FHB; Fusarium culmorum, Fusarium
avenaceum (Gibberella avenacea), Fusarium poae, F. oxysporum,
F. pallidoroseum and Microdochium nivale (Monographella nivalis) being the
predominant ones (Parry et al. 1995; Kaur 1998; Saharan and Sharma 2009; Panwar
et al. 2016).

The disease was first described by Smith (1884) in U.K. Its epidemic was reported
in the same year in U.K. and Fusisporium culmorum now known as Fusarium
culmorum was found associated with it (Ghimire et al. 2020). In later years, the
epidemics also occurred in USA where heavy losses were observed in 1917, 1919,
1928, 1932 and 1935 (Stack 2003). It caused havoc in Paraguay in 1972 and 1975
(Viedma 1989); south-eastern region of Argentina in 1963, 1976, 1978 and 1985
(Moschini et al. 2004) and several states of USA and Canada in 1993 (Nganje et al.
2004). Later on severe outbreaks of the disease occurred all around the world where
high rainfall and humidity persists during the wheat season. It was reported to occur
in moderate to severe intensity in China (Zhuang and Li 1993) and India (Roy 1974;
Singh and Aujla 1994). The disease is favoured by wide range of temperatures
depending upon the species involved. Microdochium sp. is common in temperate
climate while F. graminearum require comparatively higher temperatures
(25–30 �C) along with persistent high moisture and rains (Teli et al. 2016).
F. culmorum, F. avenaceum, F. poae thrive more in cool temperatures of around
20 �C (Parry et al. 1995; Kaur et al. 1999).

Fusarium head blight of wheat is a minor disease in India. But, since nineties it
has started appearing in Punjab, where it is more severe on durum wheat as
compared to bread wheat. Epidemic of the disease occurred in 1995–96 and
2004–05 in sub-mountainous districts of Punjab due to frequent rains resulting in
more than 90 per cent infected heads in PDW 274 (Bagga and Saharan 2005). Most
of the wheat varieties have limited resistance to FHB (Kharbikar et al. 2019).

It can result in crop losses as high as 70 per cent under epidemics (Moschini et al.
2004). In North America, it resulted in loss of 7.7 billion US dollars from 1993–2001
(Nganje et al. 2004). Under artificial epiphytotic conditions, FHB can result in yield
losses of up to 21.6% in PBW 222 wheat variety (Kaur et al. 2002b). Besides yield
loss, it results in food and feed contamination due to production of mycotoxins.
Deoxynivalenol (DON) is the most common associated mycotoxin present in grains
infected with this fungus (McMullen et al. 1997; Desjardins 2006; Dweba et al.
2017), the MRLs for which have been fixed at 1 ppm in finished products and
5–10 ppm for livestock feed (FDA 2010). Thus, it has become the biggest cause of
concern associated with this disease.
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Epidemiological parameters affecting FHB have been described by several
workers (Kaur et al. 1999; Osborne and Stein 2007; Molineros 2007; Bolanos-
Carriel 2018). The disease in the field is favoured by 48–72 h of high relative
humidity (90%) along with temperatures between 15–30 �C. Infection efficiency
reduces significantly when these conditions are not met. Perithecia can develop
between 9–29 �C, with an optimal temperature around 22 �C. Sexual reproduction
is limited at temperatures of more than 30 �C. Relative humidity is a crucial
component for development and maturation of perithecia (Dufault et al. 2006). It
required an optimal barometric pressure of less than �50 bars (�5Mpa) (Sung and
Cook, 1981), rainfall of more than 5 mm for its development (Inch 2001). Perithecia
bear 3-septate ascospores which are hyaline and 19–24 � 3–4 μm in size (Booth
1971). Ascospores are produced at a temperature of 25–28 �C under ultraviolet light
(Sutton 1982). Macroconidia of F. graminearum are produced in a temperature
range of 28–32 �C (Keller et al. 2013), while temperatures below 16 �C or above
36 �C are detrimental. Under dry conditions, F. graminearum produces perithecia
while macroconidia is produced under wet conditions (Sung and Cook 1981).

Extensive work has been carried all over the world to develop and test weather-
based forecasting models of FHB (Table 2.4). A sizeable amount of information has
been generated to predict mycotoxin associated with FHB (DON) in wheat grains.
The models are generally formulated considering the relative importance of
components of disease triangle in a manner which gives best fit for disease risk
assessment (McCown 2002). Estimation of a disease in any moment of time is
essential to predict the outcome in a crop production program. It helps us to cover
our weak points in the crop growth season, which could be due to any living or
non-living reasons. The corrective actions integrate into a decision support system.
The principle involved here is that life cycles of diseases proceed in certain well
defined manner which can be predicted with great accuracy if long term disease and
weather data is available. Based on predicted critical points in disease development,
a farmer can go for management practices with optimal fungicide doses (Landschoot
et al. 2013). Timely and accurate identification of plant diseases is another aspect of
decision support system which can counter disease in environment friendly and cost
effective way (Thandapani et al. 2019).

For fusarium head blight, there can be two lines for developing models, first based
on predicting disease or presence of scabbed grains at harvesting and the second is
predicting the mycotoxin (DON) in mature grain at/after harvesting. Several weather
based models have been developed all around the world for predicting FHB, but
most of these are site and year specific. Because of their specificity to region for
which they have been developed, only few FHB models could be used in other
regions. Italian, Argentinean, and Canadian models have been adjusted for other
crop conditions and even used in countries outside their region of origin (Moschini
et al. 2004; Del Ponte et al. 2005; Schaafsma and Hooker 2007).

Forecast models have been developed and validated in United States (De Wolf
et al. 2003; De Wolf and Isard 2007; McMullen et al. 2012; Shah et al. 2013; Shah
et al. 2014), Canada (Hooker et al. 2002; Schaafsma and Hooker 2007; Giroux et al.
2016), Belgium (Landschoot et al. 2013; Hellin et al. 2018), Netherlands (Franz et al.
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2009; Van Der Fels-Klerx et al. 2010), Switzerland (Musa et al. 2007), Italy (Rossi
et al. 2003; Prandini et al. 2009), China (Zhao and Yao 1989), Argentina (Moschini
et al. 2004) and Brazil (Del Ponte et al. 2005).

In United States, five weather based logistic regression models for FHB were
developed which could predict Fusarium head blight epidemics with accuracy of
62–85 per cent using predictor variables in narrow time periods around crop anthesis
(De Wolf et al. 2003; Haran et al. 2010; Peel et al. 2007; Shah et al. 2013; Shah et al.
2014). The models used precipitation hours, time duration of temperature remaining
between 15–30 �C, pertaining to period of 7 days prior to anthesis (Z65) and the
duration when temperature remained between 15–30 �C along with relative humidity
of 90 per cent.

De Wolf et al. (2003) were associated with development of 10 regression models
which could predict epidemics. Models A (TRH9010) requires temperature and
humidity combination variables in post flowering phase. Models B, C and D
required the interactions of weather parameters during pre and post flowering
phase of the crop to predict FHB. Models C and D had high prediction accuracy
of more than 90 per cent under, when FHB severity remained low (<10%) but, in
epidemics (>10% severity) the accuracy dipped to less than 73%. The authors
however emphasized three models A, B and I (DPPT7). The first model set
(DPPT7: I) utilized rainfall hours during 7 days to flowering, the second set of
models (T15307: B and I) used hours when temperature remained between
15–30 �C, in 7 days period before flowering while the third set of models
(TRH9010: A and B) required hours with both relative humidity of more than
90 per cent and temperature between 15–30 �C 10 days post flowering. These
models can forecast an epidemic if critical predicted probability reaches or exceeds
0.5, as per the algebric equations (Table 2.4). Molineros (2007) redefined the De
Wolf et al. (2003) by using only average relative humidity of 7 days prior to
flowering and four levels of varietal susceptibility.

Shah et al. (2013, 2014) in their three logistic regression models (Base 0, Base.1
and Base.2) which included resistance predictor besides weather-based variables like
temperature, rainfall and relative humidity values within 15 days around flowering.
Relative humidity was found better at characterizing moisture effects on FHB than
rainfall in these models and therefore except one RHR.RHG90nR.PRE7.24H, rest
all used only temperature and relative humidity predictors. The predictors were the
combinations of t and rh in different observation periods, pre- or post-flowering.
Unlike previous models, they considered 24-h day period from 08:00 to 08:00
instead of midnight to midnight cycle. All models we developed contained four or
fewer weather-based predictors. Fifteen model sets based on both logistic and
additive logistic regression models were selected by the authors when model selec-
tion protocols were applied different combinations of base models and weather
parameter periods. Five models were developed from base.0, four from base.1 and
six from base.2. Seven models out of fifteen were based on pre-flowering weather
predictors (7, 10, 14 and 15-day window) while remaining used post-flowering (5, 7
and 10 days) data. These models made fewer misclassification errors than models
deployed in US.
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In Canada, a weather based prediction model was developed by Hooker et al.
(2002) to access DON content (ppm) in grains based on weather parameters existing
in three time zones near to heading i.e. Z58 stage of wheat crop, represented in three
equations. This empirical model was based on predicting DON content (in ppm) at
harvest with different equations related to three time periods around heading (Z58).
Rainfall and temperature were identified as crucial meteorological parameters in
three time zones (1) 4–7 days before heading (2) 3–6 days and (3) 7–10 days after
harvesting. Time period, 4–7 days before and 3–10 days after heading, were found to
contribute maximum in predicting DON in grains. Before heading period helped in
inoculum build up and DON content was positively correlated with rainy days
(>5 mm rainfall) and inversely related to daily minimum air temperatures
(<10 �C). Post heading period influenced flower infection. Here, DON was posi-
tively correlated with number of rainy days and days with relative humidity of over
75 per cent at 11:00 h while it negatively correlated with maximum daily tempera-
ture (>32 �C) and average temperature (<12 �C). Number of rainy days exceeding
5 mm per day and temperature below 10 �C, 4–7 days before heading could
determine DON in 55 per cent of fields as per following equation.

1. DON ¼ exp.[�0.30 + 1.84RAINA – 0.43 (RAINA)2–0.56TMIN] – 0.1.
Where, DON ¼ concentration of DON (μg g�1),

RAINA is the number of days of rain >5 mm day�1 4–7 days to heading.
TMIN is the number of days of temperatures <10 �C 4 and 7 days before

heading.
Weather variables observed from 7 days before heading to 10 days after

harvesting could justify DON content in 63–79 per cent of events. The prediction
equations involved additional variables of RAINB (no. of days of rain>3 mm per
day, 3–6 days after heading), RAINC (no. of days of more than 3 mm per day
7–10 days after heading) and TMAX (days with more than 32 �C temperature).

If RAINB is positive value, then model mentioned in Table 2.4 explains the
DON content but, when RAINB is 0, then

2. DON ¼ exp.(�0.84 + 0.78RAINA + 0.40RAINC – 0.42TMIN) – 0.1.
These models could predict with high accuracy in case the DON content remain
low to moderate. However, it failed to predict in case of epidemics.

Modification in continuation to above model came as DONcast which was
released commercially in Canada (Schaafsma and Hooker 2007). It predicted DON
in harvested grains using meteorological variables in five distinct time zones around
heading (Z58) instead of three in Hooker et al. (2002). In addition, it also worked in
maize for DON and fumonisins. Total rainfall (mm); daily average, minimum, and
maximum temperature (�C); and relative humidity are used singly or in combination
to make predictions in this model. Wheat variety, crop rotation and tillage were
found to influence DONcast predictions. Robustness of this model lied in the fact
that it could predict DON across diverse environments. Accuracy of prediction of
DON content was as high as 72 and 83 per cent in case the content stayed around
1.0 mg/kg and 2.0 mg/kg, respectively in France, while the corresponding figure for
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prediction accuracy in Uruguay were 68.3 and 74.8 per cent, respectively. In
Netherlands, DONcast regression equations could predict DON content with an
accuracy of 44.7 per cent for the threshold value of 1250 μg/kg (Franz et al.
2009). Overall, this model could explain DON content with an accuracy of 72 per
cent in case the content stayed around 1.0 mg/kg in more than 1000 fields of wheat
from four countries over a period of 10 years.

Giroux et al. (2016) in Canada reported two American (De Wolf et al. 2003) and
one the Argentinean (Moschini et al. 2001) forecasting models to work accurately,
with high sensitivity and specificity under Quebec conditions when the thresholds
were adjusted using the results for the ROC curve analyses. Weather-based models
predicting FHB incidence and DON in Italy did not work in Canada. DON content
(1 ppm) was best crop damage indicator to differentiate epidemics and
non-epidemics. The models which captured pre- and post-flowering weather
attributes (De Wolf et al. 2003) worked well as compared to ones which used only
pre-flowering weather data (Molineros 2007). Thus, flowering stage is the critical
point, which if missed can lead to decreased effectiveness of a model (Giroux et al.
2016). All these empirical models predict the infection risks with simple polynomial
equations, which are easy to develop and can be used for predicting FHB with
adequate accuracy. Higher complexity models means more accuracy but at the cost
of difficulty in adaptation to new regions other than for which it has been developed
(Prandini et al. 2009; Rossi et al. 2010). DONcast and Hooker prediction models
from Canada and Rossi inf and Rossi tox from Italy with prediction sensitivity of
60, 60, 53, and 40 per cent, respectively were not much effective as they would not
advocate FHB control even if the weather is favourable for the disease. De Wolf I
model from the United States gave sensitivity and specificity of 6.7 and 64.9 per
cent, which meant that disease management warnings will be absent despite high risk
conditions or control strategies, may be recommended in the absence of disease.

In Belgium, Landschoot et al. (2013) extensively evaluated the performance of
five regression techniques (multiple linear regression, ridge regression, regression
trees, gradient boosting and support vector machines) and four cross-validation
strategies (random K-fold cross-validation, cross-year cross location, cross-year
validation, and cross-location validation) to predict Fusarium head blight (FHB) in
winter wheat. The authors developed procedures to obtain an unbiased performance
of the model during its development phase itself, before its actual release thus paving
way for robust models which can work in new locations and different years from the
years and locations based on which it has been developed. Furthermore, advanced
predictive models developed in areas like data mining and machine learning were
able to outperform traditional multiple linear regression models to a great extent. In
subsequent years, models were developed which correlated air-borne inoculum
(macroconidia and ascospores) quantified with TaqMan qPCR assay with FHB
infection (R ¼ 0.84) and DON content (R ¼ 0.9) in the grains (Hellin et al. 2018).

DONcast model developed by Hooker et al. (2002) could not give accurate
prediction in most of the cases, when applied in Netherlands. Franz et al. (2009)
formulated two prediction models 1 and 2 for DON content for Netherlands agro-
climatic conditions by considering 24 days pre- and post-heading dataset in formal
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and 6 days around heading in later model. Both the models predicted DON content
in mature Dutch winter wheat with high accuracy. Higher DON content was
observed when temperature increased from 15 to 25 �C, increase in precipitation
from normal and high relative humidity. The disease and DON content in grains
reduced if temperature went above 25 �C. Model 1 with coefficient of determination
of 0.59 between observed and predicted values and sensitivity of 63 per cent
performed better than model 2. The authors also observed high disparity in DON
levels in different regions of Netherlands although there was no significant differ-
ence in meteorological variables or infection pressure.

A neural network model for prediction of Deoxynivalenol was designed in Czech
Republic taking continuous variables of average temperature and total precipitation
in April, average temperature and total precipitation 5 days prior to flowering and
categorical variable of the preceding crop (Klem et al. 2007). This neural network
model gave high correlation (R2 ¼ 0.87) between observed and predicted data.

Weather based mechanistic model for FHB (F. graminearum and F. culmorum)
infection and mycotoxin contamination was developed in Italy, which was applied
successfully over a commercial scale as a decision support system (Rossi et al.
2015). The model is based on calculation of daily infection index (FHB-inf) and
daily mycotoxin accumulation index in wheat kernels (FHB-tox). The index of
infection risk varies between 5 and 35 and the index of accumulation of toxins is
generally between 0 and 2. The infection prediction model uses average temperature,
number of hours where relative humidity stayed above 80 per cent, total precipitation
(in millimeters), and the intensity of rainfall from heading (Z58) until harvest. The
model retains cumulative daily FHB-inf and FHB-tox index for each Fusarium
species till harvesting of the crop. The model was validated in Italy (Rossi et al.
2006) and Netherlands (Camardo Leggieri et al. 2013) with 90 per cent accurate
DON predictions, while in Egypt, U. K., Mexico, Hungary and Russia, the predic-
tion accuracy was around 60 per cent (Battilani et al. 2013; Camardo Leggieri 2012;
Camardo Leggieri et al. 2011). This FHB model was later included in a Decision
support system granoduro.net® (Ruggeri 2014), which provides outputs in real time
to farmers via a web-based user interface.

In Argentina, Fusarium graminearum is the main pathogen associated with
fusarium head blight (Carranza et al. 2002). Moschini et al. (2013) reported an
empirical model forecasting head blight/deoxynivalenol and its spatial distribution,
supported by land and remote sensing data in the Pampas region. The model
considered thermal amplitude instead of relative humidity took into comparison
the past (1961–1990) and future (2071–2100) climate to train their model.

Two-day periods when rainfall exceeded 0.2 mm and relative humidity remained
above 81 per cent on first and 78 per cent on second day, showed high relation with
disease incidence (R2 ¼ 0.81). Weather variables and FHB incidence had high
correlation starting from 8 days before heading till accumulation of 530 degree
days (DD) (Table 2.4).
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PI% ¼ 20.37 + 8.63 NP – 0.49 nDD
R2 ¼ 0.86

With the same data another model was developed that required only maximum
and minimum temperature and rainfall.

PI% ¼ �9.15 + 6.47 ND + 0.35 pDD
R2 ¼ 0.81

Where, ND is number of consecutive days with rainfall and thermal amplitude
(difference in maximum and minimum temperature) should be less than 7 �C; pDD
is accumulating residuals of more than 9 �C in minimum temperature, on days when
maximum and minimum temperature is less than 25 �C and more than 9 �C,
respectively.

Predicted Fusarium index (PFI %) was obtained from (a) and (b)

(a) being observed daily progress of anthesis (% of wheat heads with exposed
anthers).
(Anther, values from 0 to 1) and the time in degree days (DD12: daily accumu-
lation of average daily temperature above 12 �C)

LogitAnther ¼ � 6.765052912 + 0.136395967 DD12–0.000694621 DD12
2 +

0.000001384 DD12
3 - 0.000000001 DD12

4

(b) Predicted severity (PS %): in controlled environment with conidia exposed to
different wetness period and temperature during wetness period.

LogitS ¼ 38.77166158–0.53815698 W – 6.02985565 TW + 26,849,793 TW
2
–

0.00396097TW
3 + 0.04990941 I1�0.00092343 I2

A day with rainfall of at least 0.2 mm and relative humidity of at least 81 per cent
is considered for assigning the value of W. A single day is represented as W ¼ 24 h,
while two or three consecutive days means W ¼ 48 and 72 h, respectively. TW
depicted temperature during wet day. Final PFI %was obtained by adding the partial
products between (a) and (b) dividedby 100.

As the crop response to FHB varies with genotypes having different ear head
characteristics and even the same genotype may respond differently over years under
prevailing weather conditions (McMullen et al. 1997). Therefore, availability of
regular and precise weather data is the absolute requirement for any model to work
accurately (Solis and Flores 2003). Moschini et al. (2013) could successfully use the
model for locations lacking meteorological data by substituting the missing weather
inputs from satellite and remaining from interpolated weather station data. Rainfall
and temperature data, respectively were sourced from Tropical Rainfall Measure-
ment Mission (TRMM, 3B42 product) and climatic zoning based on NOAA-
AVHRR images to predict FHB with adequate accuracy.

Nicolau and Fernandes (2012) in Brazil devised a Hierarchical Autoregressive
Binary Data Model (HARBDM) to predict daily inoculum levels (spore density),
deposition probability of airborne spores of Gibberella zeae and probable incidence
of FHB. Rainfall and relative humidity positively correlated while sunshine hours
were associated negatively with spore prevalence in air. Temperature had weak
association with spore incidence.
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Several other models have been put to use for farmers through online interactive
systems such as Fusarium Risk Tool in USA available at http://www.wheatscab.psu.
edu/; FusaProg in Switzerland available at https://www.fusaprog.ch/ (Musa et al.
2007) and granoduro.net available through http://www.horta-srl.com at https://
www.horta-srl.it/sito/portfolio-item/granoduro-net/ (Rossi et al. 2015).

There are certain inherent shortcomings in modelling data such as variation of
DON content in different regions despite having same varietal or weather setup.
Since, these cannot be captured while modelling with agronomic and climatic
variables, their validation over large areas is non-consistent (Franz et al. 2009).

2.5 Speptoria Blight

There are two main pathogens assocoiated with Septoria blotch disease in wheat.
Zymoseptoria tritici (formerly known as Mycosphaerella graminicola or Septoria
tritici) (Zt) is the causal agent of septoria tritici blotch (STB), the primary leaf disease
of wheat in temperate wheat growing regions and Septoria nodorum (teleomorph:
Leptosphaeria nodorum) causing septoria nodorum blotch (SNB). This disease has
become a major constraint to wheat production, especially in high-rainfall areas.
Under high disease pressure, the disease infects upper leaves and ear heads and
causes shrivelling of kernels and deteriorates grain quality. Cool temperatures
associated with frequent rains favours epidemic development in susceptible cultivars
of wheat (Thomas et al. 1989). The optimum temperature for infection is 16 to 21 �C
with at least 6 hours of leaf wetness. Latent period of infection for the fungus is 21 to
28 days. The spores are dispersed by rain splashes as they are trapped in sticky
masses.

The fungus Septoria tritici survives through the summer on residues of a previous
wheat crop, other grassy hosts and even wheat seed. The disease process in case of
Zymoseptoria tritici is more complex due to its latent period and is a relatively less
understood pathogen (Orton et al. 2011; Steinberg 2015). It can be as long as 14 days
in spring to 28 days in cold weather. In this phase, there are no visible symptoms on
plant, despite a compatible reaction between pathogen and host (Orton et al. 2011).
The curative azole fungicides used in the blotch management are under constant
threat due to resistance development in the pathogen. Z.tritici has a high gene flow
rate and thus lot of sexual recombinations occur within a planting season in a field
(Eriksen et al. 2001).

Alternate host in the vicinity of the crop plays a crucial role in disease develop-
ment. Z. tritici has been reported on 26 grasses Suffer et al. (2011) and one
non-graminaceous chickweed. So far, risk associated with presence of alternate
hosts is not very clear (Fones and Gurr 2015).

STB cause yield losses ranging from 31% to 53% (Eyal et al. 1987; Polley and
Thomas 1991). The incidence of septoria leaf blotch is on the rise for last three
decades and they damage around 50 million ha of wheat around the world. STB has
been reported to cause EU €280–1200 million losses per annum in Europe (Fones
and Gurr 2015) and around AU$ 100 million, in Australia (Murray and Brennan
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2009). The disease is fast spreading in recent years (Milgate et al. 2014). SNB has
been reported from France and the Scandinavian countries, but in United Kingdom,
SNB has been fully replaced by STB in the 1980s (Bearchell et al. 2005). In
Mediterranean region of Tunisia, septoria leaf blotch has been responsible for
decreasing yields especially in durums since last four decades (Berraies et al.
2014). Actual losses associated with STB are less clear in other growing regions.

In Nordic-Baltic region, septoria tritici blotch (Zymoseptoria tritici) and
stagonospora nodorum blotch (Parastagonospora nodorum) are present with vari-
able incidence and severity in spring as well as winter wheat. STB dominated winter
wheat in Denmark, southern Sweden and Lithuania. SNB dominated spring wheat in
Norway with a grain yield loss of 10–11 q/ha (Jalli et al. 2020).

Based on the importance of septoria blotch, several disease prediction models
have been formulated which are based on different weather variables (Coakley et al.
1985; Shaw and Royle 1993; Gladders et al. 2001; Pietravalle et al. 2003). The
blotch pathogens require free water on leaves to cause infection and frequent rains
for disease spread to adjoining plants. Days with rainfall of more than 10 mm or
continuous wet days (3 days with at least 1 mm rain) during early growth stages of
crop are the main factors which can be used to predicting disease outbreaks (Thomas
et al. 1989). Sub zero temperatures has been found to decrease the risk of STB in
winter wheats. Since last three decades, decision support systems have been in use
which converts complex agro meteorological information relating to disease produc-
tion in a crop in an easy to understand way.

DSS has been used to reduce pesticide load using Danish system PC-Plant
Protection (Secher 1991), available with Danish farmers since 1993. A web based
decision support system available as crop protection online (CPO) Rydahl (2003)
has been in use in Denmark since 2002. The model uses rainfall data and gives
decision on spray requirement based on varietal resistance (Henriksen et al. 2000).
Four rainy days with rainfall of 1 mm or more during wheat growth stage 32 in
susceptible cultivars and 5 days during GS 37 in resistant cultivars will require
spraying to control septoria blotch. SeptoriaSim along with humidity models were
refined by Axelsen et al. (2020) which could reduce number of sprays to control
septoria blight in farmers’ fields along with marginal edge in yield.

Most of the septoria blotch models are weather based but rarely consider the role
of crop canopy in development of epidemics. Since, the disease progression in time
and space occur through rain splashed pycnidiospores, the crop architecture
i.e. distance between leaves (Audsley et al. 2005), plant height (Bannon and
Cooke 1998) and resulting microclimate inside the plant canopy should be a key
feature of any model that predict disease progression from lower leaves to upper
ones during crop growth. Robert et al. (2008) were successful in combining virtual
3D wheat architecture crop model ADEL (Evers et al. 2005) with septoria disease
model (Rapilly and Jolivet. 1976) with little modification. There model describes the
disease dispersal with lesion development based on spatial advance of crop canopy.
The model considered dispersal unit (DU) i.e. spores splashed with rain droplets as
the most important factor responsible for disease lesion production and further spore
production on this diseased tissue. In ADEL crop simulation model, Phyllochron
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proved the major contributor followed by leaf size, stem elongation rate and the
internodal length. Three year climate scenario used in this study predicted
favourable, intermediate and un-favourable disease development scenario which
matched the ground results of disease in Grignon, France. Therefore, this model
can efficiently predict blotch disease in case crop ideotype is known.

Beest et al. (2009) in England developed an early warning prediction model to
contain septoria blotch at wheat GS 31. They used Window-Pane approach
(Pietravalle et al. 2003) to work out the most appropriate relationships between
disease and weather at a stage where it is difficult to access the disease physically.
The authors took into account the pathogen build up period that will ultimately
correlate to disease when weather and crop stage are ideal. Out of three models
formulated while taking into account rain and minimum temperature, rain and wind
run and vapour pressure and wind run; the former gave the strongest relationship
between disease and weather. The total rainfall occurring 80 days prior to GS 31 and
minimum temperature above 0 �C in 50 days (Jan-Feb) and maximum temperature
below 4 �C (Feb-March) starting from 120 days before GS 31 were found to give
accurate disease predictions. The rain and minimum temperature model has two
parts Modele and Modelf as mentioned in Table 2.4.

If Modele is satisfied than, regression model equation Modelf will give the
epidemic prediction, where p > 0.5 means epidemic development. For different
resistance categories of cultivars, the model was re-structured for resistant cultivar:

Modelc : 0:053� Raind þ 0:038� T min e � 6:80 > 0

Intermediate cultivar:

Modelc : 0:027� Raind þ 0:023� Tmin� 3:88 > 0

Susceptible cultivar:

Modelc : 0:046� T min e � 4:20 > 0

cis the equation of the model to predict an epidemic if the statement is true.
dis daily rain accumulated is more than 3 mm in an 80 day window preceding

GS 31.
eis daily minimum temperature accumulated >0 �C in a 50-day period starting

from 120 days preceding GS 31.
Two Weather based mechanistic models Model Aand Model B developed in UK

predicted the germination and growth of Z. tritici spores on wheat leaves to predict
the final disease severity. One spore materialising to one lesion was the underlying
principle used for prediction. Model A could differentiate areas with different
disease incidence but could not predict severity due to limitations associated with
the observed disease and climate data and plant growth parameters including host
resistance (Chaloner et al. 2019). There model required high resolution data for
climate-derived parameters, such as temperature, rainfall and leaf wetness to predict
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accurately. These models could not capture high spore density situations and the
following pycniospore infections.

Model B has two further limitations, firstly model B, is parameterized using an
experimentally derived thermal performance curve for Z. tritici, but the experimental
data is restricted to the range 10–22 �C. As this does not cover the entire range of
conditions experienced in UK wheat-growing areas, the curve for model B had to be
extrapolated. In contrast, the data used to parameterize model A was in the range of
0–30 �C and required less extrapolation. Secondly, the equation in model B did not
incorporated the death of spores over time. So, all the spores landing on the leaf
remains in the model until it grow and infect the leaf, thereby giving false prediction
information. The authors emphasized the inclusion of pathogen biology to increase
the fit of the models.

Another mechanistic model, PROCULTURE after GS32 (second node detect-
able), was developed in Belgium to predict the progress of Septoria leaf blotch on
winter wheat in western Europe (Luxembourg). The model could accurately
predicted SLB in 2000 and 2002 on susceptible and semi-susceptible varieties
with a probability of detection (POD) of more than 0.90 (El Jarroudi et al. 2009).
During 2001, the false alarm ratio (FAR) in the model remained high. So, actual
disease based on prediction could not be validated although the POD never fell
below 0.90. The model however overestimated disease periods by 50 per cent in
weakly susceptible cultivars especially on leaves close to flag leaf. Under worst-case
scenario or with 7 day forecasted weather data (Global Forecast System, National
Centers for Environmental Prediction) the model yielded promising results for
predicting disease progress and yield loss even without actual weather data. Junk
et al. (2008) got a continuous spatial coverage of the country through amalgamation
of PROCULTURE in offline mode to 12-hourly operational weather forecasts from
an implementation of the Weather Research and Forecasting (WRF) model for
Luxembourg at 1 km resolution. As the WRF model did not provide leaf wetness
directly, an artificial neural network (ANN) was used to model this parameter. El
Jarroudi et al. (2017b) later modified the model by including Fourier transform
method (FTM) for frequency domain analysis of three intra-day meteorological
variations of air temperature, humidity and rainfall from 2006 to 2009. The authors
found contrasting differences in intraday meteorological variations among two sites
which otherwise behaved similarly when compared at diurnal, dekadal and intra-
seasonal scales. Fourier-transformed data/methods approach was found to specify
the microclimate conditions prevailing at a given site which could help in improving
the prediction accuracy of disease forecast models involved in regional warning
systems and decision support systems.

In India, Pant et al. (2016) developed models to forecasting spot blotch severity in
susceptible and resistant cultivars of wheat under irrigated timely sown (ITS),
irrigated late sown (ILS) and rainfed timely sown condition (RFTS) based on
maximum temperature, relative humidity and their combination. Lower RMSE
value of MLR models at jointing and flowering stage was found to predict disease
more accuratly than other stages. The significance of maximum spot blotch infection
index (asymptote) and minimum time lag (m) has been shown to be influenced
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byinteraction between temperature and relative humidity (Viani et al. 2017). Their
model depicted decreased dependence of relative humidity duration on spot blotch
infection with increase in temperature upto 29 �C while it increases above till 34 �C
(Table 2.4).

2.6 Powdery Mildew (PM)

Powdery mildew affects the wheat yield and cause significant economic loss world-
wide (Sharma et al. 2004; Strange and Scott 2005). To effectively manage the
disease and reduce the dose of chemicals, there is urgent need to forecast the disease
in wheat fields accurately. Various prediction models based on weatherfor PM
forecasting has been developedby various workers (Daamen and Jorritsma 1990;
Holb and Füzi 2016). Some of the important models have been listed in Table 2.5
which indicated that there are several tools to model one or several steps of the
Blumeria graminis f. sp. Tritici (Bgt) life cycle. Liu and Shao (1998) demonstrated a
strong relationship of temperature, sunshine duration and rainy days the occurrence
of disease, and rainfall was the mostcritical factor related to the disease epidemic. A
simple approach in this regard was introduced with the disease severity threshold by
Kasbohrer et al. (1988). A disease incidence threshold of 70% was identifed by
Klink (1997) to avoid yield damage. A similar but more complex method based on
threshold systems like PC-Plant Protection was developed by Secher et al. (1995).

A local model following the role of temperature and RH for the condial produc-
tion and wind speed for the release of conidia of Powdery mildew fungus was
developed.An hourly development value of the infection is computed, which adds
up for every hour until an exceedance of the value “1” which indicated a successful
infection. The similar method is used to calculate incubation (Friedrich 1994;
Friedrich 1995a; Friedrich 1995b; Friedrich 1995c).

A decision support system baesd model MIDAS was developed by Jensen and
Jensen (1996) for the management of PM in winter wheat. Temperature, humidity
and wind are usedin the MIDAS model. In the subsystems, they used deterministic
model which further used thermal weeks to show the temporal progression during a
wheat growth period. Each thermal week derived from the sums of daily mean air
temperature and it represents one timestep. The calculations both for the host’s
treatment as well as pathogen development are made for every time step resulting
in a disease-level where disease prediction comes close to the observation. Bruns
(1996) developed the MEVA-PLUS on the basis of the model MEVA which aimed
at the prognosis of the damage due to PM on winter wheat. Bruns (1996) referred to
the GEMETA model of Hau (1985). The daily maximum and minimum temperature
and the precipitation sum represent the weather in the MEVA-PLUS model. By
using the information of monitoring intial infectionthe model run, the implemented
GEMETA model and calculates a prognosis of the infestation and calculated the
possible damage that can be caused due to the infection and thus developed different
crop loss functions. The validation of MEVA-PLUS was done by comparing
observed and predicted disease severity values at different plant growth stages. In
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Table 2.5 Important models developed for the prediction of powdery mildew

Parameters/models
Specific conditions/
equations Year Country References

Decision support system
MIDAS

Temperature, humidity
and wind

– DenMark Viani et al.
(2017)

MEVA-PLUS Coefficients of
determination
(R2) between 0.00002
and 0.796.-

– – Chaloner
et al.
(2019)

WHEat GROwth
SIMulation
(WHEGROSIM)

PLALj ¼ PLAL( j � 1) +
(DPLALj) 
 CV 
 LLL

where PLALj is the
infected leaf area, PLAL
(j-) is the infected leaf
area of the foregone
timestep, DPLALj is the
daily increase of
infection, CV is a
parameter for the wheat
variety and LLL is the
leaf layer

1991–98 Italy Viani et al.
(2017)

Mechanistic simulation
model WHEATPEST

Daily temperature and
radiation

2008 Europe Chaloner
et al.
(2019)

Precipitation,
temperature, sun
radiation, humidity, and
two remotely sensed
features including
reflectance of red band
(Rr)

Spatial distribution and
temporal dynamics of
the disease

2010–2012 China Viani et al.
(2017)

Wheat growth situation
(NDVI), habitat factors
(land surface
temperature, LST) and
meteorological
conditions (rainfall and
air temperature)

A decision tree was
constructed to identify
four infection severities
(healthy, mild, moderate
and severe)
R2 ¼ 0.999 with
83.33% forecasting
accuracy

2010–11 Michigan,
US

Chaloner
et al.
(2019)

Forecasting models
based on meteorological
factors and spore
concentration

Spore concentration was
the most important of all
of the variables studied,
including weather

2009–2012 China Cao et al.
(2015)

Moderate resolution
imaging
Spectroradiometer
(MODIS) time-series
data products

In this model, the wheat
areas were identified
using 8-day interval
normalized difference
vegetation index
(NDVI) dataset at 250 m
resolution

2015 China Zhao et al.
(2018)

Average temperature,
average maximum
temperature and positive
degree days, rainfall and
mean wind velocity

Accumulated spore
concentration and
weather variables

2015 China Gu et al.
(2020)
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the start of the season, (Bruns 1996) coeffcients of determination (R2) between
0.00002 and 0.796 was achieved by using this modelwhich decreased with time.

Rossi and Giosuffe (2003) developed a model to predict PM on winter wheat
using infection chain. Like the model of Friedrich (1994) this model also requires
data on temperature, vapour pressure deficit, rainfall and wind. The disease progress
can be predicted by using the following formula based on logistic function:

PLALj ¼ PLAL(j-1) + (DPLALj) _ CV _ LLL.
where PLALj(infected leaf area), PLAL(j-1) (infected leaf area of the foregone

timestep), DPLALj ¼ daily increase of infection, CV ¼ parameter for the wheat
variety and LLL ¼ leaf layer. The daily increase in disease was calculated by a
submodel, based on infection chain. They used the model given by Friedrich (1994)
as well as WHEat GROwth SIMulation (WHEGROSIM) (Rossi et al. 1997b). The
modeal simulated the disease with a R2 of 0.89.

The mechanistic simulation model known as WHEATPEST was developed by
Willocquet et al. (2008) to know the effects of various pests and pathogens
infestations on winter wheat. It needs data on daily temperature and radiation as
well as drivers for production situation and for injury profiles. An injury profile was
generated from the combined effects of various pests such as fungi, aphids and
weeds etc. Like the model InfoCrop given by Aggarwal et al. (2006), the crop yield
assessment simulation models needs the actual data on infestation events to calculate
the potential crop damage. The model’s outputs are the development stage of the
crop, the dry biomass, the leaf area index and the expected yield.

Recently many studies are using multispectral and hyperspectral remote sensing
data at the leaf or canopy levelfor the field-based identification investigation of
wheat PM, (Zhang et al. 2012; Zhao et al. 2012; Cao et al. 2015).

The meteorological and phenological data are used to predict the disease most of
the studies. But the prediction accuracy and timeliness have usually been affected
due to lack ofsufficient number of weather stations, especially for a large-scale
region. The satellite remote sensing technology can help in this regard to quickly
acquire wide field and time series images (Dutta et al. 2008).It can facilitate the
monitoring and forecasting of the plant diseases over the inefficient, labour-intensive
and time-consuming traditional methods. (Nilsson 1995; Franke and Menz 2007;
Huang et al. 2007; Bock et al. 2010; Huang et al. 2012). Zhang et al. (2014)
integrated meteorological and remote sensing data with crop characters and habitat
traits for predicting PM. They constructed a disease-forecasting model using four
meteorological factors (precipitation, temperature, radiation and humidity) and
remote sensing data [reflectance of red band (Rr) and land surface temperature
(LST)] to predict dynamics of the disease over space and time. This integrated
model gave a accuracy ranging from 69% to 78% for disease forecasting. Similarly,
Zhang et al. (2014) used 9 different remotely sensed variables to developthe
powdery mildew forecasting model and Ma et al. (2016) used L and sat 8 remote
sensing image and meteorological data to develop themodel for predicting PM at
filling stage.

So it can be interpreted that thereis a great potential for predicting the PM
occurrence probability by combining the meteorological and remote sensing data.
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Zhao et al. (2018) predicted the disease by using the Moderate Resolution Imaging
Spectroradiometer (MODIS) time-series data. The wheat areas were identified using
8-day interval Normalized Difference Vegetation Index (NDVI) dataset at 250 m
resolution. A decision tree wasconstructed to identify four infection severities
(healthy, mild, moderate and severe) using three kinds of forecasting factors
(wheat growth situation), habitat factors (LST) and meteorological factors (rainfall
and temperature). The coefficient of determination (R2) was 0.999 between the
remote sensing based and the statistical data and the overall forecasting accuracy
was 83.33%.

Apart from all these, some of the forcastiong studies in PM occurance are based
on the dispersal and deposition of conidia, which are further affected by meteoro-
logical factors (Granke et al. 2014). Significant correlations was observed t between
spore concentration and many weather factors (Troutt and Levetin 2001; Burch and
Levetin 2002), which are useful in predicting the number of conidia in the air (Bruno
et al. 2007). Pakpour et al. (2015) reported a negative correlation between the
conidia concentration in the air and rainfall. Cao et al. (2012) monitored air borne
conidia of Bgt and analyzed relationships between airborne inoculum with weather
variables and disease index. A forecasting model was developed by them in the year
2015 (Cao et al. 2015). They monitored the spore concentrations in air using spore
samplers and RT PCR. TA positive correlation was found between the temperature,
solar radiation and rainfall with conidial concentrations and hence disease develop-
ment. Although there was a negative correlation between relative humidity and spore
concentration, but it was positively related with disease development. Stepwise
regression models were obtained for predicting the dynamics of airborne conidia
based on the PDD and accumulation of rainfall (R2 ¼ 0.31, P < 0.01), the positive
degree days (R2 ¼ 0.16, P ¼ 0.04) and mean temperatures (R2 ¼ 0.24, P ¼ 0.01) at
three locations, respectively (Cao et al. 2015).

Recently Gu et al. (2020) also showed that accumulated spore concentration and
10-day temperature variables (average temperature, maximum temperature and
PDD) aongwith rainfall and mean wind velocity. In this model they reported that
conidial concentration and weather factors are playing equal rolefor predicting the
development of PM. Disease development is highly influenced by the prevailing
microclimate. and hence a crucial factor for disease prediction. It is well known that
the regional conditions significantly influence the disease severity (Junk et al. 2016).
Therefore, monitoring the dynamics of airborne conidia and meteorological
variables are of help to predict the disease and give recommendations for the
management of disease.

There have been reports about the negative effect of solar radiation on the
development of PM (Liu and Shao1998; Zahavi et al. 2001; Austin and Wilcox
2012).
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2.7 Wheat Blast

Wheat blast is known to be caused by the Triticum pathotype of Magnaporthe
oryzae (MoT). It was first reported in 1985 in Paraná State of Brazil (Igarashi
et al. 1986) and further moved into other areas of Brazil and South America fom
where erratic epidemics have been reported (Urashima et al. 2004; Kohli et al. 2011,
Cruz and Valent 2017). Most recently, it has been appreared in Bangladesh
demonstrating the threat of global spread via the movement of infected seed or
grain. The fungal pathogen affects wheat earheads, with symptoms closely resem-
bling FHB. Wheat blast can cause yield losees as high as 64% and may lead to total
crop failure (Goulart et al. 2007). Fungicides arenot effective under very severe
conditionsbut canmanage the disease when disease levels are low tomoderate. Till
date no effective source of durable resistance have been found (Cruz and Valent
2017). So disease management requires identification of new resistance sources and
a complete understanding of pathogen ecology and disease epidemiology.

As wheat blast is an emerging disease of wheat, hence not many epidemiological
studies have been conducted. There are several studies establishing that blast
severity varies greatly with weather conditions, cultivar, and plant organ infected
(Goulart et al. 2007; Urashima et al. 2009). Countinous rainy and warm weather is
necessary for pathogen survival during spring and summer seasons. The production
of conidia of M. grisea is known to be favored by the combination of high relative
humidity (�90%) and temperature around 28 �C (Alves and Fernandes 2006).High
temperatures coupled with excessive rain, long and frequent leaf wetness, and poor
fungicide efficacy are the major factors favouring the occurrence ofdisease in severe
form (Goulart et al. 2007). Environmental conditions thatfavour the disease devel-
opment are similar for MoT, MoO and MoL strains (Anderson et al. 1947; Uddin
et al. 2003; Cardoso et al. 2008).

P. oryzae grow better at 21–27 �C and 10–14 h of spike wetness (Ou 1972) hence
the temperature and spike wetness are the most important environmental factors
affecting the disease development in different hosts.

Cardoso et al. (2008) predicted wheat blast the intensity based on the
temperatures and the durations of wheat spike wetness under artificial epiphytitic
conditions using standard methods. The study indicated that temperature (25 and
30 �C) with spike wetness (25 and 40 h alone)can favor wheat blast intensity. T The
wetting-period data fitted the Gompertz model, and combining the temperature and
wetting-period equations as.

Z ¼ 0.00108*(T-10.0)**1.8)*((35.0-T)**0.762)*(0.847/(1 + EXP
(6.498–0.348*HW),

The interaction between the leaf wettness and the average temperatureforms the
bases of many disease forecasting systems (Zadoks and Schein 1979). The effect of
the interactions between temperature and the durationof the wetting-period on
infection occurring under our controlled conditions can cause distortions when
applied to the field and theaccurate prediction under field conditions is difficult
Sutton. 1988). To partially overcome such issue divide the data on the response to
infection (daily probability of infection; DPI) values Following the procedure of
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those models developed by Krause and Massie (1975) and Madden et al. (1978)
predicted the disease using a climatic model to develop a table of critical periods
containing four arbitrary selected categories of infection efficiency, denominated
daily severity values (DSV). A computer program was developed to automatically
combine mean temperature values and wetting-period values collected in the field
byweather stations and calculates both daily probability of infection (DPI) values
and the sum of the DPI (DDPI) values over a specific period. The main limitation of
infection-based models as that of Cardaso et al. (2008) lies in the assuming the
prescence of abundant inoculum during the susceptible period. However, in temper-
ate regions freezing temperatures affect the inoculum production (Farman et al.
2017). Contrastingly, under tropical climatic conditions, inoculums production is
limited more by moisture than temperature. So, a model that can predict both
inoculum potential (IP) and favorability for infection would have a wider application
for predicting wheat blast.

Fernandes et al. (2017) developed a prediction model by using the historical data
analysis of epidemics and weather series in Brazil for the period of 10 years. A
specific database management application (agroDb) helped to visualize and identify
patterns in weather variables during two major outbreaks (2004 and 2009). An IP
and a spore cloud (SPOR) variable were estimated to predict inoculum build-up and
availability. A day favoring infection (DFI) was conditioned to rules relating tem-
perature and relative humidity for the day derived from the epidemic analysis.
Successful daily infection (INF) during a DFI was conditioned to IP > 30 and
SPOR > 0.4. The model was tested at heading date for 10 planting dates, spaced
5 days apart, within a year, totaling 320 simulations. The model described well
epidemic and non-epidemics conditions for the historical dataset, and was able to
correctly predict.. The CSM-CROPSIM model included in DSSAT 4.6 (Decision
Support System for Agrotechnology Transfer) was used to simulate growth and
development of spring wheat (cultivar BRS Louro). The model was coded in R
statistical and programming lan-guage (R CoreTeam2017) and uses Shiny (Chang
et al. 2017) for visualizing model outputs (http://gpca.passofundo.ifsul.edu.br/
agroweb). The model starts by the time of emergenceof the first cohort of heads,
which is predic ted by the wheatmodel. Three variables are predicted: IP and SPOR
are continuous variables and DFI is binary (0, 1).

In the erratic diseases like wheat blast model development and validation is
complicated due to the lack of detailed field disease data. Some models have been
developed by using the data under controlled conditions. Further refinements and
evaluations will require long-term field data. Concludingly high humidity and warm
temperatures are more relevant for predicting observed wheat blast out-breaks.

2.8 Conclusions

To prevent the losses in ecofriendly manner in the absence of host plant resistance,
the limited and timely application of fungicides as guided by the disease forecasting
models plays an important role. Incase of wheat various disease forecasting models
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have been developed globally by following different methods and using different
weather variables alongwith crop growth stages to predict the disease over space and
time. EPIPRE, RUSTDEP, EPIWHEAT, DONCAST, and WHEATPEST etc. are a
few. Most of these models are focused on one disease or two and moreover they are
designed with regional specificity. So there is a dire need to develop a kind of
forecasting system by using the recent advances in information technology or by
adopting multi-desiplinary approach, which can deal with multiple diseases of a
wheat and should be applicable globally. Based on these prediction models decision
support system should be developed for our ultimate beneficiaries i.e. farmers by
guiding them when and where to apply the fungicides for successful management of
the wheat diseases.
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