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Abstract

Indian Shield consists of Bundelkhand, Aravalli, Singhb-
hum, Bastar, Western and Eastern Dharwar Cratons. The
crustal evolutions of these cratons (except Singhbhum
Craton) show that geodynamic mechanisms, similar to
modern plate-tectonic and mantle-plume mechanisms,
were active during Paleo-Neoarchean time. The
Mesoarchean crustal evolution of the Bundelkhand Cra-
ton show subduction–accretion processes, which is
different from other cratons of Indian Shield, whereas in
other cratons, plume processes were more active during
this period. During the Neoarchean period (2.7–2.5 Ga),
all the cratons exhibit subduction–accretion processes.
Each of the cratons demonstrates its own crust formation
model. It gives the impression that the cratons of Indian
Shield were parts of the Kenorland Supercontinent in
Mesoarchean time, rather than one block.
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1 Introduction

Archean cratons are continuously studied for understanding
geodynamics of continents around the world, which were
formed prior to 2500 Ma ago (de Wit 1998, 2001; Condie
2004; Brown 2007; Windley et al. 2021). It generally consists
of tonalite–trondhjemite–granodiorite (TTG); greenstone belts;
and K-rich granitoid rocks. The distinctive structures of Archean
cratons contain sedimentary and volcanogenic rocks consider as
greenstone belts. Now, it has been recognized that plate-tectonic
and mantle plume-tectonic processes were operational since ca.
3.0 Ga or earlier (e.g. Cawood et al. 2006; Witze 2006;
Windley et al. 2021). While some workers (Hamilton 1998;
Sharkov et al. 2000; Bedard 2018) believe that they had not
been active until the Paleoproterozoic (ca. 2.0 Ga).

The Indian Shield also reveals early Earth’s crust forma-
tion which consists of two groups of Archean cratons: a
northern (Bundelkhand and Aravalli) and a southern (Dhar-
war, Bastar and Singhbhum) group separated by the Central
Indian tectonic zone (Fig. 1; Ramakrishnan and Vaidyanad-
han 2010; Radhakrishna et al. 2013; Jain et al. 2020). The
important Bundelkhand Craton contains the fragmented evi-
dence of geological events from the early Archean ca. 3.5–
2.7 Ga (TTG-associated granitoids) up to the Paleoprotero-
zoic (2.5–2.4 Ga; for several phases of granite) (Sarkar et al.
1995; Mondal et al. 2002; Kaur et al. 2016; Verma et al.
2016; Singh et al. 2021a). The existence of Banded Iron
Formation (BIF) along greenstone belts (GB) and 3.3 Ga
TTG rocks in the craton support it as a distinctive Archean
Bundelkhand Craton. The oldest TTG-gneissic rocks and
basic–ultrabasic rocks in the central part of the Bundelkhand
Craton are possibly occur at 3.6–3.4 Ga and resemble other
cratonic rocks of Indian Shield. The well-established crustal
structural ensue of Western and Eastern Dharwar, Singhbhum
and Bastar Cratons are suitable to compare the geological
associations globally. Thus, we present this document through
comparative analysis of the Archean crustal evolution of the
Bundelkhand Craton with southern group of Indian Shield.
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2 Geology of Bundelkhand Craton

The typical TTG gneisses, supracrustal (greenstone and
schist), sanukitoids, mafic–ultramafic layered and gabbroids
intrusions, and K-rich granites are recognized in the Bun-
delkhand Craton (Mondal et al. 2002; Malviya et al. 2006;
Singh and Slabunov 2013, 2015a, 2015b, 2016; Verma et al.
2016; Slabunov et al. 2017; Joshi et al. 2017; Singh et al.
2019a, 2019b, 2020, 2021a; Slabunov and Singh 2019a,
2019b; Pati 2020). The oldest TTG complexes in the craton
are dated at 3.6–3.2 Ga (Mondal et al. 2002; Kaur et al. 2014,
2016; Saha et al. 2016; Singh et al. 2021a). These granitoids
are associated with amphibolites. In the Babina and

Mauranipur greenstone belts, the amphibolites inferred as the
earliest mafic–ultramafic association of the Central Bun-
delkhand greenstone complex and its Sm–Nd isochron age is
estimated at 3435 ± 161 Ma (Singh et al. 2019a); hence, it is
similar in age to early TTG. The Bundelkhand craton notable
into Central, Northern and Southern Bundelkhand terranes
(Slabunov and Singh 2019b; Singh et al. 2021b).

The Central Bundelkhand greenstone complex consists
association of two major assemblages of rocks, i.e. (i) an
early (Mesoarchean) assemblage that contains basic–ultra-
basic, felsic volcanic (2810 ± 13 Ma) and BIF rocks; and
(ii) a late (Neoarchean—ca. 2.54 Ga) assemblage composed
of felsic volcanic rocks. The Archean polymetamorphic
evolution pattern amphibolite/granulite facies, eclogite facies

Fig. 1 Main Archean cratonic
blocks of Indian Shield (after
Ramakrishnan and Vaidyanadhan
2010)
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metamorphism revealed and possibly associated with meta-
somatic events in the craton. The BIFs of the Mauranipur
belt formed in a back-arc basin and BIFs of the Babina belt
occur in a fore-arc basin (Slabunov and Singh 2019a).
Neoarchean ca. (ca 2.7 Ga) metamorphic events in Central
Bundelkhand greenstone complex under amphibolite facies
and metasomatism associated are result of accretional tec-
tonic (Sibelev et al. 2021).

The Southern Bundelkhand schist/metasedimentary com-
plex formed the Girar belt which consist from two groups of
rocks, i.e. (i) quartzite, (ii) BIFs and traces chlorite schist
lenses near the quartzite/BIF boundary are of Archean age
(Singh and Slabunov 2016; Slabunov et al. 2017). The foli-
ated rocks of the Girar metasedimentary belt with 3.43–
3.25 Ga detrital zircon are overlain by gently dipping unde-
formed sediments of Paleoproterozoic Bijawar Group (Sla-
bunov et al. 2017). This is indirect evidence for older, most
probably Meso/Neoarchean age for quartzite and BIF rocks of
the Girar belt. Archean age has inferred for Ikauna peridotite–
gabbro–diorite layered intrusive rocks which located near
Girar belt too (Slabunov et al. 2017, 2018; Ramiz et al. 2019).
The Girar belt and Ikauna layered intrusive formed under
mantle plume activity at Meso/Neoarchean time apparently
(Slabunov et al. 2017, 2018).

Neoarchean (2.58–2.56 Ga) sanukitoid massifs was
revealed in craton as one of indicator of subduction style
tectonic in this time (Joshi et al. 2017; Joshi and Slabunov
2019; Singh et al. 2019b, 2020). Late- to post-kinematic
Neoarchean (2.53–2.51 Ga) granites are most common and
the melting of granitoids is associated with post-accretionary
processes in the crust (Verma et al. 2016; Singh et al. 2019b;
Slabunov et al. 2020).

3 Aravalli Craton

Aravalli Craton is the north-western part of the Indian Shield
represents the Archean granitiods mostly. They are exposed
among the Paleoproterozoic rocks of the Aravalli Super-
group, which experienced tectonothermal events during ca
1.7 Ga orogeny (Buick et al. 2006; Jain et al. 2020). So this
Archean rock is a part of the Paleoproterozoic Aravalli Fold
Belt. Archean rock of this belt (which is called craton too) is
separated from the Bundelkhand Craton by the
Paleo-Mesoproterozoic Vindhyan basin. Archean rocks in
the craton are represented by migmatized TTG granitoids
(known as the Banded Gneissic Complex (BGC)), fragments
of greenstone complexes and granites (Ramakrishnan and
Vaidyanadhan 2010; Roy and Purohit 2018; Kaur et al.
2019). The BGC (TTG granitoids) display oldest rocks dated
ca 3.31–3.28 Ga mostly, but have protolith with age up to
3.7 Ga (Kaur et al. 2013). Meso–Neoarchean TTG

granitoids of 2.88 Ga and 2.56–2.54 Ga were also noticed in
the region (Roy and Krӧner 1996; Kaur et al. 2019) and
conclude new continental crust formation events.

The fragments of greenstone complexes occur among
BGC (e.g. the Rakhiawal greenstone belt) (Roy and Jakhar
2002; Roy and Purohit 2018). The greenstone belts have not
been dated, but Mesoarchean metadykes (2828 ± 46 Ma;
Gopalan et al. 1990) cut quartzites, which are a fragment of a
greenstone belt and can thus be used to date the upper age
boundary of the greenstone belts. This greenstone complex
and dykes indicated Mesoarchean mantle plume activity in
this area. Neoarchean (2562–2450 Ma) granodiorite–gran-
ite–leucogranites and K-rich granites are interpreted as
having been derived by melting of basement rocks during
accretion–collision processes.

4 Singhbhum Craton

The Singhbhum Craton is typical granite–greenstone terrane
which consisting of TTG, greenstone belts and granite (Saha
1994; Mukhopadhyay et al. 2012; Das et al. 2017; Olierook
et al. 2019). Singhbhum mobile belt occurs in the north side
of craton with minor amount of supracrustal rocks
(Mukhopadhyay et al. 2006; Mazumder et al. 2015; De et al.
2016). Singhbhum Craton commonly show association of
the Older Metamorphic Tonalite Gneiss (OMTG) include
biotite–hornblende tonalite, trondhjemite and granodiorite
gneisses with enclaves of amphibolite-grade pelitic schists,
arenites and calc-silicates (Older Metamorphic Group) and
Iron Ore Group comprise low metamorphic-grade mafic
volcanic, banded iron formation and argillaceous sedimen-
tary rocks (Mukhopadhyay et al. 2008; Basu et al. 2008;
Acharyya et al. 2010; Upadhyay et al. 2014; Dey et al. 2017;
Olierook et al. 2019).

The age of the Older Metamorphic Tonalite Gneiss esti-
mated as 3.52–3.3 Ga, but tonalite gneiss of from the
Champua area have 4.24–4.03 Ga xenocrystic zircons
(Chaudhuri et al. 2018), indicated the oldest (Hadean age)
matter in the Indian Shield. The Iron Ore Group contains
predominantly BIF with pillow basalt, dacite, pyroclastics and
ultramafics in the lower parts. This group was deposited under
deep marine conditions in spreading centres in arc systems
(Mukhopadhyay et al. 2012). There is no precise age esti-
mation of this group, but it brackets between 3.5 and 3.1 Ga.

The Singhbhum granite (SG) occurs as major part of the
craton and divided for the three groups of pluton, i.e.
3.35 Ga (SG I), 3.1 Ga (SG II) and 2.9 Ga (SG III) (Dey
et al. 2017; Nelson et al. 2014). Mesoarchean
gabbro-anorthosite units (ca 3.12 Ga) and Mayurbhanj
Granite intrudes (ca 3.09 Ga) are existing in the eastern and
western parts of the Singhbhum Craton (Saha 1994; Misra
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et al. 2002; Augé et al. 2003; Mondal et al. 2007; Nelson
et al. 2014; Sunder-Raju et al. 2015). Mesoarchean (ca
2.8 Ga) metabasalts, komatiites or picrites and fluvial–mar-
ginal marine sedimentary successions are exposed as the
Simlipal, Dhanjori, Dalma, Ongarbira, Jagannathpur,
Malangtoli Volcanics. The Simlipal basin, for example,
undeformed and unmetamorphosed remains unaffected by
any granitoid intrusion. They formed most probably under
mantle plume activity.

Significant Neoarchean (ca. 2758 Ma) magmatism
occurred along the southern margin of the Singhbhum Cra-
ton, including the Pal Lahara Gneiss and other Rengali
Province granitoids (Das et al. 2017; Olierook et al. 2019).
There are three Neoarchean mafic dykes Swarm as root a
large igneous province exists in craton, i.e. Keshargaria
swarm with age 2800 Ma and Ghatgoan Swarm of 2764–
2760 Ma and ca. 2750 Ma (Kumar et al. 2017; Olierook
et al. 2019).

Kolhan Basin unconformably overlies OMTG, Iron Ore
Group, Singhbhum granite and consists of conglomerate,
sandstones, shale and limestone. They formed in half
graben-type intracratonic basin and its age estimated as 2.6–
2.5 Ga (Roy and Purohit 2018), but it should be Proterozoic.

5 Bastar Craton

The Bastar Craton located between Singhbhum and Eastern
Dharwar Cratons and separated from Bundelkhand Craton
by Proterozoic Satpura Mobile Belt. It consists of TTG
gneisses, granitoids, ca. four generations of greenstone belt
and mafic dykes rocks occurring from Archean to Paleo-
proterozoic (Mondal et al. 2006; Roy and Purohit 2018).
The TTG granitoids (Sukma I, II, Amgaon Complexes) are
exposed in the south and west parts of craton. These gneisses
have trondhjemitic character and dated at 3.6–3.5 Ga (Sarkar
et al. 1993; Mohanty 2013, 2015; Dora et al. 2019; Asokan
et al. 2020; Santosh et al. 2020; Meshram et al. 2021). Ca
3.0 Ga Granitoid plutons (Sukma granite III) are more
common also which intruded into the gneisses and meta-
supracrustals rocks throughout the craton (Sarkar et al. 1993;
Mohanty 2015).

The NW–SE trending mafic dykes and dyke swarms have
cross-cut the older rocks in the craton. Mondal et al. (2006)
conclude that the felsic magmatism is dominant during
Archean in the Bastar Craton which changed to bimodal
(acidic–basic) magmatism in the Proterozoic time. The
Neoarchaean (Ca 2.6 Ga) intrusive leucocratic granite
includes the Malanjkhand Granite hosting Andean-type
Porphyry Copper–Molybdenum deposits. One of the oldest
granulites in the craton are the Kondagaon complex indicates
Neoarchaean (Ca 2.6 Ga; Roy and Purohit 2018).

The four generations of greenstone complexes are noted,
i.e. Sukma, Bengpal, Bailadila and Kotri–Dungargarh–
Sakoli–Sonakhans in the craton (Ramakrishnan and
Vaidyanadhan 2010; Roy and Purohit 2018). The former
consist mostly from quartzite, paragneiss and amphibolite,
schist (included cordierite–garnet), ferruginous quartz and
BIF interlayered with basalt and tuff. Kotri–Dungargarh–
Sakoli–Sonakhans greenstone belts formed with
volcano-sedimentary, meta-basalts with meta-chert, con-
glomerate and BIF. The most part of these greenstone
complexes formed under mantle plume activity. Although
there are basalt–andesite–dacite–rhyolite (BADR) series,
rocks in Sonakhan greenstone belt which marked subduction
setting in Neoarchean (Mondal and Raza 2009; Jain et al.
2020). There is very poor geochronology reported from
these complexes, but Sukma, Bengpal, Bailadila complexes
estimated as Meso–Neoarchean, and Kotri–Dungargarh–
Sakoli–Sonakhans as Neoarchean (2530 Ma age of felsic
from Dungargarh belt).

6 Dharwar Craton

The Dharwar Craton has been considered now into two
cratons: Western and Eastern, based on their evolution pat-
terns and crustal structures (Fig. 1). Each of them is 3–4
times the size of the Bundelkhand Craton.

6.1 Western Dharwar Craton

The Western Dharwar Craton consists of mainly Pale-
oarchean (3.36–3.2 Ga) TTG complex (Peninsular gneisses).
But there are the oldest detrital zircons (3.58 Ga) in quart-
zites in Dharwar Group of rocks also noted. Three genera-
tions of greenstone complexes (Sargur, Bababudan and
Chitradurga, agreeably) and several granitoid massifs are
reported from Western Dharwar Craton (Radhakrishna and
Ramakrishnan 1990; Jayananda et al. 2013). The Sargur
greenstone belt is composed of mafic–ultamafic rocks
(metabasalts, komatiites and their intrusive comagmates and
metaanorthosites) which often predominate, and metasedi-
ments (kyanite/sillimanite–staurolite–biotite gneisses, quart-
zites, BIF, local marble, calc-silicate rocks, bedded barite);
with limited exposures of felsic volcanics. The age of the
complex is estimated at 3.1–3.3 Ga, based on the Sm–Nd
whole-rock isochron age of komatiites of 3352 ± 110 Ma
(Jayananda et al. 2008) and the U–Pb age of zircon from
felsic volcanics of 3298 ± 7 Ma (Peucat et al. 1995). It
forms small greenstone belts where dominated by mafic–
ultramafics (e.g. Ghatti Hosahalli, Krishnarajapet and
Nagamangala) and those with abundant sediments (e.g.
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Sargur and Hole Narasipura). The Sargur greenstone com-
plex was formed presumably in both rift-related structures
on an early continental crust (3.58–3.23 Ga zircons in
quartzites have been found, suggesting the existence of an
older crust) and an oceanic plateau-type setting. The
occurrence of 3.2 Ga TTGs in the region suggests subduc-
tion processes of that age.

A second generation of greenstone complexes in the
Western Dharwar Craton is the Meso–Neoarchean Bababu-
dan Group at the base of the Dharwar Supergroup in
Bababudan, Chitradurga schist belts. The base of the
Bababudan Group sequence consists of cross-bedded quartz
conglomerates with ripple marks (Kalasapura Formation).
These sediments rest with angular unconformity on Penin-
sular gneisses and Sargur Group rocks. In addition to quartz
conglomerates, the Bababudan Group comprises phyllites
and BIF. Mafic (metabasalts and gabbroic rocks) and ultra-
mafic bodies seem to occur among them as sills. Felsic
volcanics, occurring as part of the Santaveri Formation, are
scarce. The mafic–ultramafic are dated at 2.9–2.85 Ga (Sm–

Nd whole rock isochron ages are 2911 ± 49 and
2848 ± 70 Ma, (Kumar et al. 1996). The formation of the
Bababudan greenstone complex was associated with plume
activity and took place in an intracontinental basin.

A third greenstone/schist complex of the craton corre-
sponds with the Chitradurga Group of the Dharwar Super-
group, which makes up the largest exposures around
Shimoga and Chitradurga area. This Group consists domi-
nantly of sediments (quartz and polymictic conglomerates
containing TTG and Bababudan Group rock fragments,
chert-phyllite, manganese and iron formation and stroma-
tolitic carbonates) with pillow basalt and lesser felsic vol-
canic intercalations. The complex is dated at 2.75–2.58 Ga
result as the Sm–Nd whole rock isochron age is
2747 ± 15 Ma (Kumar et al. 1996); the U–Pb age of zircon
from the felsic volcanic is 2677 ± 2 to 2576 ± 20 Ma
(Jayananda et al. 2013). The sedimentation basin of the
Chitradurga Group seems to have been controlled by mantle
plume activity (Hokada et al. 2013).

6.2 Eastern Dharwar Craton

The Eastern Dharwar Craton is separated from the Western
Dharwar Craton by a large fault, the Chitradurga shear zone,
and differs from the latter in deep geophysical structure (a
thinner earth crust (Gupta et al. 2003) and the compositions
and ages of Archean granitoid and greenstone complexes
(Ram Mohan et al. 2013; Yang and Santosh 2015). The
Eastern and Western Dharwar Cratons consists dominantly
of commonly migmatized TTG granitoids, although in
contrast to the Eastern Dharwar Craton, they are dominated
by 2.7–2.55 Ga rocks with minor fragments of 3.0–3.38 Ga

crust (Jayananda et al. 2013 and references therein). More-
over, the contribution of older crustal material to granitoid
composition decreases markedly Nd TDM up to 2.8–3.0 Ga
in the eastern part (Dey 2013), but 2.56–2.5 Ga juvenile
(eNd = +3.3) calc-alkaline to potassic granitoids are wide-
spread here. The 2.51–2.53 Ga sanukitoid-like Closepet
Granite batholiths N–S-trending occur in the western part of
the Eastern Dharwar Craton, which cross-cuts the entire
craton.

The greenstone belts of the Eastern Dharwar Craton are
small narrow N–S and NW–SE trending linear structures,
e.g. Kolar, Hutti, Kushtagi, etc. They consist mainly of
metabasalts (often pillowed) associated with komatiites and
BIF; felsic volcanics, associated with greywacke and
polymictic conglomerates (Kolar GB), are more common;
and metasediments, occurring as schists, are less common.
An early association (beginning probably with 2.75 Ga, but
mainly arise at ca. 2.7 Ga) of basalts and komatiites was
formed in an oceanic setting under the influence of plumes,
i.e. oceanic plateaus), but this stage was also terminated by
subduction processes (Sangur GB). However, the main
episode in the subduction processes, which gave rise to
continental crust, occurred at 2.58–2.52 Ga, when felsic
volcanics and various granitoids (including sanukitoids)
originated. Ca. 2.5 Ga granulite facies metamorphism,
widespread in the southern part of the Eastern and Western
Dharwar Cratons, was associated with accretion–collision
processes (Slabunov and Singh 2018, 2020).

7 Discussions and Conclusions

All cratons of Indian Shield have old (Paleoarchean) core
(Fig. 2). The Singhbhum Craton has extreme older (Hadean;
up to 4.2 Ga) protolith. While the old core of Eastern
Dharwar Craton have Paleo-Mesoarchean age. The oldest
rocks on all cratons are TTG gratitoids but with enclaves of
amphibolites and gneisses.

Plate-tectonic and mantle plume mechanisms are operat-
ing for lithospheric formation during Paleo-Neoarchean in
the Bundelkhand, Aravalli, Singhbhum, Bastar, Western and
Eastern Dharwar Cratons, as common for World (Windley
et al. 2021). The subduction–accretion processes are more
responsible for crustal evolution of the Bundelkhand Craton
during Mesoarchean. While other Indian cratons consider-
ably different for crustal evolution in general, dominated by
plume processes (Fig. 2). But at this time, the crustal evo-
lution of the southern part of Bundelkhand Craton, i.e. for-
mation of a sedimentary basin consisting quartzites and BIFs
as metasedimentary complex (Singh and Slabunov 2016;
Slabunov et al. 2017) and peridotite–gabbro–diorite layered
intrusive rocks (Slabunov et al. 2018) might have affected by
mantle plume. It should be noted that other point of view on
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formation of the southern part of a craton exists; it provides
the leading role of subduction processes at this time (Ramiz
et al. 2019). This complex has the certain features of simi-
larity with Chitradurga Group of Dharwar Supergroup,
Western Dharwar Craton. Mafic magmatisms marks mantle
plume activity exists in Aravalli, Western Dharwar and
Singhbhum Cratons in Mesoarchean (Fig. 2). At ca. 2.7–
2.6 Ga the subduction processes are noted in the Bun-
delkhand, Eastern Dharwar and Bastar Cratons (Fig. 2).

In Bundelkhand Craton subduction process noted in the
Babina belt, as signified by Neoarchean (2542 Ma; Singh
and Slabunov 2015a), felsic volcanic formed in an active
continental margin, sanukitoid massif similar in age (2577–
2559 Ma; Joshi et al. 2016; Singh et al. 2019b) and meta-
dacites (2557 Ma; Slabunov and Singh 2019a) in the

Mauranipur belt. It means an accretion stage in the evolution
of the greenstone in Bundelkhand Craton took place at about
2.53 Ga, after the youngest 2542 Ma felsic volcanics and
prior to the formation of the earliest post-kinematic granites
(2531 Ma; Verma et al. 2016). At this stage its Meso- and
Neoarchean constituents are combined to form one green-
stone complex. The melting of large volumes of granitoids in
the period 2.53–2.51 Ga is associated with post-accretionary
processes in the crust (Fig. 2).

Therefore, the Paleo-Neoarchean crustal evolution of the
Bundelkhand Craton provides a basis for comparing with
other Indian cratons (Fig. 2). It noted that themafic–ultramafic
rocks of Central Bundelkhand greenstone complex have
derived from thick oceanic crust in a subduction processes in
Paleoarchean (3.44 Ga; Singh et al. 2019a) and first

Fig. 2 Correlation of Meso–Neoarchean crustal evolution in the
cratons of Indian Shield (BuC: Bundelkhand; ArC: Aravalli; WDC:
Western Dharwar; EDC: Eastern Dharwar; BaC: Bastar; SiC: Singhb-
hum Craton) (data used as interpretation after Hokada et al. 2013;

Jayananda et al. 2013, 2015; Kaur et al. 2014, 2016; Kumar et al. 2017;
Mondal et al. 2002; Ramakrishnan and Vaidyanadhan 2010; Ram
Mohan et al. 2013; Saha et al. 2016; Slabunov and Singh 2019a, 2020;
Singh et al. 2021a)
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arc-forming felsic volcanics in Mauranipur greenstone belt
proceeded during the Mesoarchean (ca. 2.81 Ga; Slabunov
and Singh 2019a) time. Similar processes also involved, i.e.
the interaction of plumes with old cores in other cratons in the
Indian Shield at that time. Thus, the formation of sedimentary
rock complexes with bimodal magmatism occur (Fig. 2), in
the Bababudan Group (Western Dharwar craton), the Koira
(ca 3.1 Ga) and Simlipal (ca. 2.8 Ga) Groups (Singhbhum
Craton) and the SukmaGroup (ca 3.0 Ga; Bastar Craton). The
old supracrustal enclaves in Aravalli Craton granitoids look
like to be part of similar characters. The existences of meta-
morphosed Mesoarchean mafic dykes in Indian Shield point
out the relic of the old continental core (Fig. 2). Therefore,
subduction–accretion processes took place only in the Bun-
delkhand Craton for the formation of a new continental crust
during Mesoarchean in Indian Shield. While other cratons of
the shield more favourable for the transformation of the old
cores by plumes mechanism at that time. During the
Neoarchean the formation of the continental crust of the
Bundelkhand Craton is very similar to other cratons of the
Indian Shield and is different from that in the Karelian Craton
and in the Superior Province (Lubnina and Slabunov 2011,
2017; Slabunov and Singh 2020). The subduction–accretion
processes were more common in the Western and Eastern
Dharwar and in the Bastar and Aravalli Cratons at 2.6–2.5 Ga
(Fig. 2), while the situation in the Laurasian group of cratons,
preceding a split-up which began at ca. 2.5 Ga, had stabilized
at that time.

The observed correlation of the crustal evolution of the
Bundelkhand Craton can be explained, assuming that in
Mesoarchean time the craton was probably in the northern
part of the Neoarchean Kenorland Supercontinent near the
Karelian Craton and the Superior Province (Lubnina and
Slabunov 2011, 2017; Slabunov and Singh 2020). As the
model projected is based on only geological evidence, it
should also be tested by paleomagnetic data.

During Neoarchean (2.7–2.5 Ga), most part of the Indian
cratons (except Singhbhum) displays subduction–accretion
processes. However all cratons exhibit its own crustal evo-
lution pattern in Mesoarchean (Fig. 2). Crustal evolution in
Neoarchean of Bundelkhand and Aravalli Cratons, Western
and Eastern Dharwar Cratons have many similar features
therefore it assumed as part in Meso–Neoarchean time ele-
ments of the Kenorland Supercontinent, but not in a single
block.
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