Extension to CryptDB with Support m
for Arithmetic Expressions L

Karthik Jagilinki and Ray Kresman

Abstract Growth of cloud infrastructure has made it attractive for enterprises to
rethink how and where to position their resources. CryptDB (Raluca Ada Popa, et al.:
CryptDB: Protecting Confidentiality with Encrypted Query Processing. MIT CSAIL,
SOSP ‘11, October 23-26, 2011) allows storage of cloud data in encrypted form
and helps mitigate privacy concerns. It performs encryption of data in layers without
revealing plain-text data to the cloud vendor. While CryptDB supports simple queries,
it does not appear to handle queries with arithmetic expressions. We discuss the pros
and cons of a couple of schemes to address this issue and finally propose a component-
based approach that provides support for queries with arithmetic expressions.

Keywords Encryption - Cloud - Service provider -+ Onion encryption

1 Introduction

With the advent of cloud computing, variety of services are offered by several cloud
vendors in terms of infrastructure, platform, and software [1, 2]. This frees enterprises
from the job of maintaining servers and associated resources. Applications routinely
use databases and several new applications are emerging with databases as backend.
Database as service is getting popular with service providers; they provide services
to store, manage, maintain, and administer large amounts of business data in cloud
databases [3, 4]. This comes with additional advantages such as availability, scal-
ability, and usage-based cost models [5]. High availability can be ensured through
replication in geographically distributed locations [6]. SQL Azure cloud database
service, for example, allows partitioning of databases either horizontally or vertically
using their in-house elastic tools. These and other features from service providers

K. Jagilinki - R. Kresman (<)
Department of Computer Science, Bowling Green State University, Bowling Green, OH, USA
e-mail: Kresman@bgsu.edu

K. Jagilinki
e-mail: Jagilinki @bgsu.edu

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021 99
H. Kim and K. J. Kim (eds.), IT Convergence and Security, Lecture Notes
in Electrical Engineering 782, https://doi.org/10.1007/978-981-16-4118-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4118-3_10&domain=pdf
mailto:Kresman@bgsu.edu
mailto:Jagilinki@bgsu.edu
https://doi.org/10.1007/978-981-16-4118-3_10

100 K. Jagilinki and R. Kresman

make cloud databases more attractive and help entice customers to move even critical
data to the cloud.

However, for customers to move their critical data to cloud, service providers
must address the privacy concerns of their clients. Security of their sensitive data is a
critical factor for customers in deciding whether to outsource data to these untrusted
third-party cloud vendors. One approach is to store the data in encrypted form and
not provide the encryption key to the cloud provider. The idea is to encrypt the data
on client side before migration to the service provider and store the data in encrypted
form on the untrusted server.

CryptDB employs such an approach [7, 8]. It allows storage of data in encrypted
form on the cloud/untrusted server. Queries are performed on the encrypted data
without fully decrypting the data on the server. It works by performing SQL-aware
encryption schemes in layers of onion to encrypt the data. And the data is decrypted
only on the client side with the server having no access to the key. This makes
CryptDB a practical solution for querying encrypted data. While it supports simple
queries, the version that we had access to could not handle queries with arithmetic
expressions. This paper describes a generic extension to the CryptDB framework to
address this issue.

2 Encrypted Cloud Storage

CryptDB [7] follows a novel approach in processing encrypted data. Their approach
suggests use of (SQL) operator-specific encryption schemes. These SQL-aware
encryption schemes are then used to encrypt a single data value in layers. It employs
multiple encryption schemes stacked into layers (or onions) that are chosen based on
the operators in SQL queries. This approach allows query processing on the server
side without fully decrypting the cipher text. It eliminates the false positives that
are common with other approaches [9]. In terms of efficiently executing queries
over encrypted data, CryptDB has low overhead on the client side compared to
other approaches. Use of onions of encryption appears to be novel and practical and
provides adequate confidentiality.

I Untrusted / Remote

Plain Query lTransformed Query

CryptDB I

Proxy 4
Decrypted Results | Encrypted Results Encrypted Database

Trusted

User Interface Database Server

Fig.1 CryptDB architecture

Extension to CryptDB with Support for Arithmetic Expressions 101

The model is depicted in Fig. 1, with a proxy between user interface and database
server. The proxy is located on the client side and is trusted, while the database server
is on the remote server in an untrusted location. Therefore, the data is always stored
in encrypted form on the database server. The proxy located on the client side is
lightweight and does not store any data. The only information that the proxy stores
is schema and the master key.

Whenever the user issues a plaintext query from the interface to the database
server, CryptDB proxy intercepts the query, analyzes it and then anonymizes the
sensitive information in the query by performing certain encryption based on the
operators in the query. The proxy performs two steps. First, it transforms the query
by rewriting it with the anonymized names of columns and tables, and then sends it to
the database server. Second, it strips off a layer of onion on the database server based
on the intercepted query by invoking a user defined function. This way, based on the
query, the proxy transforms the query and keeps the data on the server at the same
level. The server processes the transformed query on the encrypted database and
then returns the encrypted results back to the proxy. Note that the server works in the
encrypted domain and cannot decrypt the underlying data. The proxy then decrypts
them and sends the query result, in plaintext, to the user. The proxy does not perform
any query execution, instead the query is fully executed on the database server.
CryptDB utilizes server-side processing more and has less client-side overhead.

2.1 Encryption and Storage at the Backend

CryptDB has various encryption schemes based on the operators used in SQL queries.
Figure 2 outlines the data encryption process on the database server.

As shown in Fig. 2, each column data item is encrypted using a different set
of encryption schemes. Also, for the sample query, we see that a column orderID is

Onion Order / \

Encryption 3

Coli- | cCol1-) Coll- Col2 - Col2 -
Encryption 1 OnionEq || OnionOrder] OnionSearch| OnionEq | OnionOrder
value < Onion Onion Onion Onion Onion
cipher cipher cipher cipher cipher
Onion Onion Onion Onion Onion
cipher cipher cipher cipher cipher
|
|

Fig. 2 Query processing

102 K. Jagilinki and R. Kresman

encrypted and stored in three different sets i.e. Col1-OnionEq, Col1-OnionOrder, and
Coll-OnionSearch. Based on the operators present in the query, any of the encrypted
dataset can be used to process the query. OnionEq, OnionOrder, and OnionSearch
as the names suggest are used to perform query processing based on the different
(SQL) operators equal, order, and search respectively. For example, in Fig. 2, the
user issued the query: select * from CustOrders where orderID < 5. Here, we have
an order operator < . Once the proxy sees this operator in the query, it will invoke the
user defined function to map the user query to the OnionOrder encrypted dataset. As
noted in Fig. 2, each of these data sets consists of an onion cipher that had encrypted
the column value using multiple encryption schemes in layers i.e. Encryption 1,
Encryption 2, and Encryption 3. Each onion cipher consists of data value being
encrypted with these multiple encryption schemes in layers. Here, the functionality
of lower layer is strictly higher than the functionality of higher layers to help ensure
overall security of data.

2.2 Query Processing in the Encrypted Domain

Whenever the client (or the interface) issues a query, the proxy intercepts it and
transforms the query based on the type of operators it has. For instance, if the query
has equality operator then Deterministic encryption scheme is used. And if the query
has order operator to check less than or greater than, the Order-Preserving scheme
will be used to perform encryption to the query.

Invoke UDF to adjust the level of onion. Different queries coming from client may
perform different computation on server data. Based on the user query, and proxy
invokes a user defined function (UDF) to adjust the database encryption level on the
backend. Whenever certain UDF is invoked based on the user query, proxy would
give the key to the SQL function on database server for the specific layer of the onion.
This would simply strip off certain layer of encryption. This way proxy processes
queries over encrypted data without giving master key to the server. Thus, as noted
earlier, the data on the server is always in encrypted form.

3 Proposed Framework

CryptDB does not appear to support queries with arithmetic expressions. This is
because expressions are encrypted with different encryption schemes which may not
be compatible with one another. To illustrate this problem, let us invoke a query
with an arithmetic expression. The query and the error message/CryptDB response
is this: mysql> select subtotal + tax from CustOrders where total < 20; ERROR
1105 (0700): Current crypto schemes do not support this query

The query, Select subtotal + tax from CustOrders where total < 20 has an arith-
metic expression subtotal + tax. Here subtotal and tax are two different columns. The

Extension to CryptDB with Support for Arithmetic Expressions 103

data of these columns are stored in the backend encrypted at their highest secured
level. When the user gives this query, CryptDB proxy intercepts it and sees that the
query has an arithmetic expression, which is trying to perform an addition operation.
Initially these columns are encrypted at layer 3. As addition operation is not possible
at Encryption layer 3, proxy gives the partial key of layer 3 to the backend to decrypt
a layer of onion for column subtotal from Encryption layer 3 to Encryption layer
2. At this layer 2, CryptDB uses homomorphic encryption scheme that is suitable
to perform addition operation over encrypted data. However, the problem here is
CryptDB proxy only decrypts the first column subtotal to Encryption layer 2, but it
still keeps column tax at Encryption layer 3. Clearly, addition operation is incom-
patible between the two columns that belong to different encryption schemes. Our
extension to correctly handle such queries is discussed next.

3.1 Tweak CryptDB UDFs

Given the complexity of systems such as CryptDB, we attempt to address the question
of resolving queries with arithmetic expressions [10, 11] using a component-based
approach. Our goal is to add a component that would interface with the underlying
software architecture of CryptDB and yet respect its (CryptDBs) black-box nature.

One approach is to update CryptDB UDF to support queries with arithmetic
expressions. When the UDF is triggered, if we could modify the UDF in a way to
decrypt multiple columns that are present in the query at the same time, then that
would help keep these columns on the server at the same layer allowing one to
perform a valid operation, such as addition, over encrypted data. A second approach
is to include additional encryption schemes to each of the onions, to help provide
support for queries with arithmetic expressions. Unfortunately, neither approach
respects the black-box nature of CryptDB components and so we set out to explore
alternate mechanisms.

3.2 Piped Architecture

A third possibility is the piped architecture as shown in Fig. 3. The vertical bar
means pipes between adjacent subsystems. The Pre-Intercept stage provides input
to CryptDB and the Post-Intercept receives the results returned from CryptDB. The
Pre-Intercept receives the user’s query and does some pre-processing on it before

Fig. 3 Piped architecture Pre-Intercept | CryptDB | Post-Intercept

semaphores

104 K. Jagilinki and R. Kresman

shipping it to CryptDB. If the query has no arithmetic expression, it is passed as it
is.

However, for a query with arithmetic expressions, a simple approach is to split
the user’s query into multiple queries based on the arithmetic expression. Then, the
queries are issued, one-by-one, to CryptDB. Post-Intercept can then combine the
results of each of these split query results returned by CryptDB and generate the
composite result (or response) to the original user’s query. As shown in Fig. 3, we
need some coordination between the Pre-Intercept and Post-Intercept subsystems.
Semaphores can be used to synchronize such communication between the two stages
and help ensure that the user’s query is processed in a sequential manner. The advan-
tage of the piped architecture is that it respects the black-box nature of CryptDB
components.

3.3 Integrated Architecture

The piped architecture can be modified slightly to integrate the functionality of Pre-
Intercept and Post-Intercept stages in a seamless manner (into one component) to
process arithmetic expressions in the query. We call this component-based approach,
‘Integrated Architecture.’

The proposed system will coordinate with CryptDB in an integrated manner to
process queries with arithmetic expressions. As noted earlier, it also respects the
black-box nature of CryptDB components.

Figure 4 is a high-level schematic of our Integrated Architecture. Whenever the
user enters queries from the interface, they flow through EnhancedCryptDB to the
CryptDB proxy. The middle step does some pre-processing on the query before
giving to CryptDB proxy. As noted in Sect. 2, CryptDB follows a sequence of steps
to interact with backend database server maintained by the cloud provider and finally
returns the query response to EnhancedCryptDB. Then, the latter component does
post-processing on these results before sending the results back to the user.

EnhancedCryptDB consists of two major pieces: Query Interceptor and Query
Processor. Query Interceptor acts as a query manager that handles queries from
the client (or interface). Query Processor provides the primary functionality in our
approach, i.e. it receives the queries from the Query Interceptor and splits the ones
with arithmetic expressions. Figure 5 shows the components of our architecture to
illustrate the information flow in our framework.

Query Interceptor and Query Processor are two different processes that coordinate
with each other in processing the user’s query. As these are two different processes,
we require interprocess communication between them. Query Interceptor reads user
queries from the interface and handles them one at a time. For each query, it internally
calls Query Processor to handle arithmetic expressions in the query. Query Processor
then rewrites the query, as needed, before sending them to the CryptDB proxy.
CryptDB proxy performs its functionality (see Sect. 2.1) and returns the results that
are intercepted by Query Processor. Note that these results are in plaintext. Query

Extension to CryptDB with Support for Arithmetic Expressions

Interface

L1

Enhanced CryptDB

01

CryptDB

Fig. 4 Integrated architecture

Interface

Local Database

(Plain text)
Query Query
Interceptor Processor
CryptDB »| Database
Proxy (Encrypted)

Fig. 5 EnhancedCryptDB srchitecture

105

106 K. Jagilinki and R. Kresman

Processor dumps these result tuples to a local database; it then queries this (local)
database against the original user expression. The output is just the response to the
original user’s query and this output is returned to the user.

Our approach can handle any type of arithmetic expression in the query. Consider
for example: select a 4+ b/ c from T1. Such a query will result in 3 calls to CryptDB:
select a from T1; select b from T1; select ¢ from T1. CryptDB response to these
three queries is stored in a local database, say table localTable. At the end, the Query
Processor does a query of the form, select a 4+ b / ¢ from localTable that yields the
result to the original query, which is then returned to the user.

Clearly, one downside with our approach is that it is not as efficient compared to a
scheme that handles the entire query in one indivisible unit. However, our approach
is component-based in the sense that it integrates with CryptDB and at the same
time respects the black box nature of the (CryptDB) software components. We feel
that this trade-off between performance and simplicity is something for the client to
consider. A second issue is security; since the local database handles data in plaintext,
does it open any security holes? This work was done as a Master’s project and we
have not done any analysis on data leakage in our system, but we feel—assuming the
proposed system sits next to CryptDB (perhaps in the same hardware as CryptDB)—
that its security is perhaps comparable to CryptDB [12, 13]. In any event, these two
issues are worthy of additional investigations.

4 Concluding Remarks

CryptDB lets users store cloud data in encrypted form. It supports several layers of
encryption. Clients can issue SQL commands against the data; Queries are performed
directly on the encrypted data and the cloud provider does not have access to the
decryption key.

This paper proposed an extension framework to CryptDB to provide support for
arithmetic expressions in SQL queries. The advantage of our approach is that it
respects the black-box nature of CryptDB components - the proposed scheme does
not affect, or is not even aware of, the internal details of various CryptDB onion layers.
For brevity, software implementation details and performance evaluation results are
omitted in our discussions. These details will be addressed in a future paper.

Acknowledgements We thank the reviewers for their insight into an earlier draft.

References

1. RDS (2016) Amazon relational database service (RDS) — AWS. Amazon Web Services, 2016.
https://aws.amazon.com/rds/. Accessed 4 Aug 2016

https://aws.amazon.com/rds/

Extension to CryptDB with Support for Arithmetic Expressions 107

10.

11.

12.

Salesforce (2016) What is cloud computing technology? Cloud definition. Salesforce.com,
2000. http://www.salesforce.com/cloudcomputing/. Accessed 4 Aug 2016

. Google Developers (2016) Cloud SQL—MySQL relational database. Google Developers.

https://cloud.google.com/sql/. Accessed 4 Aug 2016

Oracle (2016) Database. https://cloud.oracle.com/database. Accessed 4 Aug 2016

Wikipedia (2016) SQL Azure. Wikimedia Foundation, 2016. https://en.wikipedia.org/wiki/
SQL_Azure. Accessed 4 Aug 2016

MS Azure (2016) Scaling out with azure SQL database. 2016. https://azure.microsoft.com/en-
us/documentation/articles/sql-database-elastic-scale-introduction/. Accessed 4 Aug 2018
Popa RA et al (2011) CryptDB: protecting confidentiality with encrypted query processing.
MIT CSAIL, SOSP ‘11

CryptDB (2016) In: CryptDB. https://css.csail.mit.edu/cryptdb/#Software. Accessed 4 Aug
2016

Alwarsh M, Kresman R (2011) On querying encrypted databases. In: Proceedings of the 10th
international conference on security and management, pp 256262

Jagilinki K (2016) Enhanced query processing with CryptDB. Master’s project. Department of
Computer Science, Bowling Green State University, Bowling Green, p 73

Jagilinki K, Kresman R (2020) An extension to CryptDB. IAET international conference on
artificial intelligence, information systems, engineering, Budapest, Hungary. 2:1

Naveed M, Kamara S, Wright C (2015) Inference attacks on property-preserving encrypted
databases. In: CCS °15: Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, pp 644—655. https://doi.org/10.1145/2810103.2813651

. Almarwani M, Konev B, Lisitsa A (2019) Flexible access control and confidentiality over

encrypted data for document-based database. In: Proceedings of the 5th international confer-
ence on information systems security and privacy - volume 1: ICISSP, pp 606-614. ISBN
978-989-758-359-9. https://doi.org/10.5220/0007582506060614

http://www.salesforce.com/cloudcomputing/
https://cloud.google.com/sql/
https://cloud.oracle.com/database
https://en.wikipedia.org/wiki/SQL_Azure
https://azure.microsoft.com/en-us/documentation/articles/sql-database-elastic-scale-introduction/
https://css.csail.mit.edu/cryptdb/%23Software
https://doi.org/10.1145/2810103.2813651
https://doi.org/10.5220/0007582506060614

	 Extension to CryptDB with Support for Arithmetic Expressions
	1 Introduction
	2 Encrypted Cloud Storage
	2.1 Encryption and Storage at the Backend
	2.2 Query Processing in the Encrypted Domain

	3 Proposed Framework
	3.1 Tweak CryptDB UDFs
	3.2 Piped Architecture
	3.3 Integrated Architecture

	4 Concluding Remarks
	References

