Chapter 9 ®)
Enhanced RAM Simulation in Succinct Geda
Space

Taku Onodera

Abstract We describe two recentresults on space-efficient functional random access
memory (RAM), which is RAM with non-standard functionalities. The first is about
oblivious RAM, which enables a remote database to be accessed without revealing to
the database owner which part of the database is being accessed. The other is about
wear leveling, which enables the number of updates to be balanced among all the
memory cells regardless of the content of the computation being performed on the
memory.

9.1 Introduction

Random access memory (RAM) underlies most modern computers, and improve-
ments to the RAM itself can have a positive impact on a wide range of applications.
For example, faster RAM access makes all RAM-based computations correspond-
ingly faster. Some types of RAM improvements are not just about efficiency but
also about functionality. An example is virtual memory in operating systems, which
enables, among other things, application programs to utilize the memory without con-
cern about cumbersome management issues such as allocation. Generally speaking,
this type of RAM improvement functions by using conventional RAM to simulate
“enhanced” RAM while introducing some performance overhead.

In this chapter, we describe two such enhanced RAM simulations—oblivious
RAM (ORAM) and wear leveling—with the emphasis on how to minimize the
space overhead. These topics were chosen mainly because the authors’ knowledge of
them, although there are also some conceptual similarities between ORAM and wear

T. Onodera (B<)
The University of Tokyo, Tokyo, Japan
e-mail: tk-ono@is.s.u-tokyo.ac.jp

© The Author(s) 2022 149
N. Katoh et al. (eds.), Sublinear Computation Paradigm,
https://doi.org/10.1007/978-981-16-4095-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4095-7_9&domain=pdf
mailto:tk-ono@is.s.u-tokyo.ac.jp
https://doi.org/10.1007/978-981-16-4095-7_9

150 T. Onodera

leveling. Other functionality-enhanced RAM simulations include initializable array
[2], memory checking [3], locally decodable code [11], and huge random object [8].!

9.2 Oblivious RAM

9.2.1 Problem

Suppose you want to outsource a database, stored in RAM, to a server and want to
access it in a privacy-preserving way. Although you can hide the data content by
encryption, the server can still see which part of the RAM you are accessing. This is
a serious issue in the current era of cloud computing. The same problem also appears
when one wants to hide the details of software implemented in a physically secure
processor that accesses insecure main memory.

Oblivious RAM (ORAM) is the formalization and corresponding solution of this
problem. Typically, it works by storing the RAM into some data structure on the server
and moves the RAM cells dynamically in the data structure as the user accesses the
RAM.

As an example, consider a scheme where the server stores the RAM as-is except
that each cell is encrypted by the user’s key. To access the ith cell, the user performs
the following procedure for j = 1 to N where N is the number of cells:

1. Retrieve the ith cell from the server.
2. Decrypt the retrieved cell.
3. Ifi = j:

e For read access, copy the decrypted value to local memory.
e For write access, change the decrypted value to the new value.

4. Re-encrypt the possibly changed decrypted value.
5. Store the re-encrypted value back in the ith cell on the server.

We assume semantically secure encryption when encryption is used in this chapter. In
particular, there is an overwhelmingly high probability that the re-encrypted cipher-
text looks totally different to the server from the ciphertext before re-encryption
regardless of whether the plaintext is updated or not. Thus, no matter what actual
access is performed, all that the server can see is that random-looking encrypted
cells are updated to still random-looking re-encrypted cells in a fixed scan order. Of
course, the access overhead of this method is very large since each cell access takes

' A huge random object, in this context, is a succinct representation of a pseudorandom object
that supports certain queries. For example, a pseudorandom function can be thought of as a huge
pseudorandom bitstring that is implicitly represented by a tiny seed and supports efficient random
access. This is not a data structure in the conventional sense because the represented object is a
pseudorandom bitstring instead of “data.”

9 Enhanced RAM Simulation in Succinct Space 151

time linear to the entire RAM size. The purpose of this example is merely to illustrate
the kind of security we want to achieve.

We now give a more formal problem description. We have three parties: the user,
the server, and the simulator. The simulator models a program that runs in the local
environment of the user. The simulator provides the user with an access interface
to RAM that we call the virtual RAM while the server provides the simulator with
an access interface to RAM that we call the physical RAM. That is, the user gives
the simulator a series of queries of the form (type, i, v) where type € {read, write},
i € [N], and v € {0, 1}8. We call these virtual queries. The parameter N specifies
the number of virtual cells—cells in the virtual RAM—while B specifies the size
of each virtual cell. Given a virtual query, the simulator gives the server another
series of queries of the form (type, i, v), where type € {read, write}, i € [N'], and
v € {0, 1}%". We call these physical queries. The simulator, and thus the physical
queries, is probabilistic in general.> The server responds to physical queries in the
obvious way. That is, for (read, i, %) where “x” means that the third component is
arbitrary, the server returns the value of the ith physical cell, and for (write, i, v), the
server updates the value of the ith physical cell to v. If the virtual query from the
user is of the form (read, i, x), the simulator derives the value of the ith virtual cell
through the interaction with the server and returns it to the user. If the virtual query
is of the form (write, i, v), the simulator updates the value of the ith virtual cell to
v. The simulator must respond to the virtual queries online. We call the sequence
of second components of the virtual queries (resp. physical queries) a virtual access
pattern (resp. physical access pattern). For a virtual query sequence g, let a(g) denote
the physical access pattern induced by ¢. Recall that a(q) is a random variable in
general. The ORAM scheme is secure if a(q;) and a(q;) are indistinguishable for any
virtual query sequences g and g, of the same length. There are some variations in the
exact meaning “indistinguishable”. Typically used meanings of indistinguishability
in descending order of security are a) equally distributed, b) statistically closely dis-
tributed, and c¢) computationally indistinguishable. The main performance metric of
ORAM includes access overhead, which is the number of physical queries processed
for each virtual query, the simulator local space size, and the server space size, which
is B'N’ bits.

As mentioned above, the simulator models a program running in the local environ-
ment of the user. Thus, in practice, we do not distinguish the user and the simulator.
For example, we refer to the simulator local space as user space.

The ORAM problem is non-trivial only if the user space is smaller than BN bits
since otherwise, the simulator can store the entire RAM locally and ignore the server.

2 The simulator of the scan-based method is deterministic, and it is not hard to see that its linear
access overhead is optimal if we restrict the simulator to be deterministic. Thus, all simulators of
interest are indeed probabilistic.

152 T. Onodera

Table 9.1 Summary of existing results. ¥ means amortized bound. ~ log N means O (f(N)) for
any f € w(log N). The constant factor of the user space of [26] is < 1

Access overhead Sever space User space Technique Security
(N)

71 O(/NlogN) T N(1+2JN) | o) Square root Computational
9] O(log’ N)T ©(N log N) o) Hierarchical Computational
[19] O(v/NlogN) (1+6)N | o)
[19] O(log® N) O(NlogN) |0()
[10] O(log? N)f 1+©1)N | o)
[13] 0(%) (1+6a)N | o)
[20] ()(logNloglogN)]L (1+6)N o)
[12] O(log N)T (1+O0)N | o)
[25] 0(log3 N) ®(NlogN) o) Tree Statistical
[27] 0(log? N) (1+O()N | ~logN
[17] O(log? N) (1+0(1)N |=~logN

9.2.2 Existing Results

Table 9.1 gives a summary of some of the existing results. Every method has physical
cell size B'= B + ®(log N). There is an (log N) lower bound for the access
overhead if the user space is at most N =€ for constant € > 0 [14].

There are mainly two types of techniques that are actively studied: hierarchical
approaches and tree-based approaches.?> Asymptotically, the state-of-the-art hierar-
chical method [12] has access overhead matching the lower bound mentioned above
while the state-of-the-art tree-based methods have about log N times larger asymp-
totic access overhead. Yet, tree-based methods are still of practical interest because
they tend to have much smaller access overhead constant factors than the hierarchi-
cal methods. The access overheads of tree-based methods also constrain the worst
case while those of the hierarchical methods are often amortized. Although there are
techniques to achieve competitive worst-case access overhead via the hierarchical
methods [13, 19], they tend to be complex and add further constant factors to the
performance bounds.

In the past, the ORAM research community has focused mainly on reducing the
access overhead because it was the biggest obstacle to applying ORAM in practice.
However, some recent studies have achieved practical access performances [16, 22]
by combining tree-based ORAM with special hardware. For example, the PHAN-
TOM secure processor system [16] supports access pattern-hiding SQL queries with
a time overhead of 1.2-6 x compared to the standard insecure version. Thus, at least
for tree-based ORAM, exploration of aspects other than access overhead is beginning
to make sense.

3 The square root method [7] was the first non-trivial ORAM and is the origin of some of the ideas
underlying the hierarchical methods.

9 Enhanced RAM Simulation in Succinct Space 153

We describe the recent development of techniques for reducing the number of
physical cells N’ of the tree-based ORAM to (1 + o(1))N [17]. Note that there also
is a space overhead originating from the cell size: typically, B = B + c1g N where
c is a small constant such as 2. We ignore the cell size overhead and focus on the cell
number because the typical value of B is 128 bytes in the secure processor setting
and the overhead with respect to the cell size is just a few percent.

9.2.3 Tree-Based Methods

The tree-based method of Stefanov et al. [27] works as follows. The server organizes
the physical cells into a complete binary tree with N leaves where each node is a
bucket—a container that can accommodate a constant number of virtual cells. Each
virtual cell has a position label—an integer in [NV]—and a virtual cell with position
label i is stored either in some bucket on the path from the root to the ith leaf or in a
stash, which is a container in the user’s local memory that can accommodate a small
number of virtual cells. Let v; be the ith virtual cell and let p; be the position label
of v;. Suppose the user maintains p; for all i € [N] in local memory. This requires
Q(N) user space but simplifies the exposition. We will reduce the user space later.
To access v;, the user retrieves all of the blocks on the path from the root to the p;th
leaf. Let this path be P. At this point, v; must be in the stash. The user copies the
value of v; to somewhere in its local memory for a read query or changes it to some
other value for a write query. Then, the user updates p; to a fresh random value in
[V]. After that, the user scans the buckets on P from the leaf to the root, and for each
bucket, moves cells in the stash to the bucket greedily while respecting the position
labels and the bucket capacity. See Fig. 9.1 for an example.

Sometimes, some virtual cells in the stash cannot be moved back to the tree. For
example, if all cells are assigned the same position label, only ®(log N) physical
cells can be used to store the virtual cells and thus, most virtual cells must end up
in the stash. (Of course, if NV is large, such an event happens only extremely rarely.)
Stefanov et al. proved that if the bucket size is at least 5, the number of cells left
in the stash after processing a query is exponentially small. Thus, if the stash size
is w(log N), the stash overflows during processing a polynomial number of queries
with only negligible probability.

To reduce the user space for position labels, the user outsources the position labels
using the same method recursively. That is, each position label is a [1g N bit integer
and the table for position labels of all virtual cells can be thought of as a RAM
storing the N [lg N-bit concatenation of the integers. Thus, the original problem of
hiding the access pattern to RAM consisting of N cells, each of B bits, is reduced
to hiding the access pattern to RAM consisting of N [lg N/B cells, each of B bits.
If, say, B > 21g N, which is a completely reasonable assumption for all reasonable
N ,* the problem size (cell number) decreases exponentially and reaches O (1) after

4 Recall that the typical value of B is 128 bytes in secure processor applications.

154 T. Onodera

Fig. 9.1 Example access
process for reading the 4th
virtual cell. N = 4. Bucket
size is 1. The expression i/
means the ith virtual cell
with position label j. The
path from the root to the first
leaf is scanned from top to
bottom in step (2) and from
bottom to top in step (4)

O (g N) levels of recursion. At that point, the user can store the O(1) size RAM
locally terminating the recursion.

The tree at the top level of recursion has size ® (N) and the tree at higher recursion
levels decreases exponentially. The access overhead is proportional to the sum of the
heights of the trees at all recursion levels, which is O (log? N). The server space is
proportional to the sum of the sizes of the trees at all recursion levels, which is ® (N).

Although each recursion level requires a stash, the numbers of cells left in those
stashes are independent and it turns out that the total number of cells left in all
stashes is still exponentially small. Thus, f () user space is enough for any f(N) €
w(log N).

9.2.4 Succinct Construction

The constant factor hidden in the ® (V) server space bound of the method described
above is about 10: the top-level tree has 2N nodes each of capacity 5 while the
size of the recursive trees is negligible because typically, B is much larger than
Ig N. (Theoretically, we assume B = w(lg N).) Though one can reduce this constant
factor to some extent by decreasing the tree height while tuning the bucket size, it is
not possible to achieve a factor < 2 while maintaining a meaningful stash overflow
probability, at least using the currently known analysis techniques. This method also
leads to prohibitively large access overhead as the server space becomes close to 2N.
We now describe a method for achieving (1 + o(1)) N server space with a modest
sacrifice in access overhead [17].

9 Enhanced RAM Simulation in Succinct Space 155

Fig. 9.2 Large leaf layout

lgl'4 N + lgl'3 N

N/1g'"* N

The idea is to modify the layout of the tree at the top recursion level so that the leaf
numberis N/1g'* N and the leaf size is g'* N + 1g'* N (see Fig. 9.2). It is obvious
that the tree size is (1 4+ 1/1g%! N)N while access overhead remains O (log> N). We
now explain why the stash overflow probability remains small.

Let N; be the number of cells with position label i fori € [N/ lgl'4 N]. Let the
load of a bucket be the number of cells stored in the bucket. At each moment in
the lifetime of the scheme, N; follows the binomial distribution with parameters N
and N/1g"* N for each i. The probability that this becomes larger than Ig'* N +
1g'3 N is negligible. Thus, no leaf becomes full while processing a polynomial
number of queries. Under this assumption, the distribution of the internal bucket loads
is dominated by the distribution of the loads of the corresponding N/1g'"* N — 1
internal buckets in the standard N leaf layout scheme described above. This is so
because the internal buckets in the large leaf layout do not need to store the cells that
overflow from the leaves. Thus, assuming no leaf becomes full, the stash overflow
probability of the large leaf case is negligible. The same is true even without this
assumption because there is only a negligible probability that the assumed case does
not occur.

We can reduce the N/1g%! N extra term on the tree size even further by “the
power of two choices”. That is, we give two random position labels to each virtual
cell. One is primary, which determines the path on which the cell can reside, while
the other is secondary, which is a dummy needed to hide the access pattern. Now,
N; is the number of virtual cells with primary position label ;. We maintain N; for
all i in a sub-ORAM in the same way we store position labels in recursive ORAM.
To access a virtual cell v, we retrieve all cells on the path from the root to the p;th
leaf and the path from the root to the p,th leaf. We choose two random labels p}, p}
and let p} (resp. p5) be the new primary (resp. secondary) label of v if Ny < N,;.
Otherwise, we exchange the role of p| and p,. We then scan the paths specified by
the old labels and greedily move back the cells as in the previous method. Here, N; is
not binomial but concentrated much more tightly around the mean due to the effect
of the two choices. Thus, the “head space” for each leaf can be much smaller than
1g'3 N, leading to a smaller tree size.

156 T. Onodera

By tuning the parameters, the first technique (large leaf layout) alone can achieve

about (1 + @(l"iN + JIJW))N server space while the second technique (two
choices) decreases it to (1 + @(% + l‘ii;%l\fv))N.s

9.2.5 Open Problem

Itis unknown whether the optimal O (log N) access overhead and (1 + o(1)) N server
space can be achieved at the same time. There are two natural approaches for answer-
ing this question affirmatively:

e Develop a technique for making hierarchical methods, such as [9], succinct and
apply it to the existing optimal method [12]. This seems particularly challenging
if we further require a worst-case (instead of amortized) access overhead bound
because the existing techniques for achieving a worst-case access overhead bound
in the hierarchical approach [13, 19] require maintaining multiple versions of the
database.

e Achieve O(log N) access overhead by a tree-based approach and apply the tech-
niques described here. The first part is already an open problem of sufficient
interest.

9.3 Wear Leveling

9.3.1 Problem

Consider the case where you have RAM with the limitation that each cell state can be
updated at most a certain number of times. Once the number of updates has reached
the limit, the cell dies and you can no longer update it. The utility of the RAM quickly
degrades as the cells start to die because the total amount of information that can be
stored decreases, and it becomes cumbersome to manage which cells are still alive.
Thus, the number of times you can support updates before cells start to die is of
primary interest. This number depends heavily on the case. In the best case where
the updates are uniform among the cells, you can perform n L updates where is the
number of cells and L is the number of times each cell can be updated. In contrast, in
the worst case where all updates fall onto a particular cell, you can perform updates
only L times. Wear leveling is the problem of prolonging the memory lifetime as
much as possible while keeping the associated overhead, if any, as small as possible.

The system community has been studying wear leveling for decades. Historically,
flash memory was the main motivation for studies conducted from the late 1980s
to the mid 2000s [1, 6, 15]. Today, the main motivation for wear leveling comes

5 These bounds include the cell size overhead that we ignored in the main explanation for brevity.

9 Enhanced RAM Simulation in Succinct Space 157

from phase change memory (PCM), which is an emerging next-generation memory
technology that has many features, including low latency, energy efficiency, and
non-volatility [5]. Each PCM cell supports only 108-10° updates, which means that
cells can start dying within minutes or even seconds if no effort is made to perform
wear leveling. PCM differs from flash memory in certain important respects, such as
latency, access granularity, and in-place write capability, and thus requires a different
wear leveling formalization than flash memory.

Most existing studies on wear leveling are conducted mainly from a practical point
of view. Often, they do not have a formal problem statement or rigorous theoretical
analyses. While this might not be a serious problem if the only thing that matters
is the performance, some relatively recent studies have repeatedly emphasized the
security aspects of wear leveling [21, 23, 24, 28, 29]. In particular, it is important to
take into account the case of malicious users who actively try to reduce the memory
lifetime. (Consider, for example, a computing outsourcing service.)

Below, we describe a recent theoretical study that constructed a problem formal-
ization to capture the wear leveling for PCM explained above, and the corresponding
solutions [18].

The formal problem statement is as follows. There are two parties: the user and
server. The server has three resources: physical RAM, wear-free memory, and private
randomness. The physical RAM is RAM that consists of N B-bit cells while the wear-
free memory is RAM that consists of a small number of B-bit cells. The user provides
the server with adversarially chosen read/write queries to virtual RAM—a RAM
consisting of n b-bit cells—and the server must respond to these queries “correctly.”
That is, each request is of the form (type, i, v) where type € {read, write}, i € [n],
and v € {0, 1} and, for (read, i, *x) where “*” means that the third component is
arbitrary, the server must return the last value written to the ith virtual cell (the v
in the last query of the form (write, i, v)). The server not only needs to return the
correct responses but also needs to support as many write queries as possible with
high probability without updating any physical cell more than L times where L is
a parameter. We assume L = n® for some constant § > 0. Equivalently, we define
8 :=log; n and assume it is a constant. This assumption is reasonable even though,
in reality, L and n are independent, because L is 103-10° and log; n is at most 2 or
3 for reasonable 7.

The performance metric for wear leveling includes the physical memory size,
the wear-free memory size, the number of write queries supported, and the access
overhead, which is the number of physical RAM accesses needed for each virtual
RAM access. We say a wear-leveling scheme is “optimal” if it satisfies the following
conditions (asymptotic notations are in terms of n — 00):

e N=1+0(1)"
e With high probability, that is, 1 — O(1/n), it can process (1 — o(1))NL write
queries without updating any physical cell more than L times;

6 We ignore the cell size overhead for brevity. Security Refresh [23] described below does not have
any cell size overhead (B’ = B) while the method of Onodera and Shibuya [18] described after that
has a cell size of B = B + 2[lgn] + 1.

158 T. Onodera

10 11
10 11 11 IS U I 0
11 10 10 w0 | 4 10

00 >< 00 [.4 ol 01 01
01 or ["4 00 00 00

Fig.9.3 Movement of cells in an epoch of security refresh. All the numbers are binary.n = 4(= N),
ro =*“10”,andr; =“11". Solid arrows mean cell swaps while dotted arrows mean skipped cell swaps

e The processing time of each query is O (1);
e It requires only O (1) cells in the wear-free memory.

9.3.2 Security Refresh

The wear leveling scheme of Sewong et al. [23] is optimal if L = N° for § > 1 while
it is non-optimal (in fact, “far from” optimal) for § < 1 [18].

In this method, n virtual cells are stored in the N = n physical cells in permuted
order. The method works in epochs. At each epoch, two random Ig n-bit integers ry
and r; are maintained. (We assume n is a power of two for brevity.) At the start of
an epoch, for each i € [n], the ith virtual cell v; is stored in the i & roth physical
cell Vig,, where @ means bit-wise XOR. During the epoch, each v; is moved from
Vier, t0 Vigr, . Note that the virtual cell stored in the destination V;g,, of v; iS Vigr, r,
and its destination is Vjg,,; that is, v; and vig,er swap their positions. This is
done as follows. For every ¢ write queries processed where ¢ is a parameter, we
perform a remap subroutine. At the ith remap subroutine call in an epoch, we check
ifi <i®ro@r. If so,v; still is in Vig,, and thus, we swap the contents of Vg,
and V;g,,. Otherwise, v; is already in V;g,, and we skip swapping. The epoch ends
after the nth remap subroutine finishes. At that point, each cell v; is stored in Vg, .
We update ry to r;, and r; to a fresh random Ign-bit integer. Now every v; is in
Vier, as required for the epoch start, and we restart another epoch at this point. See
Fig. 9.3 for an example. To access v;, we access Vg, if v; was already remapped in
the epoch. (We have already seen how to check this.) Otherwise, we access Vigy, .

The non-trivial part of the analysis is the proof of a high-probability guarantee
of memory lifetime. We outline the key points. Fix a physical cell and let X; be the
number of times it is updated during the ith epoch. We need to place a bound on
the probability that the sum of X;s deviates from its expected value. To do this, it
suffices to bound the deviation of the sum of odd-indexed variables X;, X3, ... from
its expected value and do the same for the sum of even-indexed variables X,, X4, ...
separately. This is helpful because each X; is a random variable that depends on ry, r/
in the ith epoch (and the queries) and thus, the odd-indexed variables X, X3, ...
are independent of each other and so are the even-indexed variables. Regardless of

9 Enhanced RAM Simulation in Succinct Space 159

the queries, X; is bounded by the number of write queries processed in an epoch ¢n.
Although this suggests the use of the Hoeffding inequality, it turns out that it does
not work for the case § < 2, essentially because the condition X; < tn alone does
not capture the fact that some cell being updated many, say, & tn, times in an epoch
negatively affects the number of times other cells are updated in the epoch. To derive
the bound for the case 1 < § < 2, bound the second moment of X; and apply the
Bernstein inequality [4].

If the user tries to keep on updating v; continuously, one of Vig,, and V;g,, is
updated tn/2 = Q(n) times during the first epoch, and this physical cell dies if
8 < 1. Thus, this method is not optimal for § < 1.

9.3.3 Construction for Small Write Limit Cases

We now briefly describe a method for achieving optimality for the case § < 1, that is,
the memory is large [18]. The idea is to prepare spare cells and remap the frequently
updated cells to free spare cells adaptively. (We maintain the write counts of cells
by appending a counter to each cell.) We store pointers to the new locations in the
old locations to trace the remapped cells. To keep the number of pointers to follow
small, we connect pointers in a manner that is similar to the DFS of a complete
d-ary tree with d" leaves where d, i are parameters (see Fig. 9.4). As we continue
to process write queries, the data structure gradually degrades: the free spare cells
become scarce and the trees become saturated. To reset the degradation, we perform a
Security Refresh-style mapping. That is, we treat the structure in Fig. 9.4 as residing
in another RAM « and maintain a global mapping—a gradually changing one-to-one
map between the cells of # and the physical cells Vi, V,, Once we have globally
remapped a cell of u corresponding to a tree root, we reset the “DFS” starting from
that cell. For example, if we globally remap u; in state (5) of Fig. 9.4, we free
Upt1, Unta, resetting DFS for the tree from u; to the root. Garbage such as u,,3 are
also reclaimed sooner or later when they are globally remapped. To access v;, the
tree path traversal in u starting from i is simulated translating between addresses in
u and addresses in V.

Although analysis of the bound on memory lifetime is cumbersome, the same
idea as the analysis of Security Refresh applies. Indeed, the core argument is easier
because the Hoeffding bound suffices.

9.3.4 Open Problem

The access overhead of the method for the small write limit case described above
is about 1/§. It is easy to obtain amortized 1 4+ o(1) and worst-case © (n) access
overhead if we allow relatively large wear-free memory, for example, O(n¢) for
an appropriate constant 0 < € < 1. It seems possible and practically relevant to

160 T. Onodera

(1) u u; uj Un
L] v KA
2 u u; uj Un
KN [n+1] KA
Un+l
3 ui u; uj Un
| Vi ‘ ‘n+1‘ ‘n+2‘ ‘ Vn ‘
Upn+] Un+2
4) u u; uj Un
| [ne2] [|
Un42
5) u u; uj Un
| [ne2] [v |
Un+
Fig. 9.4 Example evolution of u. d = h = 2. uy, ..., u, are default locations while the rest are

spare cells. Each panel shows the state just after the thick-bordered cell was allocated because the
cell previously storing its content was updated and the write count reached the threshold

achieve amortized 1 + o(1) and worst-case O (1) access overhead in this setting. A
theoretically more interesting challenge is to give negative results that justify the use
of such large wear-free memory.

9.4 Conclusion

We reviewed two recent studies on ORAM and wear leveling that achieve succinct
space usage. Though these objects have totally different motivations and are studied
in different communities, there are some similarities between them. As we mentioned

9

in

Enhanced RAM Simulation in Succinct Space 161

the introduction, several other concepts with similar flavors are known, including

initializable RAM, memory checking, locally decodable code, and huge random
objects. There are probably many more such enhanced RAM instances yet to be
found, and trying to find them can be an avenue for making progress in studies of
data structures.

R

DO =

10.

11.

12.

13.

eferences

. A. Ban, Wear leveling of static areas in flash memory. US Patent 6,732,221, May 2004

. 1. Bentley, Programming Pearls (Addison-Wesley, Column 1, 1989)

. Manuel Blum, Will Evans, Peter Gemmell, Sampath Kannan, Moni Naor, Checking the Cor-
rectness of Memories. Algorithmica 12(2-3), 225-244 (1994)

. S. Boucheron, G. Lugosi, P. Massart, Concentration Inequalities: A Nonasymptotic Theory of
Independence (Oxford University Press, 2013). Equation (2.10)

. J. Boukhobza, S. Rubini, R. Chen, Z. Shao, Emerging NVM: a survey on architectural inte-
gration and research challenges. ACM Trans. Des. Autom. Electron. Syst. 23(2), 14:1-14:32
(2017)

. Eran Gal, Sivan Toledo, Algorithms and Data Structures for Flash Memories. ACM Comput.
Surv. 37(2), 138-163 (2005)

. 0. Goldreich, Towards a theory of software protection and simulation by oblivious RAMsS, in
Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC) (1987), pp.
182-194

. Oded Goldreich, Shafi Goldwasser and Asaf Nussboim. On the implementation of huge random
objects. In SIAM J. Comput. 39.7, 2010, pp. 2761-2822

. Oded Goldreich, Rafail Ostrovsky, Software Protection and Simulation on Oblivious RAMs.

J. ACM 43(3), 431-473 (1996)

M.T. Goodrich, M. Mitzenmacher, Privacy-preserving access of outsourced data via oblivious

RAM simulation, in Proceedings of the 38th International Conference on Automata, Languages

and Programming (ICALP), vol. 11 (2011), pp. 576-587

J. Katz, L. Trevisan, On the efficiency of local decoding procedures for error-correcting codes,

in Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (STOC) (2000),

pp- 80-86

I. Komargodski, W.-K. Lin, K. Nayak, E. Peserico, E. Shi, OptORAMa: optimal oblivious

RAM, in Proceedings of the 39th Annual International Conference on the Theory and Appli-

cations of Cryptographic Techniques (Eurocrypt) (2020), pp. 403—432

E. Kushilevitz, S. Lu, R. Ostrovsky, On the (in)security of hash-based oblivious RAM and a

new balancing scheme, in Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA) (2012), pp. 143-156

. K.G. Larsen, J.B. Nielsen, Yes, there is an oblivious RAM lower bound!, in Proceedings of the
38th International Cryptology Conference (CRYPTO) (2018), pp. 523-542

. KIM.J. Lofgren, R.D. Norman, G.B. Thelin, A. Gupta, Wear leveling techniques for flash
EEPROM systems. US Patent 6,230,233, May 2001

. M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubiatowicz, D. Song,
PHANTOM: practical oblivious computation in a secure processor, in Proceedings of the 20th
ACM SIGSAC Conference on Computer & Communications Security (CCS) (2013), pp. 311-
324

. T. Onodera, T. Shibuya, Succinct oblivious RAM, in Proceedings of the 35th Symposium on

Theoretical Aspects of Computer Science (STACS) (2018), pp. 1-16

. T.Onodera, T. Shibuya, Wear leveling revisited. To appear in The 31st International Symposium

on Algorithms and Computation (ISAAC2020)

162 T. Onodera

19. R. Ostrovsky, V. Shoup, Private information storage, in Proceedings of the 29th Annual ACM
Symposium on Theory of Computing (STOC) (1997), pp. 294-303

20. S. Patel, G. Persiano, M. Raykova, K. Yeo, PanORAMa: oblivious RAM with logarithmic
overhead, in Proceedings of the 59th Annual Symposium on Foundations of Computer Science
(FOCS) (2018), pp. 871-882

21. M.K. Qureshi, M. Franceschini, V. Srinivasan, L. Lastras, B. Abali, J. Karidis, Enhancing life-
time and security of PCM-based main memory with start-gap wear leveling, in Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) (2009),
pp. 14-23

22. Ling Ren, Christopher W. Fletcher, Albert Kwon, Marten van Dijk, Srinivas Devadas, Design
and Implementation of the Ascend Secure Processor. IEEE Trans. Depend. Secure Comput.
16(2), 204-216 (2019)

23. N.H. Seong, D.H. Woo, H.-H. Lee, Security refresh: protecting phase-change memory against
malicious wear out. IEEE Micro. 31(1), 119-127 (2011)

24. André Seznec, A Phase Change Memory as a Secure Main Memory. IEEE Computer Archi-
tecture Letters 9(1), 5-8 (2010)

25. E. Shi, T.-H.H. Chan, E. Stefanov, M. Li, Oblivious RAM with O ((log N)?) worst-case cost, in
Proceedings of the 17th International Conference on the Theory and Application of Cryptology
and Information Security (Asiacrypt) (2011), pp. 197-214

26. E. Stefanov, E. Shi, D.X. Song, Towards practical oblivious RAM, in /9th Annual Network
and Distributed System Security Symposium (NDSS) (2012)

27. E. Stefanov, M. van Dijk, E. Shi, T.-H.H. Chan, C. Fletcher, L. Ren, X. Yu, S. Devadas, Path
ORAM: an extremely simple oblivious RAM protocol J. ACM 65(4) (2018)

28. G. Wu, H. Zhang, Y. Dong, J. Hu, CAR: securing PCM main memory system with cache
address remapping, in Proceedings of the 18th IEEE International Conference on Parallel and
Distributed Systems (2012), pp. 628-635

29. H. Yu, Y. Du, Increasing endurance and security of phase-change memory with multi-way
wear-leveling. IEEE Trans. Comput. 63(5), 1157-1168 (2014)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	9 Enhanced RAM Simulation in Succinct Space
	9.1 Introduction
	9.2 Oblivious RAM
	9.2.1 Problem
	9.2.2 Existing Results
	9.2.3 Tree-Based Methods
	9.2.4 Succinct Construction
	9.2.5 Open Problem

	9.3 Wear Leveling
	9.3.1 Problem
	9.3.2 Security Refresh
	9.3.3 Construction for Small Write Limit Cases
	9.3.4 Open Problem

	9.4 Conclusion
	References

