
Chapter 8
Orthogonal Range Search Data
Structures

Kazuki Ishiyama and Kunihiko Sadakane

Abstract We first review existing space-efficient data structures for the orthogonal
range search problem. Then, we propose two improved data structures, the first of
which has better query time complexity than the existing structures and the second
of which has better space complexity that matches the information-theoretic lower
bound.

8.1 Introduction

Consider a set P of n points in the d-dimensional space R
d . Given an orthogonal

range Q =
[
l(Q)
0 , u(Q)

0

]
×

[
l(Q)
1 , u(Q)

1

]
× · · · ×

[
l(Q)
d−1, u

(Q)
d−1

]
, the problem of answer-

ing queries for information on P ∩ Q, the subset of P contained in the range Q, is
called the orthogonal range search problem, and is one of the fundamental problems
in computational geometry.

The information obtained about P ∩ Q differs depending on the query. The most
basic queries are the reporting query, which enumerates all the points in P ∩ Q,
and the counting query, which returns the number of points |P ∩ Q|. There are
other queries such as the emptiness query, which checks whether P ∩ Q is empty or
not, and aggregate queries, which compute the summation, average, or variance of
weights of points in the query range.

Applications of the orthogonal range search problem include database searches
[21]. For example, assuming there is a database of employees of a company, then
a query to count the number of employees whose duration of service is at least x1
years and at most x2 years, age is at least y1 and at most y2, and annual income is
at least z1 and at most z2, can be formalized as an orthogonal range search problem.
Other applications include geographical information systems, CAD, and computer
graphics.
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In such applications, it is common to perform multiple queries on the same point
set P .We therefore consider constructing the problem as an indexing problem:Given
a point set P a priori, we first construct some data structure D from P . Then, when
a query range Q is given, we answer the query using the data structure D.

8.1.1 Existing Work

Inmany existingworks, the number n of points is regarded as a variable for evaluating
time complexity and the number d of dimensions is regarded as a constant. However,
in this chapter, we regard d as a variable too. For the computation model, we use
w-bit word RAM where w = �(lg n) bits. That is, a constant number of coordinate
values can be treated in constant time. Then, it takes O(d) time to check whether a
point is inside a query range.

If more space than�(dn)words is allowed to be used for the space complexity of
data structures and if we assume that d is a constant, thenwe can perform the counting
and reporting queries in time polynomial to log n. Range trees [2, 14, 15, 23] are
such data structures. Range trees support counting queries in O

(
d logd−1 n

)
time

and reporting queries in O
(
d logd−1 n + dk

)
time using O

(
dn logd−1 n

)
word space,

where k = |P ∩ Q|, that is, the number of points enumerated by a reporting query
using the fractional cascading technique [15, 23]. Although these data structures are
time-efficient, it is desirable to develop more space-efficient data structures.

Some data structures having linear space complexity have been proposed. For
example, quad trees [6] were the first data structures used for orthogonal range
search. Unfortunately, quad trees have terrible worst-case behaviors. To overcome

this, kd-tree [1] is used. The query time complexity of the kd-tree is O
(
d2n

d−1
d

)
for

counting and O
(
d2n

d−1
d + dk

)
for reporting [13].

These data structures store the coordinates of points separately in plain form,
and therefore can be applied to the case of real-valued coordinates. However, if the
coordinates take integer values from 0 to n − 1, then there exist data structures with
even smaller space complexity and query time complexity. For example, Chazelle [4]
proposed a data structure for the two-dimensional case with linear space complexity
and time complexity ofO(lg n) for counting andO(lg n + k lgε n) for reportingwhere
0 < ε < 1 is any constant. Note that although the assumption that each coordinate
value is an integer from 0 to n − 1 seems too strict, as is explained in Sect. 8.2.2, any
orthogonal range search problem in d-dimensional space can be reduced into one on
the [n]d grid, and therefore the assumption does not create any difficulties.

There has also been research on succinct data structures for the orthogonal range
search problem. The wavelet tree [9] is a data structure which was originally pro-
posed for representing compressed suffix arrays, and it later turned out that wavelet
tree can support various queries efficiently [18]. For the orthogonal range search
problem, wavelet tree can support counting queries in O(lg n) time and reporting
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queries in O((1 + k) lg n) time [8]. Bose et al. [3] proposed improved succinct data
structures that support counting queries in O(lg n/ lg lg n) time and reporting queries
in O(((1 + k) lg n/ lg lg n) for two-dimensional cases.

For higher dimensions, Okajima and Maruyama [20] proposed the KDW-tree,
which is a succinct data structure for any dimensionality. The query time complexity
of theKDW-tree is smaller than that of the kd-tree. Ifwe assumed is a constant, count-
ing queries take O

(
n

d−2
d lg n

)
time and reporting queries take O

((
n

d−2
d + k

)
lg n

)

time. The KDW-tree has been shown to be practical by numerical experiments.

8.1.2 Our Results

We show space and time complexities of data structures for the orthogonal range
search problem explained in Sect. 8.1.1 and our proposed data structures in Table 8.1.
Note that these are for the case where the coordinates are integers from 0 to n − 1,
and the space complexities are measured in bits. Table 8.1 shows reporting time
complexities. Counting time complexities can be obtained by letting k = 0.

Our data structures are space-efficient for high-dimensional orthogonal range
search problems.

Our first data structure has the same space complexity as the KDW-tree and better
query time complexities. Note that the result in Table 8.1 is for the case of d ≥ 3. If
d = 2, we can improve the n

d−2
d term to lg n. This result appeared in [11].

Note that, as shown in Sect. 8.2.1, the necessary space to represent a set of n points
in d-dimensional space such that each coordinate takes an integer value from 0 to
n − 1 is (d − 1)n lg n + �(n) bits. This means that if we assume d is a constant, the
space complexity of the KDW-tree and our first data structure does not match the
information-theoretic lower bound asymptotically.

Table 8.1 Comparison of complexities. The results or KDW-tree and Ours 1 are for d ≥ 3. Note
that k is the number of points enumerated by a reporting query. The time complexities for counting
queries are obtained by letting k = 0 in the time complexities for reporting queries

Data structure Dim. Space (bits) Query time

kd-tree [1] d O(dn lg n) O
(
d2n

d−1
d + dk

)

Wavelet tree [9] 2 n lg n + o(n lg n) O((1 + k) lg n)

Bose et al. [3] 2 n lg n + o(n lg n) O
(
(1 + k) lg n

lg lg n

)

KDW-tree [20] d d{n lg n +
o(n lg n)}

O
((

poly(d) · n d−2
d + dk

)
lg n

)

Ours 1 d d{n lg n +
o(n lg n)}

O
((

d3n
d−2
d + dk

)
lg n
lg lg n

)

Ours 2 d (d − 1){n lg n +
o(n lg n)}

O(dn lg n)
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Our second data structure uses (d − 1)n lg n + (d − 1) · o(n lg n) bits of space.
This asymptotically matches the information-theoretic lower bound even if d is
assumed to be a constant. Therefore, we can say this data structure is truly suc-
cinct. Unfortunately, the worst-case query time complexity is O(dn lg n), which is
not fast in theory. However, this data structure is fast in practice for the case where
the number d of dimensions is large but the number d ′ of dimensions used for a query
is small. This kind of query often occurs in the database search applications shown
in Sect. 8.1. This result appeared in [10].

8.2 Preliminaries

In this paper, we assume that coordinates of points are non-negative integers. As will
be explained in Sect. 8.2.2, we sometimes assume that coordinates are integers from
0 to n − 1. Therefore, we define [n] as the set {0, 1, . . . , n − 1}. For a d-dimensional
space, we denote each dimension by dim. 0, dim. 1, . . . , dim. d − 1, coordinate values
of a point by 0-th coordinate value, 1-th coordinate value, . . . , d − 1-th coordinate
value. For a rooted tree, we assume the depth of the root node is 0. Throughout the
paper, log x denotes the natural logarithm and lg x denotes the base 2 logarithm.

Next, we define two concepts used in this chapter. The first one is containment
degree.This is the concept of an inclusion relationshipbetween twoorthogonal ranges

introduced in [20]. For two d-dimensional orthogonal ranges Q =
[
l(Q)
0 , u(Q)

0

]
×

. . . ×
[
l(Q)
d−1, u

(Q)
d−1

]
and R=

[
l(R)
0 , u(R)

0

]
× · · · ×

[
l(R)
d−1, u

(R)
d−1

]
,wedefineCDeg(R, Q)

as

CDeg(R, Q) = #
{
i ∈ [d]

∣∣∣
[
l(R)
i , u(R)

i

]
⊆

[
l(Q)
i , u(Q)

i

]}

and call it the containment degree of R with respect to Q. This is the number of
dimensions, in each of which R is contained in Q. The containment degree is an
important concept for analyzing time complexities of orthogonal range search algo-
rithms.

Next, we explain z-value. This is a projection of multi-dimensional data onto one-
dimensional data as proposed by Morton [17]. Consider a point p = (p0, p1, . . . ,
pd−1) in the d-dimensional space where the coordinate values are integers. If
coordinate values are expressed as l-bit binary numbers p0 = b00b

1
0 · · · bl−1

0 , p1 =
b01b

1
1 · · · bl−1

1 , . . . , pd−1 = b0d−1b
1
d−1 · · · bl−1

d−1, the z-value z(p) of point p is defined
as

z(p) = b00b
0
1 · · · b0d−1b

1
0b

1
1 · · · b1d−1 · · · bl−1

0 bl−1
1 · · · bl−1

d−1.

In the case of a two-dimensional space, if we arrange grid points in increasing order
of z-value, we see a z-shape curve as shown in Fig. 8.1. We therefore call the value
z-value.
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Fig. 8.1 Curve obtained by
joining grid points in
z-valueorder in
two-dimensional space

8.2.1 Succinct Data Structures and Information-Theoretic
Lower Bound

Succinctness of data structures was proposed by Jacobson [12] and is one of the
criteria for measuring space complexities of data structures. It is defined as follows.

Let n be the number of different values that an object can take. Then, we need at
least �lg n� bits of space to represent the object. If the space complexity S(n) of a
data structure representing the object satisfies S(n) = lg n + o(lg n) bits, we say the
data structure is succinct and �lg n� bits is the information-theoretic lower bound of
the size of representations of the object. Note that succinct data structures not only
offer data compression, but also support some efficient queries. For orthogonal range
search, a naive algorithm supports linear time queries by scanning an array containing
coordinate values of points. Succinct data structures are therefore expected to answer
queries in sublinear time.

The space complexity of lg n + o(lg n) bits in the definition of succinct data
structures indicates that the size of auxiliary indexing data structures added to the
data is negligibly small compared with the size of the data itself (lg n bits). In other
words, the space complexity of succinct data structures asymptotically matches the
information-theoretic lower bound when n → ∞.

We compute the information-theoretic lower bound for representing a set of points
with integer coordinates. Assume that i-th coordinate value takes integer values from
0 to Ui − 1. Because the number of grid points is

∏d−1
i=0 Ui , the number of different

sets of n points is

(∏d−1
i=0 Ui

n

)
.

By using Stirling’s approximation formula
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log n! = n log n − n + O(log n),

we obtain

log

(
U

n

)
= logU ! − log(U − n)! − log n!
= U logU −U − (U − n) log(U − n) + (U − n) − n log n + n + O(logU )

= U log
U

U − n
+ n log

U − n

n
+ O(logU )

= U log

(
1 + n

U − n

)
+ n log

U

n

(
1 − n

U

)
+ O(logU )

= U

(
n

U − n
− �

((
n

U − n

)2
))

+ n log
U

n
− �

(
n2

U

)
+ O(logU )

= n logU − n log n + � (n) .

Therefore, the information-theoretic lower bound of the size for representing the
point set is

lg

(∏d−1
i=0 Ui

n

)
=

d−1∑
i=0

n lgUi − n lg n + �(n) .

Note that storing coordinate values of the points explicitly using
∑d−1

i=0 �lgUi� use
n lg n bit more space than the information-theoretic lower bound.

8.2.2 Assumptions on Point Sets

Because data structures such as kd-tree or range trees that have linear or larger space
complexities usually store the coordinates of points in a plain format, we do not
care whether they are integers or real values. However, if we consider succinct data
structures, we usually assume that coordinates values are integers from0 to n − 1.We
also assume that for any points p, q ∈ P and any i ∈ [d], the i-th coordinate value
pi of p and the i-th coordinate value qi of q are different. Although this assumption
may appear to be unrealistic and too strong, for the orthogonal range search problem,
it is known that an arbitrary point set on R

d can be transformed into a point set on
[n]d [7].

Consider a set P of n points on R
d . We create another point set P ′ on [n]d as

follows. The set P ′ also contains n points and there is a one-to-one correspondence
between points in P and points in P ′. Assume that p ∈ P corresponds to p′ ∈ P ′.
Then, the i-th coordinate value p′

i of p
′ is then defined from the i-th coordinate value

pi of p as
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p′
i = #{q ∈ P | qi < pi }. (8.1)

That is, the i-th coordinate value of p′ is the number of points in P such that the i-th
coordinate value is smaller than pi . This is called the rank value of p with respect
to the i-th coordinate value, and the transformation is called the transformation into
rank space. We use arrays C0,C1, . . . ,Cd−1 each of length n. The array Ci stores
the i-th coordinate values of points in P in increasing order.

By using the point set P ′ on the rank space and the arrays Ci (i = 0, . . . , d − 1)
that contain the original coordinate values of the points in P , we can reduce the
problem of orthogonal range search on the original point set P into that on P ′.
Assume that a query range Q =

[
l(Q)
0 , u(Q)

0

]
× · · · ×

[
l(Q)
d−1, u

(Q)
d−1

]
⊂ R

d is given for

a point set P . From the construction of P ′, there exists a range Q′ =
[
l(Q

′)
0 , u(Q′)

0

]
×

· · · ×
[
l(Q

′)
d−1 , u

(Q′)
d−1

]
⊂ [n]d such that

p ∈ Q ⇐⇒ p′ ∈ Q′.

The boundaries of this Q′ are computed by

l(Q
′)

i = #
{
p ∈ P

∣∣∣ pi < l(Q)
i

}

u(Q′)
i = #

{
p ∈ P

∣∣∣ pi ≤ u(Q)
i

}
− 1.

These are computed in O(d lg n) time by binary searches on the arrays Ci . Then,
the counting query is performed by using Q′. For the reporting query, after finding a
point p′ ∈ P ′ which is included in the query range Q′ in the rank space, we need to
recover the original coordinates of the point p ∈ P . This is done in O(d) time using
the arrays Ci containing the coordinates of the original points by

pi = Ci [p′
i ].

Thus, an orthogonal range search problem on R
d can be transformed into that on

[n]d . Note that if coordinates are transformed as in Eq. (8.1), the identical coordinate
values inR

d are transformed into identical coordinate values in [n]d . By shifting val-
ues by one for the identical coordinate values, we can transform the coordinate values
so that for any two distinct points p′, q ′ ∈ P ′ and any i ∈ [d], the i-th coordinate
value p′

i of p
′ is different from the i-th coordinate value q ′

i of q
′.

If the original points have integer coordinate values, we can reduce the space [19].
Consider the case where P is a point set on [U ]d , that is, each coordinate value takes
an integer value from 0 to U − 1. In this case, the point set P ′ in the rank space
does not change. However, we store the coordinates of the original point set P in
a different way. We store them using multi-sets M0, M1, . . . , Md−1, each of which
corresponds to one of the d dimensions. The multi-set Mi stores the i-th coordinate
value of the points in P . We use the data structure of [22] to store multi-sets.
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Lemma 8.1 There exists a data structure using n lg(U/n) + O(n) which supports
a selectm query on a multi-set Mi in constant time.

A selectm query on a multi-set M finds the j-th smallest element in M . That is,Ci [ j]
is obtained by finding the j-th smallest element in array Ci . Therefore, if a query
range Q on [U ]d is given, it can be transformed into a query range Q′ on the rank
space by binary searches using selectm queries, and the original coordinate values
are obtained by d many selectm queries.

Assume that there exists a succinct data structure D′ for a point set P ′ on [n]d .
Then, the space complexity of D′ is (d − 1)n lg n + (d − 1) · o(n lg n) bits, as shown
in Sect. 8.2.1. If we add d data structures of Lemma 8.1, the total space complexity
becomes dn lgU − n lg n + (d − 1) · o(n lg n) bits. This is succinct for the point set
P on [U ]d . Therefore, if there exists a succinct data structure for a point set on [n]d ,
we can construct a succinct data structure for a point set on [U ]d . From here onward,
we consider only point sets on [n]d .

8.3 kd-Tree

kd-tree [1] is a well-known data structure that partitions the space recursively. It
is used not only for the orthogonal range search problem, but also for the nearest
neighbor search problem.

8.3.1 Construction of kd-Trees

We explain the algorithm for constructing a kd-tree of a point set P for the two-
dimensional case. First, we find the point p for which the x-coordinate is the median
of the point set P , and store p at the root of the kd-tree. Next, we divide the set
P \ {p} into two: the set Pleft that stores points with x-coordinates smaller than that
of p, and the set Pright that stores points with x coordinates larger than that of p. We
add two children vleft , vright to the root of the kd-tree. Next, from Pleft (Pright), we find
pleft (pright) for which the y-coordinate is the median of the set, and we store pleft
(pright) in vleft (vright). Similarly, we divide the set Pleft \ {pleft} (Pright \ {pright}) into
two subsets according to y-coordinates, find medians with respect to x-coordinates,
and store them in children of vleft (vright), and repeat this recursively. Figure 8.2 shows
an example of partitioning a point set.

For a d-dimensional space, we partition the space based on the first dimension,
the second dimension, and so on. After partitioning the space based on the d-th
dimension, we use the first dimension again.
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Fig. 8.2 Partitioning of a space based on the point set (left) and the corresponding kd-tree (right).
Points A, B,C, . . . correspond to nodes a, b, c, . . .. The range corresponding to node h is shown
in gray in the left figure

8.3.2 Range Search Algorithm

An important concept for understanding range searches using a kd-tree is the cor-
respondence between nodes of the kd-tree and ranges. In Sect. 8.3.1, we explained
that each node of the kd-tree stores a point. We can also consider that each node
corresponds to an orthogonal range. Let V (v) denote the point in P stored in node
v and R(v) denote the corresponding range. Then R(v) is defined as follows:

– For the root node r of the kd-tree, the range R(r) is the whole space.
– For a node v at depth l, the range R(vleft) for the left child vleft of v is obtained as
follows. We partition R(v) into two by the hyperplane that is perpendicular to the
(l mod d)-th axis and contains V (v). Then, R(vleft) is the range with the smaller (l
mod d)-th coordinate value and R(vright) is the range with the larger (l mod d)-th
coordinate value.

For example, in Fig. 8.2, the range R(h) corresponding to node h is the gray area.
The algorithm for reporting queries using a kd-tree is as follows. The algorithm

searches the space by traversing tree nodes from the root. Each time a node v is visited,
the algorithm checks whether the corresponding point V (v) (∈ P) is contained in
the query range Q or not. If the range R(v) is fully contained in the query range
Q, the algorithm outputs all the points stored in the sub-tree rooted at v. If R(v)

and Q has no intersection, the algorithm terminates the search of the sub-tree. For
a counting query, instead of outputting all the points when R(v) is contained in Q,
the algorithm finds and accumulates the size of the sub-tree rooted at v. Although it
may seem impossible to execute the algorithm since the range R(v) for node v is not
explicitly stored in the kd-tree, if the range R(v) for node v is known, then we know
the coordinate values of the hyperplane partitioning the range from the coordinate
values of point V (v), and we can compute R(vleft) and R(vright). Therefore, we can
execute the algorithm by keeping the range R(v) during the search.
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8.3.3 Complexity Analyses

The time complexity of kd-trees is analyzed in [13]. A counting query takes

O
(
d · n d−1

d + 2d
)
time. In general, we assume d is a constant and write the com-

plexity as O
(
n

d−1
d

)
. For a reporting query, we output all coordinates of points in

Q. Because a point can be output in constant time, the query time complexity is

O
(
n

d−1
d + k

)
.

If d ≥ lg n, the height of the kd-tree is at most d, and therefore the space is
partitioned at most d times. Then, it is necessary to traverse all the nodes and a query
takes O(n) time.

8.4 Wavelet Tree

Wavelet tree is a succinct data structure supporting various queries on strings and
integer sequences efficiently. It was originally proposed for representing compressed
suffix arrays [9], but it later became known that wavelet tree can support more
operations [18]. Orthogonal range search in two-dimensional space is one of these
operations [16].

8.4.1 Construction

The two-dimensional point sets P that can be represented directly using wavelet tree
are those where the coordinates take integer values from 1 to n and the x-coordinate
values are all distinct. As explained in Sect. 8.2.2, without loss of generality, we can
transform any point set into a point set in [n]d space. For such a two-dimensional
point set P , consider an integer sequence C that contains the y-coordinates of the
points in increasing order of x-coordinates. For example, for the point set in Fig. 8.3,
the corresponding integer sequence C is 4, 2, 7, 5, 0, 3, 1, 6. For this sequence C ,
we construct a wavelet tree as follows.

First, we consider that the root of the wavelet tree corresponds to C . Note that
we do not store C directly in the wavelet tree. We then focus on the most significant
(highest) bit of the �lg n�-bit binary representation of each integer in C . If it is 0
(1), the integer is moved into the left (right) child of the root. We consider that each
child node of the root corresponds to an integer sequence containing the numbers
in the original array C in the same order. For example, in the example in Fig. 8.3,
integers from 0 to 3 go to the left child, and integers from 4 to 7 go to the right child.
Therefore, the left child corresponds to an integer sequence 2, 0, 3, 1, and the right
child 4, 7, 5, 6.
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Fig. 8.3 A two-dimensional point set P (left) and the corresponding wavelet tree (right)

Next, for each integer sequence of child nodes, we focus on the second most
significant bit of the binary representation of each number. We move a number with
0 bit to the left, and a number with 1 bit to the right. Similarly, we repeat this until
the integer sequence of a node consists of the identical integer.

Note that we do not store integer sequences in nodes of the wavelet tree. In
each node, we store a bit string of the same length as the corresponding integer
sequence. The i-th bit of the bit string is 0 (1) if the i-th integer in the integer
sequence goes to the left (right) child. In other words, a bit string stored in a node of
depth l is the concatenation of the (l + 1)-th highest bit of each integer in the integer
sequence corresponding to the node. In the example in Fig. 8.3, the integer sequence
corresponding to the root node is 4, 2, 7, 5, 0, 3, 1, 6, and because integers from 0
to 3 go to the left child and integers from 4 to 7 go to the right child, the bit string
stored in the root node is 1, 0, 1, 1, 0, 0, 0, 1. Note that we do not store bit strings
at leaf nodes. We show the information stored in the wavelet tree in the right tree in
Fig. 8.3. Only bit strings drawn above the dark gray rectangles, that is, those in the
lower row of each node, are stored.

Note that although it may seem impossible to recover the original information
(the integer sequence) from these bit strings, it is possible. Consider the recovery of
the fourth integer of the wavelet tree in Fig. 8.3 (right). From the bit string stored
in the root node, we know that the first bit of the integer is 1. Because this 1 bit
corresponding to the fourth integer is the third 1 in the bit string, we know that the
integer to be recovered corresponds to the third bit of the bit string in the right child
of the root node. If we look at the third bit of the right child, we know that the second
bit of the integer is 0. Further, this 0 bit is the second 0 in the bit string, the integer
to be recovered corresponds to the second bit of the left child of the current node.
Finally, from the second bit of the left child, we know the last bit of the integer to be
recovered is 1. Therefore, the fourth integer is 101 in binary, that is, 5. This is shown
in Fig. 8.4.
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Fig. 8.4 In the wavelet tree
in Fig. 8.3, we recover the
fourth integer. By looking at
the bits enclosed in boxes,
we know that the fourth
integer is 101 in binary, that
is, 5

In this recovery operation, we need to compute the number of zeros/ones in the
first i bits of a bit string. This operation is also used in the range search algorithm
in the next section. If we look at bits one by one from the beginning of a bit string,
it takes O(n) time, which is too slow. We therefore represent the bit string of each
node by the following data structure [5, 12].

Lemma 8.2 For a bit string of length n, there exists a data structure using n +
o(n) bits which answers a rank/select query in constant time, where the rank query
rankb (B, i) is to count the number of b bits (b = 0, 1) in the bits from B[0] to B[i]
(i ≥ 0) of a bit string B, and the select query selectb (B, i) is to return the position
of the i-th b (i ≥ 1, b = 0, 1) in a bit string B.

The select query is also necessary for range searches using a wavelet tree.

8.4.2 Range Search Algorithm

We explain how to solve the two-dimensional range search problem using a wavelet
tree. First, we explain the counting query, which is performed by a recursive function
as in Algorithm 1. For a query range Q = [l, r ] × [b, t], the argument of the function
is WTCounting(l, r, b, t, vroot, 0, 2�lg n� − 1), where vroot is the root node of the
wavelet tree. The left (right) child of node v is represented by vleft (vright). The bit
string stored in node v is represented by v.B.

We explain the algorithm in Fig. 8.5 using the example of searching a range
Q = [1, 6] × [1, 4] for the point set P in Fig. 8.3.

The search algorithm traverses the tree from the root. During the search, the
algorithm keeps the interval I of an integer sequence (or bit string) corresponding
to an interval of the x-coordinate of the query range. In the example in Fig. 8.5,
we focus on the interval I = [1, 6] at the root node. To move to the left child, we
need to compute the interval corresponding to the query range. This is done by a
rank query that counts the number of zeros from the beginning of the bit string to a
specified position. In the bit string stored in the root node, the number of zeros from
the beginning to the 0-th position (in general, if the interval is I = [l, r ], to (l − 1)-th
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Fig. 8.5 Behavior of the algorithmwhen searching a rangeof [1, 6] × [1, 4] for the two-dimensional
point set in Fig. 8.3

Algorithm 1WTCounting(x1, x2, y1, y2, v, a, b)
Input: A node v of the wavelet tree and an interval [x1, x2] in the corresponding bit string, the

interval [a, b] of y coordinate corresponding to node v, and the interval [y1, y2] of y coordinate
for the query range.

Output: The number of points stored in the sub-tree rooted at v and contained in Q.
1: if x1 > x2 then
2: return 0
3: else if [a, b] ∩ [y1, y2] = ∅ then
4: return 0
5: else if [a, b] ⊆ [y1, y2] then
6: return x2 − x1 + 1
7: end if
8: xl1 ← rank0 (v.B, x1 − 1)
9: xl2 ← rank0 (v.B, x2) − 1
10: xr1 ← x1 − xl1
11: xr2 ← x2 − xl2 − 1
12: m ← �(a + b)/2�
13: return WTCounting(xl1, x

l
2, y1, y2, vleft, a,m)

+WTCounting(xr1, x
r
2, y1, y2, vright,m + 1, b)

position) is 0, so we know the interval corresponding to the query starts at position
0. Because the number of zeros from the beginning to the 6-th position (in general,
if the interval is I = [l, r ], to r -th position) is four, we know the interval ends at
position 3. Thus, we obtain the interval I = [0, 3] for the left child. Similarly, for
the right child, by using rank queries counting the number of ones, we can obtain the
interval I = [1, 2].

We repeat this process by going down the tree maintaining an interval. When we
reach a leaf, we can determine if the y-coordinate of the point is included in the query
range. However, we can sometimes determine this at an earlier stage. For example,
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in Fig. 8.5, after obtaining the interval I = [1, 2] at the left child of the root, for the
right child of the current node the interval of the y-coordinate corresponding to the
node is [2, 3], which is completely included in the interval [1, 4] of the y-coordinate
of the query range. Therefore, for the two points we focus on at this node, both
the x- and y-coordinates are included in the query range, and we found two points
in the query range. However, after computing the interval I = [1, 2] for the right
child of the root, the interval of the y-coordinate corresponding to the right child of
the current node is [6, 7], which has no intersection with the interval [1, 4] of the
y-coordinate of the query range. We do not need to further search the sub-tree.

As observed above, in a range search using a wavelet tree, if the query range is
Q = [l, r ] × [b, t], we first focus on points for which the x-coordinates are contained
in Q, that is, contained in the range [l, r ] × [0, n − 1]. Next, the process of traversing
down the tree corresponds to partitioning the range into two according to the y-
coordinate. If an obtained range is completely contained in the query range, or does
not intersect with the query range, we terminate searching the sub-tree.

For counting queries, it is sufficient to sum the number of points. For reporting
queries, the extra work of computing the coordinates of the points is also required.
This is shown in Algorithm 2.

The outline of the reporting query is the same as the counting query. In
Algorithm 1, we obtain the number of points in Line 2. We change it one by
one to output coordinates of points corresponding to the interval [x1, x2] of the
bit string v.B. The x- and y-coordinates of each point are obtained byWTReportX

Algorithm 2WTReporting(x1, x2, y1, y2, v, a, b)
Input: A node v of the wavelet tree, the interval [x1, x2] of the bit string stored in it, the interval

[a, b] of y coordinates corresponding to the range for v, and the interval [y1, y2] of y coordinates
for the query range.

Output: Coordinates of point stored in the sub-tree rooted at v and contained in Q.
1: if x1 > x2 then
2: terminate
3: else if [a, b] ∩ [y1, y2] = ∅ then
4: terminate
5: else if [a, b] ⊆ [y1, y2] then
6: for i = x1 to x2 do
7: x ← WTReportX(v, i)
8: y ← WTReportY(v, i, a, b)
9: Output (x, y)
10: end for
11: end if
12: xl1 ← rank0 (v.B, x1 − 1)
13: xl2 ← rank0 (v.B, x2) − 1
14: xr1 ← x1 − xl1
15: xr2 ← x2 − xl2 − 1
16: m ← �(a + b)/2�
17: WTReporting(xl1, x

l
2, y1, y2, vleft, a,m)

18: WTReporting(xr1, x
r
2, y1, y2, vright,m + 1, b)
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Algorithm 3WTReportX(v, i)
Input: A node v of the wavelet tree and an integer i .
Output: The x coordinate value of the point corresponding to the i-th bit of the bit string stored in

v.
1: if v is the root then
2: return i
3: else if v is the left child of vparent then
4: i ← select0

(
vparent.B, i + 1

)
5: return WTReportX(vparent, i)
6: else
7: i ← select1

(
vparent.B, i + 1

)
8: return WTReportX(vparent, i)
9: end if

Algorithm 4WTReportY(v, i, a, b)
Input: A node v of the wavelet tree, the interval [a, b] of y coordinate corresponding to the range

for v, and an integer i .
Output: The y coordinate value of the point corresponding to the i-th bit of the bit string stored in

v.
1: if a = b then
2: return a
3: else if v.B[i] = 0 then
4: i ← rank0 (v.B, i) − 1
5: return WTReportY(vleft, i, a, �(a + b)/2�)
6: else
7: i ← rank1 (v.B, i) − 1
8: return WTReportY(vright, i, �(a + b)/2� + 1, b)
9: end if

and WTReportY, respectively. The algorithm WTReportY for computing the y-
coordinate (Algorithm 4) is similar to the algorithm for recovering a value of the
original integer array explained in Sect. 8.4.1. We compute the y-coordinates by
traversing down the tree using rank queries.

In contrast, the algorithm WTReportX for computing the x-coordinate
(Algorithm 3) traverses up the tree using select queries. We explain this by example.
In Fig. 8.5, assume that at node v, which is the right child of the left child of the root,
we find that points corresponding to the interval I = [0, 1] are contained in the query
range. Consider the computation of the x-coordinate of the point corresponding to
the bit v.B[1]. First, the node v we focus on is the right child of its parent. We find
the position of the second 1 in the parent by a select query. Then we know that the
point corresponds to the bit v′.B[2] in the parent node v′. Next, because the current
node is the left child of the parent (the root), we find the position of the third 0 in the
bit string of the parent by a select query. Now we know that the point corresponds
to the bit r.B[5] at the root node r . That is, the x-coordinate of the point is 5.

As shown above, we can traverse the nodes of the wavelet tree using rank and
select queries on bit strings. For range searches, we traverse down the tree from the
root computing the intervals of the x-coordinate corresponding to the query range.
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If we find a node where the corresponding interval of the y-coordinate is contained
in the query range, we answer the query by computing the length of the interval or
coordinate values by traversing the tree.

8.4.3 Complexity Analyses

Wenowanalyze the space complexity of thewavelet tree and query time complexities
for the orthogonal range search problem.

First, we analyze the space complexity. The height of the wavelet tree is �lg n�.
The total length of bit strings stored in the nodes with the same depth is always n.
Therefore, the total length of all the bit strings in the wavelet tree is n lg n. We can
concatenate all the bit strings and store only a long bit string. Then it is not necessary
to store the tree structure of thewavelet tree. By using the data structure of Lemma 8.2
for this long bit string, the space complexity is n lg n + o(n lg n) bits in total.

Next, we consider query time complexities. For a counting query, we consider the
number of visited nodes. In the wavelet tree, each time we traverse an edge toward
a leaf, points with small y-coordinates go to the left child, and points with large y-
coordinates go to the right child. At leaves we can consider that all points are sorted
in increasing order of y-coordinates. This means that leaf nodes corresponding to
the interval of y-coordinates of the query range exist in a consecutive place in the
wavelet tree. Now, consider the set M of nodes of the wavelet tree defined as follows.
The set M contains a maximal node v such that the y-coordinates corresponding to
the leaf nodes in the sub-tree rooted at v are contained in the query range, that is,
the y-coordinates of the leaves in the sub-tree of v are contained in the query range
but the sub-tree of the parent of v contains some node for which the corresponding
y-coordinate is not contained in the query range. This is the set of nodes from which
we do not further search the sub-tree for a counting query using the wavelet tree, and
in Fig. 8.6, it is shown as dark gray nodes.

Let A be the set of nodes that are ancestors of nodes of M . This is the set of nodes
visited before reaching nodes of M which are shown as light gray nodes in Fig. 8.6.
The number of nodes visited in a counting query is then |A| + |M |. We now consider
the size of M and A.

For the size of the set M , the following lemma holds.

Lemma 8.3 It holds |M | = O(lg n).

Proof (Lemma 8.3) The set M is constructed as follows. Let M ′ be the set of leaf
nodes of the wavelet tree corresponding to the interval of y-coordinates in the query
range. For the nodes of M ′, if two nodes v1 and v2 have a common parent node v,
we remove v1 and v2 from M ′ and add v to M ′. By repeating this process until there
are no such pairs of nodes, the set M ′ coincides with M .

For each depth of the wavelet tree, the number of nodes of depth belonging to M
is then at most two, because if there exist more than two nodes, two of them must
have the same parent. This completes the proof that |M | = O(lg n).
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Fig. 8.6 Nodes visited by a counting query. We traverse light gray nodes, and when we reach a
dark gray node, we do not further search the nodes below it

For the size of the set A, the following lemma holds.

Lemma 8.4 It holds |A| = O(lg n).

Proof (Lemma 8.4) Consider a node v in the set A. In the set of leaf nodes in the sub-
tree rooted at v, there must exist a leaf node where the corresponding y-coordinate is
included in the query range and a leaf node where the corresponding y-coordinate is
not included in the query range. Therefore, for each depth of the wavelet tree, there
are at most two such nodes in A, because if there exists more than two such nodes, for
a node in the middle, the corresponding y-coordinates of the leaves in the sub-tree
rooted at that node are contained in the query range. This completes the proof that
|A| = O(lg n).

From the above discussion, the number of nodes visited in a counting query is
|A| + |M | = O(lg n). When we visit a new node, we use a constant number of rank
queries. Because a rank query takes constant time (Lemma 8.2), the time complexity
of a counting query using the wavelet tree is O(lg n).

For a reporting query, it is necessary to compute coordinates of points in the
query range. As explained in Sect. 8.4.2, x-coordinates are computed by traversing
up the tree and y-coordinates are computed by traversing down the tree, with the
coordinates of each point computed by visiting O(lg n) nodes. Moving to an adjacent
node in the wavelet tree is done by a constant number of rank/select queries, and
each rank/select query takes constant time (Lemma 8.2). Therefore, the coordinates
of a point are obtained in O(lg n) time, and the time complexity for a reporting query
using the wavelet tree is O((1 + k) lg n), where k is the number of output points.

We obtain the following theorem.
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Theorem 8.1 The space complexity of the wavelet tree representing a two-
dimensional point set on [n]2 is n lg n + o(n lg n) bits, and a counting query takes
O(lg n) time, and a reporting query takesO((k + 1) lg n) time, where k is the number
of points to enumerate.

As shown in Sect. 8.2.1, the information-theoretic lower bound for a point set on
[n]2 is n lg n + O(n) bits. Therefore, the wavelet tree is a succinct data structure.

Theorem 8.2 Let P bea set of points on M = [1..n] × [1..n] inwhichall points have
distinct x-coordinates. Then, there exists a data structure using n lg n + o(n lg n)

bits that answers a counting query in O(lg lg n) time and a reporting query in
O((1 + k) lg n/ lg lg n) time, where k is the number of points to output.

8.5 Proposed Data Structure 1: Improved Query Time
Complexity

This data structure uses the idea of adding data structures to the kd-tree to improve
the query time complexity [20]. First, we explain the idea of [20] in Sect. 8.5.1.
Next, we explain the algorithm of range search in Sect. 8.5.3, and analyze the time
complexity in Sect. 8.5.4.

8.5.1 Idea for Improving the Time Complexity of the kd-Tree

The method proposed in [20] improves the query time complexity of the kd-tree by
adding d many wavelet trees to the kd-tree such that the term n(d−1)/d is replaced by
n(d−2)/d (lg n if d = 2), at the cost of increasing the total complexity by a factor of
O(lg n). Note that we assume point sets are on [n]d .

First, we construct the kd-tree for a given set P of points in the d-dimensional
space. Next, we label the nodes of the kd-tree with numbers based on the inorder
traversal of a binary tree defined as follows:

– If the root node has a left child, we traverse the sub-tree rooted at the node.
– Examine the root node.
– If the root node has a right child, we traverse the sub-tree rooted at the node.

Figure 8.7 shows an example of a point set (left) and numbers assigned based on the
inorder traversal of the kd-tree of the set (right).

Next, we make point sets Pi (i = 0, . . . , d − 1) with n points on [n]2. The
two-dimensional point set Pi is created as follows. If a point p in the original d-
dimensional point set P has the i-th coordinate value pi and the inorder position of
the node of the kd-tree containing p is j , we add point ( j, pi ) to Pi . Figure 8.8 shows
the point sets P0, P1 created from the point set in Fig. 8.7.
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Fig. 8.7 A two-dimensional point set (left) and the corresponding kd-tree (right). The numbers of
nodes are assigned by an inorder traversal of the kd-tree. The dashed lines in the left figure show
the partition of the space by the kd-tree

Fig. 8.8 Two-dimensional point sets obtained from the point set in Fig. 8.7

From these two-dimensional point sets P0, . . . , Pd−1, we construct wavelet trees
W0, . . . ,Wd−1. Thewavelet treesWi can be thought of as constructed from an integer
sequence Ai containing the i-th coordinate value of points in P in the order of the
kd-tree.

These data structures can be used for range searches as follows. Given a query
range Q, we perform the original search using the kd-tree. In the original algorithm,
as explained in Sect. 8.3, we traverse the kd-tree and shrink the range R(v), and when
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CDeg(R(v), Q) = d (i.e., R(v) ⊆ Q), we know that all the points in the sub-tree
rooted at v are contained in Q. By using the d wavelet tree, we can terminate the
search when CDeg(R(v), Q) = d − 1. Assume that when a node v is visited, R(v)

is contained in Q for all dimensions except for i . The inorder numbers of nodes in
the sub-tree rooted at node v have consecutive values. Let [a, b] be the interval for
the numbers. Then, the points in this interval are contained in Q except for dim. i .
This implies that points in Pi that are contained in the range [a, b] × [l(Q)

i , u(Q)
i ] are

contained in Q even for dim. i . Therefore, after finding the node v, it is sufficient to
search the range [a, b] × [l(Q)

i , u(Q)
i ] of Pi using wavelet trees Wi .

The number of nodes of the kd-tree visited by this method is O
(
n(d−2)/d

)
(O(lg n)

for the case d = 2). The search of the last dimension using the wavelet tree takes
O(lg n) time for a counting query. Therefore, the time complexity for a counting
query using the kd-tree is improved to O

(
n(d−2)/d lg n

)
(O

(
lg2 n

)
for the case d = 2).

8.5.2 Index Construction

Wenow explain the proposed data structure. First, we construct the kd-tree for a given
point set P . Note that this kd-tree is temporarily built in order to construct our data
structure, and is not included in the final structure. Next, as in Sect. 8.5.1, we number
the nodes of the kd-tree by an inorder traversal, and create d many two-dimensional
point sets P0, . . . , Pd−1. For each Pi , we create the data structure of [3]. Let Bi be
this data structure. Finally, we discard the kd-tree. The final data structure consists
of B0, . . . , Bd−1.

8.5.3 Range Search Algorithm

We explain the algorithm for a reporting query using the data structure explained
in the previous section. The pseudocode is shown in Algorithm 5. This algorithm
simulates a search of the kd-tree using B0, . . . , Bd−1. We explain it in comparison
with the search algorithm of the kd-tree. Note that we explain the algorithm assuming
the inorder number of each node v of the kd-tree is also assigned to the point V (v)

stored in v. That is, if we say a point with number j , it is the point stored in the
node with inorder position j . We also assume that for an interval [a, b] of point
numbers, R([a, b]) denotes the range containing points that have numbers in [a, b]. In
Algorithm5, the interval [a, b] of point numbers always corresponds to the interval of
inorder numbers of nodes in the sub-tree rooted at a node v of the kd-tree. Therefore,
R([a, b]) coincides with R(v).

If we use the kd-tree, we shrink the focused range R(v) by going down the
tree. In the proposed method, by shrinking the interval [a, b] of point numbers, we
reduce the corresponding range R([a, b]). Because the kd-tree stores the point V (v)

corresponding to a node v, we can obtain the information of the point used for
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Algorithm 5 Reporting([a, b], Q)

Input: An interval of point numbers [a, b] and a query range Q.
Output: Points with numbers in [a, b] and which are contained in range Q.
1: if Deg(R([a, b]), Q) = d − 1 then
2: For the last dimension i such that R([a, b]) is not yet contained in Q, search [a, b] ×[

l(Q)
i , u(Q)

i

]
of Pi using Bi and enumerate points contained in Q. For each point, compute

coordinates using B0, . . . , Bd−1.
3: else if R([a, b]) has no intersection with Q then
4: terminate
5: else if a = b then
6: Examine the point with number a. If it is in Q, output it.
7: else
8: c ← �(a + b)/2�
9: Output the point with number c if it is in Q.
10: Reporting([a, c − 1], Q)

11: Reporting([c + 1, b], Q)

12: end if

partitioning the space. In contrast, in the proposed method, points are not explicitly
stored. However, if the focused interval [a, b] coincides with the interval of inorder
numbers for the sub-tree rooted at a node v, we find c = �(a + b)/2� is the number of
the points used for partitioning.1 Furthermore, the intervals [a, c − 1] and [c + 1, b]
correspond to the intervals of the numbers for sub-trees rooted at the left and right
child of v, respectively. Therefore, by a recursive search of Algorithm 5, we can
obtain the correct partitioning points.

For the range R([a, b]), we can compute the ranges after a partition from the
range before partition and the coordinates of the point used for partitioning similarly
to the case of the kd-tree.

8.5.4 Complexity Analyses

We now analyze the complexities of the algorithm. First, we consider its space com-
plexity.Weused data structures ofBose et al. [3] eachofwhichusesn lg n + o(n lg n)

bits as in Theorem 8.2. The total space complexity is then dn lg n + o(dn lg n) bits.
Next, we consider the query time complexity. If we use the same analysis as

in [20], assuming d is a constant, we can show the number of nodes corresponding

to cells with containment degree of at most d − 1 is O
(
n

d−2
d

)
. Here, we derive the

query time complexity using a novel analysis for non-constant d.

1 In the kd-tree, at each depth, we partition the space by the median of the point set with respect
to a dimension, and therefore c = �(a + b)/2� is the number of the point used for partitioning. If
the point set contains an even number of points, we can obtain the correct partitioning point using
a predetermined rule.
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The proposedmethod partitions the space for each dimension in order, in the same
fashion as for the kd-tree. As in [20], we define a series of partitions with respect to
dim. 0 to dim. d-1 as a cycle.We then calculate the number Tm(n, d) of nodes at which
the containment degree with respect to Q is at most d − 2 in them-th cycle.When the
(m − 1)-th cycle has finished, the space is partitioned into 2d(m−1) many cells. Among
them, we count the number of cells for which the containment degree with respect to
Q is at most d − 2. These cells contain a (d − 2)-dimensional face of Q (an edge of
a cuboid if d = 3). A (d − 2)-dimensional face of a d-dimensional orthogonal range
Q is obtained by choosing two dimensions from the d-dimensions and choosing the
upper side or the lower side of the range for each of the two dimensions. Therefore, Q
has

(d
2

)
22 many (d − 2)-dimensional faces. When the (m − 1)-th cycle has finished,

because each dimension is partitioned into 2m−1 cells, the number of cells containing
a (d − 2)-dimensional face is at most 2(m−1)(d−2). Then after the (m − 1)-th cycle,
the number of cells to be searched is at most

(
d

2

)
22 · 2(m−1)(d−2).

In the sub-trees rooted at these nodes, the number of nodes in them-th cycle is 2d − 1.
Therefore, it holds that

Tm(n, d) ≤ (
2d − 1

) (
d

2

)
22 · 2(m−1)(d−2)

< 23d(d − 1)2(d−2)m .

Let N (n, d) be the number of nodes for which the containment degree with respect
to Q is at most d − 2. It then holds that

N (n, d) =
1
d lg n∑
m=1

Tm(n, d)

< 23d(d − 1)

1
d lg n∑
m=1

2(d−2)m

= 23d(d − 1)
2d−2

(
2

d−2
d lg n − 1

)

2d−2 − 1

= O
(
d2 · n d−2

d

)
.

We use the fact that the containment degree is weakly increasing as we traverse down
the tree. In the proposed method, we terminate the search when the containment
degree reaches d − 1. The visited nodes are then those with containment degree of
at most d − 2 and their child nodes. There are at most 2N (n, d) such nodes. The
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proposed method virtually traverses the kd-tree. It takes O
(
d lg n
lg lg n

)
time to compute

the coordinates of a point stored in a node. When a node for which the containment

degree with respect to Q is d − 1, we search the last one dimension in O
(

lg n
lg lg n

)
time.

The time complexity of a counting query is then O
(
d3n

d−2
d

lg n
lg lg n

)
. For a reporting

query, it takes O
(
d lg n
lg lg n

)
time to compute the coordinates of a point. The total time

complexity is then O
((

d3n
d−2
d + dk

)
lg n
lg lg n

)
, where k is the number of points in Q.

In summary, we obtain the following:

Theorem 8.3 For an orthogonal range search problem on the [n]d space, there
exists a data structure that has space complexity of dn lg n + o(dn lg n) bits and

which answers a counting query in O
(
d3n

d−2
d

lg n
lg lg n

)
time and a reporting query in

O
((

d3n
d−2
d + dk

)
lg n
lg lg n

)
, where k is the number of points in the query range.

8.6 Proposed Data Structure 2: Succinct and Practically
Fast

The second proposed method is a data structure that is succinct and practically fast.
In this method, we use d − 1 many wavelet trees to represent a point set on [n]d . In
Sect. 8.6.1, we explain how to construct the data structure. In Sect. 8.6.2, we explain
the algorithm for the orthogonal range search problem. In Sect. 8.6.3, we analyze
the space and time complexities.

8.6.1 Index Construction

In this method, we assume that the points of P have distinct values in the 0-th
coordinate value.

First, we create length-n integer arrays A1, . . . , Ad−1. The array Ai corresponds
to dim. i , and stores the i-th coordinate value of the points in increasing order of the
0-th coordinate value. Next, for those arrays we create wavelet trees W1, . . . ,Wd−1.
The wavelet trees Wi can be considered to represent the two-dimensional point set
Pi generated from the d-dimensional point set P by projecting the points onto the
plane spanned by the 0-th axis and the i-th axis. Figure 8.9 shows an example.
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Fig. 8.9 A
three-dimensional point set
P and two-dimensional point
sets P1, P2 generated by
projecting P onto each plane

Algorithm 6 Report(Q)

Input: A query range Q =
[
l(Q)
0 , u(Q)

0

]
× · · · ×

[
l(Q)
d−1, u

(Q)
d−1

]
.

Output: The coordinates of points of P contained in Q.
1: D := ∅

2: for i = 1 to d − 1 do
3: if

[
l(Q)
i , u(Q)

i

]
� [0, n − 1] then

4: D = D ∪ {i}
5: ci := Count

(
Pi ,

[
l(Q)
0 , u(Q)

0

]
×

[
l(Q)
i , u(Q)

i

])

6: end if
7: end for
8: Sort elements i1, . . . , i|D| of D in increasing order of ci .

9: A := ReportX
(
Pi1 ,

[
l(Q)
0 , u(Q)

0

]
×

[
l(Q)
i1

, u(Q)
i1

])

10: for i = i2 to i|D| do
11: for all a ∈ A do
12: if The i-th coordinate of a point for which the 0-th coordinate is a and is not contained in[

l(Q)
i , u(Q)

i

]
then

13: A = A \ {a}
14: end if
15: end for
16: end for
17: for all a ∈ A do
18: Obtain the coordinates of a point for which the 0-th coordinate is a and output them.
19: end for

8.6.2 Range Search Algorithm

Next, we explain how to solve the orthogonal range search problem using the data
structure (Algorithm 6).
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Assume that a query range Q =
[
l(Q)
0 , u(Q)

0

]
× · · · ×

[
l(Q)
d−1, u

(Q)
d−1

]
is given. For

each i = 1, . . . , d − 1 such that
[
l(Q)
i , u(Q)

i

]
�= [0, n − 1], that is, the dimension i

used for the search, we count the number of points of Pi that are contained in range[
l(Q)
0 , u(Q)

0

]
×

[
l(Q)
i , u(Q)

i

]
using wavelet trees Wi (counting query). Let m (= |D|)

be the number of i (= 1, . . . , d − 1) such that
[
l(Q)
i , u(Q)

i

]
�= [0, n − 1], and let

i1, . . . , im be the sorted ones in increasing order of the number of answers of counting
queries.

Usingwavelet treesWi1 , we then enumerate only the x-coordinates of points of Pi1
contained in

[
l(Q)
0 , u(Q)

0

]
×

[
l(Q)
i1

, u(Q)
i1

]
and store them in a set A. For each element

a of A and for each i = i2, . . . , im , we check whether the i-th coordinate of a point
for which the 0-th coordinate is a is contained in the query range. The elements
remaining in A correspond to points in the query range. The answer to a counting
query is the cardinality of A. For a reporting query, we compute coordinates of the
points and output them.

The reason we compute the number of points contained in each dimension by a
counting query is twofold. Firstly, the x-coordinate (the 0-th coordinate) of points
contained in the query range with respect to the i1-th (and the 0-th) dimension can
be output quickly at line 9 of the algorithm if the number of points to enumerate is
small. Secondly, in the double loops from line 10 to line 16, we want to reduce the
size of A as soon as possible.

8.6.3 Complexity Analyses

Consider the space and time complexities of the proposed method.
For the space complexity, we use d − 1 many wavelet trees. Therefore, the space

complexity is (d − 1) lg n + (d − 1) · o(lg n) bits.
For the query time complexity, let m be the number of wavelet trees used in a

search. The time to performm counting queries on wavelet tree is O(m lg n). We then
sort m integers in O(m lgm) time. Next, we enumerate the x-coordinates of points
contained in the query range for the dimension with the minimum number of points.
Let ci1 = cmin be the number of points to enumerate. This takes O((1 + cmin) lg n)

time. The time to check whether these points are contained in the query range for
other dimensions is O((m − 1)cmin lg n). Let d ′ be the number of dimensions used
in the query, then it holds that m ≤ d ′. Therefore, the query time complexity can be
written as O

(
d ′cmin lg n + d ′ lg d ′).
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8.7 Conclusion

In this chapter, we first reviewed data structures for high-dimensional orthogonal
range search. We then proposed two data structures for the problem.

The first one simulates the search of the kd-tree using d succinct data structures
for two-dimensional orthogonal range search data structures [3]. We improved the
query time complexity of KDW-tree while keeping the same space complexity.

The second one is succinct and practically fast. The space complexity is
(d − 1)n lg n + (d − 1) · o(n lg n), which is succinct. The worst-case query time
complexity is O(dn lg n), which is not good. However, if the number d of dimen-
sions is large but the number d ′ of dimensions used in a search is small, it runs fast
in practice.
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