
Chapter 7
Compression and Pattern Matching

Takuya Kida and Isamu Furuya

Abstract We introduce our research on compressed pattern matching technology
that combines data compression and pattern matching. To show the results of this
work, we explain the collage system proposed by Kida et al. in 2003 that is a unifying
framework for compressed pattern matching, and we explain the Repair-VF method
proposed by Yoshida and Kida in 2013 and the MR-Repair method proposed by
Furuya et al. in 2019 as grammar compressions suitable for compressed pattern
matching.

7.1 Introduction

Data compression is a technology that reduces the space used to store data by com-
pactly expressing the redundancy contained in thedata. It ismainlyused for efficiently
storing large amounts of data and reducing communication costs. If we consider the
conversion of information to digital data as a kind of data compression, it has a long
history that can be traced back to the Morse code developed in the 1830s. Many
compression methods have been proposed depending on the type and application of
data [43–46].

Information retrieval has also long been studied as a technique for efficiently
finding a target part from a large-scale dataset or data group [3, 11, 13, 14, 30,
39, 55], and there are various methods depending on the required specifications. In
particular, the approaches differ between searching for images and audio data and
searching for documents (text). In this chapter, we focus on the latter task of text
searching.
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One of the basic problems in text searching is the pattern matching problem,
which is also called the string matching problem. This is the problem of finding the
occurrences of keywords (patterns) in a target text. Broadly speaking, there are two
approaches to solving this problem. One is to build an index for the input text in
advance, which is called text indexing. A text index allows for efficient searching
when the target text is static and is not subsequently updated. The other is to access
the input text sequentially from the beginning to the end while checking if the given
pattern matches at the current reference position in the text. This is called text scan-
ning. Text scanning is applicable even if the text is updated from time to time and
it does not require index structures. In general, text indexing is superior in terms
of search speed, while text scanning is superior in terms of search flexibility. By
convention, “pattern matching” often refers to the latter, text scanning, in a narrow
sense.

In this chapter, we outline a fusion technology of data compression and pattern
matching called compressed pattern matching. First, in Sect. 7.2, we look back on
the history of this field of study. Then, in Sect. 7.3, we provide some notation and
definitions that are used in the following sections. In addition, we recall grammar
compression, which is the key compression scheme for compressed pattern match-
ing. Next, in Sect. 7.4, we introduce the general framework of compressed pattern
matching proposed by Kida et al. [21]. In Sects. 7.5 and 7.6, we present outlines of
Repair-VF and MR-Repair, respectively, which are the results of our work in this
study. Finally, we conclude in Sect. 7.7.

7.2 History of Compressed Pattern Matching Research

The technology of combining data compression and pattern matching emerged in
the early 1990s. This has come to be known as the compressed pattern matching
problem [1], which is the problem of performing pattern matching without first
decompressing the compressed input text. Formally, when a text T = t1t2 . . . tu (ti
is a symbol) is given in compressed form Z = z1z2 . . . zn (zi is an element of the
compressed text), and pattern P is given, the problem is to find all occurrences of P
in T using only Z and P . A simple method is to first decompress Z to T and then use
some commonly used pattern matching algorithm. However, this approach requires
O(m + u) time for pattern matching in addition to the decompression time.

The optimal algorithm for the compressed pattern matching problem is one that
performs pattern matching in O(m + n) time in the worst case. However, it is not
easy to achieve both efficient compression of text data and fast pattern matching on
it. In the initial research in this field, individual pattern matching algorithms were
developed for each compression method. For example, Eilam-Tzoreff and Vishkin et
al. [15] proposed an algorithm for run-length compression, Ga̧sieniec et al. [18] and
Farach Thorup et al. [16] proposed algorithms for LZ77, and Amir et al. [2] proposed
an algorithm for LZW [54]. However, these algorithms tend to be complicated, and



7 Compression and Pattern Matching 107

as Manber [29] pointed out, it is questionable as to whether they are more practical
than the simple method.

From the late 1990s to the early 2000s, several efficient methods for compressed
patternmatching emerged [22, 38, 41]. For the first time, itwas shownexperimentally
that these methods can perform pattern matching faster than the simple method.
Furthermore, methods have appeared that can perform pattern matching faster by
about the compression ratio than matching on the original text. The key is to select a
compressionmethod suitable for patternmatching even at the expense of compression
ratio. In fact, Byte Pair Encoding (BPE), which was used by Shibata et al. [48] for
this purpose, has a compression ratio of at most about 50% for natural language
texts, while the LZ-family methods can compress the same texts to about 30% or
less. However, text compression by BPE offers an advantage for pattern patching
because all the codewords are fixed at 8 bits and the correspondence between each
codeword and a portion of the text is relatively clear.

This caused a paradigm shift. Whereas individual pattern matching algorithms
were previously developed for each data compression method, we realized that in
order to increase the matching speed it would be better to develop a new data com-
pression method suitable for pattern matching. In fact, in the 2000s, several data
compression methods were proposed for this purpose.

One of the main groups of compression methods based on this idea are the
compression methods proposed by Brisaboa et al. [7–9] and by Klein and Ben-
Nissan [24]. These are based on a technique called dense coding [8]. Dense coding
divides an input (natural language) text into words, and then encodes them so that
the codewords become shorter in descending order of the frequency of the words. In
addition, each codeword is assigned a bit pattern that has an explicit end to facilitate
codeword extraction. Although dense coding offers good performance in terms of
both compression ratio and pattern matching speed, some ingenuity is required to
apply it to data such as DNA sequences that cannot be divided into words.

The other system is grammar-based compression (or grammar compression) [23]
with fixed-length coding. This idea is an extension of BPE and can be applied even
if an input text cannot be separated into words. One direct improvement of BPE
is a method using a context-sensitive grammar by Maruyama et al. [34], while for
compression methods based on context-free grammar we have the methods by Klein
and Shapira [25] and Uemura et al. [51]. In both methods, a modified version of
suffix tree [53] is used as a dictionary tree for constructing grammar.

In this chapter, for convenience, we refer to the former system as the dense coding
system and the latter as the VF coding system.

In the 2010s, new data compression algorithms began to appear that achieved
compression performance comparable towell-known compression tools such asGzip
and Bzip while maintaining properties suitable for pattern matching. Among the two
systems described above, the VF coding system has difficulties in terms of com-
pression rate and compression speed. Therefore, research looked into searching for
and improving grammar compression, which is the basis of the VF coding system.
Among this work, the algorithm RePair [26], which was proposed before the name
“grammar compression” was used, has attracted attention because of its excellent
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compression ratio. Yoshida and Kida et al. [56] proposes a variant of RePair, called
Repair-VF, which reduces the decrease in compression ratio by suppressing unnec-
essary grammar rules while encoding the output using fixed length codewords. The
time and space complexities required for Repair-VF are both O(n) for text of length
n, which is the same as the original RePair. Repair-VF realizes high-speed pattern
matching on compressed text while having a good compression ratio comparable to
Gzip.

Very recently, we proposed a novel variant of RePair, called MR-RePair [17],
which constructs more compact grammars than RePair, particularly for highly repet-
itive texts. This achievement comes from an analysis of RePair. We show in [17] that
the main process of RePair, that is, the step by step substitution of the most frequent
symbol pairs, works within the corresponding most frequent maximal repeats. We
then reveal in [17] the relationship between maximal repeats and grammars con-
structed by RePair.

7.3 Preliminaries

7.3.1 Definitions of Notation and Terms

Let� be analphabet, that is, an orderedfinite set of symbols.An element T = t1 . . . tn
of �∗ is called a string or a text, where |T | = n denotes its length. Let ε be an empty
string of length 0, that is, |ε| = 0. We denote a concatenation of two strings x, y ∈ �

by x · y, or xy for simplicity if no confusion occurs.
If T = xyz with x, y, z ∈ �∗, then x, y, z are called a prefix, substring, and suffix

of T , respectively. Let T [i : j] = ti · · · t j for any 1 ≤ i ≤ j ≤ n denote a substring
of T beginning at i and ending at j in T , and let T [i] = ti denote the i th symbol of
T . Let w[i : j] = ε if j < i for simplicity.

7.3.2 Grammar Compression

A context-free grammar (CFG or simply grammar) G is defined as a four-tuple G =
{V, �, S, R}, whereV denotes an orderedfinite set of variables,� denotes an ordered
finite alphabet, R denotes a finite set of binary relations called production rules (or
rules) between V and (V ∪ �)∗, and S ∈ V denotes a special variable called start
variable. A production rule refers to the situation where a variable is substituted and
written in the form v → w, with v ∈ V andw ∈ (V ∪ �)∗. Let X,Y ∈ (V ∪ �)∗. If
there are xl , x, xr , y ∈ (V ∪ �)∗ such that X = xl xxr , Y = xl yxr , and x → y ∈ R,
wewrite X → Y , and denote the reflexive transitive closure of→ as

∗⇒. Let val(v) be
a string derived from v, that is, v

∗⇒ val(v). We define grammar Ĝ = {V̂ , �̂, Ŝ, R̂}
as a subgrammar of G if V̂ ⊆ V , �̂ ⊆ (V ∪ �), and R̂ ⊆ R.
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Given a text T , grammar compression is a method for lossless text data com-
pression that constructs a restricted CFG uniquely deriving the text T . For G to
be deterministic, the production rule for each variable v ∈ V must be unique. In
what follows, we assume that every grammar is deterministic and each produc-
tion rule is vi → expri , where expri is an expression either expri = a (a ∈ �) or
expri = v j1v j2 . . . v jn (i > jk for all 1 ≤ k ≤ jn). To estimate the effectiveness for
compression, we use the size of the constructed grammar, which is defined as the
total length of the right-hand side of all production rules of the grammar.

While the problem of constructing the smallest such grammar for a given text is
known to be NP-hard [10], several approximation algorithms have been proposed.
One of them is RePair [26], which is an off-line grammar compression algorithm.
Despite its simple scheme, RePair is known for its high compression in practice [12,
19, 52], and hence, it has been comprehensively studied. Some examples of studies
on the RePair algorithm include its extension to an online algorithm [35], practical
working time/space improvements [6, 47], applications to various fields [12, 27, 49],
and theoretical analysis of generated grammar sizes [10, 40, 42].

7.4 Framework for Compressed Pattern Matching

A grammar compressed text can be expressed in a framework called collage sys-
tems [21]. A pattern matching algorithm on the compressed text can then be obtained
as an instance of the general algorithm on the collage system. Algorithm on collage
systems can be understood as an extension of the Knuth-Morris-Pratt method (KMP
method) [14].

7.4.1 KMP Method

The KMP method a well-known linear-time algorithm for pattern matching on an
ordinary (uncompressed) text. Its movement can be modeled as a linear automaton
(KMP automaton) for a given pattern P .

For a given pattern P , a KMP automaton consists of two functions:

goto functiong : Q × � → Q ∪ {fail},
failure function f : Q \ {0} → Q,

where Q = {0, 1, . . . , |P|} is the set of states, and fail is a special symbol that
is not included in Q. For j ∈ Q and a ∈ �, the goto function g returns j + 1 if
P[ j + 1] = a holds, otherwise it returns fail. For j = 0, let g(0, a) = 0 for all a ∈ �

where P[1] 	= a holds. For j ∈ Q \ {0}, the failure function f returns the maximum
integer k such that P[1 : k] = P[ j − k + 1 : j] holds.
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Fig. 7.1 KMP automaton for P = abacb. In this figure, each circle indicates a state, and the
double circle indicates the final state. Solid arrows and dashed arrows indicate the goto function
and failure function, respectively

Fig. 7.2 Movement of KMP automaton. Solid arrows and dashed arrows indicate state transitions
caused by the goto function and the failure function, respectively

The automaton repeats state transitions by tracing g corresponding to the charac-
ters read one by one from the input text. If g returns fail, then f is repeatedly called
with the current state number to go back until a transition by g succeeds with the
same character. When the automaton finally reaches the rightmost state, it can be
judged that P has occurred.

Figure7.1 shows the KMP automaton for pattern P = abacb. The movement of
the KMP automaton in Fig. 7.1 for the text T = abacbbabaabacb is shown in
Fig. 7.2. In this example, it can be judged that P has occurred when the automaton
reaches the state number 5.

To eliminate the failure function, we define the state transition function δ : Q ×
� → Q as follows:

δ( j, a) =
{
g( j, a) if g( j, a) 	= fail,
δ( f ( j), a) otherwise

Moreover, we extend it to Q × �∗ as follows:

δ∗( j, ε) = j, δ∗( j, ua) = δ(δ∗( j, u), a),

where j ∈ Q, u ∈ �∗, and a ∈ �.
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7.4.2 Collage System

A collage system is a pair 〈D,S〉 defined as follows:D is a sequence of assignments
X1 = expr1; X2 = expr2; · · · ; Xn = exprn , where each Xk is a token and exprk is
any of the form:

a for a ∈ � ∪ {ε}, (primitive assignment)
Xi X j for i, j < k, (concatenation)
[ j]Xi for i < k and an integer j , (prefix truncation)
X [ j]
i for i < k and an integer j , (suffix truncation)

(Xi )
j for i < k and an integer j . ( j times repetition)

Let the set of all tokens in D be denoted by F(D). Each token represents a
string obtained by evaluating the expression as it implies. Let the string represented
by token X ∈ F(D) be denoted by X.u. For example, for X1 = a; X2 = b; X3 =
X1 · X2; X4 = (X3)

3; X5 = X [1]
4 , X4.u = ababab and X5.u = ababa. However,

in this section we identify token X with the string it represents, and simply denote
both by X unless confusion occurs.

Let the number of assignments inD be the size ofD, and denote it by ||D||, that
is, ||D|| = |F(D)| = n. For a sequence S = Xi1 , Xi2 , . . . , Xik of tokens defined in
D, we denote by |S| the number k of tokens in S.

The collage system 〈D,S〉 represents the string obtained by concatenating
Xi1 , . . . , Xik . That is, D and S correspond to the dictionary and compressed text
in a compression method, respectively. Both D and S can be encoded in various
ways. The compression ratios therefore depend on their encoding sizes rather than
||D|| and |S|.

A collage system is said to be truncation-free if D contains no truncation oper-
ation. A collage system is said to be regular if D contains neither truncation nor
repetition operations. A regular collage system is said to be simple if for every
assignment X = Y Z , |Y.u| = 1 or |Z .u| = 1.

7.4.3 Pattern Matching on Collage Systems

The basic idea of pattern matching on a collage system is to simulate the movement
of the KMP automaton on uncompressed text. Using the state transition function
δ∗ of the KMP automaton defined in Sec. 7.4.1, we define the function Jump : Q ×
F(D) → Q as follows:

Jump( j, X) = δ∗( j, X.u).

The intent of Jump is to simulate the state transition of the original KMP automaton
by jumping when it receives token X . Moreover, for any j ∈ Q and X ∈ F(D), we
define the set Output( j, X) = OccP(P[1 : j] · X.u), where OccP(x) indicates the
set of all indices of occurrences of P within x .
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Fig. 7.3 A matching
algorithm on a collage
system

For a given collage system 〈D,S〉 representing text T and for a given pattern P ,
the pattern matching algorithm preprocesses the information required to calculate
Jump and Output from D, and then performs matching while scanning a sequence
of tokens in S one by one from the head (Fig. 7.3).

From the results of [21], the following theorem is obtained.

Theorem 1 (Theorem 3 of [21]) For a collage system 〈D,S〉, the compressed
pattern matching problem can be solved in O(||D|| + |S| + m2 + R) time using
O(||D|| + m2) space if 〈D,S〉 is regular, where R is the number of occurrences of
pattern P in the text represented by 〈D,S〉.

This theorem applies to both RePair and Repair-VF because texts compressed by
these can be described by regular collage systems.

7.5 Repair-VF

This section first introduces RePair and then gives an outline of Repair-VF. Repair-
VF has a structure that combines RePair with a fixed-length coding. Please refer
to the literature [56] for the details of Repair-VF and experimental results for its
performance.

7.5.1 RePair

RePair is a grammar compression algorithm that was proposed by Larsson and Mof-
fat [26]. For input text T , let G = {V, �, S, R} be the grammar constructed by
RePair. The RePair procedure can then be described by the following steps:

Step 1. Replace each symbol a ∈ � with a new variable va and add va → a to R.
Step 2. Find the most frequent pair p in T .



7 Compression and Pattern Matching 113

Fig. 7.4 Example of the grammar generation process ofRePair for T = abracadabra. The generated
grammar is {{va, vb, vr, vc, v1, v2, v3, S}, {a,b,r,c,d}, S, {va → a, vb → b, vr → r, vc → c, vd →
d, v1 → vavb, v2 → v1vc, v3 → v2vd, S → v3vcvavdv3}} with a size of 16

Step 3. Replace every occurrence (or as many occurrences as possible if p is a
pair consisting of the same symbol) of p with a new variable v, and then, add
v → p to R.

Step 4. Re-evaluate the frequencies of pairs for the updated text generated in Step
3. If the maximum frequency is 1, add S → (current textT ) to R, and terminate.
Otherwise, return to Step 2.

Figure7.4 illustrates an example of the grammar generation process of RePair.
The following theorem relates to the performance of RePair shown by Larsson

and Moffat [26].

Theorem 2 ([26]) RePair works in O(n) expected time and 5n + 4k2 + 4k ′ +
√n + 1� − 1 words of space, where n is the length of the source text, k denotes
the cardinality of the source alphabet, and k ′ denotes the cardinality of the final
dictionary.

7.5.2 Outline of Repair-VF

The original RePair encodes the rules in R excluding S using Elias gamma coding,
that is, each codeword has a variable length, whereas Repair-VF uses a fixed-length
code. The right side of S corresponds to the compressed text, and is converted to a
sequence of fixed-length codewords of the rules in S.

Consider the number of fixed-length coded rules. In the process of Step 1 of
RePair, |�| rules are created. In addition, the process of Step 3 of RePair replaces
the most frequent pair and at the same time adds one rule to R. Let s be the number
of rules which are added to R in Step 3. The total number of rules is then |�| + s,
and thus each symbol can be fixed-length encoded with log(|�| + s)� bits. The
information about � can be restored from the rules added in Step 3, so there is no
need to explicitly save it. Therefore, only the rules added in Step 3 and the right side
of S added last in Step 4 need to be saved. In the former, the right side of each rule
consists of two symbols, so the total number of symbols to be saved is 2s. Since the
latter depends on the input text T , let n be the length of T . The number of bits of the
output compressed data is then
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(2s + n)log(|�| + s)� (7.1)

bits in total.
Wewant to find the best s that minimizes the total number of output bits. Note that

the final output tends to be smaller as s increases up to some point. In RePair, Step 3 is
repeated until the frequency of the most frequent pair becomes 1. In the case of using
a fixed-length code as above, this increases useless rules. Increasing the number of
rules can increase the bit length per symbol, resulting in a longer final bit length.
We can eliminate the waste by terminating the process in the middle. However, it is
difficult to determine on the fly the s at which the output becomes minimal. Even
after the first time the output size increases, the length of S may become shorter by
continuing Step 3, and the output size may decrease again.

Therefore, during the processing of RePair, we record the minimum value of the
output size and the corresponding s by calculating Equation (7.1) every time a rule
is added in Step 3. Note that the calculation of Equation (7.1) does not require actual
coding or outputting since a fixed-length code is used. Finally, when S is output in
Step 4, we can obtain the smallest output by outputting while expanding the rules
added after the best s.

This is Repair-VF (called Repair-VF-best in the original paper). The suffix “VF”
comes from an abbreviation for variable-to-fixed length coding (VF coding). For the
input text T , each rule of the output grammar G corresponds to a substring of T , and
the right-hand side of S can be regarded as the variable length factorization of T .
Thus, Repair-VF can be viewed as a VF coding from the viewpoint of information
source coding.

7.6 MR-Repair

In this sectionweoutlineMR-Repair,which is amethod to reduce the output grammar
size by focusing on the relationship betweenRePair andmaximal repeats. Please refer
to the literature [17] for the details of MR-Repair and experimental results for its
performance.

7.6.1 Maximal Repeats

Let s be a substring of text T . If the frequency of s is greater than 1, s is called a
repeat. A left (or right) extension of s is any substring of T in the form ws (or sw),
where w ∈ �∗. We define s as a left (or right) maximal if left (or right) extensions
of s occur a strictly lower number of times in T than s. Accordingly, s is a maximal
repeat of T if s is both left and right maximal. In this paper, we only consider strings
with a length of more than 1 as maximal repeats. For example, the substring abra
of T = abracadabra is a maximal repeat, whereas br is not.
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The following theorem describes an essential property of RePair, that is, RePair
recursively replaces the most frequent maximal repeats.

Theorem 3 (Theorem 1 of [17]) Let T be a given text, under the condition that
every most frequent maximal repeat of T does not appear overlapping itself. Let f
be the frequency of the most frequent pairs of T , and t be a text obtained after all
pairs with frequency f in T are replaced by variables. There is then a text s such
that s is obtained after all maximal repeats with frequency f in T are replaced by
variables, and s and t are isomorphic to each other.

7.6.2 MR Order

According to Theorem 1 of [17], if there is just one most frequent maximal repeat
in the current text, then RePair replaces all occurrences of it step by step. However,
a problem arises if there are two or more most frequent maximal repeats, with some
of them overlapping. In this case, the selection order of pairs (of course, they are
most frequent) affects the priority of maximal repeats. We call this order of selecting
(summarizing) maximal repeats the maximal repeat selection order (or simplyMR-
order). Note that the selection order of pairs actually depends on the implementation
of RePair. If there are several distinct most frequent pairs with overlaps, RePair
constructs grammars with different sizes according to the selection order of the
pairs.

However, the following theorem states that the MR-order rather than the replace-
ment order of pairs determines the size of the grammar generated by RePair.

Theorem 4 (Theorem 2 of [17]) The sizes of grammars generated by RePair are
the same if they are generated in the same MR-order.

7.6.3 Algorithm

The main strategy of the proposed method is to recursively replace the most frequent
maximal repeats instead of the most frequent pairs.

Definition 1 (Definition 3 of [17]) For an input text T , let G = {V, �, S, R} be the
grammar generated by MR-Repair. MR-Repair constructs G through the following
steps:

Step 1. Replace each symbol a ∈ � with a new variable v a and add va → a to
R.

Step 2. Find the most frequent maximal repeat r in T .
Step 3. Check if |r | > 2 and r [1] = r [|r |], and if so, use r [1 : |r | − 1] instead of

r in Step 4.
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Fig. 7.5 Example of the grammar generation process ofMR-Repair for T = abracadabra. The gen-
erated grammar is {{va, vb, vr , vc, vd , v1, S}, {a, b, r, c, d}, S, {va → a, vb → b, vr → r, vc →
c, vd → d, v1 → vavbvr , v2 → v1va, S → v2vcvavdv2}} with a size of 15

Step 4. Replace every occurrence of r with a new variable v and then add v → r
to R.

Step 5. Re-evaluate the frequencies of maximal repeats for the updated text gen-
erated in Step 4. If the maximum frequency is 1, add S → (current text) to R and
terminate. Otherwise, return to Step 2.

Figure7.5 shows an example of the grammar generation process of MR-Repair.
As shown in this figure, the size of the grammar generated by MR-Repair is smaller
than that generated by RePair shown in Figure reffig:repair.

Theorem 5 (Theorem 5 of [17]) Assume that RePair and MR-Repair work based
on the same MR-order for a given text. Let grp and gmr be the sizes of the grammars
generated by RePair and MR-Repair, respectively. Then, 1

2grp < gmr ≤ grp holds.

7.7 Conclusion

In this chapter, we outlined research on compressed patternmatching and showed that
we can speed up pattern matching by selecting a suitable compression method. This
has led to the development of compression methods that are useful for pattern match-
ing.Whereas the initially developed compression methods had low compression per-
formance, Repair-VF [56] achieves both a good compression rate and goodmatching
speed by combining advanced grammar compressionwith fixed-length code. Collage
systems [21] provide a unified algorithm for compressed pattern matching, allowing
us to obtain an efficient pattern matching algorithm for grammar compression as an
instance of the unified algorithm.

Since proposing Repair-VF, we have proposed several improvements for it. LT-
Repair [35] improves RePair processing semi-online by adding the constraint called
the left-tall condition to its grammar. This makes it possible to efficiently compress
large-scale text data with small memory.

MR-Repair [17], which we have recently proposed, is a method that reduces the
output grammar size by focusing on the relationship between RePair and maximal
repeats. Although heuristic improvements [4, 20, 28, 36] focusing on non-maximal
repetitive substrings have previously been proposed, MR-Repair is superior because
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it has been proven to generate theoretically smaller grammar than the original RePair.
A topic for future work is to see whether compressed pattern matching using these
methods can be performed efficiently.

In the present work, we mainly explained the compressed pattern matching prob-
lem based on text scanning. However, the succinct index technology which combines
text index and data compression was also established in 2000. This is an indexing
technology that utilizes a succinct data structure that can solve query processing with
a small space of almost the information-theoretic lower bound. Succinct index has
an excellent property that allows full-text searching while compressing a target text
smaller than the original text. For details of this technology, refer to the excellent
book by Navarro [37].

In terms of online grammar compression methods, there exists FOLCA proposed
by Maruyama et al. [33] and its improvement SOLCA proposed by Takabatake et
al. [50]. FOLCA is based on a string factorization called edit-sensitive parsing. It
performs factorization and grammar generation in parallel while reading an input text
sequentially from the beginning. It is known that straight line programs (restricted
CFGs) generated by FOLCA can be used as index structures [5].

In recent years, Martinez et al. [31] proposed a novel compression method called
Marlin and an improvement of it [32]. These methods achieve both decompres-
sion at ultrahigh-speed and good performance in terms of compression ratio. If we
can decompress compressed data at sufficiently high speed, we can perform pattern
matching efficiently even if it is performed after decompressing the data. Compara-
tive studies on these approaches are also left for future work.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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