
Chapter 2
Property Testing on Graphs and Games

Hiro Ito

Abstract Constant-time algorithms are powerful tools, since they run by reading
only a constant-sized part of each input. Property testing is the most popular research
framework for constant-time algorithms. In property testing, an algorithmdetermines
whether a given instance satisfies some predetermined property or is far from satis-
fying the property with high probability by reading a constant-sized part of the input.
A property is said to be testable if there is a constant-time testing algorithm for the
property. This chapter covers property testing on graphs and games. The fields of
graph algorithms and property testing are two of the main streams of research on
discrete algorithms and computational complexity. In the section on graphs in this
chapter, we present some important results, particularly on the characterization of
testable graph properties. At the end of the section, we show results that we pub-
lished in 2020 on a complete characterization (necessary and sufficient condition) of
testable monotone or hereditary properties in the bounded-degree digraphs. In the
section on games, we present results that we published in 2019 showing that the gen-
eralized chess, Shogi (Japanese chess), and Xiangqi (Chinese chess) are all testable.
We believe that this is the first results for testable EXPTIME-complete problems.

2.1 Introduction

The development of efficient algorithms for problems on big data problems is an
urgent task. Constant-time algorithms are a powerful tool for this since they run by
reading only a constant-sized part of each input. In other words, the running time
is invariant regardless of the size of the input. Property testing is the most popular
research framework for constant-time algorithms. In property testing, an algorithm
determines whether a given instance satisfies some predetermined property or is far
from satisfying that property with high probability by reading a constant-sized part
of the input. This section presents some results mainly concerning property testing
that have recently been obtained in the ABD Project.

H. Ito (B)
The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
e-mail: itohiro@uec.ac.jp

© The Author(s) 2022
N. Katoh et al. (eds.), Sublinear Computation Paradigm,
https://doi.org/10.1007/978-981-16-4095-7_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4095-7_2&domain=pdf
mailto:itohiro@uec.ac.jp
https://doi.org/10.1007/978-981-16-4095-7_2

14 H. Ito

2.2 Basic Terms and Definitions for Property Testing

This section gives some of the basic terms that are needed in order to explain our
results. Property testing works on many different types of models, including graphs,
functions, strings, grammars, and images. Although the details of the definitions
differ slightly between the different models, since the basic ideas are the same for
all of models, we present only the definitions for digraphs.

LetN = {0, 1, 2, . . .} be the set of natural numbers. In this chapter, we sometimes
omit floor or ceiling functions. For example, if we write s = √

n in a context where
s must be an integer and n is not necessarily a square number, then

√
n should be

taken to mean �√n� or �√n�. This allows us to disregard integrality issues that make
no real difference to any of our proofs.

2.2.1 Graphs and the Three Models for Property Testing

A directed graph or digraph G is defined as a pair of finite sets (V, E), where V is
a finite set of vertices and E ⊆ V × V is a set of directed edges, or edges for short.
The vertex set V and the edge set E of a graph G are sometimes written as VG and
EG , respectively. If the direction of each edge is ignored (i.e., (u, v) = (v, u) for any
u, v ∈ V), then the digraph is called a graph (or an undirected graph if we want to
indicate undirectedness explicitly). Every graph can be represented as a digraph by
using reflectivity on edges; in other words if (u, v) ∈ E , then (v, u) ∈ E for every
u, v ∈ V . Thus, graphs can be regarded as special cases of digraphs. This section
mainly treats (undirected) graphs. Digraphs are considered in Sect. 2.4. Many of the
terms and symbols we define for graphs are also used for digraphs.

The order of a graph G is given by |VG | and the size of a graph G is given by
|EG |. A graph (resp., digraph) of order n is also called an n-graph (resp., n-digraph).
The number of vertices adjacent to a vertex v in a graph G is denoted by degG(v).
If G is clear from the context, the subscript G may be omitted. In property testing,
since an algorithm reads only a part of an instance (input), it gets information about
the instances through oracles, which depend on how to the graphs are represented.
There are three knownmodels for treating graphs in property testing: the dense-graph
model; the bounded-degree (graph) model; and the general-graph model.

In the dense-graphmodel, the edge oracle is used: If an algorithm queries whether
(u, v) ∈ E or not, the oracle answers correctly: the answer is 1 if (u, v) ∈ E and
0 otherwise. This model basically treats dense (i.e., |E | = �(n2)) graphs. This is
because if |E | = o(n2), then the edge oracle answers “0” almost every time when n
is large, making the queries useless.1

In the bounded-degree model, there is a restriction such that the degree of every
vertex is bounded by a predetermined integer d ≥ 1, that is, deg(v) ≤ d (∀v ∈ V).
From this restriction, it follows that the number of edges in a graph is at most dn/2 (or

1 It works only for determining whether a given graph is sparse.

2 Property Testing on Graphs and Games 15

dn for a digraph); in other words, the graph is sparse (note that d is a constant). This
model assumes that for every vertex v, the vertices adjacent to v are ordered. This
model uses the adjacent-vertex oracle: If an algorithm queries for the i th (1 ≤ i ≤ d)
adjacent vertex of v by giving a pair (v, i), the oracle answers the name (ID) of the
vertex if exists and returns a predetermined special symbol such as ⊥ otherwise. A
graph where the degree is bounded by d is also called a d-bounded-degree graph.

The general-graph model is a mixed model of the dense-graph model and the
bounded-degree model. Although this model does not have any maximum degree-
bound, there is a fixed upper bound d on the average degree. In many cases d is a
constant and the graphs in this model are sparse. However, if d = �(n), graphs in
the model may be dense. This model allows all oracles that are allowed in the other
two models in addition to the degree oracle: If an algorithm queries the degree of a
vertex v, it replies with the correct answer deg(v).

2.2.2 Properties, Distances, and Testers

The set of graphs considered in each model—that is, the dense-graph model, the
bounded-degree model, or the general-graph model—is denoted by �. The subset of
� such that the order of the graph is n is denoted by �n . Hence � = ⋃

n∈N �n .
A property is defined as a (generally infinitely large) subset of graphs closed under

isomorphism.2 For example “planarity” is defined as the set of all planar graphs. For
a property P, we define Pn as P ∩ �n . Thus, clearly P = ⋃

n∈N Pn .
Property testing is a relaxation of a decision problem. The object of a property

testing is to distinguish with high probability whether a given instance satisfies some
predetermined property or the instance is “far” from satisfying the property. This
requires a mathematical definition of “far.”

LetG andG ′ both be n-graphs;G,G ′ ∈ �n . The distance between the two graphs
is defined as the Hamming distance between them divided by the largest Ham-
ming distance in the model (for normalization). Thus, the distance depends on the
models (i.e., how the graphs are represented). We explain this by using the dense-
graph model. Let δEG : V × V → {0, 1} be the characteristic function on EG , that
is, δEG (u, v) = 1 if (u, v) ∈ EG and 0 otherwise. The distance between G and G ′
is defined as follows: We denote by m(G,G ′) the number of edges that need to be
deleted from and/or inserted into G in order to make G = G ′, i.e.

m(G,G ′) := |{(u, v) ∈ V × V | δEG (u, v) �= δEG′ (u, v)}|

Using this, we define the distance between G and G ′ as follows3:

2 Intuitively this means to ignore the labels on vertices and edges.
3 Although the maximum number of edges in any (undirected) graph of order n is n(n − 1)/2, we
use n2 for the denominator for simplicity.

16 H. Ito

dist(G,G ′) := m(G,G ′)
n2

. (2.1)

Note that 0 ≤ dist(G,G ′) ≤ 1 for every G andG ′. In the bounded-degree model and
the general-graph model, the distance is defined as follows4:

dist(G,G ′) := m(G,G ′)
dn

, (2.2)

where d is the upper bound on the maximum (resp., the average) vertex-degrees for
the bounded-degree model (resp., the general-graph model).

By using the distance between graphs, the distance beetween a graph G ∈ �n and
a property P is defined as follows:

dist(G,P) :=
{
minG ′∈Pn dist(G,G ′) if Pn �= ∅,

∞ otherwise.

This applies to all the models. For a real value 0 ≤ ε ≤ 1, we say that G is ε-far
from G ′ (resp., P) if dist(G,G ′) > ε (resp., dist(G,P) > ε) and ε-close otherwise.

A testing algorithm for a propertyP is an algorithm that, given query access (by the
oracles) to an instanceG and given 0 < ε ≤ 1, accepts everyG ∈ Pwith probability
at least 2/3, and rejects every G that is ε-far from P with probability at least 2/3.
If a testing algorithm accepts every G ∈ P with probability 1, then the algorithm is
called a one-sided-error. The number of queries made by an algorithm to the given
oracle is called the query complexity of the algorithm. If the query complexity of a
testing algorithm is bounded by a constant that is independent of n (but that may
depend on ε and d), then the algorithm is called a tester. A property is testable5 if
there is a tester for the property.

2.3 Important Known Results in Property Testing
on Graphs

This section gives a very brief overviewof important known results in property testing
on graphs, particularly on the characterization and general properties of testability.
See a recent review [11] or books [4, 8] for details.

4 Although the maximum number of edges of any d-bounded-degree (undirected) graph of order n
is dn/2, we use dn for the denominator for simplicity.
5 Sometimes “testable” means that the problem has an algorithm with sublinear query complexity,
and strongly testable may be used to distinguish constant query complexity from mere sublinear
query complexity.

2 Property Testing on Graphs and Games 17

2.3.1 Results for the Dense-Graph Model

Alon et al. [2] found a combinatorial characterization (necessary and sufficient con-
dition) of testable properties for the dense-graph model. We first present the theorem
without defining the terms used in it.

Theorem 2.1 For the dense-graph model, a graph property is testable if and only if
it is regular-reducible.

This theorem utilize the extremely powerful monumental Szeméredi’s regularity
lemma, which we now introduce briefly. For a pair of subsets of vertices A, B ⊆ V
of a graph G = (V, E), den(A, B) := |E(A,B)|

|A||B| is called the density of the pair. A
family of subsets V = {V1, . . . , Vk} (Vi ⊆ V , ∀i ∈ {1, . . . , k}) is called a partition
of V if Vi ∩ Vj = ∅ for all 1 ≤ i < j ≤ k and V = V1 ∪ · · · ∪ Vk . A partitionV =
{V1, . . . , Vk} of the vertex set of a graph is called an equipartition if |Vi | and |Vj |
differ by no more than 1 for all 1 ≤ i < j ≤ k.

Definition 2.1 (ε-regular) Let 0 < ε ≤ 1 be a real number and A, B ⊆ V . A
pair (A, B) is called ε-regular if |den(A, B) − den(X,Y)| ≤ ε for any two sub-
sets X ⊆ A and Y ⊆ B satisfying |X | ≥ ε|A| and |Y | ≥ ε|B|. An equipartition
V = {V1, . . . , Vk} of the vertex set of a graph is called ε-regular if all but at most
εk2 of the pairs (Vi , Vj) (i, j ∈ {1, . . . , k}) are ε-regular.

Definition 2.2 (regularity-instance) A regularity-instance R is given by an error-
parameter 0 < ε ≤ 1, an integer k, a set of

(k
2

)
real numbers 0 ≤ ηi, j ≤ 1 indexed by

1 ≤ i < j ≤ k, and a set R of pairs (i, j) of size at most εk2. A graph is said to satisfy
the regularity-instance if it has an equipartition V = {V1, . . . , Vk} such that for all
(i, j) /∈ R the pair (Vi , Vj) is ε-regular and satisfies |E(Vi , Vj)| = ηi, j |Vi ||Vj |. The
complexity of the regularity instance is max(k, 1/ε).

Definition 2.3 (regular-reducible) A graph property P is regular-reducible if for
any δ > 0 there exists r = rP(δ) such that for any n there is a family R of at most r
regularity-instances each of complexity at most r , such that the following holds for
every ε > 0 and every n-graph G:

1. If G ∈ P, then for some R ∈ R, G is δ-close to R.
2. If G is ε-far from P, then for any R ∈ R, G is (ε − δ)-far from R.

Theorem 2.2 (Szeméredi’s regularity lemma [2, 17]) For every pair of an integer
t and a real number ε > 0 there exists an integer T = T2(t, ε) such that any graph
with n ≥ T vertices has an ε-regular equipartition of order k, where t ≤ k ≤ T .

An intuitive explanation of the regularity lemma is that, for any ε > 0, every
graph G = (V, E) has an ε-approximation of a constant-sized edge-weighted graph,
where the edge weight approximates the density of the corresponding vertex pair.
Intuitively, a property being regular-reducible means that it can be represented by a

18 H. Ito

constant number of equipartitions based on the regularity lemma; in other words, the
regularity lemma holds for testing the property. See [11] also for details.

Representative regular-reducible properties are monotone or hereditary proper-
ties, which are defined as follows.

Definition 2.4 A graph property P is monotone if for every G ∈ P and e ∈ EG ,
G − {e} ∈ P. A graph property P is hereditary if for every G ∈ P and v ∈ VG ,
G − {v} ∈ P.

Planarity, bipartiteness, k-colorability (for any k ∈ N), H -freeness (for any graph
H),6 and disconnectedness are all monotone. The former four properties are also
hereditary, but the last one, disconnectedness, is not.7 A well-known non-monotone
and hereditary property is perfectness: A graph is said to be perfect if for every
induced subgraph, the chromatic number of the subgraph equals the clique number
(= the order of the largest clique) of the subgraph. Every monotone or hereditary
property is regular-reducible (see [2] for details).

We can say that Theorem 2.1 solves the problem of characterizing testable prop-
erties in the dense-graph model in a sense. However, the constants that appear in the
algorithms obtained by Theorem 2.1 are incredibly (maybe more than astronomi-
cally) huge! Thus, developing faster (i.e., smaller constant complexity) algorithms
remains an issue for each problem.

2.3.2 Results for the Bounded-Degree Model

Whereas the combinatorial characterization of testable properties as shown in
Theorem 2.1 was obtained for the dense-graph model, no perfect results have been
obtained for the bounded-degree model despite many attempts to achieve this goal.
However, progress is being made in steps. We now have an important characteriza-
tion of testable properties in the bounded-degree model called “hyperfiniteness.” We
also found another characterization called “forbidden configurations,” for one-sided
error testability, which is explained in Sect. 2.4.

Definition 2.5 Let ε > 0, t > 0, and d > 0. LetG = (V, E) be a d-bounded-degree
n-graph. If one can remove at most εdn edges from G such that each connected
component of the resulting graph has at most t vertices, then G is called (ε, t)-
hyperfinite (with respect to degree bound d). For a function ρ : R+ → R

+, if G is
(ε, ρ(ε))-hyperfinite for every ε > 0, then G is called ρ-hyperfinite. A set G of d-
degree-bounded graphs is called ρ-hyperfinite if ∀G ∈ G is ρ-hyperfinite.G is called
hyperfinite if there is a function ρ such that G is ρ-hyperfinite.

Newman and Sohler [15] presented the following theorem.

6 If a graph includes no H as a subgraph, then it is called H-free.
7 If a graph consisting of one connected component of order n − 1 and one isolated vertex is
disconnected, removing the isolated vertex from the graph makes it connected.

2 Property Testing on Graphs and Games 19

Theorem 2.3 In the bounded-degree model, every graph property is testable for any
hyperfinite family of graphs.

While this is a sufficient condition, the following necessary condition related to
hyperfiniteness was obtained by Fichtenberger et al. [5].

Definition 2.6 A subproperty of a property P is a property that is a subset of P. A
property is non-trivially testable if it is testable and there exists ε > 0 such that there
is an infinite number of graphs that are ε-far from the property.

Theorem 2.4 Every testable property of bounded-degree graphs is either finite or
contains an infinite hyperfinite subproperty. Furthermore, the complement of every
non-trivially testable graph property contains an infinite hyperfinite subproperty.

These theorems show that there is a deep relation between hyperfiniteness and
testability on bounded-degree graphs. We have found, however, no necessary and
sufficient condition of graph testability even for a one-sided error. Recently we found
necessary and sufficient conditions for one-sided-error testability on subclasses of
properties of digraphs8 [12]. This was obtained through the ABD Project, and is
explained in Sect. 2.4.

2.3.3 Results for the General-Graph Model

There were previously no general classes of testable properties for the general-graph
model. Through the ABD Project, a class that models complex networks called
Hierarchical Scale Free (HSF) was founded that is testable. We present an outline
of the result below, and the details are available in [10, 11].

Definition 2.7 For positive real numbers c > 0 and γ > 1, a class of scale-free
(multi)graphs SF (c, γ) consists of (multi)graphs G = (V, E) for which the follow-
ing condition holds: Let νi be the number of vertices v of degree i . Then:

νi ≤ cni−γ , ∀i ∈ {2, 3, . . . , }. (2.3)

A clique is a subgraph inwhich there exists an edge between every pair of vertices.
For a nonnegative integer c ≥ 0, a c-isolated clique is a clique such that the number
of outgoing edges (edges between the clique and the other vertices) is less than ck,
where k is the number of vertices of the clique. A 1-isolated clique is sometimes
simply called an isolated clique (see [9] for details). Let E(G) be the graph obtained
from G by contracting all isolated cliques.9

8 Note that any undirected graph can be represented by a digraph, i.e., the set of digraphs can be
regarded as including the set of undirected graphs.
9 Two distinct isolated cliques never overlap, except in the special case of double-isolated-cliques,
which consists of two isolated cliques of size k that share k − 1 vertices. A double-isolated-clique

20 H. Ito

Definition 2.8 For positive real numbers c > 0, γ > 1 and a positive integer n0 ≥ 1,
a class of hierarchical scale-free (multi)graphsHSF = HSF (c, γ, n0) consists of
(multi)graphs G = (V, E) for which the following conditions hold:

(i) G ∈ SF (c, γ),
(ii) Consider the infinite sequence of graphs G0 = G, G1 = E(G0), G2 = E(G1),

. . .. If |VGi | ≥ n0, thenGi includes at least one isolated clique Q ⊆ V with |Q| ≥
2. (Note that if Gk has no such isolated clique, then Gk = Gk+1 = Gk+2 = · · · .)

For a graph G and a nonnegative integer d ≥ 0, G|d is the graph obtained by
deleting all edges incident to each vertex v of degree more than d. Note that G|d is
a d-bounded-degree graph. The following properties were obtained by [10].

Lemma 2.1 For everySF = SF (c, γ)with γ > 2, and every positive real number
ε > 0, there exists a constant δ = δ(ε, c, γ) such that for every graph G ∈ SF , G|δ
is ε-close to G.

This lemma looks useful since it means that for any ε > 0, any scale-free graph
is ε-close to a bounded-degree graph. This lemma is applied in the proof of the
following theorem, which is the main theorem of [10].

Theorem 2.5 Every property is testable for HSF (c, γ, n0) with γ > 2.

In the general-graph model, no other universal (constant-time) tester is known,
but universal testing algorithms with polylog(n)-time query complexity have been
found for forests [14] and outerplanar graphs [3].

2.4 Characterization of Testability on Bounded-Degree
Digraphs

2.4.1 Bounded-Degree Model of Digraphs

As mentioned previously, there is no complete characterization of testable graph
properties in bounded-degree graphs even for one-sided-errors. Through the ABD
project, however, we have obtained a characterization for one-sided-error testable
properties of monotone and hereditary properties of bounded-degree digraphs [12],
whichwe briefly explain in this section. The set of digraphs can be regarded to include
the set of undirected graphs by introducing reflexivity, i.e., ∀u, v ∈ V , if (u, v) ∈ E ,
then (v, u) ∈ E .

In this section, we consider the bounded-degree model on digraphs. For a digraph
G = (V, E) and a vertex v ∈ V we denote by N+

G (v) the set of outgoing neighbours

Q has no edge between Q and the other part of the graph (i.e., degG(Q) = 0), and thus we specially
define that a double-isolated-clique in G is contracted into a vertex in E(G). Under this assumption,
E(G) is uniquely defined.

2 Property Testing on Graphs and Games 21

of v, i.e., N+
G (v) := {u ∈ V | (v, u) ∈ E}. Similarly, N−

G (v) := {u ∈ V | (u, v) ∈ E}
and NG(v) := N+

G (v) ∪ N−
G (v). The out-degree of v is deg+

G(v) := |N+
G (v)|, and the

in-degree of v is deg−
G(v) := |N−

G (v)|. The subscript G can be omitted if it is clear.
For a (di)graph G = (V, E) and F ⊆ E , we denote by G − F the graph (V, E −

F). For a (di)graph G = (V, E) and W ⊆ V , we denote by G[W] the subgraph of
G induced by W (i.e., G[W] contains all edges in EG whose both endpoints are in
W). G[V − W] can be denoted by G − W .

In the bounded-degree model for digraphs, there are two submodels: In one,
only the out-degree is bounded; in the other, both the in-degree and out-degree are
bounded.10 The former case is represented by F(d)model and the latter one by FB(d)

model.11 The F(d) model is clealy wider than the FB(d) model. Moreover, every
undirected d-bounded graph can be formulated by the FB(d) model by replacing
each undirected edge by a pair of anti-parallel directed edges. That is, the FB(d)

model (and thus the F(d) model as well) is regarded as including the undirected
d-bounded degree model.

2.4.2 Monotone Properties and Hereditary Properties

This section extends the monotone and hereditary properties that were defined in
Definition 2.4 to digraphs.

We first introduce the following notation for characterizing the testability of these
properties. Let H be a set of digraphs. We call H an r-set if every member H ∈ H
has at most r vertices (i.e., H is an r ′-digraph for some r ′ ≤ r). A digraph G is H-
free if for every H ∈ H , G contains no subgraph that is isomorphic to H . A digraph
G is induced H-free if for every H ∈ H , G contains no induced subgraph that is
isomorphic to H .We denote byPH (resp.,P∗

H) the property that contains all digraphs
that areH-free (resp., inducedH-free).PH,n (resp.,P∗

H,n) is the subproperty ofPH
that consists of all n-digraphs in PH (resp., P∗

H). We can easily confirm that PH is
monotone and P∗

H is hereditary for anyH .
Let H = (V, E) be a digraph. For a subset W ⊆ V , if by disregarding the direc-

tions of the edges of H ,W induces a connected component in the resulting undirected
graph, then we say that H [W], which is the directed subgraph of H induced byW , is
a component of H . A digraph H is rooted if every component H ′ of H has a vertex
v such that for every u ∈ VH ′ there exists a dipath (= directed path) from v to u.

10 Clearly the case in which only the in-degree is bounded can be formulated by the model in which
only the out-degree is bounded by changing the edge direction.
11 F and B mean forward and backward, respectively.

22 H. Ito

2.4.3 Characterizations

By using these terms, the characterizations of testable monotone or hereditary prop-
erties for the F(d) model were given in [12].

Theorem 2.6 Let P = ⋃
n∈N Pn be amonotone property in the F(d)-model. ThenP

is testable if and only if there is a function r : (0, 1) → N such that for any 0 < ε < 1
and n ∈ N, there is an r(ε)-set of rooted digraphs Hn such that the property PHn ,n

satisfies the following two conditions:
(a) Pn ⊆ PHn ,n

(b) PHn ,n is ε/2-close to Pn.

Theorem 2.7 Let P be a hereditary property in the F(d)-model. Then P is testable
if and only if there are functions r : (0, 1) → N and N : (0, 1) → N such that for any
0 < ε < 1, there is an r(ε)-set of rooted digraphs H such that for every n ≥ N (ε),
P∗

H,n satisfies the following two conditions:
(a) Pn ⊆ P∗

H,n
(b) P∗

H,n is ε/2-close to Pn.

Condition (b) in both Theorems 2.6 and 2.7 is necessary, since there exists a
monotone and hereditary property that is testable with a one-sided-error and has no
Hn such that |Hn| is bounded by a constant (r(ε)) and “Pn = PHn ,n orPn = P∗

Hn ,n
”:

One of these properties is PC√
n
(= P∗

C√
n
) on the F(1)-model,12 where Ck is the set

of directed cycles (or dicycles, for short) of length in [3, k], i.e., PC√
n
is the property

of having no dicycle of length in [3,√n]. This property is clearly monotone and
hereditary. To express PC√

n
by using a set H of forbidden subgraphs (or forbidden

induced subgraphs),H must includes C√
n , and thus |H | cannot be bounded by any

constant. However, this property is testable with a one-sided-error as shown below.

Lemma 2.2 PC√
n
on the F(1)-model is one-sided-error testable with query com-

plexity O(ε−2).

To prove this lemma, we will use the following lemma, which is often effective
for estimating the query complexity of testers.

Lemma 2.3 For any real number x, the following inequality holds:

ex ≥ x + 1. (2.4)

The proof of this lemma is trivial from the differentiation of ex − (x + 1), and is
omitted here.

Proof of Lemma 2.2: If n ≤ 2/ε, then we can get the complete data of the graph in
time 2/ε. Thus it is enough to consider the case of n > 2/ε. We use the following
algorithm for the tester:

12 PC√
n

�= P∗
C√

n
on the F(d)-model for d ≥ 2.

2 Property Testing on Graphs and Games 23

Choose s = 2/ε vertices v1, . . ., vs from V uniformly at random, and denote them
by S. For each vi ∈ S, check whether there is a dicycle of length at most s that
includes vi by following each outgoing edge successively whenever it exists. (Note
that in the F(1)-model, the outgoing edge of each vertex exists uniquely if it exists.)
If a dicycle of length in [3, s] is found, then it is rejected; otherwise, it is accepted.

We show that the above algorithm is the desired one-sided-error tester. It is clearly
a one-sided-error, since it never rejects without finding a short (i.e., length of at most
s) dicycle. Thus, it is enough to show that the algorithm rejects with probability at
least 2/3 if the input is ε-far from PC√

n
.

Assume that the input G = (V, E) is ε-far from PC√
n
, i.e., that G contains more

than εn dicycles of length in [3,√n]. Let C be the set of such dicycles. We divide C
into the following two sets:

Cshort = {C ∈ C | the length of C is at most s.}
Clong = {C ∈ C | the length of C is more than s (and at most

√
n).}

From |C| > εn, |Cshort| > εn/2 or |Clong| > εn/2 holds.
First, we assume that |Clong| > εn/2. Clearly no pair of dicycles in C shares a

common vertex, and thus more than εsn/2 = n vertices are included in the graph
contradiction. Thus, |Clong| ≤ εn/2.

From this, it follows that |Cshort| > εn/2. Since no pair of dicycles in C shares a
common vertex and each dicycle has at least three vertices, then the dicycles in Cshort

contain more than 3εn/2 vertices. LetW be the set of such vertices. If the algorithm
finds at least one vertex from W , then it will find a short dicycle that includes the
vertex and rejects the input. From |W | > 3εn/2, it follows that the probability that
a chosen vertex is not in W is less than 1 − 3ε/2. Thus, the probability that all of s
vertices chosen by the algorithm are not in W is less than

(1 − 3ε/2)s ≤ e−3εs/2 = e−3 <
1

3
.

Note that the first inequality above uses the inequality (2.4). The probability that the
algorithm finds at least one vertex from W is, therefore, more than 2/3. The query
complexity of this tester is clearly O(ε−2). �

Since PC√
n
is both monotone and hereditary, Theorems 2.6 and 2.7 hold. If we

apply Theorem 2.6, thenHn = Cmin{2/ε,√n} for each n. If we apply Theorem 2.7, then
N (ε) = 4/ε2 andH = C2/ε . From this discussion, we observe that N (ε) is essential
in Theorem 2.7.

2.4.4 An Idea to Extend the Characterizations Beyond
Monotone and Hereditary

We would like to extend Theorems 2.6 and 2.7 to general properties. We denote
by Pdeg+(d−1) the property consisting of digraphs having no vertex with out-degree
d − 1 on the F(d)-model. Pdeg(d−1) is one-sided-error testable as shown below.

24 H. Ito

Let G = (V, E) be an input. The algorithm for Pdeg+(d−1) chooses 2/ε vertices
from V uniformly at random and checks their out-degrees. If it finds a vertex of
degree d − 1, then it is rejected; otherwise, it is accepted. This algorithm is a one-
sided-error, since it never rejects if there is no vertex of out-degree d − 1. IfG is ε-far
fromPdeg+(d−1), then there are more than εn vertices of out-degrees d − 1. Thus, the
probability that there is no vertex of out-degree d − 1 in the selected 2/ε vertices by
the algorithm is less than

(1 − ε)
2
ε ≤ (

e−ε
) 2

ε = e−2 <
1

3
.

Note that this also uses the inequality (2.4).
Hence, the above algorithm is a one-sided-error tester for Pdeg+(d−1). However,

expressing this property by using forbidden subgraphs or forbidden induced sub-
graphs like Theorems 2.6 or 2.7 is impossible.13

To extend the idea of “forbidden something” to non-monotone and non-hereditary
properties,we [12] introduced the idea of “configurations,” bygeneralizing subgraphs
and induced subgraphs. A similar idea has also appeared in [16].

Definition 2.9 A configuration is a pair O = (H, L), where H = (W, F) is a
digraph in the F(d)-model, L : W → {developed, frontier} is a function, and the
out-degree of every frontier vertex is 0. The configuration is rooted if H is rooted.

Definition 2.10 Let O = (H = (W, F), L) andG = (V, E) be a configuration and
a graph respectively in the F(d)-model. We say that G has an O-appearance if
there is an injective mapping φ : W → V satisfying the condition that ∀v ∈ W with
L(v) = developed, the following two conditions hold:

(i) ∀u ∈ W , (v, u) ∈ F if and only if (φ(v), φ(u)) ∈ E .
(ii) If (φ(v), x) ∈ E , then ∃u ∈ W , φ(u) = x .

We say that G is O-free if G has no O-appearance. For a set O of configurations, we
say that G is O-free if ∀O ∈ O, G is O-free. �

As we have already stated, Pdeg+(d−1) cannot be defined by any set of
forbidden subgraphs or induced subgraphs. However, it can be defined by using
O-freeness. That is, let Odeg+(d−1) = (H = (W, F), L) be a configuration such
that W = {v0, v1, . . . , vd−1}, E = {(v0, v1), (v0, v2), . . . , (v0, vd−1)}, L(v0) =
developed, and L(v1) = L(v2) = · · · = L(vd−1) = frontier. ThenPdeg(d−1) is defined
by the set of Odeg(d−1)-free graphs.

The idea of configuration-free (or forbidden configurations) may work for char-
acterizing general one-sided-error testable properties on the F(d)-model. See [12]
for details.

13 This follows from the fact that Pdeg+(d−1) is neither monotone nor hereditary, and from Theo-
rems 2.6, and 2.7.

2 Property Testing on Graphs and Games 25

2.5 Testable EXPTIME-Complete Games

This section presents results on the testability of combinatorial games, particularly
the generalized chess, Shogi (Japanese chess), and Xiangqi (Chinese chess). Given
any position on a

√
n × √

n board with O(n) pieces, the generalized chess, Shogi,
and Xiangqi problems are the problems of determining the property that “the player
whomoves first has a winning strategy.” These problems are known or believed to be
EXPTIME-complete [1, 6, 7]. In [13], we proposed that this property is testable for
chess, Shogi, and Xiangqi. The Shogi tester and Xiangqi tester are one-sided-error
testers, and surprisingly, the chess tester is a no-error tester. Many problems have
been revealed to be testable, but most of such problems belong to class NP. We think
that this is the first result on the constant-time testability of EXPTIME-complete
problems. This section presents these results. We mainly focus on chess, followed
by Shogi, but omit the explanation for Xiangqi since the method is similar to the one
for Shogi. See [13] for details.

2.5.1 Definitions

We begin by focusing mainly on generalized chess. Generalized chess is played on a√
n × √

n board with O(n) pieces, including two kings. White moves first and black
plays after white. A position is defined by fixing each piece to a particular cell on
the board. At any given position S, the problem is to determine whether white wins
if both players play optimally. The basic rules are the same as those in the original
chess and are omitted here.

In chess, there are six different types of pieces: king (K), queen (Q), bishop (B),
knight (N), rook (R), and pawn (P). There are only two pieces of kings; one white and
one black. For each of the other piece-types (i.e., bishop, knight, rook, and pawn),
there exist at most cn pieces for both white and black, respectively, where c is a
constant. Piece-numbers from 1 to cn are given to each white or black piece of each
piece-type; in other words, each piece has its own piece ID (k, o, �) comprising a
piece-type k ∈ {K,Q,B,N,R,P}, an owner-color o ∈ {white, black}, and a piece-
number � ∈ {1, . . . , cn}.

An algorithm can find the given position through the following oracles.

• Piece oracle: Given a piece ID (k, o, �), the piece oracle answers an ordered pair
(i, j) that provides the cell (i, j), i, j ∈ {0, 1, . . . ,√n} where it lies. (i and j
represent the column number and row number, respectively, and if i = j = 0, it
denotes that the piece is not in the game (such a piece is called an unused piece).
This oracle is expressed as q1(k, o, �) = (i, j).

• Coordinate oracle: Given a coordinate (i, j), i, j ∈ {0, 1, . . . ,√n}, the coordinate
oracle answers the piece ID (k, o, �) of the piece that lies on the cell if one exists. If
no piece lies on the cell, the oracle answers k = o = � = 0. This oracle is expressed
as q2(i, j) = (k, o, �).

26 H. Ito

When we explicitly identify position S, we express the oracles as q1(k, o, �; S)

and q2(i, j; S), respectively. We introduce the assumption that all pieces can be
arranged on the board simultaneously, and it thus follows that 2 × (5cn + 1) ≤ n.
For simplicity, we assume that

c ≤ 1/11. (2.5)

A position S is called a winner if white has a winning strategy (i.e., white will win if
the players start from S and play optimally) and a loser otherwise. Note that a loser
not only includes cases where white loses but also where the game ends in a draw.

A position is fixed by querying the piece oracle for every piece. The number of
different queries for the piece oracle is at most n, and thus a position is fixed by the
maximum of n data. From this, we define the distance between positions S and S′ as

dist(S, S′) := |{(i, j) | q2(i, j; S) �= q2(i, j; S′)}|
n

. (2.6)

Clearly 0 ≤ dist(S, S′) ≤ 1.
Positions S and S′ are called isomorphic if we can make S identical to S′ by only

changing their piece-numbers (neither changing the piece-type nor owner-color is
allowed). A set of positions that is closed under isomorphism is called a property.
The distance between a position S and a property P is defined as follows:

dist(S,P) := min
S′∈P

dist(S, S′). (2.7)

For a positive ε > 0, S is ε-far from P if dist(S,P) > ε; otherwise, it is ε-close. Let
W be the set of winners. W is clearly closed under isomorphism and thus W is a
property.

For generalized Shogi and Xiangqi, similar definitions are used. They can be
easily deduced and are omitted here. See [13] for details.

2.5.2 Testers for Generalized Chess, Shogi, and Xiangqi

The following theorem was presented in [13]. Note that a no-error tester is a one-
sided-error tester that always rejects every input that is ε-far from the property; that
is, it always accepts or rejects with no-error if the input is in the property or ε-far
from the property.

Theorem 2.8 There exists a no-error tester with query complexity O(ε−1) for the
generalized chess problem, there exists a one-sided-error testerwith query complexity
O(ε−2) for the generalized Shogi problem, and there exists a one-sided-error tester
with query complexity O(ε−1) for the generalized Xiangqi problem.

2 Property Testing on Graphs and Games 27

Fig. 2.1 The black king will
be checkmated by white’s
next move, as indicated by
the arrow 1

1 2 3 4 5

2

3

4

K

K

R

R BN P

Q

Proof of the chess part of Theorem 2.8 Let S be a given position. Let S′ be the
position made from S by changing the pieces in cells (i, j), i ∈ {1, 2, 3, 4} and
j ∈ {1, 2, 3, 4, 5}, as shown in Fig. 2.1.

The pieces that were in these cells in S are changed to be unused pieces, and
the pieces that appear in these cells in S′ are moved from other cells or unused
pieces. In S′, the white king is safe and the black king will be checkmated by white’s
next move (moving the queen from (3, 2) to (2, 2)), meaning that S′ is a winner.
The distance between S and S′ is at most 20 + 8 = 28. Thus, if n ≥ 28/ε, then
dist(S, S′) ≤ 28/n ≤ ε. Hence, S is ε-close toW, and it is sufficient to accept it. If
n < 28/ε, it is sufficient to read all of the information by calling the piece oracle for
all pieces, which requires O(ε−1) queries.

This algorithm always accepts a winner. Moreover, if a given position S is ε-far
from W, then n < 28/ε and the algorithm knows the complete information for S.
Therefore, this algorithm is no-error. �

The algorithms for the generalized Shogi and Xiangqi problems are a little more
complicated. The reason is that in Shogi and Xiangqi there are fouls based on posi-
tions. A player who plays the fouls loses. In Shogi, the following fouls need to be
considered in the generalized Shogi problem.

• Nifu (double pawn): two or more unpromoted14 pawns that belong to the same
player must not be in the same column simultaneously.

• Dead end: pawns, lances, and knights15 can never be moved or dropped onto cells
from which a subsequent move cannot be made. Therefore, white (resp., black)
unpromoted pawns and lances can never be in the first (resp.,

√
nth) row, and

white (resp., black) knights can never be in the first or second (resp.,
√
nth or

(
√
n − 1)th) rows.

14 If a piece of some piece-type can be promoted (to a stronger piece) when it enters the opponent’s
camp.
15 These three pieces can move only forward.

28 H. Ito

In a given position S, if there is a white piece that plays a fault, then white cannot
win,16 and thus the position is not awinner.However, if the number of pieces related to
fouls is small (e.g., smaller than εn/2), we can remove the fouls and make white win,
i.e., the position is ε-close to W. To detect this, we need to perform preprocessing
and the tester may have error when the input is ε-far fromW. For Xiangqi, a similar
discussion applies. See [13] for details.

2.6 Summary

In this chapter, we introduced basic terminology and important results for property
testing, which is the most examined framework for constant- or sublinear-time algo-
rithms. In particular we presented two of our resent esults: The first is the complete
characterization of one-sided-error testable monotone or hereditary properties on
bounded-out-degree digraphs, and the other one is the testers for the generalized
chess, Shogi, and Xiangqi problems, which are all EXPTIME-complete.

The 21st century can be called the era of big data, and the larger big data becomes,
the more we need sublinear- and constant-time algorithms. The importance of this
area will continue to grow. The number of fields in which constant-algorithms are
efficiently applied will increase, and new techniques will be found accordingly. We
eagerly await these developments.

References

1. H. Adachi, H. Kamekawa, S. Iwata, Shogi on n × n board is complete in exponential time.
IEICE J. J70-D(10), 1843–1852 (1987). (In Japanese)

2. N. Alon, E. Fischer, I. Newman, A. Shapira, A combinatorial characterization of the testable
graph properties: it’s all about regularity. SIAM J. Comput. 39(1), 143–167 (2009)

3. J. Babu, A. Khoury, I. Newma, Every property of outerplanar graphs is testable, in Proceedings
of the RANDOM 2016, LIPICS, pp. 21:1–21:19 (2016)

4. A. Bhattacharyya, Y. Yoshida, Property Testing: Problems and Techniques (Springer, Berlin,
2021) (scheduled to be published in 2021)

5. H. Fichtenberger, P. Peng, C. Sohler, Every Testable (Infinite) Property of Bounded-Degree
Graphs Contains an Infinite Hyperfinite Subproperty (2018). arXiv: 1811.02937 (also appeared
in SODA2019)

6. R.H. Fleischer, S.U. Khan, Xiangqi and combinatorial game (2002)
7. A.S. Fraenkel, D. Lichtenstein, Computing a perfect strategy of n × n chess requires time

exponential in n. J. Comb. Theory Ser. A 31, 199–214 (1981)
8. O.Goldreich, Introduction to Property Testing (CambridgeUniversity Press, Cambridge, 2017)
9. H. Ito, K. Iwama, Enumeration of isolated cliques and pseudo-cliques. ACMTrans. Algorithms

5(4), Article 40, 1–13 (2009)
10. H. Ito, Every property is testable on a natural class of scale-free multigraphs, in Proceedings

of ESA 2016, LIPICS, Vol. 49 (ISBN 978-3-95977-005-7) (2016), pp. 21:2–21:15

16 If both players play fouls, the game is a draw.

http://arxiv.org/abs/1811.02937

2 Property Testing on Graphs and Games 29

11. H. Ito, What graph properties are constant-time testable?—dense graphs, sparse graphs, and
complex networks. The Rev Socionetw Strat, Springer 13(2), 101–121 (2019)

12. H. Ito, A. Khoury, I. Newman, On the characterization of 1-sided error strongly-testable graph
properties for bounded-degree graphs. J. Comput. Compl. Springer 29, Article Number 1, 1–45
(2020)

13. H. Ito, A. Nagao, T. Park, Generalized shogi, chess, and xiangqui are constant-time testable.
IEICE Trans. E102-A(9), 1126–1133 (2019)

14. M. Kusumoto, Y. Yoshida, Testing forest-isomorphizm in the adjacency list model, in Proceed-
ings of ICALP2014 (1), LNSC 8572 (2014), pp. 763–774

15. I. Newman, C. Sohler, Every property of hyperfinite graphs is testable, in Proceedings STOC
2011 (ACM, 2011), pp. 675–784. (Journal version: SIAM J. Comput. vol. 42, No. 3, pp. 1095–
1112 (2013).)

16. Oded Goldreich, Dana Ron, Property testing in bounded degree graphs. Algorithmica 32(2),
302–343 (2002)

17. E. Szemerédi, Regular partitions of graphs, in Proceedings of the Colloquim International
CNRS, eds. by J.C. Bermond, J.C. Fournier, M. Las Vergnas, D. Sotteau (CNRS, Paris, 1978),
pp. 399–401

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	2 Property Testing on Graphs and Games
	2.1 Introduction
	2.2 Basic Terms and Definitions for Property Testing
	2.2.1 Graphs and the Three Models for Property Testing
	2.2.2 Properties, Distances, and Testers

	2.3 Important Known Results in Property Testing on Graphs
	2.3.1 Results for the Dense-Graph Model
	2.3.2 Results for the Bounded-Degree Model
	2.3.3 Results for the General-Graph Model

	2.4 Characterization of Testability on Bounded-Degree Digraphs
	2.4.1 Bounded-Degree Model of Digraphs
	2.4.2 Monotone Properties and Hereditary Properties
	2.4.3 Characterizations
	2.4.4 An Idea to Extend the Characterizations Beyond Monotone and Hereditary

	2.5 Testable EXPTIME-Complete Games
	2.5.1 Definitions
	2.5.2 Testers for Generalized Chess, Shogi, and Xiangqi

	2.6 Summary
	References

