Chapter 14 )
Structural and Functional Analysis oo
of Proteins Using Rigidity Theory

Adnan Sljoka

Abstract Over the past two decades, we have witnessed an unprecedented explo-
sion in available biological data. In the age of big data, large biological datasets have
created an urgent need for the development of bioinformatics methods and inno-
vative fast algorithms. Bioinformatics tools can enable data-driven hypothesis and
interpretation of complex biological data that can advance biological and medicinal
knowledge discovery. Advances in structural biology and computational modelling
have led to the characterization of atomistic structures of many biomolecular com-
ponents of cells. Proteins in particular are the most fundamental biomolecules and
the key constituent elements of all living organisms, as they are necessary for cellu-
lar functions. Proteins play crucial roles in immunity, catalysis, metabolism and the
majority of biological processes, and hence there is significant interest to understand
how these macromolecules carry out their complex functions. The mechanical het-
erogeneity of protein structures and a delicate mix of rigidity and flexibility, which
dictates their dynamic nature, is linked to their highly diverse biological functions.
Mathematical rigidity theory and related algorithms have opened up many exciting
opportunities to accurately analyse protein dynamics and probe various biological
enigmas at amolecular level. Importantly, rigidity theoretical algorithms and methods
run in almost linear time complexity, which makes it suitable for high-throughput and
big-data style analysis. In this chapter, we discuss the importance of protein flexibil-
ity and dynamics and review concepts in mathematical rigidity theory for analysing
stability and the dynamics of protein structures. We then review some recent break-
through studies, where we designed rigidity theory methods to understand complex
biological events, such as allosteric communication, large-scale analysis of immune
system antibody proteins, the highly complex dynamics of intrinsically disordered
proteins and the validation of Nuclear Magnetic Resonance (NMR) solved protein
structures.
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14.1 Introduction

In the current post-genomics era, advances in experimental and computational tech-
niques have revolutionized biological and biomedical research. High-throughput
technologies have paved the way to novel research avenues where we can systemat-
ically analyse whole genomes of organisms and individual or collection of proteins,
including their structures and interactions with other proteins, which in many cases
allow researchers to successfully decipher their biological functions. Proteins are
macromolecules that are fundamental to most cellular function [1]. They comprise
the highest levels of molecular and cellular structure and organization, and because
the majority of physiological and disease processes are manifested within proteins,
structural and computational biology research is focused on understanding protein
function.

Proteins and other biomolecules are nanomachines. Accurate representation of
their three-dimensional structure is a critical first step to understanding how they per-
form their functions. Advances in molecular biology, instrumentation, and imaging
technologies such as X-ray crystallography, nuclear magnetic resonance (NMR), and
electron microscopy have led to a revolution in structural biology. These techniques
allow us to see beautiful yet complex three-dimensional shapes of protein structures
and how they interact with other proteins and ligands. Protein imaging techniques are
continuously improving, and for many proteins, we can now characterize their struc-
tures at an individual-atom-level resolution. A rapidly growing and revolutionary
cryogenic-electron microscopy (cryo-EM) technique has been attracting significant
attention, as very recently it has broken various resolution barriers [2] and can now
discern individual atoms of very large protein structures (see Fig. 14.1). Cryo-EM
complements X-ray crystallography because it reveals atomistic structural details
without the need for a crystalline specimen. Protein Data Bank (PDB), a repository of
experimentally solved protein structures, together with computationally determined
protein structures, make up a rich source of protein structural data. Recent advances
in Al and deep learning have provided significant improvements in inferring protein
structures from a sequence of amino acids [3]. Deepmind’s Alphafold method has
demonstrated that deep learning structure predictions can come astonishingly close
to experimentally determined structures, and in the near future, we expect this will
result in huge growth of macromolecular structural data. The increasing richness of
the available protein structural data and the rapidly growing proteomics and bioinfor-
matics big-data repositories open up possibilities to systematically analyse complex
biological questions and gain novel biological insights. To facilitate data-driven bio-
logical knowledge discovery, many bioinformatics and computational biology tools,
software packages, and databases have been developed [4].

Despite tremendous advances in bioinformatics, structural biology and imaging
technologies which have generated hundreds of thousands of atomic snapshots of
protein structures, many fundamental biological problems such as protein folding,
allosteric regulation, receptor signalling, and enzyme catalysis, to name a few, still
remain largely unresolved [5-12]. While the static high-quality representation of
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Fig. 14.1 Cryo-EM
snapshot structure of viral
spike protein of
SARS-CoV-2 (a key protein
involved in COVID-19),
which is a very large protein
structure consisting of three
chains (distinct colours),
each consisting of nearly
1300 amino acids

protein structures can offer clues to structure-function mechanisms, protein func-
tion is almost purely controlled by its dynamic character through a delicate mix of
rigidity and flexibility. Research must move beyond static snapshot representations
of proteins, as the mechanical heterogeneity of protein structures that dictates their
dynamic nature is intimately linked to their highly diverse biological functions. Deep
understanding of the connection between structures and internal protein flexibility,
rigidity, and dynamics is absolutely critical, as it can lead to solutions to protein fold-
ing problem, elusive allosteric regulation and other dynamically driven biological
secrets of protein regulation.

The primary desire of any protein researcher is to see proteins move in real time
at the atomistic level while they carry out their biological functions. Yet, despite
many advances in experimental techniques and molecular dynamics simulations,
such a goal is still very far from being realized. Analysing and comprehending
protein flexibility and dynamics has proven to be extremely difficult. One major
challenge is that the main molecular simulation methods, such as classical molec-
ular dynamics simulations, require a prohibitive amount of computational power
and are not suitable to reach biologically relevant functional dynamics that occur
on longer (millisecond-second) timescales. Furthermore, with rapid growth in the
number of experimentally solved biomolecular structures and the increasing size of
structural protein databases, including the expanding big-data size sets of computa-
tionally predicted protein structures, we are faced with a pressing need to develop
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fast algorithms and novel mathematical and computational techniques that simplify
the classical force fields and can offer experimentally verified accurate predictions
of protein flexibility and dynamics.

Techniques inspired from the field of mathematical-structural rigidity theory [13—
16] have gained special attention as they are suitable for handling the many challenges
with computational analysis of protein flexibility and its dynamics. Biological func-
tions of protein structures are often related to their network (or graph) properties.
Mathematical rigidity theory offers considerable promise in deciphering graph the-
oretical properties of protein networks to better understand protein function [13,
15-18]. In rigidity theory, proteins are modelled as geometric molecular frameworks
consisting of atoms and various connecting intermolecular forces. Such frameworks
are essentially multigraphs (networks), in which atoms are vertices and edges form
various bonding and non-bonding constraints (see Sect. 14.3). The programme FIRST
[15] and related methods [19] apply mathematical results that provide combinato-
rial characterization of rigidity and flexibility on a molecular multigraph, which
can rapidly decompose a protein framework (i.e., multigraph) into flexible and rigid
regions. Starting with a decomposition of a protein into rigid and flexible regions, fast
Monte Carlo geometric simulation methods, such as FRODA and FRODAN [19-22],
can sample the highly complex conformational space of proteins and simulate their
functionally relevant motions. The main advantage of rigidity theory methods over
classical molecular dynamics simulations is that their predictions of rigidity and flex-
ibility are very fast, they are not affected by timescale issues (see Sect. 14.2), and they
are suitable for high-throughput and big-data style analyses. Moreover, predictions
based on rigidity theory have been widely shown to be consistent with experimental
measures of protein flexibility and dynamics [11, 12, 15, 17-19, 22, 24-26].

In this chapter, we first discuss the importance of protein flexibility and dynamics
for biological function (Sect. 14.2). We then provide a brief review of fundamental
concepts in rigidity theory (Sect. 14.3) that enables us to perform fast predictions
of flexibility and dynamics of protein structures. We next discuss how to represent
biomolecules as a graph constraint network, the mathematical/algorithmic back-
ground for analysing protein networks, and the basic uses of rigidity theory soft-
ware for analysing protein flexibility and its dynamics. We then review some major
advances contributed by the author of this chapter, in which rigidity theory and
algorithms were used to elucidate and provide new perspectives on very complex
biological phenomena, such as long-range allosteric communication, enzyme cataly-
sis, antibody dynamics, and NMR structural validation (Sect. 14.4). We conclude by
reviewing some of these recent developments and some surprising breakthroughs that
have led to rich protein function discoveries that were mainly driven by mathematical
rigidity theory.
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14.2 Protein Structural Flexibility and Dynamics

In this section, we briefly cover for non-biologists the background and the importance
of predicting protein flexibility, which is arguably one of the most fundamental
research topics in biochemistry, structural biology, and bioinformatics.

14.2.1 Protein Flexibility and Dynamics Is Central to Protein
Function

Proteins are polypeptide chains composed of a linear sequence(s) of amino acids
[1]. Through a complex protein folding process, forces are exerted on atoms which
steer a polypeptide chain(s) into a defined three-dimensional biologically functional
native-state structural ensemble. High-resolution X-ray crystallography and other
techniques have revealed aesthetic structural complexity of protein structures and
have revolutionized our understanding of their function, which have spearheaded
the development of novel experimental and computational methods for examining
protein function in atomistic detail. It is important to stress that solved protein struc-
tures are only snapshots or pictures of proteins at some low-energy state. This can
often provide a misleading representation of proteins and potentially misinform about
their function, which must include kinetic and thermodynamic descriptions [5] (see
Fig.14.2).

Proteins are composed of rigid and connecting flexible regions that can be highly
dynamic, which facilitates sampling a wide variety of conformations spanning a com-
plex multidimensional energy landscape. In this conformational biomolecular dance,
proteins undergo dynamical fluctuations even under conditions that are preferentially
biased towards a well-defined low-energy 'native’ state [5]. Such dynamically driven
conformational states and fluctuations are critical to long-range allosteric regula-
tions, ligand recognition, catalytic efficiency, antibody—antigen recognition and the
majority of functional mechanisms. Understanding protein flexibility and rigidity
and how it is modified by mutations and ligand binding is critical to understanding
and modulating protein function [5, 7, 8, 11, 12]. Most globular proteins (excluding
intrinsically disordered proteins) function through utilizing a delicate mix of rigidity
and flexibility. Achieving appropriate balance between rigidity and flexibility is one
of the most important keys for biological function. Protein rigidity is necessary, as
it maintains overall structural fold, while flexibility and dynamics enable proteins to
perform specific functions. Protein defects can lead to alterations in overall folding,
or they can cause proteins to be overly flexible, interfering with protein function,
or cause other extreme defects that can result in indestructible rigid protein. These
scenarios are related to numerous medical conditions, including neurological dis-
orders, Alzheimer’s disease, and Mad Cow disease [22, 27]. Hence, predicting and
examining protein flexibility and dynamics is the most important, and probably the
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Fig. 14.2 The structure of an enzyme (Protein Data Bank ID 2jz3) showing a protein snapshot
representation and conformational ensemble depicting its dynamical characteristics b

most complex, component of protein research. This is an active area of research in
both experimental protein science and computational biology.

Protein structures can have thousands of conformational degrees of freedom. It is
therefore easy to imagine that their motions can be extremely complex, and deter-
mining flexible and rigid regions and how they move relative to one another can seem
like a daunting task. Moreover, many proteins are oligomeric structures consisting of
two or more interacting polypeptide chains, and in some cases the structures are very
large, consisting of thousands of amino acids (see Fig. 14.1). Protein flexibility and
rigidity are often regulated by interactions with small ligands, drugs, hormones, and
cations (e.g., calcium and magnesium) and changes in temperature, pressure, and
pH [11, 15, 17, 18, 24]. Internal motion and conformational change can be rapid
and transient and result in a structural ensemble that can often be spectroscopically
indistinguishable from the snapshot ground state determined by X-ray crystallogra-
phy or other imaging techniques (see Fig. 14.2). Protein dynamics occur across a wide
range of timescales, from very rapid short-amplitude motions caused by bond vibra-
tions occurring on a femtosecond range, to side-chain motions on the picosecond to
nanosecond timescale, all the way up to very slow larger-amplitude collective domain
motions, which are often biologically most significant, occurring in the milliseconds
to seconds range [5] (see Fig. 14.3). Dynamics on longer timescales (i.e., millisec-
ond to second timescales) are functionally very important because many biological
processes—including allostery, enzyme catalysis, receptor activations, and protein—
protein interactions—occur on such timescales [5, 9, 11, 12, 24, 28]. Fluctuations
between different low-energy states and the heights of their energy barriers can also
be affected by mutations, ligand binding, and changes in temperature or pH. The
timescale component of protein dynamics is one critical factor that complicates the
computation examination of protein dynamics. Another important characteristic of
protein dynamics is the amplitude and directionality of conformational fluctuations
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[5]. All these factors combine to contribute to the difficulty in obtaining knowledge
about the flexibility and motion of proteins.

Despite this complexity, functional motions will often involve large domain—
domain motions (i.e., relative motions dominated by a few rigid bodies) and many
degrees of freedom can be neglected or suppressed to study the functionally most
important motions. Hence decomposition of a protein into rigid and flexible regions
is a highly important aspect of deciphering protein dynamics.

14.2.2 Techniques for Analysing and Predicting Protein
Flexibility and Dynamics

In terms of experimental techniques, NMR measurements such as order parameter
measurements and chemical shifts are very useful in studying protein dynamics [24,
29]. Mass spectrometry, hydrogen—deuterium exchange, crystallographic B-values,
etc. can also provide deep insights into the dynamical nature of protein structures
[5, 11, 24, 25]. Fluorescence resonance energy transfer (FRET) [30] measures in
particular have high practical value as they can characterize changes in distance
for single molecules over time as well as possible corresponding conformational
changes. However, the disadvantage of FRET is that only a single distance change is
measured. Experimental measurements are useful as they can be used to infer specific
information about dynamics across a specific range of timescales (see Fig. 14.3) and
are specifically very helpful in supporting and validating computational predictions.
The disadvantage of experimental tools is their high cost, susceptibility to uncertainty
in measurements, and frequent inability to provide information about very dynamic
regions of protein structures. Moreover, protein structures often have to be stabilized
to extract structural and dynamical information. Experimental measurements can
also take a long time to perform, as they require maintenance of very expensive
equipment; yet, such measurements can rarely provide dynamical information about
individual atoms.

Computationally, it should be theoretically possible to describe protein dynamics
in their entirety. Molecular dynamics (MD) simulation has been the most widely
used approach for simulating the motions of proteins and other biopolymers [28].
Molecular dynamics simulations of proteins have been a common tool in biochem-
istry and biophysics since the 1970s [31]. It has been successfully applied to protein
folding problems, the impact of protein motions on enzyme catalysis, and the effects
of mutations and ligand binding on protein motions [28]. Its uses have increased in
recent years, pointing to the key importance of deciphering the relationships between
complex motions and protein function. In molecular dynamics simulations, the trajec-
tories of individual atoms in protein structures can be predicted by repeated numerical
solutions of the Newtonian motion equation (i.e., ' = ma), with forward integra-
tion in time, where F represents a force field (energy function). A force field models
all potential forces and energies between the molecules and is supposed to be a
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Fig. 14.3 a A one-dimensional cross-sectional representation of a high-dimensional protein’s
energy landscape. Proteins can be defined as multiple collections of low-energy conformational
states (defined as minima in the energy surface), with many conformational ensemble substates
interconverting between one another on very fast timescales. The time it takes a protein to transition
from one low-energy state to another is dependent on the height of the energy barrier between the
states. When the barrier is high, this can occur in a relatively long microsecond to second range. b
Timescales of different dynamic processes in proteins and different experimental methods that can
detect fluctuations on each timescale. Longer timescales are largely inaccessible to classical MD

simulations. However, rigidity theory methods and simulations are not confined by this timescale
issue. Figure adapted from [5]
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simple parameterization of the energy surface of the protein. A number of different
methods and force field models exist for parametrizing the potential energy surface.
Assuming one can use an accurate description of a force field, a difficult and heavily
debated concept, molecular dynamics simulation can be extremely useful in tracking
the precise position of atoms over time. However, the major downside of molecu-
lar dynamics simulations is that they require prohibitively excessive computational
power. Indeed, even despite today’s computational advances and special-purpose
simulation machines [32], in the majority of cases molecular dynamics simulations
are largely impractical for investigating biologically relevant protein motions on rela-
tively long microsecond timescales. Stemming from the increase in protein structural
data combined with the increasing size of solved structures, advances in emerging
Cryo-EM technology and deep learning, it is clear that there is an urgent need to
develop alternate efficient and accurate computational methods for molecular flexi-
bility and dynamics simulations.

A large class of computational approaches that simplify classical force fields have
been developed. Coarse-grained simulations, normal model analysis, principal com-
ponent analysis, contact network analysis, and other related methods have become
popular alternative approaches to classical MD simulations [33]. In coarse-grained
and network approaches, physical units such as individual amino acids or a cluster of
amino acids including rigid clusters can be treated as nodes (vertices), where edges
indicate possible interactions or contacts. For more precise modelling, individual
atoms should be treated as vertices and edges should model pairwise bonded and
non-bonded contacts.

Arguably, one of the most powerful ways of analysing the flexibility and rigidity
of protein structures, especially using an all atom representation, is based on math-
ematical rigidity theory [13—16, 19, 34]. Rigorous mathematical results in rigidity
theory, whose details are explained below, can be used in combination with fast algo-
rithms to rapidly decompose a protein constraint graph into rigid and flexible regions.
Moreover, how rigidity is modified through protein—protein, protein—-ligand, or other
interactions can be quickly predicted. Such decompositions are very informative as
they can be combined with other methods such as MD simulations, normal mode
analysis, or Monte Carlo simulations [19, 22] to directly infer information about pro-
tein dynamics. This is discussed in more detail below. We now turn the discussion to
mathematical formulations and the uses of rigidity theory for the analysis of protein
structures.

14.3 Rigidity Theory

In this section, we present a basic introduction and results of rigidity theory that are
essential for applications to protein structure and function analysis, with a focus on
combinatorial rigidity theory concepts. For a thorough review of rigidity theory see
[13, 19, 34].
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14.3.1 Combinatorial Rigidity Theory and the Molecular
Theorem

In general terms, flexibility is the ability of a material or framework to reversibly
change the configuration of its joints, bodies, or building blocks. Rigidity, which is
the opposite property of flexibility, describes a state in which no relative motions
are allowed between the framework’s elements. In a rigid structure, only rigid body
motions are possible (i.e., motions arising from congruences of space, rotations,
translations, etc.). In biochemistry and biophysics, a notion related to rigidity is
the concept of stability and robustness, where internal protein dynamics are not
changed in response to small atomic fluctuations and the breaking of a few non-
covalent interactions. Although to a non-expert, rigidity and stability may seem like
related concepts, care should be taken to understand the potential differences and
their implications.

Mathematical rigidity theory, sometimes called structural rigidity because of its
close connections to structural and mechanical engineering, offers the most math-
ematically sound concepts and algorithms for analysis of rigidity and flexibility of
frameworks [13, 14, 34]. Rigidity theory analyses the rigidity and flexibility of frame-
works, as specified by geometric constraints such as fixed distances, directions, and
volumes defined by a collection of points, lines, planes, or rigid bodies. Frameworks
can be natural structures (molecules, crystals, proteins, etc.) or engineered structures
(bridges, robots, etc.), and because rigidity is an essential property of most frame-
works and materials, rigidity theory naturally has many applications in engineering,
robotics, material science, and biology.

Rigidity theory has both geometric and combinatorial characteristics relying on
techniques in linear algebra, discrete and algebraic geometry, graph theory, and com-
binatorics. Rigidity theory has a very long and rich history in mathematics, with early
work appearing in the form of Euler’s (1766) conjectures on rigidity of polyhedra.
Maxwell’s (1864) [14, 34] work on counting constraints in a framework for generic
rigidity led to the birth of so-called ‘combinatorial rigidity’. Combinatorial charac-
terization of rigidity theory, 140 years later, has turned out to be absolutely crucial for
rapid flexibility analysis of materials such as glass networks and protein structures
[14].

The classical and simplest frameworks studied in rigidity theory are the bar and
joint frameworks (see Fig. 14.4), which are composed of universal (rotating) joints
that are connected by bars that fix the distances between pairs of joints. A bar and
joint framework is defined as a pair (G, p), where G = (V, E) is an undirected
graph and p : V — R? where vertices correspond to joints and edges correspond
to bars that connect some pairs of joints; p represents a configuration of joints in
R, A framework (G, p) in R is rigid if the only edge-length-preserving continuous
motions of the vertices are derived from isometries of R¢. If d > 2, it is NP-hard
to determine if a bar and joint framework is rigid [34]. As determining the rigidity
of frameworks is very difficult, a common approach is to linearize the problem by
differentiating the length/bar constraints of the corresponding pair of connecting
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a b C

=

Fig. 14.4 Bar and joint framework examples: a is flexible as it can deform its shape (note it is one
edge too short in terms of Laman’s count, | E| < 2|V| — 3); b is minimally rigid in 2D (but flexible
in 3D as one can rotate two triangles around the diagonal). ¢ is redundantly rigid in 2D as it has a
redundant (i.e., extra) edge and is minimally rigid in 3D

points/joints, which leads to a system of linear equations (one equation per edge)
and a corresponding rigidity matrix. The solution to such a homogenous system
can be captured by calculating the rank of the rigidity matrix, which indicates if a
framework is infinitesimally rigid [34, 35]. However, in many applications and large
frameworks such as proteins, this is not particularly practical owing to numerical
errors and uncertainty in rank computations of the rigidity matrix.

A well-known fact within rigidity theory is that if the framework is generic (i.e.,
it does not have special singular geometry), then rigidity and infinitesimal rigidity
coincide [34]. Generic frameworks are very important, as rigidity can be studied
by pure graph and combinatorial techniques—a subfield of rigidity theory called
combinatorial rigidity theory. A framework is generically rigid if it maintains rigidity
even after minor changes to the position of its joints, and almost all frameworks are
generic [13, 34, 36]. By assuming that a framework is in a generic position, one can
neglect the geometric embedding of joints and actual distances of bars to focus on
only the topology of the bar and joint framework and discuss the generic rigidity of
(G, p) in terms of graph G.

14.3.1.1 Counting for Rigidity and Flexibility

We now motivate the characterization of rigidity of generic frameworks using com-
binatorial arguments. For bar and joint frameworks in dimension d, each joint (point,
vertex) has d conformational degrees; hence, N joints have a total of d N degrees
of freedom. The number of trivial rigid body motions in dimension d or isometries
is d(d + 1)/2. Therefore, in a generic rigid bar and joint framework, the number of
bars > dN — d(d + 1)/2. This is known as Maxwell’s counting condition. In the
plane (d = 2), Laman’s theorem [34] extends this result by proving that the 2N — 3
count is both necessary and sufficient for generic rigidity of two-dimensional bar
and joint frameworks. More formally, a two-dimensional bar and joint framework
is generically minimally rigidity if and only if |E| = 2|N| — 3 and, for all subsets
of edges, |E’| < 2|N’| — 3. In other words, this remarkable theorem says one can
count the vertices and edges in a graph and their distributions over subgraphs to
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Fig. 14.5 Maxwell’s counts
in 3D do not guarantee
rigidity. A bar and joint
framework in 3D (known as
the double banana graph)
satisfies the 3| N| — 6 count
condition but is flexible (two
yellow rigid subgraphs can
rotate about an imaginary
hinge shown as a red dashed
line)

predict generic rigidity of two-dimensional bar and joint frameworks. A framework
is minimally rigid if removal of any edge (bar) results in a flexible framework (see
Fig.14.4).

Unfortunately, Maxwell’s counting results are not sufficient for minimally rigid
bar and joint graphs in dimension 3 and higher. For example, a well-known coun-
terexample is a graph of a double banana, which satisfies Maxwell’s 3| N| — 6 count
but is flexible (see Fig. 14.5). Not only is there a lack of a Laman type of a theorem
for generic bar and joint frameworks in dimension 3 and higher, there are no known
polynomial time algorithms for testing rigidity for general three-dimensional graphs
[34]. Extensive research has been conducted on this problem and, to date, only some
partial results and approximation algorithms can be found [34, 35]. Fortunately,
for different classes of frameworks, called body-bar and body-hinge frameworks,
which includes molecular frameworks, there is a complete and rich combinatorial
characterization of rigidity, which is discussed next.

14.3.1.2 Rigidity Model of Molecules and the Molecular Theorem

To build a computational method based on rigidity theory that can provide fast and
accurate prediction of protein rigidity and flexibility, three requirements must be met:
(1) a realistic physical model of a basic molecular framework; (ii) an accurate model
of molecular interactions; and (iii) a fast algorithm for predicting rigidity/flexibility
properties of the protein framework model.

Protein structures consist of atoms and various chemical interactions (forces) of
different strengths. In rigidity theory, strong interactions between atoms are usually
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assumed to be fixed rigid constraints in terms of distances and angles. In such arigidity
model of a molecule, bonding interactions are assumed to fix distances between a pair
of bonded atoms, and the angles between the bonds of an atom are fixed, allowing
only dihedral angle rotations. High frequency motions such as bond vibrations are
neglected. This is a sensible modelling assumption as single covalent bond lengths
are essentially invariant. For example, the length of a covalent bond between two
carbon atoms will vary less than a single percent from its equilibrium value of 1.53
angstroms [14]. Double bonds and peptide bonds lock dihedral angles, and non-
covalent interactions such as hydrogen bonds and hydrophobic contacts also impose
additional constraints.

A molecular framework in rigidity theory is a collection of atoms, which can be
modelled as fully rigid bodies with six conformational degrees of freedom of a rigid
body and bonds as rotatable hinges, which allow for rotational degrees of freedom
between single-bonded atoms. Such frameworks in rigidity theory are a special case
of body-hinge framework. Hinges (i.e., bonds) remove five degrees of freedom, and
for algorithmic and theoretical reasons, it is useful to model hinges as a set of five
rigid bars, where each bar (i.e., edge) generically removes a single degree of freedom
between bonded atoms. This finally leads to a body-bar framework representation of
amolecular body-hinge framework—that is, a collection of rigid bodies connected by
linear bars. Special geometric criteria should be considered as bonds are not generic
hinges (since bonds intersect at centre of atoms) and the five bars have to pass through
the hinge axis to geometrically give the same model as a hinge, but such discussion
is beyond the scope of this chapter (details can be found elsewhere; see [13]). Double
bonds are modelled as a set of six bars between two atoms. Moreover, non-covalent
interactions such as hydrogen bonds and hydrophobic interactions, which are impor-
tant for overall protein structure folding and rigidity, can also be modelled as a set
of one to five bars (where one bar indicates the bond is least restricting and five bars
indicate it is most restricting) [25]. This overall model, consisting of rigid bodies for
atoms and both covalent bonds and non-covalent interactions, defines the body-bar
framework model of a protein structure (see Fig. 14.6).

The topological structure of a body-bar (and body-hinge and molecular body-
hinge) framework is a multigraph G = (V, E). Vertex set V corresponds to a set
of bodies (i.e., atoms) and edge set E to a set of bars (i.e., bond constraints). In
accordance with Laman’s theorem, an equivalent statement for body-bar frameworks
was formulated by Tay [37]. Tay’s theorem confirms that the rigidity of generic body-
bar frameworks in 3D (which works for all dimensions) can be checked using the
6|V| — 6 count in a body-bar multigraph. Tay’s theorem also extends to generic
body-hinge structures [20]. It was proven by Katoh and Tanigawa [38] that the same
counting condition stated in Tay’s theorem also characterizes the rigidity of generic
molecular body-hinge frameworks. This result is known as the molecular theorem,
which is here combined with Tay’s theorem into one statement.

Theorem 1 (Tay’s Theorem/Molecular Theorem) A generic three-dimensional
body-bar framework (body-hinge/molecular framework where bonds (hinges) are



350 A. Sljoka

Fig. 14.6 a 3D body-hinge framework composed of seven rigid bodies connected by hinges (lines)
can be modelled as a body-bar framework (with a corresponding body-bar multigraph shown).
b A molecule consisting of two carbon atoms and a single bond can be viewed as a body-hinge
structure where atoms are rigid bodies (one-valent hydrogen atoms are a part of a carbon atom
rigid body, as their angles are fixed and can only spin around their axes) and a hinge is a rotatable
bond, with corresponding body-bar multigraph. ¢ A ring of seven carbon atoms (ignoring one-valent
hydrogens) with a corresponding multigraph. (According to the molecular theorem a ring of seven
atoms will have one internal degree of freedom. The total number of edges is 7(5) = 35, while
we need 6|7| — 6 = 36). d Protein structure can be modelled as a molecular body-bar multigraph
with black, red, and green lines corresponding to covalent bonds, hydrogen bonds, and hydrophobic
contacts, respectively

replaced by five bars) on a multigraph G = (V, E) is minimally rigid if and only if
|E| = 6|V| — 6, and for all subsets of edges, |E'| < 6|V'| — 6.

In the stated original form, Tay’s theorem leads to an exponential algorithm, as it
requires counting the number of edges in every subgraph. However, because these
counts of G (same as Laman’s counts) define an independent set in a matroid [13, 35],
this gives rise to greedy algorithms that can be used to efficiently track these counts.
It is well known that all matroidal structures have greedy algorithms. A number
of fast polynomial algorithms based on matroid unions, tree decompositions, and
extension of bipartite matching algorithms, such as the pebble game algorithm, were
subsequently developed for tracking these rigidity certifying counts (independence)
in graph and subgraphs [16, 39].

14.3.1.3 Pebble Game Algorithm

The pebble game algorithm can very rapidly decompose a body-bar/molecular graph
(i.e., protein structure) into rigid and flexible regions and quantify the overall number
of degrees of freedom. The main step of the pebble game algorithm is to determine if
a constraint (edge) is “independent’ (i.e., removes degrees of freedom) or is "redun-
dant’ as its insertion has no effect on rigidity. The algorithm iteratively builds a
maximal independent set of edges. We give a basic procedure of how the main steps



14 Structural and Functional Analysis of Proteins Using Rigidity Theory 351

of the pebble game algorithm are carried out for Tay’s theorem without full details
or speedups, which can be found in previous publications [16, 39]. A similar proce-
dure can be derived for Laman’s counts or other matroidal independence counting
conditions. The implementation of the pebble game algorithm routine given here,
which tracks counts in the molecular theorem, is important for the protein flexibility
analysis that has been implemented in several software packages. such as FIRST (see
below).

The Pebble Game Algorithm 6|V | — 6:

Input: A multigraph G = (V, E) .

Initialize 7 (G) and $R(G ) to an empty set of edges. Place six pebbles on each vertex of G. (Fig. 14.6a)
Test the edges of E in an arbitrary order.

1. Until every edge in G has been tested, take any untested edge e, and go to step 2. Otherwise go
to step 3.
2. Count the number of free pebbles on the endvertices of e, say vertex u and v.

(a) If the vertices u and v have at least seven free pebbles, then place any pebble from either
u or v onto e, directing the edge e from that vertex (Fig. 14.6b). Place e into 1(G)
(independent edges) and return to step 1.

(b) Else, search for a free pebble from u and v, by following the directed edges (covered
edges) in the partially constructed directed graph 7 (G) (Fig. 14.6c¢).

(i) If the free pebble is found on some vertex w at the end of the directed path P (which
starts at u or v), we perform a swap or sequence of swaps (cascade), reversing the
entire path P, until a free pebble appears on the initial vertex (# or v) of the path
P (i.e., w loses one free pebble, and u or v gains one free pebble) (Fig. 14.6c—e).
Return to Step 2.

(i) Else, we could not find the seventh free pebble, and the edge is declared redundant
(could not be covered by the pebble) (Fig. 14.7). Place e into $3(G) (redundant
edges). Return to step 2.

3. Once all edges have been tested, stop.
Output: The sets /(G) and R(G) = E — 1(G).

When the algorithm is finished, 7 (G) is the maximal independent set of edges (edges that are
covered by pebbles). J3(G) is the set of redundant edges (edges that were not covered by a pebble).
Total degrees of freedom (DOF) in a graph = number of remaining free pebbles.

The pebble game algorithm described here tracks the independence of edges in
graphs prescribed by the molecular theorem. The initialization of placing six free
pebbles on each vertex (corresponds to six trivial rigid body motions) tracks the 6| V|
part of the count. Pebbles are synonymous with degrees of freedom and removal of a
pebble indicates the inserted constraint (edge) is independent. Redundant constraints
do not remove degrees of freedom (pebbles) as their insertion (or deletion) from an
already rigid region causes no change in rigidity. Every time an edge is pebbled, it
grows the set of independent edges. Pebble game algorithms are building a maximal
subsets that are independent; at every stage, the edges covered by pebbles will satisfy
|E’| < 6|V'| — 6 on all subsets. The requirement of at least seven free pebbles on the
vertices before an edge is pebbled (i.e., declared independent) ensures the critical
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Fig.14.7 A demonstration of a 6|V | — 6 pebble game algorithm on a 3D cyclohexane graph. Edges
are pebbled one by one (when there is at least seven free pebbles on its end vertices (a, b). If we
cannot locate seven free pebbles we can search for free pebbles along with the partially created
directed graph, swapping pebbles back. The graph has six remaining free pebbles and all edges are
pebbled, indicating it is minimally rigid

subtraction in 6| V| — 6 is respected on all subsets of edges. The algorithm is greedy.
In other words, regardless of the order the edges are pebbled (i.e., are tested for
independence), the algorithm will always give unique answers for total remaining
free pebbles, the size of maximal independent / (G) and redundant S3(G) set of edges.
The pebble game algorithm is a very intuitive algorithm, which in the worst case runs
in O(V?)[39], and in practice, it runs in linear time [15] (Fig. 14.8).

There are many extensions one can extract from the pebble game [16]. For exam-
ple, when we cannot locate the seventh free pebble, the failed search over the directed
graph indicates a rigid cluster. By using this procedure, it is possible to find all the
maximal rigid clusters and redundantly rigid clusters (Fig.14.7). Prediction of a
highly redundant rigid clusters provides useful importance to a biochemist as these
regions will have additional robustness, and will not become unstable (flexible) due
to one or few edges breaking. For example, when a hydrogen bond breaks in a sig-
nificantly redundantly rigid region, it will not alter its rigidity. We can also extract
the relative degree of freedom count for any subgraph in G. This is very useful in
the prediction of flexibility of particular regions of interest in protein graphs, for
example, in antibody protein flexibility studies and in allostery predictions, which is
discussed in next section.
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Fig. 14.8 6|V | — 6 Pebble game algorithm. a When we cannot pebble an edge, it indicates that
edge is redundant and the corresponding failed search locates a redundantly rigid subgraph (b).
Overall, the graph is flexible with one internal degree of freedom, as indicated by the remaining

seven free pebbles. Rigid clusters are circled. Each one of the bonds can be moved with one internal
rotational degree of freedom

14.4 Protein Flexibility, Dynamics, and Function Analysis
with Rigidity Theory

14.4.1 FIRST and Rigid Cluster Decomposition

The pebble game algorithm is the main component of the programme FIRST [15] and
other related software for analysing protein rigidity and flexibility. Starting with a
protein structure (experimentally or computationally determined structure) in Protein
Data Bank File format, the programme FIRST begins by creating a molecular body-
bar multigraph. The multigraph consists of all atoms (including hydrogen atoms)
represented by vertices, with covalent bonds, hydrogen bonds, hydrophobic contacts,
and electrostatic interactions represented by edges. Covalent bonds are modelled as
five edges, with six edges for double bonds and peptide bonds (as they do not have
bond rotation), while hydrogen bonds and hydrophobic interactions are modelled
with between one and five edges [25]. Hydrophobic contacts are defined as a pair of
carbon—carbon, carbon-sulfer, or sulfer—sulfer atoms in close contact. Each hydrogen
bond is assigned an energy strength in kcal/mol using an energy potential based on
hydrogen donor and acceptor geometries. Hydrogen bonds are very important to
the overall protein shape and stability. A hydrogen bond cutoff energy value (which
mimics temperature) is selected such that all bonds weaker than this cutoff are ignored
in the graph. Once the final constraint multigraph is obtained (Fig. 14.6d), FIRST then
uses the pebble game algorithm and molecular theorem to decompose the protein
into rigid and flexible regions.
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Fig. 14.9 Rigidity and flexibility analysis using FIRST and the pebble game algorithm on protein
data from the Protein Data Bank (Protein Data Bank ID, 2jz3). The hydrogen bond dilution plot
indicates how the protein breaks down as the hydrogen bond cutoff is increased (i.e., energy is
increased), breaking hydrogen bonds one by one. Flexible regions are indicated by thin black lines
and rigid regions are indicated by blocks, with separate colours indicating distinct rigid clusters.
Flexible regions are coloured black on the protein structure. Initially, with inclusion of all potential
hydrogen bonds, the protein is dominated by a few large rigid clusters (indicated by separate colours),
and as hydrogen bonds are gradually broken with increasing energy, most of the protein becomes
flexible (black) with a few remaining rigid clusters

Figures 14.9 and 14.10 show some examples of rigid cluster decompositions
obtained with FIRST and the pebble game algorithm for two proteins. The rigid
cluster decomposition on a very large Spike protein complex consisting of nearly
4000 residues was obtained in less than one second of running time (Fig. 14.10) We
can monitor gradual changes in the rigid cluster decomposition as hydrogen bonds
are removed one by one (i.e., by lowering the hydrogen bond energy threshold) in
the order of increasing bond strength. The change in rigidity can be visualized using
a hydrogen bond ’dilution plot’ (Fig. 14.9). Because the pebble game is a combinato-
rial integer algorithm (tracking molecular theorem counts) as opposed to a numeric
algorithm, FIRST always gives a unique exact answer.

While tremendous computational power and resources are needed to simulate pro-
tein flexibility with MD simulations, FIRST can predict rigid clusters and flexible
connections in less than one second on a typical PC/laptop. Because of its speed and
efficiency, rigidity theory analysis using FIRST and other related programmes have
been widely applied to analysing various aspects of protein function and flexibility
analysis, such as viral capsids [40] (with enormous structures containing hundreds
of copies of protein structures), protein engineering, and prediction and replica-
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Fig. 14.10 Rigid cluster
decomposition obtained with
FIRST on a very large
SARS-CoV-2 (in
COVID-19) spike protein
complex (Protein Data Bank
ID 6vyb). At -1kcal/mol
energy cutoff, spike protein
consists of more than 70
rigid clusters, each
containing at least 20 atoms

tion of experimental measures of dynamics such as hydrogen—deuterium exchange,
allostery, and enzyme catalysis [11, 12, 15, 17-19, 23, 24, 26].

14.4.2 Large-Scale Rigidity and Flexibility Analysis

As an illustration of the efficiency and wider applicability of rigidity theory for large
big-data high-throughput analyses of protein structures, we review a study where the
author and colleagues carried out the largest study to date of flexibility predictions
of antibody protein structures [41].

Antibodies are proteins produced by B cells that play a main role in the adaptive
immune system. They recognize a variety of pathogens and induce further immune
response to protect the organism from external disturbance. Molecules that are bound
by antibodies are called antigens. The focus of this study was to characterize flexibil-
ity of the key hyper-variable binding region on antibody called CDR H3 loop, which
is the most important region in binding and recognition of various antigens. More
specifically, we analysed whether the conformational flexibility of CDR H3 loop is
changed as antibodies undergo affinity maturation. Antibodies can rapidly evolve
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Fig. 14.11 Antibody is a large Y-shaped molecule. CDR H3 loop (shown in red) is located on the
surface of each antibody arm, acting as a key region for antigen binding and recognition. In the
study, authors applied extensions of the pebble game algorithm to analyse flexibility of the H3 loop
using thousands of naive and mature structures. There was no significant difference in flexibility
between the naive and mature H3 loops (figure on right adapted from [41])

to specific antigens, where affinity maturation drives this evolution through multiple
cycles of mutation leading to enhanced antibody specificity and affinity. In this study,
we utilized various extensions of the pebble game algorithm, initially developed in
[16], which enables quantification of local flexibility of any subgraph, with focus
on CDR H3 regions. By analysing thousands of mature and naA~ve antibody crystal
structure and homology models, we found no clear statistically significant differ-
ence in the flexibility of CDR H3 loops (Fig. 14.11), which was also correlated with
experimental measures of flexibility. Such large-scale analysis of the flexibility of
protein structures could be carried out because of the speed of the underlying FIRST
method and our various pebble game extensions.

14.4.3 Protein Allostery Analysis with Rigidity Theory

We now briefly discuss and review an important application of rigidity theory for
analysis of allosteric signalling in protein structures. Allostery is one of the most
powerful and fundamental mechanisms regulating protein function [8—12, 42—44].
Allostery refers to the regulation of protein function at a distance, where a pertur-
bation of a protein structure at one part of protein structure (for example, due to
a binding or mutational event) can affect conformations and dynamics at another
distant site, resulting in regulation of protein function. Allostery is a common event
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in the cell, and most dynamic protein exhibit some form of allosteric control mech-
anism. Allostery has been referred to as ‘the second secret of life’, second only to
the genetic code [8]. Monod and Jacob in 1960s [43] first introduced the allostery
concept; however, most questions pertaining to allostery are still largely unresolved.
Decoding the allosteric mechanism remains one of the key long-standing unsolved
problems in the biological sciences.

One of the important areas in allostery research is describing the physical mech-
anism of distant coupled conformational changes. The utilization and extension of
our earlier fundamental work in modelling allostery in frameworks and graphs [16]
and a first rigidity-based mechanistic model of allosteric signalling has led to several
important breakthroughs in understanding how allostery controls enzyme and recep-
tor function [11, 12, 24, 44]. Our rigidity theory methods predict that if mechanical
perturbation of rigidity at one site of the protein can transmit and propagate across a
protein structure and, in turn, cause a change in the available conformational degrees
of freedom and a change in the conformation and dynamics at a second distant site,
resulting in allosteric transmission (Fig. 14.12a). Using various extensions of the
pebble game algorithm, we can analyse how long-range conformational coupling
occurs in protein structures, map out allosteric pathways (regions in protein that are
important for allosteric signalling) and extract various other properties and features
of long-range coupling.

A popular hypothesis is that dynamical effects play a central role in enzyme
catalysis. Dynamical changes are often manifested in proteins through allosteric
effects, where a substrate binding can cause changes in dynamics at remote parts
of a protein. In a study published in Science [11] concerning bacterial homodimeric
fluoroacetate dehalogenase enzyme, experimental NMR chemical shift data sug-
gested that when a substrate binds to one monomer, the second empty monomer
undergoes asymmetrically pronounced conformational changes through an increase
in flexibility in dynamics, thereby entropically favouring the forward reaction. Our
rigidity-based allostery theory was able to verify this and elucidate in great detail the
key residues involved in the allosteric pathways responsible for changes in dynamics
and how substrate binding enhances allosteric communication between two subunits
(Fig. 14.12b). These findings also provided deep insights into the energetic nature of
allosteric processes that drive catalysis.

In a follow-up study [24], we showed that when there is a high concentration of
substrate, the enzyme undergoes catalysis inhibition through the reduction in dynam-
ics and dampening of interprotomer allosteric effects. Our computational rigidity
predictions of allosteric networks and resulting changes in dynamics when addi-
tional substrates were bound to the enzyme were validated with NMR and functional
experimental studies. These studies represented a major breakthrough in illustrating
the role of dynamics and allostery in enzyme function.

Our rigidity-theoretical approaches have been extremely useful for studying
allostery in other enzymes and proteins. Indeed, we were able to provide a major
advancement and new level of insight regarding key allosteric processes in GPCR
activation. GPCRs are situated in the plasma membrane, engage the G-protein and
initiate cell signalling [45]. In several studies [12], we have shown how interactions
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Fig. 14.12 Rigidity theoretical model for allosteric communication. a Conformational changes in
one region of the framework (or protein structures) can propagate and change conformations and
rigidity at distant regions. b Rigidity theory allostery analysis showed that homodimeric fluoroac-
etate dehalogenase enzyme with substrate fluoroacetate molecule (shown as orange spheres) exhibits
allosteric communication between the two subunits (shown in distinct colours), which is critical for
enzyme catalysis [11, 24]. ¢ In a study of human adenosine A2A receptor [12, 18]., a member of
superfamily of receptors called G-protein-coupled receptors (GPCRs) a similar approach was used
to discover that allosteric communication between receptors and different domains of G-protein is
critical for full receptor activation

between GPCR and its natural G-protein binding partner affect activation networks,
as is critical for optimal GPCR activation (Fig. 14.12c), or how sodium, calcium,
and magnesium can affect this activation process [18]. Our rigidity theory-based
approaches offer a new perspective and opportunity to study the various facets of
allosteric regulation of protein function, which will allow us to examine complicated
signalling events in the cell.

14.4.4 Using Rigidity Theory to Simulate Protein Dynamics

So far, the discussion has focused on infinitesimal flexibility (which is equivalent
to finite flexibility, assuming atom positions are in a generic configuration) and not
on continuous motions. In other words, FIRST and the pebble game outputs do
not simulate protein dynamics and indicate the amplitude of motions. One useful
extension is to combine the rigid cluster decomposition with Monte Carlo-based
geometric dynamics simulations [20, 21]. Rigid cluster decomposition can remove
hundreds of degrees of freedom from the overall protein framework and serve as a
natural coarse graining step to speed up protein dynamics simulations [19, 46]. For
example, the all-atom geometric simulation method FRODA (Framework Rigidity
Optimized Dynamic Algorithm) (which runs about 100,000 times faster than MD
simulations) [20] uses rigid clusters as a preprocessing step to explore the conforma-
tional space of the protein motions. The rigid clusters, whose size and number depend
on the selected energy threshold and the type of protein structure being analysed, can
be kept fixed as rigid body geometrical components in the simulation motion (see
Fig. 14.13). The atoms belonging to a rigid cluster can only move by utilizing trivial
rigid body degrees of freedom. With this in mind, simulations can be focused on sim-
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Fig. 14.13 Geometric simulation as used in FRODA/FRODAN (a). A part of a 2D slice through
the 3N-dimensional conformational space, where red indicates disallowed states and blue indicates
allowed states [21]. A random move (green arrows) is accepted if it falls within a blue region
(green dots) and rejected if it falls within a red region (yellow dots), followed by enforcement of
the constraints (yellow arrows). The black path produces a valid geometric path within the allowed
conformational space. Any rigid region (which can be potentially very large) identified with FIRST
moves as a single rigid body within FRODA or very small rigid clusters or individual atoms within
FRODAN. b FRODA was applied to a large antibody protein to explore the large-scale motions of
arms (green and orange) of the Y-shaped antibody structure, where three distinct colours represent
three separate large rigid bodies. ¢ FRODAN dynamics simulation illustrating internal dynamics of
a Spike protein [47]

ulating the relevant degrees of freedom belonging to intermediate flexible regions.
FRODA rapidly generates geometrically valid conformations that are consistent with
bond lengths and angular constraints while maintaining all rigid clusters. In these
protein motion simulations, we need to add the van der Waals collisions of atoms as
constraints, where only allowed geometries (valid stereochemistry, bonding angles,
Ramachandran plots etc.) accessible to protein motions are simulated. Figure 14.13b
shows the output of FRODA for an antibody protein, which exemplifies large ampli-
tude motions.

We have applied and extended FRODA, using the related constrained geomet-
ric simulation programme FRODAN [21], which, like FRODA, provides very fast
motion simulations but is better suited for proteins that are not dominated by large
rigid clusters. In a FRODAN simulation, the rigid clusters are typically small, from
single atoms up to small rigid cycles (e.g., proline rings and rigid loops). This makes
FRODAN useful for simulations of protein motions that include substantial unfold-
ing and refolding and analysing motions of intrinsically disordered proteins. Indeed,
we have utilized a similar approach in combination with an experimental measure
of dynamics, hydrogen—deuterium exchange, to characterize the highly complex
motions and conformational ensemble of a large intrinsically disordered Tau protein
[22]. Tau protein is a key protein in a number of pathologies and dementias such as
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Fig. 14.14 a Tau protein is a large intrinsically disordered protein. Because of its high flexibility
and disordered structure, it is able to take a wide variety of shapes, which makes it difficult to study
with conventional MD simulations. b By performing large rigidity theory geometric simulations
using FRODAN and its extensions, we were able to characterize the representative structures for the
native and defective (i.e., hyperphosphorylated) forms of Tau, which was shown to be in agreement
with HDX experimental data (The figure in b is adapted from [22])

Alzheimer’s disease, and its primary physiological role is to stabilize microtubules
in neuronal axons at all stages of development. One of the main challenges in under-
standing the Tau structure—function relationship and finding successful therapeutics
for Alzheimer’s disease is the poor understanding of the atomic structural ensemble
and dynamics of the Tau protein. Moreover, Tau protein undergoes modifications to
its shape and internal dynamics as mediated by a hyperphosphorylation defect. By
performing FRODAN simulations and our various extensions, we were able to show
an unprecedented first detailed view of the structural and dynamic characteristics
of both the normal and the defective hyperphosphorylated forms of Tau [22]. This
study provided a rich understanding of the structural basis of Tau pathology (see
Fig.14.14).

FRODA, FRODAN and our various extensions can be applied to probe the dynam-
ics of very large structures such as Spike proteins [47] or disordered proteins, which
provides a significant advantage over traditional MD simulations. Probing motions of
intrinsically disordered proteins with MD simulation is extremely challenging, if not
essentially impossible, owing to their highly dynamic character. The rigidity theory-
inspired methodologies FRODA/N discussed here can be run in either targeted and
non-targeted modes, and we have recently combined these techniques with search
algorithms in reinforcement learning (under review). The targeted mode employs
biasing force during transitioning, while the non-targeted mode explores unbiased
random fluctuations, which enables the exploration of a broad conformation space.
Additionally, the targeted mode is useful for determining the conformational tran-
sition pathways between distinct conformations (i.e., opening and closing motions
such as hinge-bending motions, GPCR activation, etc.).
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14.5 Protein Structure Validation with Rigidity Theory

We now discuss another application of rigidity theory to structural biology. In a very
recent study, we made an important breakthrough in the area of protein structure
validation [48, 49].

Experimentally solved protein structures are only useful if they are known to be
accurate and realistically represent the protein structures in their native environment.
The vast majority of protein structures in the Protein Data Bank [50] have been solved
by X-ray crystallography or NMR experiments. Both X-ray crystal structures and
NMR structures are only model representations of experimental data, which are prone
to uncertainties and errors. It is widely accepted that experimentally solved protein
structures must be validated with (i) geometric tests and (ii) how well structures
match input experimental data (restraints) [51]. Geometric criteria are easy to check
for both X-ray and NMR structures, and measurements like R factor and Rfree values
can be used to check how well X-ray structures match input X-ray diffraction data
[48]. Unfortunately, no such validation criteria exist for NMR structures [51], and
unlike crystal structures, validating the quality of NMR structures has been extremely
difficult. In fact, since the first protein was determined by NMR in 1985 until now,
there has been no effective method for NMR protein structural validation, which has
largely limited the applications and use of NMR structures among protein researchers
[51-55]. This has created a problem not only for users of structural information, but
also for scientists who use NMR to computationally solve structures and want to
know how accurate their solved structure is.

While structures solved by NMR represent less than 10% of all structures in
PDB, they are extremely important, as not all proteins can be crystalized and NMR
structures also include a high proportion of proteins with under-represented folds
(shapes). NMR structures are determined in solution (a protein’s natural environ-
ment), whereas X-ray structures are determined in a crystalline environment, which
arguably makes NMR structures more representative of in vivo structures. Hence,
there has been a pressing need to find an acceptable validation measure for NMR
structures.

We have developed the method ANSURR (Accuracy of NMR Structures Using
Random Coil Index and Rigidity) [48], which addresses this critical long-standing
gap for NMR protein structure validation. ANSURR assesses the quality of NMR
structures by comparing two measures of local protein rigidity, one derived from
the original NMR input data and the other derived from rigidity theory prediction
of protein flexibility using structural data. The measure of rigidity using input data
is based on the Random Coil Index (RCI), which uses experimental NMR chemical
shifts (a readily available data type for each NMR structure) to quantify the extent
of disordered structure for each amino acid in solution. The second measure is based
on FIRST and our rigidity theory extensions, which involves calculating the dilution
plot (see Fig. 14.9) and extracting a flexibility score for each residue. ANSURR then
compares these two measures of local rigidity and provides a residue-by-residue test
of how well the rigidity of the structure (obtained from rigidity theory) compares
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Fig. 14.15 a The ANSURR method evaluates the accuracy of nuclear magnetic resonance (NMR)
protein structure (which are given as an ensemble of models) by comparing two measures of protein
flexibility (orange predicted from structure, using mathematical rigidity theory using extensions of
the method FIRST, and blue derived from the random coil index [RCI] using experimental NMR
chemical shift data). b Analysis of ANSURR using four models from NMR (Protein Data Bank ID,
le17). ANSURR provides two metrics for accuracy: a correlation score between FIRST (rigidity)
and RCI and a root mean square difference (RMSD) score. The structures in the top right portion of
the plot (high correlation and high RMSD scores) are high-quality NMR structures, and structures
in the bottom left of the plot are considered poor structures (Figure adapted from [48]). ¢ ANSURR
output for an example NMR structure (Protein Data Bank ID, 2kpp) that has high accuracy for most
models in the ensemble

to the experimentally determined (true, RCI chemical shift) rigidity. ANSURR pro-
vides two metrics for accuracy measurement. One is a correlation score between
FIRST (rigidity) and RCI, which assesses the accuracy of protein folding (secondary
structures), and the second is an RMSD score, which measures how well the overall
rigidity and flexibility between FIRST and RCI match (Fig. 14.15).

Unlike crystal structures, NMR structures are always represented as an ensemble
of (typically around 20) possible structural models. Because it is unclear which
models are useful or accurate, this has created substantial and unnecessary confusion
for users of NMR structures. A nice feature of ANSURR is its ability to estimate the
accuracy of each model.
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The performance of ANSURR was tested using several approaches [48]; first,
ANSURR was applied to structures refined in an explicit solvent (which was found
to be much better than unrefined structures), and then ANSURR was applied to a
large set of good and bad structures (using decoy generations). ANSURR was also
compared against previously proposed measures of accuracy (mostly restraint-based
tests and geometric checks). Several of these indicators, such as restraint violations
and restraints per residue, were shown to be poor measures of accuracy. On the
other hand, a Ramachandran analysis (a standard check to determine if a protein
backbone has a correct geometry) was found to be a useful geometric check of
accuracy. A typical comparison of how well a structure compares to another structure
is the backbone root mean square deviation, which can show if protein structures
resemble each other when superimposed. However, this measure may miss many
of the important structural differences found in amino acid side-chain orientations,
which are responsible for forming critical hydrogen bonding interactions that have
a direct impact on protein stability and functional aspects such as protein dynamics
and enzyme catalysis. As rigidity measures are sensitive to side chains, ANSURR
can also be used to assess the quality of side-chain atomic positions, which makes it
a powerful tool for the assessment and refinement of protein structures.

Recent work [49] applied ANSURR to more than 7000 NMR structures in the
PDB, showing that NMR structures span a wide range of accuracy. Most NMR
structures have accurate secondary structures, but are too floppy, particularly in their
loops. Our studies also indicate that both crystal structures and NMR structures have
equally accurate secondary structural elements (helices, sheets), but crystal structures
are typically too rigid in disordered regions, whereas NMR structures are too flexible
overall.

Development of ANSURR is a major advancement in the long-standing prob-
lem of protein structure validation, as it provides the first workable measure of the
accuracy of NMR structures and is expected to give researchers more confidence in
the use and application of structural NMR. Ultimately, this should lead to a better
understanding of how proteins perform their functions, with general implications for
structural biology research. This work opens up enormous new research avenues in
protein structure determination and the improvement of standards for protein struc-
ture refinement.

14.6 Conclusion

Studying the rigidity and flexibility of geometric frameworks has advanced consid-
erably since Maxwell’s combinatorial characterization of the rigidity of mechanical
frameworks in the 1800s. Mathematical advancements in rigidity theory over the
last two decades have been tremendous, opening up many exciting opportunities in
applied sciences and engineering. In this chapter, we have reviewed some of the
latest advances in rigidity theory and its applications for the analysis of protein
function at an atomistic scale. Moreover, we have shown how rigidity theory-based
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methods and our various algorithms and extensions can rapidly and accurately pre-
dict protein flexibility and dynamics, which can be used to decipher various aspects
of protein function, including elusive issues of allostery, enzyme catalysis, GPCR
signalling, or motions of intrinsically disordered proteins. Our recent development
using rigidity theory in protein structure validation has led to a development of a first
workable method in validation of NMR protein structures. This advance will provide
confidence to users of protein structures and is expected to accelerate and improve
the process of protein structure determination and aid computational drug discovery.
Rigidity theory is heavily rooted in deep mathematical formulations in the area of dis-
crete applied geometry and combinatorics, which has unfortunately remained largely
inaccessible to most researchers in applied science and engineering fields. While
there has been some cross-fertilization between the various scientific fields studying
different aspects of rigidity and flexibility, stronger interactions and interdisciplinary
training are needed between applied and theoretical scientific communities to realize
the enormous potential of rigidity theory applications. We advocate that rigidity the-
ory, through both algorithmic and mathematical progress, has significantly advanced
such that it could be widely applied in the analysis of structural biological data, which
can complement experimental approaches to reveal novel insights on intractable and
fundamental biological enigmas of living organism. Rigidity theory exemplifies how
mathematics and algorithms can make significant contributions to structural biology,
biological big-data analyses, and progress in biological applications.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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