
Chapter 10
Robust and Fast Registration for Lidar
Odometry and Mapping

Wenbo Liu and Wei Sun

Abstract Outliers, such as sensor noise, abnormal measurements, or dynamic
objects, can damage the overall accuracy of a Simultaneous Localization and
Mapping (SLAM) system. Aiming at to improve the performance of Lidar SLAM
systems in urban scenes containing a large number of outliers, we propose a real-
time, feature-based, and outliers-rejection Lidar SLAM system. By embedding an
outlier elimination method based on 4-points congruent sets into a state-of-the-art
SLAM framework and further optimizing the traditional single-step registration to
coarse-to-fine registration,we can solve the problemof time-consuming, highmotion
drift, and wrong mapping caused by the current Lidar SLAM systems which cannot
effectively detect and eliminate the outliers in surrounding environment.

10.1 Introduction

Simultaneous Localization and Mapping (SLAM) is the most basic prerequisite of
intelligent robots and the necessary ability of driverless vehicles. Although there are
many accurate and effective solutions to SLAMproblems, such as the methods based
on vision [1] or Lidar [2, 3], or integrating their advantages [4], most of the existing
methods [5, 6], including them, are based on the assumption of a static world, which
greatly limits the scope of application of these excellent methods. The typical method
to estimate Lidar ego-motion is to apply the iterative closest point (ICP) method to
the point clouds of adjacent frames [7]. However, Lidar-based methods can work
even in the dark, and many 3D Lidars can capture the details of the environment over
a long distance [6]. Therefore, this work focuses on the use of 3D Lidar to deal with
the problem of SLAM in urban environment containing complex outliers.
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The main contributions of this paper are as follows:

• We integrate a robust outliers elimination method based on 4-point congruence
set into a state-of-the-art SLAM framework to further improve the accuracy and
robustness of odometry and mapping.

• We use a reasonable coarse-to-fine registration method to replace the traditional
single-step registration method to further reduce computation of the registration
part, so as to reduce total runtime consumption of the system.

The rest of the paper is organized as follows: we introduce the related work in
Sect. 10.2, describe the proposed method in Sect. 10.3, compare our method with
the most advanced method in Sect. 10.4, and summarize our work and put forward
the prospect in Sect. 10.5.

10.2 Related Work

10.2.1 Point Cloud Registration

The overlap rate of two point clouds to be registered is a key parameter, which is
usually inversely proportional to the number of outliers. If two point clouds have
a large overlap rate or obvious point correspondence, then their registration can be
achieved by the iterative closest point [8] and various improved algorithms without
initialization. ICP will fall into the local optimal solution. Go-ICP [9] and Gogma
[10] use branch and bound in six-dimensional space to achieve global registration
of point clouds without corresponding points. Because branch and bound method
has exponential complexity, these methods are computationally expensive, and they
often diverge due to small overlap [15].

The common rough registrationmethods are divided into hypothesis, test methods
are represented by Random Sample Consensus (RANSAC), and geometric feature-
based methods are represented by 4PCS [11]. RANSAC and its improved algorithm
have cubic complexity and are not suitable for large-scale point clouds. Mellado
et al. [13] reduced the complexity to quadratic and linear successively by matching
the congruent four-point sets in two point clouds. Theiler et al. [12] use the set of
key points for matching, which reduces the size of the set to be searched. Mohamad
et al. [14] generalize the construction of coplanar four-point basis, which further
improves the efficiency of point cloud registration. Raposo and Barreto [15] only
use the topological relationship and normal vector between two points to construct
matching rules, which greatly improves the registration efficiency and is suitable
for point clouds with smaller overlap ratio. On the basis of the initial solution of
coarse registration, precise registration is used to locally minimize the nonconvex
error function to obtain the exact solution. Shan and Englot [6] suggest searching
rotation and translation separately to reduce the registration complexity.
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There are a lot of related works, but they either cannot fully meet the requirements
of real-time, robustness, and high-precision in Lidar SLAM or have not carried out
systematic experiments on Lidar point cloud dataset.

10.2.2 Lidar Odometry and Mapping

LOAM [2], rank second in the odometry evaluation project of KITTI vision bench-
mark [16], has a very low drift in the short-trajectory scenarios, and LOAM has
greatly promoted the development of Lidar SLAM field. However, LOAM has no
loop closure detection to eliminate the continuous accumulation of errors, so it may
produce significant errors in the case of long trajectory. More importantly, LOAM
does not consider dynamic objects, resulting in incorrect results in dynamic scenes.
LeGo-LOAM [6] optimizes LOAM by adding loop closure detection to reduce
motion drift, adding clustering and segmentation modules to filter out clusters with
less than 30 points to realize filtering of noise. LOL [17] improves odometry accu-
racy by detecting the geometric similarity between online 3D point clouds and prior
offline maps.

10.3 Proposed System

10.3.1 Task Description and Definitions

The problem addressed in this work is how to use the point cloud observed by 3D
Lidar to estimate its ego-motion and build a globalmap for the traversed environment.

We define the point cloud measured as P, Lidar pose as X, global map as M, use
the upper right corner to represent the time stamp and define the K-scan point cloud
as Pk, where a point is pki , that is, P

k = (
pk1, p

k
2, . . . , p

k
n

)
, pki = (

xki , y
k
i , z

k
i

)
, where

n is the size of the point cloud, k ∈ N
+.

Under the above definition, the problem can be modeled as: Given map Mt−1,
Lidar pose Xt−1 at time t − 1, and point cloud P t at time t, to update Xt and Mt , as
can be shown in (10.1) and (10.2).

Xt = F
(
Xt−1, P t) = F

(
Xt−1,W

(
P∗t ,Wt

))
(10.1)

Mt = G
(
Mt−1, P t) = G

(
Mt−1,W(P∗t ,Wt )

)
(10.2)

where P∗t is the description of the real scene in the field of vision at time t.
Wt = (wt

1, w
t
2, . . . , w

t
i ) is the sum of many interference factors such as sensor

noise, abnormal measurement values, or dynamic objects. W is the unknown noise
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function that transforms the real scene into the measurement point cloud. Next, we
define the set of outliers in point cloud caused by Wt that are harmful to registration
as Pout , and the remaining points are Pin, namely,

P = Pout ∪ Pin = W
(
P∗,W

)
(10.3)

The task of this paper is to find the optimal function F and G, and the core
procedure is to find and eliminate Pout to optimize them.

10.3.2 Segmentation

The input of the segmentation module is the original 3D LIDAR point cloud P =
{p1, p2, . . . , pn}, the output is m clusters {PC1 , PC2 , . . . , PCm } and corresponding
cluster label vector L = (l1, l2, . . . , ln), where li ∈ [−1,m]∩Z, label −1 represents
the point belongs to the ground, and the positive integer represents the serial number
of non-ground clusters.

The point cloud Pk is first projected onto the circular range image PU,V �
{p(u,v)|u ∈ [1, 360◦/Rhori]∩Z, v ∈ [1, Nscan]∩Z} of size Npixel = 360◦/Rhori∗Nscan.
The row index rowi of pi is shown in (10.4), and the column index coli is shown in
(10.5).

rowi =
⎛

⎝tan−1 zi√
x2i + y2i

+ Pitbottom

⎞

⎠/Rvert (10.4)

coli = tan−1 yi
xi

/Rhori (10.5)

The value of the image is the distance from pi to the Lidar ri =
√
x2i + y2i + z2i ,

where Rhori is the horizontal resolution of the Lidar, Rvert is the vertical resolution
of the Lidar, Pitbottom is the minimum pitch of the Lidar Lidar beam, and Nscan

is the number of Lidar lines. After the projection, a point pu,v+1 and pu,v , v ∈[
1, 1

2Nscan
] ∩Z in P can be uniquely identified by the row index and column index,

denoted by:

pi ≡ p(u,v) = (
x(u,v), y(u,v), z(u,v)

)
(10.6)

Then the ground is extracted from the range image PU,V . For points pu,v+1 and
pu,v , where v ∈ [

1, 1
2Nscan

] ∩ Z; if the pitch of adjacent rows Pitv,v+1 (as shown in
(10.7)) are less than 10°, they are denoted as ground points.

Pitv,v+1 = tan−1 zu,v+1 − zu,v+1√
(xu,v+1 − xu,v)2 + (yu,v+1 − yu,v)2

(10.7)
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Finally, the segmentation clustering method based on range image [18] was
applied to cluster the points into several clusters. Points from the same cluster are
assigned a unique label. After this process, for pki ∈ Pk, we get li , rowi , coli , and ri ,
where i ∈ [

1, Npixel
]∩Z. Pk is divided into a ground point set and some non-ground

point sets, that is, Pk = P g ∪ Png , and it is worth noting that both types of points
may contain outliers. The extraction of features from non-ground points can reduce
time-consuming and improve the accuracy of registration through label matching
and noise filtering.

10.3.3 Feature Extraction

In order to reduce the computation amount of registration, we extract the represen-
tative feature points to reduce the number of the points to be registered. The feature
extraction method is similar to that used in LeGo-LOAM. We first used (10.8) to
evaluate the curvature ci of point pi, defining points whose curvature is greater than
threshold cthre as edge features and points whose curvature is less than cthre as plane
features.

ci = 1

|S|||ri ||

∥∥∥
∥∥∥

∑

j∈S, j �=i

(r j − ri )

∥∥∥
∥∥∥

(10.8)

where S is a set of continuous points on the same row from the image, points in S
are uniformly distributed on both sides of pi, and |S| is the number of points in S.

10.3.4 Lidar Odometry

The input of Lidar odometry module is the feature point in the point cloud, which
includes estimating the Lidar motion between adjacent scans and eliminating the
motion distortion of the point cloud through feature matching. Looking for the Lidar
of the adjacent scanning motion—by looking for rotation matrix R̃ ∈ SO(3) and
translation vector t̃ ∈ R

3 to minimize the point cloud registration error, such as
(10.9).

T̃ �
(
R̃, t̃

)
= argmin

(
∑

i

||R̃t
pti + t̃ − qt−1

i ||
)

(10.9)

where qt−1
i is the corresponding point at t − 1 found by pti .
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Fig. 10.1 Corresponding relation of feature points at adjacent moments

The LOAM details F, and LeGo-LOAM optimizes it. For brevity, this chapter
focuses on further optimization based on these methods, which is achieved by
matching only valid feature points in the adjacent frames. The optimization process
can be defined as:

min ||T̃ t − T ∗t || s.t. pti ∈ Ft
in (10.10)

There is the optimal transformation matrix from P t to P t−1, R∗ and tr∗ are the
corresponding rotation matrix and the translational vectors, and Ft

in is the set of
effective feature points at time t, namely Ft = (

Ft
out ∪ Ft

in

)
. The process of finding

the corresponding relationship is shown in Fig. 10.1, that is, the transformation is
found in the plane feature point set and the edge feature point set, respectively, and
the computational effort is reduced by reducing the candidate range of corresponding
points. We focus on two strategies, outlier elimination and weight compensation of
feature point.

(1) Outlier elimination: To solve this problem, we use the two-step coarse-to-fine
registration strategy, that is, rough registration is first used to detect outliers, and
then the outliers are avoided to participate in the L-M algorithm. We can express the
outlier feature point Fout as:

Ft
out = {

pti |||R∗ pti + tr∗ − qt−1
i || > ε ∧ pti ∈ Ft} (10.11)

where qt−1
i is the feature point corresponding to pti . We first define feature descriptor

dt and then use dt and dt−1 to calculate pose transformation T̃ rough as follows:

(1) Finding the first point in the four-point basis: We select the feature point
f t(u1,v1) ∈ Ft as the first point at1 in the ith range image, namely at1 � f t(u1,v1),

where ut1 ∈
[
1 + 360◦∗(i−1)

Nsub∗Rhori
, 360◦∗i
Nsub∗Rhori

]
∩ Z and vt

1 ∈ [ Nscan
4 , Nscan

2

] ∩ [vt−1
1 −

1, vt−1
1 + 1] ∩ Z.
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Fig. 10.2 Schematic diagram of four-point base selection

(2) Finding the second point:We select at2 � f t(u2,v2) in the sub-image farthest from

at1, where u
t
2 ∈

[
1 + 360◦∗

(
i−1+ Ndiv

2

)

Nsub∗Rhori
,
360◦∗

(
i+ Ndiv

2

)

Nsub∗Rhori

]
∩Z, f t(u2,v2) ∈ Pt

(U,V )i+ 1
2 Nsub

,

the line segment defined with at1 and a
t
2 as endpoints is l

t
1 � at1a

t
2.

(3) Constructing feature descriptors: We select at3 and at4 from the sub-images
excepting at1 and at2 to satisfy the conditions that lt2 � at3a

t
4 is coplanar

with lt1,
∣∣lt2

∣∣ >
|lt1|
4 , and ∠

(
lt1, l

t
2

)
> 180◦

Nsub
. The intersection of lt1 and lt2 is

et . Then we record feature descriptor dt , dt �
(
dt
1, d

t
2

)
when the above

three conditions are true, otherwise, dt �
(
dt
1, d

t
3

)
, where dt

1 �
(
at1, a

t
2

)
,

dt
2 �

(
at3, a

t
4, e

t ,∠
(
lt1, l

t
2

))
, and dt

3 �
(
cta1 , c

t
a2

)
.

(4) Matching feature descriptors: If the condition in (10.3) is true, and we use
Super4PCS [13] to match dt and dt−1; otherwise, we use 2PNS [15].

The process of the second L-M step is similar to that in the first step, but the edge
feature points is used instead, and the number of rows of feature points in (1) and (2)
is no longer limited (Fig. 10.2).

(2) Weight compensation of feature point: LeGo-LOAM gives the feature points
a weight si which is inversely proportional to the distance between Lidar and points
in the iteration process of L-M algorithm. The difference is that we also consider
the influence of the point cloud holes in the background caused by the occlusion of
dynamic objects on the stability of the system. Therefore, we reduce the weight of
the feature points within a certain range of the dynamic cluster.

s̃i = si∗
(

1 − Rhori∣∣θyaw
∣∣

)

(10.12)

where s̃i is the new feature weight and θyaw is the minimum yaw difference between
a feature point and a dynamic object.



106 W. Liu and W. Sun

10.3.5 Lidar Mapping

Let us review the mapping model G (10.2), which is to use Mt−1 and P t to build
Mt because the global map contains a lot of feature information, and the earlier
information contains less error. The Lidar mapping module further optimizes the
pose estimation by matching the Ft with the submap Mt−1

sub around the Lidar. Please
refer to the description in [20] for detailed matching and optimization procedures.
We use the map storage method in LeGo-LOAM to store only the feature point set
Ft .

Mt−1 �

⎧
⎪⎪⎨

⎪⎪⎩

{
F1

}
,
{
F2

}
, . . . ,

{
Ft−k2}

︸ ︷︷ ︸
Mt−1

hist

, . . . ,
{
Ft−k}, . . . ,

{
Ft}

︸ ︷︷ ︸
Mt−1

sub

⎫
⎪⎪⎬

⎪⎪⎭
(10.13)

In addition, the optional function is to further eliminate the error of the mapping
module by detecting the loop closure. In LeGo-LOAM, if Ft can find corresponding
feature in earlier map Mt−1

hist or recent features by ICP, a new constraint is added.
The difference is that we use coarse-to-fine registration strategy in odometry module
again to replace single-step ICP.

Then, the estimated pose of the sensor is updated by sending the pose map to the
optimized system (e.g., [19]).

10.4 Experiments

All experiments were performed on a laptop equipped with a 2.5 GHz Intel i7-4700
processor, 16 GB of RAM.

10.4.1 Feature Extraction

Figure 10.3 shows a frame of point cloud and feature points (in green) in scenario 1,
including five moving pedestrians (circled in white box), where Fig. 10.3a shows the
wrong feature extraction results of LeGo-LOAM. It can be seen that many feature
points are distributed on unstable outliers belong to pedestrians, while our result
(Fig. 10.3b) is more reasonable because we detect outliers and avoid extracting
feature points from them to avoid the incorrect odometry and mapping results caused
by wrong matching of feature points. To be concise, we only show the feature edge
points that are sufficient to illustrate the problem.

The results show that our method has the advantage of effective feature extraction
in scenes containing a large proportion of outliers (Table 10.1).
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Fig. 10.3 Feature extraction results of LeGo-LOAM and ours

Table 10.1 Comparison of effective features ratio between LeGo-LOAM and ours

Scenario Fe f e Fp f p

Ours LeGO-LOAM Ours LeGO-LOAM Ours LeGO-LOAM Ours LeGO-LOAM

1 0.96 0.57 0.97 0.59 0.99 0.52 0.98 0.83

2 0.98 0.82 0.98 0.83 0.99 0.80 0.99 0.94

10.4.2 Odometry

Figure 10.4 shows the odometry comparison results of scenario 1, where the red
curve is the result of LeGO-LOAM, while the blue one is ours. The results of the
two methods have little difference from a global perspective, but there are quite
differences in detail. We choose the most representative location (upper left corner
of scenario 1, where pedestrians gathering here) to show the contrast, as can be seen
from the green box, and the red line has a distinct jagged edge, which is exactly the
wrong odometry estimation caused by the outliers, while the blue line has no such
problem.

Figure 10.5 shows the comparison result between the two methods and the true
value in scenario 2, and we can see from Fig. 10.5 that the accuracy can still be
maintained in the long trajectory scene (with a length of about 3730 m). The relative
pose estimation error is calculated by comparing the final pose and the initial pose.
Rotation errors and translation errors of LeGo-LOAM are 5.65° and 3.19 m, while
our results are 4.52° and 2.75 m. These two groups of experiments illustrate the
advantage of our method in odometry estimation.
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Fig. 10.4 Odometry comparison results in scenario 1 between the two methods, where the green
box is enlarged to highlight the differences. Ours is smoother and more accurate than that of
LeGo-LOAM

Fig. 10.5 Odometry comparison results in scenario 2 between the two methods. Green box is
enlarged to highlight the differences
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10.4.3 Mapping

The results of representative scenarios indicate that LeGo-LOAMwill producewrong
mapping results because they do not consider outliers, as shown fromFigs. 10.6, 10.7,
10.8, and 10.9.

Figure 10.6 shows themapping result of scenario 1, where Fig. 10.6a is the LeGO-
LOAMmapping result. Figure 10.7 shows the details of the mapping result of scene
1, where (a), (b), and (c) are the result of incorrect mapping caused by incorrect

Fig. 10.6 Mapping result of scenario 1. a The result of LeGO-LOAM, we can clearly see the
shadow left by outliers. b Our result, we get a clean map by identifying outliers and avoiding
extracting feature points and mapping using them

Fig. 10.7 Details comparison in scenario 1. a, b, and c are the results of LeGo-LOAM. d, e, and
f are the results of our method. The white arrows highlight the differences



110 W. Liu and W. Sun

Fig. 10.8 Mapping result of scenario 2. a The result of LeGO-LOAM. b The result of our method

Fig. 10.9 Details comparison in scenario 2. a, b, and c are the results of LeGo-LOAM. d, e, and
f are the results of our method. The white arrow highlights the differences

feature extraction. Dynamic pedestrians and vehicles participate in feature extraction
and association and are thus added to the map, leaving obvious residual shadows.
Among them, Fig. 10.7a is the enlarged result on the top of the map, and the residual
shadow is the movement track left by four pedestrians moving forward. Figure 10.7b
is a local enlarged image on the left of the map, and the residual shadow is the
movement track left by an upward moving vehicle. Figure 10.7c is a local enlarged
image of the lower right part of the map, and the residual shadow is left by a moving
car. Different from LeGO-LOAM, we first detect and eliminate outliers and focus
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Table 10.2 Runtime (ms) comparison of one frame between LeGo-LOAM and ours

Scenario Lidar odometry Lidar mapping

Ours LeGO-LOAM Ours LeGO-LOAM

1 9.2 10.7 217.5 311.0

2 12.1 14.0 200.4 294.2

on extracting effective features, so we have obvious advantages when mapping in
dynamic scenarios.

Figure 10.8 shows the mapping result of scenario 2, when we zoom in on the
local map near the loop closure, as shown in Fig. 10.9, we can see the obvious
differences as indicated by the white arrows, and the buildings in map of LeGO-
LOAMhave obviously offset, while ours remains globally consistent, which benefits
from two-step of coarse-to-fine registration strategy.

10.4.4 Runtime

The running time of odometrymodule andmappingmodule between ourmethod and
LeGo-LOAM is shown in Table 10.2. The time consumption of odometry module
is reduced by about 15%, while that of mapping module is about 31%. The results
demonstrate the advantage of our approach in terms of time consumption, which is
because we use two-step coarse-to-fine registration strategy to replace single-step
registration.

10.5 Conclusions and Future Works

Future works include further improving the accuracy of SLAM system in complex
and highly dynamic scenes, because we find the proposed system will still produce
unsatisfactory performance when there are many and dense moving objects around
the Lidar. Some methods to solve the problem of robot kidnapping may be the
solutions to the raised problems.Wewill also try to deploy SLAMsystem onmultiple
base stations to make up for the deficiency caused by the serious occlusion of a single
base station by mobile objects through cooperative tasks. Therefore, we will further
combine the semantic information and motion information of the scene, which will
also provide a new idea for the construction of semantic map.

Acknowledgements This work was supported by National Nature Science Foundation of China
(NSFC) under Grants No. 61671356, Science and Technology Program of Shaanxi Province under
Grants No. 2020GY-136 and 2019ZDLGY14-02-03.



112 W. Liu and W. Sun

References

1. Zhang, J., Henein, M., Mahony, R.E., Ila, V.: VDO-SLAM: a visual dynamic object-aware
SLAM system. Int. J. Robot. Res. (2020) [Online]. https://arxiv.org/abs/2005.11052

2. Zhang, J., Singh, S.: LOAM: Lidar odometry and mapping in real time. Proc. Robot.: Sci. Syst.
(2014)

3. Zhang, J., Singh, S.: Low-drift and real-time lidar odometry andmapping. Auton. Robot. 41(2),
401–416 (2017)

4. Zhang, J., Singh, S.: Visual-lidar odometry and mapping: low-drift, robust, and fast. In: 2015
IEEE International Conference on Robotics and Automation (ICRA), pp. 2174–2181 (2015)

5. Shan, T., Englot, B.,Meyers, D.,Wang,W., Ratti, C., Rus, D.: LIO-SAM: tightly-coupled Lidar
inertial odometry via smoothing and mapping. In: 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Oct 2020

6. Shan, T., Englot, B.: LeGO-LOAM: lightweight and ground-optimized lidar odometry and
mapping on variable terrain. In: 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4758–4765 (2018)

7. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard,
J.J.: Past, present, and future of simultaneous localization and mapping: towards the robust-
perception age. IEEE Trans Robot. (TRO) 1309–1332 (2016)

8. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal.
Mach. Intell. 14(2), 239–256 (1992)

9. Yang, J., Li, H., Campbell, D., Jia, Y.: Go-ICP: a globally optimal solution to 3D ICP point-set
registration. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2241–2254 (2016)

10. Campbell, D., Petersson, L.: Gogma: Globally-optimal gaussian mixture alignment. In: 2016
IEEEConference onComputer Vision and Pattern Recognition (CVPR), pp. 5685–5694 (2016)

11. Aiger, D., Mitra, N.J.: Cohen-Or D.4-points congruent sets for robust pairwise surface
registration. ACM Trans. Graphics 27(3), 85, 1–10 (2008)

12. Theiler, P.W.,Wegner, J.D., Schindler, K.: Keypoint-based 4-points congruent sets—automated
marker-less registration of laser scans. ISPRS J. Photogramm. Remote Sens. 96, 149–163
(2014)

13. Mellado, N., Aiger, D., Mitra, N.J.: Super 4PCS fast global pointcloud registration via smart
indexing. Comput. Graphics Forum 33(5), 205–215 (2015)

14. Mohamad, M., Ahmed, M.T., Rappaport, D., Greenspan, M.: Super generalized 4PCS for 3D
registration. In: 2015 International Conference on 3D Vision, pp. 598–606 (2015)

15. Raposo, C., Barreto, J.P.: Using 2 point+normal sets for fast registration of point clouds with
small overlap. In: 2017 IEEE International Conference on Robotics & Automation (ICRA),
pp. 5652–5658 (2017)

16. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision
benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3354–3361 (2012)

17. Rozenberszki, D., Majdik, A.L.: LOL: Lidar-only odometry and localization in 3D point cloud
maps. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris,
France, pp. 4379–4385 (2020)

18. Bogoslavskyi, I., Stachniss, C.: Fast range image-based segmentation of sparse 3D Lidar scans
for online operation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 163–169 (2016)

19. Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J.J., Dellaert, F.: iSAM2: incremental
smoothing and mapping using the Bayes tree. Int. J. Robot. Res. 31(2), 216–235 (2012)

20. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS:
an open-source robot operating system. In: IEEE ICRA Workshop on Open Source Software
(2009)

https://arxiv.org/abs/2005.11052

	10 Robust and Fast Registration for Lidar Odometry and Mapping
	10.1 Introduction
	10.2 Related Work
	10.2.1 Point Cloud Registration
	10.2.2 Lidar Odometry and Mapping

	10.3 Proposed System
	10.3.1 Task Description and Definitions
	10.3.2 Segmentation
	10.3.3 Feature Extraction
	10.3.4 Lidar Odometry
	10.3.5 Lidar Mapping

	10.4 Experiments
	10.4.1 Feature Extraction
	10.4.2 Odometry
	10.4.3 Mapping
	10.4.4 Runtime

	10.5 Conclusions and Future Works
	References




