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Abstract

The sequence analysis is one of the most effective and commonly applied
methods (explicity or implicitly) in biological research. Thus, in this chapter,
author attempted to understand the basics of sequence analysis and how
researchers implement various computational tools to achieve them. Information
obtained revealed that alignment can be either global and local or pairwise
sequence alignment and multiple sequence alignment. For performing these
alignment, various algorithms like dynamic programming, heuristic algorithms,
or probabilistic methods have been developed. Sequence analysis helps us to
detect evolutionary relationship as well as scan motifs by taking into consider-
ation of various events, such as mutations, insertions, deletions, and reordering
under some circumstances. Thus, sequence alignment serves as an essential
requirement for the most of the biological research ranging from genomics to
proteomics. However, our perception of alignment biases remains primitive.
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Thus, there is an urgent requirement to explore the effect of alignment bias on
broad comparative genomics accuracy. In the near future, information present in
this chapter will be useful for retriving information biological sequence.
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Abbreviations

BLAST Basic local alignment search tool
DP Dynamic programming
HMM Hidden Markov Model
MAFFT Multiple sequence alignment based on Fast Fourier Transform
MSA Multisequence alignments
MUSCLE Multiple sequence comparison by log-expectation
PA Progressive alignment
PSA Pairwise sequences alignment
UPGMA Unweighted pair group method with arithmetic mean

7.1 Introduction

More than 12 million organisms reside on the earth. This biodiversity is mainly due
to distinct genomic and proteomic sequences contained in these organisms. These
sequences store unique information that modulates various processes required for the
survival of these organisms [1]. DNA sequence comparison is a unique approach to
evaluate gene-level variations amongst these organisms and to study their
differences and similarities [1]. What “similarities” are identified to rely on the
alignment process’s objectives. The easiest way for comparing two same-length
sequences is to identify the number of matching characters. The attribute that
calculates sequence similarity is known as the alignment value of two sequences.
On the contrary, the degree of dissimilarity between sequences is known as the
sequence distance. The amount of characters that do not align is known as the
hamming distance. However, while estimating similarity, this approach does not
take into consideration of normal biological activities like insertion or deletions.

The classic definition of sequence alignment includes estimating the so-called
“edit distance,” which normally equals the minimum number of insertions, substitu-
tion, and deletion that are necessary for transforming one sequence into another
[2]. Earlier several algorithms, like Smith & Waterman and Needleman & Wunsch
have been developed for computing “edit distance” [3, 4]. These algorithms were
originally developed for protein-protein alignment and subsequently employed for
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DNA sequence alignment. In the majority of the real-life scenarios, nevertheless,
these algorithms seem inefficient for DNA alignment owing to their runtime as well
as memory requirements [2].

To date, several kinds of alignment approaches, like prediction-based methods,
pairwise sequences alignment (PSA), profile-based methods, multisequence
alignments (MSA), and the structure-based methods have been proposed [5]. The
most frequently used are PSA and MSA. In PSA, per sequence is aligned once a
time. It is the easiest method of aligning and can be achieved with two strategies:
local and global. The MSA approach could also be implemented using local or
global strategies but is much more complex. During MSA, many protein sequences
are organized into a rectangular array, and residues that are either homologous or
identical are placed in one column. MSA is generally employed for detecting
conserved regions in protein sequence and for designing protein’s secondary and
tertiary structures. Homology, as well as evolutionary relationships between
sequences, may also be derived via MSA approaches because MSA has an underly-
ing postulation, i.e., all matching sequences would share evolutionary homology
[5]. Alignment results are also a requirement for many other downstream analyses,
like drug design. Nevertheless, results generated by different methods can be quite
diverse [6]. Thus, there is an urgent requirement for the development of systematic
metrics that may provide explicit guidance on the strengths as well as shortcomings
of the different sequence alignment algorithms. This, in turn, will help us to deduce a
more significant relationship between sequences. Considering the above, in this
chapter, the author attempted to provide an overview of sequence alignment with a
summary of popular specific algorithms, methods, and approaches which underlie
the most current method of sequence alignment.

7.2 Basic Terminology

A sequence alignment is a basic analysis in almost every biological study (implicit or
explicit). The main objective of sequence alignment is to detect the homologous sites
in sequences [7]. Homology is a qualitative argument and identifies shared ancestral
relations between sequences. Two distinct types of homology exist, i.e., paralogs
(shared ancestry due to a duplication event) and ortholog (shared ancestry due to a
speciation event) [8]. “By definition, orthologs are genes that are related by vertical
descent from a common ancestor and encode proteins with the same function in
different species. By contrast, paralogs are homologous genes that have evolved by
duplication and code for a protein with similar, but not identical functions” [9].
Other terms that are commonly used during sequences analysis are similarity and
identity [10]. Unlike homology, similarity denotes the percentage of aligned residues
with the same physicochemical properties that are easier to replace each other. It is
pertinent to note that two sequences can be 70% similar but cannot share 70%
homology. They are either nonhomologous or homologous [10]. In general, a shared
ancestral relationship could be inferred if the sequence similarity level is very high.
However, it is not really obvious at what similarity degree one should assume

7 Sequence Alignment 131



homologous relationships. The solution depends on the sequence type and lengths
under consideration [10]. For instance, proteins having high sequence identity and
high structural similarity have similar functional and evolutionary relationships
[11]. Identity corresponds to the proportion of matches between the two aligned
sequences with the same amino acid residue [10].

Another term, namely gap, is common during sequence analysis. A gap can be
defined as the absence of a segment in a certain sequence. Gaps are natural feature of
biological sequences. A single mutational event can result in the addition or deletion
of certain regions of sequences (predominantly in DNA), and thus the effective
identification of gaps is an important step toward understanding the various
biological phenomenon [12]. A variety of biological processes may lead to the
formation of gaps in DNA sequences, like, large pieces of DNA may be replicated
and inserted through a single mutational occurrence, and slippage during the repli-
cation of the DNA can allow the same region to be replicated many times as
replication machine lose its position on the template [12]. Earlier it has been reported
that instead of penalizing all editing operations individually, one must penalize the
formation of a longer gap more severely than others [13].

7.3 Alignment Methods

To date, different alignment approaches like dynamic programming (DP), heuristic
algorithms, or probabilistic methods have been developed [14].

7.3.1 Dynamic Programming

DP is an effective computing strategy implemented to a problem class that can be
addressed recursively [15]. When Richard Bellman first developed the DP algorithm
in 1953 for researching “multi-stage decision problems,” he certainly did not expect
its extensive usage within modern computer programming. Indeed, as Bellman has
described in his comical autobiography [16], he wanted to employ the word
“dynamic programming” as “an umbrella” for the mathematical research he carried
out at RAND Corporation for protecting his boss, who was the Secretary of Defense
Wilson and “had a pathological fear of word research.” Since it is one of the first
algorithms that were used in bioinformatics research and has since been widely
applied [17], DP has become an inevitable algorithmic subject.

DP is indeed a normal preference for evaluating sequences. Needleman &
Wunsch initially illustrated the use of bottom-up DP for calculating an optimal
pairing amongst two protein sequences [3]. While this algorithm offers a compara-
tive evaluation of sequences pair, it estimates the similarity throughout the complete
sequences (a “global alignment algorithm”). Hence, this approach is time-
consuming and computationally exhaustive [18]. To overcome this, Smith and
Waterman adapted DP for performing local alignments in which alignment was
made between similar parts of the input sequences [4]. DP provides an ideal

132 M. K. Gupta et al.



approach for PSA [18]. It is also widely employed to assembling DNA sequence data
from fragments obtained from automated sequencing machines and for determining
the exon/intron structure within eukaryotic genes [19]. It is also utilized for inferring
proteins’ function through homology study with other proteins having a known
function [3, 4], and for predicting the secondary structure of functional RNA genes
or regulatory elements [19].

7.3.2 Heuristic Algorithms

Though DP gives a more accurate result, it is slow [14]. Other efficient approaches,
like heuristic algorithms or probabilistic methods, have been developed for large-
scale database searching. The term “heuristic”means that the developed algorithm is
faster than the classical method but may not be the optimum method [20]. Heuristic
algorithms can be categorized into three subgroups, namely, progressive alignment
(PA) approach, iterative alignment type, and block-based alignment type [10]. PA
approach is the incremental strategy that generates a final MSA through conducting a
set of PSA on successively less closely associated sequences. In this approach, we
align the two closest-related sequences first and then align the closest-related
sequence in the questionnaire to the alignment generated in the previous step.
Although success is particularly dependent on the consistency of the initial align-
ment and dramatically deteriorates when all sequences in the set are related distantly,
PA methods are enough to be implemented on a broad scale for several sequences
[21]. The most commonly used PA methods are ClustalW (https://www.genome.jp/
tools-bin/clustalw) and T-Coffee (https://www.ebi.ac.uk/Tools/msa/tcoffee/). How-
ever, it is not possible that the progressive approaches converge to optimal global
alignment, and efficiency can be difficult to approximate. Additionally, its true
biological importance may be unclear [21].

The iterative method is based on the premise that an ideal solution could be
sought by adjusting current suboptimal solutions on a repeated basis. The process
begins with a low-quality alignment and gradually improves it through well-defined
procedures until no more improvement can be achieved on the alignment scores.
Since the sequence order in each iteration is different, this method could mitigate the
“greedy” problem of progressive strategy. Nevertheless, this approach is also heu-
ristic in nature and has no promises for optimum alignment [10]. PRRN (https://
www.genome.jp/tools-bin/prrn) is a web-based program that utilizes a double-nested
iterative strategic plan for multiple alignments. The progressive as well as iterative
alignment techniques are primarily global and thus cannot detect conserve motifs
and domains amongst strongly diverging sequences of various lengths. A local
alignment strategy must be employed for those divergent sequences that share
only local similarities. This technique detects the ungapped alignment block that is
present in all sequences, and hence this is called the block-based local alignment
technique [10]. DIALIGN2 (http://dialign.gobics.de/) web-tools that employ block-
based alignment for detecting local alignment.
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7.3.3 Probabilistic Methods

Introduction of probabilistic modeling approaches, like profile secret Markov
models (profile HMMs) as well as pair-HMMs [22] have advanced sequence
similarity search. When variables are probabilities instead of random scores, objec-
tive statistical parameters refine them more readily. This helps to create more
detailed, biologically relevant models with many parameters. For instance, profile
HMMs employ position-specific deletion/insertion probabilities instead of the ran-
dom, position-invariant gap expense of more conventional approaches like BLAST
or PSI-BLAST [23], enabling profile HMMs to model the possibility that indels
occur more frequently in certain sections of a protein than others (e.g., in surface
loops than submerged core) [24].

The probability method has three primary benefits: (i) Any kind of analogy may
be adjusted to the probabilities [e.g., The DNA error-prone reads against the
genome]. The comparisons are supposed to be more precise. (ii) We may approxi-
mate the reliability, for instance, each column of every alignment part. This is helpful
because alignments also have unknown sections owing to high inconsistencies or
repeating sequences. (iii) A similarity between two integrated sequences over
potential alignments may be calculated. This can more powerfully detect subtle
connexions than single ideal alignments [25]. The probabilistic approach, however,
also has significant disadvantages. Aside from a moderate computational drawback,
the probabilistic method suffers from uncharacterized score statistics - unlike the
local alignment of Smith-Waterman, for which at least the form of the ideal score
distribution is defined from the null model, relatively little is known about the
distribution of the log-like score in the local probabilistic random alignment. It is
proven empirically that random usage of the z-score would not deliver really strong
results [26].

7.4 Global and Local Alignment

Sequence alignment approaches typically fell into two categories: global and local
alignments. While global alignment compares all character of query sequences, local
alignments define similarity regions within long sequences that are typically diver-
gent. The Needleman-Wunsch algorithm is a well-known global alignment algo-
rithm designed on the basis of DP. Local alignments are always preferred but more
challenging to quantify considering the additional difficulty of recognizing
similarities regions. The Smith-Waterman algorithm is a general local alignments
method based on the DP system, with added features for beginning and finishing in
either place [14]. Most biologists think that local alignment is what really matters
when we are looking for functional conservation. Local alignment is more important
since certain proteins have roles that are controlled by their capability to attach to
some other molecule (protein’s ligand); therefore, the role would be maintained if
this short portion becomes sustained via evolution, even if there is significant
divergence in many other protein regions. As proteins are folded within their natural
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form, these retained regions need not be continuous protein segments. Indeed,
several researchers researching on lymphocyte antigen recognition specifically
account for these discontinuities within binding domains (known as “non-linear”
epitopes, where an epitope is the ligand of a lymphocyte) [12, 14].

In few cases of the global alignment mode, adding a distance in the leftmost
location of the alignment might be needed, but we are not aware of the length of the
next reference sequence factor to be already aligned. It is obvious from this scenario
that an intermediate alignment is required between the local and global alignment
(i.e., semiglobal alignment) [12]. A semiglobal alignment does not penalize starting
or ending gaps in any global alignment so that the resultant alignment continues to
overlap one end of a sequence with the end of the other [27]. A Parasail is a stand-
alone tool that can be employed for performing global, local, and semi-global
alignment [27]. Recently, Suzuki & Kasahara developed a semi-global alignment
algorithm, namely, “difference recurrence relationships,” that perform better than
other available tools by 2.1 factor [28].

7.5 Pairwise Alignments

The most frequently employed mean of collecting information from protein and
DNA sequences is a PSA. It is generally used to detect protein homolog, which
diverged more than 2 billion years ago. For proteins that share statistically significant
sequence similitudes, homology can be accurately inferred. If statistically meaning-
ful similarities to a known sequence are observed, inferences may be made regarding
the unknown sequence’s function, structure, and biologically significant residues.
Although the homology assumption [29] is very robust (i.e., proteins which share
significant similarities within PSA often have similar features), a few of the more
detailed preassumptions critically rely on the consistency of the alignment between
the two sequences. For instance, functional inferences for protein sequences having
more than 60% identity are typically very reliable. However, uncertainty in the
alignment of badly conserved areas can lead to errors for more distantly linked
proteins [30, 31].

The fundamental law for sequence alignment is the structural alignment amongst
two proteins known to have a 3D structure. The 3D-structure comprises more
information relative to the 1-D sequence as well as diverges at a very slow rate.
Thus, distant evolutionary correlations may also be established amongst sequences
which do not display statistically significant similarities. Even directly relevant
proteins with major sequence similarities may elicit sequence alignments that differ
from the most accurate structural alignments. Since it is not possible to identify the
three-dimensional structure of each protein, researchers are continually seeking for
strategies for producing structurally correct homology models for sequences with
unknown structure. The most common as well as successful methods, are to find a
template for constructing the model within the set of established structures. This
feature is relatively trivial in the case of high sequence similitude (i.e., > 60%
identity) because both sequences, as well as structural alignments, are typically very
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near to this range. However, in this zone, there are just a few sequences; in the
so-called “twilight zone,” there are several more sequences (i.e., ~20–40 percent
sequence identity) where divergent yet clearly homologous protein may be hard to
match. Although the precision of the end 3D model is dependent on the degree of
alignment of the unspecified sequence to the structural template, researchers are
mainly concentrating on enhancing the quality of alignment between proteins that
share statistically relevant similarities and have 20% to 40% sequence identity
[49, 50]. Dot-matrix techniques, DP, and Word techniques are the most widely
used methods for PSA.

7.5.1 DOT Matrix Plot

Since visualization of alignment of character of hundreds or more sequences can be
troublesome, scientists created a more visually understandable approach called the
dot matrix approach. This sequence alignment process, which was first carried out
manually and then computationally, allows the more apparent mapping of
similarities for visual inspection. In this process, a sequence is shown on the top
and one on the side of the matrix and a mark on the crossroads of the corresponding
character pairs [51]. A dot matrix pattern will have a continuous array of dots
running along the middle diagonal of the matrix for a pair of exactly matched
sequences (Fig. 7.1). However, this trend is hardly used. Sometimes, without further
processing, diagonal patterns are hard to recognize. Thus, a number of filters are also
added to the results, as well as the use of color and other methods to highlight
matching sequences. For instance, typical filtering is a stringency/window combina-
tion. The window represents the number of points evaluated at a time, while the
minimum number of matches needed in each window is the stringency [51].

The study of the dot matrix is extremely valuable in recognizing recurring
characters or short sequences within one sequence, as is the case for the mapping
the recurrent regions of entire chromosomes. Repeats of the same character produce
artificially high scores and complicate sequence alignment. Methods of dot matrix
are most appropriate for single PSA problems, particularly for relatively high
similitudes. Sequences with a lower similarity and MSA need more efficient
methods [51]. Even though window stringency values are always heuristically
determined, they could be dependent on dynamic averages, matched scores in
aligned protein groups, or different methods for calculating the amino acid similar-
ity. For example, score matrices establish alignment scores in the aligned protein
families depending on their statistical frequency. These matrices may be used to
construct a sliding window, where only scores above an average scoring may appear
in the matrix, as defined in the following section [51].

To date, various algorithms and computer software tools were created for
performing the dot-matrix plot. While several of these tools accommodate 100 kb
of sequences, the study of the genome sequences above 10 Mb on a microcomputer
remains to be inoperative considering the length of time needed for execution as well
as computer memory [53]. In 2004, Huang and Zhang created two dot matrix
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Fig. 7.1 The dot-plot of the alignment for human chromosomes 2, 7, and 14 and mouse chromo-
some 12. The x-axis indicates the positions of mouse chromosome 12, and y-axis indicates the
positions of human chromosomes 2, 7, and 14. The orthologous landmarks are plotted based on the
pairwise alignments between the three human chromosomes and mouse chromosome 12 (Adapted
from [52]).
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Table 7.1 Softwares and tools used for PSA (Adapted from https://en.wikipedia.org/wiki/List_of_
sequence_alignment_software)

Name Description
Alignment
typea

Sequence
typeb References

ACANA Fast heuristic
anchor-dependent
PSA

Both Both [32]

AlignMe Membrane PT
sequences
alignment

Both PT [33]

Bioconductor
biostrings::
pairwiseAlignment

DP Both + ends-
free

Both [34]

BioPerl dpAlign DP Both + ends-
free

Both https://metacpan.
org/pod/release/
CJFIELDS/
BioPerl-1.6.924/
Bio/Tools/
dpAlign.pm

BLASTZ, LASTZ Seeded pattern-
matching

LL Nucleotide [35]

DNASTAR
Lasergene
molecular biology
suite

Align RNA, DNA,
PT, or PT + DNA
sequences

Both Both https://www.
dnastar.com/

FEAST Posterior-
dependent LL
extension having
descriptive
evolution model

LL Nucleotide [36]

G-PAS GPU-based DP
with backtracking

LL, SemiGL,
GL

Both http://gpualign.
cs.put.poznan.pl/
gpas20.html

GapMis Does PSA with
one gap

SemiGL Both [37]

Genome magician Software for ultra-
fast LL DNA
sequence motif
scan as well as
PSA of high-
throughput data in
both FASTA and
FASTQ format.

LL, SemiGL,
GL

DNA https://science.
do-mix.de/
software_
genomemagician.
php

GGSEARCH,
GLSEARCH

GL:LL (GL) and
GL: GL
(GG) alignment
with statistics

GL in query PT [38]

JAligner Java-based
techniques of
Smith-Waterman

LL Both http://jaligner.
sourceforge.net/

(continued)
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Table 7.1 (continued)

Name Description
Alignment
typea

Sequence
typeb References

K*sync PT sequence to
structure
alignment that
comprises of
secondary
structure,
structure-derived
sequence profiles,
structural
conservation, and
consensus
alignment scores

Both PT [39]

LALIGN Multiple,
nonoverlapping,
LL similarity

LL
nonoverlapping

Both https://www.ebi.
ac.uk/Tools/psa/
lalign/

mAlign Modeling
alignment; models
the information
content of the
sequences

Both Nucleotide [40]

Matcher Waterman-Eggert
LL alignment
(dependent on
LALIGN)

LL Both https://www.ebi.
ac.uk/Tools/psa/
emboss_matcher/

MCALIGN2 Explicit models of
indel evolution

GL DNA [41]

MUMmer Suffix tree-
dependent

GL Nucleotide [42]

NW-align Standard
Needleman-
Wunsch DP
algorithm

GL PT https://zhanglab.
ccmb.med.
umich.edu/NW-
align/

Needle Needleman-
Wunsch DP

SemiGL Both https://www.ebi.
ac.uk/Tools/psa/
emboss_needle/

Ngila Logarithmic as
well as affine gap
costs and explicit
models of indel
evolution

GL Both [43]

Parasail C/C++/python/
Java SIMD DP
library for SSE,
AVX2

GL, ends-free,
LL

Both [27]

Path Smith-Waterman
on PT back-
translation graph
(detects

LL PT [44]

(continued)

7 Sequence Alignment 139

https://www.ebi.ac.uk/Tools/psa/lalign/
https://www.ebi.ac.uk/Tools/psa/lalign/
https://www.ebi.ac.uk/Tools/psa/lalign/
https://www.ebi.ac.uk/Tools/psa/emboss_matcher/
https://www.ebi.ac.uk/Tools/psa/emboss_matcher/
https://www.ebi.ac.uk/Tools/psa/emboss_matcher/
https://zhanglab.ccmb.med.umich.edu/NW-align/
https://zhanglab.ccmb.med.umich.edu/NW-align/
https://zhanglab.ccmb.med.umich.edu/NW-align/
https://zhanglab.ccmb.med.umich.edu/NW-align/
https://www.ebi.ac.uk/Tools/psa/emboss_needle/
https://www.ebi.ac.uk/Tools/psa/emboss_needle/
https://www.ebi.ac.uk/Tools/psa/emboss_needle/


comparison methods for studying large sequences. Initially, the methods identify
similarity regions amongst two sequences using a rapid word search algorithm and
explicitly compare these regions. Because several random matches are omitted from
the initial sampling, the estimation duration is decreased dramatically. These
approaches yield good quality plots of the dot matrix with low background noise.
Spatial criteria are linear, so genome scaling sequences can be compared by
algorithms. Highly repetitive sequence structures of eukaryote genomes may impact
the computational speed. In the 80s, with a 1GHz personalized machine, a dot matrix
complot was developed for the yeast genome (12 Mb) for both strands [53].

7.5.2 Dynamic Programming

The most widely employed algorithm of PSA is DP, initially introduced by
Needleman and Wunsch [3]. The DP ensures an optimum algorithmic alignment

Table 7.1 (continued)

Name Description
Alignment
typea

Sequence
typeb References

frameshifts at PT
level)

PatternHunter Seeded pattern-
matching

LL Nucleotide [45]

SABERTOOTH Alignment
employing
predicted
“connectivity
profiles”

GL PT [46]

Satsuma Parallel whole-
genome synteny
alignments

LL DNA Genome-wide
synteny through
highly sensitive
sequence
alignment

SPA: Super
pairwise alignment

Fast pairwise GL
alignment

GL Nucleotide [47]

SWIFOLD Smith-Waterman
acceleration on
Intel’s FPGA with
OpenCL for long
DNA sequences

LL Nucleotide [48]

UGENE Opensource
Smith-Waterman
for SSE/CUDA,
suffix array-based
repeats finder and
dotplot

Both Both http://ugene.net/

aAlignment type: Global(GL)/Local(LL)
bSequence type: Nucleotide (NT)/Protein(PT)
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with unique parameters and sequences. However, an optimum sequence alignment
score would not assure the structural consistency of the alignment. Additionally,
there are no natural mechanisms under which two proteins align together. Therefore
“optimum” alignments of the sequence may vary greatly from ideal structural
alignments [31]. Moreover, distant-related proteins also have several optimal
alignments and a significant number of sub-optimal alignments with scores quite
similar to the optimal score [50, 54, 55]. If one moves further from the desired score,
the number of alternatives alignment also keeps increasing. Therefore, one must
sample the suboptimal alignment space for holding the number of alignments
computationally trackable [50, 54, 55].

While a structure-based alignment is the “gold standard” against which sequence
alignments are measured, structural alignment may vary, and no optimum structural
alignment algorithm is possible [56]. As the number of structures appear to be
smaller than the number of sequences, the structural alignment variations are
minimal relative to the sequence-structural alignment variations. Although this
definitely refers to quite distantly linked proteins that have no meaningful similitude
(and therefore cannot be substantially aligned with sequence data alone), the struc-
tural and sequence alignment precision of proteins that share statistically significant
similarities has not been closely studied [56]. Given that structurally correct
alignments frequently include suboptimal alignment scores, researchers have been
researching the alternate alignments and wondering whether they include details
about precise structural alignments. Jaroszewski et al. [50] have studied alternate
alignments, both based on an almost ideal algorithm for alignment generation and by
combining score parameters (i.e., substitution matrix and gap penalties), and have
found that alignment in the sets is much similar to the structural alignment. Their
inference was that the two alternate alignment methods, namely, alternatives and
sub-optimizing alignments, had complementary information (in contrast to redun-
dant information) because the combination of the two sets created much higher
alignments than any of the sets. The exactness of the optimal sequence alignment
was also investigated by Holmes and Durbin [57]. They developed a technique for
calculating the expected accuracy. In an algebraic approach, Zhang and Marr [58]
used alternate alignments with maximal alignments in the neighborhood.

Various scholars also took the help of a probabilistic approach for producing
alternate alignment sets. In 1995, Miyazawa [59] measured alignment likelihoods
relying on alignment score exponent and, subsequently, compared the resulting
likelihoods of matched amino acids throughout alignment with the respective protein
structure alignments. Yu and Hwa investigated the statistically significant of
alignments made using a pairwise Hidden Markov Model (HMM) [26]. Knudsen
and Miyamoto [60] designed a pairwise HMM alignment approach that provided an
explicit indel evolutionary model. Eventually, Mückstein and the team [61]
constructed a sampling alignment procedure on the basis of statistical weighting
employing partition function overall plausible two-sequence alignments.

Although it is of theoretical interest to compare individual sequence and structure
sets in the absence of any structural information, it is only of practical use if the
alignment of the sequence can be determined correctly. One approach to resolving
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this issue is to calculate the accuracy of a certain aligned residual pair (that we term
an edge, using the norm for determining the optimum score in the dynamic program-
ming path graph, aligned residues, insertions, and deletions along the edge)
[31]. Cline and the team examined four strategies for forecasting the accuracy of a
particular pair of aligned residues [62] and concluded that the most improved
alignment quality was the method proposed by Yu and Smith [63] for retrieving
near-optimal alignments from the HMM profile. The association between both the
edge probabilities and structural alignment was studied by Knudsen & Miyamoto
[60] and Mückstein et al. [61] and Miyazawa [59]. However, in the former two cases,
only in the context of a limited number of protein pairs, usually considered a strong
correspondence amongst them. In another study, Mevissen and Vingron [64] have
evaluated the feasibility of an edge reliability index known as robustness that Chao
and the team had previously defined [65]. They found that an edge’s robustness
predicted correctly if the edge was still aligned in structural alignment. In another
study, Sierka and the team improvised the robustness analysis by adding extra details
on alignment consistency and creating a logistic regression model that returns the
likelihood that a given edge is embedded in a structural alignment [31].

7.5.3 The Word or K-Tuple (Ktup) Method

It is the heuristic process, which offers greater alignment than DP. Currently, with
massive datasets, DP cannot be used. This is why we use the K-tuple approach when
searching for a specific question along with a large database. K Tuple corresponds to
a series of k words. For instance, for nucleotide and protein, K is defined as 11 and
3, respectively. The K system has been introduced in the family of FASTA and
BLAST.

7.5.3.1 FASTA
FASTA is a rapid alignment application for protein and DNA sequence pairs. Rather
than comparing individual residues in both sequences, FASTA looks for matching
sequence patterns or terms called k-tuples. In both sequences, these patterns contain
k consecutive matches of letters. Based on these word matches, the algorithm then
tries to establish a local alignment. FASTA is useful for regular database searches of
this kind because of the ability of the algorithm to locate similar sequences in a
sequence database with high-speed. FASTA programs offer a detailed range of
simple similarity search resources (fasta36, fastx36, tfastx36, fasty36, and tfasty36),
comparable to those offered by the BLAST tool, as well as programs for local,
slower, optimal, as well as global similarity searches (search36, ggsearch36) and
oligonucleotide and short peptide searches (fasts36, fastm36). fasta36 employs the
FASTA algorithm developed by Pearson alone and Pearson & Lipman and compare
protein (or nucleotide) sequence to protein (or nucleotide) sequence database
[66, 67]. With the ktup (word size) parameter, search speed and selectivity are
regulated. By default, ktup ¼ 2 for protein comparisons; ktup ¼ 1 is more sensitive
but slower. By default, ktup¼ 6 for DNA comparisons; ktup¼ 3 or ktup¼ 4 allows
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maximum sensitivity. fastx36/fasty36 compares the translated nucleotide sequence
into three frames and allowing gaps and changes, fastx36 compares a nucleotide
sequence to a protein sequence base. Fastx36 uses a faster and simplified alignment
algorithm, which only allows the frameshift between codons. However, fasty36 is
slower, but better alignments are possible because frame shifts inside codons are
permitted [68]. tfastx36/ tfasty36 compares a protein sequence with a nucleotide
sequence database and measures comparisons for forward and reverse directed
frames-shifts [68]. ssearch36 employs the Smith-Waterman algorithm [4] for com-
paring a nucleotide (or protein) sequence against a nucleotide (or protein) sequence
database. The Fasta36 is just 2–5 times faster than Farrar SSE2 [69]. ggsearch36/
glsearch36 compares a protein (or nucleotide) sequence to a protein (or nucleotide)
sequence database, employing an optimal global algorithm: global: local
(glsearch36) or global (ggsearch36). fasts36/ tfasts36 compares collection of small
peptide fragments as collected from mass-spec, protein research, against nucleotide
(tfasts) or protein (fasts) databases [70]. fastm36 compares ordered short nucleotide
sequences (or peptides) to a nucleotide (or peptides) database.

The FASTA systems employ an empiric approach for approximating statistical
importance that is consistent with a variety of similarities in scores and gap penalties
and increases alignment of boundary precision as well as search sensitivity. FASTA
systems can generate “BLAST-like” alignment as well as tabular results for ease of
integrating analytics pipelines and can scan for small, descriptive datasets and
afterward report findings for larger sequences employing small dataset connexions.
FASTA systems operate in a wide range of database formats, like PostgreSQL and
MySQL databases. Recently, Pearson has developed programs that lay out a strategy
for incorporating domain as well as active site annotations into alignments and
emphasizing the mutation status of functionally important residues. These protocols
also explain how FASTA systems can classify protein and nucleotide sequences
through protein: DNA, protein: protein, and DNA: DNA comparative study [71].

7.5.3.2 BLAST
The “Basic local alignment search tool” (BLAST) is a sequence similarity search
software which could be employed either as a stand-alone tool or through a web
interface for comparing all combinations of protein (or nucleotide) sequence to a
protein (or nucleotide) sequence database [72]. BLAST is a heuristic approach that
finds short matches between two sequences and tries to initiate alignment from these
“hot spots.” BLAST also offers statistical details about alignment in addition to
executing alignments [72]. The E-value contains details on the probability of a
sequence being matched by sheer chance. The smaller the E-value, the less probable
the database match is to be attributed to random chance, and thus the more important
the match. If E < 1e� 50 (or 1 � 10�50), there should be an exceptionally strong
conviction that matching the database is the product of a homologous partnership. If
E is between 0.01 and 1e � 50, matching can be viewed as a consequence of
homology. If E is between 0.01 and 10, the match is assumed to be nonsignificant
but could suggest a possible remote homology relationship. Additional proof is
required to validate the partnership. If E > 10, the sequences within evaluation are
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either unrelated or associated with incredibly remote relationships that fall far below
the detection limit of the current system [10]. Although the E-value is proportionally
influenced by the size of the database, an apparent concern is that as the database
expands, the E-value often increases for a given sequence match. Since the true
evolutionary relationship between the two sequences remains unchanged, as the
database expands, the decline in the sequence match’s credibility means that one will
“lose” homologs previously observed as the database enlarges. Consequently, an
alternative to E-value calculations is needed [10].

BLAST is a family of services that comprises BLASTN, BLASTX, BLASTTP,
TBLASTX, and TBLASTN. BLASTN searches nucleotide sequences in the nucle-
otide sequence database. BLASTP employs protein sequences as requests to scan a
database of protein sequences. BLASTX employs nucleotide sequences as inputs
and converts them into all six reading frames to generate translated protein
sequences that are used to query the protein sequence database. TBLASTN requests
protein sequences to a nucleotide sequence database, with sequences encoded into
all six reading frames. TBLASTX employs nucleotide sequences that are interpreted
into all six frames to scan a nucleotide sequence database that has all the sequences
interpreted into six frames. In addition, also there is a bl2seq program that executes a
local alignment of two user-provided input sequences. The graphic production
involves horizontal bars as well as a diagonal in a two-dimensional diagram
displaying the total degree of the matching between the two sequences [10].

7.6 Multiple Sequence Alignment

MSA is an alignment between more than two biological sequences. In most
scenarios, the input sequences are believed to have a shared ancestor. Sequence
homology can be derived from the subsequent MSA, and a phylogenetic study can
be carried out to determine the common ancestral roots of the sequences. Visual
alignment representations, as seen in the Fig. 7.2, demonstrate mutation occurrences
like point mutations (single nucleotide or amino acid changes) that occur as distinct
symbols within a single alignment column and insertion/deletion of mutations
(indels or gaps) that occur as hyphens in one or more alignment sequences. MSA
can also be used to determine sequence conservation of protein domains, tertiary as
well as secondary structures, as well as specific amino acids or nucleotides [73–75].

Since MSA of three or more lengthy sequences may be complicated and are often
time-consuming to be aligned by hand, statistical algorithms are often used for
generating and evaluating alignments. MSAs need more advanced approaches than
PSA since they are more computationally complicated. Many MSA programs use
heuristic approaches rather than global optimization since it is prohibitively costly to
determine the optimum alignment amongst more than a few sequences of moderate
length. On the other side, heuristic approaches usually refuse to guarantee the
consistency of the answer, with heuristic strategies sometimes found to be well
below the ideal solution in the case of benchmarks [73–75].
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7.6.1 Dynamic Programming

The complex programming algorithms, namely, Smith-Waterman and Needleman-
Wunsch, that are employed for a PSA, can also be used for evaluating the optimum
alignment of over two sequences. Nevertheless, the difficulty of this algorithm is
much shoddier than that of PSA. For performing PSA, the running period of the
algorithm is proportionate to m � n, where m and n are the lengths of two aligned
sequences. If n � m, the argument is generalized to indicate that the algorithm’s

Fig. 7.2 “Multiple sequence alignment of a-type domains of B. distachyon PDI and PDI-like
proteins and a typical rice PDI. These thioredoxin-like domains of the B. distachyon were annotated
in Phytozome database, and comparative analysis used BioEdit software. Residues highlighted in
deep blue and green show they were identical and similar, respectively. Open bars and arrowheads
represent the α helices and β strands, respectively. The red box indicates the -CxxC- catalytic site,
and red arrows indicate the glutamicacid–lysine charged pair. Blue and yellow arrows represent the
conserved arginine (R) and the cis pralines (P) near the active site, respectively” (Adapted from
[76]).
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execution time is n2. The exponent in the n2 definition derives from the presumption
that, during PSA, if we presume that our sequences length is n, then n� n cells need
to be filled within the dynamic programming matrix. If we were to employ either
Needleman-Wunsch or Smith-Waterman algorithm to three sequences, we would
need to build a 3-dimensional array for measuring and monitoring the alignment.
Therefore, for sequences having n length, we will have n � n � n cells for filling in
(http://readiab.org/book/0.1.3/2/3). Runtime for MSA employing complete DP
algorithms increases dramatically with the sequences number to be aligned. If
s and n are the sequence number and sequence length, respectively, then the
execution time will be ns. However, in PSA, s ¼ 2, which makes the problem
handier (http://readiab.org/book/0.1.3/2/3).

7.6.2 Progressive Alignment

PA is a heuristic approach and does not optimize any obvious alignment score. The
aim is to accomplish a series of PSA that begins with aligning nearest identical
sequence pairs and subsequently aligning least similar ones [22, 107]. The PA
method reduced the overall computational difficulty to polynomial-time by splitting
the MSA problem into a set of PSA guided by a tree reflecting the evolutionary
sequence relation [108]. Today, most popular alignment programs that employ the
progressive approach are ClustalW [79], Mafft (“Multiple sequence alignment based
on Fast Fourier Transform”) [109], “Multiple sequence comparison by
log-expectation” (MUSCLE) [91], and T-Coffee [110].

7.6.2.1 ClustalW
ClustalW is currently the most commonly deployed alignment software, and the
oldest of the modules examined. The program conducts a PA, first using PSA
through computing the distance matrix that retains the sequence’s discrepancy.
Just after the matrix is collected, a guided tree is created utilizing Neighbor-Joining
algorithms, accompanied by a final stage where the sequences are aligned as per the
branching order within the guide tree. In its alignment procedure, the software
utilizes two gap penalties: gap expansion and gap opening, during polypeptides
availability, a total amino acid weight matrix. These distance penalties rely strongly
on variables like sequence length, similarity, and weight matrix. In a simple scenario,
Clustal W will exactly match the related domains and sequences of established
secondary or tertiary structures but can be seen as a strong starting point for more
refinement in more complicated cases (Fig. 7.3a) [73, 79].

7.6.2.2 Mafft
Mafft is a program that can be employed with different alignment methods, either PA
alone (with Fast Fourier Transform) or iteratively aligned PA. Mafft‘s basic run
requires up to three stages, but the default procedure performs the first two steps. The
first stage is to create a PA centered on each sequence pair’s rough distance, on the
basis of the mutual 6-tuples. The unweighted pair group method with arithmetic
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mean (UPGMA) guide tree is then generated with the changed linkage, and the
sequences are then aligned with the tree branch order (the so-called FFT-NS-1
strategy). In the second phase, the distance matrix is recalculated based on the
knowledge obtained from the previous stage, and the PA is reassessed using a tree
from the existing matrix as the starting point (till this process, the technique is known
as FFT-NS-2 and is the preferred approach used by the software). The final step is
the iterative refinement, which optimizes the “Gotoh weighted pair sum” (WSP)
score [111], the “group-to-group alignment” [85], and “the tree-dependent constraint
partition technique” [112]. The method is referred to as FFT-NS-i, where all three
steps are used, which indicates that it employs the FFT method to conveniently
distinguish the homologous regions throughout the sequences followed by the
refining iterative process. The FFT converts an amino acid inside a sequence into

Table 7.3 Softwares and tools used for motif scanning (Adapted from https://en.wikipedia.org/
wiki/List_of_sequence_alignment_software)

Name Description
Sequence
typea Reference

BASALT Multiple motif and regular expression
scan

Both http://www.
proteinguru.com/
toolbox/basalt/

BLOCKS Ungapped motif prediction from
BLOCKS database

Both https://www.genome.
jp/tools/motif/

CUDA-
MEME

GPU accelerated MEME (v4.4.0)
algorithm for GPU clusters

Both https://cuda-meme.
sourceforge.io/
homepage.htm#latest

eMOTIF Extraction and prediction of shorter
motifs

Both http://motif.stanford.
edu/distributions/
emotif/

FMM Motif scan and prediction (can get also
positive and negative sequences as input
for enriched motif scan)

NT [128]

Gibbs motif
sampler

Stochastic motif extraction by statistical
likelihood

Both [129]

HMMTOP Prediction of transmembrane helices and
topology of PTs

PT [130]

MEME/
MAST

Motif prediction and scan Both [125]

MERCI Discriminative motif prediction and scan Both [131]

PHI-blast Motif scan and alignment tool Both [132]

Phyloscan Motif scan tool NT [133]

PMS Motif scan and prediction Both [134]

PRATT Pattern production for use with
ScanProsite

PT https://www.ebi.ac.uk/
Tools/pfa/pratt/

ScanProsite Motif database scan tool PT https://prosite.expasy.
org/scanprosite/

TEIRESIAS Motif extraction and database scan Both [135]
aSequence type: Protein (PT) or Nucelotide (NT)

7 Sequence Alignment 151

https://en.wikipedia.org/wiki/List_of_sequence_alignment_software
https://en.wikipedia.org/wiki/List_of_sequence_alignment_software
http://www.proteinguru.com/toolbox/basalt/
http://www.proteinguru.com/toolbox/basalt/
http://www.proteinguru.com/toolbox/basalt/
https://www.genome.jp/tools/motif/
https://www.genome.jp/tools/motif/
https://cuda-meme.sourceforge.io/homepage.htm#latest
https://cuda-meme.sourceforge.io/homepage.htm#latest
https://cuda-meme.sourceforge.io/homepage.htm#latest
http://motif.stanford.edu/distributions/emotif/
http://motif.stanford.edu/distributions/emotif/
http://motif.stanford.edu/distributions/emotif/
https://www.ebi.ac.uk/Tools/pfa/pratt/
https://www.ebi.ac.uk/Tools/pfa/pratt/
https://prosite.expasy.org/scanprosite/
https://prosite.expasy.org/scanprosite/


a vector describing volume and polarity that is key to replacement instances,
allowing the software to accurately predict these events [73].

Three additional refining algorithms are also provided by Mafft: L-INS-i,
G-INS-i, and E-INS-I [113]. These strategies improve the number of steps required
to align the MSA to five. In such instances, the first step would also entail the
formation of a distance matrix, not employing six-fold. In comparison to the
FFT-NS- * solution, the UPGMA tree is not rebuilt, and the program continues
into the second step, splitting gap-free segments and store the scoring arrays from
sequence to sequence for each gap-free segment. Mafft subsequently calculates the
“importance” value of the segment score and stores the residue in other segments.
All “importance” values are then obtained in step three of the “importance” matrix,
which is rapidly followed by a group-to-group alignment of scores and a weighting
scheme based on the Needleman-Wunsch algorithm [79]. The final stage refines the
alignments obtained, increases the WSP score, and the fixed “importance” values.
All “importance” values are then obtained in step three of the “importance” matrix,
which is rapidly accompanied by a group-to-group alignment of scores and a
weighting scheme centered on the Needleman-Wunsch algorithm [79]. The final
stage refines the alignments obtained, strengthens the WSP score, and the prescribed
“importance” values.

7.6.2.3 Muscle
The muscle uses a pairwise alignment technique to the profile. First, the program
establishes a progressive alignment, which is then refined and configured in two
following stages. After the similarity of the sequence, the PA is produced, the
distance estimation and the UPGMA tree are calculated. Muscle utilizes two distance
measurements: a km distance for unaligned series pairs and a Kimura distance for
ordered pairs [91]. A new tree with the already defined Kimura distance matrix is
generated by the optimization stage of PA, which guarantees a stronger alignment
centered on this improved tree. The last step of refinement uses the restricted
partition variant tree-dependent [112]. This approach eliminates one of the tree
edges, splits the orientation, and eliminates the profiles of the two partitions,
which would then be re-aligned with the profile-profile alignment. Each tree edge
will be iteratively visited and the alignment with the updated description score of
each sequence pair will be preserved. The edges are inspected to minimise the gap
from the root by reshaping each sequence and moving to similarly associated
sequence classes [91].

7.6.2.4 Clustal Omega
Clustal Omega is the Clustal family’s new MSA algorithm [75]. This algorithm is
used only for aligning protein sequences (though nucleotide sequences are likely to
be introduced in time). The precision of Clustal Omega is comparable to other high-
quality aligners on limited numbers of sequences; moreover, Clustal Omega
surpasses other MSA algorithms in terms of completion time as well as overall
quality of alignment on large sequence sets. In a few hours, Clustal Omega is able to
align 190,000 sequences on a single process. By firstly generating pairwise
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alignments using the k-tuple form, the Clustal Omega algorithm generates a multiple
sequence alignment. Then, employing the mBed method, the sequences are clus-
tered. This is accompanied by the clustering process of k-means. Next, the guide tree
is built using the UPGMA method. Finally, using the HHalign module, which aligns
two profile hidden Markov models (HMM) as seen in Fig. 7.3b, the multiple
sequence alignment is made.

7.6.2.5 T-Coffee
T-Coffee has a radical approach to match sequences. The software first builds a
library from two separate sources: Clustal W’s global alignment and Lalign‘s local
alignment [114]. Global alignments and pairwise local alignments for each pair of
sequences are generated from the top ten nonoverlapping segments. The software
processes global and local information and assigns weights to all PSA according to
sequence identity [115]. This is accompanied by a mixture of groups that converge
into a single repository. This consolidated library has an extension phase, such that
the final weight of any pair of residues constitutes part of the information contained
in the library. The ultimate step involves calculating the distance matrix and the
neighboring joint tree by aligning the two nearest weight sequences on the tree with
the stored weight of the consolidated library with a PA. The initial pair is then fixed,
and no other gap can be consequently transmitted. The PA will proceed until all
sequences fit [73].

Irrespective of their uses, earlier researchers have detected that the majority of PA
programs employ the Neighbor-Joining algorithm for inferring a guided tree. Neigh-
bor-Joining’s O(N 3) time complexity renders it a bottleneck when large data sets are
aligned. The Relaxed Neighbor-Joining algorithm relaxes the joining nodes and
decreases standard time complexity to O(N 2 log N) without any major qualitative
results [47]. In 2008, Sheneman explored the relationship between the topology of
the guide tree and the alignment reliability. He developed two different genetic
algorithms, each of which enhances the population of tree guide topologies utilizing
stochastic crossover and mutation operators. One genetic algorithm, EVALYN,
generates highly accurate scores when evaluated against established reference
samples. Nevertheless, we find that the disruptive crossover of EVALYN restricts
the genetic algorithm to a stochastic hill climb (Fig. 7.3c).

7.6.3 Probabilistic Alignment

7.6.3.1 PRANK
PRANK [116] is one of the best examples of a probabilistic MSA tool. In compari-
son to other alignment systems, PRANK uses phylogenetic knowledge to identify
alignment differences created through deletions or insertions and then treats the two
forms of events differently. As a by-product of the proper handling of inserts and
deletions, PRANK will also have assumed ancestral sequences as part of
the production and label the alignment gaps differently based on their origin in the
insertion or deletion incident. As the algorithm infers the ancestral history of the
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sequences, PRANK could be vulnerable to errors in the phylogeny guide as well as a
violation of basic assumptions about the origin as well as the pattern of the
gaps [116].

7.6.3.2 PSAR
In 2014, Kim and Ma developed a new metric, known as PSAR [117], that can
metric the reliability of the MSA by agreeing to probabilistically sample Suboptimal
Alignments (SAs). The SAs offer extra information which cannot be obtained by
optimizing alignment on its own, particularly when the ideal alignment is not too far
preferable to the SAs [117].

7.6.3.3 ProbPFP
Recently, Zhan and the team developed ProbPFP that incorporates HMM configured
with partition function by particle swarm. The PSO algorithm was used to refine the
parameters of the HMM. Subsequently, the posterior likelihood obtained by the
HMM was compared with that retrieved through the partition function, and hence
the integrated substitution score for the alignment was determined. To test the
effectiveness of ProbPFP, 13 excellent or classical MSA methods were compared.
The results show that the alignments obtained by ProbPFP have the highest mean SP
and TC values for both SABmark and OXBench data sets, as well as the second
highest mean TC scores and mean SP scores for BAliBASE. ProbPFP is also
compared with four other excellent approaches by restoring phylogenetic trees
spanning six protein families in the TreeFam database based on alignments achieved
across these five approaches. The results show that the reference trees are like the
phylogenetic trees rebuilt from the ProbPFP alignments compared with other
approaches [118].

7.6.3.4 ProbCons
ProbCons is a modification of the regular pair-score approach and also provides a
secret PA algorithm based on the pair-hidden Markov model. The alignment method
is divided into the following steps, starting with the calculation of the reverse
likelihood matrices for each pair of sequences. The alignment method is split into
the following steps, starting with the calculation of the posterior-probability matrices
for each pair of sequences. This is accompanied by a complex software calculation
of each PSA’s expected accuracy. The probabilistic quality transition is then used to
reassess the match’s accuracy. A hierarchical clustering determines the guiding tree
by the similarities defined by the weighted average of the values between the
sequences of every cluster. The guidance tree is employed for matching sequences
with a progressive strategy. There is also a postprocessing phase in which random
bipartitions of the generated alignment are realigned to find better regions for
alignment. ProbCons varies from other alignment systems because it does not
implement biological principles like evolutionary tree construction, role-specific
gap score, and other features typically utilized with other packages [99].
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7.7 Motif Search

Motif exploration is an application layer sequence analysis problem and one of the
main obstacles while developing bioinformatics applications. Sequence motifs are
constant in size, frequently repetitive and conserved, but at the same moment are
small (approximately 6–12 Bp) and very long and are also highly variable in
intergenic regions that make the motif discovery a difficult task. A motif is also
known as regulatory elements in eukaryotic genes and occurs in the Regulatory
Region (RR). These patterns play a crucial role in the identification of the Transcrip-
tion Factor Binding Sites (TF-BSs), which aid in the understanding of gene expres-
sion regulation mechanisms [119, 120]. Motifs are broadly categorized into various
forms, namely, sequence motifs, planted motifs, gapped motifs, structured motifs,
and network motifs [119]. There are two major forms of algorithms for motif
discovery, i.e., enumeration approach probabilistic technique. Enumeration method
looks for consensus sequences; motifs are projected dependent on word counts and
word similitudes; thus, this method is often named as word enumeration approach to
solving Motif problem with panted Motif Problem with motif length and a maximum
number of mismatches [120]. The algorithms focused on the word enumeration
method extensively scan the entire search field for classifying the ones with potential
substitutes, and then normally locate the global optimum. This implies, though, that
they are exponential time algorithms that take long for detecting the larger one and
inefficient to accommodate hundreds of sequences, and are thus only appropriate for
the short motif. Additionally, these algorithms require several user-defined
parameters, including the length of the motif, the number of mismatches permitted,
and a minimum of sequences the motif requires to appear in [121]. The method to
word enumeration can be accelerated by utilizing various data structures, like
parallel processing or suffix trees. CisFinder (https://lgsun.grc.nia.nih.gov/
CisFinder/), DREME [122], Weeder [123], and MCES [124] are common
algorithms based on this method. A second group is a probabilistic method. This
constructs a probabilistic model known as Position-Specified Weight Matrix
(PSWM) or Motif Matrix, which describes a base distribution to differentiate motifs
from nonmotifs for each position of TFBS and needs few search parameters
[124]. MEME [125], EXTREME [126], and BioProspector [127] are the most
common methods focused on probabilistic approaches. The third form, the nature-
inspired approach, incorporates the core attributes of the first two approaches. This
method is a basic idea and a global scan but can work with large data and long motifs
concurrently. It has a dynamic intention representation, contributing to an infinite
range of degenerated positions. The final form is the combinatory method, which
depends on the hybrid algorithms which shape the appropriate algorithm.

7 Sequence Alignment 155

https://lgsun.grc.nia.nih.gov/CisFinder/
https://lgsun.grc.nia.nih.gov/CisFinder/


7.8 Conclusion and Future Perspective

In conclusion, sequence alignment serves as a basic requirement for most of the
biological research ranging from phylogenetics construction to protein design.
Sequence alignment also employed for motif search in biological sequence, which
in turn plays a key role in understanding the regulation of various biological
phenomenon. However, because of the continuous increase of sequence amount,
there is an urgent requirement of developing novel tools and techniques which can
improvise the accuracy of the sequence analysis, including motif search, result
obtained. Earlier several researchers have suggested that a successful tool for motif
discovery can be constructed from different suggested motif discovery methods. The
tool should be fitted with these features: (1) all models should be identified, (2) the
overall search feature should be optimized, (3) the parallel processing abilities are
needed, (4) optimized data structures should be accessible, (5) the overall search
function should be able to locate both long and short motifs, (6) several motif
discovery capabilities at the same time, i.e., without elimination of the discovered
motif to find another motif. This research would then establish a new algorithm for
motif discovery, which incorporates the key characteristics of enumerative and
probabilistic approaches and utilizes them as a seed to a naturally inspired algorithm,
taking into account the above-noted variables [120].
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