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Abstract

One of the significant forms of molecules present in living cells is ribonucleic acid
(RNA). RNA structural elements moderate various biological process, including
epigenetic function, modify mRNA stability, and alternate splicing. The study of
the secondary structures of RNA is, therefore, crucial for interpreting the role as
well as the regulatory mechanism of RNA transcripts. But experimental methods
are tedious, time-consuming, pricey, requires special equipment, and, thus, can-
not often be implemented. Methods for statistical simulation are an option and
parallel to experimental approaches. Additionally, the findings from the
RNA-Puzzles, joint research on the estimation of RNA structures, suggest that
computational methods can be employed for effective RNA modeling. However,
there is still space for improvement. Considering this, in the chapter, authors
attempted to understand the various forms of RNA and how computational
approaches can be employed to predict their structure more precisely. The RNA
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is classified mainly according to its existence, role, and structure into three
groups, messenger RNA, transfer RNA, and ribosomal RNA. To date, numerous
algorithms, and tools, have been designed for predicting the secondary structure
of RNA. However, since three-dimensional structures are highly required for
getting insight into the function of the RNA, few approaches have also been
developed for predicting tertiary structures of RNA atoms. However, the authors
believe that, in the near future, by combining experimental and computational
approaches, we will be able to predict the structure of RNA more accurately,
which in turn will enable us to understand its structure and function more
precisely.
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Abbreviations

CSA Comparative sequence analysis
DP Dynamic programming
dsRNAs Double-strand RNAs
lncRNAs Long noncoding RNA
miRNAs microRNA
MMP MC-fold/Mc-Sym Pipeline
mRNA Messenger RNA
PPV Positive predictive value
pre-rRNA Precursors-rRNAs
rDNA Ribosomal DNA
RNA Ribonucleic acid
RNP Ribonucleoprotein
rRNA Ribosomal RNA
siRNA Short interfering RNA
snoRNAs Small nucleolar RNAs
SSs Secondary structures
t6A Threonyl-carbamoyl adenosine
tRNA Transfer RNA

10.1 Introduction

One of the significant forms of molecules present in living cells is ribonucleic acid
(RNA) [1]. After the central dogma was hypothesized in 1950, the key function
assigned to RNA was to serve as the intermediary between DNA and protein
synthesis [2]. However, out of ~70% of the genome transcribed, only a limited
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portion encodes for protein sequences [3], which means that most RNAs might have
various biological functions. Earlier, several researchers have also suggested that
RNAs are transporters for genetic material and are also associated with many
biological processes that are incredibly significant [4]. For instance, RNA transcripts
fold into structures (SSs) (Fig. 10.1), which have different catalytic, ligand, and
scaffolding functions that shape a crucial biological regulatory activity. RNA struc-
tural elements moderate epigenetic function, modify mRNA stability and translation,
scaffold large macromolecular complexes, transduce signals, and monitor alternate
splicing. The study of the SSs of RNA is, therefore, crucial for interpreting the role as
well as the regulatory mechanism of RNA transcripts [2].

RNA folds into a 3D system through hydrogen interaction and base-stacking,
which in the sequence are not consecutive [7]. The 3D structure of the RNA
molecule decides its function, like proteins. In order to construct a 3D model,
high-resolution experimental methods such as crystallography [8, 9], cryo-EM
[10], and nuclear magnet resonance spectroscopy may be taken advantage of
[11]. But experimental methods are tedious, time-consuming, pricey, requires spe-
cial equipment, and, thus, cannot often be implemented. Methods for statistical
simulation are an option and parallel to experimental approaches. Additionally, the
findings from the RNA-Puzzles [12], joint research on the estimation of RNA
structures, suggest that computational methods can be employed for effective
RNA modeling. However, there is still space for improvement.

Like proteins, RNAs can be divided into families [13], which originated from a
common ancestor. RNA sequences from the same family will have higher similarity,
and the study of sequence conservation may be used for identifying important
conserved areas, such as areas binding ligands, active sites, or other important
functions. The Watson crick basis pairing pattern for the RNA is often used to
forecast SSs. According to the CompaRNA [14], RNA alignments methods such as
PETfold [15] outweigh the predictive single sequence methods of the secondary
RNA structure. RNA alignments may also be used to enhance the prediction of the
tertiary structure [16]. For instance, recently, a group of researchers employed a
novel approach for exploring tertiary structure predictions [13]. The methodology
examines the usage of multiple alignment knowledge and simultaneous RNA
homolog simulation to strengthen ab initio RNA structure modeling techniques. A
new technique, called EvoClustRNA, is focused on a conventional strategy to
predict RNA structures, utilizing evolutionary knowledge from distant sequence
homologs [17]. On the basis of the empirical finding that RNA sequences of the
same RNA family normally fold into identical 3D structures, they have checked
whether computational modeling can be driven by searching for a global helical
sequence for the target sequence, which is shared through de novo models of various
sequence homologs. EvoClustRNA is the first effort to use this method for RNA 3D
prediction. Thus, in this chapter, the authors attempt to understand the sources, form,
and role of the RNA structure and how different computational approaches that
researchers are adopting for determining various RNA structures.
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Fig. 10.1 (a) Basic structural motifs depicted within RNA secondary structures. (b) The simplest
form of RNA structure is a stem-loop. A stem-loop is shown with a bulge, internal loop, or (c)
tetraloop. (d) The loop can also base-pair with upstream or downstream sequences to form a
pseudoknot. (e) Interaction between the loops of two stem-loops forms kissing hairpins. (f) A
relatively complex structure is a cloverleaf or tRNA-like structure that often consists of multiple
stem-loops and pseudoknots. (Adapted from [5, 6])
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10.2 RNA Structure

The RNA is classified mainly according to its existence, role, and structure into three
groups: messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA
(rRNA). The rRNA produces complex three-dimensional structures that interact
with polypeptides to shape ribosomes responsible for protein synthesis in organelles.
The ribosomes act as an mRNA encoding tool. The mRNA includes instructions that
dictate protein amino acid sequences. The tRNA serves as an adapter to convert
mRNA codons into those amino acids [18]. In addition, as discussed below, there are
also other forms of RNAs, like long noncoding RNA (lncRNAs), small nucleolar
RNAs (snoRNAs), microRNA(miRNAs), and short interfering RNA (siRNA) [19].

10.2.1 Messenger RNA

The “messenger” RNA is mRNA. The mRNA in the nucleus is synthesized using the
DNA nuclear sequence as a reference. This process needs nucleotide triphosphates
as substrate and is catalyzed by the RNA polymerase II enzyme. The DNA to mRNA
processing is called transcription and takes place in the nucleus. The mRNA
produced in the nucleus is transferred to ribosomes out of the nucleus and into a
cytoplasm. Subsequently, the mRNA guides the protein synthesis that takes place in
the cytoplasm. On the ribosomes, proteins are packaged using the mRNA sequence
as a reference. Thus, mRNA bears a “message” to the cytoplasm from the nucleus for
encoding protein. The processing of mRNA to proteins is called translation [20]. Ear-
lier studies have reported that while the configuration and mode of action of the
prokaryotic and eukaryotic mRNAs vary, similarities still exist. In mRNA, genetic
information is encoded into a four-base nucleotide alphabet, which forms codons of
three bases. Each codon codes for a certain amino acid except for stop codons that
specify when the synthesis of protein stops. The mRNA is translated by the codon-
reading ribosome. For all prokaryotes and eukaryotes, the beginning or initiator
codon is an AUG sequence, and the sequences are read in 50 to 30 direction.
Eukaryotic mRNA normally codes for one specific (monocistronic) protein, whereas
the prokaryotic mRNA typically codes for a set of similar (polycistronic) proteins on
the same mRNA. Polycistronic mRNA guides the synthesis of each coded polypep-
tide, which is more or less simultaneous. For example, the trp operon is a DNA,
which is transcribed in mRNA and codes for six polypeptides, catalyzes the synthe-
sis of tryptophan.

The mRNA has a shorter life in comparison to the DNA. An mRNA molecule
may be stored, edited, and transported before translation following transcription
[21]. For many factors, mRNA stabilization is an important control point in the
regulation of gene expression. At first, an equilibrium between its synthesis and
degradation is highly required for consistent normal function. Secondly, the consis-
tency of individual mRNAs may be altered because of multiple environmental
stimuli, such as carbon source, viral diseases, and developmental transformations,
allowing rapid shifts in the expression of the gene. Thirdly, a method of competent
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mRNA degradation to remove deleterious errors during mRNA synthesis. Finally,
successful mRNA degradation is essential for the growth of both the prokaryotes and
the eukaryotes [22].

10.2.2 Ribosomal RNA

The biosynthesis of rRNA and its integration into the ribosomes is a surprisingly
complex process, which for over three decades, has been the focus of intensive
study. Ribosome biogenesis starts in the nucleolus, in accordance with the “RNA-
base machine,” through the synthesis of the large primary mRNA transcripts via the
RNA polymerase I (Pol I) [23]. In eukaryotes, the mature 80S cytoplasmic ribosome
is composed of the 60S larger subunit and the 30S smaller subunit. The small subunit
is composed of 18S rRNAs and more than 30 ribosomal proteins. The large subunit
comprises 5.8S, 25S/28S, and 5S rRNAs and over 40 ribosomal proteins. Biogenesis
of ribosome includes replication of ribosomal DNA (rDNA), production of
precursors-rRNAs (pre-rRNA), modifications to the RNA, and assembly of ribo-
somal protein and assembly factors in rRNA. Ribosome biogenesis is an important,
complicated, and energy-intensive mechanism strictly controlled by endogenous
signals and environmental factors, such as ambient temperature. Within eukaryotic
cells, irregular biogenesis of rRNA stimulates “RNA Nucleus Quality Regulation,”
inducing higher polyadenylation of some intermediate rRNA products as well as
by-products, known as TRAMPs (Trf/Air/Mtr4 polyadenylation complex). The
nuclear exosome complex sequentially degrades these intermediates. Ribosomal
biogenesis failure results in significant developmental of deficiencies in higher plants
and extreme hereditary disorders in mammals [24].

The catalytic function of rRNA was first shown by Harry Noller and his
colleagues’ 1992 experiments. These researchers found that even after about 95%
of the ribosomal proteins have been discarded via traditional protein extraction
methods, the large ribosomal unit would catalyze peptide bond formation (“Peptidyl
Transferase Reaction”). In comparison, RNase treatment fully abolishes the devel-
opment of peptide bindings, which clearly supports the theory that peptide binding
development is an “RNA-catalyzed reaction.” Further experiments have also
validated as well as expanded these findings by showing that the “peptidyl transfer-
ase reaction” can be catalyzed by synthetic fragments of 23S rRNA in the complete
absence of any ribosomal protein. These findings support that rRNA catalyzes the
basic reaction in protein synthesis.

Apart from being the ribosomes’ basic catalytic constituents, ribosomal proteins
can also be used for promoting proper rRNA folding and for boosting the ribosomes’
activity through proper tRNAs’ positioning [25]. The direct presence of rRNA
during the peptidyl transmission response has significant evolutionary
consequences. RNAs are considered to be the first macromolecules that have self-
replicating properties. Earlier studies have also supported this theory by stating that
ribozymes like RNase P as well as self-splicing introns can catalyze RNA substrate
reactions. The rRNA’s function in the peptide attachment formation expands the
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catalytic action of RNA to direct participation in the synthesis of protein. Few studies
have also revealed that the “Tetrahymena rRNA ribozyme” can catalyze the amino
acid binding of RNA, thus adding credence to the likelihood of RNAs, rather than
protein, being the initial aminoacyl tRNA synthesis. Thus, the RNA molecules may
also serve as a significant biomarker toward understanding the early evolution of
cells in catalyzing the reactions needed for self-replication as well as for protein
synthesis [25].

10.2.3 transfer RNA

tRNA is a small nucleotide chain. The tRNA acts as an “adapter” molecule with an
L-shape configuration, which converts the three-nucleotide codon sequence of the
mRNA into the required amino acid of that codon. The tRNAs define the genetic
code as the bond between amino acids and nucleic acids. However, their functions
extended beyond protein translation, providing a remarkable set of tasks in the
synthesis of bacterial cell walls, viral replication, cell tension, and even regulation
of animal behavior [26]. Bacteria have multiple antibiotic mechanisms, which in the
clinic is a growing obstacle. Within bacterial outer membrane lipids, tRNA-
dependent aminoacylation offers improved virulence and tolerance to the cationic
antimicrobial peptide [27]. Earlier, Fields and his team have studied the well-
documented pathways of lipid aminoacylation to illustrate the usage of aminoacyl-
tRNA substrates as an amino acid donor in lipid changes for improved antibiotic
tolerance by the aminoacyl-phosphatidylglycerol synthases [28]. Emerging data also
suggest that the tRNA genes perform a new function in bacterial conjugation. For
instance, Alamos and his team found that 36 out of its 95 tRNAs are encoded in an
integrative-conjugative genetic variable within acidithiobacillus ferrooxidans
[29]. Castillo and his team have also shown that the integrases encoded inside the
conjugative factor recognize the area of the tRNA stem-loop for active and location-
specific recombination [30].

Mature tRNAs are abundant in nucleotide-based post-transcriptional
modifications. These improvements perform important roles in the management of
translation and reading frames [31], tRNA reliability, and transport [32]. Modifica-
tion may occur within the anticodon as well. Phylogenetic analysis has been
performed by Rafels-Ybern and his team to show the production of adenine base
modification to Inosin (I) at location 34. The A to I shift affects the tRNA’s ability to
decipher the codon’s third nucleotide location. Whereas A34 forms an optimal
relationship with U, I34 is equally well informed of U, C, or A. The I34 function
is to broaden wobble decoding, as investigated by another group of researchers
[33]. The switch to I34 requires one tRNA to read three codons of the same amino
acid. While the alteration is widely used in eukaryotes, there were limited earlier
examples in bacteria. Earlier, researchers have also found many possible I34
locations for tRNAs’ modifications in Firmicutes as well as Cyanobacteria
genomes [34].
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Changes can often involve the shipment of tRNA within cellular compartments.
In an interesting study, Kessler et al. explain how the transportation of tRNAs
between various areas of the cell influences the maturation and alteration of
tRNAs [35]. Seminary tests of the sleeping causative agent, Trypanosoma brucei,
indicate that tRNA-Tyr is transferred to the cytoplasm where the intron in an
immature tRNA is broken. The tRNA is then reimported to the nuclease in a process
called “retrograde transport,” in which the spliced tRNA is necessary for modifica-
tion with queuosin [32]. Some tRNA variations are retained in all life types. In a few
tRNAs, the modification threonyl-carbamoyl adenosine (t6A) is found to decipher
the ANN codons and is necessary for the stabilization of the duplex codon–antico-
don. The t6A modification at loci 37, next to the anticodon loop, has been found to
be necessary for the operation of Streptococcus mutans’ anticodon nuclease PrrC
[31]. The nuclease facilitates the bacterial cell death under stress conditions or during
phage infection when the tRNALys

UUU anticodon loop is precisely cleaved.

10.2.4 Small Nucleolar RNAs

snoRNAs are generally composed of 60–170 nuclear nucleotides (with few
exceptions) [36, 37] and are mainly involved in directing post-transcriptional alter-
ation of nonprotein-coding RNAs (rRNAs, snRNAs) [38]. snoRNAs are broadly
categorized as either a “C/D box” or “H/ACA box” based on the given sequence as
well as SSs component [37]. “C/D box” directs 20-O-methylation and “H/ACA”
nuclear pseudouridylation upon target molecules. Since the 50 as well as 30 ends of
the molecule fold into a stem configuration, which in turn creates a “kink switch,”
the “C box” (“RUGAUGA”, R ¼ A or G) and the “D box” (“CUGA”) sequence
motifs of the “C/D box” are brought closely into contact. The majority of the C/D
boxes have another less conserved C as well as D box motifs, namely the C0 and D0

boxes, within the “Central SnoRNA region.” C/D box is mainly involved in the
ribonucleoprotein (RNP) complexes that also include 15.5 K, NOP56, NOP58, and
fibrillarine proteins [39, 40]. The latter catalyzes the 20-O-methylation of ribose
molecules within the target RNA [40]. “H/ACA box” is a well-designed SSs
comprising two hairpins connected together through a single-stranded area
designated as the “H box” (“ANANNA”, N ¼ A, C, G or U) as well as the “ACA
box” (“AYA”, Y ¼ C or U) at the 30 end [41]. “H/ACA” produces “H/ACA”
snoRNA and a group of four proteins, namely, Nop10, Gar1, Dyskerin, and Nhp2,
where Dyskerin functions as pseudouridine synthase [42]. Primary identification of
“H/ACA box” often includes RNA–RNA interactions between single-stranded area
within the inner loops of the two snoRNA hairpin systems, mostly with target RNA
[43, 44].
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10.2.5 microRNA

miRNAs are small noncoding RNAs that have a mean length of ~22 nucleotides.
The majority of the miRNAs are transcribed into prime miRNAs from DNA
sequences and converted into precursor miRNAs as well as mature miRNAs. In
certain instances, miRNA interacts with the 30 UTR of the objective mRNA for
suppressing expression. However, there have also been records of the association of
miRNAs with other regions, including the coding sequence, 50 UTR, and gene
promoters. Moreover, under some circumstances, miRNAs have been shown to
cause gene expression. In recent research, miRNAs have been shuttled between
various subcellular cells to regulate the rate of translation and also transcription
[45]. miRNAs are critical for the natural growth of animals and active in various
biological processes [46]. Aberrant expression of miRNAs is related to a variety of
human diseases [47, 48]. miRNAs are often secreted within extracellular fluids.
Extracellular miRNAs can serve as plausible biomarkers for a number of diseases
and signaling molecules for cell–cell interaction [49].

10.2.6 Short Interfering RNA

siRNAs are derived from double-strand RNAs (dsRNAs), consisting of two
antisenses as well as a sense RNA strand that forms 19–25 bp duplex with 30

dinucleotide overhangs. The antisense strand is a perfect reverse complement to
the expected mRNA target. Few important functions of siRNAs include mainly post-
transcriptional gene silencing or translation inhibition, exogenous DNA defense,
intervention in epigenetic processes, and preserving genome integrity by transcrip-
tional silencing. It has been used for industrial purposes to easily research in vivo
gene expression owing to its capacity to knock out genes. Many of the siRNA
measurement applications are therefore planned to aim siRNA sequences optimally
to knock out genes. Subsequently, siRNAs’ prediction can also be used to establish
protocols for screening and can be used to classify new pathways to confirm cellular
targets correlated with diseases such as hepatitis, cancer, and HIV infection [50].

10.2.7 Long Noncoding RNA

lncRNAs are classified as >200 nucleotide RNA molecules. While this differentia-
tion is rather subjective and dependent on functional aspects of RNA separation
techniques, lncRNAs vary from miRNAs as well as other sRNAs. In significant
amounts, lncRNAs are present within the genome. They may not usually have
working open read frames (ORFs). However, the discovery of bifunctional RNAs
with coding-independent and protein-coding functions is flexible by this distinction,
which increases the probability that certain protein-coding genes might have non-
coding functions, as well [51]. Many lncRNAs are poorly expressed and, thus,
researchers experience difficulties during exploring lncRNAs and understanding
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why lncRNAs were always considered to be “transcriptional noise.”
RNA-sequences in various tetrapods indicate that mostly (~81%), primate-specific
lncRNAs are poorly retained in the DNA chain. However, it is worth remembering
that many lncRNAs are highly conserved within the DNA sequence, and ~3% of
lncRNAs might have originated earlier than 300 million years ago [52].

lncRNAs may be fast-evolving species of RNA that can play key roles in lineage
specifying. A comparison of the matching tissues in Rattus norvegicus, Mus
musculus castaneus, and Mus musculus domesticus indicates that shifts in the
transcription levels of the adjacent protein-coding genes are linked with the appear-
ance or disappearance of the lncRNAs [53]. There are several instances of lncRNAs
with retained biological roles but low-level sequence survival, such as TUNA/
megamind correlated with the growth of the brain in zebrafish, mouse, and humans
[54, 55], and X-inelective unique transcript (Xist) involved in X-inactivation
[56]. RNA molecules can require fewer sequence retention in order to maintain
their function than proteins. Conversely, lncRNA promoters have a strong sequence
conservation, which is even higher in comparison to protein-coding-gene promoters
[57], indicating that lncRNA expression control is significant.

10.3 RNA Structure Prediction

RNA plays various cellular functions, and, thus, recognizing RNA structure is
essential to understand its action mechanism [58]. Because the prediction of the
three-dimensional RNA structure is difficult and expensive, scientists mainly depend
on RNA’s SSs. Hence, to date, numerous algorithms have been designed for
predicting the SSs of RNA [19]. However, since three-dimensional structures are
highly required for getting insight into the function of the RNA, few approaches
have also been developed for predicting tertiary structures of RNA atoms [59]
(Fig. 10.2 and Tables 10.1 and 10.2).

10.3.1 RNA SSs Prediction Methods

Present methods of prediction of SSs of RNA may be broadly categorized into
comparative sequence analysis (CSA) and folding algorithms with thermodynamic,
predictive, or probabilistic scoring schemes [81]. CSA distinguishes base pairs
between homologous sequences. These approaches are incredibly accurate [82] if
there are a sufficient number of compatible sequences and are aligned with profes-
sional expertise manually. However, to date, only a few thousand RNA families
have been identified. Therefore, the most popular method used for the RNA SSs
prediction is to fold an individual RNA sequence according to a suitable scoring
feature. In this method, the RNA structure is separated into substructures, such as
loops and trunks in the closest model [83]. Dynamic programming (DP) algorithms
are then used to find minimal or probabilistic global structures from such
substructures. Subsequently, experimental technique [84] (e.g., RNAshapes [85],
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RNAstructure [86], and RNAfold [87]) or machine learnings approaches (e.g.,
ContextFold [88] and CentroidFold [89]) are required to calculate the score
parameters of every substructural device. But total accuracy (the percentage of
correctly predicted basic pairs in all predicted base pairs) seems to have hit a
“efficiency ceiling” [81] at around 80% [90, 91]. This is because all current
approaches do not recognize some of all the base pairs arising from tertiary
interactions [92]. These base-pairs are mostly pseudo-knotted (non-nested), lone
(unstacked), and noncanonical base pairs (not G-U, A-U, and G-C) and triple
interactions [92, 93]. While some methods can predict secondary RNA structures
with pseudoknots (e.g., Knotty [94] and Probknot [95], pknotsRG [96]) and others

Table 10.1 Softwares and tools for predicting secondary structure of RNA

Name Description References

CentroidAlifold Employs generalized centroid estimator [60]

DAFS Align and fold RNA sequences through dual
decomposition.

[61]

MASTR Uses Markov chain Monte Carlo in a simulated
annealing framework

[62]

Multilign Utilizes multiple Dynalign calculations for finding
a low free energy structure that is common to
numerous sequences. It does not need sequence
identity.

[63]

Murlet Uses iterative alignment dependent on Sankoff’s
algorithm having sharply decreased
computational time as well as memory.

[64]

MXSCARNA Employs progressive alignment [65]

PARTS Probabilistic model and requires pseudo free
energies

[66]

Pfold Utlizes a SCFG trained on rRNA alignments. [67]

PETfold Combines both the energy-based and evolution-
based approaches

[15]

PhyloQFold Consider the evolutionary history of a group of
aligned RNA sequences

[68]

TurboFold Utilizes probabilistic alignment as well as
partition functions for mapping conserved pairs
among sequences, and subsequently iterates the
partition functions for improving the accuracy of
structure prediction

[69]

Context Fold Dependent on feature-rich trained scoring models. https://www.cs.bgu.ac.
il/~negevcb/
contextfold/

E2Efold A deep learning approach that employs a
constrained optimization solver, without using
dynamic programming.

[70]

SwiSpot Detects alternative (secondary) configurations of
riboswitches

[71]

Mfold Prediction based on minimum free energy [72]
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may predict noncanonical base pairs (e.g., CycleFold [97], MC-Fold-DP [98], and
MC-Fold [76]).

10.3.1.1 Comparative Sequence Analysis
The most reliable way of the prediction of SSs for RNA is CSA as well as it is the
method of first preference when deciding the SSs of a new RNA. It is built on the
hypothesis that structure is more commonly conserved than sequences via evolution
[58]. CSA was first used to address tRNA SSs [99, 100]. This research is used to be
done with the assistance of modern structure prediction algorithms. Subsequently,
tRNA crystal structures predicted was found to be right. Later, a CSA of the SSs of
rRNAs have revealed that over 88% of the expected pairs find crystal structures
subsequently fixed, and nearly all of the expected tertiary as well as noncanonical
interactions were considered to be right [82]. Almost no means of SSs prediction can
give something similar to this degree of precision, especially for longer RNAs, or
have a similar insight into higher-order contacts that might also have functional or
structural worth. CSA is typically the criterion under which structure prediction
algorithms are tested since only a small number of sequences of such RNA families
have been crystallized [58].

Identifying regions with orchestrated mutations that do not represent nucleotide
identities but retain base pairs is a good indicator of an underlying structure that is
conserved and of practical significance. The two-nucleotide sequence modifications
that maintain base pairing are considered compensating base-pair changes. For
example, the G-C base pair is more likely to mutate in one sequence into another
canonical pair (AU, UA, CG, UG, GU) as the modification may include modifying
two nucleotides rather than one, than mutating into one noncanonical pair or deleting
one of the pairing partners with a single nucleotide. The bases of homologous RNAs

Table 10.2 Softwares and tools for predicting three-dimensional structure of RNA

Name Description References

BARNACLE Employs probabilistic approach [73]

FARNA de novo prediction. [74]

iFoldRNA 3D structure prediction as well as folding [75]

MC-Fold
MC-Sym
Pipeline

Thermodynamics as well as nucleotide cyclic motifs
for RNA structure prediction algorithm

[76]

ModeRNA Based on a template RNA structure as well as a user-
defined target-template sequence alignment

[77]

NAST Coarse-grained modeling having knowledge-based
potentials as well as structural filters

[78]

MMB Turning limited experimental information into 3D
models of RNA

[79]

RNA123 de novo and homology modeling of RNA 3D
structures.

[80]

RNAComposer Automated generation of large RNA 3D structures. http://rnacomposer.
cs.put.poznan.pl/
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from distant species can have low identification, but SSs are fully conserved, as each
transition under which the sequences diverge conserves the structure [58]. Further
accessible descriptions of structures of variance sequences resolved through CSA are
accessible in the Rfam database seed alignments [101]. Irrespective of all these
signs, CSA is not necessarily feasible, especially when a sequence is not defined.
Free energy minimization (FEM) is one of the most common approaches in such
scenarios [58].

10.3.1.2 Secondary RNA Structure Prediction Using Free Energy
Minimization

The most common approach for predicting SSs is the FEM, where only a single
sequence is defined for a certain function [102, 103]. This approach mainly employs
DP, statistical mechanics, and pseudoknots algorithms to achieve its aim.

Dynamic Programming
The most common methods of FEM for RNA prediction are focused on dynamic
algorithms of programming [102–104]. In principle, these algorithms can take into
account indirectly all potential SSs for a particular sequence with the explicit
construction of these structures. To do this, the lowest folding free energies are
calculated for all sequence fragments of the entire sequence and the outcomes
retained. As the least folding-FE (FE) for longer fragments is measured, the mecha-
nism speeds up to the free energies for shorter fragments. DP algorithms have been
preferred because they are computationally powerful and usually produce the same
results to ensure that the lower FE structure is provided with the stability laws.

Statistical Mechanics
The lowest FE configuration is the most possible configuration for RNA in equilib-
rium. When the expected lowest FE structure is compared to the well-known
secondary sequence, the precision may be defined by sensitivity or positive predic-
tive value (PPV). Sensitivity is the proportion of recognized base pairs in the SSs
predicted. The PPV is the proportion of expected pairs in the established structure.
Therefore, sensitivity states that the proportion of identified pairs can be estimated
independently of erroneously estimated pairs. Good predictive value is the percent-
age of expected, accurate pairs influenced by inaccurate pair predictions. It is usually
less than sensitivity since FE reduction expects more base pairs than the so-called
base changes. It is usually less than sensitivity since FE reduction expects more base
pairs than the so-called base compensating base changes.

In 2003, Ding and Lawrence [105] established a statistical sampling procedure for
RNA SSs prediction. The SSs are sampled according to Boltzmann’s likelihood by
means of a partition-function approximation using a stochastic DP algorithm. The
likelihood of any given base pair is the frequency of its existence in the ensemble of
structures within sampled structures. Moreover, several new structural properties can
be calculated, including the likelihood of the single-stranded of two neighboring
nucleotides. This information is not given by the partition function estimation alone
in a single estimation since the base pairs’ pairing chances are not independent. In
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other words, the possibility that two base pairs will appear in the same structure is
not the consequence of its partition function. The predictive sampling approach
improves the estimation of the SSs by identifying the SSs in the ensemble that better
describes all of the structures [106]. This “centroid” configuration is selected as the
least aggregate variance of all systems. The centroid of the ensemble is also not the
lowest FE system. On average, centroids have slightly better sensitivity to base-pair
predictions for different sequence databases of the established SSs but have a
substantially higher predictive value. Thus, statistical sampling should also be
used to boost the precision of SSs prediction.

Pseudoknots
Pseudoknots are troublesome since most DP algorithms cannot anticipate them,
although 1.4% of simple pairs in various defined SSs are pseudo-knotted. The
fundamental issue is that most DP algorithms presume, in order to speed up the
estimation, that the overall folding FE change of a secondary system with two
branches is the amount of the FE change of each branch calculated separately. If
pseudoknots develop between the divisions, it does not work anymore. With
increasing sequence length, DP algorithms that forecast pseudoknots scale poorly
in time and are quite sluggish. For instance, the standard set of DP algorithms for
FEM as well as partition function calculation scales O(N3) in time, whereby N is the
number of nucleotides in the sequence. PKNOTS is a DP algorithm that can forecast
the most known topology, yet O(N6) scales [107]. This means that doubling the
sequence length takes 8 times more computing time by conventional methods but
64 times more when pseudoknots are taken into account. This restricts the use of
these algorithms to sequences of up to 100–200 nucleotides. Numerous different DP
algorithms scale better O(N5) or O(N4), but cannot forecast as many established
pseudoknot topologies [108, 109]. Pknots RG, by Reeder and Giegerich [110],
which scale O(N4) are one of the best to this group of algorithms.

Pseudoknots can be predicted using heuristics in acceptable computational time.
However, the trade-off is that no certainty exists for estimating the lowest FE
structure. In a software called ILM [111], one heuristic algorithm is introduced. It
is based on a repeated (iterated) prediction of the structure with the so-called “loop
matching algorithm.” Each repetition forecasts a non-pseudoknotted structure, from
which the highest score helix will be selected for the final structure. The paired
nucleotides from the previously selected helixes are discarded in the next structure
prediction iteration for each repeat. Since nucleotides are eliminated from successive
measurements in pairs, the selected helices’ collection may be pseudo-knotted in the
final assembly. The algorithm scales O(mN3) in the worst case for m loop matching
calculations. Another heuristic algorithm is introduced in the software HotKnots
[112]. HotKnots commonly use many calls to a DP algorithm to assemble
pseudoknots constructs, but at each point, several alternative helixes are expected
simultaneously. This tests a number of SSs, which are ordered by increased FE
changes at the end of the measurement.
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10.3.1.3 Multiple-Sequence SSs Prediction
The multi-sequence SSs estimate tries to mimic a CSA by forecasting structures
retained in two or more sequences. These techniques are not as reliable as manual
CSA, but they can greatly increase precision over single sequence methods
[63]. However, many of these techniques are more computationally costly than
single sequence approaches.

Algorithms That Simultaneously Fold and Align
David Sankoff suggested the first method for folding homologous RNAs [113]. It
concurrently considers the alignment as well as the folding of any amount of RNA
sequences in a single measurement. The algorithm formally scales O(N3s) in time,
and O(N2s) in storage, i.e., the memory usage, for s sequences of having length N. As
other prediction methods of the single-sequence structure, this algorithm cannot
predict pseudoknots. This algorithm is costly, particularly for more than two
sequences. However, the limitation of alignment to eliminate impossible biological
alignments and pairs provides major time-cost improvements. FOLDALIGN [114]
was the first minimal version of the Sankoff algorithm. This algorithm used base-pair
optimization instead of the FEM and nearest neighbor approach. It also removed
branched structures from consideration, which reduced the algorithm to O(N4) in
time, but removed a common and significant motif within RNA structure. Latest
FOLDALIGN updates also provided support for the provision of branched systems,
a FE model, and a heuristic trimming to speed up computation, which greatly
increases algorithm accuracy [115].

Another approach that employs the Sankoff algorithm is LocARNA
[116]. LocARNA maximizes the sum of pair probabilities for both sequences that
are computed by different single-sequence partition function estimates and a simi-
larity score for alignment, rather than minimizing energy. LocARNA runs easily
since only significant base pairs are regarded, reducing the order of the algorithm to
O (N2(N2 + M2)), for two sequences of length N, and where M is the number of
significant base pairs, also on order N. It does, however, lose any precision in
contrast to FOLDALIGN [66]. While it is typically challenging to expand Sankoff’s
algorithm directly to more than two sequences in terms of computational costs, other
means have been used to adapt it for the infinite number of sequences with greatly
reduced complexity. FOLDALIGNM employed pair frequencies for all pair-wise
FOLDALIGN sequence measurements [117].

Initially, LocARNA was also able to work on several sequences [116]. In order to
generalize to several sequences, mLocARNA employs the output of the LocARNA
multi-sequence alignment calculations in pairs. The chance of a pair of aligned
columns is the square root of the pairing odds of the two alignments. RAF (99) is
a distinct method that aligns and plies an infinite number of sequences concurrently.
RAF functions in two sets at a time and aligns successive implementations of
alignments rather than sets. mLocARNA and FOLDALIGNM seemed to work better
at shorter sequences in benchmarks, and RAF &Multilign appeared to operate better
for longer sequences, and both seemed to outperform single and double sequence
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approaches for most forms of RNAs [118]. Many of these algorithms cost the current
hardware fairly.

Algorithms That Align First, Then Fold
The second paradigm to approximate the arrangement of more than one sequence is
to first align and fold the sequences. This model is seen in RNAalifold
[119]. RNAalifold defines a minimum FE consensus framework that a community
of compatible input sequences may build. Input alignment mostly emerges from a
series alignment algorithm; however, individually curated alignments are endorsed
and may increase precision. RNAalifold is quick and productive for matching
sequences. Its accuracy is hindered if the input is incorrectly matched, which may
happen when the sequence identity of the pairs is <60%. In those instances,
automatic sequence alignment algorithms battle [120]. The alignment of sequences
of low identification, rendered by a professional investigator, or at least modified,
could have provided good results. The CentroidFold algorithm [121] also exists in
the model “align, then fold.” It investigates the central frame in a way that is similar
to the one of Sfold [122] rather than considering a minimum free-energy consensus
structure. The central structure of the largest structural cluster represents the central
structure, created by the stochastic sampling of homologous structures series. The
chances of identifying the core consensus structure can be calculated by using an
experimental discovery [123] or by using the nearest model from a database of
unique structure sequences.

Recently, the TurboFold model requires an unlimited amount of sequences in the
“align, then fold” model and then tests their pair-wise probabilistic alignment and
their base-pair probabilities [124]. These alignments are employed for configurations
among sequences. The single-sequence base pair probabilities for a provided
sequence within the collection are referred to as the “intrinsic information.” For
any other sequence, the combined probabilistic aligning and the base couple
probabilities are referred to as the “extrinsic information.” The updated probabilities
of the pair would then be used to recalculate extrinsic information. Many iterations
strengthen and improve the predicted chances of the pair for series. The architectures
are designed with the highest expected accuracy algorithm after the required number
of iterations. In random assortments, TurboFold typically outperforms other predic-
tive algorithms in multiple sequences that normally include identities that are less
than 60% in pairs and that are commonly comparable in PPV sequences
[124]. Although it may be more expensive to compute than any of the above
alignment and then fold algorithms, up to 10 RNA sequences of normal lengths
per minute are required. One of TurboFold’s important advantages over most of the
above-noted algorithms is that it does not enforce a common structure. Variable
elements can also be properly predicted in homologous sequences, including the
variable stem in tRNAs, allowing TurboFold a convincing alternative for structural
prediction, where different sequences can be used in divergent identities and ambig-
uous alignment.
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An Algorithm That Folds, Then Aligns
In multi-sequence structure prediction, the third paradigm is to “fold, then align.”
RNAshapes [125] follows this method. This algorithm lists separately the abstract
“shape” space accessible for each sequence and determines the probability of each
form, and then defines the thermodynamically optimal configuration with the typical
form. Instead of full pairing details, abstract shapes encode RNA structure features.
There are far less low FE sources than systems, so the solution is feasible.
RNAshapes is fast; after single sequence structure measurements, it is roughly linear
in time. It gives precision comparable to the above multi-sequence approaches. It
does not provide series alignments but can be created with RNAforester [126] from
the retained structure.

10.3.2 Three-Dimensional Structure Prediction Methods

Although the SSs offers the blueprint for an RNA molecule, information about the
RNA 3D structure remains key to an overall understanding of its role. Initial 3D
structure modeling was carried out successfully by RNA structure experts with the
3D structures of several typical RNA molecules, like tRNAs [100], the group I
introns [127], and RNase P [128]. In recent years, a range of computational models
for the prediction of RNA 3D structures has been developed [1]. These models may
be broadly categorized into two groups, i.e., depending on the knowledge or physical
property.

10.3.2.1 Knowledge-Dependent Modeling
RNA 3D structures may be predicted by assembling established motifs or the
aligning sequence with already available experimentally defined structures in the
database. Knowledge-based modeling primarily involves modeling on the basis of
graphics and homology-based modeling (HBM) [129].

Graphics-Based Methods
The graphics modeling typically offers a visual interface, which enables users to
create 3D RNA constructs by controlling or assembling segments of RNA [130–
134]. Few of the major graphics-based algorithms are MANIP, ERNA-3D, and
RNA2D3D. The MANIP helps users to design known 3D models on the computer
screen using the corresponding SSs predicted through CSA [130]. Although the
MANIP is not an automated process, it provides a quick and simple way to construct
3D RNA structures, particularly large RNAs, such as the RNase P RNA [130]. More-
over, multiple relationship tables, as well as base-pair tables that specifically contain
RNAs’ topological information, can be used to precisely model RNAs’
interactions [130].

In order to create RNA 3D structures from sequences as well as SSs, the ERNA-
3D offers users a graphic interface in order to freely position the A-form helixes and
to explicitly draw the single inter-helical strands [135]. The 3D structures of mRNA,
rRNAs, and tRNAs, including 16S rRNAs, 5S rRNA, and 23S rRNA, were
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successfully produced using ERNA-3D [135]. The RNA2D3D will forecast rough
3D structures for large RNAs easily based on their SSs, e.g., viral kissing loops,
ribozymes, and various RNA nanostructures [136]. Manual handling, though, must
be performed to create a graphical interface to achieve a better structure, like
compacting, energy refinement, stalking, and segment-positioning [137]. While the
graphics-based approaches introduced above can be used for creating 3D structures
for large RNAs with hundreds of nucleotides quickly and intuitively, since they are
manual techniques, they require users to set up and optimize the RNA structure
models according to particular concepts utilizing the tools provided in the software
packages. Thus, in order to construct plausible systems, it is important for users to
have extensive knowledge of RNA systems.

Homology-Based Modeling
Although a macromolecule’s 3D structure experiences change much slower in
comparison to its sequence, evolutionarily associated macromolecules normally
preserve similar 3D structure though divergences at the sequence level. On this
basis, 3D macromolecule structures are able to be built by aligning the target
molecule sequence to molecular structure templates [134]. HBM, also referred to
as comparative modeling or template-based modeling, was very effective in the
prediction of 3D protein structure [138, 139]. Additionally, HBM has been expanded
to include fragment assembly methods like 3dRNA [140] and RNAComposer
[141]. 3dRNA is a quick and automatic 3D algorithm designed to construct RNA
structure by assembling A-form helixes and various loops, whose structures are
extracted in a database from known structures [140]. 3dRNA predicts reliable 3D
structures based on its SSs for 300 RNA tested, including pseudoknots, duplexes,
and hairpins. In addition, 3dRNA can also be used freely online as a database server,
and the projected 3D structure can be accessed rapidly with the sequence and SSs as
data [140].

ModeRNA enables both the simplified structure forecast from a series of
templates/alignments as well as user-controlled structure manipulations, i.e., the
fragment assembly [142]. ModeRNA understands as well as models post-
transcriptional alteration of nucleosides compared with other modeling algorithms.
It is pertinent to note that even though ModeRNA is not a method focused on
graphics, it also demands that users should have alignment among the RNAs
template and the target RNA and define the base pairs between the embedded
fragment and the rest of the RNA [142]. RNAComposer is another web server that
can use the RNA FRABASE database for predicting 3D structures for large RNAs
[141]. The RNA FRABASE database can be considered as a dictionary linked to the
RNA SSs with established fragments of a tertiary structure. The SSs that a user
provides in the RNAComposer is, first of all, broken into elements such as stem,
loops, and individual strands and subsequently scanned the related tertiary structural
elements automatically from an RNA FRABASE database as well as assembled into
full 3D structures.

The key benefit of HBM is that the size of the RNAs to be modeled is not
necessarily limited. The consistency of the projected structures depends, however,
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on the sequence alignment consistency, template structures, and secondary
frameworks identified by the user. Although the amount of identified RNA structures
stored, the PDB/NDB database is growing quickly, and it might yet be challenging to
locate accurate template RNAs for a given target RNA. In addition, owing to their
strong stability, the configurations of their RNA are normally modified with
solutions such as ion conditions and temperature [143], and other ligands or
macromolecules. Moreover, the creation of a good alignment of RNAs with compli-
cated systems typically involves laborious manual planning dependent on proven
expertise in the most significant RNA families. HBM is, therefore, not always
accurate.

10.3.2.2 Physics-Based Modeling
Physics-related methods are based on biophysical concepts that concurrently scan
for the conformation to fold with minimum free energy. Since complete atomic
structure modeling for an RNA typically requires several degrees of freedom and
thus tremendous computational sophistication, many CG predictive models with
physical simplifications have also been developed at various resolution levels.

All-Atomistic Model
Until today, the “all-atomistic molecular dynamics” are highly required for under-
standing macromolecule simulation, which in turn provides an insight into the real
movement of atoms, such as AMBER [140, 144] and CHARMM [145] with
physics-based force fields. However, considering the several degrees of freedom, it
remains challenging for folding RNA 3D structures even with advanced computing
strategies. The models were then evolved considering the recognized or secondary
fragments [146], such as the MC-fold/Mc-Sym Pipeline (MMP) [76] and FARNA/
FARFAR [147]. Because SSs can provide enough structural constraints for
automated construction of 3D structures, the MMP infers RNA SSs from sequence
data and subsequently assembles a set of 3D structures based on their SSs
[76]. Unlike the thermodynamics approaches such as Mfold [148]. The MC-Fold
can forecast RNA SSs, including noncanonical and canonical base pairs, for the
usage of a knowledge-related scoring function associated with the NCM (nucleotide
cycle motif) databases. The NCMs that are circularly bound through covalent bonds,
pairing or stacking interactions, were actually developed from a study of the X-ray
crystallographic structures. The MC-Sym along with the 3D NCMs as well as the
Las Vegas algorithm was employed for the fragment insertion simulation. MMP has
been authenticated by constructing 3D structures of precursor microRNA as well as
human immunodeficiency virus (HIV1) cis-acting-1 frame-shifting segment [76].

Das and Baker discussed FARNA’s completely automatic, energy-based solution
to predict RNA 3D structure [74]. FARNA integrates trinucleotide fragments
obtained from the ribosome crystal structure into a completely atomistic structure
that is compatible with the particular sequence by utilizing the Monte Carlo algo-
rithm as well as the simpler knowledge-based energy feature that favors stacking,
base pairing, and geometry. The CG core pairing capacity employed in FARNA is
focused on the mathematical study of the ribosomal basis, and not only Watson–
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Crick base pairs. However, the interactions along with Hoogsteen as well as sugar
edges may be taken into account. FARFAR implements a high-resolution process of
refining into FARNA in order to forecast and design the atomic precision of
noncanonical small RNA structures [147]. In another study, RNAnbds was built
for predicting RNA’s 3D structures through fragmentary assembly, on the basis of
statistics of bases as per their sequence/space neighbors in databases [149]. RNAnbds
offers a good predictor for short fragments (<15 nucleotides), in specific RMSD
loops <4, together with statistical potentials like base stacking and base pairing.

Coarse-Grained Model
Another important approach for minimizing the computational expense is to
decrease the number of objects by handling a set of usable atoms with a single
bead [150, 151]. The bead can either denote a few or a large number of atoms on the
basis of the model’s resolution. Following the initially “one-bead RNA model”
designed by Malhotra and Harvey [152], several CG models were implemented
for the purposes of predicting RNA 3D structures [153] or modeling interactions
among RNAs as well as other molecules [154, 155], for example, NAST [156], YUP
[157], and iFold [75]. The YUP is a very versatile molecular mechanic algorithm for
CG and multi-scaling modeling [157]. The YUP is employed for modeling RNA,
protein, and DNA structures on the basis of the related energy potentials and
approaches such as Monte Carlo, energy minimization, and molecular dynamics.
In YUP, one nucleotide is substituted by a pseudo-atom at the middle of phospho-
rous atoms in order to model high RNAs, which decreases device costs efficiently.
While YUP needs users to supply the information about the SSs of RNAs and the
force field, YUP is an adaptive RNA modeling kit for automated CG
modeling [157].

Like YUP [157], NAST is another “one-bead RNA model” in which a
nucleotide’s C3’ atom is picked to reflect the whole nucleotide [158]. The NAST
will sample conformations that fulfill a certain range of secondary structure as well
as tertiary interaction limit, with an RNA basic knowledge-based ability and a simple
molecular dynamic algorithm. One benefit of NAST is its capacity to integrate
experimental data as a filter for structurally equivalent conformation clusters, for
example, with perfect small-angle X-ray dispersing data as well as experimental
solvent accessibility data. Earlier, NAST was employed for predicting the yeast
phenylalanine tRNA’s 3D structures (76 nucleotides) and the Tetrahymena thermo-
phile group I intron’s the P4-P6 domain of 158 nucleotides within 8 Å as well as
16 Å RMSDs retrieved from experimental structures, respectively [158]. The iFold
is another web-based algorithm that is being built by the Doknolyan community and
can be used for predicting RNA’s 3D structures [75]. The model employs three-
nucleotide beads of CG representation and efficient molecular dynamic simulations
with step-by-step potentials like the base pairing. iFold’s strength has been seen in
forecasting the 3D structures of 150 RNA with different sequences, with <4 Å
deviations in experimental structures in the majority of predicted structures [159].
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10.4 Conclusion and Future Perspective

In conclusion, to date, numerous computational approaches have been developed for
predicting the secondary as well as the three-dimensional structure of RNA. How-
ever, the authors believe that there is still scope for the development of novel tools
and techniques which can predict a more accurate structure [160]. Combining
experimental and computational approaches for predicting the structure of RNA
will enable us to understand its structure and function more precisely. For instance,
smFRET as well as NMR spectroscopy are useful tools to evaluate the several states
that the RNA can embrace. The PARIS approach for in vivo crosslinking also has a
significant potential to include several instances of multiple-folded RNA.
Improvements in cryoelectron microscopy, as well as tomography along with direct
electron detectors, advanced contrast methods as well as single particle detection,
can allow direct observation of single RNA molecules feasible in several
configurations. The cryoelectron microscopy group has already designed novel
sophisticated systems for categorizing related configurations of complex macromo-
lecular assemblies. The least number as well as the length of RNA helices obtained
from crystallography or cryoelectron microscopy often offer an important restriction
for RNA folding [160]. Good measurements are also needed to assess differences
among RNA structures. For instance, the analysisDist tool available within the
program kit of the Vienna RNA provides several alternatives for measuring matrix
distances with Ward’s method, Shapiro’s cost matrix for coarse structures, or
Saitou’s neighbor-joining method [87]. Thus, RNA structure prediction continues
to progress with novel metrics as well as more experimentally specified examples of
multi-conformation RNA assemblies. A single minimum free energy configuration
for the RNA sequence would become a greater appreciation of the several potential
different configurations encrypted in the RNA sequence and precise forecasts will
direct the evaluation of detailed transcript and transcriptome-wide research studies.
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