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Preface

In the genomics era, bioinformatics, a discipline that uses data from molecular
sequence (nucleotide and protein) research to make observations regarding
biological functions and entails the application of information technology to biology,
has grown exponentially. It is now an integral part of biological research, with
applications in a wide range of fields. Bioinformatics is expanding in tandem with
rapid technical and scientific advancements in a variety of fields. The science of “big
data” is the product of collaboration between ultrahigh-throughput technological
growth and high-performance computers. In recent years, genetics, genomics, pro-
teomics, metabolomics, and metagenomics have had a greater impact on biology.
The Human Genome Project resulted in next-generation sequencing technologies,
which allow for whole-exome and whole-genome sequencing (NGS) in as little as
24–56 h. This changed the way of unusual disorder genetic testing all over the world.
Almost every nation has scientists who can analyse NGS data for diagnostic
purposes. The world would profit enormously from the decoding of plant and animal
genomes. Bioinformatics methods would be useful for looking and explaining the
roles of genes that are useful to the agricultural population inside certain genomes.
This basic genetic information would be useful for the development of crops that are
more drought, disease, and insect tolerant, as well as increase livestock production
by making them better, disease-resistant, and more profitable.

Bioinformatics in Rice Research: Theories and Techniques provides an up-to-date
review of various classical and advanced bioinformatics and molecular biology
approaches that are used in various biological fields. This book comprises 26 chapters
divided into 3 parts. The first part describes in brief the importance of bioinformatics
and statistics in biological research. This part also gives a brief idea about various rice
varieties and biological databases that have been developed for a better understanding
of the rice genome complexity. In the second part, various tools and techniques for
bioinformatics analysis of genomic and proteomic sequences have been discussed
in detail. In the third part, principles and techniques of various high-throughput
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technologies have been described. All chapters in this book also aim at scientists/
researchers who are interested in developing bioinformatics tools. These books will
be highly useful for both beginners and experienced bioinformaticians interested in
solving biological questions.

Cuttack, Odisha, India Manoj Kumar Gupta
Lambodar Behera
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Introduction to Bioinformatics 1
Manoj Kumar Gupta and Lambodar Behera

Abstract

Recent advancements in technologies have led to the accumulation of a vast
number of biological sequences and structures. However, storing and analyzing
them are a grand challenge to biologists. Recently developed bioinformatic
approaches serve as a key solution to solve these problems. Today, bioinformatics
is used in various applications ranging from biofuel production to the drug
discovery process. However, as most of the biological data and databases have
distinct information and file formats, analyzing them requires knowledge from
diverse fields, like molecular biology, mathematics, and computer sciences.
Hence, the majority of the biologists end up using only basic bioinformatic
tools. For solving complex biological problems, they continuously have to
depend on expertise. Thus, there is an urgent requirement to teach biologists
the necessary computer and mathematics skills during undergraduate and gradu-
ate studies. Even extensive initiatives also need to start to standardize the format
of biological databases and ontology, which, in the near future, will help
biologists to work independently and will make bioinformatics a more coherent
discipline of biology.
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Abbreviations

GWAS Genome-Wide Association Study
DNA Deoxyribonucleic acid
RNA Ribonucleic acid

1.1 Introduction

Recent advancements in sequencing technologies have unmasked the components
and molecular mechanisms associated with various biological processes more com-
prehensively. Discovery of the structure and function of deoxyribonucleic acid
(DNA) by Watson and Crick in 1953 was a notable milestone in molecular biology
[1]. The researchers, who once believed that biological systems could be explained
only by employing the physiochemical aspect, started analyzing their dataset using
various molecular genetic techniques [2]. Thereafter, the most important discovery
was the “central dogma of life,” which describes how “DNA makes ribonucleic acid
(RNA) and RNA make protein” [3]. This hypothesis gave us a few important belief,
like genomic information is persistent throughout the organism’s life and between
cell types and individuals [4–6], modification within somatic cells are noninheritable
[7], and important information for cellular function is contained within the gene
sequence.

Though this information was essential to understand the simple biological pro-
cess, they failed to explain biological systems’ complexity. For instance, in 1978,
Gilbert proposed the concept of “alternative splicing” [8] opposing the “one gene,
one enzyme” hypothesis [9]. The “Alternative splicing” mechanism helps us to
understand how ~20,000 human protein-coding genes encode more than 90,000
different proteins [8]. Constitutive splicing involves removing introns and ligation of
exons in the order they appear in a gene. However, during alternative splicing,
certain exons are skipped, which, in turn, generates numerous forms of mature
mRNA [10]. Shorter exon length, weaker splicing signals nearby alternative splice
sites, and higher sequence conservation nearby orthologs alternative exon determine
which exon will be included in the matured mRNA [10]. This complete process is
modulated via the spliceosome, which works in an antistatic manner and a synergis-
tic manner [11, 12]. Until date, numerous studies have been performed to understand
the function of alternative splicing across different biological systems, including
testis, immune system, and brain [13], and reported that>95 percent of human genes
experience tissue-specific, developmental, or signal-transduction-dependent
splicing [14].

Another major problem associated with molecular biology data is
incompleteness, noise, and redundancy. As of October 2020, the “Nucleic Acids
Research” (NAR) online database reports the existence of ~1700 biological
databases (http://www.oxfordjournals.org/nar/database/a/). The few most popular
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biological databases are UCSC Genome Browser (https://genome.ucsc.edu/), NCBI
Entrez (https://www.ncbi.nlm.nih.gov/Web/Search/entrezfs.html), EBI Ensemble
(https://www.ensembl.org/index.html), and KEGG (https://www.genome.jp/kegg/).
Though the initiative has been taken for data standardization, for instance, the Gene
Ontology Consortium (http://geneontology.org/), most of these databases have their
own data format. In order to use them effectively, users have to learn about the
structure of each database distinctly [15]. Nevertheless, since the 1990s, with the
advancement of genome sequencing technology, information from statistics, mathe-
matic, physics, and chemistry also started getting incorporated into biology data.
Thus, no single individual could analyze any dataset alone. Additionally, due to the
continuous generation of biological data, storing them has also become a major
problem. Recently developed bioinformatic approaches that involve information
from diverse fields, like computer, mathematics, and molecular biology, serve as a
key solution to solve these problems. Today, bioinformatics is used from biofuel
production to drug discovery process. In this chapter, the authors attempted to
understand what makes bioinformatics a key driving force in biological research
that it is today.

1.2 Bioinformatics—Terminology

For the first time, in 1978, the term “bioinformatics” was coined by Ben Hesper and
Paulien Hogewen and defined as “the study of informatics processes in biotic
systems” [16, 17]. Initially, it was mainly used in studying genetics and genomics,
specifically for analyzing large-scale DNA sequencing data. However, due to the
rapid development of technologies, the amount of biological information also started
accumulating. Hence, researchers started integrating information and theories from
physics, computer science, mathematics, and biology for managing and analyzing
heterogeneous biological data [16, 17]; what distinct bioinformatics from other
approaches is its target to develop and apply computational techniques to achieve
its aims [18].

1.3 History of Bioinformatics

The computer started serving as an important tool much before the development of
DNA sequencing. However, the pioneers of bioinformatics did not use the term
“bioinformatics” for describing their work. Nevertheless, they had a clear vision of
combining information from various disciplines, like computer science, molecular
biology, and mathematics, which may help us answer fundamental questions in the
life sciences more significantly [19]. Three important factors that led to the emer-
gence of bioinformatics in the early 1960s were (a) generation of protein sequence,
(b) hypothesis that macromolecules are a carrier of information, and (c) production
of high-speed digital computers, which were initially developed for weapons
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research programs at the time of World War II and eventually became accessible to
academic biologists [19].

1.3.1 Generation of Protein Sequence

For the first time, during World War II, Emil Smith proposed that proteins’ informa-
tion is stored in linear sequences of amino acids [20]. Subsequently, the first protein
sequence of bovine’s insulin was published in the early 1950s by the English
biochemist Frederick Sanger and his colleague [21, 22]. On the contrary, to earlier
belief that proteins were somewhat amorphous [19], Sanger firmly established the
protein structure polypeptide theory. For the same, he also got the Nobel Prize in
1958 [19]. This was a breakthrough in the world of protein biochemistry because
when proposed for the first time in 1902, this theory was opposed by various
alternative theories [19]. This finding serves as an encouragement to other
researchers for developing approaches that can generate protein sequences more
significantly. The Edman degradation method [23] emerged as one of the best
methods that synthesize one amino acid at a time starting from the N-terminus. In
combination with automation, this method helped us to sequence more than 15 dif-
ferent protein families during the next 10 years. However, Edman sequencing’s main
problems were its incapability to synthesize larger protein sequences and incomplete
yield. Theoretically, the protein sequence from a single Edman reaction will be
composed of ~50–60 amino acids. Thus, larger sequences were generally cleaved
into smaller fragments and sequenced separately [24]. Another problem that arose
with the increase in sequences number was comparing several sequences manually.
To overcome this, Margaret Oakley Dayhoff compiled one of the first biological
sequence databases, namely “Atlas of Protein Sequence and Structure.” She also
established approaches of sequence alignment and molecular evolution [25, 26]. The
first version of the database comprised 65 interspecific protein sequences and served
as an ideal dataset for researchers who proposed that protein sequences can be used
to trace the evolutionary history of any species [24].

1.3.2 Macromolecules as a Carrier of Information

After the well establishment of the polypeptide theory and availability of approaches
for sequencing proteins, the hypothesis that “proteins are information-carrying
macromolecules” also became widespread. This general theory emerged in three
widely related areas: genetic code, a protein’s three-dimensional structure relative to
its function, and protein evolution. The genetic code is not the nucleotide sequence
of the genome. Rather, it is a group of laws that describes how any gene encodes
proteins and how nucleotides are translated into amino acids. Interestingly, most of
the rules are applicable to almost all organisms on earth, hence once called the
“universal genetic code” [27]. Nevertheless, major challenges associated with them
are to understand the origin of each code and how protein encoded via different
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genes modulates the function of the various organisms or organs or organelles
[28]. In the late 1950s, Christian Anfinsen and the team reported that after
denaturing, ribonuclease instinctively gets refolded and retains its original enzymatic
activity [29]. This served as evidence that amino acid sequences determine the three-
dimensional structure of any protein. However, only sequence information is not
sufficient for predicting the secondary and tertiary structures of any protein. Com-
bining biochemical techniques (e.g., Edman sequencing) along with biophysical
techniques (e.g., X-ray crystallography) together may explain how molecular infor-
mation in amino acids allows a protein to assemble into a particular, sometimes
highly complicated, three-dimensional structure [29–31], which, in turn, modulates
the function of the various organisms or organs or organelles [28].

Before 1960, most of the research was conducted only to understand the working
mechanism of enzymes, antibodies, hormones, and respiratory pigments. Little
attention was given to understand how the information within these macromolecules
is preserved throughout evolution. During the 1960s, molecular biologists and
biochemists started unmasking these questions [19]. Zuckerkandl and Pauling
(1965) denoted nucleic acids and proteins as “semantides,”whose subunit sequences
may be used for tracking evolutionary past. They hypothesized that “paleogenetic”
study that combines molecular biology and biochemistry techniques might help us to
answer the evolutionary question more precisely [32]. Subsequently, using
paleogenetic approaches, researchers identified that myoglobin and hemoglobin
originated through gene duplication. A comparison of homologous protein
sequences was also conducted to trace phylogenetic relationships among protein
themselves and the species that carried them [19].

Later, researchers have also developed the “Molecular Clock” hypothesis to
predict evolutionary occurrences. However, several researchers opposed it, and
several conflicts arose between traditional naturalists and molecular evolutionists
[33–35]. The sequence analysis also had to contend with very well-established
molecular biology techniques, including the immunological estimation pioneered
by Morris Goodman and the team for unraveling phylogenetic relations [34]. The
subsequent development of more advanced sequencing techniques and the
incorporation of information from various other fields, like mathematics, molecular
biology, and computer science, started filling the gap between traditional naturalists
and molecular evolutionists slowly, which gradually laid the evolutionary basis for
today’s bioinformatics [35–37].

1.3.3 The Emergence of High-Speed Digital Computers

Initially, scientists emphasized the importance of instrumentation in protein bio-
chemistry research [38, 39]. However, when John Kendrew employed computers to
determine the three-dimensional hemoglobin structure, researchers started under-
standing the importance of computers in protein biochemistry [40, 41]. However,
during World War II, computers were mostly used for military purposes. Computers
of the “second generation” became widely accessible for academic uses in the early
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1960s. In 1957, the International Business Machine (IBM) Company developed
FORTRAN (formula translation), the first high-quality programming language.
FORTRAN was well-suited for scientific applications and was easy to use in
comparison with the earlier machine languages. For the first, it was possible to
write a program without knowing the computer architecture. This fortified the
growth of bioinformatics [19]. These computational advancements helped
researchers like Margaret Oakley Dayhoff and Stein and Moore in sequence and
phylogenetic analysis of various proteins like cytochrome c, in a shorter duration
[42–44]. Using the computational approaches, biophysicist Cyrus Levinthal and his
team also constructed three-dimensional models of cytochrome c. For the first time,
they could project the molecules on an oscilloscope screen and control the model’s
turning via a hand-operated device. They could even manipulate the molecules
employing either a light pen or a keyboard [45]. In due course of time, all this
information and approaches encourage the development of various more powerful
computational tools and techniques used during bioinformatic analysis today.

1.4 Application of Bioinformatics

Researchers are continuously employing bioinformatic tools and techniques to
unmask various biological questions ranging from health care to agriculture. The
majority of bioinformatic approaches include genome assembly, sequence align-
ment, gene recognition, drug design, genome-wide correlation studies, prediction of
the protein structure, protein–protein interaction, prognosis of genetic expression,
protein structure alignment, and evolutionary modeling [18].

1.4.1 Genome Sequence

The analysis of continuously growing genomic sequences and the human genome
project is a milestone accomplishment for bioinformatics [46]. In 1995, the whole
genome of Haemophilus influenzae was sequenced using the “shot-gun” technique.
This was the first whole genome of any free-living organism sequenced [47]. Subse-
quently, the whole-genome sequence of Yersinia pestis [48], Mycobacterium tuber-
culosis [49], and Mycoplasma genitalium [50] was done. The complete genome
sequence of the first eukaryotic organism was from Saccharomyces cerevisiae
followed by other eukaryotic species such as Arabidopsis thaliana [51], Drosophila
melanogaster [52], and Caenorhabditis elegans [53]. Genome sequences help map
gene location in various organisms, including humans, and enable us to unmask the
molecular function associated with each gene [54, 55].
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1.4.2 Gene Expression and Variation

Bioinformatics also helps us detect the pattern of gene expression and variation
associated with any disease or trait [46, 56]. For instance, the Cancer Genome Atlas
project was launched in order to promote genetic cancer research by systematic
sequencing approaches by the National Cancer Institute and the National Human
Genome Discovery Institute. The science world has evidence accessible. Detailed
ovarian cancer evidence was published suggesting that BRCA1, TP53, and BRCA2
mutation was strongly correlated with ovarian cancer [57]. The 1000 Genome
Project has begun to raise awareness of human genome variations (SNPs,
haplotypes, and structural variants) through population-scale sequencing by interna-
tional cooperation. The project recorded its pilot phase in 2010, and new data were
published every month [6]. The 1000 Genome Project’s main objective is to identify,
genotype, and provide correct haplotype details on all aspects of the polymorphism
in DNA of various human groups. In particular, the aim is to characterize more than
95% of the variants in each of the main population groups (populations in or from
ancestries from Southern Africa, Europe, western Africa, East Asia, and the
Americas) [6]. The Human Intestinal Tract project aims at connecting human health
with the intestinal microbiota. The partial gut metagenomes of 124 people in Europe
were identified in major research. Results revealed that the bowel environment can
be utilized for diagnosing individuals’ well-being [58].

In another study, the author employed bioinformatic approaches to detect ische-
mic stroke-associated 10 key genes, namely IL1α, ICAM1, IL1β, IL6, CCL4,
CXCL1, IL8, CXCL2, CXCL20, and PTGS2. Functional enrichment analysis reveals
that these genes were mainly involved in biological immune response and apoptotic
processes, including NOD and TNF-like receptor signaling pathways [59]. In 2019,
Guo and the team identified a total of 782 differentially expressed genes (DEGs),
including 392 upregulated and 390 downregulated DEGs. Hierarchical clustering
shows that the DEGs are able to separate intracranial aneurysm specifically from the
superficial temporal artery [60]. The GO enrichment analysis reveals that
upregulated DEGs are mainly associated with inflammatory reaction and extracellu-
lar matrix regulation. The downregulated DEGs mainly engage in the mechanism of
vascular fluid musculoskeletal contraction. These genes are primarily associated
with “Leishmaniasis,” “Toll-like receptor pathway,” and “vascular smooth muscle
contraction” [60]. Earlier, we have also employed bioinformatic approaches and
detected four key genes, namely CCL2, ELMO1, TCF7L2, and VEGFA, along with
FOS, which plays a key role in causing type 2 diabetes and related diseases (such as
neuropathy, rheumatoid arthritis, and nephropathy) and cancer through p53 or Wnt
signaling pathways [61]. In another study, we identified that during Japanese
encephalitis virus infection, the STAT1 gene gets downregulated. The gene STAT1
was shown to interact with the family members of tyrosine–protein kinase and had
good interaction with the genes JAK1 and JAK2 [62].
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1.4.3 Structure and Function of the Protein

One of the major problems that biology and protein engineering researchers experi-
ence is the development of manufacturing processes, where the tertiary structure of
amino acid proteins is determined for building new protein and new medicinal
products. Many of the protein structures identified to date are achieved by NMR
spectroscopy experiments, X-ray crystallography, and cryo-EM, but these methods
are more time-consuming and cost-ineffective [63]. Modeling by bioinformatic
programs has succeeded in predicting many proteins’ atomic structure from their
amino acid sequence’s relative. Additionally, these processes are quicker and more
economical and provide better resolution result [64]. Earlier, several bioinformatic
studies have been conducted for determining the structure and function of several
protein [65, 66] and gene regulation networks [61, 62], which in turn play a key role
during the drug discovery process.

In 1964, Feynman presciently stated, “Certainly no subject or field is making
more progress on so many fronts at the present moment than biology, and if we were
to name the most powerful assumption of all, which leads one on and on in an
attempt to understand life, it is that all things are made of atoms and that everything
that living things do can be understood in terms of the jigglings and wigglings of
atoms” [67]. Molecular dynamics (MD) is an important computational method in
understanding the structure’s physical foundation, its dynamic growth, and its
operation. A first MD simulation for BPTI (bovine pancreatic trypsin inhibitor)
was released after 15 years later of its original structure identification. While BPTI
had a reasonably clear X-ray structure at that time, its physiological role remained
unclear [68]. One of the most valuable MD simulation tools is the “Structural
Bioinformatics Research Collaboratory” (RCSB, www.rcsb.org) that allows experi-
mentally specified biological macromolecular structural data accessible. The RCSB
Protein Data Bank (PDB) also serves a global archive for macromolecular 3D
structure data processing and sharing and a vital platform for biomolecular
modeling [69].

With the increase in the structure number in the PDB database, structure of large
amount of target protein can be predicted by homology modeling [70]. However, if
no structure with clear target protein sequence similarity in PDB is detected, proteins
with similar structures can still be associated with the target protein. The technique
of recognizing template structures from the PDB is known as folding identification
or threading. This is based on an algorithm that fits the target sequence, and the
structure is distant homologous. The underlying assumption for threading is that the
protein structure grows extremely conservatively and that the amount of specific
structural folds is limited in nature. Template-dependent structure methods may be
called threading methods (on the basis of fold recognition) and homology (on the
basis sequence comparison). In contrast to threading methods and homology
modeling, the ab initio approach attempts to construct a structure on the basis of
the physics’ first principles that do not depend on systems already resolved. The ab
initio approach is often established by discovering the second genetic code.
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However, effective ab initio approaches are very unusual, and many difficulties and
obstacles continue to be solved [70].

To date, several bioinformatic tools and techniques have been developed for
characterizing the structure and function of the protein [71]. For instance, the
modeler generates a protein model by matching the target sequences to the template;
it detects nonhydrogen atoms for creating a model and also employed for loop
simulation and protein optimization [72]. “Protein Interactive Modeling” (PRIMO)
is a protein monomer homology system. It provides functionality that aids users for
modeling ligands and ions within a protein target complex [73]. I-TASSER is a
hierarchical technique that models protein structure based on secondary structure-
enhanced thread profile alignment and iterative threading assembly optimizing
software execution [74]. SWISS-MODEL workspace can build and validate protein
models [75]. PROCHECK is a designed protein validation software that produces a
Ramachandran plot and examines atomic distances, torsion angles, bond length, and
surface area [76]. ERRAT (https://servicesn.mbi.ucla.edu/ERRAT/) is a protein
structure validation technique that evaluates the structure and refinement of the
crystallographic model. Thus, advances in biocomputing have developed more
accurate and simpler methods for modeling proteins, which in turn reduces analytical
time and expense. However, research is still required to ensure that the hypothesis is
accurate, in addition to enhancing the techniques’ reliability [77].

1.4.4 Evolution of Gene and Protein

Sequencing the genome of the various organisms has helped explain the array of all
its genes, elucidate the functions and properties they convey, and how they regulate
pathways in different metabolic processes through countless protein–protein inter-
action. For determining their probable functions, genetic and biochemical analyses
are performed via classical approaches. Nevertheless, sequencing has helped us
understand the amino acids’ composition and homology analysis between amino
acids may help us to infer the functions of these proteins [78]. Bioinformatics is a
challenge for protein analysis because, in recent years, phylogenetic profiling has
become important to compare homologous proteins by aligning their sequences, in
which many share extremely conserved domains and associated structures [79]. Phy-
logeny analyses the variations throughout the genomes and categorizes them in the
consequence diagram termed as the phylogenetic tree. All sequences corresponding
to the same family can be categorized into clade and subfamily, and provide
descriptions of their origin including functional diversity [80].

Few studies have also reported that during their development, eukaryotic cells
acquired microbes that formed chloroplasts, mitochondria, and other organelles,
whose genomes were transported to the nuclear genome, which in turn facilitated
the transmission of encoded proteins throughout the nucleus. These studies have also
suggested that several proteins in eukaryotes are closely associated with prokaryotic
proteins [81]. For instance, the amino acid composition, sequence, length, and
conserved regions of mitochondrial and chloroplast’s proteins are very similar to
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those of prokaryotes. One of the drawbacks in the study of proteins among different
organisms is that genomes must be complete in order to establish whether or not
certain species have similar genes [82].

When any species adjust to specific environmental circumstances, they undergo
mutational shifts in genome sequences, inducing amino acid substitutes in enzymes,
increasing their performance and precision, and retaining their catalytic role. Not all
genes that code for proteins are vulnerable to mutation due to the involvement of
important amino acids in structure, stabilization, and folding, causing a limitation.
Most of the mutations are typically spontaneous and attributable to environmental
strain in certain proteins in which these modifications were found. If the protein
plays a significant role in the organism’s activities and the mutation enhances their
performance, the genetic alteration is preserved and refined via positive selection,
i.e., preferred by the selective selection. Otherwise, the protein function is not
appropriate, and mutation is removed via negative selection [83–85].

The analysis of ancestral enzymes indicated that these posed a high thermostabil-
ity owing to the thermophilic Precambrian age. The alignment of ancestral protein
with contemporary protein indicates slow structural growth, although not in amino
acids [86]. Enzymes are thus the result of decades of development, through which
improvements have been produced to attain a certain function and a stronger affinity
with the substrate and/or function on multisubstrate. Genetic diversity has indeed
created homologous genes (e.g., orthologs that have originated from a common
ancestor), which encode adapted proteins for performing their catalysis under
extreme environment. However, paralog genes encode proteins with various tasks
[87]. Basic features, e.g., attachment of a receptor or response mechanisms, are
sometimes retained, but they carry out specialized functions on a different substrate.
On the contrary, orthological proteins have a similar function and their sequences are
also strongly conserved [88]. Bioinformatics can also be employed in tracing the
evolutionary history and ages of any genes or species [83, 84, 89]. Additionally, it
can also be used in tracing the difference between the numbers, locations, and
biochemical functions of various genes present within different organisms [26, 90,
91].

1.4.5 Agriculture

For decades, plant breeders are also employing bioinformatic approaches to detect
the resistance and yield-related polymorphisms in various crop plants, like tomato
[92, 93], rice [94, 95], maize [96, 97], and soybean [98]. Recently, our laboratory
also employed both wet-lab and bioinformatic approaches to detect three high grain
specific single nucleotide polymorphisms in rice plants [66]. In another study, we
employed computational approaches to understand the impact of biotic [99] and
abiotic stress in rice plants [100]. Bioinformatics has also been proved useful in
deciphering the complex interaction among various organisms present within the
soil [101] and plant rhizosphere [102]. It also enabled us to understand how the
microbial composition within the rhizosphere, as well as in soil, changes in response
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to different environmental conditions [103–105]. Bioinformatic approaches also
help us understand how various microorganisms modulate plant nutrition
[106, 107] or elements [108] in soil. It can also be used to detect novel genes,
develop bioproducts (Esposito et al. 2016), and modulate biodefense
countermeasures [109–111]. The utilization of long-read sequence and long-ranging
mapping techniques and conformation capture of chromosomes have helped us
generate the various contiguous crop genome assembly, including nonmodel
crop [112].

Because of the recent development of third-generation sequencing technologies,
vast amounts of data are also accessible to researchers regarding gene-to-population
crop traits [113]. While important sequence collection resources, like European
Molecular Biological Laboratory (EMBL) [114], GenBank [115], PlantGDB
[116], and Phytozome [117], are important, their primary goal is to manage and
store genomic data without combining variant or phenotype information from
different sources. This information is focused primarily on genomics. This makes
it more difficult for plant biologists and breeders to relate genotype to phenotype and
takes details regarding genomics, epigenomics, phenotypes, and conditions. Though
crop databases with this information are accessible, e.g., marker and expressions are
embedded into GrainGenes [118], further more databases with are still needed for
resolving this void [119]. Bioinformatics also play an important role in designing
optimal RNA-guided structure for effective and precise CRISPR/Cas gene editing.
While genome editing provides a useful approach for rapidly integrating advanta-
geous mutations into elite cultivars, genomic selection improvises selection effi-
ciency without needing awareness of underlying genetic drivers. Machine learning
algorithms may also employ high-throughput phenotyping and genomic data to
simplify aspects of the gene discovery process like genome annotation [120].

Improvements in bioinformatic techniques have provided an extra possibility for
genome-wide association search in plant and agricultural research. For instance,
PLINK is a commonly used bioinformatic approach for genome-wide association
studies. It employs traditional regression analysis for correlating genotypes with
phenotypes [121]. Nevertheless, standard regression cannot have reasonable speci-
ficity for GWAS for rare variants [122]. TASSEL is another popular method for
GWAS that utilizes a mixed linear model and involves population and family
structure. Additionally, TASSEL can also control population results, unlike
PLINK [122]. Other bioinformatic tools, like GAPIT, effectively manage a broad
data collection of more than one million SNPs employing compressed linear models
and model-based prediction and selection methods in 10,000 individuals.

1.5 Conclusion and Future Perspective

In conclusion, bioinformatics is continuously helping researchers to decipher
biological questions, and most of the analysis involves knowledge from diverse
fields, like molecular biology, mathematics, chemistry, biochemistry, and computer
science. Hence, most biologists end up using only basic bioinformatic tools
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[123]. For solving complex problems, they continuously depend on expertise. Thus,
there is an urgent requirement to teach basic computer skills along with molecular
biology techniques during undergraduate and graduate studies. This will help
researchers to bridge the gap between theoretical biology and experimental biology.
Additionally, the result obtained from molecular biology approaches will help
bioinformaticians to support their finding more strongly [123].

Another major problem with the bioinformatic analysis is the heterogeneity of
how data are annotated, displayed, and analyzed, and absence of compatibility
among usable data [123]. This problem is mainly because of the young age of
bioinformatics and lack of specific format in conventions and discipline related to
an established scientific community. To overcome this problem, recently,
researchers have set up a scholarly association for information curators (www.
biocurator.org) and projects that connect various databases of model organisms
(www.gmod.org). Even the initiation has also started to maintain a standard gene
ontology format (http://geneontology.org/). These efforts will make biologists more
independent researchers and also bioinformatics a more coherent discipline of
biology.

Considering the benefits and lacuna of the bioinformatics, in the present book, we
tried to understand the importance of bioinformatics in rice research. Efforts have
been made to include chapter ranging from topic of basic bioinformatics, like
sequence alignment to protein modeling to its application in rice research, like the
importance of metabolomics and computational epigenetics in rice research. We
have also included few molecular biology topics, like high-throughput sequencing
and genome-wide association study, that may be useful for the beginner and experi-
enced researcher. Toward the end, advanced topic, like intellectual property right,
has also been discussed. Thus, the content of the book has been designed in such a
way that almost every individual working in the bioinformatic-related field will be
benefitted.

Conflicts of Interest None.
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Abstract

High-throughput methods are rapidly becoming prevalent in biological sciences
and clinical studies. Thus, more rigorous statistical techniques are required to
accurately predict the resulting big datasets. In this chapter, the authors attempted
to understand how statisticians develop and employ various strategies to investi-
gate and analyze these big datasets. Results obtained revealed that, to date,
several statistical methods have been developed for analyzing large-scale
biological data, like multiple testing, unsupervised learning and data
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visualization, clustering, and bootstrapping. However, a larger dataset analysis
often faces various challenges, like multiple comparisons, high dimensionality,
small n and large p problem, noise, and heterogeneous information. Additionally,
while statisticians play an essential role in numerous bioinformatics studies, most
of them are only interested in obtained and preprocessed data. Few researchers
have proposed that statistician participation in the initial data collection and
preprocessing phase will minimize errors and contribute to more critical scientific
conclusions.

Keywords

Bioinformatics · Clustering · Experimental Design · Genomics · Statistics ·
Statistical Modeling

Abbreviation

ANNs Artificial Neural Networks
CI Confidence Interval
FDR False Discovery Rate
HMM Hidden Markov Model
MDS Multidimensional Scaling
PCA Principal Component Analysis
PHATE Potential of Heat-Diffusion for Affinity-Based Transition Embedding
PPI Protein-Protein Interaction
UMAP Uniform Manifold Approximation and Projection for Dimension

Reduction

2.1 Introduction

Bioinformatics refers to an interdisciplinary field that requires knowledge about
various domains like molecular biology, computer science, and statistics, to analyze
the larger biological dataset. However, analyzing larger biological dataset is
extremely challenging for several reasons, like multiple comparison, small n and
large p problems, and high dimensionality associated with biological datasets
[1]. While molecular biologists and computer scientists play a crucial role in
generating data, statisticians have unique skills to understand variability and uncer-
tainty associated with the larger dataset. These skills are required to develop methods
for exploring and extracting information from a larger dataset [2]. Statisticians are
basically “data scientists” who comprehend the profound impact of error propaga-
tion generated from multistep processing algorithms, the possible loss of information
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from overly reductionistic feature extraction approaches, and sampling design
decisions on downstream analysis. They also have expertise in inferential reasoning
that equips them to recognize the significance of multiple testing adjustments for
avoiding false results as discoveries. They can also design algorithms properly for
searching high-dimensional spaces and building predictive models while estimating
precise measures of their predictive accuracy [2]. Statistics play a crucial role in
various bioinformatics studies, ranging from detecting drug discovery to identifying
variants associated with multiple diseases or traits [3–7]. Though statisticians play a
crucial role in various bioinformatics studies, most of them are only interested in data
that have already been collected and preprocessed. Few researchers have suggested
that statisticians’ involvement during the initial phase of data collection and
preprocessing may reduce error and derive scientific conclusions more significantly
[2]. Thus, in this chapter, the author attempts to understand the challenges associated
with analyzing larger biological datasets and how statisticians develop and employ
various techniques for investigating and examining these larger datasets [1].

2.2 Challenges

Major challenges associated with larger datasets are multiple comparisons, high
dimensionality, small n and large p problem, noise, and heterogeneous information.

2.2.1 Multiple Comparisons Issue

When a dataset is subjected to statistical testing several times, either at several time
points or several endpoints or through several subgroups, it is called multiple
comparisons, multiple testing problems, and multiplicity [8]. The result of each
test is generally inferred either through P value or confidence interval. The “P”
value denotes that the probability of obtaining the result by chance and is usually
inferred in term of “alpha” or “Type 1 error.” When a comparative study is
performed between more than one group, Type 1 error estimates the probability of
difference between groups that occurs by chance. This is contrary to “Type 2 error,”
which fails to identify any real difference between groups. Conventionally, Type
1 error is set at 5% or less. By doing so, we are at least 95% confident that if any
difference occurs between groups, it is true and not by chance. For a 5% Type
1 error, the “P” value less than 0.05 is considered statistically significant. One
common misconception is that a group with lower P values is more effective than
a group with higher P values. This is only applicable to a given sample size and is
inappropriate for comparing experiments of different sizes. For a given sample size,
a P value of 0.05 and 0.01 merely denotes that the results obtained due to chance are
5% and 1%, respectively [9].

However, the P value often fails to give information about the uncertainty of the
result obtained. Hence, confidence interval (CI) and P value often serve as better
parameters to infer any statistical result. CI provides the range of plausible values for
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the estimated variable that might be obtained if the study was repeated on multiple
samples of the same size drawn from the population. The defined probability is
known as the “confidence level,” and the CI’s termination points are known as the
“confidence limits” [10]. Traditionally, the CI is generally set at 95%. This is
demarcated as “a range of values for a variable of interest constructed so that this
range has a 95% probability of including the true value of the variable.” Hence, we
can be 95% confident that the actual values lie somewhere between 95% CIs
[10]. For instance, if the mean, as well as the 95% CIs of the systolic blood pressure
during an investigation, is 130 mmHg (95% CI, 115–142), we are 95% sure that the
actual mean of systolic blood pressure in the population lies between 115 mmHg and
142 mmHg [9]. Thus, the 95% CI is equivalent to hypothesis testing with P value
<0.05 [10].

The main advantage of using CI is that we can also determine significance from
it. For instance, if CI determines values indicating “no effect,” it denotes a nonsig-
nificant difference. If it excludes value indicating “no effect,” it denotes a significant
difference. Thus, along with “statistical significance” (P value<0.05), intervals
representing the smallest as well as the largest effects that are likely to happen can
also be estimated via CI. Another benefit of using CI in comparison to P value is that
CI provides additional information. For example, the lower and upper limits of the
CI suggest about the nature of the effect. The narrower is the CI, the better fit it is
[10]. Thus, as recommended by Akobeng AK, CI provides more information than
P value, and hence, reporting CI by the researchers is highly recommended during
any study [11]. However, other studies suggested that these two statistical
parameters are not contradictory but complementary because if we know the sample
size as well as the dispersion, we can easily determine the P value or vice versa [12].

Another important challenge authors face during multiple testing is when
researchers attempt to save a negative study. If the main endpoint does not demon-
strate statistical significance, considering several other less important comparisons
often generates a “positive” result, specifically when there are numerous such
comparisons. Hence, researchers may analyze several endpoints, among several
subsets of samples, employing multiple statistical tests, and so forth, so the possibil-
ity for multiplicity can be significant [13, 14]. One valid example is studying the
impact of treatment among a patient’s subgroup based on their prognostic
characteristics, such as sex, tumor location, age, stage, grade, and histology. If
three conditions are considered, e.g., analysis at several endpoints, between several
samples’ subset, using different statistical tests, only eight (¼23) subset can be
formed. However, among these eight, only one out of three (33% likelihood) is
likely to have a significant impact (P value <0.05) [8].

These problems with P value can be overcome by employing two techniques: the
family-wise error rate and the false discovery rate (FDR). While the former tries to
control the overall false-positive rate for all comparisons (e.g., Bonferroni, Tukey,
Holm’s step-down, and Hochberg approaches), the later attempts to control the
portion of “false significant results” among the significant results only (e.g.,
Benjamini and Hochberg approach). Hence, to avoid such issues, the researcher
must understand the importance of various statistical testing before starting their
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work. They must precisely select the most appropriate test required for their study
and also describe them in detail within the research protocol, along with suitable
adjustments for multiple testing [8].

2.2.2 High Dimensionality

Due to the recent development in sequencing technologies, there is an accumulation
of huge biological data. Since humans are visual learners, it is highly required that
these datasets are instinctively introduced to investigators for comprehending both
the general shape and the fine granular structure of the information. This is particu-
larly noteworthy in biological frameworks, where structure occurs at a wide range of
scales, and a reliable observation can initiate hypothesis generation [15]. To date,
numerous dimensionality reduction techniques for visualization have been devel-
oped [16–18], of which principal component analysis (PCA) [19] and t-SNE [20–22]
are most commonly used. Regardless, these methods are suboptimal approaches for
examining high-dimensional regular data because they are sensitive to noise, and
methods, like Isomap and PCA [17], are often incapable of removing this noise
visualization, which in turn make it difficult to recognize fine-grained local
structures. Additionally, nonlinear visualization methods, e.g., t-SNE, frequently
complicate the overall data framework. Several dimensionality reduction techniques,
like diffusion maps and PCA, are not primarily designed for visualization; hence,
they often fail to optimize during two-dimensional visualization [15].

Moreover, dimensionality reduction techniques often are also deprived of compu-
tational scalability. The rate at which biological data are generating every year is
outpacing Moore’s Law, which states that “the density of transistors on the die was
doubling every 18 months” [23]. Approaches like multidimensional scaling (MDS)
and t-SNE also often fail to scale datasets because of memory constraints or speed.
Though few heuristic improvements of t-SNE [22, 24] and MDS [15] are reported to
solve these problems, they work only on smaller datasets, which in turn severely
limits their application in the medium to long term. Few strategies also attempt to
reduce visualization challenges by straightforwardly imposing an inherent structure
or fixed geometry on the data. Nevertheless, strategies that impose a structure on the
data often fail to report the user about the correct structural assumption. For instance,
any data can be modified to fit cluster or tree via t-SNE and Monocle2, respectively
[15]. While these techniques help the dataset that fit their earlier presumption, they
may produce ambiguous results and, hence, are often unfit for data exploration or
hypothesis production [15].

To overcome these problems, recently, Moon and the team developed a novel
dimensional reduction technique for data visualization, namely “potential of heat
diffusion for affinity-based transition embedding (PHATE).” PHATE produces a
low-dimensional embedding, particular for visualization, which represents an accu-
rate and denoised portrayal of both global and the local structures of a dataset in the
desired dimensions number without stating any robust assumptions on the data
structure and is exceptionally scalable both in runtime and memory [15].
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2.2.3 Large P and Small N Problem

Analysis of high-throughput genomic data often faces a “large p and small n” or
“short-fat data” problem, which mainly arises when the dimension of the covariate,
i.e., the number of genes, (p) significantly exceeds sample sizes (n). This problem
becomes worse when independent variables are in multiple correlations [25]. For
instance, owing to discovering a large number of single nucleotide polymorphisms
in a single experiment, “large p and small n” is one of the major problems that
researchers face while analyzing human molecular genetic data. Researchers also
face this problem while analyzing microarray datasets, where the expression level of
a thousand genes is generated from fewer subjects [26]. Additionally, due to cryptic
relationships between any trait and molecular markers, researchers often face
problems while deducing their relation using traditional statistical models
[27]. This problem can be overcome by reducing the covariate’s number through
variable selection [28] or projecting them toward lesser dimensions using principal
components or similar approaches [29]. For instance, the association between any
trait and molecular markers is generally investigated employing a naïve single
regression model for every molecular marker and linear regression models
employing the Bayesian framework and few machine learning approaches that
generally ignore nonlinearity as interactions [30]. Like artificial neural networks
(ANNs) that require less formal statistical training, few computational approaches
also serve as an essential approach for extracting the vital information from larger
data [31, 32]. Recently, numerous penalized techniques, like ridge [33] and LASSO
[34], have also been developed. Earlier studies have claimed that penalized
approaches generally provided more accurate results and simple interpretations
than nonpenalized approaches, specifically when the variables number is larger
than the sample number. Few penalized approaches automatically select appropriate
variables by assigning the coefficients of irrelevant variables to zero. Additionally,
penalized methods improvise the prediction accuracy by reducing the nonzero
elements’ coefficients using the data-adaptive adjusting variable [35]. Thus, there
is an urgent requirement to develop approaches like ANNs and penalized approaches
to solve this problem more effectively.

2.2.4 Noise

Since the last decades, several high-throughput sequencing technologies have been
employed to study various biological systems and processes for measuring readouts
like protein–DNA interactions using ChIP-Seq [36] and mRNA concentration
employing RNA-seq [37]. However, while retrieving information from the high-
throughput data, researchers often experience noise, which needs to be characterized
and control before concluding any result [38]. The noise level in high-throughput
data is influenced by several factors like the robustness and the quality of the assay
itself and the robotic platform’s quality [39]. For instance, Illumina sequencing
technologies generate hundreds of “short” reads, having a mean substitution error
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rate of <1%, and INDEL rates orders of lower magnitude [40]. Additionally, these
errors are also associated with the read position, which causes position-dependent
noise characteristics and affects downstream analysis, mainly during variant calling
[41]. Since these variants serve as a key biomarker during drug design, extreme care
needs to be taken while identifying a disease or trait-associated variants [41]. For
overcoming this problem, to date, numerous tools and techniques have been devel-
oped. These denoisers primarily try to repair sequencing errors via modifying every
base in the read while maintaining the original quality scores [41]. For instance,
approaches like maximally informative models [42] and precise physical models
[43] may help us to detect sequence–function relationships even when the noise
characteristics are unknown [38]. Recently, Fischer-Hwang and the team developed
a novel denoising tool, namely SAMDUDE, which takes benefit of alignment
information present within the SAM file for both denoising reads and updating
quality scores [41]. Thus, there is an urgent requirement for the development of
effective and potent denoising software tools and techniques like SAMDUDE,
which will be highly useful for researchers and clinicians during the treatment of
any disease or drug discovery process.

2.2.5 Heterogeneous Information

Recent research activity within the biological domain is continuously producing
huge amounts of extremely heterogeneous data, primarily comprised of results from
a high-throughput experiment, clinical records, and publication collections
(Fig. 2.1). These big data impose enormous challenges during data mining, data
integration, and knowledge discovery due to their complex, heterogeneous, uncer-
tainty, dynamics, and high-dimensional nature. Hence, analyzing these big data by a
single person is impossible. A group of bioinformatician scientists with diverse
expertise, like database management, performing expression analysis, and protein–
protein interaction (PPI), may play a key role in addressing these issues more
effectively [44].

Noise causes include error in estimation and uncertainty in sampling. However,
real heterogeneity is the product of true impact difference due to (1) dynamic
biological existence that involves feedback loops as well as temporal associations;
and (2) multifactorial complexity. Growing the sample sizes is the best way to
circumvent noise and obtain accurate impact sizes, but only during research and
standardization and calibration that restrict the generalizability of the conclusions
may be modified if necessary (Adapted from [45].

2.3 Application of Statistics in Bioinformatics

Various statistic techniques, like probability and Bayes’s theory, hypothesis testing
and significance, clustering and classification, multidimensional analysis and visu-
alization, statistical models, experimental designs, statistical resampling techniques,
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and statistical network analysis, are employed in a wide range of bioinformatics
analysis [1] (Table 2.1).

2.3.1 Probability and Bayes’s Theory

Probabilistic theory plays a crucial role in most research fields ranging from molec-
ular biology to sociology. It estimates the likelihood of an event that will occur
during a random phenomenon [57, 58]. For decades, probability theory has been
widely employed for answering numerous biological questions, like what will be the
probability of occurrence of each base pair at a specific position in a given set of
sequence, what will be the probability of forming a gene mutation that causes cancer
in a population, and what will be the probability that a gene will be unregulated in a
given microarray dataset. The probability of occurrence of any event is estimated as
P(A) ¼ n (E) / n (S), where P(A), n(E), and n(S) denote the probability, number of a
favorable outcome, and total number of outcomes, respectively. The value of P
(A) ranges between 0 and 1, where 0 and 1 designate impossibility and certainty,
respectively. The higher the probability, the higher the likelihood that the event will
occur [57, 58]. Though this approach will work effectively for estimating the
probability of a single event at a time (e.g., for estimating the probability of
occurrence of each base pair at a specific position in a given set of sequence), to
estimate the probability of multiple events, we have to employ joint probability and

Fig. 2.1 Noise and actual heterogeneity in complicated structures
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Table 2.1 Statistic techniques and their application in bioinformatics research

Statistical
techniques Application Software and packages References

Probability and
Bayes’s theory

Estimate the likelihood of an
event that will occur during a
random phenomenon

IBM SPSS https://www.
ibm.com/
products/
spss-
statistics

R packages [46]

MATLAB https://www.
mathworks.
com

XLSTAT https://www.
xlstat.com/
en/

BayesiaLab https://www.
bayesia.com/

Hypothesis testing
and significance

Determining the probability
that a given hypothesis is true

IBM SPSS https://www.
ibm.com/
products/
spss-
statistics

R packages [46]

MATLAB https://www.
mathworks.
com

XLSTAT https://www.
xlstat.com/
en/

BayesiaLab https://www.
bayesia.com/

Clustering and
classification

Resolve several complex
biological issues relating to
gene regulation, specific drug
design, gene co-expression,
functional animal and animal
system research, protein–
protein interactions, and
organism–environment
interactions

R packages [46]

MATLAB https://www.
mathworks.
com

Cytoscape [47]

Gephi [48]

Multidimensional
analysis and
visualization

Unmasking patterns and
producing significant
information from scientific
data

PCA [49]

UMAP (uniform
manifold approximation
and projection for
dimension reduction)

[50]

2.1.1 t-SNE
(t-distributed stochastic
neighboring
embedding),

[20]

2.1.2 focusedMDS. [49]

(continued)
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Bayes’s theorem, e.g., while estimating the probability of co-occurrence of the most
common allele at two polymorphic sites within a chromosome.

Bayesian methods are used in various domains of bioinformatics. Biological
sequence analysis was one of the first fields to benefit from applying Bayesian
methods. It is already acknowledged that Bayesian methods are highly helpful
while dealing with probabilistic models [59]. Although it is possible to calculate
parameters employing traditional statistical methods (e.g., maximum likelihood
through the EM algorithm) [60, 61], there are numerous fascinating problems
where a traditional method would be cumbersome or unsatisfactory [62]. Concurrent
multiple sequence alignment [63], prediction of transcription factor binding site and
motif discovery [64, 65], and prediction of protein secondary structure [66] are the
best examples. One of the main advantages of the Bayesian method is that it helps
complexity to be accurately propagated across various modeling stages. Thus,
traditional approaches, which estimate phylogeny based on pre-estimated multiple
alignments, often fail to propagate any ambiguity from the phylogeny’s alignment.
The reverse is also true; alignment models depend implicitly on an expected
phylogeny, so ambiguity (if any) in phylogeny will not induce ambiguity in align-
ment. Simultaneous prediction is also feasible using the Bayesian method [67]. The
Bayesian approach makes the sufficient inclusion of prior information even during
the HMM-based ab initio DNA sequence cleavage, which in turn allows us to
retrieve more relevant information regarding the model variable [68]. In addition,
since model structure uncertainty is handled consistently with parameter uncertainty,
variable dimension algorithms, for instance, reversible jump Markov chain Monte
Carlo [69] can be utilized, along with all other aspects of the model, for calculating
the segments number as well as the base’s order dependence [70].

Table 2.1 (continued)

Statistical
techniques Application Software and packages References

Statistical models Understanding of biological
and structural functions

Neural network model [51]

Stoichiometric models [51]

Comprehensive kinetic
models

[51]

Kinetic modeling [52]

Experimental
designs

Reuse of experimental results Factor-based
experimental design

[53]

Practical experimental
design approach

[54]

ProtocolNavigator [55]

Resampling
techniques

Replicating sampling from a
provided sample/population
or to approximate statistical
accuracy

Bootstrapping [56]

Normal resampling

Permutation resampling
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Bayesian methods are also often used to unmask protein informatics. For
instance, Bayesian strategies for site matching and alignment are especially useful
at the structural level [71, 72]. Since mass spectrometry data experience large
amounts of heterogeneity, Bayesian statistics may also play an essential role during
unmasking the structure of a sample’s peptide or protein [73]. Several Bayesian
approaches for predicting protein–protein interactions from genomic data have also
been proposed [74–76]. In 2004, Friedman and the team developed a novel frame-
work that employs Bayesian networks to explore associations among genes based on
gene expression. These approaches are particularly interesting because of their
ability to capture information from noisy observations and complex stochastic
processes [77].

Since bioinformatics is still an emerging field, there is a scope for developing a
more effective Bayesian method. The main drawback associated with Bayesian
methods developed to date is the computational demands during analysis. This, in
turn, limits their usage during bioinformatics research, especially during whole-
genome annotation [59]. Though probabilistic regression models, like HMM, are
becoming the accepted framework for analysis [59], earlier studies have suggested
that complete Bayesian methods are only the best tool for solving the dynamic
statistical inference problems. Hence, increased usage of computer hardware, paral-
lel computer clusters, and the development of Bayesian machine-based algorithms
may help us answer more important complicated inferential issues in a timely
manner [78].

2.3.2 Hypothesis Testing and Significance

Hypothesis testing uses various statistical tests to determine the probability that a
given hypothesis is true. Usually, the hypothesis process comprises of four steps,
that is, the formulation of null hypothesis (H0) (proposes that there is no difference
among certain population characteristics) and alternative hypothesis (H1) (proposes
that there is a difference among certain population characteristics), determining a
statistical test to measure the truth of the null hypothesis, estimation of P value, and
comparing the P value with an appropriate value (sometimes referred to as an α
value). If P value is statistically significant, the null hypothesis gets rejected, and the
alternative hypothesis is valid (https://mathworld.wolfram.com/).

Perhaps, the first thing, a bioinformatics scientist will do after identification of a
biological sequence of interest is to scan a bio-sequence database. During sequence
alignment, the test statistic is usually the alignment score, and the null hypothesis is
that the paired sequences are not biologically related. The alternative hypothesis is
that they are homologs and have a shared ancestor. Here, the P value of a score is the
likelihood that this or higher score is a false-positive estimate from a biological
relationship [79]. Hypothesis testing has also been used in exon prediction [80],
biological network [81], gene ontology [82], gene set enrichment analysis [83],
phylogenies [84], microarray analysis [85], genome-wide association studies [86],
RNA-seq [87], and single-cell RNA sequencing [88]. We have recently employed
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hypothesis testing and detected that the Type 2 diabetes gene sequences in Drosoph-
ila are evolving under divergent evolution and purifying selection [6].

The emergence of high-throughput sequencing technologies has contributed to
developing a huge number of hypothesis tests for different biological studies and a
parallel elevation of the appropriate thresholds. However, to get more significant
results, recently, several studies have effectively employed filtering approaches,
using unbiased knowledge to remove the least promising tests, which in turn
minimize multiple testing. Nevertheless, there are a few issues that need to be
addressed before implement filtering, for instance, when does filtering work, and
when is it harmful? To filter efficiently, how strong is the independent knowledge
necessary? What is the filter cutoff that distinguishes samples from studies that
bypass the filter? [89]. Recently, Kim and Schliekelman studied the impact of filter
information quality, filter cutoff, and other filter performance variables. Result
obtained revealed that if the filter is extremely likely (e.g., 70%) to rank true positive
features (e.g., top 10%), then filtering will lead to a drastic improvement (e.g.,
tenfold) in discovery likelihood when high redundancies exist. If the redundancy
between hypothesis tests is diminished, filtering becomes less effective and, hence, it
is an advantage also declines rapidly [89]. Additionally, the result depends primarily
on the preference of filter cutoff. Hence, if the cutoff were selected without referring
to the data under consideration, it might cause significant discovery probability loss.
Nevertheless, as true effect size and optimum estimation schemes remain uncertain,
several authors demand the development of more robust tools and algorithms for
fetching more significant information [89].

2.3.3 Clustering and Classification

Application of clustering, an unsupervised learning method, in biology has a history
dating back to Aristotle’s attempt to classify various life forms [90]. Nowadays,
cluster analysis marks out as one of the best solutions to cope with high-dimensional
data generated from various high-throughput technologies, including microarray
gene expression and RNA sequencing [91]. Clustering analysis helps us to resolve
several complex biological issues relating to gene regulation, specific drug design,
gene co-expression, functional animal and animal system research, protein–protein
interactions, and organism–environment interactions [91]. During gene expression
analysis, samples that display similar expression across all genes are clustered
together, and genes that display similar expression across conditions are clustered
together [92]. During gene clustering, genes and samples are considered as objects
and features, respectively. However, in sample-based clustering, samples can be
divided into similar groups, and samples and genes are viewed as objects and
features, respectively [93]. Thus, the essential elements of gene-based and sample-
based clustering techniques depend on distinct characteristics of clustering tasks for
gene expression data [94].

Usually, algorithms employed during gene expression clustering can be broadly
divided into two classes, namely hierarchical and partitional (Fig. 2.2). One of the
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most primitive clustering algorithms widely used for clustering genes is a hierarchi-
cal algorithm (HC). HC consists of a group of nested clusters arranged as a tree.
However, the algorithm’s output is noise sensitive. It is also not sensitive to the
missing data and does not provide essential information, e.g., the number of neces-
sary clusters and confidence measures for individual clusters [95, 96]. Earlier studies
have also reported that HC faces some difficulties while clustering larger datasets
[92]. HC has robustness and inversion problems, which complicates the hierarchy
analysis [94, 97, 98]. HC algorithms also face high computational complexity
[94]. Partitional clustering splits a dataset into different disjoint clusters
[99]. Because a dataset is comprised of N points, this algorithm produces K
(N � K) number database partitions, and each partition forms a cluster

Fig. 2.2 Hierarchical cluster. (A) Heatmap interactive display, hierarchical clustering, and princi-
pal component analysis. (a) The illustration of a heat map of 30 virtual profiles enables the
researcher to imagine four study classes along the x-axis with distinct expression models for
300 genes. The heat map helps to classify altered genes and sample clusters, but does not express
any spatial correlation between clustered samples. (b): A dendrogram illustration generated by
hierarchical clustering of the simulation data in Fig. 2.2A. A dendrogram is a diagram made up of
several U-shaped lines that link artifacts to represent hierarchic clusters. Four sample clusters are
developed based on distinct expression signatures in this dendrogram. (c): A two-dimensional
schematic visualization of the study of the key components (PCA) based on the details seen in
Fig. 2.2a
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[99]. However, the key disadvantage of these cluster algorithms is that the when one
point is close to the middle of another cluster, or there is overlap among data points,
it creates a bad result [92].

Cluster algorithms can also be grouped based on the relationship among clusters,
data representation, data distribution, and other characteristics. For instance, cluster-
ing approaches can be either complete or partial. While a complete clustering assigns
every gene to a cluster, partial clustering does not. The fact that gene expression data
generally contain few genes or samples that are not related suggests that partial
clusters are more adaptable to gene expression. Moreover, it helps us ignore various
insignificant contributions by restricting the incorporation of a few genes into well-
established clusters. Thus, partial clustering helps avoid situations that hold an
interesting subgroup in a cluster by not adding unknown genes [100]. Clustering
can also be overlapping or hard [100]. Overlapping clusters assign membership to
each gene in multiple clusters. During its activity and production, hard clusters
assign each gene to one cluster. An overlapping clustering can be changed into a
hard clustering by allocating each gene to the cluster with a dominant membership
[92]. Irrespective of the development of various clustering algorithms and
techniques, Pirim and the team reported that no clustering algorithm can provide
the best results for all clustering problems [91]. Hence, there is an urgent requirement
for the development of sophisticated algorithms that can solve these problems.

2.3.4 Multidimensional Analysis and Visualization

Visualization is required for unmasking patterns and producing significant informa-
tion from scientific data. Nevertheless, high-dimensional data often pose challenges
because structures or patterns may not precisely visualize two or three dimensions
except in more than three dimensions. One best example is analyzing data from
comparative high-performance sequencing research, in which a key step is to
explore the samples’ characteristics and to detect if duplicate samples are identical
and to distinguish outliers. Samples are drawn as points on a 2D plane to reflect the
relationships between them. PCA that monitors data components illustrating the
most uncertainty or multidimensional scaling (MDS) that try to capture and repre-
sent the correlation between points in 2D space across all measures is common to
construct this form of visualization [49].

Similarly, during the single-cell RNA sequencing (RNA-seq) data analysis, one
also desires to decrease the high-dimensional expression data into a 2D plot, so that
related transcriptomes cells appear near together. Hence, in addition to MDS and
PCA, researchers are also employing UMAP (uniform manifold approximation and
projection for dimension reduction) [50] and t-distributed stochastic neighboring
embedding (t-SNE) [20] approaches for data visualization. t-SNE is an optimization
algorithm that employs probability distribution in both low and high dimensions for
generating 2D or 3D representations, while UMAP is a manifold training approach
for generating 2D or 3D representations [49]. UMAP is developed from a
Riemannian geometry and algebraic topology theoretical context. The outcome is
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a realistic efficient algorithm relevant to data from the real world. The UMAP
algorithm competes with t-SNE in efficiency and retains more of the global frame-
work with better runtime output. UMAP avoids program limitations on the embed-
ding dimension and is thus feasible for machine learning as a general-purpose
dimension reduction technique. In the near future, developing techniques like
UMAP is highly required for unmasking significant information from various
biological data types, including single-cell RNA sequencing, mass cytometry, and
the gut microbiome [50]. Recently, Urpa and Anders developed two tools: distnet
and focusedMDS that help to determine the validity of a dimension reduction plot
and analyze in-depth interactive relations between objects. The distnet investigates
differences between the points’ location within a two-dimensional visualization and
the actual similarity between feature space points. The focusedMDS approach is an
instinctual, immersive multidimensional scale technique that investigates links
between data points, which might be beneficial in personalized medicine [49].

The 3D spatial arrangement of chromosomes is an exciting emerging field in
genomics. However, a precise, atomic-scalable genome model is a major challenge,
which can be accomplished someday by modern experiment techniques, like Hi-C;
35, that can recognize spatial chromatin contacts between genomic pairs [101]. How-
ever, these techniques have poor resolution and higher false-positive rates and,
hence, to date, reliable 3D representations for chromosomes are still not determined
[102]. It still continues to be difficult to view the high-dimensional datasets
generated from RNA-seq studies. Gene expression values that are considered rele-
vant are generally viewed as heat maps clustered following meticulous experimental
design and statistical analysis [63], a methodology that has dominated since the first
experiments on microarray [103]. Nevertheless, the magnitude of individual values
or folding deviations among pairs of values can be difficult to quantify with optical
illusions within these visualizations. With the increase in the rows and columns
number and decrease in cell size, these effects worsen, and all-important findings are
not seen as colossal heat maps. Additional problems can occur because clustered
heat map’s rows and columns are typically organized to group related genes and
conditions, which in turn may highlight regulatory effects [104]. Nevertheless,
values are also put next to each other for condition and genes without substantial
correlations, which may worsen perceptional issues. Separating unrelated columns
and rows can help, but these problems cannot be significantly solved [105], espe-
cially for poorly clustered genes. There may be inadequate evidence to address these
genes’ regulatory networks as a 1D order in such cases. So, it is critical that the
support and degree for cluster-inferred relationships are also demonstrated. How-
ever, the implementation of tree diagrams further limits the heat map scale that can
be shown without issue. So, it is recommended that only the most informative subset
of genes and conditions can be shown in this manner [106].
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2.3.5 Statistical Models

The application of concepts from information theory and stochastic modeling of
symbolic processes has helped to understand the biological and structural functions
precisely. Specifically, previous analyses of CG dinucleotide location along the
genome have highlighted its epigenetic role in DNA methylation, showing a distinct
distribution tail relative to other dinucleotides [107]. Recently, Merlotti and the team
performed an analysis of the entire distribution of the CG distance over a chosen
collection of higher-order species. They have also employed the best-fitting proba-
bility density function for a large number of species (> 4400) that have various
complexities (from bacteria to mammals) and characterize some new global
characteristics [107]. The result revealed that compared with other distributions,
the gamma distribution is ideal for a selected subset. When introduced to a wider
range of species, this distribution’s parameter permits some biologically relaxing
characteristics that can be used for categorizing purposes [107].

Recently another group of researcher proposed a neural network model for
classifying various cancer types [108]. They employed different machine learning
techniques strategies, namely term frequency (tf)-inverse document frequency (idf),
term frequency (tf)-relevance frequency (rf), and Best Match 25(BM25), for retriev-
ing knowledge for weighting genes based on mutation information. Result obtained
reveals that compared to the other representations, the BM25-tf-rf strategies lead to
improved classification accuracy. Interestingly, in earlier studies, a subgroup of the
resulting genes was also indicated as the target or casual genes, thereby suggesting
that this approach can also be used for detecting candidate genes [108].

Incorporating and studying experimental datasets for measuring metabolic fluxes
and modeling metabolic networks are also an important method in metabolic
engineering. To date, several computational approaches have been proposed for
modeling as well as stimulating metabolism processes, both quantitatively and
qualitatively. This varies from the topological study of network models (which
explores metabolite interconnections) to the stoichiometric models (where
restrictions can be imposed for describing the metabolic potential flux state-space
or analyze utilizing petri networks) to the comprehensive kinetic models (which
adjusts the concentration of metabolites over time) [51]. A network model is the
most fundamental framework for understanding a cellular biological mechanism
[109]. A network can be defined as a graph in which biological entities, e.g.,
metabolites, transcripts, genomes, and proteins, symbolize nodes, and edges are
represented via interactions between nodes, like protein–protein interaction, and
biochemical transformation and co-expression [110]. In plant biology, the main
networks are protein–protein exchange, gene-to-metabolite, metabolic networks,
gene regulation, and transcriptional control [111]. Network analysis refers to using
algorithms for classifying structurally essential elements or network components and
graph theoretic models that employ statistical techniques to classify and infer
complicated functional relations between them [110]. However, this topological
methodology does not accommodate the system’s complex actions, which in turn
demand the development of other approaches [109]. Stoichiometric models are often
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used for analyzing larger metabolic networks (nearly1000 reactions) by applying
limitations to determine the spectrum of possible metabolic flux states. Imposing
those restrictions enables estimating the feasible flux distributions [112].

The increased volume of the annotated genome sequence has allowed a few
metabolic models to be scaled into genome-scale metabolic model systems
[113]. Almost gene-to-protein-to-reaction interaction associated with every meta-
bolic response is reflected in the ideal genome-size metabolism model [114]. The
dimensions and sophistication of genome-scale metabolic models suggest that the
possible behavior, particularly flux balance analysis, can only be studied with
restricted methods. While the metabolic model of genome scale has become the
common method for modeling over the past couple of years, it should not be used as
an individual mathematical model [109].

Metabolism flow analysis focuses primarily on experimentation evidence that
provides isotopically labeled precursors (usually 13C) to the target, and after the
system has reached a stable state, the distribution of metabolic intermediates and end
products is analyzed [115]. A model of the target metabolic network is used to
predict the labels’ redistribution in a steady-state scenario. The experimentally
measured pattern is contrasted to the anticipated labeling pattern, and modifications
were made within model flows until the relationship between the measures projected
and measured is as closely as practicable. This method is repeated several times and
leads inevitably to hundreds of flux maps from which the model that provides the
best prediction for the system can then be deduced [115].

Kinetic modeling describes the enzyme’s dynamic activity, and therefore, it is the
most predictive and detailed mathematical description. Kinetic modeling considers
enzyme’s dynamic activity and is usually applicable to limited portions of the
metabolic network (~10 to 50 reactions) [52]. The dynamic model measures the
system’s time-based behavior with reference to the concentration of both metabolite
and flux. However, detailed kinetic formulas for several enzymes are not usable;
hence, heterologous systems or literature should be taken as hypotheses [116]. Rele-
vant criteria to achieve a unified solution is another problem [117]. Additionally,
extra care is needed while designing a statistical model for plant systems because
compared to the prokaryotic cell, plant cells have a large number of the compartment
and complex metabolic pathways. Hence, continuous development of more user-
friendly applications, languages, statistical models, and databases that integrate and
process complicated knowledge would be vital for handling the complex biological
data analysis [51].

2.3.6 Experimental Designs

Experimental reproducibility is central to science’s advancement [55]. Nonreproduc-
tive research limits the productivity of fundamental biological science as well as
drug development, which in turn impedes the reuse of experimental results. A major
factor that mainly contributes to reproductivity is uncertainty in decoding compli-
cated laboratory techniques and prototypes from a literary form and in determining
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differences between various experiments. Present bioinformatics projects rely on
data processing or management laboratory’s information systems [55]. Big data
bioinformatics approaches basically help us to unmask significant biological
findings from detailed and large biological databases. However, an additional benefit
from processing big data is only feasible if supported by appropriate metadata
annotation. Intelligent methods are particularly required in high-performance
research, for monitoring the experimental design including the research conditions
and details that may be of relevance to the analysis of failures or potential research.
In addition to handling this knowledge, researchers are desperately looking for an
integrated architecture and interfaces for structured data annotation [53].

Recently, Friedrich and the team proposed a factor-based experimental design
method allowing scientists to effectively construct large-scale studies employing a
Web-based framework [53]. They introduce a novel Web-based framework imple-
mentation enabling arbitrary metadata processing. To share and modify details, they
provide a human-readable, spreadsheet-based format. Subsequently, sample sheets
and metadetails for data generation facilities may be generated. Data files generated
after sample calculation can be transferred to a datastore, where they are automati-
cally connected to the previously created experimental model [53].

Another group of researchers implements a practical experimental design
approach to pick dynamic models from results. The process, inspired by biological
uses, facilitates critical experiment design: it specifies a highly insightful set of
measurement readings and time points. Based on previous results, they show
systematic guarantees of design efficiency. By reducing analysis to the concept of
graphical models, they demonstrate that the proposed method discovers an almost
optimum option of designs with a polynomial number of assessments. Furthermore,
the procedure provides the strongest constant approximation factor for polynomial
complexity, unless P ¼ NP. In comparison with proven alternatives, including
ensemble noncentrality, the author assesses the system’s efficiency based on exam-
ple models of various heterogeneities. Effective architecture promotes the loop
among modeling and experimentation: It also permits an inference of complicated
processes, including those which regulate centralized metabolism to be
deducted [54].

Recently, Khan and the team used the wx package to construct the graphical user
interface in Python 2.7, namely ProtocolNavigator [55]. It primarily discusses the
largely ignored understanding and implementation issues associated with various
biological domains. It offers a scientist-friendly, emulation-based open-source plat-
form to plan, record, and replicate biological experiments [55]. ProtocolNavigator
comprises of three functional and display screens. Through the “inventory panel,”
the user can construct an instance “inventory” with comprehensive explanations of
objects like reagents, instrumentation, and components. Interestingly, this inventory
can be reuse, modify, and distribute. The previously created inventory instances are
added to separate experimental objects with the bench panel (equivalent to a
laboratory workbench). ProtocolNavigator’s time-integrated action-based recording
method is innovative in allowing researchers to record real-life experimental experi-
ence (e.g., temporal behavior variation). The map panel dynamically illustrates the
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experimental map or design, with spatially temporarily connected divisions and
operation icons to capture action information as well as experimentally generated
data. Inherently, comparing laboratory experience with real experimental evidence
on a jargon-independent map provides a strong basis for communicating and
distinguishing experimental design and the underlying difference in operation—an
important prerequisite for reproducibility [55].

Most importantly, the completely accessible map can indeed be distributed with
peers, thereby adding a remarkable capacity for refining and organizing experimen-
tal design collective and synchronized computationally, which in turn significantly
minimizes project iterations and associated costs. The map could be transformed and
copied into a time-stamped, systematic summary of actions at the physical benches
or for dissemination. The map’s datasheet can be conveniently reformatted and
parsed [55]. However, authors have also suggested that there is still scope for the
addition of new tools or materials that may be given higher priority by prospective
consumers [55]. For instance, a distinctive but important question still remains open:
How to accurately classify candidate models’ parameters? This question also needs
special consideration as architecture and modeling are members of the very same
hypothetico-deductive method [54].

2.3.7 Resampling Techniques

Resampling techniques are a series of methods employed for either replicating
sampling from a provided sample/population or approximate statistical accuracy
[56, 118]. For instance, if we are doing a concurrent likelihood ratio test but we do
not reach a conclusion, we will resample and repeat the test [56, 118]. Resampling
techniques, like permutation procedures, also provide an appealing alternative to the
traditional inferential approaches; they are flexible and need fewer hypotheses.
Traditionally, the key drawbacks of using these approaches are that they were
computationally expensive and sometimes demanded custom-written machine
codes. However, these drawbacks are no longer a major issue, even for exceptionally
large amounts of data, due to the availability of personal computers and open-source
analytical software programs for the application of resampling-based
approaches [119].

The key approaches for resampling techniques are bootstrapping and normal
resampling (i.e., normal distribution sampling), permutation resampling (also
known as rerandomization or rearrangements), and cross-validation. During
bootstrapping, several smaller samples of the same scale, with substitution, are
repeatedly taken from one original sample. Normal resampling is somewhat similar
to bootstrapping because it is a special case of the normal shift model, which is one
of the bootstrapping principles [56]. Both bootstrapping and normal resampling
presume that samples are obtained from the actual (either a real or a theoretical)
population. Additionally, both methods permit substitution. However, insufficient
resources can preclude optimal statistics. Contrary to bootstrapping, permutation
resampling required no “population.” Here, resampling relies on assigning units to
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treatment classes. This is the reason we treat particular samples instead of
populations and why it is often referred to as the traditional gold bootstrapping
strategy. Another significant distinction is that permutation resampling is a sampling
process without substitution. Cross-validation will evaluate a predictive model.
During cross-validation, subsets of data will be discarded to be used as a validation
package; other data will be used to construct a training set to predict the validation
set [56, 118].

Molinaro et al. (2005) performed extensive comparisons of resampling methods
with simulated (high signal-to-noise ratio) microarray (intermediate signal-to-noise
ratio) and proteomic data (low signal-to-noise ratio) and estimated prediction error,
including growing sample sizes with a broad number of features. The effect of the
collection of features on the efficiency of the different cross-validation methods was
illustrated. The findings set out the “right” resampling strategies for future studies
involving high-dimensional data for preventing excessively positive estimation of
the model’s performance [120]. However, only a few implementations of the
bootstrap approach can be found in the literature [121]. For instance, the bootstrap
was employed by Zhang and Zhao (2000) in hierarchical cluster analysis. In a
consensus tree, they summarize individual dendrograms [122]. Their approach
includes estimation of gene expression inaccuracy. Bhattacharjee et al. (2001) also
employed bootstrapping to determine cluster stability and validate the result
obtained through hierarchical clustering [123]. In another study, Kerr and Churchill
(2001) employed the bootstrap for determine the stability of the outcomes of cluster
tests. It uses an ANOVA model to predict gene expression and consider the
microarray data variance from other sources. The proportion of genes within boot-
strap clusters is a stability indicator [124]. Dudoit and Fridlyand employ bagging
(bootstrapping and aggregation) to increase the cluster partitioning process’s preci-
sion. The separate partitions are merged into one final partition, or a new dissimilar-
ity matrix is created and acts as the basis for final classification [125].

Since bootstrapping is a substitution drawing and the bootstrap sample size is the
same as the initial data size, certain findings are excluded during analysis. The
estimated points’ proportion in the initial study from the bootstrap sample is
estimated as (1–1/n)n, which converges to 1/e for n!1 or ~ 36.8% [121]. Recently,
Gana and the team proposed the usage of continuous weights instead of bootstrap.
Continuous weight excludes zero elements and makes noninteger weights instead.
Thus, the entire dimensionality of space contributing to retention is reflected in the
sampling sample for every element of the original dataset [121]. Comparative
analysis of continuous weights with bootstrapping utilizing real datasets as well as
simulation studies shows the benefit of continuous weights, particularly when there
are few observations in the dataset, few differentially expressed genes, and low
folding of differentially expressed genes. They even advocated using continuous
weights in both small and large datasets since continuous weights yield at least the
same effects as traditional bootstrapping and often exceed it [121].
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2.3.8 Statistical Network Analysis

Euler first developed the concept of graph theory, a subfield of mathematics, and
employed this method in 1736 to prove the famous “Seven Bridges of Konigsberg”
problem. The graph theory’s significant developments are mainly due to Paul Erdos
and Alfred Renyi, who have researched random graphs’ characteristics. They just
wondered, what will be the outcome of tossing a couple buttons onto a table and then
tried to link them arbitrarily? Also known for proving the “map color” problem,
Erdos and Renyi address the query, what is the minimum amount of colors required
to clearly color a map [126]. Watts and Strogatz‘s pioneering publications in 1998
[127] and Barabási and Albert in 1999 [128] popularized the idea that complex
structures can be interpreted as networks where components within a complex
system can be described as nodes and connected by their interactions, called
edges [126].

As earlier stated above, networks provide graphic representations of relationships
(edges) among variables (nodes) (Fig. 2.1). Edges depict detailed information
regarding the path as well as the power of node partnership. The edge may be
positive (e.g., a positive covariation/correlation among variables) or negative (e.g., a
negative covariation/correlation among variables). The polarity among the
relationships is graphically represented through multiple colored lines that reflect
the ends. The edges may or may not be weighted. A weighted edge represents the
intensity of the interaction between nodes by the shift in the edge’s thickness and
color linking the nodes. Alternatively, the edge can be unweighted and reflect merely
the existence versus lack of a connection; the absence of connection in such a
network results in nodes with no linking edges.

There are two types of edges in the network: (1) a direct edge—the nodes are
joined, and the edge head has a single directional arrowhead; or (2) an undirected
edge—the nodes have a connecting line that shows a connection with one another,
but no arrowheads to guide the direction of impact (Fig. 2.3). Networks may be
defined as guided (i.e., all edges are directed) or undirected (i.e., there are no edges).
A guided network can either be acyclic (i.e., we could not originate from a node and

Fig. 2.3 (a) Guided graph with an undirected edge, (b) guided graph with directed edge, and (c)
unguided graph
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return to the node by observing the directional borders) or cyclic (i.e., we can obey
the path of a node to return to the node) [129, 130].

The network analysis enables us to estimate dynamic relationship patterns and
evaluate the network structure to identify key network functionality [130]. For
instance, variables such as tension, functional activity, social pressure, and the
nutritional content of drink and food reflect nodes in the network, and the positive
and negative relationships between these nodes are edges. Nodes, edges, and
networks are also often called vertices, links, and graphs, respectively. Cross-
sectional and longitudinal time-series data may be used to approximate networks;
networks may also be evaluated at community or person levels. Cross-sectional
community data can expose group-level conditional independence relationships.
Individualized networks focused on time series and may provide insights into a
particular individual across time. Moreover, the networks of various communities
may be linked. Overall, network research represents a wide variety of computational
methods for analyzing multiple network structures [130].

Network analysis has been used in various research fields ranging from psychol-
ogy [130] to bioinformatics [4, 7, 131, 132]. Bringmann et al. (2016) described the
logic of network approach, related approaches, and visualization and provided an
analytical illustration to demonstrate the association between everyday emotional
variations and neuroticism. The findings indicate that people with elevated neuroti-
cism have a denser relational network relative to their less neurotic counterparts.
This impact is particularly prominent for the negative emotion network, consistent
with previous research that observed a denser network in stressed subjects than in
healthy subjects. In summary, the author demonstrates how network methodology
can provide new methods for psychology examining complex processes. Cordeddu
et al. (2009) described a novel gene that can trigger “Noonan-like syndrome” when
mutated [133]. SHOC2 was discovered by introducing the previously identified
genes, namely KRAS, SOS1, RAF1, and PTPN11, in the Genes2Networks tool
[134]. Zaidel-Bar et al. (2007) published a signaling network composed of the
molecular components and associations of focal adhesions [135].

Earlier studies have revealed that two genes within a molecular network having
higher-order topological similarities are most likely to interact with each other and
may be associated with the similar or same phenotypes [136–138]. Additionally,
disease phenotypic data may also enhance the accuracy of key gene prediction
associated with rare disease phenotypes [139]. This information has led to various
computational tools for predicting candidate genes for inherited diseases
[139]. Dezső et al. (2009) developed a novel approach based on the shortest path
betweenness for prioritizing candidate genes within protein–protein networks. Gene
having the shortest distance from the disease node is considered as key candidate
gene [140]. Wu et al. (2008) developed a regression model that on the basis of
correlation scores quantifies the relationship among gene nearness and phenotype
likenesses within the PPI network and identifies best possible disease-associated
candidate genes [141]. Li and Patra (2010) developed a novel approach for
prioritizing disease-associated key genes by expanding the random walk with restart
algorithm on a heterogeneous network created via linking the gene network as well
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as the phenotype similarity network employing the known gene-phenotype
connections [142]. Zhu et al. (2013) hypothesized another method that detects
disease-associated key genes based on the cosine angle of corresponding diffusion
profiles and linear correlation coefficient. The diffusion profile was defined as the
“stationary distribution of all genes under a random walk with restart on the
phenotype similarity network” [143]. Every gene’s diffusion profile was retrieved
by flattening the probability distribution over the PPI network while beginning a
walk from the gene. Thus, integrative analysis of biological system via networks
analysis [139, 144, 145] may help us to predict a disease/trait-associated key gene
and protein–protein interaction [44], gene co-expression (Co-Ex) networks
[146, 147], and metabolic interaction (MI) networks [148, 149] more effectively.

Miele et al. (2019) recommended nine tips to deter common falls and to
strengthen the study of biologists’ network results, namely (1) at first, only formula-
tion of questions; subsequent application of networks, (2) classify the network data
properly, (3) using specialized tools for network analysis, (4) be mindful that
network visualization can be useful but deceptive, (5) ignore using metrics blindly;
instead grasp formulas, (6) resist blind usage clustering algorithm; evaluate their
disparity alternatively, (7) do not pick the simple way to model networks, (8) review
data on different network layers, and (9) immerse yourself in the network literature
outside your domain. These nine tips may serve as a path for a data analyst to get a
foot in the network data analysis entrance. However, these guidelines are not limited,
and special attention may be given to a few issues, like diffusion on networks.
Nevertheless, the nonspecialist must try to positively answer research problems by
learning network analysis more comprehensively [150]. Thus, statistics play a key
role in bioinformatics, and their right usage may help us to answer biological
problems more precisely.

2.4 Conclusion and Future Perspective

In conclusion, numerous fascinating advancements in biotechnology have produced
huge quantities of diverse kinds of big data, which demand powerful and suitable
computational statistical tools with biological expertise and computer algorithms.
Statisticians have played a leading role in bioinformatics, helping researchers
develop robust design and analysis methods to derive meanings of biological
knowledge from the rich treasure of multiplatform genomics. Their profound under-
standing of the scientific method and complexity, and ambiguity has enabled them to
play a vital role in this undertaking. Various statistic techniques, like probability and
Bayes’s theory, hypothesis testing and significance, clustering and classification,
multidimensional analysis and visualization, statistical models, experimental
designs, statistical resampling techniques, and statistical network analysis are con-
tinuously employing in a wide range of bioinformatics analysis [1]. However, there
is still scope for further work and potential improvements. For instance, bioinfor-
matics is an emerging field, and the science community needs innovative approaches
to incorporate knowledge through various channels and obtain more systematic
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insights into the underlying molecular biology. These approaches need to combine
statistical rigor while connection creation and analytical reliability for scaling up to
large data settings and outcome interpretability, which will help the researcher
understand them precisely. Thus, in the near future, there is an urgent requirement
that the statistical community must find more efficient ways of integrating this
knowledge into the modeling method, which could contribute to stronger forecasts
and findings and increased interpretability of the data.
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Abstract

Rice is one of the world’s most important agricultural crops and a model plant that
is widely studied. The completion of the complete rice (Oryza sativa) genome
sequence through high-throughput experimental platforms has resulted in a huge
amount of data being generated and specialized databases, and bioinformatic
tools for data processing, analysis, efficient organization, and visualization have
been developed. In this chapter, we address a set of biological databases that host
rice-specific sequence, genetic variation, gene expression, pathways, and gene–
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interactome data from various genomic and proteomic sources, and aid in data
analysis and visualization.
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Database · Rice · Genomics · Proteomics · Gene expression
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BAR Bio-Analytic Resource
CSRDB Cereal Small RNA Database
DIPOS Database of Interacting Proteins in Oryza sativa.
ESTs Expressed Sequence Tags
FSTs Flanking Sequence Tags
GEO Gene Expression Omnibus
GRASSIUS Grass Regulatory Information Services
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PLANEX PLAnt co-EXpression Database
PlantDHS Plant DNaseI Hypersensitive Site Database
PmiRKB Plant miRNA Knowledge Base
PMRD Plant microRNA Database
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RICD Rice Indica cDNA Database
RiceSTIFDB Stress-Responsive Transcription Factor Database
RiceVarMap Rice Variation Map
RKD Rice Kinase Database
ROAD Rice Oligonucleotide Array Database
SNPs single nucleotide polymorphisms
TIGR The Institute for Genomic Research
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3.1 Introduction

Rice (Oryza sativa L.) is an important crop from Gramene family because most of
the human population mainly depend on rice as their food [1]. However, recent
climate change has resulted in drastic decrease in the yield and has also affected the
rice genome at molecular level. Previously, it was reported that all the agronomic
traits are controlled by various genes and considering that, to date, numerous genes
and its sequences have been identified and used in the breeding program to improve
the yield and quality of rice [2]. Additionally, since rice has a small genome size, it is
often used as a model organism for the monocot plant species. Thus, there is always
a quest to unmask the genetic structure and composition of rice genome. Though the
recent advancement of high-throughput sequencing technologies has been able to
solve these issues, they had led to the accumulation of huge amount of biological
data. This in turn demands the development of various bioinformatic databases and
tools, which may store and analyze data efficiently. Considering this, to date many
rice-specific databases are developed that contain heterogeneous biological data
ranging from genomics to proteomics and are regularly exploited to study and
evaluate numerous agricultural-related information such as gene mapping, gene
identification, functional characterization, gene expression study, structure predic-
tion, protein structure, and function prediction. Thus, in this chapter authors have
described in brief about various rice databases and information they contain.

3.2 Genomic Database

Gramene is a comparative genomic database of plants that incorporates knowledge
regarding genetic charts, sequences, gene markers, proteins, pathways, and
phenotypes [3]. One may search or explore the database to identify genes and
phenotypes that share similar characteristics. Different plant organisms may also
be correlated and differentiated considering the identical genes, genomes,
mechanisms, and phenotypes. From the Gramene database, one may also know
the position of genes in the chromosome and its function [4]. Using the genome
browser module of the Gramene database, the annotation of rice genome is possible,
which provides information on SNPs, indels, and markers for the respective genes.
The rice genome also acts as the reference for genome-wide comparative study. In
order to decide whether rice plants are linked to other cereals, the researcher uses a
number of sequence-based tags including the sequences of expressed sequence tags
(ESTs), flanking sequence tags (FSTs), proteins, cDNAs, BACs and BAC ends,
SNPs, microarray probes, and repeat sequences [5].

The gene archive takes advantage of the genetic colinearity (synteny) between
rice and other main crop plant genomes to annotate genome of organisms whose own
plants have not been sequenced [5]. For performing annotation, Gramene employs
several modules like BLAST tool, marker module, and QTL modules. BLAST tool
aligns the query sequence with the reference genome available for the particular crop
with many species. For Oryza, the database stored information on 11 wild species of
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Oryza such as Oryza barthii, Oryza glaberrima, Oryza glumipatula, Oryza
longistaminata, Oryza punctate, Oryza rufipogan, Oryza brachyantha, Oryza sativa
indica, Oryza meridionalis, Oryza sativa japonica, and Oryza sativa f spontanea.
The BLAST alignment results provide information regarding the details of the
alignment gene with E-value and identity percentage of gene with reference and
the orientation of the gene in either positive or negative strand. BLAST has been
discussed in detail in Chap. 7 of the book. QTL module provides information about
QTLs of rice and several other cereals (described below in QTL section). Marker
module provides information on markers available for all the genes/QTLs of the
crops. The detailed information about microsatellite or SSR markers of rice genome
with mapped chromosome position with location is also available, which in turn
enables us to easily identify the gene and their nearest gene location. These data
provide a gateway to find out the marker position of a particular gene with respect to
various traits, like abiotic and biotic traits in rice.

Another widely used rice genomic database is “Rice Annotation Project Database
(RAP-DB)” [6, 7]. The information about the rice genome is generated through the
“International Rice Genome Sequencing Project (IRGSP)” and is stored for public
use in RAP-DB [6, 7]. In this database, the Japanese rice Nipponbare (build IRGSP
1.0) is considered as a reference genome for all the rice genotypes. The genome
sequencing was carried out through high-throughput Illumina sequencing platform.
RicyerDB is another rice genomic database that contains information regarding the
yield-related genes of rice. Both genomic and proteomic data are available in this
database, which make researcher to easily get the gene information and the pathways
involved for gene expression in rice [8]. The tools of RicyerDB provide base for the
development of a shared platform for browsing and visualizations of yield-related
genes. Another utility allows the user to search for a single gene and offers insight
into the roles and positions of biological processes. The study of protein–protein
interaction and protein–protein interaction network construct is also possible
through this database. This database also stores information from various sources
such as RAP-DB, Rice Genome Annotation Project (RGAP), NCBI, and UniProt
and STRING databases.

RiceGAAS database is also known as “Rice Genome Automated Annotation
System.” It allows to execute the genomic data of rice for public use [21]. The data
are collected from various sources such as IRGSP [70] and submitted to the public
domain database DDBJ (https://www.ddbj.nig.ac.jp/services-e.html) and provided
all the information regarding Gene entry, gene homology identification, prediction
of long terminal repeats, and gene models. The RiceRelativesGD is another gene
database aimed at providing a genetic resource useful for rice breeding. In 2019,
Mao et al. [71] developed this database for identifying the genetic information of
close rice relative species. This database contains genomic information from 13 sep-
arate rice relatives such as O. sativa ( japonica group), O. sativa (indica group),
O. rufipogon, O. barthii, O. glumaepatula, O. meridionalis, O. nivara, O. punctata,
O. brachyantha, Leersia perrieri, O. glaberrima, Zizania latifolia, and Echinochloa
crus-galli which are accessible to the public. Their study provides knowledge on
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genes specific for different functions such as stress and photosynthesis that are used
in breeding program.

3.3 QTL/Gene Database

QTL databases are used to identify the gene function that are used in breeding
program [28]. For instance, Q-TARO database provides detailed information of rice
QTLs. One important feature is that it enlists a table comprising all of the QTLs and
their genetic parameters such as their trait or trait type, population, mapping,
accuracy (LOD value), and map location of the QTL. Another important feature is
the genome browser displaying genomic positions of QTLs. Q-TARO also specifi-
cally displays the colinear spatial structures of QTLs and QTL regions on the rice
genome [27].

For plants, Gramene is another quantitative information resource that
incorporates data through different data domains. In Gramene QTL database,
QTLs are identified as a part of gene, which is associated with a particular pheno-
type. The QTL database includes the world’s largest online repository of QTL data
for rice. QTLs initially published on individual genetic maps have been systemati-
cally aligned to the rice sequence using flanking markers as anchors, where they can
be searched as normal genomic features. It enables the analysis of QTLs in colinear
regions in other cereals and allows researchers, to distinguish sequences and QTLs
correlated with related traits or phenotypes across a broad variety of plant species.
Researchers can identify whether a QTL colocalizes with other QTLs and can
integrate data from different studies to enhance the accuracy of a QTL location. It
provides plant biologists and geneticists a way to investigate the interaction between
genomic variation and diverse modes of phenotypic variation [28].

To improve QTL-based candidate gene recognition and gene expression study,
PlantQTL-GE database has developed [29]. This database contains information
about chromosomes and details on gene expression in microarray data and ESTs
and genetic markers of Arabidopsis thaliana and Oryza sativa. Another database,
namely the Institute for Genomic Research (TIGR) database, contains DNA, RNA,
and protein sequence of plant, human, and microbes. This database consists of
repetitive DNA sequence of 12 plant species, namely Arabidopsis, Hordeum, Bras-
sica, Glycine, Lotus, Oryza, Triticum, Lycopersicon, Medicago, Sorghum, Solanum,
and Zea. The repeated sequences within each database are further classified into
subcategories namely groups and subclasses dependent on sequence and structure
similarities [72]. Sequence similarity can also be checked for the downloaded files
and are accessible from different sources [73].
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3.4 Single Nucleotide Polymorphism (SNP) Database

SNPs, which comprise the most abundant type of genetic variation, are used in
genetic studies [74]. SNPs play key role while studying gene mapping, diversity, and
evolutionary variation among populations. They also play an important role in
designing markers to identify the genetic variation occurring in the contemporary
genome and that it has been transferred from the wild type. While other forms of
variation including indels, microsatellites, variation of copy number, and epigenetic
markers remain important to consider and can cause disease, in genetic study, SNPs
are largely the simplest to determine, and are the most useful and commonly used
markers. One of the most important SNP databases is dbSNP (http://www.ncbi.nlm.
nih.gov/SNP), in which SNP identifiers (SNPids) or rsIDs are used to identify SNPs.
This database arranges the nucleotide sequence based on their variation in sequence
to differentiate between two sequences and search the polymorphism through
nucleotide substitution, insertion, deletions, and nucleotide repeats [75].

By the sequencing project of 3000 rice genome, it has been possible to identify
SNPs through the alignment of gene of interest with the reference genome in rice
[76, 77]. This result provides the information of SNPs that are synonymous or
nonsynonymous to the particular genome. The 3000-rice genome project has been
described in detail in Chap. 5. Rice Variation Map database is developed for
genomic variation study [30]. Yan et al. [78] developed a database of SNP for
rice, namely IC4R, that provides SNP information of 18 billion reads. For commer-
cial rice verities, they provide SNP barcode to easily assess the SNPs using seven
machine learning-based methods that are DT, KNN, NB, ANN, RF, LR-M, and
LR-O algorithms in the Python Sklearn Library (https://scikit-learn.org/stable/). To
identify the genetic variation during various stress conditions, Rice Stress-Resistant
SNP (RSRS) database has been developed [35]. Recently, Alexandrov and their
team developed the SNP-Seek Database using 60 billion SNP reads, which provide
SNP information by discarding all the indels in any of the genomic region to find out
the structural genetic variations [33, 79].

3.5 Transcriptome Database

With the introduction of high-throughput technology like next-generation sequenc-
ing platforms, it is possible to identify the gene expression at the molecular level.
Data on gene expression have proven invaluable to genome annotation programs
[80]. The functional genomic study helps the researcher to find out the function of
rice genes that control various traits. To study these gene functions, several databases
are developed through bioinformatic tool where all the repository information of
genes with specific trait of interest is available. For instance, TENOR
(Transcriptome ENcyclopedia of Rice) database comprises of large-scale mRNA
sequencing (mRNA-Seq) data extracted from rice. This database includes details on
rice transcriptomes, such as transcript structures and expression profiles, as well as
data on coexpression and data on cis-regulatory elements for each gene in 1 kb
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upstream regions. Since specifying the ability of plants to adapt to different growing
conditions is a key issue in plant science, understanding the regulatory networks of
genes associated with environmental changes is of great interest [81]. The team
developed the database by using mRNA-Seq data under 10 abiotic stress condition
such as high, low, and extremely low cadmium; high and low phosphate; high
salinity; drought; osmotic; cold; and flood and under two conditions of plant
hormone treatments (jasmonic acid and ABA). Earlier, Oono et al. used the
TENOR database to identify the transporters for cadmium tolerance to study the
gene expression under cadmium concentration [40]. TENOR offers three kinds of
search systems. First, under various conditions, users can provide one or more
transcript IDs for scanning functional annotations and patterns of expression. In
addition, users can search genes for functional annotation keywords as well. This
shows both partially and completely matched results. Second, the “GBrowse”
genome browser helps users to check for transcripts with a transcript ID or genomic
coordinate. In this search, the user can get all the information regarding the novel
transcript structures viz. both annotated and unannotated with their characteristics. In
the third search, the user can search for a collection of plant stress hormone-
responsive genes through reactive expression patterns, defining the path of transition
(suppression or induction), experimental circumstances, sampled tissues, and time
points, in addition to fold change (FC) thresholds and statistical importance of
changes in expression level.

Rice Expression Database (RED) is interactive rice gene expression profile
database completely extracted from RNA-Seq data. RED provides a detailed list of
284 high-quality RNA-Seq results, includes a wide range of gene expression models,
and encompasses a wide range of plant development stages. RED consists of a
collection of genes unique to housekeeping and tissue and creates coexpression
networks dynamically for gene(s) of interest. RiceArrayNet is another database that
provides information in terms of correlation coefficients on coexpression between
genes in rice. The correlation coefficient shows the coexpression pattern of genes in
the rice genome [37]. Lee and the team developed this database that provides the
correlation data in three different ways: First, gene coexpression is visualized in the
form of cluster or network; second, the coexpression is visualized in scatter plot; and
third, the gene coexpression is visualized in the histogram. Another recent Internet-
based database for plant gene analysis is the “PLAnt co-EXpression database
(PLANEX).” It includes freely accessible GeneChip details collected from the
“Gene Expression Omnibus (GEO)” of NCBI. PLANEX is a database for
genome-wide coexpression, which helps genes from a wide range of experimental
designs to be functionally identified [42]. PLANEX describes “Pearson’s correlation
coefficients (PCCs; r-values)” distributed for a specified microarray platform,
contributing to a single organism from a gene of interest. The PLANEX database
offers a correlation database, a cluster network, and an analysis of enrichment test
results for eight plant organisms such as Arabidopsis thaliana, Triticum aestivum,
Glycine max, Vitis vinifera, Hordeum vulgare, Solanum lycopersicum, Oryza sativa,
and Zea mays. The cluster network of coexpressed genes is developed by PLANEX,
which is calculated using the k-mean method. Genevestigator is another advanced
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Web-based framework developed to use modern data mining concepts and ground-
breaking algorithms to conduct molecular expression meta-analysis. This database is
focused on the systematic, large-scale combination of normalized and quality-
controlled expression data with ontology-based experimental background variables
such as anatomy, development, perturbation, or genetic background This large-scale
combination of data and meta-data gives new insight into transcriptomes’ spatio-
temporal response design and helps users to answer concerns that cannot be
answered by evaluating a single experiment [50]. Other important gene expression
databases are discussed in Table 3.1.

3.6 Protein Database

The protein database provides all the information of the gene that will encode
protein. For functional genomics, proteome study related to genome sequence data
is useful. These genome sequences help researcher to identify the genes that are
expressed in protein developed through alternate splicing and post-transcriptional
modification. Rice proteome study is possible through leaves, embryos, endosperms,
roots, branches, shoots, and calluses, which provide the detailed mutation of gene
through various environmental conditions. Many databases have been developed for
proteome study in rice. For instance, OryzaPG-DB, a shotgun proteogenomic-
dependent rice proteome database, integrates the genomic features of data from
experimental shotgun proteomics. This version of the database was developed
from the results of 27 nanoLC-MS/MS runs on a mass spectrometer of hybrid ion
trap–orbitrap, providing high precision for the study of tryptic digests from undiffer-
entiated cultured rice cells. Through searching the product ion spectra against the
Michigan State University, protein, cDNA, transcript, and gene databases, peptides
were detected and mapped to the rice genome. These peptides were occupied by
approximately 3200 genes, and 40 of them incorporated novel genomic
characteristics. The users may search, import, or browse the chromosome, gene,
protein, cDNA, or transcript database and download the modified annotations in
standard GFF3 format with PNG format visualization.

The “Mitochondrial Protein Import Components (MPIC)” database contains
searchable details on the plant and non-plant mitochondrial protein import apparatus.
An in silico study was performed to compare the mitochondrial protein import
apparatus of 24 organisms representing different lines of Saccharomyces cerevisiae,
algae toHomo sapiens and plants, including Oryza sativa, Arabidopsis thaliana, and
other newly sequenced plant species. In the MPIC DB, each of these species has
been thoroughly scanned and manually constructed for analysis. The database
provides a user-friendly graphical map, enabling users to find their appropriate
import component. The MPIC DB offers a robust database to promote thorough
investigation of mitochondrial protein import machinery and to identify conserva-
tion and divergence patterns that might have been skipped [64].

Manually Curated Database of Rice Proteins (MCDRP) is a database for rice
protein mainly focused on the reported experimental data [68]. Another database,
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Table 3.1 Description of various database used in rice research

Database
type Database Name Function Reference

Genomic Gramene Provides tools to perform
powerful comparative analyses
through a wide range of species
of plants.

[3]

Phytozome Provides an overview of the
evolution of each plant gene at
the sequence level, gene function,
gene family, and organization of
the genome

[9]

Ensemble plant Provides information on
visualizing, mining, and
analyzing plant genome

[10]

RAP-DB A hub for rice genomics. [11]

RGKbase Evolutionary biology and
comparative genomics

[12]

GreenPhylDB Comparative and functional
genomics in plants

[13]

PlantGDB Browsing features of genomes
that combine all relevant EST and
cDNA data for emerging gene
models

[14]

PGDBJ Provides a method for plant
genome annotation.

[15]

MIPS PlantsDB Provides central data integration
network for annotation of
structural and functional gene

[16]

OryGenesDB Provides positional information
of flanking sequence tags (FSTs)
of insertional mutagens

[17]

PGSB Provides keyword search for gene
identifier and functional gene
description of plant

[18]

RMD For new gene identification and
regulatory element

[19]

Rice Phylogenomics
database

Functional study of rice genome [20]

RiceGAAS For executing reliable analysis
from sequence of rice genome

[21]

RAD Provides the new information on
manual annotation and a
systematic structural study of rice
genome

[22]

RGKbase For genome assembly and
annotation

[12]

Ricebase Phenotypic interpretation, gene
annotation

[23]

(continued)
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Table 3.1 (continued)

Database
type Database Name Function Reference

OryzaGenome Provides the variant information
with hyperlinks to Oryzabase

[24]

DroughtDB Facilitates the recognition, study,
and characterization of genes
associated with the resistance of
drought stress

[25]

RiceMetaSys Information on genes for salt and
drought stress

[26]

QTL Q-TARO Provides all the information of
rice QTLs

[27]

Gramene Provides information on genetic
and physical position of QTL

[28]

PlantQTL-GE QTL-based gene identification [29]

SNP Rice variation map
(RiceVarMap)

Provides comprehensive
information of SNPs and indels

[30]

PmiRKB (Plant
miRNA Knowledge
Base)

Investigate the metabolism of
miRNA precursors and gene
regulation

[31]

RICD (Rice Indica
cDNA database)

Provides cDNA resource with
comprehensive information for
comparative genomics. And
functional analysis of indica
subspecies

[32]

Rice SNP-seek
database

Quick retrieving of SNP alleles
for all varieties in a given genome
region

[33]

HapRice Identification of polymorphic
SNPs between any two
accessions to rice

[34]

Rice stress-resistant
SNP database

Characterization of SNPs for
various stresses

[35]

Expression Rice expression
database (RED)

Information on important
biological processes and
mechanism

[36]

RiceArrayNet Provides information in form of
correlation coefficients on
coexpression between genes

[37]

RiceXPro Provides information on gene
expression of important
agronomic trait in rice

[38]

Rice oligonucleotide
Array database
(ROAD)

Provides detailed profiles of gene
expression for all rice genes

[39]

TENOR Expression study in various
environmental stress

[40]

OryzaExpress Gene expression network and
omic annotation using large-scale
microarray data

[41]

(continued)
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Table 3.1 (continued)

Database
type Database Name Function Reference

PLANEX For functional identification of
genes

[42]

CoP Identifies the association of
coexpressed genes with
metabolic pathways

[43]

PlaNet Predicts the identity of functional
homologs.

[44]

ExPath Pathway enrichment study [45]

Plant microRNA
database (PMRD)

To study the function and their
target genes of miRNAs

[46]

ATTED-II For functional identification and
study of regulatory relationships
among genes.

[47]

IsomiR Bank
database

Provides target prediction and
enrichment analysis to evaluate
the effects of isomiRs

Zhang et al. [48]

Rice kinase database
(RKD)

Expression analysis for rice
kinases using NGS data

[49]

Genevestigator Gene expression analysis using
microarray data

[50]

Bio-analytic
resource (BAR)

Transcriptome and protein–
protein interaction study

[51]

PlantTFDB Provides information of
transcription factors

[52]

CSRDB (Cereal
Small RNA
Database)

A tool of smRNA to identify
single mature transcript for the
recognition of specific target sites

[53]

PtRFdb Characterization and validation
of plant tRFs

[54]

RiceSTIFDB (stress-
responsive
transcription factor
database)

Accelerates study of rice TFs in
functional genomics and
identifies the regulatory processes
underlying abiotic stress
responses

[55]

GRASSIUS (grass
regulatory
information
services)

Integrates TFs and gene promoter
information

[56]

Plant
MPSS (massively
parallel signature
sequencing)
databases

Measure the degree of expression
of the majority of genes under
specified conditions

[57]

PlantDHS (plant
DNaseI
hypersensitive site
database)

Detection of distant
cis-regulatory DNA elements
(CREs) that are located away
from promoters

[58]

(continued)
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Table 3.1 (continued)

Database
type Database Name Function Reference

PlantAPA
(alternative
polyadenylation)

Alternative modulation of
polyadenylation and gene
expression in plants

[59]

RiceFREND Provides a platform for gene
function prediction

[60]

RiceSRTFDB Accelerates the study of rice TFs
in functional genomics and
identifies the regulatory processes
underlying responses to abiotic
stress

[55]

RECoN Characterization of abiotic
stresses on genome-scale and
regulatory mechanism study

[61]

RTFDB Identification of gene expression
related to stress which is
generally tissue-specific

[62]

Protein UniProtKB The measurable properties of
each protein, like isoelectric
point, molecular weight, and
expression and experimentally
defined properties like sequences
of amino acids

[63]

PDB (protein data
Bank)

Collection of protein 3D structure http://www.wwpdb.
org/

MPIC
(mitochondrial
protein import
components)
database

Comparative study of machinery
for importing mitochondrial
protein from plants and animals

[64]

OryzaPG-DB
(Oryza
ProteoGenomic
Database)

Provides models of peptide-based
expression along with the
corresponding genomic origin,
including novelty annotation for
each peptide

[65]

DIPOS (database of
Interacting Proteins
in Oryza sativa)

Provides comprehensive
information of rice proteins

[66]

PRIN (predicted
Rice Interactome
network)

Provides novel insights into gene
networks and functional
coordination of genes

[67]

MCDRP
(manually Curated
database of rice
proteins)

Annotation of rice protein [68]

(continued)
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namely the “Database of Interacting Proteins in Oryza sativa (DIPOS),” offers
detailed knowledge on interacting proteins in rice, where two statistical approaches
are used to model interactions, i.e., interologs and domain-based methods. Of 27,746
proteins, DIPOS comprises 14,614,067 pair-related associations, covering around
41 percent of the entire proteome of Oryza sativa [66].

3.7 Gene Ontology and Pathway Database

To broaden our understanding of biological processes in plants and to explain how
biological functions develop, it is important to recognize certain diversified pathway.
An application of reference and species-specific ontologies for plants and
annotations to genes and phenotypes are provided by the Planteome project (http://
www.planteome.org). Ontologies serve as common standards for the semantic
integration of data from plant genomics, phenomics, and genetics from a large and
growing dataset. There Plant Ontology, Plant Trait Ontology, and Plant Experimen-
tal Conditions Ontology, developed by the Planteome project, together with Gene
Ontology, Biological Interest Chemical Entities, Phenotype and Attribute Ontology,
and others, are the reference ontologies [69]. The platform also offers access to
species-specific crop ontologies established around the world by different plant
breeding and research communities. Out of 95 plant taxa, annotated with reference
ontology terms, developers offer integrated data on plant traits, phenotypes, and
gene function and expression. In order to facilitate community engagement, the
Planteome project has developed a plant gene annotation platform, Planteome
Noctua. All Planteome ontologies are freely accessible and are managed for sharing
and monitoring revisions and new queries at the Planteome GitHub platform (https://

Table 3.1 (continued)

Database
type Database Name Function Reference

Gene
ontology
and
pathway

Planteome It provides a set of reference and
species-specific ontologies, gene,
and phenotype annotation for
plants.

[69]

RiceCyc Provides information about the
substrates, enzymes, metabolites,
reactions, and pathways of
primary as well as intermediary
metabolism within rice.

https://bigd.big.ac.
cn/
databasecommons/
database/id/3305

KEGG rice Provides information about rice-
associated pathway

https://www.
genome.jp/kegg-
bin/show_
organism?org¼dosa

IntAct rice Provides a publicly available,
open-source information
platform, and protein interaction
data analysis tools.

https://www.ebi.ac.
uk/intact/home.
xhtml
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github.com/Planteome). From the ontology browser (http://browser.planteome.org/
amigo) and our data archive, the annotated data are readily available.

RiceCyc is another directory of rice metabolic pathway network [82]. It is a
glimpse of the main and intermediate metabolism of substrates, enzymes,
metabolites, reactions, and pathways in rice. Version 3.3 of RiceCyc contains
316 pathways and 6643 peptide-coding genes mapped to 2103 enzyme-catalyzed
and 87 transport reactions regulated by protein. Annotations given by the KEGG and
Gramene databases enriched the original functional annotations of rice genes with
InterPro, Enzyme Commission (EC) numbers, MetaCyc, and Gene Ontology.
Employing the Pathologic module of Pathway Software, pathway inferences and
network diagrams were first predicted based on MetaCyc reference networks and
plant pathways from the Plant Metabolic Network. This was enriched by manually
inserting metabolic pathways and explicitly reported gene functions for rice. From
pathway diagrams to the relevant genes, metabolites, and chemical structures, the
RiceCyc database is hierarchically browsable. Users may also upload transcriptomic,
proteomic, and metabolomic data to visualize expression trends in a simulated cell
using the OMIC Viewer integrated application. RiceCyc enables comparative path-
way research, coupled with additional species-specific pathway databases housed in
the Gramene project [82]. Another database, namely IntAct, offers a publicly
distributed, open-source information structure and molecular interaction data review.
All interactions are produced through curation of literature or direct contributions
from users and are publicly accessible (https://www.ebi.ac.uk/intact/home.xhtml).

3.8 Conclusion and Future Perspectives

In conclusion, we attempted to catalog numerous Web data services and tools
available for rice research. Some of them, although few are recent and small-scale
repositories, are well known and commonly utilized. It is obvious with the growing
number of databases that there is an overwhelming amount of data accessible on the
site, connected to almost any area of rice science. However, it has not been
effectively investigated despite possessing such a vast amount of diverse data,
since many biology researchers or prospective consumers are unfamiliar with all
the possible tools to find and interpret the data [83]. Different databases often have
different data exchange formats and protocols, which makes it difficult to integrate
them into one place. In an ideal situation, a single platform should be available for all
databases in a single domain of interest, where a user can use APIs and ontologies to
search all the respective databases with a single query and compare the results; e.g.,
Araport [84] is one such initiative. In order to improve the legitimacy of their data,
certain databases are now merging connections to other databases of similar types of
data, which is the first move in offering a single forum. This maximizes the
utilization of usable data in current assets, which may aid in the prevention of
duplication. It provides small databases with greater coverage and may offer a
broader image collectively, as small databases typically concentrate on one particu-
lar element and provide comprehensive details.
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Abstract

Plant domestication has significantly influenced the growth of human society.
The domestication of rice lists amongst the most significant historical
breakthroughs. However, the sources and domestication methods are debatable.
Thus, in this chapter, authors attempted to understand in brief about genetic
diversity in rice, as well as a description of the processes about the domestication
of rice began and at which location rice was domesticated. Information retrieved
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from the published literature to date suggests that the rice genus Oryza is a small
genus comprising about 25 species, but it has incredible adaptive capabilities to
differing ecological circumstances. Within the genus Oryza, two distinct domes-
tication events have occurred—one in Asia and another in Africa. In Asia, wild
rice O. rufipogon is popular, which was cultivated about 9000 years ago. In
Africa, the wild rice Oryza, namely O. glaberrima, was independently
domesticated around 3000 years ago. During domestication, plant experience
decreased nucleotide diversity, enhanced linkage disequilibrium and modified
population frequencies of polymorphic nucleotides within the domestication-
related genes. In the near future, the information presented in this chapter may
aid in enhancing rice’s yield.

Keywords

Rice · Domestication · Evolution · Domestication traits

Abbreviations

AFR Africa
ASN Asia
BB Bacterial blight
BPH Brown plant hopper
CMS Cytoplasmic male sterility
GLH Green leaf hopper
IND indica
JP japonica (JP)
KP Korean Peninsula
ML Maximum Likelihood
OG O. glaberrima
OR O. rufipogon
OS O. sativa
RYMV Rice yellow mottle virus.
Shb Sheath blight
WBPH White-backed plant hopper

4.1 Introduction

One of the most significant innovations in human history has been identified as the
domestication of plants and animals. Hunter-gathering communities started
cultivating plant species as a primary fibre and food source, starting at the beginning
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of the Holocene subsequently the last major glacial phase, ~120 hundred years ago,
and nowadays, we depend on domesticated species for our sustainability. Sedentary
communities that generated due to shift in agriculture brought about through domes-
tication, giving birth to towns that ultimately contributed to several modern human
cultural characteristics, including literature, state creation and organized religion. All
of this came about as a consequence of human reliance on a wide variety of
domesticated animal (and plant) types and as a result of shifts in global human
populations and ecological behaviour [1].

Since, during domestication, wild species are introduced to new selective
conditions due to human agriculture and usage, domesticated crop species are the
product of an evolutionary mechanism [2]. It is a technique of transformation of
speciation and/or organisms that takes place when the reproduction, as well as the
dispersal of one species, is regulated via another species in order to fulfil the needs of
the later, especially for food [1]. Crop domestication is a unique plant–human
co-evolution scenario wherein plant species evolve and propagate under human-
manipulated conditions. As domestication also improvises domesticated crops and
animal fitness, the outcome of this mutualism is not one-sided. Domestication
process brings about drastic changes within-population levels and an extension of
the distribution of domesticated species beyond their initial geographical centres of
origin [3]. It is estimated that from about 120–160 taxonomic families [4, 5], there
are 1000–2500 semi-domesticated and totally domesticated plant organisms, and all
of these species are comparatively new, having only evolved after the Neolithic, and
probably lived for only a few centuries in some instances.

For over 160 years, the domesticated organism has been the subject of evolution-
ary research. In 1859, Charles Darwin described in detail about the domesticated
species in his book, namely the ‘Origin of Species’. In that book, he emphasized the
variation between races, the similarity between offspring and ancestors, and the
transformative role of selection in the distinction of species [6]. In 1868, he subse-
quently wrote, ‘Variation of Plants and Animals under Domestication’ to further
explore some of the themes he generated in the ‘Origin of Species’ [7]. Since
Darwin, ‘there has been great interest in the study of domestication and crop
evolution, both to advance our understanding of the evolutionary process and to
support the breeding of better crops to meet new adaptive challenges. The recent
origin of crop species, the wealth of information on their genetics, their human
association and relatively good paleontological (i.e. archaeological) record allow us
to use domesticated species as models for the early stages of species formation and
population divergence, and to probe the mode and tempo of various evolutionary
processes’ [1].

With fast population growth and the challenge of climate change, there is an
immediate need for a sustainable, global plan to ensure fair and sustainable food
stability. As per the United Nations Food and Agriculture Organization, nearly 70%
more food will be produced over the next three decades, sufficient to feed almost
9 billion people by 2050. Due to the fact that rice (Oryza sativa L.) can be a major
staple crop that provides the primary source of nutrition for nearly half of the global
population [8], there is always a quest to look for alternatives that may enhance the
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rice yield. Studies on Oryza genome evolution have been underway for several
decades. The processes through which rice was domesticated and diversified are
essential in understanding our modern way of life [9]. Recently, one study suggested
that wild rice possesses many propagation-related characteristics, including the
durability of prostrate development, the rate of seed shattering, the open panicle
layout, the seed awning and the skill of outcrossing. The lack of shattering of the
seeds was a crucial trait for the emergence of the rice cultivars since it directly
supported the ancient seed gatherers, which would enable them to properly gather
seeds [8]. Thus, the key aim of this chapter is to include an overview about genetic
diversity in the genus Oryza and how and where domestication of rice started,
including information about domestication trait, which in turn may help in increase
grain yield.

4.2 Natural Diversity of the Genus Oryza

The rice genus Oryza is a small genus comprising about 25 species, but it has
incredible adaptive capabilities to differing ecological circumstances. In contrast to
other cereal plants, Oryza holds a distinct phylogenetic position within the subfamily
Erythrina. The genusOryzawas described in 1753 by Linnaeus. In 1910, the number
of chromosomes in rice haploid genome was established by Kuwada. The characters
and subspecies of the genus Oryza were not well-defined until the 1960s. The
features of the group typically include bisexual spikelets, rudimentary sterile lemmas
and narrow, herbaceous, linear leaves having scabrous margins. Traditional nomen-
clature of Oryza species has changed at a sluggish rate since the 1960s. In 1963,
Tateoka examined the range of species around the group based on research in the
world’s major herbaria and a field study in Asia (ASN) and Africa (AFR). He defined
the essential classes of species inside the genus; subsequently, he named these
groups as species complexes. The genus can be broadly classified into four species
complexes, namely O. officinalis complex, O. sativa (OS) complex, O. meyeriana
complex and O. ridleyi complex [10]. Polyploidization and other evolutionary
events are the main reason for the speciation of Oryza species [11]. All of these
species are strongly linked to one another (Fig. 4.1). Of these species, OS is grown
worldwide, although Oryza spp., Oryza grandiglumis and Oryza alta are present in
the central and southern parts of the Americas. The majority of this species biologi-
cally resides in Southern and Southern-East AFR [10].

These wild species are capable of harbouring several beneficial genes, especially
for resistance against major biotic and abiotic stressors [10]. Useful trait of O. sativa
is cultigen and high yielding. O. nivara is resistance to bacterial blight (BB), grassy
stunt virus. O. rufipogon is resistance to BB, blast, brown plant hopper (BPH),
tungro virus; moderately tolerant to sheath blight (Shb), tolerance to aluminium and
soil acidity, increased elongation under deep water; source of cytoplasmic male
sterility (CMS), and yield enhancing loci. O. breviligulata is resistance to green leaf
hopper (GlH), BB; drought avoidance; tolerance to heat and drought. O. glaberrima
is cultigen; tolerance to drought, acidity, iron toxicity, p-deficiency; resistance to
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BB, blast, rice yellow mottle virus (RyMv), African gall midge, nematodes, weed
competitiveness. O. longistaminata is resistance to stem borer, nematodes, BB,
drought avoidance. O. glumaepatula have elongation ability, source of CMS and
are tolerance to heat. O. meridionalis is drought avoidance, have elongation ability
and are tolerance to drought and heat. O. punctata is resistance to BPH, BB, zigzag
leafhopper; tolerance to heat and drought. O. minuta is resistance to blast, BB, GlH,
BPH. O. officinalis is resistance to BPH, GlH, BB, thrips, WBPH, stem rot and
tolerance to heat. O. rhizomatis is tolerant to drought avoidance, resistance to blast
and tolerance to heat. O. eichinger is resistance to BPH, white-backed plant hopper
(WBPH) and GlH. O. latifolia is resistance to BPH and BB and has high biomass

Fig. 4.1 Phylogenetic tree of samples and geographic distribution. The phylogenetic tree of Oryza
genotypes was constructed based on the chloroplast full sequence acquired from NCBI. RAxML
program was used to draw a Maximum Likelihood (ML) tree with 1000 bootstraps. OS cultivars
were added separately to the tree to fully show the seed samples regardless of phylogenetic distance.
The map indicates the diverse worldwide distribution of wild and domesticated Oryza spp.
(Adapted from [11])
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production. O. alta is resistance to striped stemborer, high biomass production.
O. grandiglumis have high biomass production. O. australiensis is resistance to
BPH, BB and blast; drought avoidance; and tolerance to heat and drought. Both
O. granulata and O. meyeriana are shade tolerance and adaptation to aerobic soil.
O. longiglumis is resistance to blast and BB. O. ridleyi is resistance to blast, whorl
maggot, tungro virus, BB and stem borer. O. coarctata is tolerant to salinity and
stoloniferous. O. schlechteri is stoloniferous. O. brachyantha is resistance to yellow
stem borer, BB, whorl maggot and leaf folder and tolerance to laterite soil. Leersia
perrieri is shade-tolerant and stoloniferous [12]. However, a number of detectable
phenotypic variations occur between OS and its wild kin [13]. Most natural wild rice
seeds have long awns and extreme shattering. The domesticated variety has short
awns and reduced the shattering as the goal is more to get the seeds out of the paddy
than get the seeds dispersed. Keeping the seeds dormant allows for the greatest
number of seeds to germinate for the maximum amount of time before achieving
maturity. But, for the commercially grown crop, viability is being decreased as time
goes by. Wild species have a red pigment inside of their pericarp and seed coat,
which distinguish themselves from domesticated species, but certain African
domesticated varieties retained their natural red pigment. Seeds in the wild have a
dark straw hue, but seeds in domesticated are straw-coloured. Mating habits also
vary, e.g. O. glaberrima (OG) and OS are almost completely inbreeding, while
O. barthii and OR are partially outcrossing, with estimates varies between 10 and
50%. Domesticated grains are of a variable scale, and wild grains are generally
small. The wild ancestors used to have an open panicle having less secondary
branches carrying a few kernels, now that the wild relatives have been bred for a
more compact and tightly packed panicle, and the number of kernels has risen [13].

4.3 Rice Domestication

Though there are differences, ‘these phenotypes are not perfectly partitioned
between wild and cultivated plants. While we refer to domestication “events,” it is
important to remember that domestication was a process that occurred over an
extended period of time. Genetic loci that were selected from existing genetic
variation in the wild species may appear fixed within domesticated rice but will
show variation within the wild varieties. Although domestication traits are not
favoured by natural selection, many of these traits are polygenic. A single allele
promoting a more domesticated phenotype could be masked in the wild by
a dominant allele at the same locus, or by alleles at other loci in the pathway until
a chance combination of different pre-existing wild alleles produces a plant with a
domestication phenotype’ [14]. The genotype contributing to a domestic phenotype
will not last long in the wild; however, the parents contributing to the domestic
phenotype may also bear wild phenotypes and would not be selected against.
Positive mutations that arose after domestication might be missing from the gene
pool of wild, but early cultivars will continuously be filled with these mutations. As
gene flow amongst domestic and wild rice persists, the image gets much more
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complex [13]. Thus, it is highly required to understand the features of domestication
trait and how it helps in the domestication of various rice.

4.3.1 Domestication Trait

An agronomic trait is a domestication trait that causes crops to be grown in a more
effective and profitable fashion. This trait is what essentially separates our
domesticated animals from their wild equivalents. Compared to their ancestors,
modern rice cultivars have been very good in breeding various cultivars. In a normal
variant community, cultivars vary significantly in different characteristics, along
with hull colour, pericarp colour, plant architecture, shattering, awn and grain scale.
Usually, crops are domesticated due to having at least a subset of traits needed for
domestication [15, 16]. In rice, this syndrome requires broad seeds to maximize the
overall yield, strong relative resource distribution, highly determinate, development
and apical dominance, and nonshattering seeds, both of which were favoured by our
ancestors. Although the domestication syndrome dominates, certain advantageous
alleles were first fixed by our ancestors since they helped in the collection of plants
for production and crop characteristics [17]. These alleles have been modified over a
long period of time by low-level introgression with indigenous species. This is how
domesticated plants are distinguished from their wild ancestors.

Certain genes that decide how crops are domesticated have been established and
disassembled, helping them to be properly understood. If a gene is important to a
domestication phenotype, it is likely to have decreased nucleotide diversity, an
elevated degree of association disequilibrium and changing population frequencies
of polymorphisms within the gene and its related areas [18, 19]. Studies connecting
phenotypes with genotypes will help researchers classify the genes responsible for
phenotypes. QTL mapping is an efficient and accurate method for identifying
domesticated genes linked to undesirable traits. In maize, the teosinte glume archi-
tecture (tga) gene controls inflorescence structure variants [20].

A domestication gene, tb1, is employed for root apical superiority in maize as
comparison to its progenitor, teosinte [15]. The increased expression levels for maize
have been attributed to natural human selection [21]. The Qlocus in wheat is a
dominant genetic feature that regulates several characteristics, including how the
grain shatters and how the chaff covers grain. It is a trans-acting transcriptional
regulator specific to plants located in the AP2 band with a single amino acid change
that impacts dimerization [22].

Shattering is a readily identifiable characteristic in rice that might have been
easily chosen for throughout our ancestor’s evolution. This enables the shattering of
rice plants to be propagated more effectively. Nevertheless, qSH1is controlling
shattering gene. It is an important QTL that affects shattering, encoding a transcrip-
tion factor with a homeobox, and this is a persistent feature in all but one of the
japonica (JP) subspecies. A single nucleotide in a cis-regulatory feature that
regulates the shattering region causes the causative mutation [23]. The long awn
rice is unacceptable during processing and storage, which was picked from the
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domestic populations with short awns or no awns. Analyses of the variation at the
An-1 locus suggest artificial selection is reducing the genetic diversity of rice
cultivars. Additionally, An-1 has a pleiotropic effect on the length and number of
grains in rice [24]. Similarly, the An-2/LABA1 gene is a domestication gene that has a
minor impact on the longevity of the awn and grain yield [25, 26]. When combined
with An-1, An-2/LABA1may have an additive effect, resulting in a longer awn height
in rice. The GAD1/RAE2 gene produces a tiny secretory signal peptide that is a
member of the ‘EPIDERMAL PATTERNING FACTOR-LIKE’ family that is
responsible for the increased number of grains per panicle, shorter grains and
awnless phenotype in cultivated rice [27–29].

PROG1 is a significant QTL that plays a role in tiller initiation and tillering
amount in rice. A single mutation is responsible for a single amino acid replacement
in sativa, causes the trait shifts. This substitution occurs at the protein’s functional C
terminus and has a major influence in activation of transcription [30, 31]. OsLG1,
which controls a fundamental morphological change in rice panicle shape and a
greater effect on pollination and seed-shedding behaviours, is encoded via the
‘SQUAMOSA promoter-binding protein’ (SBP) domain and controls laminar junc-
tion and ligule development. It was discovered that the gene and its upstream region
are crucial in understanding seed structure, resulting in open panicles similar to those
found in the wild parent. Combining the effects of gene expression and phenotype
contrasts, it can be inferred that a 9.3 kb region upstream of OsLG1 controls its
expression [32].

4.3.2 Evolutionary Origins

Within the genus Oryza, two distinct domestication events have occurred—one in
ASN and once in AFR. In ASN, wild rice OR is popular, which was cultivated about
9000 years ago. In AFR, the wild rice Oryza, namely OG, was independently
domesticated around 3000 years ago. Archaeological research has indicated that
the third domestication in South America was confirmed to have existed during
pre-Columbian times, but this crop is no longer grown [33].

4.3.3 The Origin of Asian Cultivated Rice

Since domesticated rice serves as the source of human food, the production and
origin from the wild species Oryza rufipogon are a subject of great concern, primary
in South and East ASN. The early emphasis was to trace the origin of rice cultivation.
Considering this, to date, various areas were suggested, including India, the Yangtze
River area in China, southern China, the coastal swamp forest ecosystems through-
out South-east ASN and the so-called ‘belt region’ with its large variety of Oryza
species grown along the southern Himalayas slope [34]. Although there are few
pieces of research on the order of rice domestication that might have occurred
�10,000 y ago, the origin of cultivation in the other areas of the planet, such as
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western ASN, occurred �10,000 y ago [35]. In the past, a study in rice origins and
dispersal has gained immensely from the production of a substantial quantity of new
scientific evidence from archaeological location, itself motivated by the implemen-
tation of new analytical procedures that can better diagnose rice and better track its
early history. In addition, the recent widespread usage of flotation in Southern and
Eastern ASN has culminated in the recovery of rich macrobotanical remnants from
some significant locations [36–38]. Phytolith research has also proven valuable for
detecting microscopic remnants of plants to the species level, even in extremely
early deposits (e.g. Pleistocene) where husks and grains do not occur. This develop-
ment helps us to classify domesticated, or at the very minimum cultivated, rice
occurring outside the areas of wild rice cultivation having enough precision for
distinguishing the two main rice subspecies, namely japonica (JP) and indica (IND),
from each other [39–41].

Researchers now agree that the Yangtze River region within China is the prime
site of rice cultivation because of recent geological discoveries. However, whether
JP or IND has single or multiple origins is an unresolved controversy both in the
arenas of both genetics and archaeology [42, 43]. The answer of this issue depends
on studies the archaeologists have completed, which will decide the cultivation
sources of IND or JP. Present debates in archaeology concentrate mainly on basic
issues about the source of rice production within China and the domestication
duration. Cultivation and eventual domestication are progressively seen as becoming
considerably more separated in time than once assumed, as a horizon of what is
called ‘predomestication cultivation’ often spanning thousands of years is being
gradually documented in the Old World, and this also appears valid for rice.
Furthermore, several recent reports have shown that there is no definite line break
amongst agriculture and hunting-gathering and that the transition amongst the two is
not a transformative move but rather a gradual phase of quantitative and qualitative
changes that could have taken ~1000 years [35, 43]. These issues are linked to
hypotheses from anthropology and archaeology about how agriculture and food
processing evolved in the world [44]. We now examine new archaeological infor-
mation that discusses the question of how rice expanded into China, the Japanese
archipelago, Korean Peninsula (KP) and India.

4.3.4 China

Recently, archaeological sediments have been entirely flotation for the extraction of
macrobotanical remnants of plants, and several burned plants remnants have been
collected for research. They are produced from a range of different crops like rice
[43]. The oldest rice remnants discovered within China are at sites in Jiangxi
Province, China [45], and Zhejiang Province, China [46]. The cultural remnants of
these sites are hypothesized to be existed nearly 10,000 BP ago, but it is pertinent to
note that the cultural deposits within the Xianrendong cave site bear a comparatively
long sequence; the lower layer was recently dated to around 20,000 BP [47]. This
knowledge poses the likelihood that an additional date will also be required for the

4 Brief Insight into the Evolutionary History and Domestication of Wild Rice. . . 79



rice remnants, which were discovered at this location. Shangshan is an early
Neolithic site with pit and house features along with items of stone and ceramic.
The cultural assemblage and accumulation of cultural objects from the ‘Shangshan
era’ (11,000 to 9000 BP) and the ‘Kuahuqiao’ period (8000 to 7000 BP) may be
distinguished [48]. However, after various soil samples were floated, only 1 charred
rice grain and 1 rice spikelet base were retrieved. Any of these items have to do with
Kuahuqiao society. A few grains of rice were found from a Shangshan archaeolog-
ical horizon. Rice traces were also contained in other geological material. To provide
an example, rice husks are frequently found in the paste of pottery shards and were
widely found in pottery shards dated to both times. An immense amount of rice
husks was also contained in these early layers of the region. The data show that
Shangshan people allegedly exploited rice intensively.

Jiahu was a permanent site dated by radiocarbon studies to the Stone Age
amongst 9000 to 7800 BP. Flotation of a large number of soil samples was
performed, undertaken using a large number of burned plant remnants, and rice
grains were retrieved [34]. Other plants contained in the region include soya bean,
water chestnut, lotus roots and acorn (Quercus sp.). Zhao’s study on the Jiahu rice
implies that it may have been domesticated, since its grain phenotypic features,
including size and form, seem to be quite close to current domesticated rice. The
finding at another site of Hemudu site in the 1970s rendered a big international news
item. Because of the damp atmosphere at the field, organic materials kept in good
shape [34]. Many plants remain were uncovered of which rice was the most
important. Some scholars also indicated that the Hemudu people may have had a
sophisticated rice community [49]. However, nothing was understood about the
anatomy of the rice that might reveal whether or not it is still wild or domesticated.
The paper discusses the question of whether the rice was the food resource of
preference at Hemudu, despite the availability of other edible wild plants.

The Tianluoshan site offered researchers an outstanding opportunity to address
these concerns. Its location is just 7 km from Hemudu, and its archaeological
facilities are virtually similar to Hemudu [34]. A sampling technique was employed
to retrieve plant remnants and provide water filtering and flotation. Greater than
200 soil samples have been analysed so far, and several plant remnants have been
retrieved, including Euryale ferox, rice, water chestnut, acorns, Diospyros sp.,
Ziziphus jujuba and numerous weed seeds. The most significant work is a systematic
review of the rice spikelet bases performed via Fuller and the team [50]. The findings
demonstrate that the Tianluoshan rice consisted of a high proportion of shattering,
WT spikelets, which indicates that the phase of rice domestication was not yet
complete in the Hemudu era, i.e. sometime around 6500 BP. The research revealed
that rice was one of the most valuable foods at Tianluoshan, but they also
demonstrated that rice was one of the most important crops at the location. Also,
rice farming did not supplant hunting-gathering as the normal lifestyle of the local
Tianluoshan people. Wild items, such as acorns, were also central to prehistoric
people’s diets [34].
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4.3.5 Korea

Rice is not native to the KP; therefore, rice study focuses on how the plant came to
exist there and the potential routes of diffusion. It was believed that rice farming was
imported to Korea from China during the ‘Early Mumun’ era (3400–2800 BP).
Based on earlier accounts, it is likely that rice arrived in Korea during the ‘Chulmun’
era (7500–4000 BC) [51]. Archaeological findings have shed light on this mystery.
Archaeological data now suggest that Chulmun subsistence was focused on an
agricultural economy all along. However, Chulmun agriculture was a dryland
farming method centred not on grains, but apparently on millets, including both
broomcorn millet (Panicum miliaceum) and foxtail (Setaria italica), and legumes
like adzuki bean (Vigna angularis), soya bean (Glycine max) and other crops
[40]. No macrobotanical fossils have been found to have been discovered. Despite
this, rice is commonly accepted in pottery shards from this time. Future research may
discuss the position rice plays in this environment. Examination of the plant
remnants indicated that rice cultivation was present in the past and also implied
that rice farming existed. This fact indicates that rice cultivation originated in the KP,
which claims that rice agriculture diffused through the KP. The path of transmission
is not yet well understood.

4.3.6 Japan

Like the KP, wild rice does not exist within Japan presently, and perhaps never did.
In general, it is assumed that rice agriculture first arrived within Japan mostly during
‘Yayoi’ era, which started in �2800 BP [34]. The early rice farming within Japan
seems to have been close to the farm-level rice farming in the KP. While rice
agriculture possibly started in the ‘Yayoi’ era, it is more probable that rice was
domesticated within Japan earlier during the ‘Jomon’ period, near about 4000
BP. The rice seed impressions on the ‘Jomon’ era pottery were recorded by the
use of the scanning electronic microscopic unit. That shows that domesticated rice
was imported into Japan before the ‘Yayoi’ period, but that is not obvious how
important rice was in the subsistence of the Japanese people. This rice seems to have
been a part of a dryland agriculture scheme, as numerous crops of dryland farming
have been identified in sites dating back to the late and middle ‘Jomon’, including
legumes (soya bean and adzuki beans) and barnyard millet (Echinochloa utilis). It is
important to observe that the KP and Japan have certain parallels about the early
growth of agriculture. The beginning of cultivation in these two regions was
originally a dryland farming scheme with the basic crops being millets and beans.
The arrival of rice to these two regions consisted of late time intervals and paddy rice
farming systems. This technology soon substituted the conventional dryland farming
system.
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4.3.7 India

The past of JP and IND within India involves the domestication of these plants and
their eventual expansion into several areas of the world. Either OR is a wild relative
of Oryza and well distributed in India today, and was possibly present during the
Pleistocene [52]. The country has a significant number of long series, with strong
plant records, such as those in the Ganges Valley in India. OR and O. nivara are
known to occur 9000 years ago [52, 53]. It is now known that the Indian subconti-
nent was once a centre of cultivation, with significant regions in the Ganges Plain
and the Deccan Plateau. Before crops were planted, there were domesticated wild
plants, such as mung beans and small-seeded grasses [53]. The question of the origin
of IND rice in India has long been discussed, and recent studies have given
additional information about the topic. It now appears that an independent root of
cultivation of ancestral IND and proto-IND rice existed in the Ganges Plains, but the
plant was fully domesticated only when it was domesticated from JP which brought
from China thousands of years ago [53]. Consumption of IND started a long time
ago, at least 8000 years ago. By 5000 BC, the herb was grown and seems to have
become a staple product [53].

4.3.8 Independent Domestication of African Rice

Linguistic data indicate that OG is of African origin. In some West African language
groups, the words for rice are antedating the Portuguese-derived words for Asian
food such as Malo, Maro and Mano [54, 55]. Archaeologists have discovered rice
grains dated from the 1800 BC to 800 BC in Ganjigana situated in north-east
Nigeria. These ancient figurines were found in 1800 BC to 800 BC. At the nearby
site of Kursakata, archaeologists have unearthed burnt grains of rice from 1200 BC
up to AD 100 [56]. Often, there is little proof that the grains from these sites are
domesticated and therefore not wild rice. The first known domesticated OG dates
back to 300 BC and is now located at Jenne-Jeno, Mali, on the Inland Niger Delta
[57]. Analysis of molecular evidence, starting with isozyme studies and verified by
single nucleotide polymorphism and simple sequence repeat data, suggests that
African rice is special. It is a near relative of O. barthii [58, 59]. The centre of
diversity for OG is possibly the upper Niger River Delta. Porteres theorized that the
OG was first grown in the floodwaters over the span of many years. Rice farming
then increased utilizing nonfloating cultivars, which contributed to further selections
that led to the planting of upland fields watered only by rainfall. Earlier studies have
reported that ‘Asian rice was introduced into OG’s range after the initial domestica-
tion and the two species are now sown side by side in West AFR. Recently, breeders
have crossed OS and OG, combining the stress-tolerance traits of OG with the yield
potential of OS’ [13].
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4.3.9 A Single Origin and Multiple Introgressions

An analysis of crop genomes revealed that the causal mutation within a domestica-
tion gene is set in the cultivars, triggering reduced genetic diversity, which is referred
to as a ‘selective sweep’ [60]. Detailed research on the rice genome variants of wild
rice OR accessions and cultivated OS varieties helped researchers to better under-
stand the phylogenetic relationships amongst cultivated and wild rice and
established the signatures of selection in rice domestication. This systemic compari-
son described 55 selective sweeps that were used in the domestication of plants
[19]. If a gene was involved in a domestication phenotype, then there would be
decreased nucleotide diversity, enhanced linkage disequilibrium and modified pop-
ulation frequencies of polymorphic nucleotides within the gene and related areas,
which would provide proof to determine rice origins and domestication. Centred on
rice genome variation research, cultivated rice persists as a single species that has
been further separated into several subspecies over time. Few advantageous
mutations arose in wild rice strains, which are then picked and propagated to produce
new proto-JP-like varieties, which have been distributed to other areas of ASN. The
JP descendant plants were distributed to other locations in ASN. The IND varieties
were extracted from the proto-japonica-like varieties via the crosses to the OR lines
emerging in a genetically homogenous community following several stages of
crosses and acquisitions (detail information is provided in Ref. [60]). The more
prominent mutations that have been fixed with their flanking regions with low
genetic diversity offer clear proof to locate their history [60].

4.3.10 Unmasking the Origin of Rice Domestication Employing
Molecular Data

Several research employing molecular markers have been conducted on the variety
of rice (both the cultivated types and the wild relatives) [61]. A detailed survey of OS
was performed by Glaszmann [62] utilizing isozyme signs, sativa. The genetic
differentiation at the molecular level of both the indica and japonica forms was
clearly seen in this research. With several other molecular markers, like RFLP [63],
AFLP [64] and SSR [65], this finding has since been verified. However, it should be
stressed that this genetic separation into two independent gene pools does not
interfere with the theory of single domestication, since it may be the product of a
good selection, following domestication, for the two distinct forms of plants. The
key issue goes unresolved: When did the gene pool radiation in both indica and
japonica take place? Recently, several studies on the timing of the distinction
between the two groups, based on the study of transposable elements, have enabled
us to determine that two separate domestication events were the product of the indica
and japonica types. Mobile genetic sequences that are present in most living species
are transposable components [61]. They can be categorized into two primary classes
(I and II). Class I components, typically referred to as retrotransposons, are trans-
posed by a copy and paste process in the form of mRNA. The class II elements
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transpose in the form of DNA and thus by a process of cutting and pasting. Class I
components, retrotransposons, are of special importance in the study of the past of a
crop as a genetic marker. Next, they are incorporated into the genome at random.
Secondly, it is irreversible to insert them (‘an element can only transpose by first
being transcribed into a mRNA, which is in turn reverse-transcribed into DNA and
can reinsert in another location into the genome’). Consequently, if two accessions
have the same element in an orthologous role, it may be inferred that they come from
a shared ancestor with the same element as well. Third, LTR retrotransposons, a
special form of retrotransposons, may be employed to date radiation occurrences in a
specific evolutionary lineage: the two LTRs (long terminal repeats) flanking the
retrotransposon are purely similar in sequence when incorporated into the genome.
And, over time, these two sequences diverge from one another [61]. By converting
the divergence rate into a time period (molecular clock concept), the degree of
divergence between the two LTRs of a given object can be converted into an
insertion date. Genomic palaeontology [66] was named after this definition. It was
introduced to rice for tentatively dating the radiation amongst the gene pools of
japonica and indica. This date was calculated by the researchers at 200000 years,
unquestionably prior to domestication (10,000 years ago). A similar research by Ma
et al. [67] contributed to a similar finding, but their approximate radiation date
between gene pools was 400,000 years (because the authors employed a different
rate of molecular clock). See two experiments specifically illustrate that there is at
least two centres for OS domestication in Asia.

In the rice domestication analysis, the next stage is to uncover the site of these
domestication areas. This could be done by checking for insertions of LTR
retrotransposon typical to both indica and japonica forms between the cultivated
form and its wild relative. Some preliminary studies have shown that between the
japonica varieties and some Chinese accessions of the wild relative O. rufipogon,
multiple insertions are normal, which is compatible with the theory of a domestica-
tion core in the Yangtze River basin (Ishii, pers. comm.). In the case of the indica
gene pool, the first screening results revealed that there are no definitive findings
were obtained from O. rufipogon accessions from the southern hills of the
Himalayas. Several writers have indicated that a diffuse process ranging from
Nepal to Thailand was the domestication of indica-type rice. If this is the situation,
perhaps the first occurrence of domestication in this area of Asia would be challeng-
ing or perhaps hard to find [61].

4.4 Benefits of Rice Domestication

Earlier genetic analysis on domestication provides some perspectives on potential
domestication strategies [60]. Researching genetic changes in crops are a continuing
effort. In order to face the demands of global climate change, crops must be
generated at an incredibly high pace. Genetic differences favourable for those
characteristics have been picked by modern breeding [68]. The high yields and
grain chemical composition of modern cultivars are achieved by the synthesis of
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many genes associated with both domestications and improvement. The great variety
of wild rice species, which have far more natural allelic variance than domesticated
rice, would encourage breeding to boost its efficiency in many agronomic traits.
Using cultivated rice as a base, scientists have discovered the genetic variation in
wild rice, landraces and elite varieties, and created valuable tools for our compre-
hension of the genetic function of agronomically significant traits. The low level of
genetic variability in cultivated rice would be a constraint in further changes in rice
genetic diversity, and the high level of allelic variance in wild rice will be a
significant resource in rice breeding that can be reintroduced into the gene pools of
existing elite varieties. Taken together, both the rice domestication studies and the
detailed analyses of rice genetic diversity would significantly support the research of
rice gene expression in agronomic traits.

4.5 Conclusion and Future Perspective

In conclusion, the domestication process of rice took a long time, which contributed
to the appearance of a new species, Oryza sativa, over the last 10,000 years.
Research studies into the domestication phase and cloning of genes linked to
domestication have uncovered further nuances than was traditionally not believed.
Clearly, cultivated rice and its progenitor wild rice vary in their signature
characteristics owing to domestication. Genetic analysis on OS-OR genome com-
plex is an approach that shows special roots of rice domestication. An emerging
body of research on the domestication of African rice brings into doubt the common
understanding that rice domestication originated from the production of Asian rice.
Genome-wide study on OS and OR species is focused on genetic variation for rice
breeding. New breeding techniques can be encouraged by the use of precision gene
alteration on superior parent lines culminating in the development of the ideal
phenotype. Identifying the genes conferring essential traits can improve rice breed-
ing by discovering which traits are better developed together.
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Abstract

The main food of half the world’s population is rice, Oryza sativa L. By 2030,
rice production must increase by at least 25% to meet global food demand of ever
growing human population. In order to reduce the impact of climate change and
arable land loss and ensure stable global food supplies, accelerated genetic gains
during rice improvement are highly required. Since this process is complicated,
we first need to have detail information regarding the genetic diversity of the
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oryza sp. gene pool, the correlation of diverse alleles with essential traits of rice,
and the systematic use of the rich genetic diversity through employing methods
that adopt expertise in rice improvements through breeding strategies. Consider-
ing this, in 2014, an international sequencing project of 3000 rice genomes was
published. These details information may help us to detect novel alleles
associated with important phenotypes of rice by employing various bioinformat-
ics or genetic methods. It will also help us to unmask the O. Sativa genomic
diversity more precisely. This project also encouraging the global rice community
to employ data present in the 3000 rice genomes project for establishing various
global public rice genetic/genomic database, which in turn will promote rice-
breeding technology in the future. Thus, in this chapter, authors made an attempt
to understand in brief about the various germplasms employed in 3000 genome
project and the genetic diversity of O. sativa, which, in the near future, may help
us to increase grain yield of rice.

Keywords

3000 rice genome project · Population structure · Genetic diversity · Structural
variation

Abbreviations

3RGP 3000 rice genomes project
CAAS Chinese Academy of Agricultural Sciences
CNCGB China National Crop Gene Bank
ICS Institute of Crop Sciences
IRGC International Rice Genebank Collection
IRRI International Rice Research Institute
MAF Minor allele frequency
NTE Nontransposable elements
SNP Single nucleotide polymorphism
SVs Structural variants
TE Transposable elements

5.1 Introduction

For majority of the world’s poor, rice (Oryza sativa L.) offers most of the regular
calories in their diet. However, due to the continuous growth of the human popula-
tion, there is a continuous demand for food crops, including rice [1]. The global rice
production is estimated to upsurge by 25% or more by the next decade (Seck et al.,

90 M. K. Gupta et al.



2012). Thanks to the GreenMovement, where in addition to selective breeding, plant
breeders are continuously exploiting genetic diversity of the rice plant to enhance
grain yield [1]. Researchers are also continuously looking for approaches where we
can reduce the scale of our farms, e.g., less water and less land, to improve their
efficiency and flexibility under the increasingly extreme environmental pressures
that would be triggered by climate change. Thus, cereal grains would have to
continue to grow in a way to enable them to sustain more resilience by genetic
modifications for enhancing yield capacity and quality [2]. Since this process is
complicated, we first need to have more information regarding the genetic diversity
of the oryza sp. gene pool, the correlation of diverse alleles with essential rice traits,
and the systematic use of this rich genetic diversity by implementing methods that
adopt expertise in rice improvements through breeding strategies [2]. Considering
this, in 2014, a group of researchers across the world established the “3,000 rice
genomes project” (3RGP), which provides detail insight into the genetic diversity of
~3000 O. sativa genomes across various geographical location [2]. This data is an
important source for discovering novel alleles for developmental and stress-related
rice phenotypes. It may also aid in unmasking the level of diversity in O. sativa
genome at a more in-depth level. Thus, in this chapter, authors made an attempt to
understand in brief about the various germplasms employed in 3000 genome project
and the genetic diversity of O. sativa, which, in the near future, may help us to
increase grain yield of rice.

5.2 Germplasms and Sequencing of 3GRP

In 3RGP, for sequencing ~3000 germplasm accessions were selected, which is
mainly comprised of 534 and 2466 accession from the “China National Crop Gene
Bank” (CNCGB) in the “Institute of Crop Sciences, Chinese Academy of Agricul-
tural Sciences” (CAAS) and the “International Rice Genebank Collection” (IRGC)
at the “International Rice Research Institute” (IRRI), respectively [2]. The 2466
accessions provided via IRRI reflect a panel randomly chosen from 12,000O. sativa,
which in turn were selected from >101,000 rice accessions in the IRRI genebank;
considering factors like eco-cultural type, the country of origin, and varietal group-
ing, while restricting redundant data from each country, and supplemented through
distinct, nominated entries from IRRI and the “Centre de Coopération Internationale
en Recherche Agronomique pour le Développement”. The 534 accessions that have
been contributed via CAAS comprised of a core selection of 246 accessions selected
from ~932 accessions generated in the similar manner from the 61,470 lineages of
O. sativa conserved within the CNCGB, and 288 distinct accessions that had been
chosen on the basis of their isozyme activity, and employed as parental lines within
the international rice molecular breeding network [2]. Overall, the 3000 sampled rice
accessions considered in 3RGP were obtained from 89 different regions/countries.
Of all, 33.9%, 25.6%, and 17.6% came from Southeast Asia, South Asia, and China,
respectively [2]. Employing Illumina-based next generation technology and
Os-Nipponbare-Reference-IRGSP-1.0 (IRGSP-1.0) [3], the 3RGP data were
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generated that have an average sequencing depth of 14X, average mapping rates, and
genome coverage of 94.0% and 92.5%, respectively. Raw sequencing data are
available from DDBJ (accession ERP005654), GigaDB (http://gigadb.org/dataset/
200001), and EBi & NCBI (accession PRJEB6180).

5.3 Genome Size, Population Structure, and Genetic Diversity

With the aid of biotechnology, the objective of rice breeding is not only to increase
crop productivity but also to improve the quality characteristics by mutation. To
date, many enormous efforts and rapid progress have been made in the rice breeding
programs, and remarkable achievements have been achieved. As a consequence,
new varieties of rice with higher yield and quality have been developed and released
[4, 5]. In several crops, including rice, mutation serves as an effective approach for
producing rice varieties with desired traits. Mutation may either be induced with
physical agent or naturally. When induced naturally, it may be transmitted from
generation to generation. At present, the mutation serves as the most successful plant
breeding approach in line with transgenic breeding and recombinant breeding, in
particular during sexual production [4]. Genetic variation, as the key component of
germplasm, is a normal source for rice breeding to fulfill current food requirements.
Earlier studies have reported that the “higher the level of genetic variation in the
population, the more valuable it is as a resource used in the breeding program”

[4]. DNA markers and genetic engineering may serve as a reliable source for
detecting genetic diversity in various plants [6]. They can also detect the differentia-
tion amongst individuals, accessions, and characterization of novel germplasms at
the molecular level, which in turn can be used for plant breeding [5, 7].

Original phylogenetic analyses of 3RGP [2] found that the 3000 accessions were
specifically divided into two main groups: indica and japonica, two tiny varietal
groups: aus/boro and basmati/sadri, plus an additional community (134) of interme-
diate forms (admixed). The indica group was the biggest and most representative
group with 1760 (58.2%) memberships of five different subgroups with varying
backgrounds. There were 843 (27.9 percent) accessions in the japonica group, which
had two well-differentiated subgroups, 388 temperate japonicas and 455 tropical
japonicas. The aus/boro group consists of 215 accessions and is more closely related
to the indica group, while the japonica group is more closely related to the aromatic
basmati/sadri group and consists of 68 accessions, mostly from South Asia [2]. Later
population structure and diversity of 3RGP data throughWang and the team reported
that genotype of 3RGP can be broadly classified into nine subpopulations (Fig. 5.1),
majority of which can be linked by their geographic origins [8]. “There were four XI
clusters (XI-1A from East Asia, XI-1B of modern varieties of diverse origins, XI-2
from South Asia, and XI-3 from Southeast Asia); three GJ clusters (primarily East
Asian temperate (named GJ-tmp), Southeast Asian subtropical (named GJ-sbtrp),
and Southeast Asian tropical (named GJ-trp)); and single groups for the mostly
South Asian cA and cB accessions. Accessions with admixture components <0.65
within XI and GJ were classified as ‘XI-adm’ and ‘GJ-adm’, respectively, and

92 M. K. Gupta et al.

http://gigadb.org/dataset/200001
http://gigadb.org/dataset/200001


accessions that fell between major groups were classified as admixed”
(Fig. 5.1b) [8].

Recent genome size and SNPs analysis of 3RGP genome via aligning with
O. sativa cv. Nipponbare IRGSP 1.0 reference genome have reported that average
mapping coverage of 3RGP genome is 92% (74.6–98.7%) [8]. They have also found
over 29 million SNPs, and they are almost all bi-allelic. Filtering narrowed the data
collection to a typical set of 17 million SNPs, which recorded the bulk (>99.9%) of
SNPs having MAF > 0.25%. The majority (91%) and a half (56%) of the
transposable element and nontransposable element (NTE) genes experience a large
number of high-effect SNPs. Allele frequency profiles for SNPs with MAF greater
than 10%, represented the broad variety of adaptations and demographic events
(Fig. 5.2a). “Private” alleles were found to be more abundant in subpopulations cA
& cB in comparison to other subpopulations (Fig. 5.1f). In comparison to other
subpopulations, the IX subpopulations have a lower total number of “private
alleles”, most likely due to continuing gene transfer from natural hybridization as

Fig. 5.1 (a) Unweighted neighbor-joining tree based on 3010 samples and computed on a simple
matching distance matrix for filtered SNPs. (b) ADMIXTURE analyses for k ¼ 5 to k ¼ 15. (c–d)
Multidimensional scaling plots for all (n ¼ 3010) (c), XI (n ¼ 1786) (d) and GJ (n ¼ 849) (e)
accessions. (e) Private and specific SNPs in each subpopulation. Private alleles are defined as being
present in at least four accessions in a subpopulation and not found in other subpopulations;
population-specific alleles are common in the subpopulation (�20%) but of low frequency
(<2%) in others. (f) Doubleton sharing—that is, SNPs shared by two accessions—within and
between subpopulations, with values normalized by the sample sizes (Adapted from [8])
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well as breeding. Same doubleton sharing pattern found between and within
subpopulations [8]. They also reported that the link disequilibrium decay rates for
combined subpopulations are greater in XI in comparison to GJ, with few variations
amongst the two GJ subpopulations. However, when looking at all nine
subpopulations, linkage disequilibrium decay differed across the nine
subpopulations, with XI-3 & XI-2 showing much greater linkage disequilibrium
decay rates than I-1B and IX-1A did (Fig. 5.2b) [8]. To explain how a gene is

Fig. 5.2 (a) MAF histogram. (b) Genome-wide linkage disequilibrium. (c) Nucleotide diversity
versus linkage disequilibrium. (d) Diversity scans (π) for all chromosomes for major groups (XI,
GJ, cA, and cB) using 100-kb windows in which centromeric regions are highlighted in gray
(Adapted from [8])
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controlled, a study was conducted to see how many genes are kept in certain regions
of reduced diversity where the gene experiences little or no constrain (Fig. 5.2d).
Sh419 [9], which regulates nonshattering, displayed an analogous diversification
trend overall subpopulations (Fig. 5.3a), suggests much longer selection then
qSH120 [10]. At the sd121 locus, a decreased genetic variation existed on all
major branches of the tree. This has a similar pattern as observed in qSH1 [8]. How-
ever, greater diversity within the 100-kb regions existed in the XI, cA, and cB
groups, while the GJ groups had decreased diversity and this represents the breeding
past connected with the “Green Revolution” [8]. Other significant declines in
diversity were witnessed at other essential loci. The Wx23 [11] locus that influences
amylose contents well as stickiness on cooking, the Badh2.1 [12] locus that
influences fragrance as well as their nearby regions are extremely variable in the
XI, cA, and cB classes, which suggest complicated backgrounds for selection for
various styles of eating qualities [8]. The Rc25 locus [13] is very poor in diversity
within all the various classes, and there are a lot of different diversity scenarios in XI,
cA, and cB.

5.4 Structural Variations

Structural variants (SVs) identification and characterization have revolutionized the
perception of the landscape of genetic variance in numerous organisms. A structural
variant is usually characterized as a genome alteration (with respect to a reference

Fig. 5.3 (a) Differential nucleotide diversity between subpopulations at the Sh4 locus on chromo-
some 4 using 10-kb sliding windows. (b) Box plots of the distribution of π in 100-kb regions
surrounding gene models across the genome. Box plots are shown for k ¼ 9 subpopulations for all
100-kb windows (All) (n ¼ 3728 in total) and those containing genes annotated as transposable
elements (TE) (n ¼ 3305 windows), NTE (n ¼ 3709), from the OGRO/QTARO database (OGRO)
(n ¼ 828) and the subset of 78 domestication-related genes (AIG) (n ¼ 61 windows). Box plots
show the median, box edges represent the first and third quartiles, and the whiskers extend to
farthest data points within 1.5� interquartile range outside box edges (Adapted from [8])
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genome) with a different number of copies (i.e., deletion, loss, and gain), chromo-
some position or orientation [14, 15]. Structural variations account for more differ-
ing base pairs in human genomes than SNPs; but, in plants, SV studies are still
restricted. While less prevalent than SNPs, owing to their wider size and the
likelihood of modifying gene composition, dose, or position, SVs have a greater
capacity to influence activity [15]. Following the discovery that structural genetic
heterogeneity in human genomes is widespread, several SV experiments have been
undertaken in other animals, ranging from agriculturally significant to extinct ones
[14, 15]. However, owing to the absence of high-quality reference genomes [14, 15]
and rigorous approaches, all of which are needed to discover and genotype SVs, the
discovery of SVs has traditionally lagged behind discovering single-nucleotide
variants. Structural variations in plants are not recognized as polymorphisms that
influence specific plants, rather as differentiating elements amongst cultivars/
accessions of one genus [16]. In order to find hundreds of SVs, maize is the first
plant species to be thoroughly questioned. The link between SVs and plant
phenotypes has already been shown by many experiments in plants [17]. Another
study has suggested that early and late flowering are caused by the increased copy
number of Ppd-B1 genes and Vrn-A1 in wheat, respectively [18].

Recently, SVs analysis focused only on 453 accessions having mapping depths
>15� and sequencing depths >20�, because genome coverage stabilized when
sequencing depths >20� was carried out in genome of 3RG. Result obtained
revealed overall 93,683 SVs having 582 SVs > 500 kb. Per genome average SVs
detected is 12,178 SVs per genome. The average sizes of the detected inversions,
duplications, and deletions, are 105.1 � 22.7 kb, 127.1� 19.4 kb, and 5.3� 0.6 kb,
respectively (Figs. 5.4 and 5.5). SVs displayed very good XI–GJ distinction. On
average, each XI, cA, and cB accession differed from Nipponbare RefSeq by 14,754
SVs, 12,997 SVs, and 7892 SVs, respectively. Overall SV sequence that
differentiated amongst GI & XI accessions is ~71 Mb, and two GJ accessions is
~22 Mb [8].

Importantly, 1940 SVs interrupted protein-coding regions within GJ, whereas
>6518 SVs occurred amongst XI and GJ accessions that disrupted protein-coding
regions were detected (Fig. 5.4c). The SV phylogenetic tree shows similarity to the
SNP tree. And the branch dividing XI, GJ, cA, and cB accessions obviously
indicates a variety of variations between them (Fig. 5.4d). In comparison, 44.7%
of all SVs and 41.0% of 582 wide SVs accounted for 41,957 major-group-unbal-
anced SVs that were unevenly distributed amongst XI, GJ, cA, and cB accessions
(Fig. 5.4e).

5.5 Conclusion and Future Perspective

In conclusion, the completion of 3 K rice genome sequencing and preliminary
research is only the first step in setting up an automated database knowledge network
and specialized technologies to improve rice breeding [19]. This initiative would be
close in context to the creation of the Arabidopsis Information Portal (AIP) [20]. The
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“International Rice Informatics Consortium” (IRIC) under “Global Rice Science
Partnership” (GRiSP) has been founded by IRRI. Discussions are also under way to
formalize the IRIC consortium arrangement and technological dimensions of portal
architecture, interoperability meta-data specifications, and persistent, diagnostic
signatures of germplasm. The first priorities involve the curation of data on 3 K
rice genomes and other public data, the description of reference genomes, the
creation and archival of phenotyping datasets, a web-based framework or gateway
and population structure resources, analyses of genome-wide interactions, and
browsing of diversity. Even, it takes a long-term global initiative in rice functional
genomics research to relate variability in the 3 K rice genome dataset to phenotypic
variation as well as environmental adaptation. For a more full awareness of OS,
future study could not only concentrate on recognizing and characterizing specific
genes/alleles with a broad impact, but also on unique allelic combinations that
underpin complicated features, genetic variation, and genes underlying significant

Fig. 5.4 (a) Number of deletions, duplications, inversions, and translocations. (b) Genome sizes
affected by SVs. (c) Numbers of genes affected (included or interrupted) by the SVs. (d) Phyloge-
netic relationship of 453 rice accessions built from 10,000 randomly selected SVs. (e) Characteri-
zation of the 42,207 major-group-unbalanced SVs unevenly distributed among XI, GJ, cA, and cB
on the basis of two-sided Fisher’s exact tests. Bar plots in A-C are mean � s.d. and numbers of
accessions in XI, GJ, cA, cB, and admix are 303, 92, 33, 10, and 15, respectively (Adapted from [8])
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rice traits. A more comprehensive exploration and increased usage of rich genetic
variation would be feasible with such value-added knowledge embedded into the
database and access to suitable resources via the Web portal [21–23]. Although this
project would certainly stimulate another round of rapid advancements in rice
genetics, there are various challenges in extracting the most knowledge from
sequence and phenomics data to build a global public information portal that will
not only be useful for experimental analysis, but also for realistic rice breeding.
These problems can be resolved by global initiatives in the field of rice science to
ensure technological progress and the distribution of benefits to rice farmers and also
to sustain human food protection. The task is immense and will demand extraordi-
nary teamwork that transcends global, systemic, and personal ambitions.

Conflict of Interest None.

Additional Information Figures 5.1, 5.2, 5.3, 5.4, and 5.5 (CC BY 4.0) [8] have been reused
under Creative Commons Attribution licenses.

Fig. 5.5 (a) Number of accessions with sequencing depths �20� and mapping depth �15�. (b)
Mapping coverage of the 3010 rice genomes to the Nipponbare RefSeq as a function of sequence
depth. (c) Circular presentation of different types of structural variation detected in 453 high-
coverage rice genomes when compared against the Nipponbare RefSeq. Chr, outermost circle
represents 12 rice chromosomes with marks in Mb; Repeat, red heat map represents repeat content
in 500-kb windows; DEL, green/blue color with inner/outer bars represents the average frequencies
of deletions detected in XI and GJ; DUP, green/blue color with inner/outer bars represents the
average frequencies of duplications detected in XI and GJ; INV, green/blue color with inner/outer
bars represents the average frequencies of inversions detected in XI and GJ; TRA, gray color
represents translocations across each genome with an average frequency > 0.3 in either XI or
GJ. (Adapted from [8])
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Databases and Bioinformatics Tools
for Data Mining 6
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Abstract

Data, information, and knowledge play an interesting role in human life. Huge
repositories of data generated because of the recent development of technologies
demand the development of novel tools and techniques that can retrieve more
important information. Data mining is a kind of knowledge discovery technique
that extracts useful information from heterogeneous biological data by employing
various machine learning, artificial intelligent systems, and decision-making
techniques. Thus, in this chapter, the authors attempted to understand how data
mining approaches have revolutionized biological research. The topic of data
mining is discussed in brief, including the application it has in bioinformatics.
This chapter also illustrates some of the emerging problems and opportunities in
data mining in bioinformatics by utilizing this analogy.
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Abbreviation

ANN Artificial neural network
BLAST Basic local alignment search tool
DBMS Database management system
DDBJ DNA databank of Japan
DNA Deoxy Ribonucleic acid
EMBL European molecular biology laboratory
ESTs Expressed sequencing tags
GOLD Genomes Online Database
INE Integrated Rice Genome Explorer
INSDC International nucleotide sequence database collaboration
IRGSP International Rice Genome Sequencing Project
KDD Knowledge discovery in database
KNN K Nearest Neighbor
NCBI National center for biotechnology information
PDB Protein databank
RGP Rice Genome Research Program
RNA Ribonucleic acid
TBP TATA box binding protein
TIGR The Institute for Genomic Research
UCEs Upstream control elements
VEP Variant Effect Predictors

6.1 Introduction

The digital revolution has made it easy to record, process, store, distribute, and share
digitized information. With major developments in computing and related technol-
ogy and their ever-expanding use in various walks of life, vast quantities of data
of various features continue to be gathered and processed in databases. If the amount
of data in the world doubles every 20 months, it is possible that the size and number
of databases will rise at a similar rate. Thus, it is really a challenge to discover
information from this huge amount of data. Data mining is an effort to make sense of
the abundance of knowledge embedded in this large data volume [1]. Data mining
uses various techniques, models, or algorithms to analyze the vast amount of data
stored in the databases. In data mining, a pattern or rule is discovered that helps in
establishing a hidden relationship between variables. The key objective is to manip-
ulate the computer’s data processing ability with the capacity of humans to interpret
patterns [2].

In 1989, Piatetsky-Shapiro coined the phrase “knowledge discovery in database”
(KDD). Application of data mining and KDD is inevitable due to the huge size of
data collected from different sources and difficulty in handling and analyzing these
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data manually. KDD can be seen as an inclusive method of extracting useful
information from information, while data mining could be defined as the core of
KDD, which involves algorithms that discover unknown patterns of data, construct
models, and discovery [3]. In the last two decades, the development of various data
mining techniques in various fields such as artificial intelligence, machine learning,
soft computing, and statistics has led researchers to create and apply new data
mining methodologies. Data mining generally works on information stored in the
database, which may be interrelated or relevant and inconsistent and irrelevant
sometimes. Thus, it requires an application that allows the administrator of that
data to manage it in order to exploit and control the necessary data. Maintenance and
manipulation of the database is known as database management systems (DBMS)
[4]. For instance, “Integrated Rice Genome Explorer” (INE) is a database that helps
us to integrate genetic as well as information regarding physical mapping with the
genome sequences generated by the collaboration with the “International Rice
Genome Sequencing Project” (IRGSP). These Databases contain a various tools to
analyze and compare the genomic databases of rice and maize. This system is also
very much helpful in the development of different kinds of grass crop species. This
kind of comparative genomics analysis helps us gather updated knowledge regarding
total structural and functional data of various basic plant genome, which will lead to
a better era in the field of biological research by focusing on bioinformatics tools
techniques. Considering the above information, in the current chapter, the authors
tried to highlight the basics concept of databases and their standards and the benefits
of DBMS. It then describes the principle of data mining and how data mining
processes are useful in biological research.

6.2 The Databases Concept

Databases are having a significant influence on the increasing usage of computers. It
is certainly fair to say that databases are in use in most areas where computing is
required, including business, engineering, medicine, law, education, and library
[4]. The word database is used so often that to define it, and we must define the
concept of a database. A database is a list of many related data. By data, we mean
factual information that can be recorded and that has implicit meaning. Consider the
names, addresses, and phone numbers of your friends. You may have recorded this
data on a personal computer and stored it in a database using a database management
application, like Microsoft EXCEL or ACCESS. This is a set of information with a
predetermined context and therefore is a data set. The previous concept of the
database was very generalized; for instance, consider the list of terms this page
includes as similar data. Therefore, this page may serve as a database. However,
nowadays, the term database is generally used more specifically. A database should
have an implicit set of properties [4].

A database can reflect few parts of the natural world, called the mini world, or the
universe of discourse (UoD). The database reflects changes within the mini world. A
database is a systematically organized data that holds some meaning which cannot
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be altered or deleted by the database administration. A random collection of data,
even if very large, cannot be called a database. A database is created, designed, and
populated with data for a specific purpose. It has both an intended group of users and
some preconceived applications in which they may be interested. Thus, a database
has a “source” from which details are collected (collection of records, memories,
etc.), “any degree of contact” with events that “happening in the real world” (i.e.,
events that are true), and its information “used by an audience that is actively
involved” (i.e., its users who frequently view, change, and erase the information
contained in the database). For the purpose of regulatory compliance, a database can
be of any size and complexity. On the one hand, it is likely some database may be
limited (say, no more than a few hundred records). For example, a collection of
names and addresses with a basic layout like: “John Smith” and “Kolkata”. On the
other hand, there may be on the order of half a million books in large libraries, in
different categories such as by author’s last name, subject, and book title. Each book
could be arranged in alphabetical order within its respective category [4].

A database may be developed and managed either by anyone manually (by a
physician), or by computer. Because the library card catalog is a manually edited
database, it is an example of a database where someone can make mistakes. A
computerized database may be established and sustained either by the services of the
application program(s) designed for that purpose or by the services of a DBMS. Here
error is minimal in comparison to a manual database. A DBMS allows users to build
and retain databases that help us to keep track of items and arrange them logically for
easier access to knowledge. As a comprehensive software system, the DBMS is a
general-purpose system that facilitates the processes of defining, constructing, and
manipulating the database for multiple purposes [4].

The concept of a database includes defining the types of data, its composition, and
the rules for which data can be applied to the database. To build a database, first data
is stored in some storage medium controlled by the DBMS, and then an interface is
written to access this data. A database may be manipulated by making series of
queries against a database to obtain specific data, updating the database to reflect
changes in the mini-world, and generating reports from the data. In order to define a
database, a programmer must first determine the data type for the data to be stored,
then the configuration of the data, then what is the output data type of the data will be
in the data structure, and finally, the configuration for that output data type is taken
into consideration. The process of building the database is the process of storing the
data itself on some controlled medium, like a hard drive or flash drive. In order to
exploit a database, it needs to be queried to acquire requested data, which then needs
to be modified to represent improvements within the mini world, which needs to be
queried again to obtain more knowledge about the mini world and eventually needs
to be used to generate a report or other kind of result data [4]. A general-purpose
DBMS is not necessary use to implement a computerized database. We might
compose our series of programs to build and preserve the database, in essence,
developing our special-purpose DBMS applications (software that handles
databases). Regardless of whether we use a general-purpose database system or
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not, we typically have to recruit a significant amount of software to manipulate the
database [4].

6.3 Advantages of DBMS

DBMS allows end-users to build, view, edit, and erase data. It is a layer that links
programs and data. Compared to the File-Based Data Management System, DBMS
is a superior management application (https://www.tutorialspoint.com/). Few impor-
tant advantages of DBMS are reducing data redundancy, sharing of data, data
integrity, data security, privacy, backup and recovery, and data consistency. The
file-based data storage systems spanned several files, each located in several separate
places in a system and sometimes residing in another device in several locations.
Due to this redundancy, multiple copies of the same file can lead to data redundancy.
In a database, we can set a password in an encrypted way and preventing anyone
from accessing our database so that they cannot alter our database’s setup. As a result
of this, there is no chance of encountering duplicate data. Users of a database may
also share the data among themselves. However, there are multiple kinds of authori-
zation to access the data. As with multiple layers of security, the data can only be
disclosed depending on the class of authorizations. Remote users, who are working
together, can also access the database at the same time, and they can also share the
data they are looking at within the database.

Data integrity ensures data reliability and consistency. Data integrity is very
important because multiple databases are stored on a single database server. All
these databases contain information that is either visible to a lot of people or is
connected to a lot of people. In order to ensure that the data used are accurate and
consistent, it is essential for the data to be verified on multiple sources and it get
exploited by different predefined users. Data security is a critical principle of
database management. Only approved users should be given entry to the framework,
and there should be a username and password for each authorized user. Unautho-
rized users are not permitted to access the database under any circumstances because
it is highly illegal and against the security policies.

According to the laws, the privacy law in a database ensures that the approved
users can only read, change, or erase the database’s data. The information about the
database is given and, once it is given, can be seen only by the user with the
necessary authority. For example, some sites (like Facebook) require only one
account and a certain password to create an account for a particular user. Others
have their own username and password. A database management framework auto-
matically also takes control of replication and recovery. The DBMS will remember
all necessary changes and informs the user when it is time to back up their data. As
well, in case of a system error or crash, it restores the database to the same state it was
before the error occurred. The software configuration also guarantees that the
anomalies cannot exist and that data redundancy is not a problem. To make some
claims, all data will appear consistently across the database, and all users viewing the
database will agree on all of it. It is not just an effective storage structure, but the
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versatility is still fantastic. If any improvements are made to it, they automatically go
to all the users, and there is no data discrepancy.

6.4 Knowledge Discovery and Data Mining

The conventional way of converting data into information focused on doing manual
review and evaluation by a domain specialist in order to identify valuable trends in
data for decision support. For instance, early the work of Reeder & Feller employing
methods was crucial in diagnosing and treating fever [5]. In 1996, this process was
described by different steps starting from data selection, preprocessing, data
transforming, data mining, and interpretation [6]. Data selection involves the previ-
ous know-how of and target of the application. The selection of a dataset or a subset
of variables is made through ranking via selection technique [1, 7]. Data pattern
processing is needed to enhance the actual data quality for mining. This also
enhances the productivity of mining by decreasing the data processing time. Data
preprocessing requires data cleaning, data transformation, data integration, compact
representation, data reduction or data compression, etc. Data cleaning comprises
operations like normalization, noise elimination, and missing data handling, redun-
dancy reduction, etc. Real-world data is frequently erroneous, incomplete, and
contradictory, likely due to technical errors or defects in the implementation of the
system. It is important to clean up such low-quality data before data mining. Data
integration plays a significant role. This operation involves the integration of various
heterogeneous datasets created from various sources. Reduction and projection of
data involve identifying useful features to represent the data (depending on the
objective of the task) and using methods of reduction of dimensionality,
discretization of features, and extraction (or transformation) of features. The appli-
cation of data compression principles can help in data reduction, which has potential
in the future to grow, especially in the field of multimedia dataset knowledge
discovery. Data mining mainly involves classification, regression, clustering,
description, image retrieval, the discovery of association rules and functional
dependencies, rule extraction, etc. Interpretation deals with the deduction of patterns
found and the possible visualization patterns of extracted information. To classify
the genuinely interesting or useful patterns for the user, one may evaluate the
extracted patterns automatically or semi-automatically. Using discovered knowl-
edge, we integrating earlier generated knowledge into the performance system and
taking knowledge-based acts [1, 7].

Thus, data mining is basically a subset of Knowledge Discovery. While the
original notion was “Knowledge Discovery in Databases” (KDD), nowadays, in
order to emphasize that Data Mining is an essential part of the knowledge discovery
method, the current most common notion is “Knowledge Discovery and Data
Mining” (KDD) (Fig. 6.1). It is important to note that KDD (knowledge discovery
and data mining) is not simply a process but also encompasses the complete value-
added chain from the data’s extremely physical side to the very human side of
knowledge—i.e., the latter characterized from a cognitive point of view: knowledge

108 P. Pati et al.



as a set of expectations [1, 7]. Recently, Holzinger describes the novel technique that
extends the original definition by Fayyad and the team [6] by having an actual
human make the decisions. As core theories of human-computer interaction, HCI &
KDD, together with a novel approach, aims to bring all two together into this
research project to advance knowledge in a specific context [7]. The core principle
of HCI-KDD is to allow end-users to identify and classify previously unknown and
potentially valuable and accessible knowledge. It is defined as the process of
identifying new data patterns from unstructured data. The goal, in this case, is a
visualization of data that was previously unseen. There is a specialist in the frame-
work with clear domain expertise. By allowing them to interactively explore their
data sets, they may be able to recognize, interpret, and appreciate valuable details,
acquire new, and previously unknown information [7].

6.4.1 Data Mining

Initially, the data mining technique was widely used in economics. But nowadays,
several data mining techniques are also used in the field of agricultural research. It
helps to improve the prediction of the yield of the specific variety of cultivation that
will be very much beneficial for the plant. As we all know the agricultural production
largely depends on climatic condition, soil type, irrigation method, cultivation
strategies, data mining will help us to predict the best dependencies or fitting

Fig. 6.1 The general knowledge discovery process that is widely employed in the life sciences
(Adapted from [7]
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model, which in turn may help us in increasing the grain yield. Typically, a data
mining algorithm comprises three major components, namely, the model, preference
criterion, and search algorithm [1]. A model includes parameters that must be
calculated using a specific representational type or tool from the data for the chosen
function. The preference criterion is the preference, based on the data given, for one
model or set of parameters over another. The criterion is generally some sort of the
model’s goodness-of-fit function to the data, perhaps modified by a smooth term to
prevent overfitting or to generate a model with too many degrees of freedom to be
limited by the data given. The search algorithm is an algorithm for finding particular
models or patterns and parameters, provided the data, model(s), and criterion of
preference. The model-preference-search components are typically instantiated by a
particular data mining algorithm [1]. Tasks for data mining are divided into two key
categories: predictive and descriptive. Six key functions of data mining are described
classifying, regression, clustering, modeling of dependencies, variance detection,
and summarizing [6]. Classification, regression, and anomaly detection are
categorized under the predictive category, whereas clustering, dependency modeling
is categorized under the descriptive category. Predictive model forecasts use certain
variables in the dataset to predict unknown values of other related variables while
descriptive model classifies patterns or relationship and utilizes human-
understandable pattern and trends in data [3].

Classification is part of the classical methodology of data mining that is based on
machine learning. In a database, it finds mutual properties among a set of objects and
categorizes them according to the classification model into diverse groups. Its
primary objective is to scrutinize the training data and construct an accurate defini-
tion or model for each class using the data function. Statistical techniques such as
decision trees, neural networks, and statistics are used in this process [3]. Regression
describes the relationship between dependent and independent variables. Prediction
is reached by endorsing regressions. Statistical regression is a mathematical model
that relates the values of the dependent variable to the values of the other predictor or
independent variable. The predicted variable in regression could be a continuous
variable. Real-valued prediction variables in regression are mapped from elements of
a learning function. Some of the widely used regression techniques include statistical
regression, Neural Network, Support Vector Machine regression. More complex
methods could also be used to predict future values, such as logistic regression,
decision trees, or neural networks, and these techniques could also be combined to
achieve better results [3].

Clustering is a technique of data mining that groups physical or abstract objects
into related object classes. Clustering is a technique of dividing data sets (records/
tuples/objects/samples) into multiple groups (clusters) based on predetermined
similarities. The main objective of clustering is to find affinity-based groups
(clusters) of objects so that there is a great resemblance to each other within
individual clusters, while clusters are sufficiently diverse from each other. Clustering
is a type of unsupervised learning in machine learning terminology [3]. Dependency
Modeling (or association rule mining) is one of the finest recognized data mining
techniques and is categorized under an unsupervised data mining technique that
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seeks to identify links or relationships between items or records belonging to a large
dataset and identifies significant variables dependencies [3]. Anomaly detection is
synonymous with the uncovering of the most significant changes or aberrations from
standard behavior [3]. Although not part of data mining techniques, the summary is
the result of these techniques and deals with the determination of a compact
representation for a subset of data synonymously referred to as generalization or
description [3]. Sequential Pattern is used over a business cycle to determine
sequential patterns or associations or periodic events/trends between variable data
fields [3].

6.4.2 Data Mining Architecture

The architecture of data mining can be mainly classified as below:

Knowledge Base It acts as the start of the entire process of data mining. It serves as
a guide for looking for the resulting trends or evaluating their interestingness. This
form of information can involve hierarchies of concepts that organize attributes or
values into different abstraction stages.

Data Mining Engine It forms the main element of the mining framework,
consisting of all the modules required to perform data mining tasks, such as
characterization, prediction, cluster analysis, outlier analysis, and evolution analysis.

Pattern Evaluation Module This module is generally correlated with measures of
interest. In order to stay focused on looking for interesting trends, it persistently
interacts with the data mining engine. Many times, depending on the data mining
method used, it uses thresholds to sieve out discovered patterns or can use the pattern
evaluation module incorporated with the mining module.

User Interface The module acts as a link between users and the framework for data
mining. It makes it simple and effective for users to communicate with the system
without thinking about the convolutions behind the operation.

Data Sources (Www, Data Warehouse, Archive, Other Repositories) These are
the actual data sources, and for efficient data mining, a huge amount of historical
data is needed. In databases or data centers, companies usually store data. Often the
data warehouse includes more than one database or text file, or spreadsheet. Another
big source of data is www.

Server Database or Data Warehouse Includes concrete data that are set to be
retrieved. Its main duty is to retrieve data at the request of users.

Other Processes Data must be cleaned and merged before it is passed on to the data
warehouse server, as data are obtained from different sources and are in different
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formats such that it cannot be used directly for mining processes. The data need to be
cleaned, integrated, and it is only important to pick and move on the secure data to
the data warehouse server. Numerous techniques for cleaning, integration, and
selection may be needed for the operation [3].

6.5 Databases for Biological Data Mining

In recent decades, a huge number of genome-scale experimental data sets have been
made available. Thus, for storing and analyzing, several biology databases have
appeared online. These databases can be classified according to data form, data
processing techniques, data coverage scope, and database accessibility. These
databases contain a wide range of data ranging from the genome of model and
nonmodel plants (https://asia.ensembl.org/index.html) to protein information
(https://www.rcsb.org/) (Table 6.1).

6.5.1 Databases for Genes, Genomes, and Variations

While breeding has been effective, the method of choice for farmers remained
traditional, e.g., for studies contrasting two genes, A and B, in a test plant. With
the aid of genomics and new sequencing techniques, scientists can study the
underlying genetic makeup of plants, and these findings are helping us figure out
how plant breeding contributes to the development of desired traits. Even though it is
still in its infancy, Next-Generation Sequencing (NGS) technologies are permitting
the mass sequencing of genomes and transcriptomes to produce a vast amount of
genomic information. By means of bioinformatics technologies, the NGS data
analysis, as evidenced by the huge collections of markers, allows the new genes
and sequences discovery and the location and arrangement of their occurrence on the
genome. By studying the gene expression level of a variety of breeds, breeders get an
understanding of the molecular basis of complex traits. Genome-wide association
studies, or GWAS, include TILLING and Eco-mutation in genome sequencing
technologies, which can make it possible to scan mutant as well as germplasm
collections for allelic variants in target genes [8]. It is very useful to re-sequence
an organism’s genome more than once in order to find markers that can be used in
high-throughput genotyping platforms like SNPs and SSRs, or the construction of a
genetic map. These tools and resources make it much easier to study genetic
diversity, which is important for maintaining germplasm, enhancing, and applica-
tion. Also, they can be used to help identify some of the genes in those regions of the
genome that might also be involved with the disease, and they can be used to find
markers linked to those genes as well. New markers for quantifiable characteristics
based on DNA, such as the ones mentioned above, are employed for marker-assisted
selection, including breeding by design, marker-assisted backcross selection, and
genome selection. Thus, advances in genomics provide breeders with novel tools
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Table 6.1 List of few important Biological databases

Database Name Description Species Link

BAR
(bio-analytical
resource for plant
biology)

Provides a user-
friendly interface for
the exploration of gene
expression data

Several plant species
including O. sativa

http://bar.
utoronto.ca

CoP database Microarray data based
integrated database for
co- expressed genes
and biological
processes in plants

Arabidopsis thaliana,
Vitis vinifera Glycine
max, Oryza sativa,
Populus trichocarpa,
Hordeum vulgare,
Triticum aestivum, and
Zea mays.

http://webs2.
kazusa.or.jp/
kagiana/cop0911

CSRDB (cereal
small RNA
database)

Consists of large maize
and rice datasets
smRNA sequences
provided by high
performance
pyrosequencing

O. sativa and maize http://sundarlab.
ucdavis.edu/smrnas

CyVerse (former
iPlant
collaborative)

Provides a strong
computing platform
allowing massive
datasets and complex
research to be
discovered using the
data

Plants, animals, and
microbes

http://www.
cyverse.org

DDBJ updated on
daily bases

A repository of
nucleotide sequence
data

O. sativa and several
organisms species

http://www.ddbj.
nig.ac.jp

Diurnal An internet-based site
to keep track of diurnal
and circadian genome
wide expression
profiles from results of
model plants

Plant species http://diurnal.
mocklerlab.org

DroughtDB Manually curated
genes associated with
stress response to
drought

O. sativa ssp. japonica
cv. Nipponbare Zea
mays, Arabidopsis
thaliana, Sorghum
bicolor, Hordeum
vulgare,
Brachypodium
distachyon, Solanum
lycopersicum, Secale
cereale, and Aegilops
tauschii.

http://pgsb.
helmholtz-
muenchen.de/
droughtdb

EMBL Comprehensive
compilation and
annotation of
nucleotide sequences

O. sativa and several
organisms species

http://www.ebi.ac.
uk/about

(continued)
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Table 6.1 (continued)

Database Name Description Species Link

from available public
sources

Ensembl plants Provides numerous
genomic data sets and
analysis and
visualization tools for
several plant species in
the genome browser

O. sativa and other
organism species

http://plants.
ensembl.org/index.
html

ExPath It offers data on
metabolic pathways
inferred from
transcriptomic data
based on microarrays,
gene annotation, and
orthologous genes

Oryza sativa,
Arabidopsis thaliana,
and Zea mays

http://expath.itps.
ncku.edu.tw

FamNet Enables the user to
retrieve data from one
or more plant species
linked to preserved
structural-functional
domains within
proteins

Arabidopsis, Oryza
sativa, Medicago
truncatula, Populus
tremula, Hordeum
vulgare, Glycine max,
Nicotiana tabacum,
and Triticum spp

http://www.
gene2function.de/
famnet.html

Galaxy A software framework
that allows
experimentalists to
conduct complex large-
scale research with
only a web browser
without informatics or
programming skills

http://galaxyproject.
org

GenBank updated
on daily basis

NIH genetic sequence
database, a repository
of publicly available
DNA sequences

O. sativa and other
organism species

http://www.ncbi.
nlm.nih.gov

Genevestigator Provides powerful
tools to explore gene
expression across a
wide variety of
biological contexts

Arabidopsis, Oryza
sativa, Medicago
truncatula, Populus
tremula, Glycine max,
and Triticum spp

https://
genevestigator.
com/gv

Gramene An open data resource
for comparative
functional genomics in
cereals and other plant
species

O. sativa and other
plant species

http://www.
gramene.org

GRASSIUS (grass
regulatory
information
services)

It consists of a series of
databases relating to
the regulation and
interaction of gene
expression in grasses

Zea mays, Oryza
sativa, Saccharum
spp., and sorghum
bicolor

www.grassius.org

(continued)
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Table 6.1 (continued)

Database Name Description Species Link

with agronomic
features. Includes
transcription factors,
promoters,
transcription and
co-regulators
Factor-clones ORF

GreenPhylDB The database having
catalog of gene
families from various
green plants

O. sativa and other
plant species

http://www.
greenphyl.org/cgi-
bin/index.cgi

IsomiR Bank Integrated resource that
contains the sequence
and expression of
isomiRs

Arabidopsis thaliana,
Danio rerio, Homo
sapiens,Mus musculus,
Oryza sativa,
Drosophila
melanogaster, Zea
mays, and Solanum
lycopersicum.

http://mcg.ustc.edu.
cn/bsc/isomir

Mercator pipeline Functional annotation
of plant “omics” data

Arabidopsis,
Chlamydomonas, rice

http://mapman.
gabipd.org/web/
guest/app/Mercator

MoChA
(“molecular
characteristics
database for
allergens”)

Database of allergenic
proteins acquired by
bioinformatics
methods or proof of
binding to IgE. It has
obtained accurate
experimental genome,
transcriptome,
proteome data, and
molecular properties

2000 organisms http://lilab.life.sjtu.
edu.cn:8080/
mocha/main-7.9-2.
html

MPIC
(“mitochondrial
protein import
components”)
database

Searchable details on
plant and nonplant
mitochondria protein
import equipment

O. sativa and 23 other
organism species

http://www.
plantenergy.uwa.
edu.au/applications/
mpic

NIASGBdb
(“National Institute
of Agrobiological
sciences planttfdb
database”)

A database having
information on simple
sequence repeat (SSR)
polymorphisms in
plant genomes

O. sativa and other
plant species

http://www.gene.
affrc.go.jp/
databases_en.php

OryGenesDB A rice reverse genetics
database, created with
flanking sequence tags
of different mutagens
and data on functional
genomics

O. sativa ssp. indica
and japonica, and two
other plant species

http://orygenesdb.
cirad.fr/index.html
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Table 6.1 (continued)

Database Name Description Species Link

PDB (protein data
Bank)

Worldwide archive of
structural data of
biological
macromolecules

O. sativa and other
organism species

http://www.rcsb.
org/pdb

Phytozome An annotated plant
genome and gene
familial data
comparison center.
Provides an overview
of each plant gene’s
evolutionary history at
the level of sequence,
gene structure, gene
family, and genome
organization [70]

O. sativa and 64 other
plant and algae species

http://www.
phytozome.net

PLANEX (PLAnt
co-expression)
database

Have publicly
available GeneChip
data received from the
gene expression
omnibus

Arabidopsis thaliana,
Hordeum vulgare,
Glycine max, Vitis
vinifera, Oryza sativa,
Triticum aestivum,
Solanum lycopersicum,
and Zea mays

http://planex.
plantbioinformatics.
org

PlantAPA
(alternative
polyadenylation)

A internet based server
for query,
visualization, and
analysis of poly
(A) sites in plants,
helping in profiling
various cleavage sites
and quantify
expression pattern of
poly(A) sites across
different conditions

Oryza sativa,
Chlamydomonas
reinhardtii, Medicago
truncatula, and
Arabidopsis thaliana

http://bmi.xmu.edu.
cn/plantapa

PlantArrayNet Information on co-
expressed genes using
microarray-
transcriptomic data

Rice, Arabidopsis, and
Brassica rapa

http://arraynet.mju.
ac.kr/arraynet

PlantDHS (plant
DNase I
hypersensitive site
database)

Incorporate histone
modification,
transcription factor
binding sites, RNA
sequencing, genomic
sequence, and
nucleosome
positioning/occupancy

Arabidopsis thaliana,
Oryza sativa, and
Brachypodium
distachyon

http://plantdhs.org

PlantGDB A database of sequence
data from different
plant species

O. sativa and other
plant species

http://www.
plantgdb.org
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Table 6.1 (continued)

Database Name Description Species Link

Plant homolog
database

A database comprised
of plant homologous
genes

16 plant sp.
Including 10
Oryza species

http://phd.big.ac.cn

Plant MPSS
(massively parallel
signature
sequencing)
databases

Information on the
expression status of
genes, and potential
unique transcripts
(antisense transcripts,
alternative splice
isoforms, and
regulatory intergenic
transcripts)

Grape. Arabidopsis,
Magnaporthe grisea,
and rice

http://mpss.udel.
edu

Plant-PrAS (plant
protein annotation
suite) database

Database of properties
related to
physicochemical and
structural information,
and unique functional
region in plant
proteomes

Arabidopsis thaliana,
Glycine max, Populus
trichocarpa, Oryza
sativa, Physcomitrella
patens, and
Cyanidioschyzon
merolae

http://plant-pras.
riken.jp

Planteome For plant and species-
specific crop
ontologies, a resource
for popular reference
ontologies. It also
provides ontology-
based rice gene
annotation, QTLs,
phenotypes, and
germplasms

Oryza and plant
species

http://www.
planteome.org

PlantRNA Assembles transfer
RNA (tRNA) gene
sequences obtained
from fully annotated
plant nuclear, plastid,
and mitochondrial
genomes

Five flowering plants
(Oryza sativa,
Arabidopsis thaliana,
Medicago truncatula,
Populus trichocarpa,
and Brachypodium
distachyon), a moss
(Physcomitrella
patens), two green
algae (Ostreococcus
tauri and
Chlamydomonas
reinhardtii), a pennate
diatom
(Phaeodactylum
tricornutum), one
glaucophyte
(Cyanophora
paradoxa), and one
brown alga

http://plantrna.
ibmp.cnrs.fr
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Table 6.1 (continued)

Database Name Description Species Link

(Ectocarpus
siliculosus).

PLEXdb A single resource of
gene expression for
plants and plant
pathogens. It is a
phenotype genotype,
hypothesis building
knowledge warehouse,
leveraging highly
parallel expression data
to associated genetic,
physical, and pathway
data with seamless
portals

Oryza, Vitis, maize,
Fusarium
graminearum,
Arabidopsis, soybean/
Phytopthora/soybean
cyst nematode,
Brachypodium, cotton,
poplar, Citrus, tomato,
and Medicago

http://www.plexdb.
org

PlnTFDB (plant
transcription factor
database)

A web interface to
navigate various plant
species’ broad sets of
transcription factors.
Information is given
for each family,
including protein
sequences, coding
regions, genomic
sequences, expressed
sequence tags (ESTs),
domain architecture,
and scientific literature

O. sativa ssp. indica
and japonica and other
plant species

http://plntfdb.bio.
uni-potsdam.de/
v3.0

PmiRKB (plant
miRNA
Knowledge Base)

Information available
for four major
functional modules-
“SNPs”, “Pri-
miRNAs”, “MiR—
Tar”, and “self-reg”

21 O. sativa and
Arabidopsis

http://bis.zju.edu.
cn/pmirkb

PMRD (plant
MicroRNA
database)

A plant miRNA data
repository containing
associated sequence
information, secondary
structure, target genes,
miRNA expression
profiles, and their
mapping to the browser
of the species-specific
genome

O. sativa and 120 plant
species

http://
bioinformatics.cau.
edu.cn/PMRD

PO (plant
ontology)

Robust and flexible
controlled vocabulary
that accurately
represents the biology

O. sativa and other
plant species

www.
plantontology.org
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Table 6.1 (continued)

Database Name Description Species Link

of plant structures and
stages of development

PODC (plant
omics data center)

A repository for
expression data of
annotated gene and
omics data analysis
tools

Arabidopsis thaliana,
Glycine max,
Medicago truncatula,
Nicotiana tabacum,
Oryza sativa,
spreading earthmoss
(Physcomitrella
patens), tomato
(Solanum
lycopersicum), potato
(Solanum tuberosum),
sorghum (Sorghum
bicolor), grape (Vitis
vinifera), corn (Zea
mays)

http://bioinf.mind.
meiji.ac.jp/podc

POGs (putative
orthologous
groups 2) database

A database that
combines data from,
Arabidopsis, rice and
maize into “putative
orthologous groups”
(POGs) and permits
comparisons among
orthologs and
extrapolation of
annotations among
species.

Arabidopsis thaliana,
Oryza sativa, and Zea
mays

http://pogs.
uoregon.edu

Ppdb (plant
promoter database)

Information available
on Y patches,
regulatory element
groups (REGs),
transcription start sites
(TSSs), and core
promoter structure
(TATA boxes,
initiators, GA and CA
elements)

Arabidopsis thaliana,
poplar, Physcomitrella
patens, and Oryza
sativa.

http://ppdb.agr.
gifu-u.ac.jp/ppdb/
cgi-bin/index.cgi

STIFDB2 (stress
responsive
transcription factor
database)

Group of responsive
genes for biotic and
abiotic stress with
options to detect
possible transcription
factor binding sites in
their promoters. The
data have been
characterized by an
integrated biocuration
and genomic data
mining approach

O. sativa ssp. japonica
and Indica and
Arabidopsis

http://caps.ncbs.res.
in/stifdb2
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and methodologies that permit a great leap forward in plant breeding, including the
genetic dissection and breeding for complex traits and super domestication of crops.

The algorithms and methods used to store and process genomic data created by
various technical platforms will rely on what kind of data is being used and what
outcome is predicted. The 3000 genome project (http://iric.irri.org/resources/3000-
genomes-project) and 1001 Arabidopsis genomes (http://1001genomes.org/) are
good examples of why a genetic interface is needed to help breeders with the
information they need. Once the information is obtained, results are made available
to the breeders [9]. Attracted by the fame and glory of the invention of the global
web page, a common and often successful approach to providing the information is
through a web page that can be easily browsed. Several extensive bioinformatics
resources exist to help scientists study plant and human genetics, like GenBank
(http://www.ncbi.nlm.nih.gov/genbank/), the European Bioinformatics Institute
(http://www.ebi.ac.uk/), and the Swiss-Prot database (http://expasy.org/sprot/).
These above databases are dedicated to storing knowledge for all organisms,
although many other more basic databases based on species of importance to the
breeders still exist, including the Gramene (http://www.gramene.org/), Sgn (http://
solgenomics.net/), Phytozome (http://www.phytozome.net/), which contain infor-
mation that may have more specific usage for breeding programs. For instance, the
“MSU Rice Genome Annotation Project” (http://rice.plantbiology.msu.edu/), the
International Rice Genome Sequencing Project (IRGSP) [10], RAPdb [11], and
the Oryza Genome Evaluation project [12] are primarily providing assembly, anno-
tation, and related information of rice genome. These genomes are provided by
constructing a built-in web resource for rice, including a rice species-specific
genome explorer, whole-genome alignment, synteny, genetic and physical maps
with genes, gene trees, ESTs and QTL positions, genetic diversity data including
SNPs, and advises them on their genome sequence [13].

6.5.2 Databases for Gene Expression Datasets

With the invention of the microarray in the 1980s, it became possible to measure the
abundance of all transcripts at the genomic scale. This is now known as the

Table 6.1 (continued)

Database Name Description Species Link

UniProtKB A central annotated
protein resource
consisting of two
sections: UniProtKB/
Swiss-Prot for
annotated manual
entries and UniProtKB/
TrEMBL for annotated
computer entries

O. sativa and other
organism species

http://www.uniprot.
org

120 P. Pati et al.

http://iric.irri.org/resources/3000-genomes-project
http://iric.irri.org/resources/3000-genomes-project
http://1001genomes.org/
http://www.ncbi.nlm.nih.gov/genbank/
http://www.ebi.ac.uk/
http://expasy.org/sprot/
http://www.gramene.org/
http://solgenomics.net/
http://solgenomics.net/
http://www.phytozome.net/
http://rice.plantbiology.msu.edu/
http://www.uniprot.org/
http://www.uniprot.org/


transcriptome. To this date, several gene expression data from such experiments
have been stored in public repositories, like the EBI ArrayExpress (AE; https://
www.ebi.ac.uk/arrayexpress/) and NCBI Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/), after the implementation of the “Minimum Informa-
tion About a Microarray Experiment” (MIAME) standard [14]. Unlike the Interna-
tional Nucleotide Sequence Databases (http://www.insdc.org/), these two databases,
namely AE and GEO, for gene expression have not been sharing data with each
other. There have been several instances where AE had started importing GEO data
in the past but have recently stopped doing so. Though we still have access to all
archive data of AE in GEO, all the new data are not available for us anymore
[14]. Thus, at present, researchers operating on a specific topic would need to scan
both of the databases since these databases have been independently maintained.
Besides that, the DNA DataBank of Japan (DDBJ) recently started another reposi-
tory for the investigation of gene expression called Genomic Expression Archive
(GEA; https://www.ddbj.nig.ac.jp/gea/). The GEA is a repository of functional
genomics data such as genotyping SNP arrays, epigenetics, and gene expression.
Genomic or DNA microarray data and sequence-based data are acceptable in the
MAGE-TAB format, in strict compliance with MIAME and MINSEQE guidelines,
respectively [15]. As a consequence, there is a need for the integration of these
public gene expression databases. Recently, Bonon, therefore, developed an index of
public gene expression databases called All Of the gene Expression (AOE). Thus, he
used a database of all gene expressions (All Of the gene Expression) to get a clearer
idea of the average amount of genes in a community of employees (AOE). The aim
of AOE is to compile and bring together all of the gene expression results and make
them all searchable. He has been maintaining the AOE website for 5 years, and it has
been helpful for pursuing functional genomics studies [14].

6.5.3 Database for Gene-Interactomes, Pathways, and Ontologies

A gene interaction network is the collection of genes, each linked by an edge
indicating a functional relationship between these genes. These edges are called
interactions because the two genes are assumed to have either a physical connection
with their gene products, e.g., proteins, or one of the genes changes or influences the
function of another gene of interest [16]. “The functional products of genes, e.g.,
proteins, work together to achieve a particular task, and they often physically
associate with each other to function or to form a more complex structure. These
interactions can be long-lasting, such as forming protein complexes, or brief, when
proteins modify each other such as the phosphorylation of a target protein by a
protein kinase. Since these interactions are important to carry out most biological
processes, knowledge about interacting proteins is crucial for understanding these
biological functions, which can be easily done via studying networks of these
interactions” [16].

There are other, more complicated genetic variations. So, when all of these gene
variants work together, the resulting influence does not manifest itself in just one
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gene alone. Moreover, it does not manifest itself at all. At high throughput, we can
also measure the gene combinations to help further understand this disease. There
are two general categories of such interactions: synthetic lethal (Synths) interactions
and suppressor (Syns) interactions. The effect is lethal as a result of two nonessential
genes combining to form lethal effects, and suppressive effects occur when a lethal
variance within one gene “cancels out” or is “negated” by that of another gene. Much
more research needs to be done on how drugs act in the human body. This way, we
can understand how they work and use this knowledge to prevent or treat diseases
[17, 18].

With the involvement of high-throughput methodologies like
co-immunoprecipitation followed by mass spectrometry, yeast two-hybrid (Y2H),
or tandem affinity purification, studies have been performed, which help to classify
physical protein-protein associations for a wide variety of species. The fundamental
genetic mechanism of drug action was mapped, and its influence on molecular
pathways important in many biological systems, both in humans and for organisms
[16]. The expansion of the number of proteins and how they “interact” has continued
over the last decade. This has led to the creation of public databases that can be
shared among scientists. As in predicting enzyme-specific interactions, computa-
tional techniques are used to forecast protein-protein interactions. At some point, the
use of genomic data will help us understand the complicated relationship between
protein pairs [19, 20] or help us predict novel interactions we have not yet
experienced [21].

All the interactions performed in the lab are recorded so that they can be made
accessible to the public at large. Scholars continue to be able to utilize various
databases as multiple organisms’ protein-protein interactions connect these new
organisms with many other organisms. A database first gathered their samples
from multiple sources. Nevertheless, biomolecular interaction databases like the
International Molecular Exchange Consortium now allow researchers to compare
protein-protein interactions from a wide taxonomic spectrum of species. Further,
these databases agree to create publicly accessible datasets in standardized formats
such as MITAB or PSI-MI XML 2.5. Currently, the databases recorded in MPIDB
(http://www.jcvi.org/mpidb), DIP (http://dip.doe-mbi.ucla.edu), IntAct (http://www.
ebi.ac.uk/intact), MINT (http://mint.bio.uniroma2.it/mint), Pact (http://mips.gsf.de/
genre/proj/mpact), MatrixDB (http://matrixdb.ibcp.fr), BioGRID (http://www.
thebiogrid.org), InnateDB (http://www.innatedb.com), and BIND (http://www.
blueprint.org) are actively generating relevantly large numbers of relevant
documents, and provide these through the “Proteomics Standard Initiative Common
Query Interface” (PSICQUIC) service. This database can contain and hold
interactions all intended towards a specific organism, such as the BioGrid (https://
thebiogrid.org/) database, or it can contain and hold interactions specifically targeted
at a specific biological domain, such as the MatrixDB (http://matrixdb.univ-lyon1.fr/
) database. However, regardless of the file format that is used, this data is available in
a standards-compliant, tab-delimited, and XML format. Presently, these databases
share a lot of the same documents. We still have a lot of work to do to track the
complicated relationships between patients and interactions. However, once the new
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data entry pipelines for each healthcare system are set in place, accurate reporting
across an organization will be easier to track [16].

Understanding and visualizing the networks of these connections are also essen-
tial to researchers. Recent advances have been made in the types of software. There
is software for different platforms, like Cytoscape (https://cytoscape.org/), Osprey
[22], Pajek [23], etc. This software can display the network by employing a graph
layout algorithm and will display the network layout attributes as nodes and are
visual representations in each node (e.g., protein images, coloring). Moreover,
through the usage of a number of various items, such as a plug-in and a filter, it
analyzes these interactions and aids in the incorporation of external data sources like
gene ontology [24, 25].

6.5.4 Databases for Gene Ontology

The Gene Ontology (GO) resource is the most straightforward and commonly
utilized method available in terms of identifying the roles of genes. In GO, all
functional knowledge is arranged as well as represented in a form amenable to
computational analysis, which is essential for modern biological research. The GO
database is organized using a formal ontology by specifying groups of genes and the
connections between them. GO words (such as “GO:00086467”, “GO:00093381”,
and “GO:00093385”) contain meanings that are sometimes stated as “equivalence
axioms” (axioms saying that two terms are identical if they are both closely
connected to the same things), since they can be computationally inferred utilizing
rational reasoning. The GO framework has been carefully built over the span of
20 years by a small team of ontology developers; it is continually changing in
reaction to recent scientific findings and consistently refined to reflect the most
current state of biological understanding. The members of the ontology creation
team include specialists on biological knowledge representation. They read the
literature to validate the correctness of the representation and involve biocurators
(those who study and curate biological knowledge) to collaborate alongside them to
establish this representation of biological knowledge [26]. The Planteome seems to
be a current database (www.planteome.org) which has provided a common collec-
tion of ontologies for use in genome, expression, and phenomic projects. Addition-
ally, it provides ontology-based annotations for approximately 85 plant species,
including a number of O.sativa subspecies indica and japonica rice as well as wild
Oryza species.

6.5.5 Databases for Pathway

The word “pathway” is poorly described and may arguably, be used to characterize
any sequence of action between biomolecules until a specific product is created. The
Reactome project [27] is online, open access, database of biological pathways that
has been curated. The reactions are ordered hierarchically, with a series of single
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reactions required at the lowest level and a succession of interconnected pathways at
the top-level [28]. The data in Reactome are obtained from scientific literature, with
information being collected by researchers, editors, reviewers, and curators. Subse-
quently, Reactome contains links to other databases such as Ensembl, UniProt, and
KEGG [29].

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a database linking
genetic, biochemical, as well as phenotypic details from various sources [30]. It
provides knowledge regarding chromosomes and metabolic processes. The proteins
and enzymes that belong to such pathways, along with information regarding
genetic, molecular, and environmental mechanisms, diseases, and drug mechanisms.
Many connections are given to various databases, including the UniProt database
and the NCBI Entrez Gene database. Unfortunately, access to KEGG was
discontinued in 2011, and we no longer have the ability to access KEGG via FTP.
Instead, they only have the feature to access KEGG through their API (application
program interfaces). It also inhibits system developers’ ability to incorporate the
KEGG pathway in the software.

WikiPathways is an open access initiative that is different from the other pathway
databases [31]. The tool is part of MediaWiki and enables anyone to contribute to
and manage biochemical pathways on the Wikipedia website [32]. WikiPathways
encompasses several various signaling pathways involved in multiple biochemical
processes over several organisms. WikiPathways is now a novel approach to pre-
serving and processing vast amounts of genetic information in response to the
public’s desire to ensure and organize the data, thus ensuring its ultimate
performance.

Ultimately, MetaCyc [33] is a massive systematic repository of pathways and
enzymes among all aspects of existence, with the majority of evidence derived from
current literature asserts that it is the most exhaustive set of metabolic pathways
accessible. MetaCyc is purported to be the biggest array of curated metabolic
pathways. No pathway database can ever be accurate, and lesser of around 10% of
predicted genes or proteins can be mapped to a given pathway or reaction in some
environmental samples [34]. Thus, it is common to use multiple complex databases
and algorithms to get the conclusions that best fit the available data. Gene ontology
and pathway enrichment analysis have been discussed in detail in Chap. 12.

6.6 Bioinformatics Tools in Data Mining

To date, several bioinformatics tools have also been developed which are used in
various bioinformatics analysis, including sequence alignment (Chap. 7), gene
identification and structure annotation (Chap. 8), phylogenetic analysis (Chap. 9),
RNA structure prediction (Chap. 10), structural proteomics (Chap. 11), and gene
ontology & pathway enrichment analysis (Chap. 12), high-throughput sequencing
technologies (Chap. 13), DNA–Protein Interaction Analysis (Chap. 15), RNA–
Protein Interaction Analysis (Chap. 16), SNP identification and discovery
(Chap. 17), microsatellite markers discovery (Chap. 18), genome-wide association
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study (Chap. 19), expression profiling and discovery of microRNA (Chap. 20),
identifying long noncoding RNA (Chap. 21), metagenomics (Chap. 23), and
single-cell RNA sequencing (Chap. 25). Detailed information about each tool and
its utility is described in detail in each chapter later.

6.7 Conclusion and Future Perspective

In conclusion, biological databases are life science knowledge collections collected
from experimental observations, written literature, technologies for high-throughput
experiments, and quantitative analysis. They provide information from study areas
such as genomics, proteomics, metabolomics, microarray genes, and phylogenetics.
While numerous databases and online resources for protein bioinformatics have been
established to assemble and store numerous biological details, there are challenges as
well as opportunities to build Next-Generation databases, including resources that
facilitate the integration of data, generation of data-driven hypotheses, as well as
exploration of biological information [35]. Effective storage and handling of vast
quantities of data is the first obstacle that machine biologists would meet. Huge
parallel disk technologies (file systems that are distributed, clustered, or parallel)
were investigated, in addition to stronger hardware support. Lustre (http://lustre.
opensfs.org) and “Hadoop Distributed File System (HDFS)” (http://hadoop.apache.
org) are the best examples.

The collection and handling of information is only one side of the same coin. The
goal of high-throughput omics studies is to translate clinical data into expertise in
biomedical science and healthcare systems. We need accessible computing facilities
and an effective data processing system to achieve precision medicine and improved
therapies. Cloud computing appears like an inexpensive option for large-scale data
processing relative to conventional HPC cluster computing. Bioinformatics research
is also altering how the analysis is carried out by hosting cloud-based data storage
with massive amounts of high-throughput data. Code is instead going to the data
instead of transferring data to the application code. In addition, the performance of
converting data into information often involves modern and powerful machine
learning and data mining techniques, and analytical architectures. Apache Spark
(http://spark.apache.org), for large-scale lightning-quick in-memory clustering com-
putation, is a newly developed fast and general-purpose computing engine. It
enabled a wide variety of higher-level software, along with data collection and
organization, GraphX for graph processing, MLlib for machine learning, Spark
SQL for SQL, and Spark Streaming for apps with scalable streaming. In Big Data
analysis, the most difficult challenge is to cope with the data’s variability, variety,
and uncertainty and to find a better way to incorporate them. Along with analyzing
the versatility of NoSQL technology, the implementation of ontology and Semantic
Web technology is another exciting area. Ontology plays a perfect function in
solving the issues of the variability of data sources as a systematic, a precise
description of a commonly accepted conceptualization of a topic of concern. The
rapid growth and acceptance of ontologies have helped the scientific community use
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structured ontologies to annotate and incorporate biological and biomedical data and
automate the discovery and design of web resources and workflows for bioinformat-
ics. Linked Data infrastructure offers a means to publish and interconnect organized
knowledge on the internet. Bio2RDF [36] and the EBI RDF platform [37] are active
Linked Data ventures in the area of bioinformatics. Through identifying a series of
basic conventions to construct RDF(s) compliant Linked Data from a diverse
collection of heterogeneously structured resources derived from multiple network
providers, they utilize Semantic Web technology to develop and provide the largest
network of Linked Data for Life Sciences. The task of Linked Data integration is to
create software that can ingest such data, extract, and display meaningful biological
information in a user-friendly manner.

Sensitive site design that makes the web page appear nice on all platforms is
becoming more relevant with the pervasiveness of mobile devices (tablets and
phones). Protein bioinformatics databases of the next decade can provide consumers
with an optimized viewing and interaction interface through a wide variety of
devices utilizing technologies such as Bootstrap (http://www.getbootstrap.com),
JQuery (https://www.jquery.com), and Dojo Toolkit (https://dojotoolkit.org), etc.
The creation of NoSQL technology and a high-performance index and search
framework such as Lucene/Solr (http://lucene.apache.org) for rapid information
retrieval has also been motivated by the need for pace, particularly for web-based
applications.

Conflict of Interest None.
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Sequence Alignment 7
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Abstract

The sequence analysis is one of the most effective and commonly applied
methods (explicity or implicitly) in biological research. Thus, in this chapter,
author attempted to understand the basics of sequence analysis and how
researchers implement various computational tools to achieve them. Information
obtained revealed that alignment can be either global and local or pairwise
sequence alignment and multiple sequence alignment. For performing these
alignment, various algorithms like dynamic programming, heuristic algorithms,
or probabilistic methods have been developed. Sequence analysis helps us to
detect evolutionary relationship as well as scan motifs by taking into consider-
ation of various events, such as mutations, insertions, deletions, and reordering
under some circumstances. Thus, sequence alignment serves as an essential
requirement for the most of the biological research ranging from genomics to
proteomics. However, our perception of alignment biases remains primitive.
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Thus, there is an urgent requirement to explore the effect of alignment bias on
broad comparative genomics accuracy. In the near future, information present in
this chapter will be useful for retriving information biological sequence.

Keywords

Dynamic programming · BLAST · FASTA · Needleman–Wunsch algorithm · gap
penalties · Smith-Waterman algorithm

Abbreviations

BLAST Basic local alignment search tool
DP Dynamic programming
HMM Hidden Markov Model
MAFFT Multiple sequence alignment based on Fast Fourier Transform
MSA Multisequence alignments
MUSCLE Multiple sequence comparison by log-expectation
PA Progressive alignment
PSA Pairwise sequences alignment
UPGMA Unweighted pair group method with arithmetic mean

7.1 Introduction

More than 12 million organisms reside on the earth. This biodiversity is mainly due
to distinct genomic and proteomic sequences contained in these organisms. These
sequences store unique information that modulates various processes required for the
survival of these organisms [1]. DNA sequence comparison is a unique approach to
evaluate gene-level variations amongst these organisms and to study their
differences and similarities [1]. What “similarities” are identified to rely on the
alignment process’s objectives. The easiest way for comparing two same-length
sequences is to identify the number of matching characters. The attribute that
calculates sequence similarity is known as the alignment value of two sequences.
On the contrary, the degree of dissimilarity between sequences is known as the
sequence distance. The amount of characters that do not align is known as the
hamming distance. However, while estimating similarity, this approach does not
take into consideration of normal biological activities like insertion or deletions.

The classic definition of sequence alignment includes estimating the so-called
“edit distance,” which normally equals the minimum number of insertions, substitu-
tion, and deletion that are necessary for transforming one sequence into another
[2]. Earlier several algorithms, like Smith & Waterman and Needleman & Wunsch
have been developed for computing “edit distance” [3, 4]. These algorithms were
originally developed for protein-protein alignment and subsequently employed for
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DNA sequence alignment. In the majority of the real-life scenarios, nevertheless,
these algorithms seem inefficient for DNA alignment owing to their runtime as well
as memory requirements [2].

To date, several kinds of alignment approaches, like prediction-based methods,
pairwise sequences alignment (PSA), profile-based methods, multisequence
alignments (MSA), and the structure-based methods have been proposed [5]. The
most frequently used are PSA and MSA. In PSA, per sequence is aligned once a
time. It is the easiest method of aligning and can be achieved with two strategies:
local and global. The MSA approach could also be implemented using local or
global strategies but is much more complex. During MSA, many protein sequences
are organized into a rectangular array, and residues that are either homologous or
identical are placed in one column. MSA is generally employed for detecting
conserved regions in protein sequence and for designing protein’s secondary and
tertiary structures. Homology, as well as evolutionary relationships between
sequences, may also be derived via MSA approaches because MSA has an underly-
ing postulation, i.e., all matching sequences would share evolutionary homology
[5]. Alignment results are also a requirement for many other downstream analyses,
like drug design. Nevertheless, results generated by different methods can be quite
diverse [6]. Thus, there is an urgent requirement for the development of systematic
metrics that may provide explicit guidance on the strengths as well as shortcomings
of the different sequence alignment algorithms. This, in turn, will help us to deduce a
more significant relationship between sequences. Considering the above, in this
chapter, the author attempted to provide an overview of sequence alignment with a
summary of popular specific algorithms, methods, and approaches which underlie
the most current method of sequence alignment.

7.2 Basic Terminology

A sequence alignment is a basic analysis in almost every biological study (implicit or
explicit). The main objective of sequence alignment is to detect the homologous sites
in sequences [7]. Homology is a qualitative argument and identifies shared ancestral
relations between sequences. Two distinct types of homology exist, i.e., paralogs
(shared ancestry due to a duplication event) and ortholog (shared ancestry due to a
speciation event) [8]. “By definition, orthologs are genes that are related by vertical
descent from a common ancestor and encode proteins with the same function in
different species. By contrast, paralogs are homologous genes that have evolved by
duplication and code for a protein with similar, but not identical functions” [9].
Other terms that are commonly used during sequences analysis are similarity and
identity [10]. Unlike homology, similarity denotes the percentage of aligned residues
with the same physicochemical properties that are easier to replace each other. It is
pertinent to note that two sequences can be 70% similar but cannot share 70%
homology. They are either nonhomologous or homologous [10]. In general, a shared
ancestral relationship could be inferred if the sequence similarity level is very high.
However, it is not really obvious at what similarity degree one should assume
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homologous relationships. The solution depends on the sequence type and lengths
under consideration [10]. For instance, proteins having high sequence identity and
high structural similarity have similar functional and evolutionary relationships
[11]. Identity corresponds to the proportion of matches between the two aligned
sequences with the same amino acid residue [10].

Another term, namely gap, is common during sequence analysis. A gap can be
defined as the absence of a segment in a certain sequence. Gaps are natural feature of
biological sequences. A single mutational event can result in the addition or deletion
of certain regions of sequences (predominantly in DNA), and thus the effective
identification of gaps is an important step toward understanding the various
biological phenomenon [12]. A variety of biological processes may lead to the
formation of gaps in DNA sequences, like, large pieces of DNA may be replicated
and inserted through a single mutational occurrence, and slippage during the repli-
cation of the DNA can allow the same region to be replicated many times as
replication machine lose its position on the template [12]. Earlier it has been reported
that instead of penalizing all editing operations individually, one must penalize the
formation of a longer gap more severely than others [13].

7.3 Alignment Methods

To date, different alignment approaches like dynamic programming (DP), heuristic
algorithms, or probabilistic methods have been developed [14].

7.3.1 Dynamic Programming

DP is an effective computing strategy implemented to a problem class that can be
addressed recursively [15]. When Richard Bellman first developed the DP algorithm
in 1953 for researching “multi-stage decision problems,” he certainly did not expect
its extensive usage within modern computer programming. Indeed, as Bellman has
described in his comical autobiography [16], he wanted to employ the word
“dynamic programming” as “an umbrella” for the mathematical research he carried
out at RAND Corporation for protecting his boss, who was the Secretary of Defense
Wilson and “had a pathological fear of word research.” Since it is one of the first
algorithms that were used in bioinformatics research and has since been widely
applied [17], DP has become an inevitable algorithmic subject.

DP is indeed a normal preference for evaluating sequences. Needleman &
Wunsch initially illustrated the use of bottom-up DP for calculating an optimal
pairing amongst two protein sequences [3]. While this algorithm offers a compara-
tive evaluation of sequences pair, it estimates the similarity throughout the complete
sequences (a “global alignment algorithm”). Hence, this approach is time-
consuming and computationally exhaustive [18]. To overcome this, Smith and
Waterman adapted DP for performing local alignments in which alignment was
made between similar parts of the input sequences [4]. DP provides an ideal
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approach for PSA [18]. It is also widely employed to assembling DNA sequence data
from fragments obtained from automated sequencing machines and for determining
the exon/intron structure within eukaryotic genes [19]. It is also utilized for inferring
proteins’ function through homology study with other proteins having a known
function [3, 4], and for predicting the secondary structure of functional RNA genes
or regulatory elements [19].

7.3.2 Heuristic Algorithms

Though DP gives a more accurate result, it is slow [14]. Other efficient approaches,
like heuristic algorithms or probabilistic methods, have been developed for large-
scale database searching. The term “heuristic”means that the developed algorithm is
faster than the classical method but may not be the optimum method [20]. Heuristic
algorithms can be categorized into three subgroups, namely, progressive alignment
(PA) approach, iterative alignment type, and block-based alignment type [10]. PA
approach is the incremental strategy that generates a final MSA through conducting a
set of PSA on successively less closely associated sequences. In this approach, we
align the two closest-related sequences first and then align the closest-related
sequence in the questionnaire to the alignment generated in the previous step.
Although success is particularly dependent on the consistency of the initial align-
ment and dramatically deteriorates when all sequences in the set are related distantly,
PA methods are enough to be implemented on a broad scale for several sequences
[21]. The most commonly used PA methods are ClustalW (https://www.genome.jp/
tools-bin/clustalw) and T-Coffee (https://www.ebi.ac.uk/Tools/msa/tcoffee/). How-
ever, it is not possible that the progressive approaches converge to optimal global
alignment, and efficiency can be difficult to approximate. Additionally, its true
biological importance may be unclear [21].

The iterative method is based on the premise that an ideal solution could be
sought by adjusting current suboptimal solutions on a repeated basis. The process
begins with a low-quality alignment and gradually improves it through well-defined
procedures until no more improvement can be achieved on the alignment scores.
Since the sequence order in each iteration is different, this method could mitigate the
“greedy” problem of progressive strategy. Nevertheless, this approach is also heu-
ristic in nature and has no promises for optimum alignment [10]. PRRN (https://
www.genome.jp/tools-bin/prrn) is a web-based program that utilizes a double-nested
iterative strategic plan for multiple alignments. The progressive as well as iterative
alignment techniques are primarily global and thus cannot detect conserve motifs
and domains amongst strongly diverging sequences of various lengths. A local
alignment strategy must be employed for those divergent sequences that share
only local similarities. This technique detects the ungapped alignment block that is
present in all sequences, and hence this is called the block-based local alignment
technique [10]. DIALIGN2 (http://dialign.gobics.de/) web-tools that employ block-
based alignment for detecting local alignment.
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7.3.3 Probabilistic Methods

Introduction of probabilistic modeling approaches, like profile secret Markov
models (profile HMMs) as well as pair-HMMs [22] have advanced sequence
similarity search. When variables are probabilities instead of random scores, objec-
tive statistical parameters refine them more readily. This helps to create more
detailed, biologically relevant models with many parameters. For instance, profile
HMMs employ position-specific deletion/insertion probabilities instead of the ran-
dom, position-invariant gap expense of more conventional approaches like BLAST
or PSI-BLAST [23], enabling profile HMMs to model the possibility that indels
occur more frequently in certain sections of a protein than others (e.g., in surface
loops than submerged core) [24].

The probability method has three primary benefits: (i) Any kind of analogy may
be adjusted to the probabilities [e.g., The DNA error-prone reads against the
genome]. The comparisons are supposed to be more precise. (ii) We may approxi-
mate the reliability, for instance, each column of every alignment part. This is helpful
because alignments also have unknown sections owing to high inconsistencies or
repeating sequences. (iii) A similarity between two integrated sequences over
potential alignments may be calculated. This can more powerfully detect subtle
connexions than single ideal alignments [25]. The probabilistic approach, however,
also has significant disadvantages. Aside from a moderate computational drawback,
the probabilistic method suffers from uncharacterized score statistics - unlike the
local alignment of Smith-Waterman, for which at least the form of the ideal score
distribution is defined from the null model, relatively little is known about the
distribution of the log-like score in the local probabilistic random alignment. It is
proven empirically that random usage of the z-score would not deliver really strong
results [26].

7.4 Global and Local Alignment

Sequence alignment approaches typically fell into two categories: global and local
alignments. While global alignment compares all character of query sequences, local
alignments define similarity regions within long sequences that are typically diver-
gent. The Needleman-Wunsch algorithm is a well-known global alignment algo-
rithm designed on the basis of DP. Local alignments are always preferred but more
challenging to quantify considering the additional difficulty of recognizing
similarities regions. The Smith-Waterman algorithm is a general local alignments
method based on the DP system, with added features for beginning and finishing in
either place [14]. Most biologists think that local alignment is what really matters
when we are looking for functional conservation. Local alignment is more important
since certain proteins have roles that are controlled by their capability to attach to
some other molecule (protein’s ligand); therefore, the role would be maintained if
this short portion becomes sustained via evolution, even if there is significant
divergence in many other protein regions. As proteins are folded within their natural

134 M. K. Gupta et al.



form, these retained regions need not be continuous protein segments. Indeed,
several researchers researching on lymphocyte antigen recognition specifically
account for these discontinuities within binding domains (known as “non-linear”
epitopes, where an epitope is the ligand of a lymphocyte) [12, 14].

In few cases of the global alignment mode, adding a distance in the leftmost
location of the alignment might be needed, but we are not aware of the length of the
next reference sequence factor to be already aligned. It is obvious from this scenario
that an intermediate alignment is required between the local and global alignment
(i.e., semiglobal alignment) [12]. A semiglobal alignment does not penalize starting
or ending gaps in any global alignment so that the resultant alignment continues to
overlap one end of a sequence with the end of the other [27]. A Parasail is a stand-
alone tool that can be employed for performing global, local, and semi-global
alignment [27]. Recently, Suzuki & Kasahara developed a semi-global alignment
algorithm, namely, “difference recurrence relationships,” that perform better than
other available tools by 2.1 factor [28].

7.5 Pairwise Alignments

The most frequently employed mean of collecting information from protein and
DNA sequences is a PSA. It is generally used to detect protein homolog, which
diverged more than 2 billion years ago. For proteins that share statistically significant
sequence similitudes, homology can be accurately inferred. If statistically meaning-
ful similarities to a known sequence are observed, inferences may be made regarding
the unknown sequence’s function, structure, and biologically significant residues.
Although the homology assumption [29] is very robust (i.e., proteins which share
significant similarities within PSA often have similar features), a few of the more
detailed preassumptions critically rely on the consistency of the alignment between
the two sequences. For instance, functional inferences for protein sequences having
more than 60% identity are typically very reliable. However, uncertainty in the
alignment of badly conserved areas can lead to errors for more distantly linked
proteins [30, 31].

The fundamental law for sequence alignment is the structural alignment amongst
two proteins known to have a 3D structure. The 3D-structure comprises more
information relative to the 1-D sequence as well as diverges at a very slow rate.
Thus, distant evolutionary correlations may also be established amongst sequences
which do not display statistically significant similarities. Even directly relevant
proteins with major sequence similarities may elicit sequence alignments that differ
from the most accurate structural alignments. Since it is not possible to identify the
three-dimensional structure of each protein, researchers are continually seeking for
strategies for producing structurally correct homology models for sequences with
unknown structure. The most common as well as successful methods, are to find a
template for constructing the model within the set of established structures. This
feature is relatively trivial in the case of high sequence similitude (i.e., > 60%
identity) because both sequences, as well as structural alignments, are typically very
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near to this range. However, in this zone, there are just a few sequences; in the
so-called “twilight zone,” there are several more sequences (i.e., ~20–40 percent
sequence identity) where divergent yet clearly homologous protein may be hard to
match. Although the precision of the end 3D model is dependent on the degree of
alignment of the unspecified sequence to the structural template, researchers are
mainly concentrating on enhancing the quality of alignment between proteins that
share statistically relevant similarities and have 20% to 40% sequence identity
[49, 50]. Dot-matrix techniques, DP, and Word techniques are the most widely
used methods for PSA.

7.5.1 DOT Matrix Plot

Since visualization of alignment of character of hundreds or more sequences can be
troublesome, scientists created a more visually understandable approach called the
dot matrix approach. This sequence alignment process, which was first carried out
manually and then computationally, allows the more apparent mapping of
similarities for visual inspection. In this process, a sequence is shown on the top
and one on the side of the matrix and a mark on the crossroads of the corresponding
character pairs [51]. A dot matrix pattern will have a continuous array of dots
running along the middle diagonal of the matrix for a pair of exactly matched
sequences (Fig. 7.1). However, this trend is hardly used. Sometimes, without further
processing, diagonal patterns are hard to recognize. Thus, a number of filters are also
added to the results, as well as the use of color and other methods to highlight
matching sequences. For instance, typical filtering is a stringency/window combina-
tion. The window represents the number of points evaluated at a time, while the
minimum number of matches needed in each window is the stringency [51].

The study of the dot matrix is extremely valuable in recognizing recurring
characters or short sequences within one sequence, as is the case for the mapping
the recurrent regions of entire chromosomes. Repeats of the same character produce
artificially high scores and complicate sequence alignment. Methods of dot matrix
are most appropriate for single PSA problems, particularly for relatively high
similitudes. Sequences with a lower similarity and MSA need more efficient
methods [51]. Even though window stringency values are always heuristically
determined, they could be dependent on dynamic averages, matched scores in
aligned protein groups, or different methods for calculating the amino acid similar-
ity. For example, score matrices establish alignment scores in the aligned protein
families depending on their statistical frequency. These matrices may be used to
construct a sliding window, where only scores above an average scoring may appear
in the matrix, as defined in the following section [51].

To date, various algorithms and computer software tools were created for
performing the dot-matrix plot. While several of these tools accommodate 100 kb
of sequences, the study of the genome sequences above 10 Mb on a microcomputer
remains to be inoperative considering the length of time needed for execution as well
as computer memory [53]. In 2004, Huang and Zhang created two dot matrix
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Fig. 7.1 The dot-plot of the alignment for human chromosomes 2, 7, and 14 and mouse chromo-
some 12. The x-axis indicates the positions of mouse chromosome 12, and y-axis indicates the
positions of human chromosomes 2, 7, and 14. The orthologous landmarks are plotted based on the
pairwise alignments between the three human chromosomes and mouse chromosome 12 (Adapted
from [52]).
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Table 7.1 Softwares and tools used for PSA (Adapted from https://en.wikipedia.org/wiki/List_of_
sequence_alignment_software)

Name Description
Alignment
typea

Sequence
typeb References

ACANA Fast heuristic
anchor-dependent
PSA

Both Both [32]

AlignMe Membrane PT
sequences
alignment

Both PT [33]

Bioconductor
biostrings::
pairwiseAlignment

DP Both + ends-
free

Both [34]

BioPerl dpAlign DP Both + ends-
free

Both https://metacpan.
org/pod/release/
CJFIELDS/
BioPerl-1.6.924/
Bio/Tools/
dpAlign.pm

BLASTZ, LASTZ Seeded pattern-
matching

LL Nucleotide [35]

DNASTAR
Lasergene
molecular biology
suite

Align RNA, DNA,
PT, or PT + DNA
sequences

Both Both https://www.
dnastar.com/

FEAST Posterior-
dependent LL
extension having
descriptive
evolution model

LL Nucleotide [36]

G-PAS GPU-based DP
with backtracking

LL, SemiGL,
GL

Both http://gpualign.
cs.put.poznan.pl/
gpas20.html

GapMis Does PSA with
one gap

SemiGL Both [37]

Genome magician Software for ultra-
fast LL DNA
sequence motif
scan as well as
PSA of high-
throughput data in
both FASTA and
FASTQ format.

LL, SemiGL,
GL

DNA https://science.
do-mix.de/
software_
genomemagician.
php

GGSEARCH,
GLSEARCH

GL:LL (GL) and
GL: GL
(GG) alignment
with statistics

GL in query PT [38]

JAligner Java-based
techniques of
Smith-Waterman

LL Both http://jaligner.
sourceforge.net/

(continued)
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Table 7.1 (continued)

Name Description
Alignment
typea

Sequence
typeb References

K*sync PT sequence to
structure
alignment that
comprises of
secondary
structure,
structure-derived
sequence profiles,
structural
conservation, and
consensus
alignment scores

Both PT [39]

LALIGN Multiple,
nonoverlapping,
LL similarity

LL
nonoverlapping

Both https://www.ebi.
ac.uk/Tools/psa/
lalign/

mAlign Modeling
alignment; models
the information
content of the
sequences

Both Nucleotide [40]

Matcher Waterman-Eggert
LL alignment
(dependent on
LALIGN)

LL Both https://www.ebi.
ac.uk/Tools/psa/
emboss_matcher/

MCALIGN2 Explicit models of
indel evolution

GL DNA [41]

MUMmer Suffix tree-
dependent

GL Nucleotide [42]

NW-align Standard
Needleman-
Wunsch DP
algorithm

GL PT https://zhanglab.
ccmb.med.
umich.edu/NW-
align/

Needle Needleman-
Wunsch DP

SemiGL Both https://www.ebi.
ac.uk/Tools/psa/
emboss_needle/

Ngila Logarithmic as
well as affine gap
costs and explicit
models of indel
evolution

GL Both [43]

Parasail C/C++/python/
Java SIMD DP
library for SSE,
AVX2

GL, ends-free,
LL

Both [27]

Path Smith-Waterman
on PT back-
translation graph
(detects

LL PT [44]

(continued)
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comparison methods for studying large sequences. Initially, the methods identify
similarity regions amongst two sequences using a rapid word search algorithm and
explicitly compare these regions. Because several random matches are omitted from
the initial sampling, the estimation duration is decreased dramatically. These
approaches yield good quality plots of the dot matrix with low background noise.
Spatial criteria are linear, so genome scaling sequences can be compared by
algorithms. Highly repetitive sequence structures of eukaryote genomes may impact
the computational speed. In the 80s, with a 1GHz personalized machine, a dot matrix
complot was developed for the yeast genome (12 Mb) for both strands [53].

7.5.2 Dynamic Programming

The most widely employed algorithm of PSA is DP, initially introduced by
Needleman and Wunsch [3]. The DP ensures an optimum algorithmic alignment

Table 7.1 (continued)

Name Description
Alignment
typea

Sequence
typeb References

frameshifts at PT
level)

PatternHunter Seeded pattern-
matching

LL Nucleotide [45]

SABERTOOTH Alignment
employing
predicted
“connectivity
profiles”

GL PT [46]

Satsuma Parallel whole-
genome synteny
alignments

LL DNA Genome-wide
synteny through
highly sensitive
sequence
alignment

SPA: Super
pairwise alignment

Fast pairwise GL
alignment

GL Nucleotide [47]

SWIFOLD Smith-Waterman
acceleration on
Intel’s FPGA with
OpenCL for long
DNA sequences

LL Nucleotide [48]

UGENE Opensource
Smith-Waterman
for SSE/CUDA,
suffix array-based
repeats finder and
dotplot

Both Both http://ugene.net/

aAlignment type: Global(GL)/Local(LL)
bSequence type: Nucleotide (NT)/Protein(PT)
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with unique parameters and sequences. However, an optimum sequence alignment
score would not assure the structural consistency of the alignment. Additionally,
there are no natural mechanisms under which two proteins align together. Therefore
“optimum” alignments of the sequence may vary greatly from ideal structural
alignments [31]. Moreover, distant-related proteins also have several optimal
alignments and a significant number of sub-optimal alignments with scores quite
similar to the optimal score [50, 54, 55]. If one moves further from the desired score,
the number of alternatives alignment also keeps increasing. Therefore, one must
sample the suboptimal alignment space for holding the number of alignments
computationally trackable [50, 54, 55].

While a structure-based alignment is the “gold standard” against which sequence
alignments are measured, structural alignment may vary, and no optimum structural
alignment algorithm is possible [56]. As the number of structures appear to be
smaller than the number of sequences, the structural alignment variations are
minimal relative to the sequence-structural alignment variations. Although this
definitely refers to quite distantly linked proteins that have no meaningful similitude
(and therefore cannot be substantially aligned with sequence data alone), the struc-
tural and sequence alignment precision of proteins that share statistically significant
similarities has not been closely studied [56]. Given that structurally correct
alignments frequently include suboptimal alignment scores, researchers have been
researching the alternate alignments and wondering whether they include details
about precise structural alignments. Jaroszewski et al. [50] have studied alternate
alignments, both based on an almost ideal algorithm for alignment generation and by
combining score parameters (i.e., substitution matrix and gap penalties), and have
found that alignment in the sets is much similar to the structural alignment. Their
inference was that the two alternate alignment methods, namely, alternatives and
sub-optimizing alignments, had complementary information (in contrast to redun-
dant information) because the combination of the two sets created much higher
alignments than any of the sets. The exactness of the optimal sequence alignment
was also investigated by Holmes and Durbin [57]. They developed a technique for
calculating the expected accuracy. In an algebraic approach, Zhang and Marr [58]
used alternate alignments with maximal alignments in the neighborhood.

Various scholars also took the help of a probabilistic approach for producing
alternate alignment sets. In 1995, Miyazawa [59] measured alignment likelihoods
relying on alignment score exponent and, subsequently, compared the resulting
likelihoods of matched amino acids throughout alignment with the respective protein
structure alignments. Yu and Hwa investigated the statistically significant of
alignments made using a pairwise Hidden Markov Model (HMM) [26]. Knudsen
and Miyamoto [60] designed a pairwise HMM alignment approach that provided an
explicit indel evolutionary model. Eventually, Mückstein and the team [61]
constructed a sampling alignment procedure on the basis of statistical weighting
employing partition function overall plausible two-sequence alignments.

Although it is of theoretical interest to compare individual sequence and structure
sets in the absence of any structural information, it is only of practical use if the
alignment of the sequence can be determined correctly. One approach to resolving
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this issue is to calculate the accuracy of a certain aligned residual pair (that we term
an edge, using the norm for determining the optimum score in the dynamic program-
ming path graph, aligned residues, insertions, and deletions along the edge)
[31]. Cline and the team examined four strategies for forecasting the accuracy of a
particular pair of aligned residues [62] and concluded that the most improved
alignment quality was the method proposed by Yu and Smith [63] for retrieving
near-optimal alignments from the HMM profile. The association between both the
edge probabilities and structural alignment was studied by Knudsen & Miyamoto
[60] and Mückstein et al. [61] and Miyazawa [59]. However, in the former two cases,
only in the context of a limited number of protein pairs, usually considered a strong
correspondence amongst them. In another study, Mevissen and Vingron [64] have
evaluated the feasibility of an edge reliability index known as robustness that Chao
and the team had previously defined [65]. They found that an edge’s robustness
predicted correctly if the edge was still aligned in structural alignment. In another
study, Sierka and the team improvised the robustness analysis by adding extra details
on alignment consistency and creating a logistic regression model that returns the
likelihood that a given edge is embedded in a structural alignment [31].

7.5.3 The Word or K-Tuple (Ktup) Method

It is the heuristic process, which offers greater alignment than DP. Currently, with
massive datasets, DP cannot be used. This is why we use the K-tuple approach when
searching for a specific question along with a large database. K Tuple corresponds to
a series of k words. For instance, for nucleotide and protein, K is defined as 11 and
3, respectively. The K system has been introduced in the family of FASTA and
BLAST.

7.5.3.1 FASTA
FASTA is a rapid alignment application for protein and DNA sequence pairs. Rather
than comparing individual residues in both sequences, FASTA looks for matching
sequence patterns or terms called k-tuples. In both sequences, these patterns contain
k consecutive matches of letters. Based on these word matches, the algorithm then
tries to establish a local alignment. FASTA is useful for regular database searches of
this kind because of the ability of the algorithm to locate similar sequences in a
sequence database with high-speed. FASTA programs offer a detailed range of
simple similarity search resources (fasta36, fastx36, tfastx36, fasty36, and tfasty36),
comparable to those offered by the BLAST tool, as well as programs for local,
slower, optimal, as well as global similarity searches (search36, ggsearch36) and
oligonucleotide and short peptide searches (fasts36, fastm36). fasta36 employs the
FASTA algorithm developed by Pearson alone and Pearson & Lipman and compare
protein (or nucleotide) sequence to protein (or nucleotide) sequence database
[66, 67]. With the ktup (word size) parameter, search speed and selectivity are
regulated. By default, ktup ¼ 2 for protein comparisons; ktup ¼ 1 is more sensitive
but slower. By default, ktup¼ 6 for DNA comparisons; ktup¼ 3 or ktup¼ 4 allows
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maximum sensitivity. fastx36/fasty36 compares the translated nucleotide sequence
into three frames and allowing gaps and changes, fastx36 compares a nucleotide
sequence to a protein sequence base. Fastx36 uses a faster and simplified alignment
algorithm, which only allows the frameshift between codons. However, fasty36 is
slower, but better alignments are possible because frame shifts inside codons are
permitted [68]. tfastx36/ tfasty36 compares a protein sequence with a nucleotide
sequence database and measures comparisons for forward and reverse directed
frames-shifts [68]. ssearch36 employs the Smith-Waterman algorithm [4] for com-
paring a nucleotide (or protein) sequence against a nucleotide (or protein) sequence
database. The Fasta36 is just 2–5 times faster than Farrar SSE2 [69]. ggsearch36/
glsearch36 compares a protein (or nucleotide) sequence to a protein (or nucleotide)
sequence database, employing an optimal global algorithm: global: local
(glsearch36) or global (ggsearch36). fasts36/ tfasts36 compares collection of small
peptide fragments as collected from mass-spec, protein research, against nucleotide
(tfasts) or protein (fasts) databases [70]. fastm36 compares ordered short nucleotide
sequences (or peptides) to a nucleotide (or peptides) database.

The FASTA systems employ an empiric approach for approximating statistical
importance that is consistent with a variety of similarities in scores and gap penalties
and increases alignment of boundary precision as well as search sensitivity. FASTA
systems can generate “BLAST-like” alignment as well as tabular results for ease of
integrating analytics pipelines and can scan for small, descriptive datasets and
afterward report findings for larger sequences employing small dataset connexions.
FASTA systems operate in a wide range of database formats, like PostgreSQL and
MySQL databases. Recently, Pearson has developed programs that lay out a strategy
for incorporating domain as well as active site annotations into alignments and
emphasizing the mutation status of functionally important residues. These protocols
also explain how FASTA systems can classify protein and nucleotide sequences
through protein: DNA, protein: protein, and DNA: DNA comparative study [71].

7.5.3.2 BLAST
The “Basic local alignment search tool” (BLAST) is a sequence similarity search
software which could be employed either as a stand-alone tool or through a web
interface for comparing all combinations of protein (or nucleotide) sequence to a
protein (or nucleotide) sequence database [72]. BLAST is a heuristic approach that
finds short matches between two sequences and tries to initiate alignment from these
“hot spots.” BLAST also offers statistical details about alignment in addition to
executing alignments [72]. The E-value contains details on the probability of a
sequence being matched by sheer chance. The smaller the E-value, the less probable
the database match is to be attributed to random chance, and thus the more important
the match. If E < 1e� 50 (or 1 � 10�50), there should be an exceptionally strong
conviction that matching the database is the product of a homologous partnership. If
E is between 0.01 and 1e � 50, matching can be viewed as a consequence of
homology. If E is between 0.01 and 10, the match is assumed to be nonsignificant
but could suggest a possible remote homology relationship. Additional proof is
required to validate the partnership. If E > 10, the sequences within evaluation are
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either unrelated or associated with incredibly remote relationships that fall far below
the detection limit of the current system [10]. Although the E-value is proportionally
influenced by the size of the database, an apparent concern is that as the database
expands, the E-value often increases for a given sequence match. Since the true
evolutionary relationship between the two sequences remains unchanged, as the
database expands, the decline in the sequence match’s credibility means that one will
“lose” homologs previously observed as the database enlarges. Consequently, an
alternative to E-value calculations is needed [10].

BLAST is a family of services that comprises BLASTN, BLASTX, BLASTTP,
TBLASTX, and TBLASTN. BLASTN searches nucleotide sequences in the nucle-
otide sequence database. BLASTP employs protein sequences as requests to scan a
database of protein sequences. BLASTX employs nucleotide sequences as inputs
and converts them into all six reading frames to generate translated protein
sequences that are used to query the protein sequence database. TBLASTN requests
protein sequences to a nucleotide sequence database, with sequences encoded into
all six reading frames. TBLASTX employs nucleotide sequences that are interpreted
into all six frames to scan a nucleotide sequence database that has all the sequences
interpreted into six frames. In addition, also there is a bl2seq program that executes a
local alignment of two user-provided input sequences. The graphic production
involves horizontal bars as well as a diagonal in a two-dimensional diagram
displaying the total degree of the matching between the two sequences [10].

7.6 Multiple Sequence Alignment

MSA is an alignment between more than two biological sequences. In most
scenarios, the input sequences are believed to have a shared ancestor. Sequence
homology can be derived from the subsequent MSA, and a phylogenetic study can
be carried out to determine the common ancestral roots of the sequences. Visual
alignment representations, as seen in the Fig. 7.2, demonstrate mutation occurrences
like point mutations (single nucleotide or amino acid changes) that occur as distinct
symbols within a single alignment column and insertion/deletion of mutations
(indels or gaps) that occur as hyphens in one or more alignment sequences. MSA
can also be used to determine sequence conservation of protein domains, tertiary as
well as secondary structures, as well as specific amino acids or nucleotides [73–75].

Since MSA of three or more lengthy sequences may be complicated and are often
time-consuming to be aligned by hand, statistical algorithms are often used for
generating and evaluating alignments. MSAs need more advanced approaches than
PSA since they are more computationally complicated. Many MSA programs use
heuristic approaches rather than global optimization since it is prohibitively costly to
determine the optimum alignment amongst more than a few sequences of moderate
length. On the other side, heuristic approaches usually refuse to guarantee the
consistency of the answer, with heuristic strategies sometimes found to be well
below the ideal solution in the case of benchmarks [73–75].
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7.6.1 Dynamic Programming

The complex programming algorithms, namely, Smith-Waterman and Needleman-
Wunsch, that are employed for a PSA, can also be used for evaluating the optimum
alignment of over two sequences. Nevertheless, the difficulty of this algorithm is
much shoddier than that of PSA. For performing PSA, the running period of the
algorithm is proportionate to m � n, where m and n are the lengths of two aligned
sequences. If n � m, the argument is generalized to indicate that the algorithm’s

Fig. 7.2 “Multiple sequence alignment of a-type domains of B. distachyon PDI and PDI-like
proteins and a typical rice PDI. These thioredoxin-like domains of the B. distachyon were annotated
in Phytozome database, and comparative analysis used BioEdit software. Residues highlighted in
deep blue and green show they were identical and similar, respectively. Open bars and arrowheads
represent the α helices and β strands, respectively. The red box indicates the -CxxC- catalytic site,
and red arrows indicate the glutamicacid–lysine charged pair. Blue and yellow arrows represent the
conserved arginine (R) and the cis pralines (P) near the active site, respectively” (Adapted from
[76]).
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execution time is n2. The exponent in the n2 definition derives from the presumption
that, during PSA, if we presume that our sequences length is n, then n� n cells need
to be filled within the dynamic programming matrix. If we were to employ either
Needleman-Wunsch or Smith-Waterman algorithm to three sequences, we would
need to build a 3-dimensional array for measuring and monitoring the alignment.
Therefore, for sequences having n length, we will have n � n � n cells for filling in
(http://readiab.org/book/0.1.3/2/3). Runtime for MSA employing complete DP
algorithms increases dramatically with the sequences number to be aligned. If
s and n are the sequence number and sequence length, respectively, then the
execution time will be ns. However, in PSA, s ¼ 2, which makes the problem
handier (http://readiab.org/book/0.1.3/2/3).

7.6.2 Progressive Alignment

PA is a heuristic approach and does not optimize any obvious alignment score. The
aim is to accomplish a series of PSA that begins with aligning nearest identical
sequence pairs and subsequently aligning least similar ones [22, 107]. The PA
method reduced the overall computational difficulty to polynomial-time by splitting
the MSA problem into a set of PSA guided by a tree reflecting the evolutionary
sequence relation [108]. Today, most popular alignment programs that employ the
progressive approach are ClustalW [79], Mafft (“Multiple sequence alignment based
on Fast Fourier Transform”) [109], “Multiple sequence comparison by
log-expectation” (MUSCLE) [91], and T-Coffee [110].

7.6.2.1 ClustalW
ClustalW is currently the most commonly deployed alignment software, and the
oldest of the modules examined. The program conducts a PA, first using PSA
through computing the distance matrix that retains the sequence’s discrepancy.
Just after the matrix is collected, a guided tree is created utilizing Neighbor-Joining
algorithms, accompanied by a final stage where the sequences are aligned as per the
branching order within the guide tree. In its alignment procedure, the software
utilizes two gap penalties: gap expansion and gap opening, during polypeptides
availability, a total amino acid weight matrix. These distance penalties rely strongly
on variables like sequence length, similarity, and weight matrix. In a simple scenario,
Clustal W will exactly match the related domains and sequences of established
secondary or tertiary structures but can be seen as a strong starting point for more
refinement in more complicated cases (Fig. 7.3a) [73, 79].

7.6.2.2 Mafft
Mafft is a program that can be employed with different alignment methods, either PA
alone (with Fast Fourier Transform) or iteratively aligned PA. Mafft‘s basic run
requires up to three stages, but the default procedure performs the first two steps. The
first stage is to create a PA centered on each sequence pair’s rough distance, on the
basis of the mutual 6-tuples. The unweighted pair group method with arithmetic
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mean (UPGMA) guide tree is then generated with the changed linkage, and the
sequences are then aligned with the tree branch order (the so-called FFT-NS-1
strategy). In the second phase, the distance matrix is recalculated based on the
knowledge obtained from the previous stage, and the PA is reassessed using a tree
from the existing matrix as the starting point (till this process, the technique is known
as FFT-NS-2 and is the preferred approach used by the software). The final step is
the iterative refinement, which optimizes the “Gotoh weighted pair sum” (WSP)
score [111], the “group-to-group alignment” [85], and “the tree-dependent constraint
partition technique” [112]. The method is referred to as FFT-NS-i, where all three
steps are used, which indicates that it employs the FFT method to conveniently
distinguish the homologous regions throughout the sequences followed by the
refining iterative process. The FFT converts an amino acid inside a sequence into

Table 7.3 Softwares and tools used for motif scanning (Adapted from https://en.wikipedia.org/
wiki/List_of_sequence_alignment_software)

Name Description
Sequence
typea Reference

BASALT Multiple motif and regular expression
scan

Both http://www.
proteinguru.com/
toolbox/basalt/

BLOCKS Ungapped motif prediction from
BLOCKS database

Both https://www.genome.
jp/tools/motif/

CUDA-
MEME

GPU accelerated MEME (v4.4.0)
algorithm for GPU clusters

Both https://cuda-meme.
sourceforge.io/
homepage.htm#latest

eMOTIF Extraction and prediction of shorter
motifs

Both http://motif.stanford.
edu/distributions/
emotif/

FMM Motif scan and prediction (can get also
positive and negative sequences as input
for enriched motif scan)

NT [128]

Gibbs motif
sampler

Stochastic motif extraction by statistical
likelihood

Both [129]

HMMTOP Prediction of transmembrane helices and
topology of PTs

PT [130]

MEME/
MAST

Motif prediction and scan Both [125]

MERCI Discriminative motif prediction and scan Both [131]

PHI-blast Motif scan and alignment tool Both [132]

Phyloscan Motif scan tool NT [133]

PMS Motif scan and prediction Both [134]

PRATT Pattern production for use with
ScanProsite

PT https://www.ebi.ac.uk/
Tools/pfa/pratt/

ScanProsite Motif database scan tool PT https://prosite.expasy.
org/scanprosite/

TEIRESIAS Motif extraction and database scan Both [135]
aSequence type: Protein (PT) or Nucelotide (NT)
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a vector describing volume and polarity that is key to replacement instances,
allowing the software to accurately predict these events [73].

Three additional refining algorithms are also provided by Mafft: L-INS-i,
G-INS-i, and E-INS-I [113]. These strategies improve the number of steps required
to align the MSA to five. In such instances, the first step would also entail the
formation of a distance matrix, not employing six-fold. In comparison to the
FFT-NS- * solution, the UPGMA tree is not rebuilt, and the program continues
into the second step, splitting gap-free segments and store the scoring arrays from
sequence to sequence for each gap-free segment. Mafft subsequently calculates the
“importance” value of the segment score and stores the residue in other segments.
All “importance” values are then obtained in step three of the “importance” matrix,
which is rapidly followed by a group-to-group alignment of scores and a weighting
scheme based on the Needleman-Wunsch algorithm [79]. The final stage refines the
alignments obtained, increases the WSP score, and the fixed “importance” values.
All “importance” values are then obtained in step three of the “importance” matrix,
which is rapidly accompanied by a group-to-group alignment of scores and a
weighting scheme centered on the Needleman-Wunsch algorithm [79]. The final
stage refines the alignments obtained, strengthens the WSP score, and the prescribed
“importance” values.

7.6.2.3 Muscle
The muscle uses a pairwise alignment technique to the profile. First, the program
establishes a progressive alignment, which is then refined and configured in two
following stages. After the similarity of the sequence, the PA is produced, the
distance estimation and the UPGMA tree are calculated. Muscle utilizes two distance
measurements: a km distance for unaligned series pairs and a Kimura distance for
ordered pairs [91]. A new tree with the already defined Kimura distance matrix is
generated by the optimization stage of PA, which guarantees a stronger alignment
centered on this improved tree. The last step of refinement uses the restricted
partition variant tree-dependent [112]. This approach eliminates one of the tree
edges, splits the orientation, and eliminates the profiles of the two partitions,
which would then be re-aligned with the profile-profile alignment. Each tree edge
will be iteratively visited and the alignment with the updated description score of
each sequence pair will be preserved. The edges are inspected to minimise the gap
from the root by reshaping each sequence and moving to similarly associated
sequence classes [91].

7.6.2.4 Clustal Omega
Clustal Omega is the Clustal family’s new MSA algorithm [75]. This algorithm is
used only for aligning protein sequences (though nucleotide sequences are likely to
be introduced in time). The precision of Clustal Omega is comparable to other high-
quality aligners on limited numbers of sequences; moreover, Clustal Omega
surpasses other MSA algorithms in terms of completion time as well as overall
quality of alignment on large sequence sets. In a few hours, Clustal Omega is able to
align 190,000 sequences on a single process. By firstly generating pairwise
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alignments using the k-tuple form, the Clustal Omega algorithm generates a multiple
sequence alignment. Then, employing the mBed method, the sequences are clus-
tered. This is accompanied by the clustering process of k-means. Next, the guide tree
is built using the UPGMA method. Finally, using the HHalign module, which aligns
two profile hidden Markov models (HMM) as seen in Fig. 7.3b, the multiple
sequence alignment is made.

7.6.2.5 T-Coffee
T-Coffee has a radical approach to match sequences. The software first builds a
library from two separate sources: Clustal W’s global alignment and Lalign‘s local
alignment [114]. Global alignments and pairwise local alignments for each pair of
sequences are generated from the top ten nonoverlapping segments. The software
processes global and local information and assigns weights to all PSA according to
sequence identity [115]. This is accompanied by a mixture of groups that converge
into a single repository. This consolidated library has an extension phase, such that
the final weight of any pair of residues constitutes part of the information contained
in the library. The ultimate step involves calculating the distance matrix and the
neighboring joint tree by aligning the two nearest weight sequences on the tree with
the stored weight of the consolidated library with a PA. The initial pair is then fixed,
and no other gap can be consequently transmitted. The PA will proceed until all
sequences fit [73].

Irrespective of their uses, earlier researchers have detected that the majority of PA
programs employ the Neighbor-Joining algorithm for inferring a guided tree. Neigh-
bor-Joining’s O(N 3) time complexity renders it a bottleneck when large data sets are
aligned. The Relaxed Neighbor-Joining algorithm relaxes the joining nodes and
decreases standard time complexity to O(N 2 log N) without any major qualitative
results [47]. In 2008, Sheneman explored the relationship between the topology of
the guide tree and the alignment reliability. He developed two different genetic
algorithms, each of which enhances the population of tree guide topologies utilizing
stochastic crossover and mutation operators. One genetic algorithm, EVALYN,
generates highly accurate scores when evaluated against established reference
samples. Nevertheless, we find that the disruptive crossover of EVALYN restricts
the genetic algorithm to a stochastic hill climb (Fig. 7.3c).

7.6.3 Probabilistic Alignment

7.6.3.1 PRANK
PRANK [116] is one of the best examples of a probabilistic MSA tool. In compari-
son to other alignment systems, PRANK uses phylogenetic knowledge to identify
alignment differences created through deletions or insertions and then treats the two
forms of events differently. As a by-product of the proper handling of inserts and
deletions, PRANK will also have assumed ancestral sequences as part of
the production and label the alignment gaps differently based on their origin in the
insertion or deletion incident. As the algorithm infers the ancestral history of the
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sequences, PRANK could be vulnerable to errors in the phylogeny guide as well as a
violation of basic assumptions about the origin as well as the pattern of the
gaps [116].

7.6.3.2 PSAR
In 2014, Kim and Ma developed a new metric, known as PSAR [117], that can
metric the reliability of the MSA by agreeing to probabilistically sample Suboptimal
Alignments (SAs). The SAs offer extra information which cannot be obtained by
optimizing alignment on its own, particularly when the ideal alignment is not too far
preferable to the SAs [117].

7.6.3.3 ProbPFP
Recently, Zhan and the team developed ProbPFP that incorporates HMM configured
with partition function by particle swarm. The PSO algorithm was used to refine the
parameters of the HMM. Subsequently, the posterior likelihood obtained by the
HMM was compared with that retrieved through the partition function, and hence
the integrated substitution score for the alignment was determined. To test the
effectiveness of ProbPFP, 13 excellent or classical MSA methods were compared.
The results show that the alignments obtained by ProbPFP have the highest mean SP
and TC values for both SABmark and OXBench data sets, as well as the second
highest mean TC scores and mean SP scores for BAliBASE. ProbPFP is also
compared with four other excellent approaches by restoring phylogenetic trees
spanning six protein families in the TreeFam database based on alignments achieved
across these five approaches. The results show that the reference trees are like the
phylogenetic trees rebuilt from the ProbPFP alignments compared with other
approaches [118].

7.6.3.4 ProbCons
ProbCons is a modification of the regular pair-score approach and also provides a
secret PA algorithm based on the pair-hidden Markov model. The alignment method
is divided into the following steps, starting with the calculation of the reverse
likelihood matrices for each pair of sequences. The alignment method is split into
the following steps, starting with the calculation of the posterior-probability matrices
for each pair of sequences. This is accompanied by a complex software calculation
of each PSA’s expected accuracy. The probabilistic quality transition is then used to
reassess the match’s accuracy. A hierarchical clustering determines the guiding tree
by the similarities defined by the weighted average of the values between the
sequences of every cluster. The guidance tree is employed for matching sequences
with a progressive strategy. There is also a postprocessing phase in which random
bipartitions of the generated alignment are realigned to find better regions for
alignment. ProbCons varies from other alignment systems because it does not
implement biological principles like evolutionary tree construction, role-specific
gap score, and other features typically utilized with other packages [99].
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7.7 Motif Search

Motif exploration is an application layer sequence analysis problem and one of the
main obstacles while developing bioinformatics applications. Sequence motifs are
constant in size, frequently repetitive and conserved, but at the same moment are
small (approximately 6–12 Bp) and very long and are also highly variable in
intergenic regions that make the motif discovery a difficult task. A motif is also
known as regulatory elements in eukaryotic genes and occurs in the Regulatory
Region (RR). These patterns play a crucial role in the identification of the Transcrip-
tion Factor Binding Sites (TF-BSs), which aid in the understanding of gene expres-
sion regulation mechanisms [119, 120]. Motifs are broadly categorized into various
forms, namely, sequence motifs, planted motifs, gapped motifs, structured motifs,
and network motifs [119]. There are two major forms of algorithms for motif
discovery, i.e., enumeration approach probabilistic technique. Enumeration method
looks for consensus sequences; motifs are projected dependent on word counts and
word similitudes; thus, this method is often named as word enumeration approach to
solving Motif problem with panted Motif Problem with motif length and a maximum
number of mismatches [120]. The algorithms focused on the word enumeration
method extensively scan the entire search field for classifying the ones with potential
substitutes, and then normally locate the global optimum. This implies, though, that
they are exponential time algorithms that take long for detecting the larger one and
inefficient to accommodate hundreds of sequences, and are thus only appropriate for
the short motif. Additionally, these algorithms require several user-defined
parameters, including the length of the motif, the number of mismatches permitted,
and a minimum of sequences the motif requires to appear in [121]. The method to
word enumeration can be accelerated by utilizing various data structures, like
parallel processing or suffix trees. CisFinder (https://lgsun.grc.nia.nih.gov/
CisFinder/), DREME [122], Weeder [123], and MCES [124] are common
algorithms based on this method. A second group is a probabilistic method. This
constructs a probabilistic model known as Position-Specified Weight Matrix
(PSWM) or Motif Matrix, which describes a base distribution to differentiate motifs
from nonmotifs for each position of TFBS and needs few search parameters
[124]. MEME [125], EXTREME [126], and BioProspector [127] are the most
common methods focused on probabilistic approaches. The third form, the nature-
inspired approach, incorporates the core attributes of the first two approaches. This
method is a basic idea and a global scan but can work with large data and long motifs
concurrently. It has a dynamic intention representation, contributing to an infinite
range of degenerated positions. The final form is the combinatory method, which
depends on the hybrid algorithms which shape the appropriate algorithm.
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7.8 Conclusion and Future Perspective

In conclusion, sequence alignment serves as a basic requirement for most of the
biological research ranging from phylogenetics construction to protein design.
Sequence alignment also employed for motif search in biological sequence, which
in turn plays a key role in understanding the regulation of various biological
phenomenon. However, because of the continuous increase of sequence amount,
there is an urgent requirement of developing novel tools and techniques which can
improvise the accuracy of the sequence analysis, including motif search, result
obtained. Earlier several researchers have suggested that a successful tool for motif
discovery can be constructed from different suggested motif discovery methods. The
tool should be fitted with these features: (1) all models should be identified, (2) the
overall search feature should be optimized, (3) the parallel processing abilities are
needed, (4) optimized data structures should be accessible, (5) the overall search
function should be able to locate both long and short motifs, (6) several motif
discovery capabilities at the same time, i.e., without elimination of the discovered
motif to find another motif. This research would then establish a new algorithm for
motif discovery, which incorporates the key characteristics of enumerative and
probabilistic approaches and utilizes them as a seed to a naturally inspired algorithm,
taking into account the above-noted variables [120].
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Abstract

Rice (O. sativa L.) is one among the necessary food crops worldwide. Due to
ever-increasing demand, many are undertaking several efforts to enhance its
productivity - the latest being the sequel of Rice genome sequencing projects.
The accelerated developments in next-generation sequencing (NGS) has bol-
stered these efforts in hundreds to thousands of rice varieties, which has enabled
researchers to unpack the hidden potential of vast and diverse rice germplasm.
One of the important objectives of these projects is to accurately characterize the
gene models, which has a major significance for the in-depth study of gene
function and, thus, various applications. Bioinformatics plays a major role in
gene structure identification and its biological function through various
algorithms and software. Hence, this chapter aims to elucidate the approach of
identifying, characterizing, and finding the function of different types of rice
genes.
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Abbreviations

CDS Coding DNA Sequence
CGSNL Committee on Gene Symbolization Nomenclature and Linkage
ESTs Expressed Sequence Tags
FLcDNA Full-length complementary DNA
IRGSP The International Rice Genome Sequencing Project
miRNA microRNA
MSU Michigan State University
NGS Next-Generation Sequencing
NIAS National Institute of Agrobiological Sciences
OMAP Oryza Map Alignment Project
ORF Open Reading Frame
RAP Rice Annotation Project
RGAP Rice Genome Annotation Project
RGKbase Rice Genome Knowledgebase
RMD Rice Mutant Database
rRNA ribosomal RNA
snoRNA small nucleolar RNA
TE Transposon Element
tRNA transfer RNA

8.1 Introduction

Rice (Oryza sativa L.) is the foremost vital staple food crop worldwide, which
provides food for 3/4th of the world human population [1]. There are 24 species of
Oryza, among which two major species, i.e., O. sativa and O. glaberrima, are
cultivated worldwide. The rice cultivated in Asia, O. sativa, is grown in almost all
parts of the world, and,O. glaberrima, considered to be the rice cultivated and grows
on a small scale in the Western part of Africa [2]. The species O. sativa originated
from the southern and eastern parts of Asia and is divided into two other subspecies,
such as japonica and indica [3]. Genome-wide research on the diversity of two
varieties of Oryza sativa (indica and japonica) showed that the rice originated
genetically from different gene pools, having single wild ancestor species, Oryza
rufipogon, indicating various domestications of O. sativa [4, 5]. Genetic studies
revealed a profound population structure among domesticated species across several
approaches. However, indica and japonica are two major subspecies that were found
to have various subpopulations among each group [6].

Rice is the smallest of the genomes among the cereal crops in terms of genome
size. Due to this, it is considered to be a model organism for several genomic studies
on monocotyledonous plants [7]. “The International Rice Genome Sequencing
Project (IRGSP)” started in the year 1997 and with the completion of sequencing
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of Nipponbare, a japonica type of rice cultivar, and generated high-quality genome
sequences in 2005, i.e., “International Rice Genome Sequencing Project 2005”, and
these data were further filtered and improved in the year 2013 [8]. This effort is so far
precise and till today it aids as an important base for cereal crop genomics study as
well as evaluation [9]. Afterward, another two rice genome assemblies were
generated separately. The first by the “Rice Genome Annotation Project” primarily
situated at “The Institute for Genomic Research” and currently in the “Michigan
State University (MSU)” and the other one by the “Rice Annotation Project (RAP)”
[8, 10]. The size of the finalized IRGSP genome when published was 370 Mb in
length, covering 95% of the sequenced genome of rice altogether. Though, later, a
relative study of the two other reported draft genomes and IRGSP revealed that the
overall coverage was 69% for indica and 78% for japonica [11]. However, to gain
detailed insight into the genetic composition, genome annotation is highly required.
The genome annotation is the process of identifying the functional elements within a
genome using different bioinformatics algorithms and software. The genome anno-
tation process is very important in identification of candidate genes and will enhance
the genetic improvement of the crops. Thus, in this chapter, we described the process
of in silico gene identification, aspects of gene identification, and structure annota-
tion in rice through different software and some of the major databases of rice gene
information.

8.2 Gene Annotation

The major step in genome analysis is the annotation of the genome. In several
scientific researches, genome annotation seems to be essential for retrieving any
information about the genome. Annotation is the identification of genes, its structure,
and other miscellaneous features in the genome as well as finding biological
functions of identified features. The genome annotation is classified into structural
and functional annotation. Structural annotation involves finding the locations of
genes in the chromosomes, gene structure such as exons, introns, UTR, etc., and
finding other genomic features such as repeats, transposable elements, etc. Structural
annotation of the genome can be done through two methods, namely, ab-initio gene
prediction and homology-based gene prediction. The ab-initio gene prediction
method predicts the gene structure based on the different patterns or features of the
gene. The homology-based methods involve the prediction of genes based on the
significant similarity between query sequences and already identified gene
sequences. Most of the gene prediction algorithms or tools make use of both
methods.

8.2.1 Ab-initio Gene Prediction

The ab-initio gene prediction method involves identification of genes using gene
features including start and stop codons, intron–exon junctions, binding sites for a
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transcription factor, etc. In addition, the ab-initio gene prediction algorithm uses
gene content, which is a statistical overview of the coding part of a gene. The gene
features will be identified by ab-initio methods using mathematical and statistical
methods. Many algorithms are applied for in ab-initio gene prediction, such as
Dynamic Programming, linear discriminant analysis, Linguist methods, Hidden
Markov Model (HMM), Support Vector Machines (SVMs), and Neural Network
to help differentiate between coding and noncoding regions of genes. Based on these
models, a great number of ab-initio gene prediction programmes have been devel-
oped such as Genscan [12], Gene Locator and Interpolated Markov ModelER
(GLIMMER) [13], FGENESH (http://linux1.softberry.com/), Augustus [14], and
MAKER [15]. GLIMMER is one of the gene predictions tools for the microbial
genome. To classify the coding regions and separate them from noncoding DNA
regions, interpolated Markov models (IMMs) are used in GLIMMER
[13]. FGENESH is the efficient and most precise gene finder available, and it uses
HMM for gene structure prediction. It also predicts genes using homology-based
methods. GENSCAN is a programme for the prediction of complete structures of
genes including gene location and their intron–exon boundaries in genomic DNA in
a variety of species [12]. AUGUSTUS is one of the best eukaryotic gene prediction
pipelines, which uses both de novo and homology-based methods to predict accurate
gene models [14]. MAKER is one of the easiest automated genome annotation
workflows for identifying genes and repeats. Firstly, it uses ab-initio gene prediction
method to identify the genes in the genome, and after that, it uses EST and protein
evidence to increase the predicted gene models with the ab-initio method [15]. How-
ever, the most successful programmes so far are based on the Hidden Markov
Model. The ab-initio gene prediction programmes used in the benchmark analysis
are focused on mathematical models that are qualified and usually perform well in
identifying conserved or well-studied genes [16].

Ab-initio gene prediction method mainly depends on two types of sequence
information: signal sensors and content sensors. Signal sensors involve identifying
gene-specific sites and patterns such as alternative splicing sites, promoter
sequences, and transcription start sites. Content sensors involve identifying coding
and noncoding patterns such as exon or intron lengths or nucleotide composition.
Gene prediction algorithms often make serious errors such as in the resulting gene
models include missing exons, noncoding sequence retention in exons, fragmenting
genes and merging neighboring genes and can affect downstream analyses, includ-
ing functional annotations, gene recognition, evolutionary studies, etc. This is
particularly true in the case of large “draft” genomes, where an imperfect genome
assembly, poor coverage, low consistency, and high complexity of the gene
structures are usually encountered by the researcher [17].

8.2.2 Homology-Based Methods

The homology-based approach includes sequence similarity search, which is a
conceptually straightforward approach based on identifying similarities between
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gene sequences of input genome and ESTs (expressed sequence tags), proteins, or
other genomes. This strategy is based on the assumption that evolutionarily coding
regions (exons) are more conserved than noncoding regions (intergenic or intronic
regions). The similarity information between certain genomic regions of the input
genome and an EST, DNA, or protein can be used to infer gene structure or function
of that region. The similarity to known proteins of closely related organisms is used
to predict the coding potential of the gene. The similarity of EST sequences to the
input genome is to detect the alternative splicing. The similarity of EST sequences to
the input genome typically has limitations in that ESTs often refer to small portions
of the gene which code, which means that the full gene structure of a given region is
often difficult to predict. The greatest drawback of this method is that only about half
of the genes being discovered have significant homology to genes in the databases.
And in some cases where EST sequences or closely related genomes are not
available, it is difficult to predict genes. Since this approach is based on similarity
to the known genes, proteins, or ESTs, the probability of predicting novel genes is
very less.

The major goal of genome annotation is to identify genes and their function
computationally with near 100% accuracy. In several scientific researches, genome
annotation seems to be essential for any information on the genome. However,
particularly for eukaryotes, the gene prediction is highly difficult because of many
computational problems. The major principle of gene prediction is pattern matching
to find the gene features. Normally, there are no retained motifs for coding regions.
Detection of the coding potential of genomic regions must depend on subtle gene-
related features that may be very difficult to identify. In the case of homology-based
methods, there are a large number of genes, whose functions were not identified yet.
Hence, the combination of both HMMs (ab-initio) and homology-based algorithms
can produce improved accuracy.

Once the gene models are predicted, the next step is to identify the biological
functions of these gene models, called a functional annotation. This involves finding
significant matches to the predicted genes using database search using various
alignment programs. For instance, if a translated DNA sequence of a predicted
gene is found to have significant similarity with a known protein using a database
search, then predicted gene function is also similar to that known protein.
Approaches for function annotation of genes and its products, i.e., protein has
been discussed in detail in Chaps. 7 and 11 of this book.

8.3 Gene Annotations in Rice

The rice genome annotation was conducted using prediction-based and homology-
based searches. The “Institute for Genomic Research” (TIGR), which again is part of
the IRGSP, started annotation project on rice gene, known commonly as the “Rice
Genome Annotation Project” (RGAP), prior to the completion of the IRGSP genome
sequencing project, and subsequently reported the results to the scientific world
[18]. The official project on genome annotation, the “Rice Annotation Project”
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(RAP), an initiative of the “National Institute of Agrobiological Sciences” (NIAS) in
Japan, has been initiated by IRGSP representatives, and data are released by
RAP-DB. The National Agriculture and Food Research Organization currently
manages the RAP-DB. Experimental data from closely related sequences, for exam-
ple, full-length rice cDNA sequences, ESTs (expressed sequence tags) of rice, and
RNA seq/protein sequences have been used in order to improve the gene models in
the rice annotations [11].

8.3.1 Gene Structure and Function Prediction

The steps involved in the rice genome annotation, which is published in the Rice
Genome Annotation Project, are as follows. The first steps involve assembling
BAC/PAC clones into 12 pseudomolecules. The second step is to annotate the
12 pseudomolecules, which involves the prediction of gene models and other
miscellaneous features using bioinformatic algorithms and software such as
FGENESH, Genemark.hmm, Genscan, GeneSplicer (to predict exons and introns),
tRNAscan-SE (to predict tRNA) with Maize and Arabidopsis thaliana as reference
gene models. The next step is to add biological information to the predicted genes.
Rice ESTs and FL-cDNAs and transcript assemblies (PUTs) from the PlantGDB
were aligned to the pseudomolecules using gmap. Only the EST and FL-cDNA
alignments were used for gene model improvement by PASA. The repetitive
elements and transposons (DNA transposons, retroelements, MITEs, etc.) were
identified by searching the sequence of each pseudomolecule. RepeatMasker was
used to identify the Simple repeats (Fig. 8.1) [19, 20].

Fig. 8.1 Flow chart showing annotation in rice explained in the Rice Genome Annotation Project
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8.3.2 Criteria for the Definition of Genes [19, 20]

• The models of genes are named after matching to proteins in the database to
indicate similarity.

• In particular, gene models are annotated as “xxxx, putative” with more than
30 percent identification and greater than 50 percent coverage.

• Genes with transcript evidence are additionally annotated as “expressed.”
• Genes were annotated as “conserved hypothetical protein,” if they were not

validated by transcript evidence but correlate with protein sequences from a
recognized gene.

• Predicted genes are classified as “hypothetical proteins” when they are not
aligned with known genes, transcripts, or protein sequences.

• Gene models that do not have homology to known genes or proteins but that are
supported by rice transcript evidence are labeled as “expressed protein.”

The system of gene nomenclature for rice was done by the “Committee on Gene
Symbolization, Nomenclature and Linkage (CGSNL) of the Rice Genetics Cooper-
ative” to enhance the methods of identifying, characterizing, and describing the
genes of rice. This explains the classification of rice genes into different groups built
on their sequence resemblance to earlier annotated genes. The predicted genes in the
rice, based on similarity of the sequence, have been classified into five major groups.
Only if there is significant experimental evidence that a gene has a sequence
similarity to a formerly annotated rice gene with an identified feature, genes are
then given a gene name and a gene symbol. Gene functions were assigned categories
II–V for the genes with insufficient evidence [21].

With the above-explained approach by The Rice Genome Annotation Project, the
genes were annotated with Transposon Element loci and without Transposon Ele-
ment Loci (Table 8.1).

8.4 Types of Genes in Rice

8.4.1 Protein-Coding Genes

A gene consists of four major components: 5’-UTR, coding regions (cds), intron,
and 3’-UTR [22]. An international consortium for rice genome annotation, the Rice
Annotation Project (RAP), has been created to standardize the annotated genome

Table 8.1 Summary of annotated genes in rice genome from the “Rice Genome Annotation
Project” [8]

Class Number Gene models Gene size Exons/gene Introns/gene

Non-TE loci 39,045 49,066 2853 bp 4.9 3.9

TE loci 16,941 17,272 3223 bp 4.2 3.2
aTE Transposon Element
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data for Oryza sativa subspecies Nipponbare [23]. Oryza sativa haploid genome
(chromosome number 12) contains about 36,000 protein-coding genes. Over the past
decade, genomes of cultivated rice and their wild varieties have been sequenced, but
the most efforts are focused on genome assembly and gene prediction of two primary
rice cultivars, 93–11 (indica) and Nipponbare (japonica) [24]. The Rice Annotation
Project has taken the annotation of the Rice genome after completion of rice genome
assembly from IRGSP. Using an ab-initio gene prediction method, 37,544 protein-
coding genes associated with non-transposable elements were identified, and 2859
rice genes were not formally reported in the genome of Arabidopsis [11]. The
average gene size in rice is about 2853 bp. Table 8.2 shows the statistics of genes
in each chromosome of rice.

There is a total of 37,860 gene locus and 44,924 transcripts; which were
supported by FL-cDNAs, Expressed Sequence Tags (ESTs), or proteins in the rice
genome sequenced and assembled by IRGSP. Figure 8.2 shows gene distribution in
all 12 rice chromosomes of both japonica and indica based on the recent proteomes
submitted to the Uniprot database (https://ebi16.uniprot.org/).

8.4.2 Exons

An exon is the portion of a gene that codes for amino acids. They are that part of the
mRNA that code for proteins. From the sequence analysis, it is observed that the
average length of exon in rice genes decreases with an increasing number of introns.
Linear correlation is observed between the total exon length and the number of
introns, and the length of a gene depends on the number of introns [26]. There is a
total of 166,057 exons in the rice genome with an average length of 193 bp, which
contains 48.6% of GC content. Table 8.3 shows the statistics of exons in rice.

8.4.3 Introns

Introns are the noncoding regions that disrupt some coding regions in the genome.
Rice introns are generally longer and have higher GC content [28]. There is a total of
111,343 introns in the rice genome with an average length of 433 bp, which contains
37.3% of GC content (Table 8.4).

8.4.4 Pseudogenes

The gene that has homology to known protein-coding genes but contains a frame-
shift and/or stop codon, which disrupts the ORF is called Pseudogenes. These
pseudogenes are thought to have arisen from duplication followed by loss of
function. A total of 1439 pseudogenes were predicted in the rice genome, which
was predicted based on similarity with (proper) fully supported models of the gene
and also the existence of the premature translational stop codons or frameshifts. For
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816 pseudogenes, out of which 75% resulted from events like gene duplication, and
the rest 25% were likely to be the product of retrotransposition, the likely origin
could be determined. A total of 12% of the pseudogenes have gene expression
evidence. F-box, BTB/POZ, terpene synthases, chalcone synthases, and cytochrome
P450 protein families were coded by a significant number of pseudogenes [29].

Fig. 8.2 Distribution of genes across the chromosomes of rice (japonica and indica subspecies).
M Mitochondria, C Chloroplast

Table 8.3 Statistics of
Exon in rice [27]

Contents Number

Total Exons 166,057

Internal Exons 92,336

Average length, bp 193

Median length, bp 119

GC content 48.6%

Table 8.4 Statistics of
Introns in rice [28]

Contents Number

Total introns 111,343

Long introns (>1 kb) 11,541 (10.4%)

Average length, bp 433

Median length, bp 160

GC content 37.3%
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8.4.5 Noncoding RNA Genes

Noncoding RNAs (ncRNAs) are the RNAs which are functional and transcribed
from DNA but not translated into protein and which regulate the gene expression.
These noncoding RNA genes include microRNA (miRNA), tRNA (transfer RNA),
and rRNA (ribosomal RNA) genes. The short arm of chromosome 9 inO. sativa ssp.
japonica, in particular at the telomeric end, consists of ribosomal DNA coding units
called17S–5.8S–25S. These 17S–5.8S–25S rDNA locus in O. sativa ssp. indica was
also found at the end of the short arm but in a different chromosome that is at
chromosome 10 [25]. In all 12 chromosomes, 763 transfer RNA genes have been
found, along with 14 tRNA pseudogenes. There is a single tRNA cluster in chromo-
some 4 and in chromosome 10, there are two large clusters, originated through
inserted chloroplast DNA. The large clusters appear only in the regions of interme-
diate density on chromosomes like 1, 2, 8, and 12, apart from these they do not exist
in the other regions.

MicroRNAs (miRNAs) is a class of eukaryotic noncoding RNAs, known to
interact with the target mRNA and regulate gene expression [30]. In total,
158 miRNAs are identified in chromosomes of rice. 93 spliceosomal RNA genes
and 215 small nucleolar RNA (snoRNA) were spotted, along with other noncoding
RNAs [31].

8.5 List of Rice Gene Databases

Rice gene database provides genome sequence as well as annotation information of
all the 12 chromosomes of the rice with genome browsers, providing an integrated
display of annotation data [8]. The primary objective of the rice gene databases is to
provide an effective and consistent annotation of the genome sequence of rice to the
research world. The facilitation of a systematic study of the genomic structure as
well as the function of rice, based on annotation, is one of the key goals of the rice
gene databases [25]. Information about different rice databases is described in detail
in Chap. 3. Some of the major rice gene annotation databases are given below.

8.5.1 Rice Genome Annotation Project

The Michigan State University (MSU) Rice Genome Annotation Project is a
National Science Foundation project and is a major database for the rice gene
annotation which provides rice genome sequence and annotations, particularly
Nipponbare subspecies. All 12 chromosomes of Nipponbare have been annotated
and the information can be available on the search page of the database. In the
database, the rice genome browser reveals the annotated data across various tracks
[8] (http://rice.plantbiology.msu.edu/).
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8.5.2 The Rice Annotation Project (RAP-DB)

The “Rice Annotation Project (RAP-DB)” gives the recent and updated annotation
of the rice genome using the “Os-Nipponbare-Reference-IRGSP-1.0,” which is
developed in association with the MSU Rice Genome Annotation Project and
RAP. At first, the IRGSP rice genome sequences were scrutinized using sequencing
reads with ~44X coverage obtained by next-generation sequencing platforms, and
secondly, the sequencing errors were corrected properly. The key objective of the
RAP-DB project is to facilitate an overall study of the annotation-based gene
structure and function of rice. The database also contains tools such as BLAST,
BLAT, Gbrowse for rice genes and genome, etc. [25] (https://rapdb.dna.affrc.go.jp/).

8.5.3 Oryzabase

Oryzabase is a rice database which integrates the biological and genome data of rice
and was created in Japan by a group of rice researchers in the year 2000. Initially, the
database aims to collect as much expertise as possible, covering from classical
genetics of rice to modern genomics and also from basic details to other relevant
information of rice. This database also offers a detailed view of rice by combining
molecular genomic knowledge with biological data. Oryzabase includes many
genetic, physical, and expression maps that combine biological sequences with
complete genome and cDNA sequences [32] (https://shigen.nig.ac.jp/rice/
oryzabase/).

8.5.4 Rice Mutant Database (RMD)

The “Rice Mutant Database (RMD)” is a combined national programme developed
by the Wuhan Group, China’s “National Special Key Program” on Functional
Genomics of rice, and sustained by the Huazhong Agricultural University’s
(Wuhan), which comprises thorough information on roughly 129,000 transfer
DNA insertion (enhancer trap) lines of rice and comprehensive information on
mutant phea traps. You can scan for RMD using keywords and nucleotide or protein
sequences. RMD offers mainly three types of functions, such as the novel genes
finding, the identification of regulatory elements, and the identification precise
growth phases by predicting ectopic expression (misexpression) pattern lines for
the targeted gene in particular tissues [33] (http://rmd.ncpgr.cn/).

8.5.5 RiTE DB

Arizona Genomics Institute created Rice TE Database, which gathers repeat DNA
sequences and transposable elements (TEs) of various closely related rice species.
This database facilitates the annotation of TE and repetitive sequences and genomic
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analysis of a multiple genome data, established for the Oryza Genome Evolution
project, which is a part of the “International Oryza Map Alignment Project (OMAP)”
[34] (https://www.genome.arizona.edu/cgi-bin/rite/index.cgi).

8.5.6 RiceFREND

RiceFREND contains gene coexpression data for rice and offers a platform for the
prediction of genes which are functionally related in several pathways and/or
metabolic processes in rice with a large set of microarray data obtained at various
phases of growth and development from different rice tissues [35]. The gene
expression data used for coexpression data analysis is accessed from RiceXPro, a
repository of gene expression information gathered from microarray analysis [36]
(https://ricefrend.dna.affrc.go.jp/).

8.5.7 The Rice Genome Knowledgebase (RGKbase)

RGkbase is a database majorly developed for the relative study of the rice genome
which focuses on three key components. Firstly, for rice genomics and molecular
biology, integrated data curation. Secondly, user-friendly interface in terms of
annotation of genome and evolutionary dynamics to access the data easily and
finally, the bioinformatic methods for descriptions of gene ontology, pathway
analysis, and classifications of the gene family. RGKbase currently provides geno-
mic data for five varieties of rice [37] (http://rgkbase.big.ac.cn/RGKbase/).

8.6 Conclusion and Future Perspective

Rice is one of the major food crops which most of the world’s population feeds. In
terms of genome size, rice is the smallest of the cereal crops’ genomes with the
genome size of 400–430 Mb. The first rice genome sequencing was carried out by
“The International Rice Genome Sequencing Project (IRGSP)” which started in the
year 1997 and generated high-quality genome sequences of Nipponbare, a japonica
type of rice cultivar in 2005. The genome annotation is an important step in any
genomic research. The rice genome annotation was conducted using prediction-
based and homology-based searches by using various bioinformatics algorithms.
Employing gene annotation approach genes and other miscellaneous features of
genome such as noncoding RNA genes, transposable elements, etc., have been
identified with their biological function. The bioinformatic workflow for annotation
of rice involved several steps including gene structure prediction (identification of
introns, exons, UTRs, etc.), finding their biological function, and validating the
genes predicted based on protein or EST evidence. The availability of rice genome
annotation data would improve plant breeders to recognize candidate genes and
enhance novel breeding strategies to overcome future challenges.
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Phylogenetic Analysis 9
Manoj Kumar Gupta, Gayatri Gouda, S. Sabarinathan,
Ravindra Donde, N. Rajesh, Pallabi Pati, Sushil Kumar Rathore,
Lambodar Behera, and Ramakrishna Vadde

Abstract

In this chapter, the authors attempt to understand the underlying phylogeny
principle and how researchers implement diverse methods to discover the appro-
priate phylogeny. Results obtained revealed that phylogenetic trees reflect evolu-
tionary past as a canonical framework. Phylogenetic tree building step essentially
comprises of five steps: (a) selecting molecular markers; (b) multiple sequence
alignment; (c) determining the best evolutionary model; (d) determination of tree
building method; and (e) assessment of tree reliability. Phylogenetic trees have
various functional uses in different biological fields, such as conservation biol-
ogy, epidemiology, forensics, cancer evolution, HIV transmission, gene expres-
sion prediction, protein structure prediction, and drug design. However,
researchers face different challenges for generating a more accurate tree, like
memory efficiency and implementation and optimization of the likelihood func-
tion. The authors believe, in the near future, the development of exciting new
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algorithms, which dramatically reduce the necessary amount of likeliness assess-
ment, combined with enhanced knowledge of previously described high-
performance machine problems in the group, is likely to detect more accurate
phylogenetic tree that include 10,000–20,000 sequences. Additionally, it will also
permit the tree inferences on medium-sized PC.

Keywords

Phylogeny · Molecular markers · Bootstrapping · Character-based · Distance-
based · Jackknifing

Abbreviations

BI Bayesian inference
cpDNA Chloroplast DNA
dN Non-synonymous
dS Synonymous
GBS Genotyping-by-sequencing
HTU Hypothetical taxonomic units
ITS Internal transcribed spacer
JC Jukes and Cantor
LCA Last common ancestor
LUCA Last universal common ancestor
ML Maximum-like
MSA Multiple sequence alignment
OTUS Operational taxonomic units
PCR Polymerase chain reaction
UCES Ultra-conserved elements

9.1 Introduction

Before the development of DNA sequence technology, phylogenetic trees have been
predominantly employed to identify the connections between various organisms
[1]. Ever since the development of sequencing technologies and use of sequence
data for phylogenetics, there has been drastic improvement in our understanding of
the tree of life, and tremendous advancement has been made in Darwin’s dream of
“very fairly true genealogical trees of each great kingdom of nature” (https://www.
darwinproject.ac.uk/letter/DCP-LETT-2143.xml). Woese and Fox’s [2] 1977 paper
was an early illustration of what we term molecular phylogenetics today - compari-
son between macromolecular sequences to predict genealogical associations and
thereby evolution. Crick [3] and more formally Zuckerkandl and Pauling put
forward the idea of matching sequences with more closer relationships [4]. At this
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period, protocols developed by Sanger, who had won his first Nobel Prize for this
discovery [5], and the identification of the amino acid sequence of insulin in the
1950s, rendered it more tractable to establish the sequences of different proteins.
Subsequently, protein biochemists started to develop phylogenetic maps focused on
amino acid sequences obtained from different species, primarily animals. Russell
Doolittle drafted the evolution of vertebrate with blood-clotting fibrinopeptides
[6]. Fitch and Margoliash employed the mitochondrial protein cytochrome C to
link animals and certain fungi [7]. Subsequently, phylogenies have been used in
almost every biological branch, including characterizing connections between
paralogs in the population history [8], gene family [9], evolutionary and epidemio-
logical dynamics of pathogens [10], language evolution [11], and the genealogical
association between cancerous somatic cells [12]. In recent years, molecular
phylogenetics has also become an utterly important method for comparing various
genomes [13–15] and the reconstruction of ancestral genomes [16]. Thus, in this
chapter, the authors attempt to understand phylogeny’s basic concept and how
researchers implement various approaches to reconstruct the best phylogeny tree.
Subsequently, the authors also described in brief about problems researchers face
while reconstructing phylogenetic tree and how, in the near future, we can
overcome them.

9.2 Basic Concept

A fusion of different Greek terms produces the word “Phylogeny.” In Greek, phylon
means “tribe” or “clan” or “race,” and genesis means “source” or “origin.” The word
may also be used to identify genes originating from a single ancestral gene [17]. Phy-
logenetic trees are composed of leaves, nodes, and roots similarly like botanical trees
(Fig. 9.1) [18]. The leaves of a tree are often called node or tips or operational
taxonomic units (OTUs) [18, 19]. The OTUs are real objects, such as plants,
cultures, genes, or protein sequences - while internal nodes are hypothetical taxo-
nomic units (HTUs). An HTU is a deducted unit that reflects the last common
ancestor (LCA) of the nodes from this stage. Sister groups are descendants (taxa)
separate from the same node, and a taxon outside of the clade is referred to as an
outgroup [19]. A branch that reflects the continuation of a lineage over time will
subjugate one or more leaves. Branches link at nodes with other branches reflects the
last common predecessors of species at the descendant lines’ tips. An external
branch is a branch that links a tip to a node, while a branch joining two nodes is
considered an internal branch [18]. A node depicts a spot where the ancestral line
(a branch below the node) separates and gives rise to a few or more descendant lines
(a branch above the node).

Branching within an evolutionary tree is often termed “lineage splitting” or
“cladogenesis.” After a group breaks into two, evolution occurs in these separately
created lineages individually. The lineage sequence divides into a tree creates its
form or “topology.” Tree topology tells us how the lines are branched over time and
give rise to their tips. “Clades” are tree groupings with a node, and all lineages come
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from that node. The compilation of all tips is regarded since “monophyletic,” as it
contains all the daughters of an ancestral lineage. A topology of a tree may now be
more precisely described as the set of claddings within a tree [18].

Phylogenetic trees may be unscaled or scaled. In a scaled tree, the branch’s length
refers to the sum of evolutionary divergence happening along that branch (e.g.,
number of the nucleotide substitutions). For an unscaled tree, the length of the
branch is not proportionate to the sum of evolutionary variations; however, the
exact quantity is typically seen elsewhere in the branch [19]. Phylogenetic trees
may be unrooted or rooted. A rooted tree has a node (root) which diverges the rest of
the tree. This source is also considered the “last universal common ancestor”
(LUCA), from which the other taxonomical classes have come down and diverged
over time. LUCA and LCA are described in molecular phylogenetics by DNA or
protein sequences. The creation of the rooted tree is optimal, but most phylogenetic
reconstruction algorithms generate unrooted trees [19].

Phylogenetic trees may also be phylogram, cladogram, and dendrogram
(Fig. 9.2). A phylogram is a scaled phylogenetic tree in which the branch’s lengths
correspond to the degree of evolutionary differentiation, e.g., the number of nucleo-
tide substitutions between related branch points will decide a branch length. A
cladogram is a branched hierarchical tree which shows the connections among
clades; cladograms are not scaled. The term dendrogram implies a hierarchical
organization of the clusters, where related artifacts are categorized into clusters
(based on such specified criteria), and thus the connections between the clusters
can be seen in a dendrogram. Dendrograms are also used to demonstrate branching
based on the clustering of genes or proteins in computational molecular biology [19].

9.3 Phylogenetic Tree Construction Methods

Phylogenetic tree building essentially takes five steps: (a) selecting molecular
markers; (b) multiple sequence alignment (MSA); (c) determining the best evolu-
tionary model; (d) determination of tree building method; and (e) assessment of tree
reliability [21–23]. List of softwares as well as tools that are widely used for
constructing pjjhylogenetic tree is depicted in Table 9.1.

9.3.1 Selecting Molecular Markers

One may use nucleotide or protein sequence data to create molecular phylogenetic
trees. The choice of molecular markers is critical since it can make a big difference in
the correct tree generation. The choice to use nucleotide or protein sequences
depends on the sequence properties and the research’s intent. Nucleotide sequences
that are more quickly changing than proteins may be used to research very closely
associated animals. However, conserved protein sequences make sense rather than
utilizing nucleotide sequences if the phylogenetic relationships to be established are
at the deepest stage, for example, between bacteria and eukaryotes. Protein
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sequences are also preferred to nucleotide sequences since the protein sequences are
most likely to be preserved owing to the genetic code degeneracy for which
61 codons encode 20 amino acids because a few codon switch cannot modify
amino acid. Protein sequences will therefore stay the same as corresponding DNA
sequences, even if they have more space for variation, particularly at the third codon
site. The major genetic disparity between the three-nucleotide sites often violates one
of the assumptions of the tree design. In comparison, even with divergent sequences,
the protein sequences do not really suffer from this issue [21]. Additionally, DNA
sequences are so much more biased than protein sequences owing to selective usage
of a codon in multiple species. In this situation, various codons are used in various
frequencies with the same amino acid, resulting in sequence inconsistencies not due
to evolution. Moreover, the mitochondria genetic code differs from the normal

Fig. 9.2 Different types of phylogenetic trees. Phylogram: (a) rectangular layout, (b) slanted
layout, (c) circular layout, and (d) fan layout. Unrooted: (e) equal-angle method and (f) daylight
method. Cladogram: (g) rectangular layout, (h) circular layout, and (i) unrooted layout. (j) Scaled
layout and (k) Dendrogram layout
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Table 9.1 List of software or tools used for phylogeny reconstruction (Adapted from https://en.
wikipedia.org/wiki/List_of_phylogenetics_software)

Software/tools Description Methods Reference

AncesTree Clonal tree
reconstruction
employing cancerous
data

ML [24]

Ape R pacakges for
phylogenetics and
evolution analysis

Employs wide range of
phylogenetics functions

[25]

Armadillo
workflow
platform

General bioinformatic
and phylogenetic
analysis

Phylogenetic trees
reconstruction
employing distance,
ML, MP, BI, and related
workflows.

[26]

BAli-Phy Simultaneous BI of
alignment as well as
phylogeny

BI, alignment as well as
tree scan.

[27]

BayesPhylogenies BI of trees employing
Markov chain Monte
Carlo methods

BI, multiple models,
mixture model (auto-
partitioning)

http://www.
evolution.rdg.ac.
uk/BayesPhy.html

BayesTraits Analyzes trait evolution
among groups of species
for which a phylogeny
or sample of
phylogenies is present

BI http://www.
evolution.rdg.ac.
uk/
BayesTraitsV3.0.
2/BayesTraitsV3.
0.2.html

BEAST Bayesian evolutionary
analysis sampling trees

BI, relaxed molecular
clock, demographic
history

[28]

BioNumerics Universal platform for
the management,
storage as well as
analysis of all forms of
biological data,
including tree and
network inference of
sequence data.

NJ, MP, UPGMA, ML,
distance matrix
methods. Estimation of
the consistency of trees/
branches employing
bootstrapping, error
resampling, or
permutation resampling

https://www.
applied-maths.
com/bionumerics

Canopy Evaluating intratumor
heterogeneity as well
tracking spatial and
longitudinal clonal
evolutionary history by
next-generation
sequencing

ML, Markov chain
Monte Carlo (MCMC)
methods

[29]

Dendroscope Tool for visualizing
rooted trees and
calculating rooted
networks

Rooted trees,
tanglegrams, consensus
networks, hybridization
networks

[30]

EzEditor EzEditor is a java-based
sequence alignment

Neighbor joining [31]

(continued)
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Table 9.1 (continued)

Software/tools Description Methods Reference

editor for rRNA and
protein-coding genes. It
allows manipulation of
both DNA and protein
sequence alignments for
phylogenetic analysis.

FastTree 2 Fast phylogenetic
inference for alignments
having 100 to 1000
sequences

Approximate ML [32]

Geneious Have numerous
genomes as well as
proteome research tools

NJ, UPGMA, GARLi
plugin, MrBayes plugin,
RAxML plugin,
PHYML plugin,
FastTree plugin, PAUP*
plugin

https://www.
geneious.com/

HyPhy Hypothesis testing
employing phylogenies

ML, clustering
techniques, NJ, distance
matrices

https://www.
hyphy.org/

IQ-TREE An effective
phylogenomic software
through ML, as
successor of TREE-
PUZZLE and IQPNNI

ML, model selection,
AIC, partitioning
scheme finding, BIC,
ultrafast bootstrapping,
likelihood mapping
branch tests, tree
topology tests

[33]

jModelTest 2 A high-performance
computational tool for
carrying out statistical
selection of best-fit
models of nucleotide
substitution

AIC, BIC, DT, dLTR
hLTR, ML

https://github.
com/ddarriba/
jmodeltest2

MEGA Molecular evolutionary
genetics analysis

Distance, parsimony
and maximum
composite likelihood
methods

https://www.
megasoftware.net/

Mesquite Software for
evolutionary biology,
developed for helping
biologists to analyze
comparative data of
various organisms. It
can also be employed
for building time trees
having a geological
timescale, with few
optional functionalities.

MP, distance matrix,
ML

https://www.
mesquiteproject.
org/

MetaPIGA2 ML phylogeny
inference multicore

ML, stochastic
heuristics (genetic

https://www.
metapiga.org/

(continued)
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Table 9.1 (continued)

Software/tools Description Methods Reference

program for DNA and
protein sequences, and
morphological data. It
also implements tree
visualization tools,
ancestral sequences, and
automated selection of
best substitution model
and parameters.

algorithm, simulated
annealing,
metapopulation genetic
algorithm, etc.),
ancestral state
reconstruction, discrete
gamma rate
heterogeneity, model
testing.

Modelgenerator Model selection
(nucleotide or protein)

ML http://
mcinerneylab.
com/software/
modelgenerator/

MOLPHY Molecular
phylogenetics
(nucleotide or protein)

ML https://sbgrid.org/
software/titles/
molphy

MrBayes Posterior probability
estimation

BI https://nbisweden.
github.io/
MrBayes/index.
html

PAML Phylogenetic analysis
by ML

ML and BI [34]

ParaPhylo Estimation of gene as
well as species trees
based on event-relations
(paralogy and
orthology)

Cograph-editing and
triple-inference

[35]

PartitionFinder Combined selection of
models of molecular
evolution and
partitioning schemes for
DNA and protein
alignments.

ML, AIC, BIC [36]

PASTIS R package for
phylogenetic assembly

R, two-stage BI
employing MrBayes 3.2

[37]

PAUP* Phylogenetic analysis
employing parsimony
(*and other methods)

MP, ML, distance
matrix

http://paup.
phylosolutions.
com/

Phangorn Phylogenetic analysis in
R

ML, MP, distance
matrix, bootstrap,
phylogentic networks,
bootstrap, model
selection, SH-test,
SOWH-test

[38]

Phyclust Phylogenetic clustering ML of finite mixture
modes

https://snoweye.
github.io/
phyclust/

(continued)
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Table 9.1 (continued)

Software/tools Description Methods Reference

PHYLIP Phylogenetic inference
package

MP, distance matrix,
ML

https://evolution.
genetics.
washington.edu/
phylip.html

PhyloWGS Reconstructing sub
clonal composition and
evolution from whole-
genome sequencing of
tumors

MCMC [39]

PhyML Fast as well as accurate
estimation of
phylogenies employing
ML

ML http://www.atgc-
montpellier.fr/
phyml/

Phyx Unix/GNU/Linux
command line
phylogenetic tools

Explore, manipulate,
analyze, and simulate
phylogenetic objects
(alignments, trees, and
MCMC logs)

[40]

POY Supports various data
form and can perform
alignment as well as
phylogeny inference
employing numerous
heuristic algorithms

MP, ML, continuous
characters, chromosome
rearrangement,
alignment, discreet
characters

[41]

ProtTest 3 A high-performance
computing program for
detecting the model of
protein evolution that
best fits a given aligned
sequences set

ML, AIC, BIC, DT [42]

PyCogent Software library for
genomic biology

Simulating sequences,
alignment, controlling
third-party applications,
workflows, querying
databases, generating
graphics and
phylogenetic trees

[43]

RAxML-HPC Randomized Axelerated
ML for high
performance computing
(nucleotides and
aminoacids)

ML, simple MP [44]

RAxML-NG Randomized Axelerated
ML for high
performance computing
(nucleotides as well
asaminoacids) next
generation

ML, simple MP [45]

(continued)
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genetic code. Therefore, while analyzing mitochondrial data, the DNA sequences are
converted into protein sequences by comparing the mitochondrial codon table.
Moreover, protein sequences make a more sensitive alignment than DNA sequences,
as the former has 20 and later has 4 characters. Two randomly associated DNA
sequences were found to be capable of generating up to 50% sequence identification
if gaps are tolerated compared with 10% for protein sequences. For moderately
divergent sequences, the usage of DNA sequences is virtually difficult to achieve
proper alignment. In particular, when gaps are formed to optimize alignment scores,
protein-coding DNA sequences almost always trigger frameshift errors, rendering
the alignment biologically irrelevant. When it comes to alignment as well as
phylogenetic study, protein sequences simply have a better signal-to-noise ratio.
However, in certain instances, protein-dependent phylogeny might be more impor-
tant than phylogeny dependent on DNA [21].

DNA sequences may also be very informative in some situations, especially in
coding region, due to their higher rate of evolution. DNA sequences often represent
synonymous and non-synonymous substitutions to show proof of favorable or
harmful selection events. A distinction must be created between synonymous
substitutes and non-synonymous substitutions in order to consider positive or
negative selection. Synonymous substitutions are nucleotide variations in the coding
sequence which do not alter the encoding protein’s amino acid sequence.
Non-synonymous substitutions are nucleotide modifications that lead to amino
acid sequence modifications. Comparing the two forms of replacement rates helps
to explain an evolutionary cascade pattern. For example, if the non-synonymous
substitution rate is considerably higher than the synonymous substitution rate, this

Table 9.1 (continued)

Software/tools Description Methods Reference

SEMPHY Tree reconstruction
employing the
combined strengths of
maximum-likelihood
(accuracy) and NJ
(speed). SEMPHY has
become outdated.

A hybrid maximum-
likelihood/NJ method

http://compbio.cs.
huji.ac.il/semphy/

TreeGen Tree construction given
precomputed distance
data

Distance matrix [46]

T-REX
(webserver)

Tree inference as well as
visualization, MSA,
horizontal gene transfer
detection

Distance (neighbor
joining), parsimony and
ML (RAxML PhyML)
tree inference, MAFFT,
MUSCLE, and
ClustalW sequence
alignments and related
applications

[47]

UGENE Fast as well as free
multiplatform tree editor

Based on Phylip 3.6
package algorithms

http://ugene.net/
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means that certain parts of the protein experience active mutations that may lead to
the creation of new functions. This is defined as a positive or adaptive selection.
However, where the synonymous substitution rate increases, the non-synonymous
substitution rate still induces neutral modifications at the amino acid level, which
means that the protein sequence is critical enough to avoid modifications at the
amino acid sequence level. The pattern, in this case, is assumed to be negative or
purifying [21].

Over the last few decades, with molecular methods and tools developing, plant
phylogenetics has also started to use more nuclear and chloroplast loci for detecting
the best plausible relationships between plants. Due to their clear, stable structure as
well as ease of primer design and amplification, the chloroplast loci were commonly
used [48]. The single-parent heritage of chloroplast loci is disadvantaged by not
generally controlling the population tree and by maintaining their evolutionary pace
[48–51]. Nuclear genomes give several separate and unrelated positions that evolve
at different rates. They usually grow more rapidly than chloroplast loci [52, 53], but
because of the scarcity of sufficient genomic data for most taxa, they have a
drawback. Further problems occur from gene duplications or gene destruction,
which also shows paralogy when a nuclear locus is sequenced in another taxon
[54]. In addition, the sluggish pace of DNA evolution in chloroplast DNA (cpDNA)
and most nuclear protein-coding loci indicate that access to only a few loci also does
not overcome phylogenies at the species stage. Consequently, several plant
phylogenies are focused on many cpDNA loci with only the internal transcribed
spacer (ITS) regions reflecting the two-parent nuclear loci. The detection and
sequencing of several nuclear loci, which may in conjunction with cpDNA, be
useful in using differing rates of evolution as well as possibly different evolutionary
histories, is needed to obtain well-resolved phylogenies for species-rich plants. The
author believes that exons are more rational when opposed to intronic or noncoding
regions as aimed toward strongly differentiated taxa since they have fewer
differences and can be more securely matched than intronic and noncoding regions
with higher substitution rates as well as excessive length variations [55].

However, it remains challenging to choose the best loci for such work and to find
alternatives, which advise on various levels of the evolutionary past, entail resolving
a balance among facts as well as harmony. Locus is often essential to be orthological,
i.e., shared because of common ancestors and not paralogs from duplication events
[54, 56]. Nuclear single or low copy number genes are also beneficial since the
probability of the existence of paralogs is decreased considerably [57]. A series of
approaches were taken to obtain appropriate loci, mostly in the context of reduced
methods of representation [58]. They also use selective enzymes to target the
genome subset, which uses the genotyping-by-sequencing (GBS) and have the
benefit of not having genomic reference data but usually do not work for remotely
associated taxas since the restriction sites are less conserved [59].

Further precise methods of reduced representation include target enrichment,
including polymerase chain reaction (PCR) produced probes [60], the creation of
markers targeting 3’UTR, or exon capture based on transcriptome [61]. More
targeted approaches include utilizing current genomic tools to classify candidate
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genes – Bragg and the team [58] used lizard Anolis’s exons to classify the same
homologs in more distant associated taxa transcriptomes using the stronger recipro-
cal BLAST technique, while Li et al. [62] used a comparative approach to compare
exons across fish genomes to supposedly filter one-copied orthologous exons. These
approaches could be useful for phylogenetic estimates in more distinct taxa [58, 63].

Similarly, targeting ultra-conserved elements (UCEs) by means of hybrid enrich-
ment can be helpful in solving mid to deep phylogenies [64], but these are not always
capable of capturing adequate signals to overcome shallower nodes [65]. Marker sets
used for anchored phylogenomic may be useful at different phylogenetic stages, as
both retained loci and flanked regions comprising variants can be targeted but have a
comparatively long period of development [64]. Likewise, exon capture is widely
used in multilevel phylogenetics [64] but needs prior genomic tools, such as a
reference genome(s). The discovery of numbers of insightful loci with minimal
genomic tools remains a problem. The latest methodologies for finding conserved
plant phylogenetic inferences include hybrid approaches utilizing transcriptome and
genome skim details in Oxalidaceae [66, 67], or transcriptome and the whole
genome sequence records in Ericaceae [68].

9.3.2 Multiple Sequence Alignment

To date, sequence data is now the most widely used form of data for phylogenetic
reconstruction. Even before sequence may be used for the reconstruction of phylog-
eny, it must be aligned, and its accuracy has been shown to influence the consistency
of the presumed phylogeny [69]. The most common and widely employed MSA
method is progressive alignment. Basically, it operates by first aligning the two
nearest sequences and one by one, before any sequence is matched. ClustalW
[70, 71] is one of the best-known progressive sequence alignment tools. ClustalW’s
primary concern is that preliminary pair-wise alignments are resolved, and early
glitches cannot be changed later, although such alignments interfere with later
sequences [72]. T-Coffee is another common technique for sequencing, which can
be used as an advanced process variant [73]. Detail description of MSA has been
described in Chap. 7 earlier. Yet, detailed MSA reconstruction is a difficult mea-
surement job because of (1) the evolutionary process’s stochastic features, (2) mod-
ern bioinformatics approaches have computational restrictions, and (3) a lack of
specific evolutionary models representing sequences of processes [74]. Earlier stud-
ies have reported that large-scale assessment of alignment methods utilizing
simulated as well as empirical datasets yield MSAs that are still subject to significant
errors. Such alignment errors were found to influence phylogeny inference precision
[75]. Earlier studies indicated that filtering unstable MSA regions before phylogeny
inference could increase the accuracy of tree reconstruction. Whatever the filtering
technique used, eliminating alignment errors is invariably followed by eliminating
insightful phylogenetic signal. This precarious compromise among the amount of
noise and the amount of signal excluded from MSA renders it impossible to evaluate
the benefits of filtering unreliable alignment regions [76].

9 Phylogenetic Analysis 191



Alternatively to screening out unreliable columns of alignment, some
experiments recommended reducing ambiguity by seeking MSA consensus to
collect alternative MSAs or choose the most reliable MSA [77]. Previously, various
methods of alignment, or separate parameter choices of a specific method, produce
MSAs that vary considerably from each other [78, 79]. This instability in resulting
MSAs indicates that MSA consensus approaches, comparable to the column-
filtering approaches mentioned above, minimize noise at the expense of discarding
significant phylogenetic signal [74].

The weight of the MSA columns based on their reliability is another solution to
filtering faulty columns. Early works demonstrate that introducing a different coding
scheme to ambiguous columns contributes to the more precise reconstruction of the
trees [80]. A similar suggestion of utilizing an unreliable coding scheme for the
maximum-like (ML) system was also proposed [81]. In recent years, ML-tree
reconstruction has been found to be more reliable as any column in the MSA input
has been weighed by its redundancy [76]. Although MSA’s possible advantage
directly in tree reconstruction is seen by experiments, they only use just one MSA,
which can be used to solve the alignment problem and hence disregard most of the
phylogenetic signal found in the next segment of the so-called “alternative MSA.”
Specifically, these methods assign a null weight to entirely MSA columns in
alternate MSAs, only in the weight of MSA and not in the original MSA, irrespective
of the frequency of these columns [76].

In the maximum parsimony (MP) paradigm, the mixture of alternative MSAs was
previously suggested, created by changing the gap penalty parameter. The technique
known as Elision uses the broad, concatenated MSA to inference phylogeny
[82]. This method is analogous to weighing MSA columns by the number of
iterations before tree reconstruction processes in the concatenated MSA. Researchers
also developed a GUIDANCE tool that uses those weights (the number of times a
column occurs in a number of alternate MSAs) to calculate the reliability of that
column. We found that filtering unreliable positions on the basis of this weighting
would boost the positive conclusion in selection [83]. GUIDANCE2 is an tool
focused on the generation of alternative MSAs by variation of the reference book
for MSA generation, the distance opening penalty, and another similar high-ranking
MSAs [84].

Basically, merging MSAs is like having a special MSA, in which each column ‘s
weight is the amount of times it occurs between alternate MSAs. This technique is
very similar to the reliability estimate of GUIDANCE. However, although only
positions given by the alignment method in the best MSA is weighted in GUID-
ANCE (the “base MSA”), the recent research by Ashkenazy and the team also
weights MSA columns not present in the base MSA, that is, all original MSAs and
alternate MSA columns are weighted equally. This method can be broken down into
three phases: (1) alternative MSAs are generated; (2) all feasible single alignment
columns are extracted from the “MSA Base” and alternative MSAs; (3) use a
weighted MSA obtained called SuperMSA as well as the column weights to recreate
a phylogenetic tree, which is centered on its frequency between the alternate MSAs
and base MSA [74].
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9.3.3 Determining the Best Evolutionary Model

The number of replacements in an alignment is essentially a calculation of the
divergence between two sequences. The proportion of substitutes specifies the
distance between the two sequences found. However, the amount of substitutions
observed does not reflect true evolutionary events. When a mutation as A substituted
with C is detected, the nucleotide might have required some intermediate measures
to becoming C, such as A alternatives T!T! G! T! C. A back mutation may
even have happened where a mutant nucleotide returned to the initial nucleotide.
This indicates that mutations such as G ! C !G could have arisen where the same
nucleotide is detected. In addition, an identical nucleotide in the alignment could be
found in simultaneous mutations as, e.g., the two sequences mutate into T. The
calculation of true evolutionary distances between sequences is obscured by the
various substitutions and convergence at individual loci. This phenomenon is known
as homoplasy, which may lead to incorrect trees if not corrected. In order to correct
homoplasy conditions, statistical modeling is needed to evaluate the true evolution-
ary distances among sequences. Statistical methods used to fix homoplasy are
termed substitution or evolutionary models. Based on the sequence type, to date,
numerous substitution models of DNA, amino acid and codon, sequences have been
developed [85].

9.3.3.1 DNA Substitution Models
Jukes and Cantor (JC) [86] described the first and easiest model to imitate the DNA
substitution process. For both nucleotides substitution and nucleotide frequencies,
this model assumes one substitution rate. Changes between bases with an identical
chemical composition (transitions) are, however, more frequent than changes among
bases with various chemical structures (transversions). Genetic coding also allows
further transformations than transversions without the substitution of amino acid
[87]. Motivated by this information, Kimura [88] proposed a two-parameter model
(K80) in which change rates vary among transitions and transversions. Similarly,
Felsenstein [89] (F81) generalized the JC model to incorporate multiple nucleotide
frequencies, which may often occur as a result of natural selection as well as
nucleotide physicochemical properties. A range of models was developed subse-
quently by adding extensions to the initial models, e.g., SYM [90] and HKY
[91]. According to this pattern, the general time-reversible model (GTR) (Tavaré
1986) integrates variable rates for each modification as well as different nucleotide
frequencies. Additionally, few other models also integrate a variance rate across sites
(+ G) [92] and/or proportion of invariable sites (+ I) [93].

Stationary, reversible, and homogeneous DNA substitution schemes derived
from all feasible combinations have already been established and are being applied
in several phylogenetic programs [94, 95]. However, considering the high number of
DNA substitution models available, the GTR + G + I model usually suits better with
real data than the other (simpler) alternative models [96]. Importantly, the GTR
model introduces unnecessary mathematical properties [i.e., two GTR matrice
multiplications do not return an additional GTR matrix [96] to be used as a
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phylogenetic [96, 97]]. In particular, the repeated selection of the most complicated
substitution model indicates that the fit of real data could be improvised by more
complex models [98].

9.3.3.2 Codon Substitution Models
Sites inside codons evolve at varying speeds and should, therefore, not be considered
similarly. In reality, considering molecular evolution at the codon stage, we should
take more plausible evolution trends into account for each codon location. Evolu-
tionary models focused on the design of codon evolution are actually more rigorous
than those drawn from empirical amino acid models [85]. Interestingly, codon-level
mutations are known to be synonymous (silent) as well as non-synonymous (amino-
acid replacement), which provides the molecular selective pressure (molecular
adaptation) measure. The first models considered non-synonymous (dN) and synon-
ymous (dS) substitution rates [99], or the dN/dS ratio [100]. dN/dS > 1 means that
protein-coding gene substitutions have been applied to those that have altered the
states of amino acids and imply diversifying (positive) range [101, 102]. By com-
parison, dN/dS < 1 and dN/dS ¼ 1 may be viewed as a purifying (negative) and
balanced selection [101, 102].

Additional codon versions have also been suggested to best match certain codon
datasets [100]. The codon model for GY94 was expanded to include different
nucleotide models, e.g., GTR [103], dN/dS variation across different branches
[104] and across sites [103, 105]. Additional codon models provide details on the
physical and chemical properties of the amino acids encoded [106]. Besides, a
variety of empirical codon models - focused on comprehensive databases [107] as
well as codon models that take codon bias into account [108], or impact of various
GC content [109] were also suggested. Codon models thus help us to conduct correct
evolutionary research and explore molecular adaptation signatures. However, the
broad matrices of these models’ exchangeability are troublesome in technical terms
(61X 61; remember that stop codons are omitted). As a result, large quantities of data
are expected to produce statistically successful analytical codon matrices and a large
computational burden. Consequently, vast quantities of data are required to produce
statistically well-supported analytical codon matrices, which in turn demands high
computational facilities. Fortunately, codon-based optimization research now
produces new evolutionary methods for modeling and assessing codon evolution,
but further research is required in this regard (e.g., integrating parallel likelihood
matrix computing) [85].

9.3.3.3 Amino Acid Substitution Models
Substitute models of amino acid evolution are intended to imitate the evolution of
protein data, which are crucial for the test of a variety of hypotheses, for instance,
phylogenetic tree reconstructions [110], rate of protein evolution [111], or selection
in novel proteins [112]. Amino acid substitution models can be categorized into the
following two major groups: (i) empirical model-based on large protein databases,
e.g., Dayhoff [113], CpRev [114], and DayhoffDCMUT [115]. (ii) Parametric
models are based on protein evolutionary parameters [116]. An empirical model
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for amino acid substitution involves a matrix of 20 X 20 exchangeability ratios and
20 amino acid frequencies. Compared with other amino acid models, including those
focused on structural limitations, this simplification contributes to benefits and pits.
Empirical models may be integrated by assuming site-independence (all the sites
evolve under the same model) into the most widely used probability functions
introduced in standard phylogenetic software. The heterogeneous evolution can
also be modeled by identifying numerous empirical models for the different protein
sequence partitions (i.e., sites or domains) [117]. However, every real data collection
could not be accurately interpreted by any of the analytical models currently
available. For example, Keane et al. (2006) showed that the strongest empirical
model was originally extracted from the retroviral protein Pol for two large
proteobacterium and archaea protein datasets.

However, to offer an alternative to empirical models, protein folding constraints
were considered to produce parametric amino acid substitution models that resulted
in substantial changes (in terms of empirical models) while fitting actual data
[118]. Nevertheless, these models are not designed for evolutionary studies of
protein data as the commonly employed evolutionary processes are likely to conduct
tasks that do not resolve site dependency. The ongoing research of structurally
restricted substitution models is, therefore, designing location-specific matrices
that can be inserted into common phylogenetic frames [119]. While current research
into amino acid substitution models offers more complex models, these models are
not typically used by evolutionary biologists as these models are frequently
overlooked in evolutionary frameworks. An alternate technique may be an Approxi-
mate Bayesian computation (ABC) method for considering complicated substitution
models in model selection and also in evolutionary analysis [85].

9.3.4 Determination of Tree Building Method

Two key types of tree-building approaches currently operate, each with advantages
and limitations. The first type is focused on distinct characters of molecular
sequences of taxa. The fundamental principle is that characters in corresponding
positions are homologous between the sequences. Therefore, this dataset will map
the character states of the shared ancestor. Another hypothesis here is that every
character evolves separately and is therefore viewed as an individual unit of evolu-
tion. The second group of phylogenetic approaches is focused on the difference
between pairs of sequences, which is determined according to the orientation of the
sequences. Methods based on distance presume that all sequences are homologous,
and the branches of the tree are additive, so the distance between the two taxa equals
the sum of all the related branches [21].

9.3.4.1 Distance-Based Methods
One job with many applications is to build a tree with a matrix of distances whose
relative locations in the leaves somehow represent the distances [120]. This is
valuable for both evolutionary genetics, where the tree reflects the evolution of a
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group of organisms, groups or genes, and for cluster studies, where the tree exposes
the correlations in an item array. In evolutionary biology, molecular sequence
distances are usually calculated utilizing probabilistic sequence evolution models
[121, 122]. The resulting distances can be assumed to be essentially additive. In
other terms, a (phylogenetic) tree with branch lengths can be formed to approxi-
mately equivalent path lengths (sequences) between the leaves. Finding this tree is
the aim of many common tree reconstruction methods based on distance. The key
benefit of distance-based techniques is their implementation speed, which is greater
than that of other (potentially more accurate) approaches. As a result, distance
methods are employed if computational utility is critical: to rebuild very large
trees or, as in the case of bootstrapping, large sets of trees or also to create initial
phylogenies for quest heuristics centered on sophisticated approaches. Indeed, a
general pattern in bioinformatics as well as computational biology is increasing
demand for methods that can cope with large DNA sequence datasets. Distance-
based approaches are a potential solution to this issue, not just for phylogenetic
inference but also for related tasks such as sequence recognition (e.g., in
metagenomics) and gene orthology inference (e.g., in functional genomics). A
evidence of this demand is the continued popularity of neighbor joining
(NJ) [123], which remains the most frequently cited phylogenetics algorithm. The
benefit of distance methods is offset by a lower precision than methods which take
full-sequence knowledge into account [121], like maximum likelihood (ML).
Although recent findings indicate that some distance methods are basically as
good as ML, in a measure of statistical efficiency [124]. A drawback of distance-
based methods resides in the fact that it can be difficult to conclude such parameters
common to all sequences if the distances are determined through similarities
between them only in parallel series [125]. These parameters can also be calculated
by ML on small sequence samples and then used distance approaches for the whole
sample.

9.3.4.2 Character-Based Methods
Character-based approaches, more specifically, pick the ideal tree using sequence
data. For example, parsimony techniques choose the tree to describe the observed
data in terms of the least number of potential substitutions. Thus, maximal parsi-
mony typically uses a basic sequence substitution model (all modifications are
similarly probable). Although its simplicity, or maybe because of it, the MP becomes
less common. It was demonstrated that it is vulnerable to the recovery of wrong
trees, particularly if more divergent sequences are reused [126]. Methods of maxi-
mum probability strive to find the most possible single tree (according to the
substitution model used). Therefore, the Bayesians approach sample trees with a
frequency proportional to the probability of each tree and eventually create a
consensus among the best trees with the most frequently observed nodes. Bayesian
and probabilistic approaches have something in common with each other in the way
that both approaches can integrate complicated models of character evolution like
distance methods. However, the parameters relevant to the model may be optimized
to individual tree topologies in probabilistic approaches. Therefore, probabilistic
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approaches aim to restore the topology of tree, branch size, and model parameters
that would produce the observed data most possibly. The big benefit of these
approaches is that they are focused on solid statistics and are subject to model and
topology match statistical checking (relative merit of alternate models and tree
topologies may be testing) [127]. Their downside is that they appear to be intensive
in a computational application. Several shortcuts were planned to accelerate their
output with a limited loss of performance. For example, it is popular to create a
starter tree (e.g., a distance algorithm) and use this to approximate model parameters
instead of attempting to maximize all model parameters and topology of the tree at
once. A check for probabilities and parameters is then carried out on this tree before
further searching and optimizing the parameters. An excellent tutorial about using
probability programs such as PAUP* is available online (https://paup.
phylosolutions.com/), although several comprehensive analyses of the
methodologies were published earlier [127–129].

9.3.5 Assessment of Tree Reliability

The tree is produced based on the tree building method, and the input data is known
as the inferred tree. This tree may not have to be the true tree with the phylogenetic
data. The accuracy of the phylogenetic tree or section of the tree must therefore be
checked. The sample size grows for approaches such as MP, ML, and minimum
evolution. Under these circumstances, it should be confirmed if the tree is signifi-
cant/better than another tree. The quality of the phylogenetic tree or section of the
tree is checked by the sampling techniques, while statistical analyses validate the
substantial discrepancy between the tree and the other [130].

9.3.5.1 Sampling Methods
Sampling strategies such as bootstrapping, jackknifing, and Bayesian simulation
measure the reliability of the phenomenon tree or tree section. Bootstrapping is
random sampling by data replacement (distance or sequence: nucleotide or protein)
that addresses whether there have been any sampling errors for necessary analysis.
Bootstraps repeatedly sample the data for phylogenetic tree in molecular phylogeny
and provide us with an ability to test the original tree’s power. If the data resampling
yields separate trees relative to the original tree, the tree’s topology is dependent on
data with poor phylogenetic signals. If data resampling yields a tree close to a tree,
the tree’s topology is dependent on data with adequate phylogenetic signals. Thereby
bootstrapping (resampling) gives insights into the trust of tree topology. In phyloge-
netic research, two forms of bootstrapping are used: parametric or nonparametric
bootstrapping. If the data are interrupted by random sampling that produces new
datasets, the bootstrapping is nonparametric. If the information is interrupted to
construct a new dataset, it is parametrical bootstrapping. The other bootstrapping
forms include case resampling, smooth bootstrap, Bayesian bootstrap, Gaussian
regression phase bootstrap, resampling residuals, wild bootstrap, and block boot-
strap (cluster data: block bootstrap; time series: simple block bootstrap, and time
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series: moving block bootstrap,). All these trees are summarized in a consensus tree
that is based on a majority rule. The most supported branching patterns are labeled
with bootstrap values at each node. Bootstrap, therefore, gives a measure of trust to
approximate the degree of tree topology [130].

Jackknifing is another re-examination technique where half a dataset is arbitrarily
removed, and semi-original datasets are produced. Initially, a phylogenetic tree is
formed for the original dataset, then a phylogenetic tree with each new dataset
generated by jackknifing is formed using the same approach as the original. Sam-
pling creates separate trees when phylogenetic signals are small, but if phylogenetic
signals are high, the study develops a similar tree. Thus, jackknifing may also be
used to determine the trust of the topology of the tree (Challa and Neelapu, 2019).
Markov chain Monte Carlo (MCMC)-based Bayesian approach re-examines
thousands and millions of steps or iterations. The data sample sets are used for the
reconstruction of phylogenetic trees close to the presumed original tree. At each
intersection of the best Bayesian tree, the posterior probabilities calculate the trust of
tree topology [130].

9.3.5.2 Statistical Methods
Statistical assessments, such as the Kishino–Hasegawa (KH) Test and Shimodaira–
Hasegawa (SH) Test, confirm the significant difference between different trees. KH
test contrasts two topologies of the trees in order to discern one tree from another
[131]. Although KH tests may distinguish trees generated by methods such as
distance, likelihood, and parsimony, Kishino–Hasegawa explicitly created this test
for parsimonious trees. The KH test is a paired Student t-test on the basis of a null
statement that “two opposing tree topologies are not substantially different.” The
typical variation in branch lengths between two trees is measured at each formation
site. The t-value obtained is then compared to the t-distribution values to support or
deny the null hypothesis at certain essential thresholds (P-value <0.05)
[130]. Shimodaira–Hasegawa have developed an ML-dependent statistical test
dependent on the χ2 test to estimate the strength of two opposing trees [132]. The
log probability rates for tree A and tree B equal to lnLA and lnLB are first obtained
for the two opposing trees. The two scores log ratio is then derived by d¼ 2 (lnLA�
lnLB) ¼ 2 ln (LA / LB) and is then used to evaluate the χ2 distribution from a table.
The corresponding likelihood value (P-value) defines whether there are major or no
significant variations between the two trees [130]. Therefore, if the confidence
generated by the phylogenetic tree is strong, the review or conclusion of the research
would not be misleading.

9.4 Limitation

Phylogenetic trees have various functional uses in different biological domains, such
as conservation biology, epidemiology, forensics, cancer evolution, HIV transmis-
sion, gene expression prediction, protein structure prediction, and drug design
[133]. However, for generating a more accurate tree, researchers face different
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challenges like memory efficiency. For instance, for the designing and execution of
phylogeny programs, a very significant task is to minimize memory usage and
improve cache performance for two principal reasons. Firstly, the latest generation
of search algorithms has enabled the estimation of very broad trees feasible.
Alignments are often adverse due to the vast accumulation of data. Memory use is
constrained for major problems in most current programs. Secondly, the perfor-
mance of central processing units has risen for many years and now it is to a point
greater than the memory access performance such that the productivity of the vast
variety of science applications is now restricted by their memory access patterns
rather than the speed of the Processor. At present, this pattern is unlikely to be
changed. Some techniques to address this burden consist of optimizing programs for
minimizing memory usage on a technological basis, implementing a divide-and-
conquer strategy to reduce the issue, and utilizing efficient common memory
processors [134, 135].

Another significant limitation is the optimization of the probability function,
which usually takes up more than 90% of the total deployment period in programs
like RAxML or PHYML [135]. Some methods [135, 136], instead of being
recalculated each time, rely on the identification of equivalent trends in the axis
and reuse of previously calculated values. Additionally, a separate implementation
of the computer-intensive functions in different nuclear replacement model would
become important to the computation of very large trees, as will the introduction of
low-level technological optimizations, such as manual loop unrolling, to the proba-
bility functions.

Given the advancement in algorithms in the area, only a few appropriate visuali-
zation resources for the study of very large trees are usable. Therefore, it is important
to design modern tree viewing methods to speed up the observational phase and to
derive valuable knowledge from the data, as well as speed up the cognitive process.
Phylograms, radial, and slanting cladogram drawings (https://www.cs.ubc.ca/~tmm/
papers/tj/) are among the most common depictions. Popular tree display programs
such as ATV [137] have such depictions. These formats and systems, however, aim
at medium-sized trees with up to 300–400 taxa. The approaches to broad trees allow
use of two-dimensional and three-dimensional [138] hyperbolic space to simulta-
neously have a comprehensive and spatial visual image of the tree. Additional
methods, such as SpaceTree [139], only show very broad trees as symbolic pieces.
However, biologists typically favor a simultaneous detailed view of phylogenies and
a qualitative view. Earlier Treemaps have also been suggested [140], although this
definition is restricted to a range of 2000–3000 taxa. There are also methods focused
on virtual reality [141], although these are not available to most researchers because
of their very high infrastructure expenses. Carrizo [142] gives a reading and detailed
analysis of phylogenetic trees from the viewpoint of knowledge visualization.
However, since there is currently no genuinely satisfactory alternative, the creation
of suitable visualization software becomes an exceedingly essential challenge, as
otherwise, the details in broad phylogenies would be useless. Other current concerns
involve the creation of more difficult and practical sequence evolution mathematical
models, assessments of final tree consistency and precision, modern infer
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phylogenetic network approaches, and phylogenetic inference centered on gene-
order results [133].

9.5 Conclusion and Future Perspective

Molecular phylogeny defines the connection between the artifacts in the sample. The
phylogenetic tree is constructed using data from various sequence (majority from
DNA or protein). The numerous methods of tree construction can be broadly
classified into character or distance based. Molecular phylogeny has a large variety
of uses, and the conclusion of the analysis may be deceptive, where the description
of evolutionary trends is not sufficient. The meaning of the tree often depends on the
confidence of the phylogenetic tree is examined. The phylogenetic tree’s trust may
be calculated by sampling methods (bootstrapping, jackknifing, and Bayesian simu-
lation) and methodological methods (KH test and SH test). Therefore, if the trust
produced by the phylogenetic tree is strong, it will not mislead the study’s under-
standing or inference. In order to build more reliable trees, however, researchers face
multiple obstacles, such as memory efficiency and the use and optimization of the
probability function. However, in the near future, the creation of exciting new
algorithms that dramatically decrease the required level of likeliness evaluation,
combined with an enhanced understanding of previously high-performance system
problems in the community, is likely to enable parallel conclusions on medium-sized
trees PC clusters of 10,000–20,000 sequences.

Conflicts of Interest None.

Additional Information Figure 9.1b has been used under the terms of the Creative Commons
Attribution License [20].
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Abstract

One of the significant forms of molecules present in living cells is ribonucleic acid
(RNA). RNA structural elements moderate various biological process, including
epigenetic function, modify mRNA stability, and alternate splicing. The study of
the secondary structures of RNA is, therefore, crucial for interpreting the role as
well as the regulatory mechanism of RNA transcripts. But experimental methods
are tedious, time-consuming, pricey, requires special equipment, and, thus, can-
not often be implemented. Methods for statistical simulation are an option and
parallel to experimental approaches. Additionally, the findings from the
RNA-Puzzles, joint research on the estimation of RNA structures, suggest that
computational methods can be employed for effective RNA modeling. However,
there is still space for improvement. Considering this, in the chapter, authors
attempted to understand the various forms of RNA and how computational
approaches can be employed to predict their structure more precisely. The RNA
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is classified mainly according to its existence, role, and structure into three
groups, messenger RNA, transfer RNA, and ribosomal RNA. To date, numerous
algorithms, and tools, have been designed for predicting the secondary structure
of RNA. However, since three-dimensional structures are highly required for
getting insight into the function of the RNA, few approaches have also been
developed for predicting tertiary structures of RNA atoms. However, the authors
believe that, in the near future, by combining experimental and computational
approaches, we will be able to predict the structure of RNA more accurately,
which in turn will enable us to understand its structure and function more
precisely.

Keywords

RNA · tRNA · mRNA · rRNA · Structure prediction

Abbreviations

CSA Comparative sequence analysis
DP Dynamic programming
dsRNAs Double-strand RNAs
lncRNAs Long noncoding RNA
miRNAs microRNA
MMP MC-fold/Mc-Sym Pipeline
mRNA Messenger RNA
PPV Positive predictive value
pre-rRNA Precursors-rRNAs
rDNA Ribosomal DNA
RNA Ribonucleic acid
RNP Ribonucleoprotein
rRNA Ribosomal RNA
siRNA Short interfering RNA
snoRNAs Small nucleolar RNAs
SSs Secondary structures
t6A Threonyl-carbamoyl adenosine
tRNA Transfer RNA

10.1 Introduction

One of the significant forms of molecules present in living cells is ribonucleic acid
(RNA) [1]. After the central dogma was hypothesized in 1950, the key function
assigned to RNA was to serve as the intermediary between DNA and protein
synthesis [2]. However, out of ~70% of the genome transcribed, only a limited

210 M. K. Gupta et al.



portion encodes for protein sequences [3], which means that most RNAs might have
various biological functions. Earlier, several researchers have also suggested that
RNAs are transporters for genetic material and are also associated with many
biological processes that are incredibly significant [4]. For instance, RNA transcripts
fold into structures (SSs) (Fig. 10.1), which have different catalytic, ligand, and
scaffolding functions that shape a crucial biological regulatory activity. RNA struc-
tural elements moderate epigenetic function, modify mRNA stability and translation,
scaffold large macromolecular complexes, transduce signals, and monitor alternate
splicing. The study of the SSs of RNA is, therefore, crucial for interpreting the role as
well as the regulatory mechanism of RNA transcripts [2].

RNA folds into a 3D system through hydrogen interaction and base-stacking,
which in the sequence are not consecutive [7]. The 3D structure of the RNA
molecule decides its function, like proteins. In order to construct a 3D model,
high-resolution experimental methods such as crystallography [8, 9], cryo-EM
[10], and nuclear magnet resonance spectroscopy may be taken advantage of
[11]. But experimental methods are tedious, time-consuming, pricey, requires spe-
cial equipment, and, thus, cannot often be implemented. Methods for statistical
simulation are an option and parallel to experimental approaches. Additionally, the
findings from the RNA-Puzzles [12], joint research on the estimation of RNA
structures, suggest that computational methods can be employed for effective
RNA modeling. However, there is still space for improvement.

Like proteins, RNAs can be divided into families [13], which originated from a
common ancestor. RNA sequences from the same family will have higher similarity,
and the study of sequence conservation may be used for identifying important
conserved areas, such as areas binding ligands, active sites, or other important
functions. The Watson crick basis pairing pattern for the RNA is often used to
forecast SSs. According to the CompaRNA [14], RNA alignments methods such as
PETfold [15] outweigh the predictive single sequence methods of the secondary
RNA structure. RNA alignments may also be used to enhance the prediction of the
tertiary structure [16]. For instance, recently, a group of researchers employed a
novel approach for exploring tertiary structure predictions [13]. The methodology
examines the usage of multiple alignment knowledge and simultaneous RNA
homolog simulation to strengthen ab initio RNA structure modeling techniques. A
new technique, called EvoClustRNA, is focused on a conventional strategy to
predict RNA structures, utilizing evolutionary knowledge from distant sequence
homologs [17]. On the basis of the empirical finding that RNA sequences of the
same RNA family normally fold into identical 3D structures, they have checked
whether computational modeling can be driven by searching for a global helical
sequence for the target sequence, which is shared through de novo models of various
sequence homologs. EvoClustRNA is the first effort to use this method for RNA 3D
prediction. Thus, in this chapter, the authors attempt to understand the sources, form,
and role of the RNA structure and how different computational approaches that
researchers are adopting for determining various RNA structures.
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Fig. 10.1 (a) Basic structural motifs depicted within RNA secondary structures. (b) The simplest
form of RNA structure is a stem-loop. A stem-loop is shown with a bulge, internal loop, or (c)
tetraloop. (d) The loop can also base-pair with upstream or downstream sequences to form a
pseudoknot. (e) Interaction between the loops of two stem-loops forms kissing hairpins. (f) A
relatively complex structure is a cloverleaf or tRNA-like structure that often consists of multiple
stem-loops and pseudoknots. (Adapted from [5, 6])
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10.2 RNA Structure

The RNA is classified mainly according to its existence, role, and structure into three
groups: messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA
(rRNA). The rRNA produces complex three-dimensional structures that interact
with polypeptides to shape ribosomes responsible for protein synthesis in organelles.
The ribosomes act as an mRNA encoding tool. The mRNA includes instructions that
dictate protein amino acid sequences. The tRNA serves as an adapter to convert
mRNA codons into those amino acids [18]. In addition, as discussed below, there are
also other forms of RNAs, like long noncoding RNA (lncRNAs), small nucleolar
RNAs (snoRNAs), microRNA(miRNAs), and short interfering RNA (siRNA) [19].

10.2.1 Messenger RNA

The “messenger” RNA is mRNA. The mRNA in the nucleus is synthesized using the
DNA nuclear sequence as a reference. This process needs nucleotide triphosphates
as substrate and is catalyzed by the RNA polymerase II enzyme. The DNA to mRNA
processing is called transcription and takes place in the nucleus. The mRNA
produced in the nucleus is transferred to ribosomes out of the nucleus and into a
cytoplasm. Subsequently, the mRNA guides the protein synthesis that takes place in
the cytoplasm. On the ribosomes, proteins are packaged using the mRNA sequence
as a reference. Thus, mRNA bears a “message” to the cytoplasm from the nucleus for
encoding protein. The processing of mRNA to proteins is called translation [20]. Ear-
lier studies have reported that while the configuration and mode of action of the
prokaryotic and eukaryotic mRNAs vary, similarities still exist. In mRNA, genetic
information is encoded into a four-base nucleotide alphabet, which forms codons of
three bases. Each codon codes for a certain amino acid except for stop codons that
specify when the synthesis of protein stops. The mRNA is translated by the codon-
reading ribosome. For all prokaryotes and eukaryotes, the beginning or initiator
codon is an AUG sequence, and the sequences are read in 50 to 30 direction.
Eukaryotic mRNA normally codes for one specific (monocistronic) protein, whereas
the prokaryotic mRNA typically codes for a set of similar (polycistronic) proteins on
the same mRNA. Polycistronic mRNA guides the synthesis of each coded polypep-
tide, which is more or less simultaneous. For example, the trp operon is a DNA,
which is transcribed in mRNA and codes for six polypeptides, catalyzes the synthe-
sis of tryptophan.

The mRNA has a shorter life in comparison to the DNA. An mRNA molecule
may be stored, edited, and transported before translation following transcription
[21]. For many factors, mRNA stabilization is an important control point in the
regulation of gene expression. At first, an equilibrium between its synthesis and
degradation is highly required for consistent normal function. Secondly, the consis-
tency of individual mRNAs may be altered because of multiple environmental
stimuli, such as carbon source, viral diseases, and developmental transformations,
allowing rapid shifts in the expression of the gene. Thirdly, a method of competent
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mRNA degradation to remove deleterious errors during mRNA synthesis. Finally,
successful mRNA degradation is essential for the growth of both the prokaryotes and
the eukaryotes [22].

10.2.2 Ribosomal RNA

The biosynthesis of rRNA and its integration into the ribosomes is a surprisingly
complex process, which for over three decades, has been the focus of intensive
study. Ribosome biogenesis starts in the nucleolus, in accordance with the “RNA-
base machine,” through the synthesis of the large primary mRNA transcripts via the
RNA polymerase I (Pol I) [23]. In eukaryotes, the mature 80S cytoplasmic ribosome
is composed of the 60S larger subunit and the 30S smaller subunit. The small subunit
is composed of 18S rRNAs and more than 30 ribosomal proteins. The large subunit
comprises 5.8S, 25S/28S, and 5S rRNAs and over 40 ribosomal proteins. Biogenesis
of ribosome includes replication of ribosomal DNA (rDNA), production of
precursors-rRNAs (pre-rRNA), modifications to the RNA, and assembly of ribo-
somal protein and assembly factors in rRNA. Ribosome biogenesis is an important,
complicated, and energy-intensive mechanism strictly controlled by endogenous
signals and environmental factors, such as ambient temperature. Within eukaryotic
cells, irregular biogenesis of rRNA stimulates “RNA Nucleus Quality Regulation,”
inducing higher polyadenylation of some intermediate rRNA products as well as
by-products, known as TRAMPs (Trf/Air/Mtr4 polyadenylation complex). The
nuclear exosome complex sequentially degrades these intermediates. Ribosomal
biogenesis failure results in significant developmental of deficiencies in higher plants
and extreme hereditary disorders in mammals [24].

The catalytic function of rRNA was first shown by Harry Noller and his
colleagues’ 1992 experiments. These researchers found that even after about 95%
of the ribosomal proteins have been discarded via traditional protein extraction
methods, the large ribosomal unit would catalyze peptide bond formation (“Peptidyl
Transferase Reaction”). In comparison, RNase treatment fully abolishes the devel-
opment of peptide bindings, which clearly supports the theory that peptide binding
development is an “RNA-catalyzed reaction.” Further experiments have also
validated as well as expanded these findings by showing that the “peptidyl transfer-
ase reaction” can be catalyzed by synthetic fragments of 23S rRNA in the complete
absence of any ribosomal protein. These findings support that rRNA catalyzes the
basic reaction in protein synthesis.

Apart from being the ribosomes’ basic catalytic constituents, ribosomal proteins
can also be used for promoting proper rRNA folding and for boosting the ribosomes’
activity through proper tRNAs’ positioning [25]. The direct presence of rRNA
during the peptidyl transmission response has significant evolutionary
consequences. RNAs are considered to be the first macromolecules that have self-
replicating properties. Earlier studies have also supported this theory by stating that
ribozymes like RNase P as well as self-splicing introns can catalyze RNA substrate
reactions. The rRNA’s function in the peptide attachment formation expands the
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catalytic action of RNA to direct participation in the synthesis of protein. Few studies
have also revealed that the “Tetrahymena rRNA ribozyme” can catalyze the amino
acid binding of RNA, thus adding credence to the likelihood of RNAs, rather than
protein, being the initial aminoacyl tRNA synthesis. Thus, the RNA molecules may
also serve as a significant biomarker toward understanding the early evolution of
cells in catalyzing the reactions needed for self-replication as well as for protein
synthesis [25].

10.2.3 transfer RNA

tRNA is a small nucleotide chain. The tRNA acts as an “adapter” molecule with an
L-shape configuration, which converts the three-nucleotide codon sequence of the
mRNA into the required amino acid of that codon. The tRNAs define the genetic
code as the bond between amino acids and nucleic acids. However, their functions
extended beyond protein translation, providing a remarkable set of tasks in the
synthesis of bacterial cell walls, viral replication, cell tension, and even regulation
of animal behavior [26]. Bacteria have multiple antibiotic mechanisms, which in the
clinic is a growing obstacle. Within bacterial outer membrane lipids, tRNA-
dependent aminoacylation offers improved virulence and tolerance to the cationic
antimicrobial peptide [27]. Earlier, Fields and his team have studied the well-
documented pathways of lipid aminoacylation to illustrate the usage of aminoacyl-
tRNA substrates as an amino acid donor in lipid changes for improved antibiotic
tolerance by the aminoacyl-phosphatidylglycerol synthases [28]. Emerging data also
suggest that the tRNA genes perform a new function in bacterial conjugation. For
instance, Alamos and his team found that 36 out of its 95 tRNAs are encoded in an
integrative-conjugative genetic variable within acidithiobacillus ferrooxidans
[29]. Castillo and his team have also shown that the integrases encoded inside the
conjugative factor recognize the area of the tRNA stem-loop for active and location-
specific recombination [30].

Mature tRNAs are abundant in nucleotide-based post-transcriptional
modifications. These improvements perform important roles in the management of
translation and reading frames [31], tRNA reliability, and transport [32]. Modifica-
tion may occur within the anticodon as well. Phylogenetic analysis has been
performed by Rafels-Ybern and his team to show the production of adenine base
modification to Inosin (I) at location 34. The A to I shift affects the tRNA’s ability to
decipher the codon’s third nucleotide location. Whereas A34 forms an optimal
relationship with U, I34 is equally well informed of U, C, or A. The I34 function
is to broaden wobble decoding, as investigated by another group of researchers
[33]. The switch to I34 requires one tRNA to read three codons of the same amino
acid. While the alteration is widely used in eukaryotes, there were limited earlier
examples in bacteria. Earlier, researchers have also found many possible I34
locations for tRNAs’ modifications in Firmicutes as well as Cyanobacteria
genomes [34].
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Changes can often involve the shipment of tRNA within cellular compartments.
In an interesting study, Kessler et al. explain how the transportation of tRNAs
between various areas of the cell influences the maturation and alteration of
tRNAs [35]. Seminary tests of the sleeping causative agent, Trypanosoma brucei,
indicate that tRNA-Tyr is transferred to the cytoplasm where the intron in an
immature tRNA is broken. The tRNA is then reimported to the nuclease in a process
called “retrograde transport,” in which the spliced tRNA is necessary for modifica-
tion with queuosin [32]. Some tRNA variations are retained in all life types. In a few
tRNAs, the modification threonyl-carbamoyl adenosine (t6A) is found to decipher
the ANN codons and is necessary for the stabilization of the duplex codon–antico-
don. The t6A modification at loci 37, next to the anticodon loop, has been found to
be necessary for the operation of Streptococcus mutans’ anticodon nuclease PrrC
[31]. The nuclease facilitates the bacterial cell death under stress conditions or during
phage infection when the tRNALys

UUU anticodon loop is precisely cleaved.

10.2.4 Small Nucleolar RNAs

snoRNAs are generally composed of 60–170 nuclear nucleotides (with few
exceptions) [36, 37] and are mainly involved in directing post-transcriptional alter-
ation of nonprotein-coding RNAs (rRNAs, snRNAs) [38]. snoRNAs are broadly
categorized as either a “C/D box” or “H/ACA box” based on the given sequence as
well as SSs component [37]. “C/D box” directs 20-O-methylation and “H/ACA”
nuclear pseudouridylation upon target molecules. Since the 50 as well as 30 ends of
the molecule fold into a stem configuration, which in turn creates a “kink switch,”
the “C box” (“RUGAUGA”, R ¼ A or G) and the “D box” (“CUGA”) sequence
motifs of the “C/D box” are brought closely into contact. The majority of the C/D
boxes have another less conserved C as well as D box motifs, namely the C0 and D0

boxes, within the “Central SnoRNA region.” C/D box is mainly involved in the
ribonucleoprotein (RNP) complexes that also include 15.5 K, NOP56, NOP58, and
fibrillarine proteins [39, 40]. The latter catalyzes the 20-O-methylation of ribose
molecules within the target RNA [40]. “H/ACA box” is a well-designed SSs
comprising two hairpins connected together through a single-stranded area
designated as the “H box” (“ANANNA”, N ¼ A, C, G or U) as well as the “ACA
box” (“AYA”, Y ¼ C or U) at the 30 end [41]. “H/ACA” produces “H/ACA”
snoRNA and a group of four proteins, namely, Nop10, Gar1, Dyskerin, and Nhp2,
where Dyskerin functions as pseudouridine synthase [42]. Primary identification of
“H/ACA box” often includes RNA–RNA interactions between single-stranded area
within the inner loops of the two snoRNA hairpin systems, mostly with target RNA
[43, 44].
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10.2.5 microRNA

miRNAs are small noncoding RNAs that have a mean length of ~22 nucleotides.
The majority of the miRNAs are transcribed into prime miRNAs from DNA
sequences and converted into precursor miRNAs as well as mature miRNAs. In
certain instances, miRNA interacts with the 30 UTR of the objective mRNA for
suppressing expression. However, there have also been records of the association of
miRNAs with other regions, including the coding sequence, 50 UTR, and gene
promoters. Moreover, under some circumstances, miRNAs have been shown to
cause gene expression. In recent research, miRNAs have been shuttled between
various subcellular cells to regulate the rate of translation and also transcription
[45]. miRNAs are critical for the natural growth of animals and active in various
biological processes [46]. Aberrant expression of miRNAs is related to a variety of
human diseases [47, 48]. miRNAs are often secreted within extracellular fluids.
Extracellular miRNAs can serve as plausible biomarkers for a number of diseases
and signaling molecules for cell–cell interaction [49].

10.2.6 Short Interfering RNA

siRNAs are derived from double-strand RNAs (dsRNAs), consisting of two
antisenses as well as a sense RNA strand that forms 19–25 bp duplex with 30

dinucleotide overhangs. The antisense strand is a perfect reverse complement to
the expected mRNA target. Few important functions of siRNAs include mainly post-
transcriptional gene silencing or translation inhibition, exogenous DNA defense,
intervention in epigenetic processes, and preserving genome integrity by transcrip-
tional silencing. It has been used for industrial purposes to easily research in vivo
gene expression owing to its capacity to knock out genes. Many of the siRNA
measurement applications are therefore planned to aim siRNA sequences optimally
to knock out genes. Subsequently, siRNAs’ prediction can also be used to establish
protocols for screening and can be used to classify new pathways to confirm cellular
targets correlated with diseases such as hepatitis, cancer, and HIV infection [50].

10.2.7 Long Noncoding RNA

lncRNAs are classified as >200 nucleotide RNA molecules. While this differentia-
tion is rather subjective and dependent on functional aspects of RNA separation
techniques, lncRNAs vary from miRNAs as well as other sRNAs. In significant
amounts, lncRNAs are present within the genome. They may not usually have
working open read frames (ORFs). However, the discovery of bifunctional RNAs
with coding-independent and protein-coding functions is flexible by this distinction,
which increases the probability that certain protein-coding genes might have non-
coding functions, as well [51]. Many lncRNAs are poorly expressed and, thus,
researchers experience difficulties during exploring lncRNAs and understanding

10 RNA Structure Prediction 217



why lncRNAs were always considered to be “transcriptional noise.”
RNA-sequences in various tetrapods indicate that mostly (~81%), primate-specific
lncRNAs are poorly retained in the DNA chain. However, it is worth remembering
that many lncRNAs are highly conserved within the DNA sequence, and ~3% of
lncRNAs might have originated earlier than 300 million years ago [52].

lncRNAs may be fast-evolving species of RNA that can play key roles in lineage
specifying. A comparison of the matching tissues in Rattus norvegicus, Mus
musculus castaneus, and Mus musculus domesticus indicates that shifts in the
transcription levels of the adjacent protein-coding genes are linked with the appear-
ance or disappearance of the lncRNAs [53]. There are several instances of lncRNAs
with retained biological roles but low-level sequence survival, such as TUNA/
megamind correlated with the growth of the brain in zebrafish, mouse, and humans
[54, 55], and X-inelective unique transcript (Xist) involved in X-inactivation
[56]. RNA molecules can require fewer sequence retention in order to maintain
their function than proteins. Conversely, lncRNA promoters have a strong sequence
conservation, which is even higher in comparison to protein-coding-gene promoters
[57], indicating that lncRNA expression control is significant.

10.3 RNA Structure Prediction

RNA plays various cellular functions, and, thus, recognizing RNA structure is
essential to understand its action mechanism [58]. Because the prediction of the
three-dimensional RNA structure is difficult and expensive, scientists mainly depend
on RNA’s SSs. Hence, to date, numerous algorithms have been designed for
predicting the SSs of RNA [19]. However, since three-dimensional structures are
highly required for getting insight into the function of the RNA, few approaches
have also been developed for predicting tertiary structures of RNA atoms [59]
(Fig. 10.2 and Tables 10.1 and 10.2).

10.3.1 RNA SSs Prediction Methods

Present methods of prediction of SSs of RNA may be broadly categorized into
comparative sequence analysis (CSA) and folding algorithms with thermodynamic,
predictive, or probabilistic scoring schemes [81]. CSA distinguishes base pairs
between homologous sequences. These approaches are incredibly accurate [82] if
there are a sufficient number of compatible sequences and are aligned with profes-
sional expertise manually. However, to date, only a few thousand RNA families
have been identified. Therefore, the most popular method used for the RNA SSs
prediction is to fold an individual RNA sequence according to a suitable scoring
feature. In this method, the RNA structure is separated into substructures, such as
loops and trunks in the closest model [83]. Dynamic programming (DP) algorithms
are then used to find minimal or probabilistic global structures from such
substructures. Subsequently, experimental technique [84] (e.g., RNAshapes [85],
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RNAstructure [86], and RNAfold [87]) or machine learnings approaches (e.g.,
ContextFold [88] and CentroidFold [89]) are required to calculate the score
parameters of every substructural device. But total accuracy (the percentage of
correctly predicted basic pairs in all predicted base pairs) seems to have hit a
“efficiency ceiling” [81] at around 80% [90, 91]. This is because all current
approaches do not recognize some of all the base pairs arising from tertiary
interactions [92]. These base-pairs are mostly pseudo-knotted (non-nested), lone
(unstacked), and noncanonical base pairs (not G-U, A-U, and G-C) and triple
interactions [92, 93]. While some methods can predict secondary RNA structures
with pseudoknots (e.g., Knotty [94] and Probknot [95], pknotsRG [96]) and others

Table 10.1 Softwares and tools for predicting secondary structure of RNA

Name Description References

CentroidAlifold Employs generalized centroid estimator [60]

DAFS Align and fold RNA sequences through dual
decomposition.

[61]

MASTR Uses Markov chain Monte Carlo in a simulated
annealing framework

[62]

Multilign Utilizes multiple Dynalign calculations for finding
a low free energy structure that is common to
numerous sequences. It does not need sequence
identity.

[63]

Murlet Uses iterative alignment dependent on Sankoff’s
algorithm having sharply decreased
computational time as well as memory.

[64]

MXSCARNA Employs progressive alignment [65]

PARTS Probabilistic model and requires pseudo free
energies

[66]

Pfold Utlizes a SCFG trained on rRNA alignments. [67]

PETfold Combines both the energy-based and evolution-
based approaches

[15]

PhyloQFold Consider the evolutionary history of a group of
aligned RNA sequences

[68]

TurboFold Utilizes probabilistic alignment as well as
partition functions for mapping conserved pairs
among sequences, and subsequently iterates the
partition functions for improving the accuracy of
structure prediction

[69]

Context Fold Dependent on feature-rich trained scoring models. https://www.cs.bgu.ac.
il/~negevcb/
contextfold/

E2Efold A deep learning approach that employs a
constrained optimization solver, without using
dynamic programming.

[70]

SwiSpot Detects alternative (secondary) configurations of
riboswitches

[71]

Mfold Prediction based on minimum free energy [72]
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may predict noncanonical base pairs (e.g., CycleFold [97], MC-Fold-DP [98], and
MC-Fold [76]).

10.3.1.1 Comparative Sequence Analysis
The most reliable way of the prediction of SSs for RNA is CSA as well as it is the
method of first preference when deciding the SSs of a new RNA. It is built on the
hypothesis that structure is more commonly conserved than sequences via evolution
[58]. CSA was first used to address tRNA SSs [99, 100]. This research is used to be
done with the assistance of modern structure prediction algorithms. Subsequently,
tRNA crystal structures predicted was found to be right. Later, a CSA of the SSs of
rRNAs have revealed that over 88% of the expected pairs find crystal structures
subsequently fixed, and nearly all of the expected tertiary as well as noncanonical
interactions were considered to be right [82]. Almost no means of SSs prediction can
give something similar to this degree of precision, especially for longer RNAs, or
have a similar insight into higher-order contacts that might also have functional or
structural worth. CSA is typically the criterion under which structure prediction
algorithms are tested since only a small number of sequences of such RNA families
have been crystallized [58].

Identifying regions with orchestrated mutations that do not represent nucleotide
identities but retain base pairs is a good indicator of an underlying structure that is
conserved and of practical significance. The two-nucleotide sequence modifications
that maintain base pairing are considered compensating base-pair changes. For
example, the G-C base pair is more likely to mutate in one sequence into another
canonical pair (AU, UA, CG, UG, GU) as the modification may include modifying
two nucleotides rather than one, than mutating into one noncanonical pair or deleting
one of the pairing partners with a single nucleotide. The bases of homologous RNAs

Table 10.2 Softwares and tools for predicting three-dimensional structure of RNA

Name Description References

BARNACLE Employs probabilistic approach [73]

FARNA de novo prediction. [74]

iFoldRNA 3D structure prediction as well as folding [75]

MC-Fold
MC-Sym
Pipeline

Thermodynamics as well as nucleotide cyclic motifs
for RNA structure prediction algorithm

[76]

ModeRNA Based on a template RNA structure as well as a user-
defined target-template sequence alignment

[77]

NAST Coarse-grained modeling having knowledge-based
potentials as well as structural filters

[78]

MMB Turning limited experimental information into 3D
models of RNA

[79]

RNA123 de novo and homology modeling of RNA 3D
structures.

[80]

RNAComposer Automated generation of large RNA 3D structures. http://rnacomposer.
cs.put.poznan.pl/
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from distant species can have low identification, but SSs are fully conserved, as each
transition under which the sequences diverge conserves the structure [58]. Further
accessible descriptions of structures of variance sequences resolved through CSA are
accessible in the Rfam database seed alignments [101]. Irrespective of all these
signs, CSA is not necessarily feasible, especially when a sequence is not defined.
Free energy minimization (FEM) is one of the most common approaches in such
scenarios [58].

10.3.1.2 Secondary RNA Structure Prediction Using Free Energy
Minimization

The most common approach for predicting SSs is the FEM, where only a single
sequence is defined for a certain function [102, 103]. This approach mainly employs
DP, statistical mechanics, and pseudoknots algorithms to achieve its aim.

Dynamic Programming
The most common methods of FEM for RNA prediction are focused on dynamic
algorithms of programming [102–104]. In principle, these algorithms can take into
account indirectly all potential SSs for a particular sequence with the explicit
construction of these structures. To do this, the lowest folding free energies are
calculated for all sequence fragments of the entire sequence and the outcomes
retained. As the least folding-FE (FE) for longer fragments is measured, the mecha-
nism speeds up to the free energies for shorter fragments. DP algorithms have been
preferred because they are computationally powerful and usually produce the same
results to ensure that the lower FE structure is provided with the stability laws.

Statistical Mechanics
The lowest FE configuration is the most possible configuration for RNA in equilib-
rium. When the expected lowest FE structure is compared to the well-known
secondary sequence, the precision may be defined by sensitivity or positive predic-
tive value (PPV). Sensitivity is the proportion of recognized base pairs in the SSs
predicted. The PPV is the proportion of expected pairs in the established structure.
Therefore, sensitivity states that the proportion of identified pairs can be estimated
independently of erroneously estimated pairs. Good predictive value is the percent-
age of expected, accurate pairs influenced by inaccurate pair predictions. It is usually
less than sensitivity since FE reduction expects more base pairs than the so-called
base changes. It is usually less than sensitivity since FE reduction expects more base
pairs than the so-called base compensating base changes.

In 2003, Ding and Lawrence [105] established a statistical sampling procedure for
RNA SSs prediction. The SSs are sampled according to Boltzmann’s likelihood by
means of a partition-function approximation using a stochastic DP algorithm. The
likelihood of any given base pair is the frequency of its existence in the ensemble of
structures within sampled structures. Moreover, several new structural properties can
be calculated, including the likelihood of the single-stranded of two neighboring
nucleotides. This information is not given by the partition function estimation alone
in a single estimation since the base pairs’ pairing chances are not independent. In
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other words, the possibility that two base pairs will appear in the same structure is
not the consequence of its partition function. The predictive sampling approach
improves the estimation of the SSs by identifying the SSs in the ensemble that better
describes all of the structures [106]. This “centroid” configuration is selected as the
least aggregate variance of all systems. The centroid of the ensemble is also not the
lowest FE system. On average, centroids have slightly better sensitivity to base-pair
predictions for different sequence databases of the established SSs but have a
substantially higher predictive value. Thus, statistical sampling should also be
used to boost the precision of SSs prediction.

Pseudoknots
Pseudoknots are troublesome since most DP algorithms cannot anticipate them,
although 1.4% of simple pairs in various defined SSs are pseudo-knotted. The
fundamental issue is that most DP algorithms presume, in order to speed up the
estimation, that the overall folding FE change of a secondary system with two
branches is the amount of the FE change of each branch calculated separately. If
pseudoknots develop between the divisions, it does not work anymore. With
increasing sequence length, DP algorithms that forecast pseudoknots scale poorly
in time and are quite sluggish. For instance, the standard set of DP algorithms for
FEM as well as partition function calculation scales O(N3) in time, whereby N is the
number of nucleotides in the sequence. PKNOTS is a DP algorithm that can forecast
the most known topology, yet O(N6) scales [107]. This means that doubling the
sequence length takes 8 times more computing time by conventional methods but
64 times more when pseudoknots are taken into account. This restricts the use of
these algorithms to sequences of up to 100–200 nucleotides. Numerous different DP
algorithms scale better O(N5) or O(N4), but cannot forecast as many established
pseudoknot topologies [108, 109]. Pknots RG, by Reeder and Giegerich [110],
which scale O(N4) are one of the best to this group of algorithms.

Pseudoknots can be predicted using heuristics in acceptable computational time.
However, the trade-off is that no certainty exists for estimating the lowest FE
structure. In a software called ILM [111], one heuristic algorithm is introduced. It
is based on a repeated (iterated) prediction of the structure with the so-called “loop
matching algorithm.” Each repetition forecasts a non-pseudoknotted structure, from
which the highest score helix will be selected for the final structure. The paired
nucleotides from the previously selected helixes are discarded in the next structure
prediction iteration for each repeat. Since nucleotides are eliminated from successive
measurements in pairs, the selected helices’ collection may be pseudo-knotted in the
final assembly. The algorithm scales O(mN3) in the worst case for m loop matching
calculations. Another heuristic algorithm is introduced in the software HotKnots
[112]. HotKnots commonly use many calls to a DP algorithm to assemble
pseudoknots constructs, but at each point, several alternative helixes are expected
simultaneously. This tests a number of SSs, which are ordered by increased FE
changes at the end of the measurement.
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10.3.1.3 Multiple-Sequence SSs Prediction
The multi-sequence SSs estimate tries to mimic a CSA by forecasting structures
retained in two or more sequences. These techniques are not as reliable as manual
CSA, but they can greatly increase precision over single sequence methods
[63]. However, many of these techniques are more computationally costly than
single sequence approaches.

Algorithms That Simultaneously Fold and Align
David Sankoff suggested the first method for folding homologous RNAs [113]. It
concurrently considers the alignment as well as the folding of any amount of RNA
sequences in a single measurement. The algorithm formally scales O(N3s) in time,
and O(N2s) in storage, i.e., the memory usage, for s sequences of having length N. As
other prediction methods of the single-sequence structure, this algorithm cannot
predict pseudoknots. This algorithm is costly, particularly for more than two
sequences. However, the limitation of alignment to eliminate impossible biological
alignments and pairs provides major time-cost improvements. FOLDALIGN [114]
was the first minimal version of the Sankoff algorithm. This algorithm used base-pair
optimization instead of the FEM and nearest neighbor approach. It also removed
branched structures from consideration, which reduced the algorithm to O(N4) in
time, but removed a common and significant motif within RNA structure. Latest
FOLDALIGN updates also provided support for the provision of branched systems,
a FE model, and a heuristic trimming to speed up computation, which greatly
increases algorithm accuracy [115].

Another approach that employs the Sankoff algorithm is LocARNA
[116]. LocARNA maximizes the sum of pair probabilities for both sequences that
are computed by different single-sequence partition function estimates and a simi-
larity score for alignment, rather than minimizing energy. LocARNA runs easily
since only significant base pairs are regarded, reducing the order of the algorithm to
O (N2(N2 + M2)), for two sequences of length N, and where M is the number of
significant base pairs, also on order N. It does, however, lose any precision in
contrast to FOLDALIGN [66]. While it is typically challenging to expand Sankoff’s
algorithm directly to more than two sequences in terms of computational costs, other
means have been used to adapt it for the infinite number of sequences with greatly
reduced complexity. FOLDALIGNM employed pair frequencies for all pair-wise
FOLDALIGN sequence measurements [117].

Initially, LocARNA was also able to work on several sequences [116]. In order to
generalize to several sequences, mLocARNA employs the output of the LocARNA
multi-sequence alignment calculations in pairs. The chance of a pair of aligned
columns is the square root of the pairing odds of the two alignments. RAF (99) is
a distinct method that aligns and plies an infinite number of sequences concurrently.
RAF functions in two sets at a time and aligns successive implementations of
alignments rather than sets. mLocARNA and FOLDALIGNM seemed to work better
at shorter sequences in benchmarks, and RAF &Multilign appeared to operate better
for longer sequences, and both seemed to outperform single and double sequence
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approaches for most forms of RNAs [118]. Many of these algorithms cost the current
hardware fairly.

Algorithms That Align First, Then Fold
The second paradigm to approximate the arrangement of more than one sequence is
to first align and fold the sequences. This model is seen in RNAalifold
[119]. RNAalifold defines a minimum FE consensus framework that a community
of compatible input sequences may build. Input alignment mostly emerges from a
series alignment algorithm; however, individually curated alignments are endorsed
and may increase precision. RNAalifold is quick and productive for matching
sequences. Its accuracy is hindered if the input is incorrectly matched, which may
happen when the sequence identity of the pairs is <60%. In those instances,
automatic sequence alignment algorithms battle [120]. The alignment of sequences
of low identification, rendered by a professional investigator, or at least modified,
could have provided good results. The CentroidFold algorithm [121] also exists in
the model “align, then fold.” It investigates the central frame in a way that is similar
to the one of Sfold [122] rather than considering a minimum free-energy consensus
structure. The central structure of the largest structural cluster represents the central
structure, created by the stochastic sampling of homologous structures series. The
chances of identifying the core consensus structure can be calculated by using an
experimental discovery [123] or by using the nearest model from a database of
unique structure sequences.

Recently, the TurboFold model requires an unlimited amount of sequences in the
“align, then fold” model and then tests their pair-wise probabilistic alignment and
their base-pair probabilities [124]. These alignments are employed for configurations
among sequences. The single-sequence base pair probabilities for a provided
sequence within the collection are referred to as the “intrinsic information.” For
any other sequence, the combined probabilistic aligning and the base couple
probabilities are referred to as the “extrinsic information.” The updated probabilities
of the pair would then be used to recalculate extrinsic information. Many iterations
strengthen and improve the predicted chances of the pair for series. The architectures
are designed with the highest expected accuracy algorithm after the required number
of iterations. In random assortments, TurboFold typically outperforms other predic-
tive algorithms in multiple sequences that normally include identities that are less
than 60% in pairs and that are commonly comparable in PPV sequences
[124]. Although it may be more expensive to compute than any of the above
alignment and then fold algorithms, up to 10 RNA sequences of normal lengths
per minute are required. One of TurboFold’s important advantages over most of the
above-noted algorithms is that it does not enforce a common structure. Variable
elements can also be properly predicted in homologous sequences, including the
variable stem in tRNAs, allowing TurboFold a convincing alternative for structural
prediction, where different sequences can be used in divergent identities and ambig-
uous alignment.
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An Algorithm That Folds, Then Aligns
In multi-sequence structure prediction, the third paradigm is to “fold, then align.”
RNAshapes [125] follows this method. This algorithm lists separately the abstract
“shape” space accessible for each sequence and determines the probability of each
form, and then defines the thermodynamically optimal configuration with the typical
form. Instead of full pairing details, abstract shapes encode RNA structure features.
There are far less low FE sources than systems, so the solution is feasible.
RNAshapes is fast; after single sequence structure measurements, it is roughly linear
in time. It gives precision comparable to the above multi-sequence approaches. It
does not provide series alignments but can be created with RNAforester [126] from
the retained structure.

10.3.2 Three-Dimensional Structure Prediction Methods

Although the SSs offers the blueprint for an RNA molecule, information about the
RNA 3D structure remains key to an overall understanding of its role. Initial 3D
structure modeling was carried out successfully by RNA structure experts with the
3D structures of several typical RNA molecules, like tRNAs [100], the group I
introns [127], and RNase P [128]. In recent years, a range of computational models
for the prediction of RNA 3D structures has been developed [1]. These models may
be broadly categorized into two groups, i.e., depending on the knowledge or physical
property.

10.3.2.1 Knowledge-Dependent Modeling
RNA 3D structures may be predicted by assembling established motifs or the
aligning sequence with already available experimentally defined structures in the
database. Knowledge-based modeling primarily involves modeling on the basis of
graphics and homology-based modeling (HBM) [129].

Graphics-Based Methods
The graphics modeling typically offers a visual interface, which enables users to
create 3D RNA constructs by controlling or assembling segments of RNA [130–
134]. Few of the major graphics-based algorithms are MANIP, ERNA-3D, and
RNA2D3D. The MANIP helps users to design known 3D models on the computer
screen using the corresponding SSs predicted through CSA [130]. Although the
MANIP is not an automated process, it provides a quick and simple way to construct
3D RNA structures, particularly large RNAs, such as the RNase P RNA [130]. More-
over, multiple relationship tables, as well as base-pair tables that specifically contain
RNAs’ topological information, can be used to precisely model RNAs’
interactions [130].

In order to create RNA 3D structures from sequences as well as SSs, the ERNA-
3D offers users a graphic interface in order to freely position the A-form helixes and
to explicitly draw the single inter-helical strands [135]. The 3D structures of mRNA,
rRNAs, and tRNAs, including 16S rRNAs, 5S rRNA, and 23S rRNA, were
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successfully produced using ERNA-3D [135]. The RNA2D3D will forecast rough
3D structures for large RNAs easily based on their SSs, e.g., viral kissing loops,
ribozymes, and various RNA nanostructures [136]. Manual handling, though, must
be performed to create a graphical interface to achieve a better structure, like
compacting, energy refinement, stalking, and segment-positioning [137]. While the
graphics-based approaches introduced above can be used for creating 3D structures
for large RNAs with hundreds of nucleotides quickly and intuitively, since they are
manual techniques, they require users to set up and optimize the RNA structure
models according to particular concepts utilizing the tools provided in the software
packages. Thus, in order to construct plausible systems, it is important for users to
have extensive knowledge of RNA systems.

Homology-Based Modeling
Although a macromolecule’s 3D structure experiences change much slower in
comparison to its sequence, evolutionarily associated macromolecules normally
preserve similar 3D structure though divergences at the sequence level. On this
basis, 3D macromolecule structures are able to be built by aligning the target
molecule sequence to molecular structure templates [134]. HBM, also referred to
as comparative modeling or template-based modeling, was very effective in the
prediction of 3D protein structure [138, 139]. Additionally, HBM has been expanded
to include fragment assembly methods like 3dRNA [140] and RNAComposer
[141]. 3dRNA is a quick and automatic 3D algorithm designed to construct RNA
structure by assembling A-form helixes and various loops, whose structures are
extracted in a database from known structures [140]. 3dRNA predicts reliable 3D
structures based on its SSs for 300 RNA tested, including pseudoknots, duplexes,
and hairpins. In addition, 3dRNA can also be used freely online as a database server,
and the projected 3D structure can be accessed rapidly with the sequence and SSs as
data [140].

ModeRNA enables both the simplified structure forecast from a series of
templates/alignments as well as user-controlled structure manipulations, i.e., the
fragment assembly [142]. ModeRNA understands as well as models post-
transcriptional alteration of nucleosides compared with other modeling algorithms.
It is pertinent to note that even though ModeRNA is not a method focused on
graphics, it also demands that users should have alignment among the RNAs
template and the target RNA and define the base pairs between the embedded
fragment and the rest of the RNA [142]. RNAComposer is another web server that
can use the RNA FRABASE database for predicting 3D structures for large RNAs
[141]. The RNA FRABASE database can be considered as a dictionary linked to the
RNA SSs with established fragments of a tertiary structure. The SSs that a user
provides in the RNAComposer is, first of all, broken into elements such as stem,
loops, and individual strands and subsequently scanned the related tertiary structural
elements automatically from an RNA FRABASE database as well as assembled into
full 3D structures.

The key benefit of HBM is that the size of the RNAs to be modeled is not
necessarily limited. The consistency of the projected structures depends, however,
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on the sequence alignment consistency, template structures, and secondary
frameworks identified by the user. Although the amount of identified RNA structures
stored, the PDB/NDB database is growing quickly, and it might yet be challenging to
locate accurate template RNAs for a given target RNA. In addition, owing to their
strong stability, the configurations of their RNA are normally modified with
solutions such as ion conditions and temperature [143], and other ligands or
macromolecules. Moreover, the creation of a good alignment of RNAs with compli-
cated systems typically involves laborious manual planning dependent on proven
expertise in the most significant RNA families. HBM is, therefore, not always
accurate.

10.3.2.2 Physics-Based Modeling
Physics-related methods are based on biophysical concepts that concurrently scan
for the conformation to fold with minimum free energy. Since complete atomic
structure modeling for an RNA typically requires several degrees of freedom and
thus tremendous computational sophistication, many CG predictive models with
physical simplifications have also been developed at various resolution levels.

All-Atomistic Model
Until today, the “all-atomistic molecular dynamics” are highly required for under-
standing macromolecule simulation, which in turn provides an insight into the real
movement of atoms, such as AMBER [140, 144] and CHARMM [145] with
physics-based force fields. However, considering the several degrees of freedom, it
remains challenging for folding RNA 3D structures even with advanced computing
strategies. The models were then evolved considering the recognized or secondary
fragments [146], such as the MC-fold/Mc-Sym Pipeline (MMP) [76] and FARNA/
FARFAR [147]. Because SSs can provide enough structural constraints for
automated construction of 3D structures, the MMP infers RNA SSs from sequence
data and subsequently assembles a set of 3D structures based on their SSs
[76]. Unlike the thermodynamics approaches such as Mfold [148]. The MC-Fold
can forecast RNA SSs, including noncanonical and canonical base pairs, for the
usage of a knowledge-related scoring function associated with the NCM (nucleotide
cycle motif) databases. The NCMs that are circularly bound through covalent bonds,
pairing or stacking interactions, were actually developed from a study of the X-ray
crystallographic structures. The MC-Sym along with the 3D NCMs as well as the
Las Vegas algorithm was employed for the fragment insertion simulation. MMP has
been authenticated by constructing 3D structures of precursor microRNA as well as
human immunodeficiency virus (HIV1) cis-acting-1 frame-shifting segment [76].

Das and Baker discussed FARNA’s completely automatic, energy-based solution
to predict RNA 3D structure [74]. FARNA integrates trinucleotide fragments
obtained from the ribosome crystal structure into a completely atomistic structure
that is compatible with the particular sequence by utilizing the Monte Carlo algo-
rithm as well as the simpler knowledge-based energy feature that favors stacking,
base pairing, and geometry. The CG core pairing capacity employed in FARNA is
focused on the mathematical study of the ribosomal basis, and not only Watson–

228 M. K. Gupta et al.



Crick base pairs. However, the interactions along with Hoogsteen as well as sugar
edges may be taken into account. FARFAR implements a high-resolution process of
refining into FARNA in order to forecast and design the atomic precision of
noncanonical small RNA structures [147]. In another study, RNAnbds was built
for predicting RNA’s 3D structures through fragmentary assembly, on the basis of
statistics of bases as per their sequence/space neighbors in databases [149]. RNAnbds
offers a good predictor for short fragments (<15 nucleotides), in specific RMSD
loops <4, together with statistical potentials like base stacking and base pairing.

Coarse-Grained Model
Another important approach for minimizing the computational expense is to
decrease the number of objects by handling a set of usable atoms with a single
bead [150, 151]. The bead can either denote a few or a large number of atoms on the
basis of the model’s resolution. Following the initially “one-bead RNA model”
designed by Malhotra and Harvey [152], several CG models were implemented
for the purposes of predicting RNA 3D structures [153] or modeling interactions
among RNAs as well as other molecules [154, 155], for example, NAST [156], YUP
[157], and iFold [75]. The YUP is a very versatile molecular mechanic algorithm for
CG and multi-scaling modeling [157]. The YUP is employed for modeling RNA,
protein, and DNA structures on the basis of the related energy potentials and
approaches such as Monte Carlo, energy minimization, and molecular dynamics.
In YUP, one nucleotide is substituted by a pseudo-atom at the middle of phospho-
rous atoms in order to model high RNAs, which decreases device costs efficiently.
While YUP needs users to supply the information about the SSs of RNAs and the
force field, YUP is an adaptive RNA modeling kit for automated CG
modeling [157].

Like YUP [157], NAST is another “one-bead RNA model” in which a
nucleotide’s C3’ atom is picked to reflect the whole nucleotide [158]. The NAST
will sample conformations that fulfill a certain range of secondary structure as well
as tertiary interaction limit, with an RNA basic knowledge-based ability and a simple
molecular dynamic algorithm. One benefit of NAST is its capacity to integrate
experimental data as a filter for structurally equivalent conformation clusters, for
example, with perfect small-angle X-ray dispersing data as well as experimental
solvent accessibility data. Earlier, NAST was employed for predicting the yeast
phenylalanine tRNA’s 3D structures (76 nucleotides) and the Tetrahymena thermo-
phile group I intron’s the P4-P6 domain of 158 nucleotides within 8 Å as well as
16 Å RMSDs retrieved from experimental structures, respectively [158]. The iFold
is another web-based algorithm that is being built by the Doknolyan community and
can be used for predicting RNA’s 3D structures [75]. The model employs three-
nucleotide beads of CG representation and efficient molecular dynamic simulations
with step-by-step potentials like the base pairing. iFold’s strength has been seen in
forecasting the 3D structures of 150 RNA with different sequences, with <4 Å
deviations in experimental structures in the majority of predicted structures [159].
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10.4 Conclusion and Future Perspective

In conclusion, to date, numerous computational approaches have been developed for
predicting the secondary as well as the three-dimensional structure of RNA. How-
ever, the authors believe that there is still scope for the development of novel tools
and techniques which can predict a more accurate structure [160]. Combining
experimental and computational approaches for predicting the structure of RNA
will enable us to understand its structure and function more precisely. For instance,
smFRET as well as NMR spectroscopy are useful tools to evaluate the several states
that the RNA can embrace. The PARIS approach for in vivo crosslinking also has a
significant potential to include several instances of multiple-folded RNA.
Improvements in cryoelectron microscopy, as well as tomography along with direct
electron detectors, advanced contrast methods as well as single particle detection,
can allow direct observation of single RNA molecules feasible in several
configurations. The cryoelectron microscopy group has already designed novel
sophisticated systems for categorizing related configurations of complex macromo-
lecular assemblies. The least number as well as the length of RNA helices obtained
from crystallography or cryoelectron microscopy often offer an important restriction
for RNA folding [160]. Good measurements are also needed to assess differences
among RNA structures. For instance, the analysisDist tool available within the
program kit of the Vienna RNA provides several alternatives for measuring matrix
distances with Ward’s method, Shapiro’s cost matrix for coarse structures, or
Saitou’s neighbor-joining method [87]. Thus, RNA structure prediction continues
to progress with novel metrics as well as more experimentally specified examples of
multi-conformation RNA assemblies. A single minimum free energy configuration
for the RNA sequence would become a greater appreciation of the several potential
different configurations encrypted in the RNA sequence and precise forecasts will
direct the evaluation of detailed transcript and transcriptome-wide research studies.
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Abstract

Structural proteomics identifies three-dimensional (3D) protein structures at an
atomic resolution on a genome-wide scale to better understand the interaction
among protein sequence, structure, and function. The 3D structure of proteins is
mostly estimated via x-ray crystallography or nuclear magnetic resonance spec-
troscopy. However, for the overwhelming majority of protein sequences, no
experimental structure is available to date. This gap in structural proteomics can
be overcome by computational approaches. The prediction of protein structure
through computational approaches may be addressed in three major ways:
(1) computer simulation focused on empirical energy calculations; (2) knowl-
edge-based approaches that employ information obtained from structural-
sequence relationships retrieved from already available experimentally defined
3D protein structures; and (3) ab initio methods. Irrespective of all these, the
creation of an exact model is not often feasible and may sometimes generate
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incorrect models. Analysis with incorrect models may provide wrong information
about the structure and function of biomolecules. Hence, validation of the model
generated is highly required prior to downstream analysis. The precision of a
generated model is calculated by different factors, including the existence of
solved protein structures that can be employed as reference models. In the near
future, the chapter’s information will be highly useful for constructing a more
accurate three-dimensional structure of proteins, which, in turn, will help us
understand the biological function in a more comprehensive way.

Keywords

Protein structures · Homology modeling · Model validation · Threading · ab initio

Abbreviations

3D Three-dimensional
CASP Critical Assessment of Techniques for Protein Structure Prediction
HMM Hidden Markov model
I-TASSER Iterative threading assembly refinement
MQA Model Quality Assessment
MSA Multiple sequence alignment
NMR Nuclear magnetic resonance
PPA Profile-profile alignment
RMSD Root-mean-square deviation
SVM Support vector machine
XRC X-ray crystallography

11.1 Introduction

The accumulation of genomic sequence has contributed to the development of
structural proteomics, which, in turn, had led to the recognition of a significant
number of protein architectures. The vast number of protein structures anticipated
from numerous approaches can provide useful insights into the guidelines for the
prediction of protein folding and biochemical activity. One of the key objectives of
the structural proteomics initiative is to find the best plausible technologies and
efficient processes for converting gene sequence to three-dimensional (3D) structure
[1]. Interestingly, most of the technologies evaluate the best result obtained from
either x-ray crystallography (XRC) or nuclear magnetic resonance (NMR) spectros-
copy. XRC is currently regarded as a potential workhorse for structural proteomics
since it is possible to evaluate a 3D structure in hours when supplied with a well-
diffracting crystal. However, the performance of structural determination employing
XRC remains an open question, as the rate determination stage still generates only
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crystals that are well-diffracted. An erratic method may take hours and months
[1]. On the other side, NMR research involves no crystals, and structure-specific
samples can be detected in minutes of purification. Additionally, the determination
of the NMR structure is currently limited to size restrictions and lengthy data
collection and evaluation periods (often months). This process is better applicable
for proteins having<250 amino acids. In brief, XRC and NMR spectroscopy tend to
have complementary defects, and the relative effectiveness of such approaches is
still to be identified in structural proteomics. Irrespective of all these advancements,
for the overwhelming majority of protein sequences, no experimental structure is
available. Earlier studies have reported that this gap in structural proteomics can be
overcome easily by computational approaches [2, 3].

Structural bioinformatics, initially referred to as structural computational biology,
supersedes bioinformatics’ other forms [4]. It may be claimed, in reality, that Watson
and Crick’s seminal paper of 1953 is a model work and perhaps the first structural
document on bioinformatics [5]. For Martin Karplus, Arie Warshel, and Michael
Levitt, the 2014 Nobel Award for “multiscale modeling” is a major hallmark that
acknowledges the effect of structural bioinformatics on science. In his description of
the emergence of the sector, Levitt explains how computation is needed to correctly
refine Crick’s tRNA model for the creation of an actual model [6]. Simulation has
also been an important part of structural biology since its very beginning and has
played an important role in biochemistry and molecular biology through the years.
Indeed, we have now entered the stage of millisecond simulations following the first
simulations of small systems and a couple of picoseconds recognized by the Nobel
Committee [4].

The protein structures obtained from Structural Proteomics Centers may be used
to evaluate the current protein structure using molecular substitution. Structural
proteome structures may also be exploited to build homology models for whole
protein families utilizing computational bioinformatics techniques, and these struc-
tural models may also be used for understanding these proteins’ roles without the
requirement for experimental 3D structures. For the systematic investigation of
proteins that are annotated as a hypothetical protein or with vague functions,
structural proteomic structures also play an important role. Information on precise
3D protein structures is also a prerequirement for reasonable drug design. Structural
proteomics has a significant effect on drug development pipelines and plays role in
understanding the molecular processes at the atomic level controlling human
diseases [7]. Thus, in this chapter, the authors attempt to understand recent advances
in structural proteomics for protein structure determination. At first, we provide a
detailed description of instrumental approaches like NMR spectroscopy and XRC;
subsequently, we provide brief descriptions of computational procedures, including
comparative and de novo structure prevision. In the end, we explain different
approaches to test the accuracy of the generated models.
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11.2 Approaches for Structure Prediction

As stated above, the 3D structure of any protein can be estimated by both experi-
mental and computational approaches [8] (Fig. 11.1).

11.2.1 Experimental Approaches

At present, XRC and NMR are the key experimental methods that are widely used
for evaluating the 3D structure of proteins [8].

X-Ray Crystallography
The exploration, creation, and precision of XRC are the result of several ground-
breaking activities [9, 10]. In 1895, X-rays were invented byW. C. Röentgen [10]. In
1912, M von Laue illustrated the potential of X-rays that diffracted from single
crystals. This discovery awarded him the Nobel Physics Award in 1914 [11]. In the
following year, W.L. Bragg coined the rule on diffraction, identified as Bragg’s law,
which showed the usage of different patterns of diffraction in the assessment of
crystal structure of NaCl [12]. The invention of instrumentation for observing
diffraction patterns was pioneered by W. H. Bragg (father of W.L. Bragg). Bragg’s
rule (only named after the son W. L. Bragg) was used to examine the pattern of
diffraction, and in 1915, their combined and separate experiments earn them Nobel
Prize. To date, 29 Nobel prizes have been awarded for the significance as well as the
applications of x-ray diffraction in many research fields [10].

XRC is a technique used to establish a crystal’s atomic and molecular composi-
tion. The fundamental theory is that a beam of X-rays diffracts through several
unique directions of crystalline atoms [13]. A crystallographer may create a 3D
image of the electron density in the crystal by calculating the angles and intensities of
these diffracted beams. The average locations of the atoms within the crystal, their
chemical bonds, and their disorder and numerous other details maybe calculated
from this picture of electron densities. The system shows how certain biological

Fig. 11.1 Different approach for predicting protein structure
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molecules, including vitamins, medications, proteins, and nucleic acids, such as
DNA, are organized as well as function. It is pertinent to note that James Watson
& Francis Crick observed the double helix structure of DNA via XRC. The recent
improvement in image restoration technology rendered XRC appropriate for the
structural study of even greater complexes. The biggest failure in XRC is that it is
impossible to obtain a virus particle crystal, a precondition required for successful
XRC. Another drawback is that XRC normally demands that samples are positioned
in nonphysiologic conditions, which may often induce technically insignificant
conformational shifts [13].

NMR
NMR imaging is arguably today the most versatile biochemical testing methods. The
NMR concept was first noticed in the 1940s and was mainly the work of physicists.
During the next 50 years or so, NMR applications were quickly established and first
utilized by chemists. In the late 1960s, the usage of NMR to research protein and
other biological molecule structure was greatly enhanced with the development of
superconducting magnets and Fourier Transform NMR. It was not until the
mid-1970s, nevertheless, that the first NMR applications were recorded for the
metabolism analysis of living biological systems. At around the same time, it has
been shown the usage of magnetic field gradients could be used to spatially encode
NMR signals, and hence, the idea of MRI has been born. Soon after, MRI images
were collected from the human body, and, as early as 1980, the evaluation of MRI as
a clinically effective imaging tool had begun [14]. In recent years, NMR has also
been rendered as a viable biomarker exploration technique by integrating advanced
hardware and chemometric techniques. NMR is ideally adapted for mixture analyses
and has many attractive biomarker exploration characteristics such as limited sample
preparation, nondestructive screening, and simultaneous metabolite identification
with complex physiochemical properties. NMR’s excellent intra- and interlaboratory
analytical replicability has been well-documented [15, 16]. Under suitable
circumstances, NMR spectra are quantitative since the peak region is directly
proportional to the corresponding number of nuclei.

The effectiveness of biomarker discovery via NMR spectroscopy has been well-
documented in cancer [17], genetic disorders [18], and toxicology research [19]. Bio-
marker detection can be performed with urine and blood and other biological fluids
and tissues obtainable through minimum intrusive techniques. In one study,
researchers reviewed the usage of NMR spectroscopy to identify possible cancer
molecular markers in human biofluids [17]. The authors presented a detailed list of
15 forms of cancer testing, tabled details on gathering and storing samples, data
processing, and statistical analysis, described metabolic modifications within disease
versus control, and recommended pathway agitations [17]. Other articles have also
analyzed numerous NMR implementations and examined the significance of sample
selection, storage, and experimental techniques [20, 21]. “Metabolome-wide associ-
ation studies” (MWASs) have grown rapidly as a tool to diagnose disease risk factors
depending on metabolite concentrations in the broad biological sample, rather than
relying on detecting particular metabolic biomarkers in pre-existing conditions
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[22, 23]. Bernini et al. [24] demonstrated the stability of human metabolic
phenotypes over many years. Another 1H NMR analysis showed that consistent
hereditary and environmental effects accounted for 47% in urine and 60% in plasma
for biological differences within the metabolite levels [25]. As stated above,
irrespective of all these findings, for the overwhelming majority of protein
sequences, no experimental structure is available. This gap in structural proteomics
can be overcome by computational approaches [2, 3].

11.2.2 Computational Approaches

The prediction of protein structure through computational approaches may be
addressed in three major ways: (1) computer simulation focused on empirical energy
calculations; (2) knowledge-based approaches that employ information obtained
from structural-sequence relationships retrieved from experimentally defined 3D
protein structures; and (3) ab initio methods [8].

11.2.2.1 Energy Minimization-Based Methods
Protein structure prediction based on energy minimization techniques is based on
measurements of the equivalence of native protein structures to a thermodynamic
equilibrium regime with limited free energy. Energy-based approaches should not
make pre-existing conclusions regarding amino acid coding properties. Instead,
efforts to establish the minimum global amount of the protein molecule’s surface-
free energy are believed to conform to its native configuration. Methods focused on
energy minimization may be roughly divided into two categories: (1) static minimi-
zation methods and (2) dynamic minimization methods. ECEPP, AMBER,
CHARMS, and GROMOS are the most appropriate energy minimization program
packages [26, 27]. The benefit of energy measurements is that they are focused on
physicochemical theories, but they are complicated by a huge number of degrees of
freedom and the restricted performance of energy functions. There are generally two
big issues with energy minimization-based methods. First, the equations needed for
the allocation of protein structures dependent on the reduction of energy are beyond
the scope of today’s computers. Second, for such measurements, the interaction
potential used is not adequate to model the native structure of the protein at the
atomic detail [8].

11.2.2.2 Knowledge-Based Approaches
Knowledge-based approaches are subdivided into homology modeling and
threading [8, 28]. Table 11.1 lists software for predicting protein structure.

Homology Modeling
Homology modeling (or comparative modeling) works on the biological reality that
two sequences that have a close similarity/identity also have similar structures. This
approach generates the 3D protein structure employing the following steps: (1) the
best plausible template is recognized for the specified target sequence by using
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BLAST search, (2) sequence alignment correction, (3) to ensure the alignment of
conserved or functionally essential residues, (4) backbone prediction, (5) modeling
of the loop, and (6) sidechain modeling using rotamer libraries [44]. MODELLER
(https://salilab.org/modeller/), “iterative threading assembly refinement”
(I-TASSER) [45], and SWISS-MODEL (https://swissmodel.expasy.org/) are a few
main homology modeling methods and servers. MODELLER constructs a protein
model by comparative modeling between the template and target sequences
provided [32]. In the easiest form, the input is to match the query sequence that is

Table 11.1 Software for predicting protein structure

Name Name Method Link

Homology
modeling

Biskit Employs external tools like T-coffee, BLAST,
and MODELLER for generating three-
dimensional structure

[29]

ESyPred3D Template identification, alignment, and three-
dimensional modeling

[30]

FoldX Energy estimation and three-dimensional
modeling

[31]

MODELLER Spatial restraints satisfaction [32]

CONFOLD Contact and distance restraints satisfaction [33]

ROBETTA Rosetta homology modeling and ab initio
fragment assembly through Ginzu domain
identification

[34]

BHAGEERATH-
H

Augmentation of ab initio folding and
homology approaches

[35]

SWISS-MODEL Local similarity or fragment assembly [36]

Yasara Templates identification, alignment, three-
dimensional modeling including ligands as
well as oligomers, and model fragments
hybridization

[37]

AWSEM-Suite Molecular dynamics simulation based on
template-guided, coevolutionary-enhanced
optimized folding landscapes

[38]

Homology and
threading
modeling

RaptorX Identification of remote homology, three-
dimensional modeling, and prediction of
binding site

[39]

HHpred Template identification, alignment, and three-
dimensional modeling

[40]

Phyre2 Identification of remote homology, alignment,
three-dimensional modeling, multitemplates,
and ab initio

[41]

Homology and
ab initio
modeling

ROBETTA Rosetta homology modeling and ab initio
fragment assembly through Ginzu domain
identification

[34]

Ab initio
modeling

trRosetta It predicts the structure of the protein on the
direct energy minimizations with a restrained
Rosetta.

[42]

I-TASSER Threading fragment structure reassembly [43]

11 Structural Proteomics 245

https://salilab.org/modeller/
https://swissmodel.expasy.org/


about to be modeled with the template structure(s), the template(s), atomic
coordinates, and a basic script file. MODELLER then generates a model that
includes all the nonhydrogen atoms, without even a user intervention and on a
desktop machine within minutes [46]. In addition to model construction, MODEL-
LER may conduct auxiliary operations, like the fold allocation [47], the alignment of
two protein profiles or their sequences [48], multiple protein sequence and/or
structure alignments [49], sequence and/or structure clustering, and ab initio protein
structure loop modeling [46]. The modeler is often used to model loops and optimize
protein [32].

SWISS-MODEL is another workplace for the homology modeling of protein
structures [50–52]. The first completely automatic protein homology simulation
server, SWISS-MODEL (https:/swissmodel.expasy.org), has constantly improved
over the last 25 years [43, 50, 53, 54]. Its modeling functionality has recently been
expanded into consideration of the amino acid sequences of interaction partners and
involves the modeling of homomeric and heteromeric complexes. The latest
modeling engine ProMod3 has been developed with improved precision of the
generated models and along with a refined method of assessment of the local
model output (QMEANDisCo) focuses on a recent version of QMEAN [50, 55],
which has been released recently [52].

The I-TASSER server is an optimized protein structure prediction tool based on
the paradigm for the sequence to structure to function. I-TASSER initially produces
three-dimensional atomic modeling from several threading alignments and structural
iterative assembly simulations focused on an amino acid chain. The protein function
is then deduced by comparing the 3D models with other recognized proteins
structurally [45]. C-score is a confidence score for the quality evaluation of estimated
I-TASSER models. It is determined depending on the context and the convergence
parameters of structural assembly simulations of threading template alignments.
C-score is usually mostly in [�5,2] range, where a higher value C-score reflects a
high trust model and vice versa (https://zhanglab.ccmb.med.umich.edu/I-TASSER/
about.html). TM score is another newly proposed scale for the structural resem-
blance calculation between the two systems. The aim of proposing a TM score is to
solve the RMSD issue that is susceptible to local error. Because RMSD is an average
distance of all residual pairs in two structures, local error (e.g., tail misorientation)
will exist at a great RMSD value even though the global topology is right. However,
in TM score, the distance is weighted more heavily than the distance, which renders
the score indifferent to the error in local modeling. A TM score > 0.5 implies the
right topology model, and a TM score> 0.17 is a spontaneous similarity. This cutoff
does not rely on the duration of the protein (https://zhanglab.ccmb.med.umich.edu/I-
TASSER/about.html).

Threading Approach
In the threading, a new sequence is positioned on a collection of established folds to
find the best score (lowest energy) for one fold. The standard quasienergetic scoring
scheme allots energy to alignment, in the expectation that a similar structure to the
native fold of the query sequence will have the least energy. Threading is basically
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similar to sequence alignment. The statistical value of the findings was calculated by
an integral feature of sequence alignment procedures [56]. After its first use in the
early 1990s, threading has been one of the protein structure prediction’s most
popular areas. Threading methods contain structural profile alignments, sequence
profile alignments, deep learning, and hidden Markov model (HMM) [57]. The
sequence “profile-profile alignment” (PPA) is perhaps the most widely employed,
stable threading approach. Rather than aligning the single target and template
sequences, PPA aligns multiple sequence alignment (MSA) targets to an MSA
template. The alignment score throughout the PPA is generally determined as a
product of the amino acid frequency at each target MSA location with the log-odds
of the matching amino acid in the MSA template, although there are alternate
methods for measuring the profile-alignment score. Profile-profile alignment
approaches displayed benefits in many recent blind experiments. For example, in
LiveBench-8, the top four servers (SFST/STMP, BASD/MASP/MBAS, ORF2 /
ORFS, and FFAS03) are all sequence-profile alignment-dependent. Several
sequence profile-based approaches were rated top of single threading servers in the
CASP Server Segment [58] and the CAFASP [59]. Earlier, Wu and Zhang [60]
briefly demonstrated that by adding a variety of additional structural details, the
precision of sequence profile alignments could be further increased by nearly 5–6%.

HHsearch, an HMM-HMM alignment tool, has been distinguished as the best
individual threading server in CASP7 [61]. The concepts of the HMM-HMM
alignments, as well as the profile alignments, are similar, as each tries to pair the
target MSA to the MSA template. Instead of portraying the MSAs through sequence
profiles, HHsearch employs HMM profiles that can produce sequences with some
probabilities calculated by the amino acid product emission and the likelihood of
insertion/deletion. HHsearch aligns the target with the HMM blueprint by
optimizing the chance that two models coroduce the same amino acid sequence.
This optimizes the amino acid frequencies and insertions/deletions in both
HMMs [61].

3D-PSSM (http://www.sbg.bio.ic.ac.uk/~3dpssm/index2.html) is a web-based
software package that uses a method for structural profile recognition of protein
folds. The profiles of each superfamily protein are created by integrating many
smaller profiles. The primary aim is to superimpose protein structures within a
superfamily focused on the SCOP definition by adding secondary structures and
solvent accessibility details for the corresponding residue. Furthermore, each mem-
ber of a structural protein superfamily has its own PSI-BLAST sequence-based
profile determined. In conjunction with the profile of the structure, these sequence
profiles are used to shape a broad superfamily profile in which each location includes
sequence and structural details. For the query sequence, a sequence-based profile is
created by PSI-BLAST. To forecast the secondary structure, PSI-PRED is used. The
sequence profile and the expected secondary construction are contrasted by dynamic
programming with the precomputed protein superfamily profiles. The matching
scores are measured in secondary structure, solvation, and sequence profiles and
are graded as the top scoring structure folded [28].

11 Structural Proteomics 247

http://www.sbg.bio.ic.ac.uk/~3dpssm/index2.html


GenThreader (http://www.ebisu.co.uk/chemogenomix.com/chemogenomix/
GenThreader.html) is a web-based application that uses a profile hybrid and a pair-
wise energy system. The initial stage is similar to the 3D-PSSM; 3 rounds of
PSI-BLAST are needed for the sequence of the query protein. The resulting several
sequence hits are used for profile creation. PSIPRED is employed for predicting its
secondary structure. Both are employed as a threaded measurement input dependent
on a pair-wise energy potential process. The outcome is assessed by neural networks
that incorporate energy capacity, sequence alignment, and longitude data to establish
a single score reflecting the relation among the template and query proteins [28].

11.2.2.3 ab initio Protein Structure Prediction
Both homology and fold recognition methods, are focused on the usability of
template structures mostly in the database to forecast. If the database contains no
right structure, these methods malfunction. Proteins in nature, though, fold individ-
ually without testing what their homolog configurations are in databases. There is, of
course, detail in the sequences that instruct proteins to “form” their native structures.
Early biophysical experiments indicate that most proteins spontaneously fold into an
almost minimal energy stable form. This structural condition is called the native
state. This folding method seems to be nonrandom, but the structure is uncertain. The
minimal understanding of protein folding is the foundation for the ab initio forecast.
The ab initio procedure, as the name implies, aims to generate all-atomic protein
models focused solely on sequence data without the aid of existing protein
structures. The presumed benefit of this approach is that projections are not
constrained by existing folds, and new protein folds are discovered. However, as
the physicochemical rules regulating protein folding are currently not well-known,
the energy functions used in the ab initio forecast are currently very imprecise. The
topic of folding remains one of the major problems in bioinformatics today [28].

Present ab initio algorithms cannot yet approximate the protein folding mecha-
nism correctly. They function by utilizing heuristics of some kind. Since the native
state of a protein structure is nearly the minimal energy cost, the prediction programs
are thus built utilizing the energy minimization theory. These algorithms aim to find
the one with the least global energy in any conformation. However, in practice, it
might not be correct to find a fold with absolute minimal energy. This points to one
of the main drawbacks of this strategy. Moreover, it is not computationally viable to
check for all potential structural conformations. It was predicted that it would take
10–20 years to sample all potential conformations of a 40-residue protein using one
of the largest supercomputers in the world (1 trillion operations per second). Any
kind of heuristics must then be used to minimize the room to be checked for
conformational purposes. Any new ab initio strategies combine the quest for
fragments with threading to create an unknown protein model [28].

Rosetta is a three-dimensional protein conformation prediction server that utilizes
the ab initio process [28]. A customized database of three and nine residue segments
is used in ROSETTA. For each section, a group of structural motifs has been
identified, and the simulation relies on the assembly of these motives into a consis-
tent 3D framework. For a standard goal, ~10,000 attempts are required. The
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minimization of intramolecular associations is determined by an individual scoring
feature that takes into account hydrophobicity, disulfide bands, α-helices, β-twists,
and β-sheet assemblies. ROSETTA proposes that local connexions may be modeled
to various collections of structural motifs through mapping chain fragments and that
nonlocal interactions choose low-free tertiary structures from local mapping-
compliant conformations [62]. Nonlocal contact is fairly well-modeled at the level
necessary for folding, without comprehensive side chains. ROSETTA-ab initio is an
ab initio protein structure prediction kit, focused on the premise that local
interactions direct the conformation of short segments, whereas global interactions
decide a three-dimensional structure, consistent with local biases [62]. Once these
configurations are identified, a Monte Carlo protocol may involve each query
sequence in a variety of higher-order combinations. The resulting structures in a
semiempirical force field are subject to energy minimization, taking into account
hydrophobic and electrostatic interactions, central associations of hydrogen, and
omitted amounts. Finally, structures consistent with local and nonlocal connexions
are categorized according to their total energy, measured via the minimization
method. The EUChinaGrid project employed ROSETTA to model the protein set
known as “never born proteins.” About 10,000 (60 random amino acids per protein)
were produced, with an equal likelihood of each amino acid occurring. The collec-
tion should include a variety of pharmacologically active proteins. The protein
structures were folded using both the ROSETTA model and “fuzzy oil decrease”
and produced RMSD of about 6.7–7.7 Å in the most common structures and
25–32 Å for the most varying structures. The comparative study of the two groups
indicates that the structures created by the “fuzzy oil drop” model (which was in line
with expectations) have a well-defined hydrophobic center. ROSETTA repeated this
phenomenon not consistently: although the folded proteins often constituted
strongly hydrophobic regions, these zones were not necessarily situated close to
the middle of the molecule [62].

Models obtained by de novo prediction techniques are useful to gain biological
insight through either functional site recognition or functional annotation by fold
identification. The Rosetta method is quick enough to allow genome-scale research
to be made feasible. Earlier, ~500 PfamA family structures with no relation to the
established structure were expected [63]. Irrespective of all these advancements,
earlier studies have reported that the algorithms of ab initio prediction are far from
mature. Their estimation accuracies are too poor for realistic usage. Initially, protein
structure estimation remains an imaginary target for the future. However, consider-
ing the latest high-throughput structural evaluation by the structural proteomics
initiative, which aims at solving all protein pliers in a decade, it may soon come
when the ab initio modeling method is unnecessary since homology modeling and
threading will deliver far higher quality predictions for all potential protein pliers.
Regardless of the advances achieved in structural proteomics, the study of protein
structures using the ab initio prediction method will still offer insight into the
mechanism of protein folding [28].
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11.3 Model Evaluation

As stated above, protein structure prediction techniques have advanced rapidly over
the past couple of decades, with expanded software availability and regular usage of
biological studies in computational models [64]. However, also with state-of-the-art
methods [65, 66], the creation of an exact model is not often feasible. The precision
of a structure model is calculated by different factors, including the existence of
solved protein structures that can be used as simulation models. Since the reliability
of the models varies, it is important to know the accuracy of a given computational
model for the realistic application of the biological research model. The prediction of
the accuracy of protein-tertiary structure models is named the Model Quality
Assessment (MQA) and became an active focus in structural bioinformatics research
[67]. MQA is not just for the detection of high-precision models. For instance,
models with modest precision are useful for several purposes [68]. Models with
atomic-detailed precision with an RMSD of 1.5–2 Å to the native structure are useful
for almost every application in which the structural knowledge is helpful, such as
enzyme and protein engineering studies and drug design [69]. For applications that
need residue level precision, e.g., the design and analysis of site-directed mutagene-
sis studies, models of proper backbone orientation (e.g., RSMD 4 to 6 Å) may be
used. Models with a slightly higher (worse) RMSD but nearly right overall fold can
be used to predict the feature in their global fold [70], to explain structural data with a
low resolution [71] or to classify local functional sites [72–74]. Appropriate usage of
a model for the above-described applications is only feasible if consumers know
about the model’s accuracy. It is, therefore, necessary to develop methods to
determine the consistency of the models of the protein structure such that they are
appropriate for their predicted accuracy in applications. MQA is also an important
step in refining models of structures [75].

There are two groups of MQA protein methods that estimate the global and local
consistency of a model structure, respectively. In the former class, RMSD or other
associated metrics showing the global structural similarities of a model with the
protein’s native structure was anticipated. By contrast, the local consistency predic-
tion methods are structured to show the exactness or mistake of each model residue,
such as a distance between the Cα atoms’ location in the expected and the native
structures. More MQA approaches for global rather than local quality are produced.
The former is also much more effective in the “Critical Assessment of Techniques
for Protein Structure Prediction” (CASP) [67], a communal protein structure predic-
tion experiment. The global quality of models, mostly formulated in a machine
learning system, may be expected from structural and sequence (target-template
alignment) features of models or their combinations. But useful structural attributes
include the residue/atomic interaction potentials [76, 77], main-chain torsion angles,
[78] and residue exposure or burial propensity [79], while the alignment
characteristics include target alignment scores measured for a target sequence/profile
sequence identity and statistical importance [80, 81]. Their structural characteristics
are useful. Methods like regression [82] or linear combination [83], support vector
machine (SVM) [84, 85], and neural network [86–88] were used to merge functions.
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In the CASP, consensus strategies investigating the coherence of models developed
through various methods of structural prediction were successfully carried out
[89, 90].

In comparison to global MQA, local MQA approaches need major changes in
practice. The correlation coefficients of expected and real, local errors in structural
model models were stated to be significantly lower than those of the global accuracy
prediction [67]. Local consistency knowledge informs users of regions or residues in
a precise projected structure model. It also offers knowledge of considerable signifi-
cance for the functional execution of structural models. Current local MQA
approaches adopt similar approaches to global MQAmethods: in a machine learning
setting, structural and sequence features of a model are known as residue, e.g., neural
networks [91] and SVM [92]. SMOQ [93], MULTICOM [94, 95], and Wang deep
[96] are also recently established local QA methods.

11.4 Conclusions and Future Perspective

In conclusion, in bioinformatics and computational biology, the prediction of the
protein tertiary structure from amino acid sequence is very important. A lot of
protein tertiary structure prediction techniques have been established in recent
decades. One method category adopts a template-based methodology, which utilizes
experimentally defined frameworks as models for the creation of structural templates
for an undefined target protein. Another group uses a template-free method, which
aims to fold the protein without using established template structures. Both
approaches were frequently merged in order to cope with a wide variety of protein
structure prediction issues from comparatively simple homology simulation to hard-
de-novo estimation. One essential role in the prediction of protein structure is to
evaluate the consistency of structural models provided by methodologies for the
prediction of protein structures. For assessment, refinement, and collection of
models, a sample quality assessment process used in a pipeline for prediction of
protein structure is crucial. Generally, a sample quality evaluation approach may
estimate a global quality score that measures the total quality of a model protein
structure and a set of local quality measurements that measure the local quality of
each residue in the product. A global quality score can be a global distance test score,
which estimates the structural similarity between the model and the unknown native
protein structure. The Euclidean distance from the location of the residue in a model
and that in the unknown native structure after superimposition may be a local quality
score of a residue. In the near future, information present in the chapter will be highly
useful for constructing the three-dimensional structure of proteins, which, in turn,
will help us to understand the biological function in a more comprehensive way.
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Gene Ontology and Pathway Enrichment
Analysis 12
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Abstract

Over the past 10 years, gene set analysis has been the first option for studying
gene expression and gene interaction for gaining insights into the fundamental
dynamic biology of disease/traits. It, therefore, reduces the complexity of tradi-
tional statistical research and increases the illustrating strength of the outcomes
achieved. Although approaches to gene set analysis are commonly utilized in
gene expression analytics, the statistical framework and steps generally employed
in these methods have not yet been thoroughly explored, restricting their useful-
ness. Thus, in this chapter, the authors include an outlined statistical framework
and steps for the analysis of gene set used for various genome studies, ranging
from microarrays, RNA sequencing, and the analysis of genomic widespread
association results. The drawbacks of these approaches and strengths have also
been addressed depending on their separate components such as their gene score,
null hypotheses, and essential evaluation methods. The authors believe that a
standardized approach for testing the methods of gene set analysis can also be
used for correcting the lack of agreement on the method of preference for a
specific experiment. The benchmark expression data sets will reflect actual
expression data characteristics and prevent oversimplifying conclusions, such
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as naturally distributed data with zero or constant gene-gene correlations. In the
near future, information present in this chapter will be highly useful for underly-
ing process with any disease or trait in more comprehensive way.

Keywords

Enrichment methods · Functional annotation · Gene ontology · Pathway
enrichment analysis

Abbreviations

BP Biological process
CC Cellular component
DAG Directed acyclic graph
FCS Functional class scoring
GO Gene ontology
GSA Gene set analysis
GSEA Gene Set Enrichment Analysis
HTBD High-throughput biological data
MF Molecular function
ORA Over-representation analysis
PA Pathway-based analysis
PTB Pathway topology-based analysis
PTB Pathway-based topology
SNP Single-nucleotide polymorphism
SPIA Signaling Pathway Impact Analysis
SRT SNP-ratio research

12.1 Introduction

Traditional biological experiments typically research one or few genes at a time. In
comparison, high-throughput sequencing approaches, like microarrays and RNA
sequencing, produce huge lists of “interesting” genes as their final outputs. The
analysis of these huge numbers of “interesting” gene lists (>100 or >1000 genes)
involves complex process [1]. To address this problem, since the last two decades,
various Gene Ontology [2] and pathway enrichment analysis [3, 4] approaches, such
as Onto-Express [5], GoMiner [6], MAPPFinder [7], DAVID [8], GeneMerge [9],
FunSpec [10], and FuncAssociate [11], had been developed. Since then, the sector of
enrichment research has become extremely efficient, culminating in the availability
of more related tools.

These tools are very close in that they often measure the P-values of pathway
enrichment for a user-specific list of interesting genes, employing different statistical
approaches, like the χ2-test, binomial distribution tests, Fisher’s exact test, and the
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hypergeometric test. Fisher’s exact test is optimal for the studying pathways that
include a limited number of genes, and the χ2-test is sufficient if gene count is larger
than 5. Like Fisher’s exact test, the hypergeometric distribution is used for sampling
a few genes but is close to the binomial distribution when the gene numbers are high
[12]. The binomial distribution tests are more suitable for evaluating a large number
of genes, whereas the other three are valid for research using a limited number of
genes. When most of the significant pathways are known, the variations between
these statistical approaches are not dramatic [13, 14]. In 2014, employing both
microarrays and RNA-seq results, Hong and the team demonstrated that a separate
examination of up- and downregulated genes can identify more significant
pathways, which are truly important for differentiating phenotypic in various cancers
[12]. However, as no gold standard norm is there for retrieving significant biological
information from any genes sets, recently, several researchers demanded designing
of benchmark datasets, which, in turn, will represent the true existence of actual
databases. If publicly accessible, these benchmarks will promote the assessment of
gene analysis strategies more precisely and will facilitate the creation of new
approaches. Thus, in the present chapter, the author attempted to understand the
underlying principle of gene ontology and pathway enrichment analysis and how we
can use this information to retrieve more significant biological information from the
any gene sets, which, in turn, will help us to understand biological phenomenon
more precisely.

12.2 Gene Ontology

The Gene Ontology (GO) project offers a standardized, regulated vocabulary of
“term” or “class” that describes the roles of gene and equates them with their genetic
products. It was designed primarily to illustrate biological processes via computa-
tional approaches. The development of strong conceptual information and appropri-
ate tools has rendered the GO a very famous resource in biological science and a
valuable resource for the study of computational data [15]. GO can be broadly
categorized into three nonoverlapping ontologies, namely, biological process (BP),
cellular component (CC), and molecular function (MF). The CC explains genetic
products’ positions in cells, e.g., the “nucleus,” in subcellular systems. The MF
defines actions at the molecular level, like “catalytic behavior.” The terms MF
correspond to activities, instead of molecules, that carry out the operations and do
not define when or where the activity occurs. The BP contains terminology that
characterizes numerous events in order through assemblies of one or more MF like
“signal transduction”. It might not be simple to discern between molecular and
biological processes, but in general, there must be more than one distinct phase in
a biological method. Note the GO words theoretically describe genes rather than
pathways since they are not gene dependencies. GO is also not a gene sequence
database, and instead of gene product, it contains the properties of gene
products [16].
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12.2.1 Molecular Function Annotation

Under most basic biological scenario, almost every biomolecule m is an instance of a
category M that has certain ability to act as an instance of the molecular function type
F (depicted through a corresponding GO term). For instance, alcohol dehydrogenase
1, Adh1’s gene product, functions as an instance for the alcohol dehydrogenase
molecules. This implies that an alcohol dehydrogenase 1 has the capability to play its
role in a specific way. In this way, the word “action” is intended to be used in a
biochemical framework and is best interpreted as representing “potential activity.”
Notice that while the “alcohol dehydrogenase” term is used both by the name of the
gene and in the molecular function, the term itself refers to various entities: in the
former, it refers to the type of molecules, in the latter, it refers to the type of function
which the molecule may perform. This complexity is embedded in the propensity to
label molecules depending on their performing roles, and it is highly required to
distinguish this differences, since the molecules name and the function upon which
molecule is named may not generally match, for example, because the molecule may
perform many functions [17]. However, if certain gene product class has the ability
to perform a certain role, this does not imply that every incident of this molecule type
necessarily executes that same function. For instance, the molecules of the Zp2
mouse gene are located in the oocyte and are likely to bind the molecules of the Acr
gene during fertilization [18]. However, when an oocyte is not fertilized, the
molecules are still present and they are vulnerable to performing the binding role,
but never performed.

12.2.2 Biological Process Annotation

A MF instance is a gene product instance’s ongoing ability to function in a certain
manner [17]. A BP is the execution of one or more such molecular functional
instances that act together to fulfill a biological goal. At the cellular or organismal
level, a BP instance is how a function operates at the level of the molecule. There is a
connection between MF and BP. However, at present, this relationship is not clearly
expressed in GO. From a viewpoint of genetic annotation, we want to move beyond
the connections between cellular and organism instances and to establish the capac-
ity to infer type-type relationships that incorporate genetic component forms at the
molecular level of granularity with process types at the cell or organism level. It is
worth noting that molecules of one gene product class may be correlated with
instances of a molecular function type (known or unknown) whose success leads
to the incidence of a specific biological phase. Information may be produced on
certain type ratio when studies are structured to investigate what occurs when
defined biological parameters are encountered in normal circumstances—
circumstances in which disturbing incidents do not interfere because of the
experimenter’s efforts. Experiments are structured to be reproducible and predictive,
representing instances that are supposed to follow the specified conditions in
biological systems. If future studies reveal that previous experiments did not
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describe the expected typical scenario, the results of the previous experiments are
disputed, re-examined, and reinterpreted, or even completely denied, and the
annotations relating to that need to be changed accordingly [17]. Such annotations
often point to errors in the standard relationships defined in an ontology. Annotations
thus point to errors in the type relationships defined in ontology. An example is the
recent elimination of the type serotonin secretion as a child of the neurotransmitter
secretion from the GO BP. This change was rendered as a consequence of a paper
annotation, which indicates that serotonin may be secreted by immune system cells
where it does not function as a nervous transmitter [17].

12.2.3 Cellular Component Annotation

In most instances, a correlation between the gene product and the cell component
location is rendered on the basis of a direct examination of a cellular component
observed under the microscope [17]. For instance, in one study [19], which reports
an experiment that uses a genetic antibody recognized in the Atp1a1 gene to mark the
location of its products within preimplantation mouse embryos. The fluorescent
staining indicates that the gene product is found on the plasma membrane of the
embryo cells. In this case, the gene products are the molecules connected by
fluorescent antibodies, and the location of the CC is the plasma membrane as seen
under the microscope. The findings of this experiment were used by a curator to
annotate the GO CC of the ATP1A1 gene product as a plasma membrane. As in MF
and BP, the MF and CC also have a connection among themselves. Thus, it is simple
to conclude that if a molecule of a gene product is present in a cell component
instance, then the gene product will perform its role in that cellular component as
well [17]. These molecules often perform their work in such a way that these
operations become biologically important. As MF and BP are often separable,
experimental evidence for each annotation is often not the same. Thus, from a
functional perspective, both ontologies must be built separately [17].

12.3 GO Structure and Data Representation

A significant characteristic of GO is that its terms are structured, i.e., genes with
similarly associated features are categorized in the same group [16]. Each
subontology, i.e., MF, BP, and CC, organizes their terminology as a directed acyclic
graph (DAG), basically a hierarchical system that allows several parent terms to be
used for each term in the child. The bond between child and parent can be ‘is_a” or
“part_of.” The lower a term in the DAG is, the more descriptive it is. This helps the
biomedical researcher to find the most appropriate uniform descriptors for the
functions of a single gene element, depending on available knowledge. When a
gene or gene product is annotated with GO, the GO DAG will demonstrate how the
annotations inside a subontology refer to each other and to the annotations of other
genes compositionally [20].
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In fact, there are several published methods that exploit the structure, which can
be narrowly divided into two groups: ones that are specialized for capturing the local
graph properties into account and ones that are designed for making the global graph
structures. In the former, we have several current GO resources that use a limited
subset of words to illustrate some nuances of the hierarchical relationships between
terms. One of the most commonly used tools under this category is QuickGO [21],
which enables us to query and search a single GO term with the similar term (and
annotations) as DAG. It is intended to provide convenient access to the electronic
and manual GO annotations given by the GO Consortium annotation communities.
Populating a collection of GO terms can be done using a broad variety of GO
features, which can be sorted through hierarchical taxonomic values and genomic
annotations. The user then chooses one or more GO terms of interest, and the results
of all these terms in the selected taxonomic group appear into a single table format.
The user may also download the data as one browses the GO results and modify the
data presentation or loading. REVIGO [22] is another tool that summarizes long,
generic, complicated lists of GO words by finding a representative subset of terms
using a simple algorithm that uses a relatively semantic similarity measure. REVIGO
was developed by integrating manual and automated processes that create new
information about the relationship of certain biological features with neuronal and
behavioral functions. One of the important functions of REVIGO, in addition to
providing a valid output to an underlying problem of how knowledge and semantic
function in the cell or organisms become manifests in data, is to give a visual
representation of the underlying ongoing trends in a large dataset of modern cell
biology. Additional tools provide displays, where nodes and connections can be
obtained with more immersive functionality [23, 24] or where node enrichment
ratings can be illustrated with enhanced customization [25, 26].

In the latter, a few visualization tools do not tend to vividly illustrate all the Go
functions [27, 28], considering detailed literature on displaying large graphs or
network features [28–30]. These types of graph displays, as opposed to the tiny
graph displays, are normally not flexible enough to highlight the node or the link-
specific information owing to many visual elements. These kinds of tools may offer a
global view of the overall structure of a graph, such as clusters or entire hierarchies,
which are particularly useful for understanding patterns, outliers, or the overall
structure of a graph. Recently developed new open-source software, namely,
AEGIS [31], aims at bridging the merits of all visual approaches and facilitates
robust connections with knowledge encrypted in an ontology. Using the rules of a
classic visual information system, we first look at the whole graph, then zoom-in on
individual nodes (or pieces of information), and process them through a set of filters,
and then when we are satisfied, we look at the particulars of the information. AEGIS
is based upon infrastructure that uses a pipeline of instantaneous pictures for the
reconstitution of dynamic maps into overlapping, interactive displays. Users can
even manipulate the interface to visualize the results of existing pipelines, and they
can also select any vantage point to explore the experiment with their visualization
before collecting data or running pipelines. The user can also manipulate the graph in
several other ways to gather many other data. During the exploratory phase, AEGIS
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helps them to become informed of biological knowledge that is important for
simulations and hypothesis generation and measure power needed for study
design [31].

12.4 Pathway Enrichment Analysis

The pathway-based analysis (PA) overcomes the drawbacks found with other single-
locus research approaches. The end product of PA provides a thorough understand-
ing of the mechanism underlying complex diseases [32]. Principally, a PA is similar
to the GO analysis [33]. However, the PA is more descriptive and detailed; it also
measures the interaction of a pathway with a disease phenotype. Its ability to address
biological interactions among genes and provide power and robustness has been
well-recognized [13, 34]. The early use of PA was demonstrated during microarrays
analysis [32, 35], which was specifically expanded from the Gene Set Enrichment
Analysis (GSEA) [36, 37]. Now, PA analysis is used in a wide range of research
studies, including gene set analysis (GSA) [38] and SNP-ratio research (SRT)
[39]. Methods employed for pathway analysis can be broadly classified as over-
representation analysis (ORA), functional class scoring (FCS), and pathway
topology-based analysis (PTB) (Table 12.1).

12.4.1 Over-representation Analysis

In an ORA, the basic principle is that it is possible to classify the appropriate
pathways if the proportion of differently expressed genes, inside the defined path-
way, exceeds the proportion of genes that would be randomly expected [82]. In this
context, ORA approaches operate along the key workflow in which the fraction of
the pathways contained in the collection of biological components chosen by the
user is evaluated (Fig. 12.1). This list normally follows some requirements, usually
log fold transition, statistical value, or both, rating and cutting off most sections of an
original list, for instance, all genes that have been examined in a microarray. Then,
the confidence value is determined using statistical techniques, such as the
hypergeometric distribution, the chi-square, the binomial, or Fisher’s exact test,
etc. Additional correction is normally carried out with several tests, because data
evaluation simultaneously (in this case, pathways) for many hypotheses may lead to
false-positive findings. The end outcome of an ORA approach typically consists of a
p-value and/or a multiple-hypothesis-test-corrected p-value of the most important
pathways [82]. The key benefits of utilizing ORA methodologies relative to
nonknowledge (i.e., solely data-driven) analyses are the biological background of
omic data, which makes the formulation of hypothesis and eventual experimental
research. Hence, it quickly becomes an information creation loop that is compatible
with the Systems Biology method. GoMiner [6] is one of the most cited ORA
techniques and was developed to interpret the gene expression microarray results.
It requires a list of over- and underexpressed genes plus the entire setlist of the
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microarrays and then measures over-representation and under-representation for the
gene ontology groups using Fisher’s exact test. WebGestalt [26], a Web-based tool
first released in 2005, but regularly revised, is another example of ORA (last update
in 2017). It operates by transforming the ORA into a user-friendly integrated

Fig. 12.1 Generalized
workflow for over-
representation analysis.
(Adapted from [82])
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interface with a range of central public PDBs. The approach thus allows an interpre-
tation of data on multiple biological contexts, such as metabolic, gene-phenotype,
gene-disease, gene-drug mixture.

Although ORA rapidly classifies large datasets, these methods have many
limitations. Because of the cutoff approach chosen by the user, these methods set a
large number of basal level records. The study also omits theoretically significant
components near the cutoff threshold. This would also have an effect on stability, as
there is no thumb law to define the cutoff threshold, since multiple cutoff strategies
show contradictory outcomes [83], and the choosing of cutoff thresholds is subjec-
tive. They assess every aspect of the pathway, give them equivalent weight or
significance, and discard all information (e.g., position in the pathway, gene expres-
sion level, and interaction among genes) inherent in the interactions. This often
results in a study of two pathways with the same genes but separate topologies
[84]. They also believe that pathways are separate, contrary to the awareness of
association and overlaps between pathways [85]. These drawbacks lead to the
development of second generation tool for PA.

12.4.1.1 Functional Class Scoring
The key principle for these approaches is that not only major variations in genetic
expression have important consequences on a pathway, but also less coordinated
changes in genes assembling the pathway have an influence on the general pathway
condition. Thus, FCS methods use all the metrics available in high-throughput
biological data (HTBD) for calculating their enrichment scores, eliminate the ORA
cutout limit, but then use pathways as gene sets to conduct their calculations.
Basically, each FCS system operates in a three-stage workflow (Fig. 12.2). A
baseline statistic using all HTBD, estimating differential expressions of individual
components, is determined. The most important baseline statistics used in PA are
fold change, t-statistic, log-likelihood ratio, and signal-to-noise ratio. If the sample is
limited, basic versions of these test statistics are employed. The baseline statistics of
each route are subsequently aggregated into a single pathway-level statistic, like the
Kolmogorov-Smirnov statistic, Wilcoxon sum rank statistic, max-mean statistic, and
χ2 (chi-squared) test. The predictive validity of pathway-level data is essentially
measured on the basis of the null hypothesis chosen. The fundamental benefits of
FCS approaches are that they do not require an arbitrary cutoff level of differential
genes, and they utilize all available information. They can distinguish variations
between pathways that barely pass the differentially articulated thresholds and those
that pass across them to multiple magnitude stages. They can identify slight yet
coordinated interactions between molecular gene expression and their pathways.
Some approaches may often classify the most important genes in a specified way;
GSEA, for example, considers these genes as the center of the pathway [82].

One of the first and best-known methods of FCS is the Gene Set Enrichment
Analysis (GSEA) [35] developed for microarray data gene expression analysis. In
short, the genes are classified according to their distinctive gene expression among
two phenotypical groups (by signal-to-noise ratio basal-level statistic). Then, their
distribution is assessed by a given gene set (e.g., MSigDB gene sets), and an
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enrichment score (ES) is defined for each set of genes (through a Kolmogorov-
Smirnov pathway-level statistic). The importance of the ES and correction for
multiple testing hypotheses would then be evaluated. Earlier, Folger and the team

Fig. 12.2 Generalized workflow for functional class scoring. (Adapted from [82])
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used GSEA methodology as an illustration of the methodology to verify the
proliferating function of growth-enhancing genes, which have been forecast to be
of importance in cancer treatment [86]. This research stresses the usage of an
alternative gene collection of some PDB derived from the Luo and collaborators’
shRNA screening in 12 cancer cell lines [87]. In particular, the usage of external
pathway data is mainly utilized in ORA and FCS methodologies because topology
information is difficult to determine and derive primarily from PDB’s multitude of
expertise. However, knowledge regarding the cell cycle and replication can already
be sought via most PDBs such as KEGG and Gene Ontology.

Given the fact that FCS analyzes addressed ORA shortcomings, they do have
issues. The usage of pathways as gene sets and not as networks is primarily
accountable. Examples of those limits are as follows: Most of the components in
the pathway also provide the same weight to decide the path statistics, as GSEA did
in its first publication, regardless of previous awareness of the pathway [84]. The
knowledge from several PDBs remains unused since these approaches do not take
into consideration the interactions between pathway components and other informa-
tion about the network configuration of pathways. This may contribute to reduced
identification of the related paths [88].

12.4.2 Pathway-Based Topology

Following developments in pathway annotation from PDBs, the topology of the
underlying pathway networks was released through various databases following
their immediate incorporation with PA methodologies. This was strongly promoted
by the expanded focus network theory [89, 90]. The key theory for pathway-based
topology (PTB) research is that pathway-topology relationships annotated in PDBs
provide details for understanding of associated shifts in pathway components. PTB
methods may be called extensions of the ORA and FCS methods since they are
typically implemented in the same general measures, but they include topology of
the pathways to determine their statistical significance. In the case of expanded ORA
systems, the pathway topology maps user-chosen genes and the resulting network
and statistical study were carried out. In the case of expanded FCS approaches,
HTBD and topology are used to measure the base level statistics and to continue in a
similar manner to the FCS methodology (Fig. 12.3).

Through evaluating network routes, the PTB research tackles ORA and FCS
method shortcomings, as such, on the basis of topology data, biologically important
component variations may be taken into account by increasing the effect of shifts in
genes with a greater impact on the pathway. By taking different topological details
into account, they make a more exact study of the same group of pathway elements,
as certain interactions under some biological conditions are known to be different.
Account for causal interactions in the networks, when shifts in the upstream
elements are supposed to affect the behavior. Pathways Express as part of the
Onto-Tool Suite was one of the first tools for the study of pathway topology
[88, 91]. Driven by the sense that further detail becomes accessible, the query “Is
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there a known pathway containing my gene(s) of interest?”would convert into “How
do I find the most interesting pathway(s) involving my gene(s)?” The system
computes two probabilistic parameters, the gene perturbation factor that is identical
to that of Google’s Page-Rank index (http://ilpubs.stanford.edu:8090/422/), taking

Fig. 12.3 Generalized
workflow for pathway-based
topology. (Adapted from [82])
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into account the uniform fold shift of each input gene and the sum of gene
perturbation downstream, representing the relevance of each gene controlled by
differentiation, finally, a collection of pathways according to their effect factor and
their adjustment of several assumptions, as seen by their incorrect rate of detection.
The same evolving Pathway-express team recently created the “Signaling Pathway
Impact Analysis” (SPIA) [78], which is an updated variant of the first. SPIA attempts
to assess and integrate two kinds of facts to ensure the independence of each
probability: (1) the over-representation of differentially expressed genes in a given
pathway and (2) the irregular disruption of the pathway, determined by shifts in
propagating expression across the pathway topology. PARADIGM [92] is another
PTB technique that has been evolved to incorporate different omic datasets to
deduce paths modified in a patient-specific or sample-specific maker. It utilizes a
probabilistic graphical model system to learn the underlying causal networks in
conjunction with the observations made by HTBD.

PTB approach constraints are challenging to overcome since they portray a
transition in one of the existing life science paradigms. Life elements do not work
individually. However, they act specifically to carry out life tasks and their action as
an entire mechanism is complex, adaptable, and resilient [93]. Existence is, in short,
a dynamic framework. However, some drawbacks of PTB methods can be
recognized that would definitely be dealt with in future methods, as obstacles to
studies and annotations are overcome. Any PTB strategies do not understand the
way the pathways are related. The deregulation chain consequences may be skipped
[78]. For the better identification of relevant routes, the PTB methods do not take
into consideration the interconnections among pathways. Take for example, “path-
way A” downstream components may be upstream in “pathway B,” and thus, path A
is supposed to have an effect on path B [94]. Time and spatial distribution of
pathway components in their models is not taken into account. Pathway behavior,
for example, transcriptional control within the nucleus, protein transport within the
endoplasmic reticulum, and mitochondrial-mediated signaling, can rely on biomole-
cule compartmentalization. Regular pathways such as BioPAX, SBGN, and SBML
now endorse compartments in their ontology pathways [95]. In addition, time-scale
molecular control is also critical for understanding the mechanisms through which
pathways function in cells. As equipment becomes cheaper, experimental costs will
decrease and timescale will increase the need for better PA instruments that can
interpret these data [96]. The majority of approaches cannot consider a pathway
component’s various states and variants. Most PA techniques, for example, collapse
splicing variants from gene expression data into a single HGNC gene symbol. Thus,
the inclusion of this information will help us to understand the single nucleotide
polymorphism (SNP), splicing variations, epigenetic changes, and post-translation
changes, as well as their probable effect on the working of phenotype and route in a
more comprehensive way [84].

12.4.2.1 Pitfalls in Gene Ontology Analysis
There are several approaches for analyzing genes with no agreement about best
practices available. In the absence of gold standard datasets, the key problems in
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gene set research are lack of reproductiveness. Gold standard datasets may help us to
identify and solve these problems more effectively. Although, to date, several
approaches have been developed, nearly all approaches proposed are incomplete
[97]. For certain gene set analysis, whether competitive or autonomous, the analysis
findings have been found to be unreproducible for limited sample sizes [98]. How-
ever, regardless of this problem, limited sample size studies (n < 5 per group) are
still analyzed using these techniques [99]. The size of a dataset is a significant factor
when deciding on a reasonable approach for the gene set analysis or whether gene set
analysis is sufficient. Also, their vulnerability to sample size should be examined in
the validation phase while designing new gene analysis methods. The evaluation of
gene set analytical methods has become a significant research area
[100, 101]. Methods for gene set analysis are analyzed on the basis of actual and
virtual expression datasets. True datasets with supposed enrichment status are
widely used for the assessment of methods for the gene set study [102]. Unfortu-
nately, enrichment status predictions of the gene sets cannot be justified with
certainty. This ambiguity in gene enrichment status also contributes to uncertainty
in the outcomes of the evaluation.

Because of the absence of gold standards for the assessment of gene set analysis
techniques, simulated expression datasets have been used [103]. These datasets were
produced with regularly distributed values with constant means and standard
deviations. Furthermore, these simulated datasets either presume no gene-gene
association [104] or continuous associations between genes [103] in genetic classes.
However, expression data never adopt a normal distribution in operation. In addi-
tion, gene-gene interaction is considered to have a significant influence on the effects
of enrichment analytical approaches in actual expression evidence [105]. These
super-simplifications may lead to judgments that support some methods of study
of genes. Ackermann and Strimmer [103] simulated expression datasets utilizing a
standard multivariate distribution with variances of 1. They simulated
noninformative gene expression significance using a standard multivariate normal
distribution. They modeled enhanced genetic sets with constant shifts in mean
expression and constant gene-gene associations. As noninformative gene expression
values that constitute a majority of a dataset followed typical multivariate standard
distribution, competitive methods and parametric methods were easily able to detect
gene sets’ enrichment status. This results in a skewed judgment in favor of these
approaches. Often, distributed values of continuous mean and standard deviation do
not realize the variance variability in high-performance results [106]. Gene set
collections were also simulated as a limited number of nonoverlapping, equal-size
sets, which vary considerably from actual gene-set databases. The assessment of the
gene set study utilizing these datasets led to contradictory and contrary findings
because of oversimplifying assumptions [107].

The explanation is that the inclusion of unrelated genes modifies the distribution
of context genes. Compared to randomly assembled gene sets of the same scale as
Gi, the importance of the gene set score S(Gi) is determined using competitive
methods. The inclusion of unrelated genes enhances the disparity between S(Gi) and
the randomly assembled gene sets as nonrelated genes frequently have a poor,
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nonconcordant pattern of expression. They also report that GAGE, a nonparametric
process, achieves higher power if the expression dataset is augmented with unrelated
genes. This can also be demonstrated by the way GAGE measures their gene set
ratings, based on the discrepancy between average gene expression values in the
gene set and typical gene expression values. By incorporating unrelated genes,
sometimes displaying smaller average expression values, there are more drastic
gene set scores that contribute to a deceptive increase in intensity. The usage of
strategic strategies such as GSEA (with gene sampling) and GAGE is highly
discouraged by Tripathi and the team [108].

12.5 Conclusion and Future Perspective

In conclusion, since no gold standard datasets are available for performing GO and
PA analysis of gene set [104], biological and technological heterogeneity cannot be
modeled effectively using available oversimplified methods and tools. While testing
current and established gene set research approaches, a crucial move is to synthesize
datasets that maintain the true essence of gene expression data and gene set
databases. Specifically, designing benchmark datasets representing the true exis-
tence of actual databases can be of significant significance in evaluating established
and current approaches for gene analysis. There is currently no such standard, and
we advocate creating these public metrics as potential studies. If publicly accessible,
these benchmarks will promote the assessment of gene analysis strategies and
facilitate the creation of new approaches. A significant factor in improving gene
set analysis techniques is their capacity to cope with gene set overlaps, which has led
to the loss of precision of such approaches [109]. Present methods aimed at resolving
the vulnerability of gene clash sacrifice and thereby introduce false-negatives. Active
research areas [110] are evolving methods to converge and hit high precision without
losing sensitivity and continue to be an avenue for potential studies.

Even virtual gene set databases composed of nonoverlapping gene sets of equal
sizes were used when evaluating gene set analysis techniques. Such an environment
lacks the true existence of the gene set databases with multiple gene set overlaps and
varying gene set volumes, stated to influence the effects of gene set studies
[111]. Earlier, researchers have firmly opposed the usage of such artificial gene
databases in order to test methods of gene set research in a practical sense [97]. If
simulation expression databases are used, it is proposed that actual gene names/IDs
are explored in the simulated expression details. This enables actual gene set
databases to be used alongside virtual expression results. This small move could
illustrate the actions of a system in the assessment of gene overlapping and various
gene set sizes. Earlier, Tripathi and the team have demonstrated that competitive
methods of gene set research are susceptible to the presence of unrelated genes
[108]. We recommend that we adopt the guidance given by Tripathi et al. when
implementing competitive gene analytical methods [108]. In addition, modern
methods for the study of geneset should be developed to be resilient against shifts
in the distribution of the history because of unrelated genes. In addition, the outcome
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of the gene set analysis approach can influence different up and down distributions in
the gene sets, various gene sets, various differential expression levels, different
sample sizes, and an imbalanced number of samples by each community
[112]. Therefore, we suggest every effort to test or establish methods for the study
of genes. Another path for potential studies is a comprehensive review for selecting a
best fitting gene database before the gene set examination.

Conflict of Interest None

Additional Information Figs. 12.1–12.3 (CC BY 4.0) [82] have been used under the terms of the
Creative Commons Attribution License.

References

1. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the
comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.

2. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool
for the unification of biology. Nat Genet. 2000;25(1):25–9.

3. Ulgen E, Ozisik O, Sezerman OU. pathfindR: an R package for comprehensive identification
of enriched pathways in omics data through active subnetworks. Front Genet [Internet]. 2019
[cited 2020 Dec 22];10. https://www.frontiersin.org/articles/10.3389/fgene.2019.00858/full.

4. Paczkowska M, Barenboim J, Sintupisut N, Fox NS, Zhu H, Abd-Rabbo D, et al. Integrative
pathway enrichment analysis of multivariate omics data. Nat Commun. 2020;11(1):735.

5. Khatri P, Draghici S, Ostermeier GC, Krawetz SA. Profiling gene expression using onto-
express. Genomics. 2002;79(2):266–70.

6. Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, et al. GoMiner: a resource
for biological interpretation of genomic and proteomic data. Genome Biol. 2003;4(4):R28.

7. Doniger SW, Salomonis N, Dahlquist KD, Vranizan K, Lawlor SC, Conklin
BR. MAPPFinder: using gene ontology and GenMAPP to create a global gene-expression
profile from microarray data. Genome Biol. 2003;4(1):R7.

8. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID Bioinformatics
Resources: expanded annotation database and novel algorithms to better extract biology from
large gene lists. Nucleic Acids Res. 2007;35:W169–75.

9. Castillo-Davis CI, Hartl DL. GeneMerge—post-genomic analysis, data mining, and hypothe-
sis testing. Bioinformatics. 2003;19(7):891–2.

10. Robinson MD, Grigull J, Mohammad N, Hughes TR. FunSpec: a web-based cluster interpreter
for yeast. BMC Bioinform. 2002;3(1):35.

11. Berriz GF, King OD, Bryant B, Sander C, Roth FP. Characterizing gene sets with
FuncAssociate. Bioinformatics. 2003;19(18):2502–4.

12. Hong G, Zhang W, Li H, Shen X, Guo Z. Separate enrichment analysis of pathways for up-
and downregulated genes. J R Soc Interface. 2014;11(92):20130950.

13. Curtis RK, Orešič M, Vidal-Puig A. Pathways to the analysis of microarray data. Trends
Biotechnol. 2005;23(8):429–35.

14. Khatri P, Drăghici S. Ontological analysis of gene expression data: current tools, limitations,
and open problems. Bioinformatics. 2005;21(18):3587–95.

15. Gaudet P. The gene ontology. In: Ranganathan S, Gribskov M, Nakai K, Schönbach C,
editors. Encyclopedia of bioinformatics and computational biology. Oxford: Academic
Press ; 2019. p . 1–7 . h t tp : / /www.sc ienced i rec t . com/sc ience /a r t i c l e /p i i /
B9780128096338205001.

274 M. K. Gupta et al.

http://dx.doi.org/10.3389/fgene.2019.00858/full
http://www.sciencedirect.com/science/article/pii/B9780128096338205001
http://www.sciencedirect.com/science/article/pii/B9780128096338205001


16. Holmans P. 7—Statistical methods for pathway analysis of genome-wide data for association
with complex genetic traits. In: Dunlap JC, Moore JH, editors. Advances in genetics, Compu-
tational methods for genetics of complex traits, vol. 72. Oxford: Academic Press; 2010.
p. 141–79. http://www.sciencedirect.com/science/article/pii/B9780123808622000072.

17. Hill DP, Smith B, McAndrews-Hill MS, Blake JA. Gene ontology annotations: what they
mean and where they come from. BMC Bioinform. 2008;9(Suppl 5):S2.

18. Howes E, Pascall JC, Engel W, Jones R. Interactions between mouse ZP2 glycoprotein and
proacrosin; a mechanism for secondary binding of sperm to the zona pellucida during fertili-
zation. J Cell Sci. 2001;114(Pt 22):4127–36.

19. MacPhee DJ, Jones DH, Barr KJ, Betts DH, Watson AJ, Kidder GM. Differential involvement
of Na(+),K(+)-ATPase isozymes in preimplantation development of the mouse. Dev Biol.
2000;222(2):486–98.

20. Myhre S, Tveit H, Mollestad T, Lægreid A. Additional gene ontology structure for improved
biological reasoning. Bioinformatics. 2006;22(16):2020–7.

21. Binns D, Dimmer E, Huntley R, Barrell D, O’Donovan C, Apweiler R. QuickGO: a web-based
tool for gene ontology searching. Bioinformatics. 2009;25(22):3045–6.

22. Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of
gene ontology terms. PLoS One. 2011;6(7):e21800.

23. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software
environment for integrated models of biomolecular interaction networks. Genome Res.
2003;13(11):2498–504.

24. Sealfon RS, Hibbs MA, Huttenhower C, Myers CL, Troyanskaya OG. GOLEM: an interactive
graph-based gene-ontology navigation and analysis tool. BMC Bioinform. 2006;7(1):443.

25. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a
Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation
networks. Bioinformatics. 2009;25(8):1091–3.

26. Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more comprehensive,
powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res.
2017;45(W1):W130–7.

27. Pareja-Tobes P, Tobes R, Manrique M, Pareja E, Pareja-Tobes E. Bio4j: a high-performance
cloud-enabled graph-based data platform. bioRxiv. 2015;016758.

28. Heberle H, Carazzolle MF, Telles GP, Meirelles GV, Minghim R. CellNetVis: a web tool for
visualization of biological networks using force-directed layout constrained by cellular
components. BMC Bioinform. 2017;18(10):395.

29. Merico D, Gfeller D, Bader GD. How to visually interpret biological data using networks. Nat
Biotechnol. 2009;27(10):921–4.

30. van Ham F, Perer A. “Search, show context, expand on demand”: supporting large graph
exploration with degree-of-interest. IEEE Trans Vis Comput Graph. 2009;15(6):953–60.

31. Zhu J, Zhao Q, Katsevich E, Sabatti C. Exploratory gene ontology analysis with interactive
visualization. Sci Rep. 2019;9(1):7793.

32. Wang K, Li M, Bucan M. Pathway-based approaches for analysis of Genomewide association
studies. Am J Hum Genet. 2007;81(6):1278–83.

33. Holmans P, Green EK, Pahwa JS, Ferreira MAR, Purcell SM, Sklar P, et al. Gene ontology
analysis of GWA study data sets provides insights into the biology of bipolar disorder. Am J
Hum Genet. 2009;85(1):13–24.

34. Tilford CA, Siemers NO. Gene set enrichment analysis. In: Nikolsky Y, Bryant J, editors.
Protein networks and pathway analysis, Methods in molecular biology. Totowa: Humana
Press; 2009. p. 99–121. https://doi.org/10.1007/978-1-60761-175-2_6.

35. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set
enrichment analysis: a knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.

36. Jia P, Wang L, Meltzer HY, Zhao Z. Common variants conferring risk of schizophrenia: a
pathway analysis of GWAS data. Schizophr Res. 2010;122(1):38–42.

12 Gene Ontology and Pathway Enrichment Analysis 275

http://www.sciencedirect.com/science/article/pii/B9780123808622000072
https://doi.org/10.1007/978-1-60761-175-2_6


37. Yang W, Wang J, Liu L, Zhu X, Wang X, Liu Z, et al. Effect of high dietary copper on
somatostatin and growth hormone-releasing hormone levels in the hypothalami of growing
pigs. Biol Trace Elem Res. 2011;143(2):893–900.

38. Medina I, Montaner D, Bonifaci N, Pujana MA, Carbonell J, Tarraga J, et al. Gene set-based
analysis of polymorphisms: finding pathways or biological processes associated to traits in
genome-wide association studies. Nucleic Acids Res. 2009;37(Suppl_2):W340–4.

39. O’Dushlaine C, Kenny E, Heron EA, Segurado R, Gill M, Morris DW, et al. The SNP ratio
test: pathway analysis of genome-wide association datasets. Bioinformatics. 2009;25
(20):2762–3.

40. Das S, McClain CJ, Rai SN. Fifteen years of gene set analysis for high-throughput genomic
data: a review of statistical approaches and future challenges. Entropy. 2020;22(4):427.

41. Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, et al. agriGO v2.0: a GO analysis toolkit for the
agricultural community, 2017 update. Nucleic Acids Res. 2017;45(W1):W122–9.

42. Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR. GenMAPP, a new tool for
viewing and analyzing microarray data on biological pathways. Nat Genet. 2002;31(1):19–20.

43. Beißbarth T, Speed TP. GOstat: find statistically overrepresented gene ontologies within a
group of genes. Bioinformatics. 2004;20(9):1464–5.

44. Martin D, Brun C, Remy E, Mouren P, Thieffry D, Jacq B. GOToolBox: functional analysis of
gene datasets based on gene ontology. Genome Biol. 2004;5(12):R101.

45. Al-Shahrour F, Díaz-Uriarte R, Dopazo J. FatiGO: a web tool for finding significant
associations of gene ontology terms with groups of genes. Bioinformatics. 2004;20(4):578–80.

46. Zheng Q, Wang X-J. GOEAST: a web-based software toolkit for Gene Ontology enrichment
analysis. Nucleic Acids Res. 2008;36(Suppl_2):W358–63.

47. Martínez-Cruz LA, Rubio A, Martínez-Chantar ML, Labarga A, Barrio I, Podhorski A, et al.
GARBAN: genomic analysis and rapid biological annotation of cDNA microarray and
proteomic data. Bioinformatics. 2003;19(16):2158–60.

48. Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, et al. GO::TermFinder—open
source software for accessing gene ontology information and finding significantly enriched
gene ontology terms associated with a list of genes. Bioinformatics. 2004;20(18):3710–5.

49. Sun H, Fang H, Chen T, Perkins R, TongW. GOFFA: gene ontology for functional analysis—
a FDA gene ontology tool for analysis of genomic and proteomic data. BMC Bioinform.
2006;7(Suppl 2):S23.

50. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, et al. WEGO: a web tool for plotting GO
annotations. Nucleic Acids Res. 2006;34(Suppl_2):W293–7.

51. Zhang B, Schmoyer D, Kirov S, Snoddy J. GOTree Machine (GOTM): a web-based platform
for interpreting sets of interesting genes using gene ontology hierarchies. BMC Bioinform.
2004;5(1):16.

52. Das S, Rai A, Mishra DC, Rai SN. Statistical approach for gene set analysis with trait specific
quantitative trait loci. Sci Rep. 2018;8(1):2391.

53. Luo W, Brouwer C. Pathview: an R/bioconductor package for pathway-based data integration
and visualization. Bioinformatics. 2013;29(14):1830–1.

54. Yi M, Horton JD, Cohen JC, Hobbs HH, Stephens RM. WholePathwayScope: a comprehen-
sive pathway-based analysis tool for high-throughput data. BMC Bioinform. 2006;7(1):30.

55. Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants.
Bioinformatics. 2020;36(8):2628–9.

56. Barry WT, Nobel AB, Wright FA. Significance analysis of functional categories in gene
expression studies: a structured permutation approach. Bioinformatics. 2005;21(9):1943–9.

57. Efron B, Tibshirani R. On testing the significance of sets of genes. Ann Appl Stat. 2007;1
(1):107–29.

58. Smyth GK. Limma: linear models for microarray data. In: Bioinformatics and computational
biology solutions using R and bioconductor. New York: Springer; 2005. p. 397–420. https://
link.springer.com/chapter/10.1007/0-387-29362-0_23.

59. Lai W, Tian L, Parkway P. SigPathway: pathway analysis with microarray data; 2013.

276 M. K. Gupta et al.

http://dx.doi.org/10.1007/0-387-29362-0_23
http://dx.doi.org/10.1007/0-387-29362-0_23


60. Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC. A global test for groups of
genes: testing association with a clinical outcome. Bioinformatics. 2004;20(1):93–9.

61. Dinu I, Potter JD, Mueller T, Liu Q, Adewale AJ, Jhangri GS, et al. Improving gene set
analysis of microarray data by SAM-GS. BMC Bioinform. 2007;8(1):242.

62. Breslin T, Edén P, Krogh M. Comparing functional annotation analyses with Catmap. BMC
Bioinform. 2004;5:193.

63. Boorsma A, Foat BC, Vis D, Klis F, Bussemaker HJ. T-profiler: scoring the activity of
predefined groups of genes using gene expression data. Nucleic Acids Res. 2005;33:W592–5.

64. Henegar C, Cancello R, Rome S, Vidal H, Clément K, Zucker J-D. Clustering biological
annotations and gene expression data to identify putatively co-regulated biological processes. J
Bioinforma Comput Biol. 2006;4(4):833–52.

65. Backes C, Keller A, Kuentzer J, Kneissl B, Comtesse N, Elnakady YA, et al. GeneTrail—
advanced gene set enrichment analysis. Nucleic Acids Res. 2007;35(Suppl_2):W186–92.

66. Kim S-B, Yang S, Kim S-K, Kim SC, Woo HG, Volsky DJ, et al. GAzer: gene set analyzer.
Bioinformatics. 2007;23(13):1697–9.

67. Wu D, Smyth GK. Camera: a competitive gene set test accounting for inter-gene correlation.
Nucleic Acids Res. 2012;40(17):e133.

68. Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ. GAGE: generally applicable
gene set enrichment for pathway analysis. BMC Bioinform. 2009;10(1):161.

69. Frost HR, Li Z, Moore JH. Spectral gene set enrichment (SGSE). BMC Bioinform. 2015;16
(1):70.

70. Kim S-Y, Volsky DJ. PAGE: parametric analysis of gene set enrichment. BMC Bioinform.
2005;6(1):144.

71. Rahmatallah Y, Emmert-Streib F, Glazko G. Gene sets net correlations analysis (GSNCA): a
multivariate differential coexpression test for gene sets. Bioinformatics. 2014;30(3):360–8.

72. Hsueh H-M, Tsai C-A. Gene set analysis using sufficient dimension reduction. BMC
Bioinform. 2016;17(1):74.

73. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0. Nat Genet.
2006;38(5):500–1.

74. Yi X, Du Z, Su Z. PlantGSEA: a gene set enrichment analysis toolkit for plant community.
Nucleic Acids Res. 2013;41(W1):W98–103.

75. Rahmatallah Y, Zybailov B, Emmert-Streib F, Glazko G. GSAR: bioconductor package for
gene set analysis in R. BMC Bioinform. 2017;18(1):61.

76. Wu X, Hasan MA, Chen JY. Pathway and network analysis in proteomics. J Theor Biol.
2014;362:44–52.

77. Rahnenführer J, Domingues FS, Maydt J, Lengauer T. Calculating the statistical significance
of changes in pathway activity from gene expression data. Statistical applications in genetics
and molecular biology. 2004 [cited 2020 Dec 21];3(1). https://www.degruyter.com/view/
journals/sagmb/3/1/article-sagmb.2004.3.1.1055.xml.xml.

78. Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim J-S, et al. A novel signaling pathway
impact analysis. Bioinformatics. 2009;25(1):75–82.

79. Alexeyenko A, Lee W, Pernemalm M, Guegan J, Dessen P, Lazar V, et al. Network
enrichment analysis: extension of gene-set enrichment analysis to gene networks. BMC
Bioinform. 2012;13(1):226.

80. Glaab E, Baudot A, Krasnogor N, Valencia A. TopoGSA: network topological gene set
analysis. Bioinformatics. 2010;26(9):1271–2.

81. Martini P, Sales G, Massa MS, Chiogna M, Romualdi C. Along signal paths: an empirical gene
set approach exploiting pathway topology. Nucleic Acids Res. 2013;41(1):e19.

82. García-Campos MA, Espinal-Enríquez J, Hernández-Lemus E. Pathway analysis: state of the
art. Front Physiol [Internet]. 2015 [cited 2020 Dec 20];6. Available from: https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC4681784/.

12 Gene Ontology and Pathway Enrichment Analysis 277

https://www.degruyter.com/view/journals/sagmb/3/1/article-sagmb.2004.3.1.1055.xml.xml
https://www.degruyter.com/view/journals/sagmb/3/1/article-sagmb.2004.3.1.1055.xml.xml
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681784/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681784/


83. Pavlidis P, Qin J, Arango V, Mann JJ, Sibille E. Using the gene ontology for microarray data
mining: a comparison of methods and application to age effects in human prefrontal cortex.
Neurochem Res. 2004;29(6):1213–22.

84. Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: current approaches and outstand-
ing challenges. PLoS Comput Biol. 2012;8(2):e1002375.

85. Barabási A-L, Oltvai ZN. Network biology: understanding the cell’s functional organization.
Nat Rev Genet. 2004;5(2):101–13.

86. Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T. Predicting selective drug targets
in cancer through metabolic networks. Mol Syst Biol. 2011;7:501.

87. Luo B, Cheung HW, Subramanian A, Sharifnia T, Okamoto M, Yang X, et al. Highly parallel
identification of essential genes in cancer cells. Proc Natl Acad Sci U S A. 2008;105
(51):20380–5.

88. Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, et al. A systems biology
approach for pathway level analysis. Genome Res. 2007;17(10):1537–45.

89. Amaral LAN, Ottino JM. Complex networks. Eur Phys J B. 2004;38(2):147–62.
90. Emmert-Streib F, Dehmer M. Networks for systems biology: conceptual connection of data

and function. IET Syst Biol. 2011;5(3):185–207.
91. Khatri P, Sellamuthu S, Malhotra P, Amin K, Done A, Draghici S. Recent additions and

improvements to the Onto-Tools. Nucleic Acids Res. 2005;33:W762–5.
92. Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J, et al. Inference of patient-specific

pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioin-
formatics. 2010;26(12):i237–45.

93. Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology.
Nature. 1999;402(6761):C47–52.

94. Yaffe MB. Signaling networks and mathematics. Sci Signal. 2008;1(43):eg7.
95. Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, et al. The BioPAX community

standard for pathway data sharing. Nat Biotechnol. 2010;28(9):935–42.
96. Bar-Joseph Z, Gerber G, Simon I, Gifford DK, Jaakkola TS. Comparing the continuous

representation of time-series expression profiles to identify differentially expressed genes.
Proc Natl Acad Sci U S A. 2003;100(18):10146–51.

97. Maleki F, Ovens K, Hogan DJ, Kusalik AJ. Gene Set analysis: challenges, opportunities, and
future research. Front Genet [Internet]. 2020 [cited 2020 Dec 20];11. Available from: https://
www.frontiersin.org/articles/10.3389/fgene.2020.00654/full#h7.

98. Maleki F, Ovens K, McQuillan I, Kusalik AJ. Size matters: how sample size affects the
reproducibility and specificity of gene set analysis. Hum Genomics [Internet]. 2019 [cited
2020 Dec 21];13(Suppl 1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC6805317/.

99. Tan SH, Swathi Y, Tan S, Goh J, Seishima R, Murakami K, et al. AQP5 enriches for stem cells
and cancer origins in the distal stomach. Nature. 2020;578(7795):437–43.

100. Mathur R, Rotroff D, Ma J, Shojaie A, Motsinger-Reif A. Gene set analysis methods: a
systematic comparison. BioData Mining. 2018;11(1):8.

101. Geistlinger L, Csaba G, Santarelli M, Ramos M, Schiffer L, Turaga N, et al. Toward a gold
standard for benchmarking gene set enrichment analysis. Brief Bioinform [Internet]. 2020
[cited 2020 Dec 21];(bbz158). Available from: https://doi.org/10.1093/bib/bbz158.

102. Zyla J, Marczyk M, Weiner J, Polanska J. Ranking metrics in gene set enrichment analysis: do
they matter? BMC Bioinform. 2017;18(1):256.

103. Ackermann M, Strimmer K. A general modular framework for gene set enrichment analysis.
BMC Bioinform. 2009;10(1):47.

104. Nam D, Kim S-Y. Gene-set approach for expression pattern analysis. Brief Bioinform. 2008;9
(3):189–97.

105. Tamayo P, Steinhardt G, Liberzon A, Mesirov JP. The limitations of simple gene set
enrichment analysis assuming gene independence. Stat Methods Med Res. 2016;25
(1):472–87.

278 M. K. Gupta et al.

http://dx.doi.org/10.3389/fgene.2020.00654/full#h7
http://dx.doi.org/10.3389/fgene.2020.00654/full#h7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805317/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805317/
https://doi.org/10.1093/bib/bbz158


106. Maleki F, Kusalik A. A synthetic kinome microarray data generator. Microarrays. 2015;4
(4):432–53.

107. Maciejewski H. Gene set analysis methods: statistical models and methodological differences.
Brief Bioinform. 2014;15(4):504–18.

108. Tripathi S, Glazko GV, Emmert-Streib F. Ensuring the statistical soundness of competitive
gene set approaches: gene filtering and genome-scale coverage are essential. Nucleic Acids
Res. 2013;41(7):e82.

109. Wiebe DS, Omelyanchuk NA, Mukhin AM, Grosse I, Lashin SA, Zemlyanskaya EV, et al.
Fold-change-specific enrichment analysis (FSEA): quantification of transcriptional response
magnitude for functional gene groups. Genes. 2020;11(4):434.

110. Maleki F, Kusalik A. Gene set overlap: an impediment to achieving high specificity in over-
representation analysis. In 2020 [cited 2020 Dec 21]. p. 182–93. Available from: https://www.
scitepress.org/Link.aspx?doi¼10.5220/0007376901820193.

111. Simillion C, Liechti R, Lischer HEL, Ioannidis V, Bruggmann R. Avoiding the pitfalls of gene
set enrichment analysis with SetRank. BMC Bioinform. 2017;18(1):151.

112. Irizarry RA, Wang C, Zhou Y, Speed TP. Gene set enrichment analysis made simple. Stat
Methods Med Res. 2009;18(6):565–75.

12 Gene Ontology and Pathway Enrichment Analysis 279

http://dx.doi.org/10.5220/0007376901820193
http://dx.doi.org/10.5220/0007376901820193
http://dx.doi.org/10.5220/0007376901820193


Part III

High Throughput Technologies



High-Throughput Sequencing Technologies 13
Elakkiya Elumalai and Krishna Kant Gupta

Abstract

Optical and biochemical methods determine the sequence of nucleotide bases in a
DNA macromolecule. Since 2010, considerable progress has been made on DNA
sequencing technology. There are various high-throughput sequencing (HTS)
technologies, such as Roche 454, Illumina dye sequencing, PacBio’s SMRT,
Ion Torrent, Oxford Nanopore, SOLiD, and DNA nano-array sequencer, that
have emerged with less cost and are time-saving. Sanger sequencing is the first-
generation sequencing method. Subsequently, many next-generation sequencing
(NGS) platforms are being used for genome sequencing. These DNA sequencing
technologies have altered our view on understanding genomes and their analysis.
This chapter presents a simple overview of the HTS technologies, their
applications, and limitations. We aim to provide readers in the field with an
easy and comprehensible description of HTS technologies to provide them with
essential knowledge in full zeal.
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Abbreviations

ARE Parallel analysis of RNA ends
BAM Binary alignment map
CAGE Cap analysis of gene expression
ChIA-PET Chromatin interaction analysis by paired-end tag sequencing
DOE Department of Energy
HTS High-throughput sequencing
ISPs Ion Sphere Particles
NGS Next-Generation Sequencing
NHGRI National Human Genome Research Institute
NIH National Institute of Health
PCR Polymerase chain reaction
RIP-chip RNA immunoprecipitation chip
RNA-Map RNA on a massively parallel array
SBS Sequencing by synthesis
SMRT Single molecule real-time
SNVs Single nucleotide variants
SOLiD Sequencing by sequential ligation of oligonucleotide probes
Svs Structural variations
TADs Topological Associated Domains
XIAP X-lined inhibitor of apoptosis

13.1 Introduction

The discovery of the double helix structure was the landmark discovery that has led
to the decoding of genomic sequences [1]. Sanger et al. developed the first sequenc-
ing technology and were awarded a noble prize in chemistry in 1980 [2]. Thereafter,
a golden period came as it opened the door to develop efficient and faster sequencing
technology. The emerging sequencing technologies have a significant role in
genome analysis. These advanced sequencing technologies are known as “high-
throughput sequencing technologies (HTS)” or “Next-Generation Sequencing
(NGS) Technologies.” It even led us to study the genetic code of living beings.
HTS has steadily advanced over the last 15 years and advanced technologies are
continuously being commercialized (Fig. 13.1). When the technology advances,
coupled with expanded uses of fundamental and practical research, the effects of
the technology advancement becoming more and more diverse and usable
implementations [4]. In 2005, Roche’s 454 technology was commercialized at a
much lower cost and a very high throughput than the first sequencing technologies
[5]. NGS technologies simultaneously perform parallel analysis from multiple
samples at a much-reduced time and cost. Thus, the key aim of this chapter is to
include a compendium of methods used for the study and evaluation of NGS reads.
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Towards the end, we have also discussed the applications, the hindrance, and
challenges of current HTS platforms.

13.2 Sequencing Technologies

Sequencing platforms can be broadly classified into three main groups: first genera-
tion, second generation, and third generation. Few important sequencing platforms
have been described below (Table 13.1).

13.2.1 First Generation

The main techniques of DNA sequencing in the first generation to be taken into
account are the Sanger dideoxy synthesis [2, 7] and Maxam-Gilbert chemical
cleavage methods. The Maxam-Gilbert process includes chemical alteration of
DNA and then cleaves the DNA backbone adjacent to the altered nucleotides.
Sanger sequencing employs 30-hydroxyl-free chain-terminating nucleotides
(dideoxynucleotides). Therefore, DNA polymerase cannot form a phosphodiester
bond at that site, resulting in the termination of the growing DNA chain. There are
fluorescently or radioactively coded ddNTPs for identification in sequencing gels
and devices, respectively. Though the methodology of the initial Maxam-Gilbert

Fig. 13.1 DNA sequencing timeline. Some of the most revolutionary and remarkable events in
DNA sequencing. SeqLL sequence the lower limit, PCR polymerase chain reaction, NG next
generation, SMS single molecule sequencing. (Adapted from [3]) (CC BY 4.0)
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procedure has also been changed to exclude potentially hazardous substances, SBS
is still the sequencing norm. The Sanger sequencing system was first conceived in
1977. Though Sanger sequencing is relatively slow compared to other NGS
methods, advancements in technology and commercialization also led to its current
recognition as the best sequencing process. Several factors, including the production
of automatic capillaries and “ultrafiltration” sample preparation methods, also led to
improved accuracy and efficiency of the Sanger operation. Among the most impor-
tant advances in Sanger sequencing are the following: (1) the creation of fluorescent
(terminator) dyes, (2) the usage of thermal-cycle sequencing to reduce the amount of
input DNA required, and thermostable polymerases that efficiently and accurately
incorporate the terminator dyes into the growing DNA strands, (3) development of
software to read and evaluate the sequence. Applied Biosystems (AB) is a pioneer in
automated DNA sequencing. To improve identification, all commercially available
AB sequencers employ fluorescent markers and capillary electrophoresis (CE) [4].

The ABI sequencing system, a platform based on sequential ligation of oligonu-
cleotide probes, was introduced in autumn 2007. DNA is fragmented and ligated to
adapter sequences [8]. It is then bound to beads. The amplification reagents are
present in an emulsion (water droplet-oil), and the bead has only one fragment
bounded. The DNA fragments are amplified on the beads using the emulsion PCR
[9]. The further steps are briefly described as follows: (1) The beads are deposited
onto a glass support surface after DNA denaturation. It follows primer annealing to
the adapter. (2) The DNA fragments are allowed to hybridize with a mixture of
oligonucleotide octamers in the presence of a ligation mixture. The doublet of the
fourth and fifth bases of octamer is labeled with fluorescent dyes. Therefore bases

Table 13.1 Summary of few important sequencing platforms, adapted from [6]

Platform Name
Illumina HiSeq
2500

Ion Torrent-
Proton II PacBio RS II

OxFord
Nanopore
Minion

Cost (USD)a 690 k 224 k 695 k 1 kb

Reagent cost
per run/per GB

4126/45.84 1000/20.41 100/1111.11 900/1000

Reads per run 300 millions 280 millions 0.03 millions 0.1 millions

Average read
length

2 � 150 bp 175 bp 14,000 bp 9000 bp

Run time 10 h 5 h 2 h 6 h

Major errors Substitution Indel Indel Deletion

Error rate (%) 0.1 1 1 4

Amplification BridgePCR emPCR None, SMS None, SMS

Advantage Low cost per
GB; high
output

Low cost Long reads, no
amplification
bias

Long reads, no
amplification
bias

Disadvantage High cost Homopolymer
errors

Low throughput;
high cost

High error rate

aSources: http://www.molecularecologist.com/next-gen-table-3a-2014/
bAccessing fee. Sources: https://www.nanoporetech.com/products-services/minion-mki
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fourth and fifth in the sequence are identified after detecting the fluorescence. (3) The
octamer oligonucleotides are cut off after the fifth base, removing the fluorescent
label. The hybridization and ligation cycles continue. This time 9th and 10th bases in
the sequence are identified; in the next cycle bases 14th and 15th are determined, and
so on. (4) In order to get all the remaining bases, the primer length is shortened by
one base than the previous one. It allows us to determine, in the successive cycles,
bases 3th and 4th, 8th and 9th, 13th and 14th. The achieved sequence reading length
is at present about 35 bases. Because each base is determined with a different
fluorescent label, error rate is reduced.

Applied Biosystems SOLiD 2.0 platform can sequence millions of bead clusters,
increasing the instrument’s output from 3 to 10 Gb per run. The Sanger sequencing
technology tends to be beneficial in situations where we need not have high
throughput. Many commercial DNA sequencing facilities and businesses offer
Sanger sequencing services. The most popular uses are in DNA sequencing utilizing
a particular oligonucleotide primer on a specific template, for example, to validate
DNA constructs or PCR products [4].

13.2.1.1 Advantages and Limitation
First-generation methods are based on the chain termination method. Therefore,
fragments of varied length are used for sequencing. This method can sequence read
length from 800 to 1000 bp, but it is quite slow as only one fragment can be
sequenced [10].

13.2.2 Second Generation

Second-generation sequencing approaches may be sequencing by synthesis (SBS) or
sequencing by hybridization (SBH). The SBS method improves Sanger sequencing
by eliminating dideoxy terminators and incorporating several synthesis cycles,
imaging, and strategies for integrating new nucleotides into the developing chain.
These new methods may seem costly at first sight, but since the reactions are stored
in tiny chambers, the cost of DNA sequencing is nominal. Continued refinement at
reducing the prices is still more demanding [4].

13.2.2.1 Sequencing by Hybridization
The initial technique used in the 1980s was based on utilizing oligonucleotides with
known sequences to be used as DNA primers. It was possible to determine whether
equal amounts of each labeled fragment are hybridized to each filter by hybridizing
and removing nonhybridized DNA. As a result, it became important to assemble a
contiguous series from the hybridization spots for the probes. Hybridization-based
sequencing is primarily a technique for which particular probes are required, such as
detecting disease-associated SNPs in particular genes or chromosome abnormalities
(deletions, duplications, rearrangements, copy number variants) [4, 11–13].
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13.2.2.2 Sequencing by Synthesis (SBS)
A variety of SBS techniques have taken different approaches. The second-generation
approaches use solid supports of microchannels to facilitate the sequencing
reactions. “Reversible” terminators may be used in several of the newer SBS
technologies, allowing normal nucleotide integration reactions to occur when imag-
ining the integrated nucleotides and then eliminating synthesis-blocking moieties
from the marked DNA sequence to enable incorporation of another base in the
sequences [4]. Recent SBS methods are distinguished from the initial sequencing
method in that they depend on far shorter sequence reads. Compared to Sanger
sequencing, they naturally have a higher error rate since they depend on millions or
even billions of short reads of DNA sequence (50–300 nt) that achieve a consistent
sequence. Certain architectures often suffer from sequence background failures,
which are often unresolvable by which the number of reads increases. Homopolymer
sequences, for example, include fragments of the same nucleic acid, viz.,
AAAAAAAAAA. Throughout this scenario, separate sequencing platforms have a
slight advantage in terms of determining the sequential bases. Each platform has its
specific collection of possible site errors, and users need to be informed of such site
errors. We use various systems and different technology (discussed below) for
circumventing these issues [4].

Roche 454
The technology for HTS was introduced by company 454 Life Sciences in 2005. It is
the first proposed method for the NGS technology [14]. It includes the following
steps:

Preparation of DNA Library
The DNA samples are broken down into small fragments of 300–800 bp by using the
spray method. The different adapters are added at both ends of fragments. The DNA
is denatured, followed by primer annealing. It is cloned using specific vectors and
then designing a library of single-stranded DNA.

Emulsion PCR
Beads are taken and coated with streptavidin. These beads have primers that match
the adapters used. Each bead is eluted with PCR reagents in a water-oil droplet
(buffers, dNTPs, primer, DNA Polymerase) [15]. This is followed by numerous tiny
water droplets wrapped in mineral oil formed during high-speed spinning. These
individual oil droplets form an independent PCR reaction space having one DNA
template and one bead. The double-stranded DNA with adapters are denatured at
95 �C, and single-stranded DNAs are attached to the beads. Reverse strand anneals
to the forward primer and vice-versa. The incubation system contains PCR reagents
so that PCR cycles continue.

Pyrosequencing
The DNA sequencing further needs a DNA polymerase and single-strand DNA
binding protein [16]. Picotiter plate with special nanopores (44 μm diameters) is used
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to place these beads. The specialty of this plate is that only one bead can be placed at
each nanopore. This setup is required for pyrosequencing. The principle of
pyrosequencing is as follows: Place a bead into the nanopore. The amplified and
fixed single-stranded DNAs on the bead provide a sequencing template. The pyro-
phosphate group will be released if a single dNTP pairs with the DNA template.
Subsequently, as the released pyrophosphate group interacts with ATP sulfuric acid
chemical enzymes, ATP is formed. The luciferase enzyme and ATP make the
fluorescein molecule fluoresce, and a CCD camera captures it. Finally, computer
software is used to process the data. Each dNTP exhibits a different fluorescence,
allowing the DNA sequence to be observed. Finally, diphosphatase degrades ATP,
and it leads to fluorescence quenching, and sequencing reaction continues. Roche
454 technology can sequence read lengths up to 400 bp [17].

Advantages and Limitations
Roche is a reliable, fast, and accurate technology which generates on an average
700 MB of data. In this technology, the read length is >700 bp. It does not need
primers and labeled nucleotides. The limitations of this technology includes
problems in homopolymer sequencing, and it is costlier than other NGS
technologies [10].

Illumina
The first high-throughput Genome Analyzer (Solexa sequencer) was launched in
2006, and Illumina acquired it in early 2007. Many plants, animals, microbes, and
human genomes have been sequenced with this technology. This technology holds
the cluster generation. The occupancy reversible terminator technology is used for
fast and accurate large-scale sequencing. It has broad applications in genomics,
transcriptomics, and epigenomics. This technology allows researchers to sequence
1 gigabase (Gb) of genome data in a single run [4]. The steps are as follows:

Cluster Generation
Firstly, DNA templates are fixed on a proprietary flow cell surface to facilitate DNA
replication enzyme’s access. Solid-phase amplification creates many copies (~1000)
of each template molecule nearby [18].

Sequencing by Synthesis
The four dNTPs (A, C, T, G) are labeled with different fluorescent dyes. These
nucleotides are added to sequence the billions of clusters on the flow cell surface. It
uses SBS technology. The nucleic acid template is sequenced by adding a single
labeled deoxynucleoside triphosphate (dNTP), and it stops DNA polymerization.
The fluorescent base is imaged and identified. Subsequently, it is enzymatically
cleaved to incorporate the upcoming nucleotide. This whole process continues till it
sequences the template [19].
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Analysis Pipeline
This approach is built around a massive quantity of sequence reads in parallel. Each
raw read base is associated with a score, and software applies a weighting factor in
calling differences to get confidence scores. Therefore, deep sampling and uniform
coverage allow weighted majority voting and statistical analysis to identify
heterozygotes and homozygotes and identify sequencing errors. Users can align
sequences to a reference genome in resequencing applications of Illumina data
collection software [20].

Ion Torrent
In 2010, ThermoFisher company expanded its NGS portfolio with the Ion Personal
Genome Machine (PGM) sequencer. This technology measures the H+ ions liberate
during base incorporation [21]. It follows the sequencing-by-synthesis method and
emulsion PCR (emPCR). The chemically encoded information (A, C, G, T) is
decoded into digital information (0, 1) on a semiconductor chip. This approach
combines simple chemistry with proprietary semiconductor technology. A hydrogen
ion is liberated as a byproduct when a nucleotide is added into a strand of DNA by a
DNA polymerase in real time. The workflow consists of four significant steps:
library construction, template preparation, sequencing, and analysis.

Library Construction
The process generally involves taking nucleic acid, its fragmentation (typically
200–400 bp), and then adding sequencing adapters.

Template Prep/Amplification
Similar to Roche 454, the DNA fragments generated are affixed to beads followed by
its amplification using emulsion PCR. The complementary primers coat beads. It is
mixed with a dilute aqueous solution containing PCR reagents and DNA fragments.
An emulsion of microdroplets is formed when the solution is then mixed with oil. It
is ensured that each microdroplet contains only one bead with fragments with a low
concentration of beads and fragments. The clonal amplification of each fragment is
done within the microdroplets. The amplified fragments are harvested by centrifu-
gation and organic extraction. The glycerol gradient embeds those amplified beads.

Sequencing
The principle is based on standard pyrosequencing chemistry. The direct release of H
+ (protons) from the reaction is measured by the Ion Torrent system. The leads to the
decrease in pH of liquid, and the sensing layer detects this pH change. It includes pH
meters and other inexpensive sensors essentially. This liquid surrounds Ion Sphere
Particles (ISPs). Further, it is converted to a voltage change. The software records the
nucleotide. For example, we have two nucleotides in a row incorporated (two T’s
complementary to two A’s)—double the hydrogen is released, which results in
double the signal so that the software will record two T’s in a row. It generally
completes 200 bp reads in 2 h. The standard FASTQ file is generated and analyzed
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by using “Torrent Browser” software (https://www.ncbi.nlm.nih.gov/sra/docs/
submitformats/).

Advantages and Limitation
In this technology, a low concentration of DNA sample (~10 ng) is required for
expression and mutation analysis. It produces shorter reads. It is widely used, as it is
fast and affordable [10].

Complete Genomics DNA Nano-array Sequencer
DNA nano-array sequencing is often used to sequence an organism’s whole genome
[22]. This method creates DNBs (DNA nanoballs) by amplifying small fragments
via rolling circle replication. Fluorescent nucleotides attach to complementary
nucleotides, and the bound nucleotide’s fluorescence is used to determine the base
sequence. The steps are given below:

DNA Isolation, Fragmentation, and Size Capture
DNA is extracted using a standard protocol, and physical or enzymatic methods
randomly fragment it. The ideal fragment length is selected by gel electrophoresis.
The bead-based size selection is considered to be suitable for longer fragments.

Attaching Adapter Sequences
The fragments are ligated with adapter DNA sequences, which are parts of identified
DNA flanking the unknown DNA. After PCR amplification, a splint oligo hybridizes
to the ends of the ligated fragments to form a circle. The exonuclease digests the
linear single- and double-stranded DNA components, resulting in a circular DNA
template.

Rolling Circle Replication
The Phi 29 DNA polymerase recognizes and replicates a circular single-stranded
DNA template. The newly synthesized long single-stranded DNA strand is cut off
from the circular template. Self-assembly of the corresponding DNA results in a tight
ball of nanoparticles (300 nm) in diameter. DNBs are injected with the fluidics
system. Patterned Array chip is used for its loading [23]. The adapter region of DNB
is hybridized with the sequencing primer. The sequencing reagents contain DNA
polymerase and fluorescently labeled dNTP probes. These reagents are pumped into
the system to begin sequencing reaction. The fluorescently labeled probes on the
DNB are excited with lasers, and images are taken (CCD camera). The MGI’s
propriety software converts images into a digital signal. This information is then
used to sequence the DNA of the sample.

Sequencing Data Format
The information collected by the DNA nanoballs is configured as standard FASTQ
files which can be read by any data analysis pipeline that supports single- or paired-
end FASTQ files.
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13.2.3 Third-Generation Sequencing

Compared to second-generation sequencing approaches, third-generation sequenc-
ing methods seek to interpret longer DNA molecules sequentially. The pioneer in the
current marketplace for this is Pacific Biosciences (PacBio) [24] and Oxford
Nanopore Technology [25].

13.2.3.1 PacBio’s SMRT (Single Molecule Real Time) Sequencing
In the year 2016, using long-read SMRT sequencing from Pacific Biosciences,
scientists from the University of Washington, the McDonnell Genome Institute at
Washington University in St. Louis, and other institutions reported the gorilla’s
strongest genome assembly. Pacific Biosciences of California, Inc., is the leader in
long-read sequencing using its Single Molecule, Real-Time (SMRT®). This is the
third-generation sequencing technology, and it is widely used to sequence best-
quality genome sequences [24].

The Principle of PacBio SMRT Sequencing
Zero-mode waveguides (ZMWs) are a sub-wavelength optical nanostructure
contrived in a thin metal film, which is a useful analytical tool able to entrap an
excitation volume in the attoliter range. It enables the isolation of fluorescently
tagged biomolecules at physiologically appropriate concentrations for optical analy-
sis. A DNA polymerase and a template DNA strand are covalently bound to the
lower glass surface of the ZMW. The laser light passes across the lower portion of a
ZMW without penetrating it. The dimensions of the ZMW are less than the wave-
length of light. As a result, it enables the targeted excitation and detection of light
released by base elongation nucleotides [10].

SMRT Steps

Library Construction
The library construction workflow includes the following steps: quality checks of
genomic DNA (gDNA); gDNA fragmentation (Covaris); size selection and concen-
tration adjustment; repairing of DNA damage and ends of DNA Fragments; DNA
purification; and blunt-end ligation through blunt adapters. Subsequently, the ligat-
ing hairpin adapters are used to make circular single-stranded DNA. The adapters are
attached to the terminal of target double-stranded DNA (dsDNA) molecules. This
template is called a SMRTbell.

Sequencing
The template DNA is dispensed into the ZMW cell [26], and even the adapter is
attached to the bottom-immobilized DNA polymerase. The four nucleotides have
been labeled with a separate fluorescent dye (red, yellow, green, and blue for G, C, T,
and A, respectively) to create distinct emission spectra. A fluorescently labeled
sequence binds to the template in the polymerase’s active site, and the fluorescence
output of the color identifies the inserted nucleotide. To end the fluorescence pulse,
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the dye linker-pyrophosphate compound is separated from the DNA sequence.
Subsequently, the polymerase is transferred to the next position, and the cycle
continues. PacBio SMRT sequencing generates relatively long reads. The normal
read length is between 8 and 15 KB and can reach 40–70 KB. It is possible to
conduct bioinformatics analyses such as de novo assembly, reference genome
annotation, genome mapping, gene feature annotation, SNP/InDel detection, com-
parative genomics study, evolutionary analysis, and divergence time estimation.

Advantages and Limitation
The enzyme kinetics and sequencing can be easily monitored in real time. In this
technology, RNA molecules can be observed at a single molecule resolution. Here,
de novo sequencing is possible due to longer reads and unbiased data. Its limitation
includes high cost per base sequencing, high error rate, and less data is generated in
each run [10].

13.2.4 Oxford Nanopore Technology

Nanopore sequencing comes under fourth-generation DNA sequencing technology.
Nanopores are small holes through which DNA can travel, generating an electronic
signal used to sequence the individual bases. Oxford Nanopore Technologies Ltd.
Developed Nanopore sequencing technology, which can generate very long reads
with a relatively lower error rate and inexpensive to own and operate [25]. The
Oxford Nanopore system primarily consists of a nanopore embedded in an artificial
membrane and a motor protein that moves DNA molecules from one side to another
side of the membrane through the nanopore. An electric current is induced across the
nanopore when a specific voltage is applied across the membrane. When DNA
passes through the nanopore, it modifies the current, with different bases having
slightly different effects. These differences are used to reconstruct the DNA
sequence and, in some cases, base modifications as well. A single molecule of
Nucleic Acid can be sequenced without the need for PCR amplification or chemical
labeling of the sample using nanopore sequencing.

13.2.4.1 Advantages and Limitation
This platform is able to produce read length >882 bp, which helps in data assembly
and alignment. It is easily portable and rapid. The major limitations of this technol-
ogy include a high error rate [10].

13.3 The Applications of HTS

The HTS finds many applications such as transcript analysis, translation analysis,
chromatin conformation deduction, RNA structure, RNA protein interactions analy-
sis, microRNA target discovery, and enhancer assays. The decrease in price and
good accessibility have enabled researchers to develop diverse HTS methods
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[27]. There are some major projects such as ENCODE [28], Roadmap Epigenomics
Project which characterizes the human genome, 1000 Genomes project [29] which
studies human genetic variation, GTEx [30] which analyzes gene expression, and
many other which are entirely based on HTS. These resources provide enormous
data to the scientific community, and these consortia generally implement computa-
tional standards and robust experimental methods, ensuring high-quality data. The
applications of HTS are briefly given below (Table 13.2):

13.3.1 Genome Sequencing and Variation

The first genome to be sequenced by the utility of HTS technologies is Acinetobacter
baumannii [43]. The resequencing of exomes and human genomes was done as the
HTS technologies improved. The mapping of reads to a reference genome was done,
and variants were identified between the sample genome and the reference. Several
genome sequencing projects started, and finally it was concluded that there are 3.5–4
million single nucleotide variants (SNVs) and thousands of short indels (insertion
and deletion) relative to the reference genome. The 1000 Genomes Project Consor-
tium, 2010 shed light on hundreds of variants that led to alterations in genes and loss
of function. HTS has been used to identify the genome segments that have been
rearranged (Structural Variations, Svs), duplicated, or deleted, but it is more chal-
lenging to determine Svs and indel in the short-read lengths. Basically, to identify
Svs in the genome, four independent approaches are used. These approaches are
depth of reading coverage, mapping of paired-end reads discordant from the refer-
ence genome, identifying split reads, and mapping breakpoint junctions. Each
method has its pros and cons. No combination of them is conclusive; therefore
SVs are never characterized in their entirety. The improvement in resolution over the
array-based method has greatly increased our understanding of the prevalence of
SVs throughout the genome and their contribution to disease. HTS is excessively
used to sequence viral, prokaryotic, eukaryotic genomes, and exomes, yielding
tremendous insight into human diversity and disease.

13.3.2 Genome Regulatory Information Mapping

The other most important HTS application includes high-resolution genome-wide
mapping of DNA regulatory elements. The associated technology is ChIP-Seq, in
which a transcription factor (TF) is associated with DNA, and it is thereafter
immuno-selected, followed by HTS [44]. This sequenced DNA are mapped to the
genome that mark bound regions or chromatin modifications. Therefore, it is a basic
method for discovering many probable regulatory regions. Generally, the accessible
regions of the genome are digested with DNase I, followed by sequencing of the
ends fragments [45] The ENCODE Project Consortium, 2012 (https://www.
encodeproject.org/) has provided a treasure of significant information regarding
transcription factor binding networks, Epigenetic Maps, and transcript annotation.
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Table 13.2 Bioinformatics tools for high-throughput sequencing

Tools Purpose

Free
or
paid

Languages
used References

Genome
sequencing
and variation

Pisces It identifies
variants in
germline next-
generation
sequencing data

Free Python [31]

BATCAVE It identifies
variants in
somatic next-
generation
sequencing data

Free R [32]

Genome
regulatory
information
mapping

Genetic
Association
Database

It provides
information on
genetic
association in
diseases.

Free SQL,
HTML,
CSS,
Javascript

[33]

ENCODE It gives
information on
regulatory
elements in the
human genome

Free SQL,
HTML,
CSS,
Javascript

[28]

Mapping the
three-
dimensional
organization of
the genome

3D-GNOME 2.0 It is a web service
that provides 3D
models of
genomic
structures from
the 1000
Genomes Project
phase

Free SQL,
HTML,
CSS, PHP,
Javascript

[34]

GSDB It provides a 3D
genome structure
framed by using
HiC

Free SQL,
HTML,
CSS, PHP,
Javascript,
Python, R

[35]

Characterizing
the
transcriptome

PdumBase It is a repository
for the early
development of
other metazoans

Free SQL,
HTML,
CSS, PHP,
Javascript,

[36]

Microbiome
sequencing

iMAP It is a tool for
microbiome data
analysis

Free Bash, R
3.5, Perl,
Python

[37]

Genome
sequencing in
diseases

Human Gene
Mutation
Database

It is a collection of
mutated human
genes involved in
diseases

Paid SQL,
HTML,
CSS, PHP,
Javascript

[38]

Human
Genome
Project

ampliconDIVider It identifies
insertion and

Free Python [39]

(continued)
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The Roadmap Epigenomics Consortium (http://www.roadmapepigenomics.org/)
has reported that more than 3.5 million regulatory elements are identified in different
cell types throughout the human genome.

13.3.3 Mapping the Three-Dimensional Organization of the Genome

The advancement of our understanding of chromosome’s compartmentalization and
the global organization has been increased severalfold by HTS technologies. The
ChIA-PET (chromatin interaction analysis by paired-end tag sequencing) and Hi-C
assays help study 3D chromatin interactions [46]. These assays rely upon broken
chromatin followed by sequencing to derive contact maps and proximity-based
ligation of cross-linked. Hi-C was the first technique demonstrating the organization
of the genome into topological associating domains (TADs). The combination of
extremely deep sequencing (billions of reads per sample) and the Hi-C technique
have released much higher resolution contact maps (~1 kb), which refine TAD
domain size from 1 Mb to less than 200 kbp. Modeling of Hi-C data suggested the
fractal globule chromatin state, a conformation that maximizes packing while
preserving the flexibility to access any genomic locus [47].

13.3.4 Characterizing the Transcriptome

The advent of high-throughput sequencing has greatly increased our understanding
of the diverse cellular roles of RNA. The HTS identifies different classes of RNA
and characterizes genomic localization, RNA structure, and RNA-protein
interactions. The transcriptome analysis depends on various HTS methods such as
RNA-seq and Cap analysis of gene expression (CAGE). HTS and deep sequencing
of RNA suggest that around 3/4 of the human genome is transcribed [48]. In
transcriptome analysis, noncoding RNA, including lncRNAs (long, noncoding),

Table 13.2 (continued)

Tools Purpose

Free
or
paid

Languages
used References

deletion in DNA
amplicons

Plant Genome
Databases

PlantGDB,
Ensembl Plants

These two
databases provide
genomic
information of
plants

Free SQL,
HTML,
CSS, PHP,
Javascript

[40, 41]

g-HTS in the
coming era of
precision
medicine (PM)

PreMedKB It is a knowledge
base for precision
medicine

Paid SQL,
HTML,
CSS, PHP,
Javascript

[42]
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snoRNAs (small, nucleolar), and microRNAs, have been systematically described
RNA-seq and derivative techniques. RNA-seq data with ChIP-seq profiles charac-
teristic of expressed genes identified a subset of lncRNAs.

Similarly, cDNA sequencing and tiling array experiments identified the lncRNAs
and RNA editing. The HTS methods revealed the structure and biology of these
newly discovered transcripts. The miRNA-mediated mRNA decay, using parallel
analysis of RNA ends (PARE), has led to the microRNA-target discovery [49]. RNA
immunoprecipitation chip (RIP-chip) and RIP-seq methods have shown that
polycomb repressor complex 2 (PRC2), a chromatin-modifying complex, is
associated with approximately 20% of the lncRNAs. The massively parallel array
of RNA (RNA-MaP) helps in estimating RNA–protein interactions and, thus, plays a
vital role in understanding human disease and normal cellular homeostasis. These
analyses improved our understanding of RNA, which plays a vital role in human
disease and normal cellular homeostasis.

13.3.5 Microbiome Sequencing

The Human Microbiome Project Consortium, 2012 has been identifying the many
microbes residing in healthy human populations. The extensive analysis of
metagenomic samples from the ocean, soil, and the human body provides insight
into microbial species diversity [50]. The detailed species, gene composition, and
phylogenetic relationships are predicted by using 16S rRNA gene sequencing. The
advancement in HTS led us to a “personal microbiome.” The relation between
several human diseases and microbial diversity in a given niche has been established.
For example, a decrease in gut microbes diversity causes obesity and inflammatory
bowel diseases, whereas the rise in microbial diversity is associated with bacterial
vaginosis. The transplant studies in mice have concluded that there is a direct relation
between gut microbiome and metabolism. The detailed characterization of the
dynamics of microbiomes is possible due to the huge advancements in HTS [51].

13.3.6 Genome Sequencing in Diseases

Comprehensive insight into the genetics of human disease has increased severalfolds
due to the capacity to sequence transcriptomes, exomes, and genomes. There are
more than 7800Mendelian disorders reported in the Online Mendelian Inheritance in
Man database. Only a little information on causative genes is known. Identifying
causal alleles for various inherited diseases is performed by sequencing the exome of
healthy and diseased family members [52]. For example, exome sequencing uncov-
ered a mutation in the X-lined inhibitor of apoptosis (XIAP) that causes severe
inflammatory bowel disease. This problem is alleviated by a bone marrow transplant.
Exome sequencing is being extensively used to identify genetic defects [53]. The
utility of HTS in cancer has revealed that tumors can differ significantly in terms of
mutation quality and type. The exome and genome sequencing on many clinical
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samples by International Cancer Genome Consortium (ICGC) and the Cancer
Genome Atlas (TCGA) detected the mutation rates in cancer driver genes
[54]. Where a gene is mutated more often than predicted, gene expression and
replication timing are critical. Numerous novel cancer mechanisms and driver
genes were identified as a result of TCGA-led projects. Additionally, whole-genome
sequencing (WGS) of cancer samples defined noncoding high-frequency mutations
as a significant class of somatic variants. The mechanisms underlying drug resis-
tance, clonal evolution, and tumor heterogeneity are well studied due to the scale and
sensitivity of HTS. Single-cell sequencing identifies changes in the copy number of
breast cancer cells [55]. Point mutations confer clonal variation, allowing the tumor
to adapt to changing selective pressures. HTS has been used to form the foundation
for the biomarker discovery and treatment of cancer.

13.3.7 Human Genome Project

The progress in DNA sequencing technologies has created a path for the human
genome project. This project has significantly contributed to our understanding of
the disease and human diversity. The sequencing of individual genomes is now a
matter of a couple of days [56]. The Human Genome Project was completed with
Sanger DNA sequencing. The finished human genome was released in 2004 by the
International Human Genome Sequencing Consortium [57]. This was followed by
the genome sequencing of several model organisms. The Human Genome Project
has reported that there are around 20,500 human genes. It has in-depth information
about the structure, function, and organization of the complete set of human genes.
The 13-year project was coordinated by the U.S. Department of Energy (DOE) and
the National Institutes of Health [58]. The significant goals of this project are: to
report total genes in the human genome; to sequence the human genome; to store and
analyze genomic data; to shift genome sequencing technologies to the private
sectors; and to discourse the ethical, legal, and social issues (ELSI) related to
genome project.

The National Human Genome Research Institute (NGHRI) initiated a 70 million
dollar DNA sequencing technology to achieve a $1000 human genome in 10 years
[59]. The improvements to traditional Sanger sequencing results in a 100-fold
decrease in per-base cost. The present worth of Human Genome sequencing is less
than $2000. Many commercial high-throughput sequencing (HTS) platforms follow
a common paradigm: sample preparation, sample amplification by cloning, followed
by massively parallel sequencing. The technique employed by each platform dictates
the amount, consistency, and biases of the corresponding sequencing data. This
breakthrough involved many HTS platforms and found its usefulness for particular
applications [60].
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13.3.8 Plant Genome Databases

The increasing availability of computational capacities made it possible to analyze
and store huge data, which is ever-growing. This huge amount of data has led to the
development of plant genome databases that can store, anatomize this data, and
retrieve relevant information. Both species-specific and general plant databases are
accessible on the web, such as PlantGDB (http://www.plantgdb.org/),
Wheatgenome.info (http://www.wheatgenome.info/), Phytozome (http://www.
phytozome.net), TreeGenes (http://dendrome.ucdavis.edu/treegenes/), and Legume
Information System (http://legumeinfo.org).

13.3.9 g-HTS in the Coming Era of Precision Medicine (PM)

HTS has improved our understanding of cancer a lot. PM is a medical treatment to
the individual characteristics such as lifestyle, environment, and genes. PM in cancer
study involves the identification of all kinds of mutations in genomes predicting
resistance or response to therapies. We have already switched from “one medicine
for all” to a specific treatment of patients according to their clinical features, disease
stage, and biomarkers [61]. HTS takes into account a wide set of patient features and
the cancer mutational conditions to choose the best therapeutic approach in disease
management. It is now possible to screen all sets of genes in one test with the help of
HTS. It allows to get in-depth genetic information from a blood sample and identify
predictive and prognostic factors.

13.4 Limitations of HTS Technologies

Thirteen years have elapsed following the commercialization of the first high-
throughput sequencing tool from Life Sciences, the 454 GS FLX. The genome has
also expanded into structural and functional genomics as well as structural and
functional genetics. Besides, it provides for the development of concepts such as
“omics” (transcriptomics, genomics, metabolomics, etc.), which add additional
aspects to our understanding of all living species and how different organisms utilize
biology and molecular genetics to survive and reproduce in both normal and
diseased environments [3]. This knowledge is important to appraise your under-
standing of human health. NGS has helped in several ways in the fields of health
care, agriculture, and other areas of research. But it has also brought fresh dilemmas.
The first obstacle is the price for sequencing. Though it is accurate that the total costs
for NGS are much better than those for sequencing studies, an NGS experiment is
not inexpensive. The expense of the sequencing system differs considerably based
on the model of machine obtained, on consumables, and on the particular reagents
used. Costs involved with laboratory design, sampling, and sequencing should be
taken into consideration. Additionally, the expense of designing sequencing
pipelines, developing bioinformatical tools that update those pipelines and analyze
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sequencing results, and data storage are not included in the overall NGS costs. The
BAM (binary alignment map) file containing the results of a single whole-exome
sequencing encounter takes up to 30 Gb and maintaining and analyzing data of many
patients needs higher computing capacity and storage, which have considerable
costs. Expert bioinformaticians will also be expected to work with how to utilize
and interpret the data from the sequenced genomes. These extra expenses must be
included in the expense of genome sequencing [62, 63].

Privacy issues around data sharing and secrecy are often essential to remember
while utilizing next-generation sequencing. Is it discussed whether genomic data
should be exchanged by numerous stakeholders, including laboratory personnel,
bioinformatics analysts, academics, clinicians, patients, and their families? This is a
really critical concern for health practitioners [64]. When analyzing NGS results, it is
important to be aware of the technology’s limitations, as demonstrated in this essay,
namely PCR amplification bias (a significant source of bias induced by random
errors introduced during the amplification process) and sequencing errors. As a
result, extensive coverage is needed to determine which variants are correct and
which are the result of sequencing or PCR errors. Finally, shortcomings often arise in
downstream research on the basis of read alignment/mapping issues, which can be
particularly troublesome for indels. Certain alignment methods have poor detection
capability or do not detect at all. Even in the absence of automated methods, manual
checks of variants in the BAM file are often beneficial. Thus, it is important to
consider the shortcomings of the in-house NGS framework and workflow to enhance
the efficiency of variant detection.

13.5 Conclusion and Future Perspective

In conclusion, determining the order of nucleic acid residues in biological samples is
a goal of many biomedical or agricultural studies. Over the last 50 years, numerous
researchers worldwide have devoted themselves to the challenge of developing
DNA sequencing technologies. At the start of this field, researchers concentrated
on using RNA sequences that were only about a dozen and a hundred nucleotides in
duration. Over the years, advances in sequencing protocols, molecular biology, and
automation expanded the computational capacities of sequencing while decreasing
the expense, enabling the reading of DNA hundreds of base pairs in duration,
massively parallelized to generate gigabases of data in one phase. Researchers
gradually switched from the laboratory to the machine while pouring over a gel to
running code. Genomes were decoded, papers published, businesses started and
combined, and repositories of DNA sequence data were generated and they grew.
With regard to DNA sequencing, the area has an extensive history that relates to the
latest advances in the field. A knowledge of this background will offer an awareness
of recent success and insight for potential progress, as lessons gained in the previous
generation guide future progress. In the end, these next-generation technologies are
speeding up the process of personalized medicine and drug discovery for public
health welfare. Now, it is not surprising to say that only the sky is the limit!
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Mapping Algorithms in High-Throughput
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Abstract

The launch of high-throughput sequencing led to the production of billions of
DNA fragments of several organisms from the vast array of the biological
specimen in one run. Because of the significant rise in the sequences number,
most of the analytical time that was earlier expended processing biological
information is now devoted to identifying where the reads in the study come
from. More reads are being mapped back to the reference sites, thus disclosing the
type, quantity, and composition of DNA sequences present within the biological
specimen. This stage, which includes the correct mapping of reads into a refer-
ence sequence, is vital since it decides how good the downstream analyses are.
Thus, in this chapter, the authors attempt to understand the underlying mechanism
of mapping algorithm and how they are employed in biological studies. Informa-
tion retrieved suggested that the algorithms employed for mapping are known as
mappers, whose key job is to locate the true position of each sequence/sequence
alignments from a theoretically massive quantity of reference data while allowing
for anomalies and structural variance. Based on index property, alignment
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algorithms can be broadly categorized into three categories, i.e., algorithms that
are focused on different index features, those that are based on various suffix
trees, and eventually those that are based on merge sorting. These algorithms
allow investigators to answer relevant science concerns, such as which genes are
differentially expressed between environments.

Keywords

High-throughput sequencing · Next-generation sequencing · Hash table
algorithms · Index-based algorithms

Abbreviations

BWT Burrows-Wheeler Transform
HTS High-throughput sequencing
NGS Next-generation sequencing

14.1 Introduction

The launch of high-throughput sequencing (HTS), also known as deep sequencing or
next-generation sequencing (NGS) during early 2000, offered an impetus for the
production of billions of DNA fragments of several organisms from a vast array of
the biological specimen in one run. Modern microarrays, by comparison, contain just
a few hundred or even thousands of information per trial. Because of the significant
rise in the sequences number, most of the analytical time that was early expended
processing biological information is now devoted to identifying where the reads in
the study come from. More reads are being mapped back to the reference sites, thus
disclosing the type, quantity, and composition of DNA sequences present within the
biological specimen [1]. This stage, which includes the correct mapping of reads into
a reference sequence, is vital since it decides how good the downstream analyses are.
The algorithms employed for this step are known as mappers. Mappers must be
receptive and precise, thus resisting being too computationally taxing. They should
be able to evaluate the true alignment of a read on a reference genome and differen-
tiate between a sequencing error and a specific difference [2]. This, in turn, allows
investigators to answer relevant science concerns, such as which genes are differen-
tially expressed between environments [3], or how a specific genome varies from a
reference genome [1]. These essential characteristics facilitate the ultra-deep
sequencing technologies to be broadly employed in the field of biology and medical
science [3].

In the initial days of NGS as well as sequencing through synthesis, researchers
found that sequence alignment software tools common at the time were clearly not
effective enough to evaluate NGS-scale data sets and were also not engineered for
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the challenge. Since then, a vast number of publications have identified new
approaches to strengthen this issue. These methods started in numerous fields of
research, including computer science, statistics, and mathematics. Few methods are
oriented towards particular sequencing systems, which are not as common as other
methods. These models fix various issues, such as performance, scalability, preci-
sion, and interpretability [1].

The popular mapping tools (Table 14.1 and Fig. 14.1) mainly focus on the hash
table or index-based algorithms that are accurate and effective [4]. Index-based
aligners are sluggish in operation, but they precisely align long gaps. On the other
hand, heuristic-based algorithms are fast, use less power, and can be utilized for
quick reads. While these algorithms have different fundamental structures, they are
achieving almost similar performance [5]. Thus, selecting a correct mapping method
before any downstream study is important since it would have an effect on the final
outcome. A variety of benchmarking analyses exist to assist users in selecting
aligners. For instance, Shang et al. tested the link between genome size and
processing time [6]. Martin and the team checked the success of aligners on
metagenomics results and established the shortcomings of the aligners with respect
to the genome size and reference organism within a population such that each genus
may be defined separately [7]. Thus, in this chapter, the authors attempt to examine
the developments in different mapping or alignments algorithms and how they can
be employed in various biological research. In this chapter, we summarize this
extensive body of work, emphasizing crucial points that are relevant to researchers
and practitioners. We also try to discuss alignment approaches that often tackle the
statistical issue of read mapping.

14.2 Overview of Mapping Algorithm

“The HTS data mapping problem can be generally stated as follows: given a set of
sequences Q (produced by an HTS technology), a set of reference sequences R, a
possible set of constraints and a distance threshold k, find all substrings m of R that
respect the constraints and that are within a distance k to a sequence q in Q, i.e. d(q,
m) <K, where d() is some distance function. The occurrences m in R are called
matches. The constraints imposed can vary depending on the HTS application and
data type (e.g. whether the data generated are single- or paired-end reads)” [8]. A
mapper’s key job is to locate the real position of every sequence/sequence
alignments q from a theoretically massive amount of reference information while
permitting for structural variance and anomalies. For ensuring the right matches, the
correct position should be estimated. The distance metrics are usually employed for
estimating the number of mismatches and indels to compensate for inconsistencies
as well as sequence variance; however, they can often include different sizes or
possibilities involved with the reads [8].

The most apparent limitation of selecting a mapper is the data form that it is built
for or is appropriate for managing (miRNA, RNA, DNA, or bisulphite). Another
significant aspect to remember is the sequencing platform used for data production.
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Sequence alignment systems, like Mummer, Exonerate, and BLAT, may match all
sequences from any source (e.g., Protein DNA, or RNA) and irrelevant to the source
form. The slider was developed for use with Illumina data and is better used in the
light of Illumina’s raw data output. In comparison, MapReads, SOCS, and
RNA-Mate are better adapted for aligning reads that are colour-coded. Few mappers
can manipulate particular prejudices while designing their own job. The Illumina
sequencing platform has a range of limitations, which means that less precise base
calls are generated towards each read’s 30-end. Some alignment algorithms, such as
SOAP, can, therefore, trim the 30-end of reads in order to resolve this issue [8].

Eukaryotic genes are comprised of several exons and can be fused altogether for
producing several transcript sequences. As a consequence, RNA-seq sequences
would be matched against a reference genome, with reads that cover several exons
providing gaps within the alignment conforming intronic sequence. Earlier studies

Fig. 14.1 Aligners based on algorithms classification across different NGS platforms. Rectangles
with different grey scales represent hash table-based algorithm, BWT-based backtracking algo-
rithm, and other algorithms, individually. Aligners for specific types of data generated by different
sequencing platforms are separately shown in three columns, namely, Roche 454, Illumina, and
ABI SOLiD. (Adapted from [6])
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have suggested that the identification of splice junctions is rendered either de novo or
from user-defined junction positions library. Using de novo splicing identification,
mappers can identify splice junctions easily without any current annotation. An
alternative solution is to construct exon junction libraries that involve regions
covering established or expected splicing junctions. Some mappers build these
libraries throughout execution utilizing splice junction knowledge supplied by the
user, while some require that the user supplies the library. And, hybrid methods that
integrate fresh information with existing results are also feasible. In the first stage,
QPALMA distinguishes clusters of mapped reads correlated with exons through
aligning the reads to their genomic position. Next possible exonic junctions over a
certain span around the putative exons are enumerated. Sequences flanking possible
junctions are mapped to the unmapped readings, rendering it easier to find new
junctions. Similar to TopHat, QPALMA differs by training a support vector
machine-like algorithm using the known genome splice junctions. Therefore, a
collection of recognized junctions from the reference are also needed [8]. Thus,
most of the fast alignment algorithms need auxiliary data structures, termed indices,
for the read sequences or reference sequences, or often both. Based on index
property, alignment algorithms can be broadly categorized into three categories,
i.e., algorithms that are focused on different index features, those that are based on
various suffix trees, and eventually those that are based on merge sorting [9].

14.2.1 Algorithms Based on Hash Tables

Hash-based genome-searching programs utilize hash tables (Fig. 14.2) [10]. A hash
table is an index in which data is sorted by keys. Thus, a hash table is a form of an
associative list. Two separate approaches for mapping short reads onto genomes are
explored in the chapter. One stores short reads’ subsequence, while the other stores
subsequences of the genome as well as its location within a hash table. As there is no
important distinction in their usage of hash, we discussed in detail in three different
approaches (i–iii). A hash-based approach prepares a table in which the locations of
target subsequences are the keys, and the target genome positions are the
corresponding values. A short DNA sequence is mapped onto the genome where
the resulting key is used to index a hash table [10].

Three approaches exist for identifying the n-mismatch genome location of the
subsequence of length l with the hash table.

14.2.1.1 Refer to all n-Mismatch Subsequences
Prepare a hash table whose key length is l, and use the subsequence and its n-

mismatch subsequences as keys to refer to the table. It requires
Pn

i�1
lCn3l hash

references to find all the n-mismatch genome positions.
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14.2.1.2 Store n-Mismatch Positions in the Hash Table

For each position of the subsequence of the genome, store the position
Pn

i�1
lCn3l times.

The hash keys are the subsequence and its n-mismatch subsequences.

14.2.1.3 Use Pigeonhole Principle; Combine Hash Table and Another
Method

Generate a hash table whose key length is bl/nc. After getting the perfect-match
genome position of length bl/nc by referring to the hash table, find n-mismatch
sequences by another method, such as dynamic programming or BWT [10].

The first and second approaches require so many hashes and a large hash table,
respectively. The third approach is the strongest; however, when n increases, the
capacity to reduce the genome region down becomes weak, and thus the pressure of
the post-processing to identify n mismatches rises. To resolve these difficulties and
boost the efficacy of using hash tables for genome mapping, technological
breakthroughs were required. In 2011, Takenaka and the team introduced a method
for finding the genomic locations of two or more mismatches within a hash table

Fig. 14.2 Three methods to find genome positions of 1-mismatch from the subsequence AAGT.
Genome position 1000 is ACGT, which is the 1-mismatch of the subsequence. (a) The first method
refers to the hash table 16 times. (b) The second method refers to the table just once, but the table is
16-fold larger. (c) The third method refers to the table three times. After getting position 1002 from
the hash table, the method elongates the alignment toward the front of the sequence. (Adapted from
[10])
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without expanding the scale of the hash table [10]. To carry out the process, 4-ary
perfect Hamming code is employed. This is a hash-based approach for genome
mapping that decreases the amount of hash references for detecting mismatches
without maximizing the hash table scale. The approach includes defining DNA
subsequences as terms on a Galois extension field GF(22) and assembling them
into a complete, unambiguous Hamming code. The perfect Hamming code specifies
what equivalent subsequences of nucleotides are. They proposed “a hash-based
method for genome mapping that reduces the number of hash references for finding
mismatches without increasing the size of the hash table. The method regards DNA
subsequences as words on Galois extension field GF(22) and each word is encoded
to a code word of a perfect Hamming code. The perfect Hamming code defines
equivalence classes of DNA subsequences. Each equivalence class includes subse-
quence whose corresponding words on GF(22) are encoded to a corresponding code
word. The code word is used as a hash key to store these subsequences in a hash
table. Specifically, it reduces by about 70% the number of hash keys necessary for
searching the genome positions of all 2-mismatches of 21-base-long DNA
subsequence” [10].

14.2.2 Algorithms Based on Suffix/Prefix Tries

In this group, all algorithms effectively decreases the inaccurate matching issue to
the exact matching problem and indirectly require two steps: detection of exact
matches and creation of inaccurate alignments backed by correct matches. For
locating identical match, these algorithms depend on some representations of suf-
fix/prefix trie, like enhanced suffix array, suffix tree, and FM-index [9]. The benefit
of utilizing a trie is that several identical copies alignment of a substring within the
reference is only expected to be achieved once since these identical copies fall on a
common path in the trie, while for a traditional hash table index, an alignment must
be conducted for each replica. The optimal choice of data structures is not based on
the system used to locate inexact matches. This form of algorithm will also probably
work for suffix tree index in theory [9].

14.2.2.1 Trie, Prefix/Suffix Tree and FM-Index
A suffix tree is a data structure that holds the complete set of suffixes of a sequence,
which enables quick scans of a string [9]. To create the relationship amongst a trie as
well as an FM-index, a data structure dependent on Burrows-Wheeler Transform
(BWT), we concentrate on prefix trie that would be the reverse sequence trie.
Complete algorithms on a prefix trie can be smoothly added to the related prefix
trie. “The time complexity of determining if a query has an exact match against a trie
is linear in the length of the query, independent of the length of the reference
sequence. However, a trie takes O(L2) space where L is the length of the reference.
It is impractical to build a trie even for a bacterial genome. Several data structures are
proposed to reduce the space. Among these data structures, a suffix tree is most
widely used. It achieves linear space while allowing linear-time searching. Although
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it is possible in theory to represent a suffix tree in L log2 L + O(L ) bits using rank-
selection operations, even the most space efficient implementation of bioinformatics
tools requires 12–17 bytes per nucleotide, making it impractical to hold the suffix
tree of the human genome in memory” [9]. To address these issues, Abouelhoda and
the team [11] built an improved suffix array that is an expanded suffix array and an
array of auxiliary arrays, consuming 6.25 bytes per nucleotide. It can be considered
as an implied depiction of the suffix tree, which has an identical time complexity to
suffix tree in seeking exact matches, better than what Manber and Myers [12]
originally created.

Another enhancement to memory is accomplished by Ferragina and Manzini,
who introduced the FM-index and noticed that finding a child of a parent node
mostly in prefix trie can be performed within constant time employing a backwards
scan on this data structure [9]. Therefore, the time complexity to locate exact
matches in a hash is the same as that in a trie. The FM-index is a compact data
structure constructed, so the index size is smaller than the initial string where there
are repetitive characters in the string (equivalently, has small entropy). The
FM-index is most definitely not compact in accordance with since-DNA sequences
have a limited alphabet. The memory footprint for an FM-index is usually 0.5–2
bytes per nucleotide, based on the implementation and software parameters. The
human genome only makes up 2–8 GB of memory.

14.2.2.2 Identifying Inexact Matches Employing a Suffix/Prefix Trie
Of the numerous available algorithms for query-reference alignment, SOAP2 [13],
Segemehl [14], BWA [15], OASIS [16], Vmatch [11], BWT-SW [17], MUMmer
[16], Bowtie [18], and BWA-SW [19] are the most common. When constructed
correctly, one graph of a trie may be conveniently converted into another. The
FM-index is more often used since its memory footprint is smaller. The algorithms
for inexact matching are based on maximal matches, maximal unique matches, exact
matches, or maximal repeats, and these have been joined with gap-dependent
alignment. Likewise, Segemehl activates the alignment having the longest prefix
match from each suffix, and may even illustrate mismatches as well as gaps at some
locations of the query for reducing false alignments [9]. With OASIS and BWT-SW,
they are able to efficiently extract substrings of the reference via a top-down traversal
on the trie and match these substrings against the query via dynamic programming.
BWA-SW goes beyond BWT-SW by describing the demand as a directed word
graph (DAWG) [20], which often permits it for deploying heuristics to accelerate
alignment. BWA and Bowtie generally sample the reference’s short substrings;
however, rather than doing dynamic programming, they evaluate the query and the
sampled substrings to allow just a few variations. In conjunction, since they enable
the whole read to be matched, the traversal of the trie should be bounded because it is
wasteful to descend deeper throughout the trie if it can be expected that doing so
contributes to an alignment with substantial mismatches as well as gaps. Conversely,
BWA and Bowtie should be considered to explicate all combinations of potential
mismatches as well as gaps within the query sequence so that the modified query can
be precisely matched [9].
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14.3 Choice of Mapper

The sequencing platforms differ in terms of the reads generated per run and mean
length of the read [21]. For instance, the SOLiD & Illumina systems generate shorter
reads with higher throughput. The Roche/454 and PacBio systems produce longer
reads with lower throughput. The throughput and read length are the two key
specification estimates in the ads for HTS instruments, and the connection between
them is stressed. In ideal situations, we would prefer to execute long reads in massive
concentrations, but current technology allows for either long reads, which are short
in number, or short reads, which are high in number. Long reads are not necessarily
appropriate if the experiment cannot effectively sequence sufficient fragments. For
instance, CHiP-Seq only returns small size pieces of DNA (~100 nt), so to recognize
peaks of mapped read clusters, which reflect the binding sites, high throughput is
needed [21].

The length and the throughput of the sequencing system also have to be addressed
when evaluating the samples. In addition to the prejudices introduced through the
experiment at hand, unique biases by the laboratory design and sequencing proce-
dure must also be recognized. The three popular forms of error during NGS analysis
are insertions, deletions, and miscalling of bases within the read [22]. Each high-
throughput sequencer has a particular error profile, and this is due to the techniques
involved. However, the systems will measure the likelihood of errors while
interpreting the base sequences, which can be used in the FASTQ format. Illumina
sequencers have a very less indel error rate, but here substitution errors are the most
common form of error. For most sequencing platforms, errors escalate as the
duration of the reads grows [23, 24]. In reads generated from the Roche/454 FLX
Titanium, the frequency of indel errors is almost nearly ten times higher in compari-
son to substitution errors and errors that generate near the read end [25]. One method
for reducing the error rate is to eliminate the read end that has poor base qualities.
While this approach decreases the length of the read; it increases the sequence data
accuracy and decreases the number of mismatches required for mapping a read.
Compared with other technologies such as shotgun sequencing, PacBio reads dem-
onstrate a more stable distribution of error, as well as the most dominant errors, are
insertions [26, 27]. The Ion PGM system has a higher incidence of indel errors
compared to replacement, and the coverage dropped for AT-rich regions as well
[24]. It is observed that there is a trend among Illumina sequencing to have higher
coverage of GC-rich areas [28]. The experimental approach may also add variation
into a sequencing experiment, for instance, cross-linking within PAR-CLIP can
incorporate T to C translation within the reads. Other important factor is the ligated
adapters, which will be part of the reads if the length of the DNA fragment is longer
than that of the read length. The adapters must be discarded prior to mapping
completion, which may be problematic if the sequenced reads have been changed
by sequencing errors [21].

Thus, the selection of a mapping software depends on a lot of considerations
(Fig. 14.3 and Table 14.2), such as sequencing technologies, the volume of data to be
mapped, and the form of experiment. A big problem is that systems are developed
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for mapping partly long reads or entire genome sequences. Since the length of the
read is associated with the read number, fast read mappers must rely on speed instead
of precision in order to make the most of the query reads [21]. Common methods for
shorter reads (~200 nt) are Bowtie, BWA, and Novoalign [29]. In the last 10 years,
further mapping programs have been released to the public. One must be mindful
that there may be significant variations within the mapped reads, as well as the
mapping positions amongst programs. It is also suggestive of attempting numerous
programs with a given reads data. When analyzing lengthy readings, BWA-SW and
BLAT may be employed. BWA-MEM substituted BWA-SW [30]. Nevertheless,
BWA-MEM, BWA, and BWA-SW are all available through the same app kit.
Pacific Biosciences notes that they support the BLASRmapper program long read
produced via RS2 & RS instruments [27]. Few other probabilistic mapping were also
reported, where the quality scores of per base are being employed within a probabi-
listic model for measuring the likelihood of correctly mapping, e.g. in MAQ [31],
Stampy [32], and LAST [33].

Fig. 14.3 “An illustration of relationships between alignment methods. The applications/
corresponding computational restrictions shown are (green) short pairwise alignment/detailed edit
model; (yellow) database search/divergent homology detection; (red) whole genome alignment/
alignment of long sequences with structural rearrangements; and (blue) short read mapping/rapid
alignment of massive numbers of short sequences. Although solely illustrative, methods with more
similar data structures or algorithmic approaches are on closer branches. The BLASR method
combines data structures from short read alignment with optimization methods from whole genome
alignment.” (Adapted from [27])
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14.4 Conclusion and Future Perspective

In conclusion, we need reliable and fast aligners to manage the exponentially
growing amount of sequencing data. In this chapter, we discussed in detail about
the various algorithms for aligning short reads and long reads which achieve high
accuracy in both cases. The advancement of modern sequencing technologies
significantly increases the scale and precision of many biological applications,
including the scanning of genome-wide heterogeneity, the discovery of protein
binding sites, the quantification of the transcriptome, the detection of genome-
wide methylation sequence, and the assembly of new genome or transcriptome.
Given the stunning successes of NGS in genomics and post-genomics, three signifi-
cant obstacles that are faced via mapping or alignment algorithms and have hindered
the advancement of these technologies into full maturity are the computational
challenge, the operational challenge, and the cross-platform unification problem
[3]. The rising difference between the computing capacity of next-generation
sequencing and the tools available to interpret the data is a critical problem requiring
immediate attention. The method of aligning more and more reads against a broad
genomic sequence is very popular in today’s genomic studies. However, machines
that can accommodate the relentless computing demands are not cost-effective for
any person. Time control is an inevitable obstacle when doing NGS jobs. Therefore,
an incredibly accurate algorithm is needed to minimize computer costs.
Parallelization techniques, including BWT algorithm implemented via Bowtie,
BWA, and SOAP2, have been suggested and attempted to enable aligners to speed
up their execution time and reduce their machine memory requirement with uncom-
promising results precision [3].

Since NGS technologies are constantly evolving, developers of quick reads
mapping and assembly applications must keep up with the ever-changing cutting-
edge technologies involved. To hold up or even overtake Sanger sequencers in terms
of reading time, which is a very significant parameter that counts for detecting split
mapping signatures as well as de novo sequencing, NGS sequencing devices all aim
to generate longer readings [3]. This ensures that quick reads or next-generation
sequencers with larger genomes can be designed to be consistent with longer reads.
Furthermore, unknown data formats generated from the so-called next–next-genera-
tion sequencers, like Helicos HeliscopeTM & Pacific Biosciences SMRT, an enor-
mous mass of various experiments, and varied scale of study all call for more stable
and effective algorithms in automatically redressing parameters for particular
demands [3]. Another key difficulty faced by developers of NGS mappers and
assemblers arises from the specification’s inconformity in size of inserts across
mates, error profiles and “true match” benchmarks across different NGS platforms.
Different types of inserts, which are popular in variant NGS platforms, often provide
different effectiveness in detecting variations. Shorter insert sizes, contrasted with
long inserts (which give benefits in detecting larger incidents), improve the exposure
of smaller events [34–36]. Therefore, a mixture of several libraries of differing insert
sizes would be a reasonable option in potential studies [35, 37]. Additionally, since
various platforms generate reads of different error models and often isolate “real
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alignment” from several potential matches of their own criterions, authors are
sometimes disappointed as they investigate the data from many platforms. There-
fore, a standardized standard for deciding authentic matches should be defined, and
quality management of the data should be controlled [38]. In addition, considering
that “NGS users are always puzzled by a complicated maze of base calling, align-
ment, assembly, and analysis tools with often incomplete documentation and
providing no ideas on how to compare and validate the outputs, Paul Medvedev
and the team [34] recommended that new methods should combine the previous
approaches and possess different types of signatures to support an event”.
Challenges will constantly occur for further creation of NGS. Efforts need to be
given to mapping and assembly as well as downstream analysis, like metagenomics,
small RNA detection, and transcriptome analysis. New and still unexamined
considerations, as well as questions, will keep emerging, and thereby novel
programs must evolve to keep up with the pace of NGS and modifications in the
adoption of these techniques.
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DNA–Protein Interaction Analysis 15
Piyali Goswami

Abstract

DNA–protein interaction study has always been a topic of interest for scientists as
it is crucial for the cell to survive, differentiate, and divide. It helps the cell to
conduct different major activities like replication, transcription, translation, DNA
repair and recombination, and RNA processing. A lot of research has already
been conducted to understand how the DNA–protein interaction occurs inside the
cell. In this chapter, we discuss the major requirements for DNA–protein interac-
tion to occur, several detection methods for DNA–protein interaction, their
limitations, and advantages. This study will give a better understanding of the
vital biological processes occurring inside the cell to understand the process of
cell growth, development, and disease.
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Myt1 Myelin transcription factor
ST18 Suppressor of tumourigenicity protein18

15.1 Introduction

DNA and protein are both vital components of the cell. DNA contains all the genetic
information of the cell, which are transmitted from one cell to the other through
replication. DNA–protein interaction controls many crucial biological processes in
the cell apart from replication, such as transcription, translation, and DNA repair.
These DNA–protein interactions may be specific or non-specific in nature. There are
various factors which determine the specificity of the interaction like site specifica-
tion, recognition, affinity, and equilibrium selection [1].

Specific interactions involve the protein binding at specific DNA binding sites
known as DNA binding domains and motifs which are discussed later in this chapter.
This type of interaction is generally mediated by various transcription factors
through hydrogen bond, hydrophobic interaction, ionic interaction, and Van der
Waals force [2, 3]. The major groove of DNA is generally involved in the sequence-
specific binding of the protein as it provides a larger area to be accessed by the
DNA-binding proteins [4].

Non-specific interactions are carried out by histones and are not at all dependent
on the nucleotide sequence. Here, interactions occur through the functional groups
of the protein with the sugar-phosphate backbone of the DNA through ionic bonds.

DNA–protein interaction studies date back to the nineteenth century when the
scientists identified an interaction between the DNA and protein through micro-
scopic studies. Since then, a lot of research has been conducted to understand the
association of proteins with DNA and to identify the proteins involved in this
process, as it controls the structure and function of DNA.

15.2 DNA Binding Domains and Motifs

Domains are conserved sequences which can fold, evolve, and act independently
irrespective of the rest of the protein sequence, whereas motifs are super secondary
structures made up of sequentially arranged secondary structures [5, 6]. Motifs may
have distinct function or may be a part of the protein domain.

To conduct the protein–DNA interaction, the protein identifies “specific
segments” in the DNA as the binding region. The regions of the proteins responsible
for binding these “specific segments” are known as DNA binding domains. The
DNA binding domains must have at least one motif which has the ability to
recognize both single-stranded and double-stranded DNA. The DNA binding may
be either specific like transcriptional factors or non-specific like histones. The major
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motifs (Fig. 15.1) responsible for specific recognition of DNA sequence has been
discussed below:

15.2.1 Helix-Turn-Helix

Helix-turn-helix is a common DNA binding motif of both prokaryotes and
eukaryotes. It is about 20 amino acids in length with 2 alpha helices interconnected
by a short linker region of 3 amino acids. In majority of the cases, the second alpha
helix near the C-terminal region serves as the “recognition helix” which binds the
major groove of DNA through Van der Waals forces and hydrogen bonds. The other
helix near the N-terminal end helps to position and stabilize the interaction between
the recognition helix and the DNA. Helix-turn-helix can be classified into several
types depending upon their structure and spatial arrangement, namely di-helical,
tri-helical, tetra- helical, winged helix-turn-helix, and other modified helix-turn-helix
motifs. These types of motifs can be found in several regulatory proteins like Cro,
CAP, and λ repressor [7–9].

15.2.2 Helix-Loop-Helix

Helix-loop-helix are found in eukaryotic proteins ranging from yeast to humans. It is
about 50–60 amino acids in length, made up of 2 alpha helices interconnected by a
loop of amino acid variable in length. Generally, one helix is smaller than the other
which folds back to the larger one and forms a dimer due to the flexibility of the
interconnecting loop. These types of motifs are characteristic features of dimeric
transcription factors. They can form both homo- and heterodimers. The helix-loop-
helix motif was first identified by Murre et al., in two murine transcription factors
E12 and E47 [10]. The DNA-binding region comprises of about 13 highly basic

Fig. 15.1 (a) Helix-turn-helix, (b) helix-loop-helix, (c) zinc finger, (d) leucine zipper, and
(e) HMG-box
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amino acids. Proteins with this motif typically bind to the major groove of DNA at a
consensus hexanucleotide sequence known as the E box, CANNTG [11]. Proteins
with this motif can be divided into six major categories: A, B, C, D, E, and F
[12, 13]. Examples of proteins containing helix-loop-helix motifs are C-Myc,
N-Myc, MyoD, Myf5, AHR, and ARNT.

15.2.3 Zinc Finger

Zinc finger proteins are one of the oldest and most abundant proteins found in both
eukaryotes and prokaryotes. It was first identified in Xenopus laevis transcription
factor IIIA [14, 15]. Zinc fingers have small compact structure with about 30 amino
acids forming a ββα configuration [16]. The domain structure is stabilized by
coordination of one or more zinc ions, which is a characteristic feature of these
sort of proteins. There are about 30 types of zinc finger proteins classified by the
HUGO Gene Nomenclature Committee determined by the zinc finger structure of
the domain [17]. Cys2 His2 zinc finger proteins are the abundant forms in most
species. The zinc ion coordinates the two histidines on the alpha helix with the two
cystines on the β sheet. Zinc finger proteins bind to specific sites on the major groove
of the DNA with the help of residues on the alpha helix [18, 19]. Examples of
proteins containing zinc finger domains include Myelin transcription factor (Myt1),
MYST family histone acetyltransferases, and Suppressor of tumourigenicity pro-
tein18 (ST18).

15.2.4 Leucine Zipper

Leucine zipper are found in both eukaryotic and prokaryotic proteins, but is a
characteristic feature of the eukaryotes. It was first identified by Landschulz and
collaborators [20]. Leucine zippers are 60–80-amino acid-long motifs consisting of
2 alpha helices which dimerize with the help of leucine residues present at a periodic
interval of 7 residues in both the helices forming a coiled coil structure. The leucine
being hydrophobic in nature interacts via hydrophobic interaction. At the end of the
two alpha helices is the DNA binding region made up of basic residues like arginine
and lysine which interacts with the DNA in the major groove via ionic interaction.
The DNA binding region is a conserved region consisting of 16–25 basic amino
acids commonly referred to as basic leucine zipper (bZIP). The overall domain
structure gives the appearance of a Y-shaped zip which has been proved by many
biochemical studies [21–23]. Examples of proteins containing leucine zipper motif
include many transcription factors like Jun, Fos, GCN4, and HSF.
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15.2.5 HMG-Box

HMG-box or high mobility group box domain may be present as single or multiple
copies in HMG box factors or proteins which are responsible for DNA binding. They
are usually found in eukaryotes and bind to the minor groove of DNA of non-B type
DNA [24]. HMG-box proteins mediate either sequence-specific (transcription
factors) or sequence non-specific binding (chromatin-remodeling complexes)
[25]. HMG-box proteins with multiple domains generally bind non-specifically to
DNA and act as chromatin factors, whereas HMG-box with single domains gener-
ally act as transcription factors which bind specifically to DNA. HMG-box motif is
made up of three alpha helices connected by loops in an irregular fashion
[25]. Examples of proteins containing HMG-box motifs include lymphoid enhancer
binding factor 1 (LEF1), yeast transcription factors like Rox1, and Ixr1 [26, 27].

15.3 Detection Methods for Protein-DNA Interaction

There are several methods available for the detection of protein-DNA interaction.
The widely used methods are discussed below.

15.3.1 DNA Electrophoretic Mobility Shift Assay (EMSA)

DNA electrophoretic mobility shift assay or EMSA is a very sensitive technique to
analyze DNA–protein interaction. It is based on the principle that protein–DNA
complexes have lesser mobility than free nucleic acids when run on a polyacryl-
amide or agarose gel. It is also known as gel shift or gel retardation assay due to the
difference in migration pattern. The DNA oligonucleotides that are used for EMSA
are generally radiolabelled with 32P, which helps it to be detected by autoradiogra-
phy after electrophoresis. But the probe can also be fluorescent tagged or biotin
labelled for detection [28–30].

Advantages
• It is able to detect proteins directly from the crude lysate, which are present in

limited amount making the assay highly sensitive.
• It can be used to identify the binding site in the upstream regulatory region of the

gene by conducting mutations with the probe yielding a variety of configurations
of the probe and testing it with the same lysate.

Limitations
• Difficult to quantitate.
• Detection of proteins from complexes might be difficult owing to weak interac-

tion or rapid dissociation during electrophoresis.
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15.3.2 DNA Pull-Down Assay

In this method, the interacting protein is detected by using a DNA probe with an
affinity tag such as biotin. The DNA probe binds to the protein from the cell lysate
which is then purified using agarose or magnetic beads. The bound protein is
detected using either western blot or mass spectrometry [31]. Alternatively, the
protein can also be affinity tagged and can be used for detecting any DNA–protein
interaction with the protein-specific antibody. The unknown DNA sequence can be
deciphered using PCR or southern blotting.

Advantages
• Detection of scanty targets.
• Isolation of entire DNA–protein complex is possible.

Limitations
• Assay must be conducted in vitro.
• Long DNA probes may result in non-specific binding.

15.3.3 DNA Footprinting

DNA Footprinting, which is a modification of Maxem-Gilbert sequencing tech-
nique, is one of the oldest methods for the detection of DNA–protein interaction.
It was first developed by Galas and Schmitz [32]. It is based on the principle that
proteins bound to DNA protect the DNA from getting cleaved by enzymes.

The DNA fragment of interest is first PCR amplified with 32P 50 labelled primer
producing DNA fragments radiolabeled on one end. The DNA is mixed with DNA
binding protein and then subjected to cleavage by DNase and the fragments are
separated by running a PAGE. The gel is then visualized by autoradiography. A
comparative analysis is done by running both the samples with and without the DNA
binding protein. The sample without the protein should produce a uniform ladder of
bands, whereas the sample with the DNA binding protein should have gaps in
between the bands. These gaps indicate the DNA sequence where the protein is
bound [33].

Advantages
• Can identify DNA–protein interaction from crude lysates.

Limitations
• Protein titrations need to be done to fully saturate the DNA probe with DNAse

titrations also for proper cutting of DNA.
• Single nucleotide differences is difficult to be figured out by this assay.
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15.3.4 Chromatin Immunoprecipitation (CHIP) Assays

Chromatin Immunoprecipitation or the CHIP assays are currently one of the widely
used assays to identify DNA–protein interactions. It helps to identify the interactions
that takes place in the living cell. CHIP requires the prior knowledge of the target
protein and DNA sequence that is to be analyzed. The process involves first fixing
the cells with formaldehyde, which is a reversible crosslinker that helps to crosslink
the chromatin with the associated proteins. The cells are then lysed and the chroma-
tin is sheared using sonication or enzymatic cleavage. Immunoprecipitation is then
carried out with protein-specific antibody to precipitate the protein associated with
the chromatin. The crosslink is then reversed and the DNA can be analyzed using
various enrichment procedures like qPCR with primers flanking the gene of
interest [34].

Advantages
• In vivo interaction can be studied through CHIP without any modifications by

fixing the cell at the current instant.

Limitations
• Difficult to be performed on a large scale.
• Antibodies should be highly specific in nature.

15.3.5 Reporter Assay

Reporter assays also help to find out DNA–protein interactions in a living cell. It
gives a real-time in vivo read out of the translational activity of the promoter of
interest. Reporter genes are fusions of target promoter gene sequence and a reporter
gene DNA sequence. The reporter gene codes for enzymes like firefly luciferase or
alkaline phosphatase which catalyzes a substrate to produce either chemilumines-
cence or a colorimetric change. The enzyme is produced when the promoter is
activated or it is bound by a DNA binding protein. The colorimetry or chemilumi-
nescence gives an idea about the DNA–protein interaction [35, 36].

Advantages
• The assay can be performed in vivo.
• Mutational studies of promoter binding can be carried out with ease.
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Limitations
• Exogenous DNA is used for study.

15.3.6 Biophysical Assays

Biophysical methods like X-ray crystallography and NMR provide gainful insights
on DNA–protein interaction. X-ray studies help us to understand the DNA–protein
interaction at the atomic level. It identifies the amino acids required for the DNA–
protein interaction. The major drawback of X-ray crystallography is it is very hard to
crystallize the DNA–protein complex structure [37–39].

Advantages
• Interaction can be studied at the atomic level.

Limitations
• Proteins are very hard to crystallize.

15.4 Conclusion

DNA–protein interaction is very important for the cell to conduct day-to-day
activities. A small mistake in the recognition process can lead to huge disorders in
the cell resulting in several diseases. Though several studies have been conducted to
understand the DNA–protein interaction inside the cell, it only provides a vague idea
on how the DNA–protein interaction occurs, as every process has one or the other
limitation. This study has highlighted the limitations of the different assay methods
so that further studies can be conducted to help in better understanding the process in
the future.
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RNA–Protein Interaction Analysis 16
Sushil Kumar Rathore and Pallabi Pati

Abstract

RNA-binding proteins (RBPs) play very crucial role in various physiological and
biochemical functions of cells. It is a well-known fact that proteins are the key
component of cell through which various functions of cells are regulated as they
are receptors, adaptors, and enzymes. However, their activities are also regulated
by different types of RNA. There are different types of noncoding RNA in
addition to coding RNAs like mRNA, tRNA, and rRNA. The noncoding RNA
bind with protein in a very specific manner identifying specific sites, motifs, or its
structure. The interactions of RNAs with proteins are the main cause of various
biological functions of cells. In this chapter, various aspects of RNA–protein
interactions have been discussed, like structures of RBPs, types of RPI, functions
of RBP, and various approaches to understand RNA–protein interaction.
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FMRP Fragile X mental retardation protein
KH K-homology
LINE Long interspersed element
mRNA Messenger RNA
ncRNA Noncoding RNA
PUM-HD PUM-homology domains
RBP RNA-binding proteins
RNP Ribonucleoprotein
RPI RNA–protein interaction
RRM RNA recognition motif
snoRNA Small nucleolar RNA
snRNA Small nuclear RNA
XBP1 X-box-binding protein 1
YTH YT521-B homology
ZKD Zinc knuckle domain

16.1 Introduction

RNA molecules exhibit a wide range of form and function. RNAs have been
categorized based on their coding ability into two major groups: protein coding
messenger RNAs (mRNAs) and noncoding RNAs (ncRNA) [1]. To initiate protein
synthesis, mRNA molecules act as scaffolds for additional details. ncRNAs are
classified depending on the sequences, intracellular localizations, structures, and
functions, as follows: rRNAs and tRNAs, that are core elements of the translation
system; [2, 3] small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs)
are involved in splicing of RNA and its modification [4]. Further, developments in
deep sequencing have demonstrated that at least 80% of mammalian genomes
produce RNAs, and scores of new ncRNAs have been discovered in living
organisms that play undefined roles [5, 6]. However, the underlying mechanisms
of these roles have remained elusive. RNA-binding proteins (RBPs) play a signifi-
cant role in the RNA life cycle like its synthesis, function, and turnover. During all
three phases of the RNA life cycle, such roles are always accompanied by involve-
ment with RNA-binding proteins, including synthesis, function, and turnover
[7]. RBPs bind directly to RNA sequences and/or structures with its RNA-binding
domains in order to make decisions about RNA fate and function.

Interactions between proteins and RNA are the basis of various functions like
organization and protein complexes stabilization, mRNA processing and maturation
for trafficking and silencing and stabilization of matured mRNA. RBP could recog-
nize single-stranded RNA, double-stranded RNA, structural characteristics of folded
RNAs, or may not interact RNA explicitly unlike DNA binding proteins that usually
bind double-stranded DNA [8].
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RNA–protein interactions (RPI) regulates essential biological processes such as
DNA replication, transcription, tolerance to pathogens, viral replication, and gene
expression regulation at the posttranscriptional level. Recent high-throughput
research has indicated various cellular RNA-binding proteins and are recognizing
and characterizing pairs of proteins and RNAs that are involved in RPIs. However,
our knowledge regarding RNA-binding proteins is far less in comparison to regu-
latory DNA-binding proteins, like replication factors and transcription factors. Most
computational studies have dealt with the problem of predicting the positions amino
acid residues present in a protein that may bind to an RNA.

Till date, there are very limited studies that have focused on the issue of partner
prediction, i.e., characterization of specific RNA for an already known RNA-binding
protein or protein-binding partner(s) required for nontranslating RNAs. Although
many studies like as RIP-Chip, RNA compete, PAR-CLIP, and HITS-CLIP may
offer critical information on RNA–protein interaction, they are limited by their high
cost and labor-intensive nature. Computational techniques are thus required to
correctly predict RPIs and design networks of RNA–protein interaction. It would
be particularly helpful to establish sequence-based approaches that can be employed
to recognize potential RNA–protein partners without the need for any experimental
interactions, because there are only a small number of known RNA protein
complexes in the PDB [9].

16.2 About RNA-Binding Proteins: Structure, Diversity,
and Evolution

The majority of RBPs are proteins with a globular RNA-binding domain that binds
RNA, which modifies the fate or function of the bound RNA. Some assume that
unique and high-affinity RBPs are more likely to possess biological functions. This
popular conception of RBPs, though, assumes that they seek to modify the outcome
or functionality of RNA. The RBPs are identified as “the mRNA’s clothes.” This
makes sure that the 50 and 30 UTRs and the coding region are in separate states: one
time hidden, the next time exposed, enabling the mRNA to pass through different
life stages [7]. Ribonucleoprotein (RNP) complexes that are primarily involved in
gene expression consist of a traditional RNA-binding protein (RBP). For RBP
function, it utilizes well-defined RNA-binding domains such as the RNA recognition
motif (RRM), KH domain, or DEAD-box helicase domain. Additionally, complex
protein–RNA interactions can be found in various unconventional RBP types, such
as those that employ RNA-binding domains [7]. Four main RNA–protein
interactions have been proposed on the basis of fundamental features of RNAs like
structure, sequence, modification, and target engagement, as well as the recognition
mechanism of RBPs [10].
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16.2.1 RNA–Protein Interactions Based on RNA Motif

RNA motifs are short sequences which regulate the fate of RNA and cellular
processes. Interaction of RNA and proteins usually involves modular combination
of one or more RBD like RNA recognition motifs (RRMs), hnRNP K-homology
(KHs), PUM-homology domains (PUM-HD), and dead box proteins (DDXs). One
of the best examples including this principle is the RRM domains of RBFOX2 that
bind to a UGCAUG motif [11], while PUM2 take the help of PUM-HD to bind with
UGUANAUA [11, 12].

The discovery of an increasing number of RBP-binding motifs has also exposed
the intricacies of RNA–protein interaction that depends on RNA motifs. A single
RBP possess a variety of binding motifs as in the case of LIN28 where, N-terminal
cold shock domain (CSD) and the C-terminal zinc knuckle domain (ZKD) play a
part in the binding of two different RNA motifs, namely the ‘GGAG’ motif and the
‘(U) GAU’ motif [13]. In posttranscriptional regulations, LIN28 impedes the bio-
synthesis of let-7 miRNAs, regulating production and impacting various disease
states [13]. Also, the “insulin-like growth factor 2 mRNA-binding protein 1”
(IGF2BP1) is one of such RBPs that could bind several motifs. IGF2B P1 is more
complex protein than LIN28 as it contains four domains of hnRNPK homology
(KH) and two motifs for RNA recognition.

In addition to the number as well as sequence-specific RBP-binding motifs, RNA
motif-based RNA–protein interactions occur along with the motif’s flanking
sequences. RNA motifs are especially well-suited for RBP-specific interactions,
where RNA motif-dependent RNA–protein interactions often allow the use of
motif contexts and other RBP-specific interactions.

16.2.2 RNA–Protein Interactions Based on RNA Structure

Typically, RBPs bind to small sequences of single-stranded RNA, but some RBPs
perform their biological activities by interacting on the basis of their common
structural characteristics with groups of RNAs, including secondary and tertiary
structural characteristics [14]. RNA sequences could fold into various secondary
structures, including long stems with bulges or hairpins through base pairing. After
complementary base pairing, double-stranded RNA (dsRNA) can fold into various
structures such as hairpins and long stems with bulges, known as classic secondary
structures. dsRNA is essential in multiple biological functions, including transport of
mRNA, editing of RNA, innate immune response, and RNA interference [15]. The
detection and operation of RBPs are necessary for all of the process mentioned
above. “Double-stranded RBPs” (dsRBPs) are the proteins that bind to dsRNAs and
are characterized by the availability of minimum one “double-stranded RBD”
(dsRBD).

The ADAR family, which includes dsRBPs of various sizes, all of which possess
conserved modular domain organization carrying a catalytic domain at C-terminal,
possesses various dsRBD [16, 17]. Though they usually focus sequences with fewer
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interruptions and under certain sequence constraints, ADAR proteins search out and
process dsRNAs with any given sequence [18]. ADAR1/ADAR 2 bind to mRNA
and miRNA precursors to promote adenosine to inosine conversion [19, 20]. Mostly
conversion from adenosine to inosine occurs in noncoding sequences of mRNAs,
like 50 and 30 UTRs and retrotransposon elements of introns, such as long
interspersed elements (LINEs) and Alu elements. It is also important to point out
that multiple biological changes can be caused by A-to-I editing, which can include
the possibility to edit pre-mRNA splicing patterns, and thus create new isoforms [21]
Many editing sites are present in miRNAs where some of the sites influence
synthesis and function of miRNA [22].

dsRNAs and dsRBPs also mediate translation, mRNA, splicing, stability, and
degradation of mRNA. STAU1 is a dsRBP that is localized to the rough endoplasmic
reticulum. In order to analyze STAU1-bound RNA structures in human cells,
researchers used hiCLIP technology to look for structures formed by STAU1 within
these samples and found STAU1 to bind mainly to intramolecular RNA duplexes.
An RNA duplex that spans 858 nucleotides in the X-box-binding protein 1 (XBP1)
mRNA was discovered, which controls splicing and stability in cytoplasm
[23]. Depending on their particular three-dimensional tertiary structures, multiple
RNAs have important regulatory roles in diverse biological processes.

A helix internal loop helix motif is formed in the double-stranded region by the
Kink-turn (K-turn) RNA structure which consists of a three-base loop surrounded by
a noncanonical stem (NC-stem) and a canonical stem (C-stem) that starts with a
tandem base pair of GA/AG [24, 25]. There are various RNA structures that include
the K-turn motif, including box C/D snRNAs, snoRNAs, mRNAs, and rRNAs.
Some K-turn motifs are different, but they have the same three-dimensional distinc-
tive shape.

In addition to organized RBDs, there are amino acid sequences in proteins that are
not self-structural and need an external molecule to attain secondary structure. These
are termed intrinsically disordered regions (IDRs). IDRs may promote RNA–protein
interactions [26]. While certain structural characteristics support specific
interactions, the RGG/RG motifs of IDR bind RNA through weak multivalent
interaction. The fragile X mental retardation protein (FMRP) binds with the second-
ary structure of the G4 RNA by utilizing the RGG/RG motifs present in an IDR
[27]. The interplay of the G4 and FMRP IDR is important for the attachment of
several mRNAs and regulates translation control and alternative splicing
[28, 29]. Disordered sequences are observed in one-third of the RBPs, with many
of these have missing canonical RBDs [30] demonstrating the major role of IDRs in
the ability to bind RNA. The recent advancements of RNA structurome and RBDs
with respect to variety, dynamics, and expansion have indicated that various facets
of regulation in gene expression may be discovered from protein interactions with
RNA structure-dependent RNA.
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16.2.3 RNA–Protein Interactions Based on RNA Modification

There are approximately 160 RNA variations that have been discovered to date
[31]. A new layer of RNA stability and functional control is provided by the use of
nucleotide-base chemical modifications in RNA [32]. Researchers also discovered
several RNA mutations associated with human disease, such as cancer and neuro-
logical disorders [33]. RNA and protein interaction also occurs by posttranscrip-
tional modifications such as 5-methylcytosine (m5C) and N6-methyladenosine
(m6A). There have been further m6A and m5C studies suggesting that these
modifications are indispensable in various biological processes. M6A is the most
prevalent and reversible RNA modification, which is involved in a number of RNA
functions including mRNA polyadenylation, splicing, transport, translation, and
degradation. M6A modification is a complex process, and after cellular stress,
m6A levels go through a wide-ranging redistribution of the transcriptome. RNA–
protein interaction is mediated by m6A methylation of RNA. The newly altered
RNA following methylation of m6A, acts as a reactants for m6A-specific interactors,
including m6A readers and erasers. YTHDC1–2 and YTHDF1–3 are well known
m6A readers that include YT521-B homology (YTH) domain-containing proteins.
All of these m6A readers recognize m6A via a non-motif-specific process. Typically,
YTHDC2 and YTHDF1–3 are found in the cytoplasm. YTHDF1 is a cytoplasmic
protein containing two domains, a C-terminal YTH-binding domain and an
N-terminal domain that promotes recruitment of complex 3 (eIF3) translation initia-
tion factor, all of which enables cap-independent translation. The terminal
YTH-binding domain of YTHDF2 interacts with m6A mRNA and the CCR4-
NOT deadenylase complex is recruited by its N-terminal domain enhances the
deadenylation and degradation of mRNA modified at m6A.

Recent research indicates that m6A-modified mRNAs decay and translations are
facilitated by YTHDF3. The nuclear reader YTHDC1 recruits and suppresses a pre-
mRNA splicing factor called SRSF3. The nuclear reader YTHDC1 recruits the
pre-mRNA splicing factor SRSF3, which inhibits accessibility of SRSF10 to
m6A-altered mRNAs. This subsequently enables inclusion of exon in specific
mRNAs and governs slicing of mRNA. YTHDC1 also communicates with SR
SF3, CPSF6, and SRSF7 in the oocyte nucleus to regulate pre-mRNAs and affect
fetal growth. M6A modification created on chromatin-associated RNAs are
mediated by METTL3 and recognized by YTHDC1, facilitating degradation of
these m6A-modified RNAs [10].

16.2.4 RNA Guide-Bas Ed RNA–Protein Interactions

There are various kinds of small noncoding RNAs, including snRNAs, piRNAs
miRNAs, snoRNAs, crRNAs, and other ncRNAs, that help facilitate protein–RNA
interactions. In addition to regulating diverse life processes, this mode of RNA–
protein interaction helps to control disease growth. However, despite there being
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some continuity in these interactions, there is notable variation in the structures and
roles that various ncRNAs use.

16.2.4.1 Role of miRNA in RNA–Protein Interaction
miRNAs are one of the small noncoding RNA molecules found in plants, animals,
and viruses [34, 35]. Drosha, DGC R8, Dicer, and TRBP are some of the dsRBPs
used in the biogenesis of miRNAs [34]. miRNA is inserted into the RISC and binds
to the core sequences of the target mRNAs, thus inducing translational repression
[36]. siRNAs are made in a way close to that of miRNAs [37]. Dicer cut the DsRNAs
or hairpin RNAs into small fragments [38]. At this stage, the guide strand is
anchored to AGO2 and other proteins, and RISC is synthesized, which takes
mRNA substrates that have a complementary sequence and starts to degrade
them [39].

Genes are regulated by miRNAs by base-pairing with mRNAs while preserving
complementarity to the seed region of miRNA (2–8 nucleotides) [40, 41]. Two kinds
of miRNA–mRNA interactions can be found: canonical and atypical.

miRNAs make base pairs fully with target mRNA during both atypical and
canonical matching even if the seed region is located at the 50 end of miRNA. The
mRNA repression is different for these matching process. In one case, endonucleo-
lytic cleavage is activated by key constituents of RISC-AGO2 when miRNAs have a
significant complementary matching with the coding sequence or UTR of mRNA
targets. While in other cases, proteins directed by miRNA can cause translation
inhibition or deadenylation of mRNA, if mismatches between miRNAs and their
targets are observed [42, 43].

16.2.4.2 RNA–Protein Interactions Guided by piRNA
A new category of small noncoding RNAs known as piRNAs has been discovered in
the male gametes of animals [44]. piRNAs are 30 nucleotides long (26–31
nucleotides). Murine PIWI (MIWI), which includes Aub, AGO3, and piwi [45],
are also linked with PiRNAs of the PIWI subfamily, and piRNA guides the PIWI
proteins to play a critical role in the silencement of transcriptional and posttranscrip-
tional transposons and to defend themselves against the regeneration of viral stem
cells [45]. Almost every species relies on this mechanism to prevent transposons
from being expressed in their genome of gametes. Additionally, piRNA-directed
nuclear PIWI proteins associate with nascent transposon transcripts to produce
heterochromatin by DNA or histone methylation, ultimately leading to transcrip-
tional silencing [46, 47]. Mosquitoes mount an antiviral response based on piRNA
whenever they are infected with positive sense ssRNA virus. Piwi5 and Ago3 are
precursors of piRNAs, and the heterotypical ping pong system synthesizes piRNAs.
Thus, as the number of piRNAs increases, RNA virus replication is suppressed,
achieving the antiviral response target [48]. The entire process is supervised by
piRNA. Additionally, piRNAs participate in the metabolic activities of PIWI and
facilitate its degradation [49]. Recently published research indicates that piRNAs
obtained from transposons and pseudogenes can degrade specific mRNAs as well as
lncRNAs through interaction with PIWIL1L [50]. In addition, degradome
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sequencing [50] also provides a systematic method of analyzing RNA degradation
patterns mediated by piRNA and has significantly expanded insight into the interac-
tion of universal piRNA-guided RNA–protein.

16.2.4.3 RNA–Protein Interactions Based on SnoRNA Guide
SnoRNAs are a group of highly expressed ncRNAs present in archaeans and
eukaryotes, mainly located inside nucleolus. They are derived from pre-mRNA
introns having a size of 60–300 nt. SnoRNAs can be classified as box H/ACA or
box C/D snoRNAs based on their conserved sequence. The motifs of box C
(RUGAUGA) and D (CUGA) are combined with less conserved box C and box D
motifs to form a stem-internal loop-stem structure. The folding of the box H/ACA
snoRNAs results in a distinctive hairpin-hinge-hairpin-tail arrangement, with box H
(ANANNA) situated amongst the two hairpins and ACA motifs near the 30 end. A
subclass of snoRNA named Cajal body-specific RNAs (scaRNAs) have been found
extensively in Cajal bodies where both C/D box and a H/ACA box domain are
present. snoRNA performs various types of functions which include guidance of
chemical modification in rRNAs and snRNAs in sequence-specific manner. Box
C/D snoRNAs mediate 20-O-methylation inside SNORD-ribonucleoprotein (RNP)
complexes, 20-O-methylation in ribose present in snRNA, and rRNA is capable of
affecting its production and function, which could have an effect in cellular pro-
cesses and diseases [10].

SNORA-RNP complexes are created by a combination of box H/ACA snoRNA
with DKC1, NHP2, GAR1, and NOP10 that catalyse the conversion of uridine to
pseudouridine located at 15 nt upstream of boxH/ACA. Box H/ACA snoRNAs
instruct rSNORA-RNPs to modify uridine residues on snRNAs necessary for
RNA splicing as well as uridine residues on rRNAs. Apart from directing RNA
modification, SnoRNA has been used to facilitate pre-rRNA and pre-mRNA alter-
native splicing processing [10].

16.2.4.4 Spliceosome Assembly and Function Using snRNA Guides
The spliceosome is constructed stepwise from components such as pre-mRNAs,
proteins, and snRNAs. Specifically, snRNAs act as guides, leading each snRNP to
its final destination. There are five distinct types of RNA–protein interactions relying
on snRNA guide, as per the type of snRNA involved in RNA splicing: U1 snRNP::
50-splicing site (50SS) interacting ions, U2 snRNP:: branch point sequence (BPS)
interactions, At the 50 and 30 splice sites, U6 snRNP:: 50SS interactions, U6 snRNP::
U2 snRNP interactions, and U5 snRNP:: exonsequence interactions [10]. U1
snRNP, the first snRNP to bind to precursors of splicing, identifies mRNA
precursors with high specificity through base pairing between 50SS and U1
snRNA bases 3–10. In eukaryotes, the interaction of pre-mRNAs and snRNPs led
by U1 is extremely conserved and necessary for splicing. Recent studies, however,
have identified U1 as a unique mutated gene in chronic lymphocytic leukemia,
hepatocellular carcinoma (HCC), and hedgehog medulloblastoma. The first base of
the U1 50SS recognition sequence contains significant mutations A> G and A> C,
implying the splicing patterns of different cancer pathways [10]. After recognition
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by U1 snRNP, U2 snRNP binds to the BPS of a pre-mRNA through a base-pairing
interaction between the U2 snRNA and BPS. The tri-snRNP U4/U 6.U5 then
participates in spliceosome assembly and the substitution of U1 snRNPs. Finally,
the U6 snRNP interacts via base pairing with the 50 end of the intron and the U6
snRNA. Additionally, the U5 snRNA binds to the exon sequence at the 50 and 30

splice sites and is involved in trans-esterification reactions [10].

16.2.4.5 RNA Targeting by the Clustered Regularly Interspaced Short
Palindromic Repeat (CRISPR)-Cas System Based on RNA

CRISPRs are bacteria and archaea-specific repetitive sequences that play a crucial
role in prokaryotes’ RNA-based adaptive immune systems. They were first used in
research on DNA and genome editing. System of CRISPR/Cas9 and novel CRISPR/
Cas have been developed to achieve accurate RNA targeting, restriction, monitoring,
and editing in mammalian cells. As in case of CRISPR/SpyCas9 (Streptococcus
pyogenes Cas9), specially engineered PAMmers can be used to direct Cas9 to
selectively bind or cut RNA targets while avoiding matching sequences of DNA.
Additionally, the integration of PAMmers and deactivated Cas9 (dCas9) allows
monitoring of RNA in living cells without the use of genetically programmed tags,
avoiding the use of microsatellite repeat RNA expansion sequences. Besides
SpyCas9, some Cas9 homologs derived from other bacterial organisms, such as
SauCas9, NmeCas9, and CjCas9, are capable of attaching and breaking intracellular
RNA in a PAM-independent manner. Cas3a, Cas13b, and CasRx, all Class 2 type VI
CRISPR-Cas effectors, are customizable singular RNA-targeting RNases directed
by RNA.

Cas13a has been engineered to target and monitor endogenous RNAs in plant and
mammalian cells. When compared to RNA interference, the CasRx ribonuclease
effector derived from Ruminococcus flavefaciens XPD3002 exhibits high specificity
and efficiency against a wide variety of endogenous transcripts. Its inactive type
(d CasRx) can be used to modulate alternative splicing and relieve dysregulated tau
isoform ratios in a neuronal model of frontotemporal dementia. REPAIR and
RESCUE, both based on Cas13b, were also developed and used to modify RNA
from A to I and C to U. CRISPR/Cas inspired RNA targeting system (CIRTS) is a
new RNA engineering toolkit that was recently developed by researchers. It is
composed of a tri-domain protein with a single-strand RNA-binding domain, a
hairpin RNA-binding domain, and an effector domain, as well as a designed
gRNA with a hairpin and a single strand. The discovery of the CRISPR-gRNA
system provided new insights into ncR NA-mediated RNA–protein interactions.
Along with protein engineering, the CRISPR-gRNA system has enormous potential
for research and gene editing, especially for gene therapy [10].
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16.3 Functional Roles of RBPs

16.3.1 mRNA Localization

Genes can be regulated by localization of mRNA to various subcellular locations
[51, 52]. The efficiency and temporal resolution of protein synthesis is enhanced by
mRNA trafficking, triggered by cellular signals. Additionally, it facilitates the
synthesis of protein complexes by increasing the localized concentration of
particular mRNA.

Localization of mRNAs involves three different mechanisms [53, 54]:
(1) mRNA-directed transport, (2) local selective stabilization, and (3) local trapping.
Different RBPs are required to recognize separate localized signals in the mRNAs.
Signals of localization for active and direct transport usually seem as synergistic
clustered secondary structure repeats [55–57], whereas some similar signals seem to
be available in the primary sequence [58, 59]. Various localizing RBPs interact with
the UTRs of localized mRNA separately with low specificity and affinity [60]. Mul-
tiple RBPs interacting cooperatively is considered important [61]. The effect of
RBP-mediated defense on a single cellular position results in selective stabilization.

The well-studied example is Hsp83, whose deadenylation and degradation in
Drosophila is controlled by the 30 untranslated regions (30 UTRs)-bound Smaug RBP
with the exception of the posterior pole, where it localizes embryos. Diffusion and
local trapping are used by the third mechanism. However, due to its moderate
efficiency to limit mRNAs spatially, selective stabilization normally occurs, similar
to the localization of Nanos mRNA at the posterior pole in Drosophila embryos [62].

16.3.2 Translation of mRNA

Regulation of translation can take place by changes to the translational machinery, or
it can specifically target specific mRNAs. RBP-based modulation, an intriguing
regulatory mechanism, enables mRNA-specific control of the basic translational
machinery [63]. For example, mRNA-specific RBPs can obstruct the interaction
between the mRNA and the ribosome 43S complex by physical blockage in a
cap-dependent pathway [64] or arrest by 43S scanning in a cap-independent path-
way, as observed in Drosophila msl-2 mRNA by SXL [65–67]. On the other hand,
specific mRNAs are suppressed by global eIF4E structural adaptors, as seen in the
case of Bruno and Smaug RBPs, which promote the blockage of Cup and Maskin
eIF4E adaptors on nanos, oskar, and poly (A)-tailed mRNAs [68–70]. RBPs can also
regulate translation at a later phase of initiation steps, by prohibiting the linking of
ribosomal subunits [71], or after initiation stages, as demonstrated by the hnRNP E1
RBP, which inhibits ribosomal subunits [71] Dab2 and ILEI at the extension phase
by attaching to the 30 UTR [72, 73].

A group of RBPs recognize aberrant mRNAs as opposed to normal mRNAs in the
translation-dependent quality control process, which is coupled with a degradation
mechanism to turn on the translation machinery. Cytoplasmic polyadenylation [74]
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is another effective mechanism for regulating translation. RBPs are thought to serve
as “place-markers” in the assembly of catalytic complexes on the poly (A) dynamic
combinatorial code in several models.

16.3.2.1 Degradation of mRNA
In addition to RNA maturation, several different degradation mechanisms, RNA
maturation, and regulated mRNA turnover are all involved in quality surveillance.
RBP protects nuclear RNA quality by exporting and degrading abnormal RNA in the
cytoplasm or adenylation through nuclear TRAMP and exosome-mediated 30-50

decay [75, 76].
Surveillance of cytoplasm is either achieved by “nonsense-mediated decay”

(NMD) when aberrant stop codons are found or by “ribosome extension-mediated
decay” (REMD) when translation extends beyond the stop codons. NMD, for
example, includes the “exon-junction complex” (EJC), “poly-A binding protein 1”
(PABPC1), and HRP1 to identify regulatory sites in mRNA decay substrates. RBPs
may also function as adaptors, as evidenced by Upf1, which is involved in the
development of the SURF complex and subsequent association with EJC [77]. Addi-
tional RBPs, such as Pub1 [78], the “APOBEC1–ACF editing complex” [79], and
several 30 UTR helicases or chaperones [80] provide selective control of decay
performance. REMD decay recognizes the role of 30 UTRs by designating the
correct space between the terminating codon and the polyadenylation region
[80]. Some key factors in quality surveillance mechanisms are frequently used in
conditionally regulated degradation pathways that depend on mRNA-specific RBPs
such as Staufen1 [81] and SLBP [82].

16.3.2.2 Editing of mRNA
RNA editing that occurs posttranscriptionally involves covalently altering RNA
sequences by inserting adenosines or cytidines into uridines or inosines, respectively
(C-to-U editing). Adenosines that readily localize to the double-stranded portion of
viral RNAs, cellular pre-mRNAs, and noncoding RNAs are affected by adenosine-
to-inosine (A-to-I) editing. Adenosine deaminase enzymes acting on the RNA
(ADAR) family catalyze A-to-I editing. dsRNA-binding motifs (dsRBMs) are
located in amino(N)-terminal ADAR regions, while ADAR portions of carboxy-
terminal have a conserved domain with catalytic activity. ADARs can act on any
double-stranded RNA sequence, but they prefer nucleotides that are close together.
The 50 nearest neighbor is the most powerful to bring about editing of adenosine in
both ADAR1 and ADAR2. Since the catalytic domain is primarily responsible for
nearest neighbor preferences, dsRBM helps human hADAR2 discern adenosines
with a 30 G. Also, the nucleotides outside of the nearest neighbor have an effect on
ADAR preferences. Various factors like length of the dsRNA and presence of loops,
bulges, and mismatches determine the number of adenosines to be edited [8].

Adenosine-to-inosine conversion has been suggested to take part in a number of
processes, including regulation of neuronal signaling, formation of higher brain
function, RNAi activity shaping, and regulation of microRNA synthetic pathway.
Cytidine editing to uridine is carried out by the enzyme family of AID–APOBEC.
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Following the discovery of cytidine editing to uridine in mRNA of apoB, detailed
investigations into the possible target sites of APOBEC1 revealed that such editings
are mostly restricted to 30 UTRs. The proof of localization for editing sites at 30

UTRs is a presence of cytidine surrounded on either side by uridine or adenosine and
accompanied by a properly separated sequence motif (WCWN2-
4WRAUYANUAU). Nonetheless, the consensus sequences of these motifs were
not a target site when available in translating sequences, except ApoB. Editing of 30

UTRs which is-mediated by ‘APOBEC1’ can affect posttranscriptional processes
such as stability of transcripts, polyadenylation, subcellular localization, and trans-
lational output. The passing on of information of nucleotide sequence from DNA to
RNA is a crucial operation, as shown by adenosine-to-inosine and cytidine-to-
uridine editing. Along these lines, one study paper reported an unusual degree of
changes in bases from DNA to RNA that cannot be explained by classical editing,
and the reason behind the mechanisms are unknown [8].

16.3.2.3 Stability of a Specific mRNA Species
RBPs that interact with “adenine/uridine-rich elements” (AREs) are preferentially
located within 30 UTRs of mRNA, including TTP, AUF1, and Hu family members.
The stability of a particular mRNA is determined by the interaction of many RBPs
that both stabilize and destabilize it. The effect of RBP binding to be cooperative or
antagonistic is affected by the spatial interaction and variance in affinity within the
UTR between their regulatory sites. The effect of RBP binding is also influenced by
the comparative quantity of such RBPs in the cellular condition and its confinement
where the binding takes place. Furthermore, microRNAs and RBPs can also join
together and their structural stability can be affected by RBPs and microRNAs [8].

16.3.2.4 Role in Diseases
Due to the fact that RBPs are engaged in almost all aspect of RNA metabolism, any
mutation or disturbance of RBP function can result in a number of diseases. In
cancer, overexpression of RBP or genetic variation can lead to inaccurate or exten-
sive RNA binding at different phases of RNA metabolism, which can have a
significant impact on cancer cells. During the development of the nervous system,
gene expression is subject to strict dynamical regulation. RBPs involved in normal
neuron growth and functioning were identified by Deschenes-Furry and colleagues.
Lukon et al. have identified that many illnesses are caused by inhibition of function
or overactivity of RBP. CGG triplet expansion on FMR1’s 50 UTR is linked to
Fragile X syndrome, resulting in FMR1 function loss required for normal neuronal
development. In autoimmune disorders like paraneoplastic neurologic syndromes
(PNSs), RBPs like Nova proteins and Hu family are targeted by autoantibodies
causing loss of function in RBP. The neuronal-specific Nova protein family mediates
alternative splicing of their target pre-mRNAs present in the regions of CNS like the
hindbrain and ventral spinal cord.

Numerous trinucleotide disorders are caused by defective RBPs. “Myotonic
dystrophy type 1” (DM1) has several repetitions in the 30 UTR region of the
DMPK gene, whereas myotonic dystrophy type 2 (DM2) has significantly longer
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repetitions of the tetra-nucleotide CCTG, resulting in toxic mutant RNAs. A GCG
repeat extension in the PABPN1 exon gene results in the development of a PABPN1
variant in oculo-pharyngeal muscular dystrophy (OPMD), a degenerative disease
which starts during adulthood. After that, the mutant gene induces the continuation
of its poly (A) tails to the size of a nascent mRNA. Transcripts with a lengthy poly
(A) tail accumulate in the nuclei of skeletal muscle, resulting in the development of
muscular dystrophy. ASF/SF2 and eIF4E are two additional cancer-related RBPs
that have been studied. EIF4E is a particularly overexpressed oncogene in breast
cancer that is correlated with a poor prognosis. Various cancers also overexpress
ASF/SF2. ASF/SF2 overexpression has the potential to alter the splicing of impor-
tant cell cycle regulators and tumor suppressor genes, making it an attractive target
for cancer therapy. Mutations in the consumer regions of RNA operators, the master
regulators of co-expressed genes, may result in the loss of one or more mRNA
targets. Two SNPs in the FGF20 gene’s 30 UTR region have been linked to
Parkinson’s disease. Similarly, RBP function may be lost as a result of SNPs on
mRNAs in miRNA genes or their target sites [8].

16.4 Investigative Methods for Interactions of RBP–RNA

This section describes the conceptual structure for experiments designed to classify
RNA species bound by RBPs or, alternatively, subsets of RBPs bound to particular
RNAs. This section is divided into four. In the first chapter, in vitro methods for
studying protein–RNA interactions are discussed, as well as the basic concepts of
these experimental protocols. In addition, newly developed techniques that comple-
ment in vivo approaches will be considered. The second section shows how to
examine large in vivo transcriptomes, and the third section offers a few examples
of structural approaches for studying protein–RNA interactions.

16.4.1 In Vitro Identification of RNA–Protein Interactions

In vitro methodologies usually use one of the two approaches to understanding
interactions between RNA and RBP. An established RBP can be used as a starting
point for identifying RNAs that interact with it. Traditional “electrophoretic mobility
shift assays” (EMSA) or supershift assays are frequently used to illustrate that
protein incubation in the presence or absence of an antibody specific for RBP
disrupts RNA movement in PAGE. The second strategy entails finding any RBPs
that are bound to the target RNA. To attach an antisense oligonucleotide to a matrix,
affinity chromatography can be used. The oligonucleotide attaches to any RBPs or
related proteins after the cell lysate flows through the matrix. One of in vitro
methodologies’ flaws is their inability to differentiate between physiologically
important and nonphysiologically important interactions. Interactions between
RNA and RBP must be measured in vivo in order to understand their biological
significance [8].
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16.4.1.1 Systematic Evolution of Ligands by Exponential Enrichment
(SELEX)

SELEX had aided in our knowledge of the molecular mechanism by which proteins
interact with RNA. To execute in vitro selection, a DNA pool containing a random
and mutant sequence segment surrounded on both ends by a conserved sequence and
maybe a promoter of T7 RNA polymerase is being chemically synthesized. Follow-
ing many PCR cycles, the DNA is amplified and then in vitro transcribed to generate
the RNA pool. According to their capacity to bind to a protein, RNAs are classified
as binders or nonbinders. The RNAs are obtained, reverse transcribed, amplified by
PCR, and transcribed again. With each round of filtering, the ratio of high- to
low-affinity sequences increases until the pool is populated by the RNA species
with highest-affinity. It is possible to detect sequences with a wide range of affinities
when the sequence pool is at an intermediate stage of selection. Each sequence’s
relative concentration is proportional to its affinity, with a lower concentration
suggesting a greater affinity [83].

16.4.1.2 RNA Compete
The RNA compete technique is used to determine the binding specificity of RBPs.
This approach is based on an RNA library that contains all potential 8-base
sequences identified a minimum of 12 times in unorganized RNAs, as well as all
possible 6- and 7-nucleotide loop sequences (and about 60% of 8-base loops) within
RNA hairpins of RNA with special 10-base pair stems. These sequences are utilized
to generate ssDNA using a microarray, which is subsequently converted to dsDNA
and amplified by polymerase chain reaction. Ultimately, an in vitro transcription step
is used to create the ssRNA library from dsDNA. Thus, after the generation of the
RNA library, a single drive of RNA target sequences employing a tagged RBP of
interest is conducted. Then, RNA sequences selected by RBP are tagged and
hybridized to a microarray of the same form as the RNA library. The richness of
the specified RNAs from the start library is determined using computational analysis.

RNA compete provides a detailed estimation of RBP-binding tendencies to small
RNAs spanning the entire k-mer range in both structured and nonstructured confor-
mation. RNA can be employed to validate and assess in vivo approaches to under-
stand protein–RNA interactions. Furthermore, positional weight matrices (PWMs)
and consensus motifs are supported. In a broad sense, RNA compete includes the
following three steps:: (1) the construction of an RNA pool from a collection of RNA
sequences and structures; (2) a single pull-down of RNAs associated with a labeled
RBP of interest; and (3) hybridization of the microarray and computational analysis
of the proportional enrichment of the bound percentage with respect to the initial
pool of RNAs [84].

16.4.2 In Vivo Identification of Protein–RNA Interactions

In vivo protein–RNA interaction methods may be used to characterize either the
RBPs that bind to specific RNAs or the RNAs that bind to specific RBPs to and
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complement each other with a previously identified RBP. In the following segment,
we will go through these two distinct but complementary approaches.

16.4.2.1 RIP-Chip
In this technique, immunoprecipitation is used to assay RNA–protein binding
in vivo. The RIP-Chip employs antibodies to bind unique RBPs and enrich RNA
fragments bound to these RBPs. When hybridized to a microarray, the associated
RNA fragments are classified, allowing for genome-wide analysis of RNA–protein
interactions. The RIP Chip has some drawbacks, including the likelihood of
co-immunoprecipitation of additional RBPs alongside the RBP of interest. Further-
more, RBP–RNA associations sometimes fail to accurately reflect in vivo
associations due to RBP and RNA re-association after cell lysis. Furthermore,
RBP binding sites could not be identified within the specified RNA fragments
with this technique. Hence motif analysis is also required to ascertain RNA binding
preferences [85].

16.4.2.2 Cross-Linking and Immunoprecipitation (CLIP) and HITS-CLIP
Ultraviolet (UV) radiation CLIP enables the stringent in vivo purification of both
RBPs and small RNA fragments that could be used for amplification and sequenc-
ing. UV-induced crosslinking of RBPs and RNAs is performed in vivo prior to
protein purification in order to boost the performance of conventional immunopre-
cipitation methods. For example, photocrosslinking inhibits in vitro RNA–protein
reassociation and co-immunoprecipitation. UV cross-linking helps in easy purifica-
tion of protein complexes ensuring more stringent purification schemes to be
employed. This results in high pure protein–RNA complexes and binding sites are
identified by incomplete proteinase K digestion. In some cases, the reverse transcrip-
tase (RT) that is used to prepare samples was shown to effectively transcribe via
cross-linked regions. Cross-linked sites with reverse transcription errors may be used
to precisely localize protein–RNA interface (such as by the iCLIP method).

“High-throughput Sequencing CLIP” (HITS-CLIP) is a technique that blends
regular CLIP with HITS-CLIP. CLIP-based quantification of high-throughput
sequencing of DNA (HTS/NGS) enhances the sensitivity, and RBP binding sites
have a spatial resolution. CLIP suffers from HTS technique limitations, including
high error rates in sequencing, uneven CLIP tag alignments, and also the description
of acceptable context CLIP tag distributions for evaluating the statistical significance
of RBP binding sites. Additionally, variations in CLIP analysis procedures might
affect the RBP’s assumed specificity. Some RNAases are employed to degrade
unbound RNA, unattached RNA exhibit sequence selectivity, which may have an
effect on CLIP-tagged RBP-binding sites [86]. Additionally, although the CLIP
cross-linking protocol is more sensitive, it may have a lower specificity [87].

16.4.2.3 Photo-Activatable Ribonucleoside-Enhanced Cross-Linking
and Immunoprecipitation (PAR-CLIP)

The PAR-CLIP method is a variation of the cross-linking and immune precipitation
technique in which photo-activated nucleosides are applied to the medium, followed
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by cell absorption and protein–RNA crosslinking. This improvement has a number
of advantages over conventional CLIP. To begin, PAR-CLIP recovers 100–1000
times more cross-linked RNA when intensities of radiation are equivalent. The
second advantage is that UV radiation induces T-to-C mutations, which are typical
in cross-linked nucleoside analog-containing sites. PAR-CLIP leverages mutation
analysis to enhance the detection of RBP attachment site locations or footprints [8].

16.4.2.4 Individual-Nucleotide Resolution Ultraviolet Cross-Linking
and Immunoprecipitation (iCLIP)

Although all other CLIP techniques operate in the same way, iCLIP is a version that
focuses on the RNA–protein interaction detection during sample preparation and the
formation of crosslinking sites. iCLIP accomplishes this by taking advantage of
reverse transcription’s natural tendency to terminate before cross-bound nucleotides
owing to the remaining amino acids. After circularization and linearization, the
circularized and linearized cDNAs are PCR-amplified and then HTS-analyzed.
The location may be used in place of the adaptor sequence utilized in the circularized
PCR amplification to identify the RBP-binding site [8].

16.4.2.5 Finding the Proteins Bound to RNAs
Although studying protein components of RNA protein complexes in vivo can be
challenging, some strategies have been developed. This problem is addressed by
integrating and improving magnetic bead-based assays and crosslinking of protein-
nucleic acid induced by UV radiation, as well as improving the PNA-assisted RBP
identification method. The use of PNA oligonucleotides linked to peptides and
peptide-PNA-linked oligonucleotides that can bind RNAs with greater specificity
and selectivity than complementary RNA or DNA, as well as targeting of
oligonucleotides to living cells efficiently, are among the method’s unique features.
PNAs hybridize with their RNA cognates once within the cell, and UV light is used
to crosslink the targeted RNAs. After magnetic beads have been used to separate the
RBP–PNA complexes, they are combined with an antisense PNA oligo and
characterized using mass spectrometry techniques. Many protein–RNA complexes
discovered by protein capture methods are severely misidentified, according to
researchers. In contrast, quantitative mass spectrometry [88] aids in the differentia-
tion of proteins particularly bound to the RNA of choice from other compounds with
similar binding affinity.

16.4.2.6 Protein–RNA Interactions: Structural Analysis
CLAMP (crosslinking and mapping the protein domain) allows the mapping of
RNA-binding domains that are cross-linked to unique nucleotides in the RNA within
RBPs. This method is particularly useful when dealing with RNA-binding domains
and protein–RNA interactions. The chromophore must be inserted into the site,
photochemical protein–RNA crosslinking must be added, and a site-specific chemi-
cal protein cleavage is required for CLAMP to function.
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16.4.2.7 Online Resources for Experimental Protein–RNA Interactions
Only a few resources were utilized to record the data provided by the given
technologies about protein–RNA interactions. The RNA-binding protein database
can be found at http://rbpdb.com, while the CLIPZ database can be found at http://
www.clipz.unibas.ch [89]. RBPDB might be a good place to start if someone wants
to learn more about manually collected RNA-binding interactions and/or regions for
a particular RNA-binding protein The RBPDB contains experimental associations
identified in vitro (e.g., RNA compete) or in vivo (e.g., RIP-Chip, CLIP) (human,
mouse, fly and worm). RBPDB extends the capabilities of searching for motifs in an
input RNA sequence by adding the ability to retrieve probable binding sites
annotated by PWM ratings CLIPZ, in comparison to RBPDB, seems to be a more
structured database of RNA-binding sites developed by the HITS–CLIP approach
that enables display and study of the data collected using this approach. Using motif
enrichment review, RBP binding sequence motifs can be predicted. The statistical
significance of putative binding site motifs is also restored. Other methods are also
capable of assessing spatial relationships between RBPs.

http://pridb.gdcb.astate.edu/index.php is a database including interactions
between proteins and RNA. The Protein Data Bank (PDB) has a database of
complex-derived protein–RNA interactions. It makes it easier to find and visualiza-
tion of covalently linked amino acids and ribonucleotides in the primary sequences
of the proteins and RNA chains involved. PRIDB uses both a distance-based
criterion and the ENTANGLE algorithm to characterize interfaces [90]. Additionally,
PRIDB searches for ProSite [91] and FR3D [92] motifs, respectively.

The Atlas of UTR Regulatory Behavior (AURA) is a manually compiled Catalog
of Human UTRs and UTR Regulatory Annotations that can be found at http://aura.
science.unit.it (AURA). A simple, interactive online interface gives complete access
to a vast amount of data on UTRs, including information on phylogenetic preserva-
tion, RNA sequence and structure data, single nucleotide variation, gene expression,
and functional descriptions of genes. It has also taken into account interactions
between RBPs and miRs that have been experimentally determined to be nonredun-
dant, as well as their effects on human UTRs [93].

16.5 Computational Inference of RBP-Binding Sites

There are a variety of analytical methods for identifying RNA sequence elements
that operate as RBP binding sites. These techniques will be explored briefly in this
section.

16.5.1 Binding Site Search

PWMs are often used to summarize the statistical features of observed binding sites.
PWMs denote the odds of each nucleic acid occurring at each position. PWMs are
used to scan RNA sequences for potential RBP binding sites. This search can be
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carried out using regulatory sequence analysis methods like RSAT (http://rsat.ulb.ac.
be/rsat/). The accuracy of this RNA-binding specificity representation is on the basis
of a large fraction of experimental data.

16.5.2 Models of Binding Sites

When introducing the most up-to-date techniques for modeling RBP attachment
sites, models of transcription factor attachment site provide valuable guidance for the
solution of pattern prediction and discovery. New techniques or modifications of
existing techniques are used to model the binding elements of RBPs. Due to their
distinctiveness and commonalities, several strategies for identifying RBP binding
sites are described here in comparison to discovery of DNA attachment site. As with
transcription factors, RBP attachment sites are modeled using both unsupervised and
supervised (regression) methods. There may be two models of RBP-binding sites:
one that ignores RNA structure and another that does not, because RNA structure
may affect binding. RBP attachment sites are distinct from binding sites of transcrip-
tion factor in that they allow for the binding of RNA structure. Therefore, as a result,
models can be classified into those that neglect the structure of the RNA and those
that do give importance to the RNA structure. The methods that consider RNA
structure can be divided into two groups: First model predict the structure of RNA
and second model is about the structure of RNA in its structural context.

The unsupervised methods take collection of RNA sequences as inputs that are
optimized for a given RBP’s attachment sites (obtained, for example, via a SELEX
procedure) and a standard model of usual composition of RNA sequence.
Techniques of transcription factor techniques could be used directly with minimal
adjustments (i.e., replacing Us with Ts) in case the impact of RNA structure is
overlooked. For example, Multiple Expectation Maximization for Motif Elicitation
(MEME) [94] maximizes the probability of the observed sequence set fitting a
position-specific scoring matrix (PSSM) motif model using the expectation-
maximization (EM) algorithm. Centered on the assumption of nucleotide indepen-
dence, the PSSM model describes a product multinomial distribution over bound
k-mers. It is interesting to note that MEME does not allow gaps in sequence pattern,
which may present a problem when RNA-binding domains such as RRMs bind to
randomly separated and very short RNA sequence. Another well-known example of
a structure-naive approach used for RBP binding site modeling is the assignment of a
conservation index to all possible k-mers (RNA words of length k) in order to
perform an independent genome-wide search for k-mers retained in 30 UTRs
[94]. These k-mers can serve as regulators.

MEMERIS is an upgraded version of the MEME algorithm that incorporates
RNAfold-derived probabilities for base-pairing when fitting PSSM motifs [94]. The
probabilities of base-pairing constrain the search space for an RBP-binding site’s
initial position. MEMERIS looks for a motif that is important to a specific sense of
the RNA structure (i.e., unpaired regions); this technique is distinct from those that
focus on sequence-specific structural elements (e.g., stem-loops).
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Three types of motif-finding algorithms can be used to model RNA structure. The
first group employs co-variation to arrive at a consensus structure for all aligned
sequences following RNA sequence alignments. The efficacy of such approaches is
largely dependent on the alignment accuracy, which requires a high level of homol-
ogy between the input RNA sequences, which is an uncommon occurrence. The
chances of such event become more common when searching for shared local
patterns by multiple mRNAs attached by the very same RBP within long 30 UTRs.
Alternatively, methods such as RNAProfile [95] estimate the minimum free energy
folds for every sequence before looking for particular folds. The primary issues here
are accurately predicting folds and representing an entire set of folds using a single
fold having the minimum free energy fold. The third method uses dynamic
programming to match and fold two RNA sequences simultaneously, with the
usual secondary structure anticipated utilizing energy-based factors, culminating in
a structure-based alignment [96]. This pair-wise alignment is then extended using a
variety of heuristics to multiple alignments. Since the secondary structure of an RNA
sequence is frequently defined by algorithmic assumptions, the analysis of noisy
inputs is essential. Probabilistic covariance models, such as CMfinder [97], are more
effective at capturing observable difference in the sequence and structure of RNA
patterns. RNApromo [98] was recently used to model co-regulated RBP sequence
preferences across a range of RNA sequences.

RBP binding models are used in supervised approaches as part of regression
models designed to forecast quantitative estimates of RBP binding, as well as RNA
binding. Due to the difficulty of obtaining the required input data in the past, these
approaches have been limited to RBP binding data. Earlier efforts in this field were
either structure-naïve [99] or relied on simplistic stem-loop models [100]. Examples
from more recent years include ATS [101] and RNAcontext [101]. In vitro assays,
RNAcompete, and RNAcontext provide information on RBP binding affinity, and
that information is used to learn the RNAcompete, for example, by setting a physical
model to information of RBP attachment affinity and sequence of RBP. In vitro
assays, RNAcompete, and RNAcontext provide information on RBP binding affin-
ity, and that information is used to learn the RNA-protein interaction. RNAcontext is
fascinating for two reasons: it is capable of modeling RBP preferences for sequences
based on their structural contexts, and it makes extensive use of high-throughput
quantitative data to evaluate different parameters of model. RNAcontext operates in
three steps, beginning with the input of a series of sequences and their corresponding
affinity measurements. The first step calculates the probability that a word of length k
contains an RBP binding site using the product of two terms. The first term denotes
the inferred RBP sequence’s priorities (in the form of a positional weight matrix),
while the second term denotes the relative structural priorities of RBPs in different
structural contexts. The second step is to estimate a sequence affinity based on the
affinities assigned to each phrase by the previous motif model. The third step is to
determine which array of parameters reduces the amount of squared differences
between measured and expected input affinities when the sequence score function is
modelled as a linear function. ATS is comparable to RNAcontext, except that it
employs a selfish search strategy and considers only one structural background at a
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time while attempting to locate a degenerate consensus sequence motif. ATS, on the
other hand, is a better fit for in vivo binding assays than RNAcontext, as the former’s
sequence scoring function is optimal for the longer RNA sequences associated with
these assays.

16.6 Conclusion and Future Perspectives

With the introduction of efficient high-throughput technique capable of analyzing
whole transcriptome and proteome, it is estimated that the number of RBP and types
of its interaction with RNA is more than expected. The integration of structural data,
defining site of molecular contacts, and high-throughput sequencing method that
unfold RNA sequence specificity could allow for the determination of predictive
model for specific RBPs. The growing experimental data of transcriptome should
facilitate development in computational methods for prediction of RNA–protein
interaction and for modeling regulatory pathway of RPI. According to genome-
wide study, SNPs found in the RBP-binding region were associated with diseases.
Disease susceptibility is influenced by genetic variation in RPI and interference with
normal function. Further investigation on association of genetic variation and inves-
tigation will give better understanding of RPI.
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Abstract

The global climate change has a negative influence on the quality of crop
production and has been considered a threat in recent years. Henceforth, there
is a need for advancement in technology to overcome the issue and improve both
the quality and quantity of the crop plants by exploiting their genome. The
various single nucleotide polymorphism (SNP) markers have been extensively
used in crop breedings as molecular markers with advances in NGS (Next-
generation sequencing) technology. These SNP markers are cost-effective for
variety identification. SNPs have a deterministic role in protein expression.
Thereby sequencing and genotyping have enabled crop improvement based on
genomics with significant advances in NGS technologies which have also
assisted in overcoming the drawbacks in detecting new functional SNPs
associated with diverse traits. While SNP markers are found to be highly abun-
dant and prevalent across the genome, functional SNPs are known to have a
crucial impact on the phenotypes of plants. Besides, it was also known that SNP
markers can be widely used and implemented in genotyping for the identification
of structural variants due to their codominance, low cost, flexibility, speed, and
ease of automation than other markers. Even in the genome-wide association
study (GWAS), SNP markers were considered a significant tool in developing
genome-wide haplotypes. Identified SNP patterns from GWAS are useful for
understanding plant evolution. Genetic variations derived from the SNP patterns
may execute desired phenotypes in the plant that benefits plant breeding and crop
improvements. Even though SNPs widely use, technical advancements are
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needed to overcome the challenges in plant SNPs identification, to understand
speciation and evolution through genomic divergence of plants, and to identify
associate genomic variations of phenotypic traits.

Keywords

SNP discovery · Genetic variations · Polyploids · Haplotypes · Nanopore
sequencing

Abbreviations

ASO Allele-specific oligonucleotide
OLA Oligonucleotide ligation assay
QTLs Quantitative trait loci
RAPD Random amplification of polymorphic DNA
RFLP Restriction fragment length polymorphism
SNP Single nucleotide polymorphism
SSCP Single-strand conformation polymorphism
SSRs Simple sequence repeats

17.1 Introduction

SNP (Single nucleotide polymorphism) occurs as a variation at a single position of
DNA, which may occur due to the difference of two or more individual organisms
based on a nucleotide [1]. SNP can either cause harmful effects or may not be lethal
with no prominent impact even on the phenotype of the species. However, SNP
genotyping is essential to validate and confirm the specificity of the SNPs occurring
at the position of an interested gene [2]. The SNPs in the coding region are divided
into two types; synonymous mutation and non-synonymous mutation, which may
affect the protein structure. As SNPs are widely dominant across the entire genome,
the incidence of SNPs is not only restricted to coding regions of a gene, as they are
also known to be prevalent even in the non-coding regions. The mystery prevails
over the specificity and functionality of the SNPs at the non-coding regions, and
hence biologists are still investigating to unravel the role of SNPs at the non-coding
region.

The history of SNP reminds us the efforts and contribution of many scientists to
the current understanding of SNP and its application in healthcare and other fields.
Mendel’s laws of genetics (in 1865 and before) were supported by T. H. Morgan,
and the rediscovery of Mendel’s work in the late 1900’s had an indispensable
contribution to the understanding of SNP. The first linear map of genes completed
by Alfred H. Sturtevant, rendered genetic mapping using gene crossing-over
(in between 1913 and 1928). Further, an advancement in linkage map and genetic
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distance analysis was implemented by Walther Flemming, William Bateson, and
Thomas H. Morgan. The outcome of their studies provided the basis for develop-
ment of the chromosome theory of inheritance. Besides, Colin MacLeod, Oswald
T. Avery, and Maclyn McCarty together established the concept that DNA is the
genetic material (in 1944) [3]. Later, scientists focused much on the role and function
of specific genes to understand their biological importance. Sequencing methods and
automated sequencers boomed genomic research, especially the Human Genome
Project in 1990, which contributed to the sharing of gene and genomic sequences
across the world. Completion of the Human Genome Project led to a breakthrough
in genomic studies in 2003 [4]. However, the increased computational power and
growing bioinformatics approaches along with genomic data provided a much better
understanding of the mysteries in biology. The results from genomic analysis also
paved various ways for clinical studies and drug discovery. Their implementation
improved health care system through the emerging new biological concepts.

SNPs are most common in the genome with many types of variations and they are
considered essential tools for the discovery of markers and genetic mapping; how-
ever, the application of SNPs in the plant polyploid genomes has been quite
challenging [5, 6]. In plants, the phenotyping-based selection was considered to
increase the productivity of plants that are resistant to pathogens and can withstand
unpredictable climate changes. Yet, identification and analysis of the minor genetic
variations which affect the phenotypes are demanding in plants [7]. However,
genomics-assisted breeding is an advanced technology and it needs prior knowledge
of the markers/loci/genes associated with traits of our interest, which is growing
trends in plants [8]. Hence, sequencing and genotyping have enabled crop improve-
ment based on genomics with significant advances in next-generation sequencing
technologies [9, 10], which have also assisted in overcoming the drawbacks in
detecting new functional SNPs associated with diverse traits. Apart from the refer-
ence genome assembly, various re-sequencings methods are also initiated to under-
stand genetic diversity among the species concerning SNPs. Small InDels
(insertions/deletions) act as markers for enhancing the productivity of various
varieties using the genomics approach. Among the widely used molecular markers,
namely, RFLP, RAPD, AFLP, and SSRs (Simple sequence repeats), intergenic SSRs
and SNPs markers are highly preferred [11, 12]. In general, SNP markers are
abundant and prevalent across the genome, and functional SNPs are known to
have a crucial impact on the phenotype of plants. Besides, it is known that SNP
markers can be widely used and implemented in genotyping for the identification of
structural variants due to their codominance, low cost, flexibility, speed, and ease of
automation than other markers [13–16]. The other key role played by SNPs is
genetic mapping, where the genetic map aids in identifying the location of a gene of
interest, arrangement of chromosome based on the distance among genes [17],
and identification of quantitative trait loci (QTLs) [18]. SNPs have been analyzed
and collected from crop plants such as cotton [19], rice [20], maize [21], and soybean
[22] from genetic maps and other approaches. Even in the genome-wide association
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study (GWAS), SNP markers were considered as a significant tool in developing
genome-wide haplotypes [23]. Further, the evolution of plants can be inferred from
the identified SNPs patterns and genetic variations and their corresponding effect on
phenotypes could be an idea for breeding and crop improvements. In connection
with the above information, this chapter attempts to describe SNP identification,
SNP databases, methods for SNP discovery, assays to determine SNPs,
SNP applications and challenges involved in plant SNP discovery. The experimental
techniques are described based on the principle and usage of technology for
the identification of SNPs and their interpretation; it was catagoried into
non-sequencing, sequencing, and resequencing methods (Fig. 17.1). The application
of plant SNPs in plant genomic research, breeding, and crop improvements, and
the challenges in plant SNP identification and discoveries are mentioned at the end of
the chapter. This chapter provides a framework and guidelines to analyze a plant
genome and pinpoints the current difficulties faced by the plant genomic research
community to consider careful evaluation during analysis and gives suggestions to
overcome the important challenges.

17.2 Experimental Techniques to Identify SNPs

17.2.1 Non-sequencing Methods

17.2.1.1 RFLP (Restriction Fragment Length Polymorphism)
RFLP can identify a single nucleotide difference in a gene that provides the cutting
sites for a restriction enzyme. This restriction enzyme cutting site may present in one
allelic form and may not be present in the other form. This kind of polymorphisms
are detected by amplifying the gene of interest using prior primers targeting the
polymorphic site; subsequently, the amplified interested genetic material is digested
using the restriction enzyme, and the undigested amplified DNA fragments are
analyzed by gel electrophoresis [24]. A highly efficient PCR-based assay is designed
to detect RFLPs of genes and the nature of RFLPs could be understood with the
sequence information after sequencing it. Besides, due to their high genomic abun-
dance, high reproducibility, co-dominant inheritance, RFLP markers are highly
considered for developing genetic mapping [25] of a wide variety of crop plants,
namely rice [26], sunflower [27], maize [28], wheat [29], soybean [30], tomato and
potato [31], barley [32], and chickpea [33]. Moreover, RFLP is also known to have
crucial application investigating the diversity and phylogenetic studies within the
population and also to their closely associated species [34], which may aid in
understanding the hybridization and also gene flow within the crops [35]. However,
RFLP cannot be used for plant breeding applications since it entails DNA of both
high quantity and quality [36], along with the need for expensive radioactive
isotopes. Furthermore, the process involved is highly tedious, time-consuming
with labour intensive procedures and lack of automated procedures [8, 37].
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17.2.1.2 Oligonucleotide Ligation Assay (OLA)
Another method for detecting known alleles that differs by single nucleotide change
was established by Hood and his team [38]. OLA requires the details of base pairing
capability between the 30-end of one strand and the 50-end of another adjacent strand
before ligase form a phosphodiester bond. OLA is also known as ligase-mediated
gene detection. At first, the gene of interest is amplified using PCR and then the
interesting complementary strands are hybridized through which the variant bases
are identified. The variant base may or may not form complementarity at the 30-end
of the first ASO (Allele-specific oligonucleotide). The second strand tries to make
perfect complementarity with the adjacent strand. If it exactly matches, then the
ligase seals them by making a phosphodiester bond. The advantages of OLA are
null-false positive and it is easy for automation [39].

17.2.1.3 Single-Strand Conformation Polymorphism (SSCP)
SSCP detects mutation based on the electrophoretic mobility of single-strand DNA
attributed to secondary structure changes attained by the molecule due to the
occurrence of variation [40]. A target single-strand DNA denatures at extreme
temperature and tries to generate a DNA hybrid quickly after placing it on ice. It
folds into the lowest free energy conformation and base stacking and here, hydrogen
bonds play important role in forming complementary. If the strand has any change at
a single base, the folding of DNA hybrid will not be the same as the native single-
strand DNA and it may form a random coil or other conformation. The target and
modified strands may show different mobility on an electrophoresis gel. Through
this approach, both known or unknown allelic forms of a gene will be detected
[41]. Since SSCP is a rapid and reliable technique for gene analysis, it is predomi-
nantly useful for the detection of point mutations and polymorphism typing. It
identifies heterozygosity of DNA of with similar molecular weight fragments and
detects bases responsible for the mutation through the mobility of single-stranded
DNA changes while the GC content remains the same. SSCP is effective for DNA
fragments of size varing about 200–800 bp that may be amplified using specific PCR
primers of 20–25 bp. Gel electrophoresis of single-strand DNA detects sequence
variation in those amplified fragments. The key factors for using SSCP are the pre-
requisite for the low quantities of DNA and also the codominance of alleles. Even
though, SSCP is highly considered as a potential tool for DNA polymorphism, yet in
plants, it has to be well optimized and developed in discriminating progenies for
designing crucial traits to improvise the crop plants.

17.2.1.4 Random Amplification of Polymorphic DNA
There is a need for sequence information to design primers to amplify the specific
gene of interest. In 1990, single short random oligonucleotides of an interested gene
sequence was used to prime the amplification of genomic sequences that can
reproduce and detect polymorphisms [42, 43]. The short random oligonucleotides
of the sequence will establish complementary to a locus or numerous loci within the
genome. If the complementarities are in correct orientation with a distance optimum
to amplify, it largely amplifies by PCR. The amplified DNA fragments are
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independent of one another and different in length; then, the amplified gene products
are separated and identified by gel electrophoresis. If polymorphism presents in the
DNA fragment, it can be detected after ethidium bromide staining by analyzing the
presence or absence of a particular fragment band. The major factors such as least
time consumption and need for low quantities of DNA with the feasibility of assay
have led to the usage of RAPD in various applications. For instance, genetic
mapping both at individual and between the closely related species, and also to
overcome the barriers that are yet to be solved by other markers [43]. Nevertheless, it
lacks reproducibility due to the need for higher quality DNA and a high standard
experimental process that is highly sensitive to the reaction conditions. Although
RAPD includes various techniques such as Arbitrarily Primed-Polymerase Chain
Reaction (AP-PCR), DNA Amplification Fingerprinting (DAF) and Multiple Arbi-
trary Amplicon Profiling (MAAP), that are non-locus specific with a higher possi-
bility of amplifying a variety of organisms and low reproducibility rate. Hence
RAPD is known to be least considered for polyploidy-specific analysis (Fig. 17.2).

17.2.2 Sequencing Techniques

17.2.2.1 Locus-Specific PCR Amplification
Locus-specific PCR amplification (LSA) amplifies each locus of interest to produce
several copies using locus-specific primers. The locus is amplified in a large number
from a population sample and the amplified loci are compared among them to

Non-sequencing 
techniques

RFLP

The oligonucleotide 
ligation assay

Single Strand 
Conformation 

Polymorphism (SSCP)

Random ampli�ication of 
polymorphic DNA

Sequencing 
techniques

Locus-speci�ic PCR 
ampli�ication

Whole-genome shotgun

Reduced representation 
shotgun

BAC and PAC

Nanopore sequencing

Paci�ic Biosciences 
SMART Sequencing

RNA and ChIP Sequencing

Diversity Arrays Technology

Re-sequencing 
techniques

Pyrosequencing  or 
Roche (454) 
Sequencing.

MOLDI-TOF MS-
based SNP 
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Fig. 17.2 Experimental technique to identify and analyze plant SNPs. The standard experimental
techniques and new methods are currently employed for plant SNP study and they are kept up-to-
date to address the challenges. There are many techniques in non-sequencing, sequencing, and
resequencing analysis of plant SNPs, and some of the widely used methods are mentioned
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discover SNPs. The PCR product is applied on a nylon membrane that contains
digoxigenin-ddUTP-labelled oligonucleotide probes for dot blot hybridization. And,
Lumiphos 480 is treated with bound PCR products, and their signals are collected
and analyzed. LSA is an expensive method for large-scale studies because it uses
digoxigenin-labelled ddUTP, anti-dig Fab antibody, and Lumiphos
480 (a chemiluminescent) [44].

17.2.2.2 Whole-Genome Shotgun (WGS) Sequencing
The whole-genome shotgun, WGS, approach randomly fragments the entire genome
and the size of the fragments ranges between 20 and 300 kb. Then, the fragments are
cloned for producing a large number of copies. After sequencing all the fragments,
they are reassembled to find the sequence of the whole-genome by aligning them. If
a reference genome is available, they are easy to map. It is useful for rice genome
analysis because the genome of Oryza sativa is available and few crop plant
complete genomes are also available. If the reference genome is not present, de novo
assembly has to be implemented to determine the genome, but the reliability is
less compare to reference-based derived genome. With the improved techniques and
computational powers, the accuracy of sequencing the whole genome has improved
meantime. Nowadays, WGS is used to reduce error rates by overcoming the gaps in
the genome and hence it is a more efficient sequencing method if a reference genome
is available. WGS approach requires high computing power to align and assemble
shotgun sequences against the reference genome and further analysis [45]. Using the
WGS, the hexaploid wheat genome was determined through de novo assembly
which employed both WGS-based assembly and sequence-based genetic map [46].

17.2.2.3 Reduced Representation Shotgun
In RRS, reduced representation shotgun, average DNA fragments size (D) is deter-
mined from the genome size (G) and several reads (N) and it is approximated for
each run. The DNA fragments are digested by BglII and cloned into M13mp19/18
RFI DNA vectors. Then, the sequences of DNA fragments are obtained using
standard methods through dye-primer chemistry, dye-terminator chemistry, or any
capillary sequencer. It is a simple but powerful method for creating SNP maps. RRS
can resample a subset of the genome from a population. Through comparative
analysis, it determines accurate SNPs by efficient algorithms. The comparative
analysis may extend to increase the yield of SNPs and mapping position against
the genome by aligning to the available genome sequences. RRS facilitates faster
and cost-effective construction of SNP maps based on a representative fraction of the
genome and it could be implemented for various biomedical applications and
agricultural importance [47–51]. This approach can be utilized for an organism
that lacks a reference genome and the reads can be mapped to either with the
reference or draft genome on their availability, which aids in deciphering additional
functional insights [52–54]. For the species lacking reference genome, either by
featuring non-bisulfite-converted samples or by inference of un-converted references
from bisulfite-treated reads, accession-specific references can be generated only for
the loci that are analyzed using RRBS. Apart from that, RRBS-loci were suggested
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to be markers for linkage mapping in plants based-on the characterization of
variations in DNA methylation and higher heritability of cytosine methylation
[55–57]. Although RRBS addresses various characteristics of DNA methylation,
RRBS also aids in identifying the target gene loci in the non-model organisms by
annotating and identifying the functional regions of a genome. However, limitation
of the RRBS approach is the evolution of genes and their functions over time,
thereby precluding the appropriate interpretation specifically in non-model
species [58].

17.2.2.4 BAC and PAC
Bacterial artificial chromosome (BAC) intakes a DNA fragment, and it is widely
used in molecular biology and genomic studies as an engineering DNA molecular
tool. BACs have a huge role and impact in nucleotide sequencing as well as genomic
sequencing. DNA fragments, ranging from 100 to about 300 kb, are inserted into
BACs. Then, BACs with the DNA inserts are engulfed by bacterial cells. While
bacterial cells grow, they multiply the genetic materials. Through this the
BAC-DNA inserts also multiply in number. Finally, the DNA inserts are purified
and sequenced using any sequencer [59, 60]. PAC, a P1-derived artificial chromo-
some, is a cloning system derived from P1 bacteriophage. P1 cloning vector system
was developed by Nat Sternberg and colleagues [61]. This vector contains P1
packaging sites (PAC) where two P1 loxP recombination sites flanking the clone
insert compactly using P1 Cre recombinase. It is capable of carrying large (in the
range between 100 and 300 kbp) DNA fragments in E. coli cells for various
bioengineering applications. PAC is used for sequencing the whole genome of few
organisms within the size limit and is widely used for cloning larger DNA fragments.
PAC method uptakes the DNA fragments via conjugation and there is no possibility
of any additional DNA modifications and the DNA products from this method are
largely useful for gene cluster analysis, synthetic biology, and so on. Both BAC and
PAC are extensively involved in sequencing techniques to discover SNPs.

17.2.2.5 Nanopore Sequencing
Nanopore sequencing is an exclusive technology that detects real-time analysis of
DNA or RNA through long-reads. It records electrical current changes by the
molecules passing through, creates a characteristic disruption in current through a
protein nanopore. The measure of the current can identify the molecule present in the
nucleotide sequence. The resulting signal is decrypted to read the specific DNA or
RNA sequence. Nanopore sequencing resolves complex structural variants and
repetitive regions. It also simplifies de novo genome assembly and improves the
quality of existing reference genomes. It helps to study both linkage and phasing and
also enhances metagenomic analysis. It remarkably explores epigenetic
modifications happening at each base by altering the current emitted from the
respective bases. High-quality chromosome-level reference genomes of Oryza
(circum-basmati and cirum-aus) were reported using the long-read nanopore
sequencing method. There was a huge influence of structural variation and SNPs
difference on chromosome 10 of the Oryza species [62]. DNA methylations are key
players in the regulation of gene expression that controls many cellular processes

17 SNP Identification and Discovery 369



like response to stimuli [63]. There is a dearth need for investigating CHG and CHH
context-dependent methylation especially in plants [64], which is a major challenge
facing by Nanopore sequencing of plant genomics. Besides, sequencing highly
repetitive plant genome is a limitation of nanopore sequencing method [65, 66]. If
the resolution of long-read sequence improved, it could revolutionize the plant
genomic studies.

17.2.2.6 Pacific Biosciences SMRT Sequencing
PacBio sequencing is based on SMRT (Single-molecule real-time) technology, a
mostly used third-generation sequencing technology, sequences the long-reads.
Template DNAs (or SMRTbells) are carefully constructed with two hairpin-forming
adaptors and ligated to form a stem-loop structure. The non-loop forming fragments
are washed away and the loop forming region prefers to bind with the sequencing
primers. The proper ligated template DNAs are amplified using a single polymerase
which is immobilized at the bottom of ZMW (zero-mode waveguide). A phosphor-
linked NTP (dNTP) is utilized for the synthesis by the polymerase and incoming
dNTP makes fluorescence (each nucleotide is flagged with a different fluorophore).
After forming the phosphodiester bond, it releases dye-linker-pyrophosphate into the
ZMW and the cycles are continued for the next upcoming nucleotide temporarily.
Until detecting non-regular nucleotides, it records the fluorescence pulse of dNTPs
and it stops while it finds modified bases. PacBio sequencing reads real-time
sequence and kinetic variations interpreted from the light-pulse movie which is
also capable of detecting base modifications, such as methylation [67]. PacBio
sequencing is applied in the biomedical application through studying the human
genome extensively and it has to be improved for plant genome assembly to fulfil the
difficulties in completing non-model plant genomes [68]. To improve the accuracy
of detecting DNA modifications, and to reduce the required coverage of control data
free of modifications, an empirical Bayesian hierarchical model was incorporated in
the traditional PacBio sequencing [69].

17.2.2.7 RNA and ChIP Sequencing
RNA seq is a popular NGS technology for SNP identification, transcriptional
profiling, RNA processing, differential gene expression, and other related analysis
of a sample. First, the whole RNA of the sample is extracted and converted into
cDNA fragments. With the cDNA fragments, appropriate adapter cum sequencing
specific functional sites are added. Then, these fragments are amplified according to
the need for the depth of sequence. The library of fragments is sequenced using
available sequencers either in single-end or pair-end reads. The reads may be
assembled against the reference genome or through de novo assembly methods.
This method has been performed on various plant species including Arabidopsis
[70], soybean [71], rice [72], and maize for transcript profile analysis and RNA
splicing using a reference genome. The de novo assembly-based SNP discovery was
performed in non-model plants like Eucalyptus, Rapeseed, and Alfalfa. Digital gene
expression [73] and Illumina RNASeq [74] can perform both qualitative and quanti-
tative genome analysis and the result permits the identification of rare transcripts
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and splicing variants through profiling alternative splicing events of a gene
[75]. RNA-seq is one of the high-throughput based sequencing technologies and it
provides high accuracy and cost-effectiveness. The advantage of RNA-seq analysis
is that it simultaneously discovers thousands of SNPs along with expression levels of
functional genes. The drawbacks of this method are prone to error through reverse
transcriptase activity; the transcriptase may produce unauthentic complementary
DNA and synthesis of artefactual cDNA as a result of template switching.

Chromatin immunoprecipitation and ChIP-seq together used to map
DNA-binding protein and protein-DNA interactions [12] across the genome.
ChIP-seq is also used to map histone modifications and high resolution nucleosomes,
good coverage, and less noise. ChIP-Seq is not directly useful for SNP discovery,
but the presence of SNP data together with ChIP-Seq provides allele-specific states
of chromatin modifications and rearrangements. The sensitivity and specificity of
mapping of TF (transcription factor) binding sites are increased and they facilitate
TF binding motif discovery and target identification. The whole genome, RNA-seq,
and ChIP-Seq data are analyzed using either a reference sequence or, de novo
assembly by various software, algorithms, and pipelines, and they are kept on
updating to improve the accuracy and efficiency. Together RNA-seq and ChIP-seq
have the potential of elucidating the transcriptional regulatory network of important
biological processes of plants along with gene expression analysis.

17.2.2.8 Diversity Arrays Technology (DArT) for SNP
DArT is a microarray hybridization-based technique that detects DNA variations
across the polymorphic loci which are spread over the entire genome. For analysis of
DArT data, we may use the softwares namely, DArTsoft and DArTdb. It is useful
to identify SNP markers of non-model species; especially, it helps for crop plants
whose genomes are polyploid. Initially, it needs to prepare the DNA fragments from
genomic DNA using PstI adaptors. Libraries of arrays are prepared from the whole
DNA fragments using diversity arrays technology which is special microarrays that
is capable of detecting and analyzing DNA polymorphism in a genome. The cloned
and amplified DNA fragments are transferred to microarray plates (Ex. Affymetrix).
During purification of each fragment, fluorescence dye (Cy3 or Cy5) is added and
then hybridization and washing are performed to remove non-DNA fragments.
Later, an Affymetrix scanner is used for recording signal intensities from the
sequences, and then the data are genotyped [76]. DArT was successfully applied
for genotyping of barley plant and subsequent SNP markers analysis were performed
to understand their functions [77]. DArT acts as an alternate strategy that preferen-
tially targets low-copy genomic regions, specifically allows automation of data
acquisition [76]. The features such as complexity reduction, cost competitive-
ness and the simultaneous typing of various polymorphic loci across the genome
(i.e. based on DNA hybridization) have contributed to the application of DArT in
mapping several ‘orphan’ crops. For example, the DArT technique is used to the
analysis of many crop plants genomes; namely, rice, barley, eucalyptus,
Arabidopsis, cassava, wheat, and pigeon-pea. The major limitations of DArT are the
requirement of laboratory facilities, high investment, and skilled manpower.
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17.2.3 Re-sequencing Techniques

17.2.3.1 Pyrosequencing or Roche (454) Sequencing
Pyrosequencing is one of the alternative methods of DNA sequencing using dideoxy
chain termination technology which detects the released pyrophosphate (PPi). It is
used for de novo sequencing and confirmation of sequence, and it has a limitation
in determining the read length. It is also known as 454 sequencing which uses
sequencing by synthesis method, and it is the first parallel sequencing technology
[78]. The genomic DNA is fragmented and the fragments serve as a biotinylated
pyrosequencing template. This biotinylated template is purified and added with
sequencing primers. Then, the template is catalyzed by DNA polymerase, and
each deoxyribonucleotide (dNTP) addition to the template complementary sequence
releases pyrophosphate. Further, ATP sulfurylase acts on pyrophosphate and
produces ATP from ASP (Adenosine 50 phosphosulfate). The ATP molecule is
used by the luciferase enzyme to convert luciferin to oxyluciferin thus generates
visible light and it recorded by a charge-coupled device [78]. Apyrase degrades
unincorporated dNTPs and ATP before moving on to the addition of the next
nucleotide, and subsequent nucleotides are added through repeating the protocols.
As the process continues, the signals are recorded in the program which generates
the sequence data. Using appropriate bioinformatics tools, the data are analyzed.

17.2.3.2 MALDI-TOF MS-Based SNP Typing
MALDI is one of the revolutionary high-throughput methods that altered the con-
ventional method of sequencing, which involves the separation of DNA fragments
resulting from enzymatic sequencing using gel electrophoresis [79]. MALDI tech-
nique is also used for ionization relative to mass-analysis of large biomolecules
[80]. Hence, in general, there is predominant detection of single charged molecular
ions (both negative and positive) by MALDI–TOF. Initially, polymorphisms
containing genes of interest need to be amplified using PCR from genomic DNA.
The PCR product will be purified and used for MALDI-TOF analysis; before that
allele-specific primer is annealed with the PCR product for SNP analysis. Then, the
PCR products are again amplified using dNTP or/and ddNTPs with a DNA poly-
merase, and the products are subjected to MALDI-TOFMS analysis (Fig. 17.3). The

Fig. 17.3 A nucleotide-specific primer is synthesized to anneal with a PCR template immediate
downstream of polymorphic position. Four deoxy or dideoxy-nucleotide triphosphate (ddNTP or
dNTP) and DNA polymerase are mixed and the primer gets extended by a nucleotide (N), where N
is complementary to the nucleotide at the polymorphic position. The extended primer is purified and
subjected to MS analysis (m/z value). Accurate mass measurement of the extended primer identifies
the polymorphic nucleotide exactly
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extended primers, allele-specific primers, are purified through the MALDI matrix
and detected by the mass-charge ratio (m/z value) specific to the added nucleotide to
the extension. This approach is more effective in detecting and discovering novel
SNPs [81]. The problems with this approach are the loss of signal intensity and mass
resolution with the increasing length of DNA. Enzymatic DNA sequencing coupled
with MALDI–TOF MS analysis has been proposed in recent studies for effective
identification of unknown single-nucleotide substitutional mutations/SNPs.

17.3 Plant SNP Databases

Various databases are available related to plant SNPs, and databases are
implemented based on various algorithms for processing the user queries, the
imporant databases are mentioned in Table 17.1. CropSNPdb [87] is a simple
user interface database that provides genotyping arrays of crop plants and is also
based on comparing genotyping algorithms. It enables comparative analysis of the
SNP alleles among the crop plants as queried by the user. CropSNPdb includes
genotyping arrays of 535 Brassica lines from reported datasets and 309 Wheat lines
from T3-Wheat. In PLANET-SNP [82], the users are provided with different
algorithm options such as Bayes Net Naïve, Bayes SVM, J48, and Random Forest
for SNP detection and evaluation. PLANET-SNP has an interactive GUI (Graphical
User Interface) for the detection and analysis of SNPs and also provides a different
representation of SNPs. The Rice Stress-Resistant SNP (RSRS) database [91]
contains more than 9.5 million SNPs of stress-resistant strains and 797 stress-
resistant genes of rice from 400 plus rice varieties. This database comprises of SNP
function, phenotype information, and genome annotation. SNP-Seek II [83]
implemented BWA (Burrows-Wheeler Aligner) and GATK (Genome Analysis
Toolkit) identified nearly 40 M SNP variants from the 3000 Rice Genomes Project
dataset. The database covers genotype, phenotype, and variety information of Oryza
sativa L. (rice plant). SNP genotyping datasets are obtained from the five reference
genomes namely; Nipponbare (Temperate japonica), IR 64 (Indica), 93–11 (Indica),
DJ 123 (Aus), and Kasalath (Aus). The database provides access to rice research
information and facilitates rice variety improvement via discovering new gene–trait
associations and accelerated breedings. Although Information Commons for Rice
(IC4R) [92] provides ultra-high-density maps of rice variations, the raw SNPs could
not be valid for public use. Raw genotypic data of 18 million SNPs could be used by
different bioinformatics pipelines for different utilizations like population genetics,
evolutionary study, and genomic breeding of new rice varieties. The outcomes of
rice genome SNPs is to develop an integrative SNP resource of rice genome
database; that is SnpReady for Rice (SR4R) database [93]. The SR4R database
web interface utilizes the ridge regression BLUP algorithm for retrieving SNPs and
utilization of online toolkits for analyzing population genetics. Besides, the SNPs
have enabled the users to access four different reference SNP panels comprising of
HapMap SNPs, tagSNPs, fixed SNPs, and barcodeSNPs, thereby providing exten-
sive analysis information of the genetic diversity among the Oryza sativa population
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with the least SNP redundancy. HapRice [86], is an SNP haplotype database and a
web tool for rice. The SNP haplotypes are well-defined by the allele frequency in
cultivar groups such as Aus, Indica, tropical japonica, and temperate japonica for the
world, and non-irrigated and three irrigated groups for Japanese. HapRice is also
finding polymorphic SNPs in between two rice varieties to identify polymorphic
sequence markers by implementing a minimum distance method and neighbour-
joining method. Gramene [94] database has various plant genomes that are suitable
for genomic colinearity and comparative genomics studies. The data are acquired
either from EST (expressed sequence tag) sequences or genetic maps/publications. It
contains well-curated data of rice mutants including molecular markers. The Rice
Annotation Project Database (RAP-DB) [95] contains comprehensive data sets of
gene annotations of rice, especially Oryza sativa (japonica group) cv. Nipponbare.
RAP-DB and satellite databases are together to offer a better platform for plant and
genome researchers. The ESTree DB [96] represents a collection of Prunus persica
ESTs and is intended as a resource for peach functional genomics. The ESTree DB
encompasses nearly 18,630 sequences, where the contig assembly is performed with
CAP3, while the AutoSNP program is used for identifying the putative single
nucleotide polymorphism (SNP). This database provides external access to
NiceZyme (Expasy) and the KEGG metabolic pathways. An annotated SNP data-
base for crop plants, known as AutoSNPdb [39], facilitates the identification of
polymorphic sequences by BLAST or keyword searches and annotation will
be derived from UniRef90 and GenBank which compares with the reference
genomes. Besides, SNPs between any two varieties are worthwhile for targeting
genomic mapping and association studies.

17.3.1 Methods for SNP Discovery

SNP-RFLP is the earliest method used to detect SNPs. The advancement of mas-
sively parallel high-throughput sequencing techniques like next-generation sequenc-
ing has reduced the cost and time in SNPs identification. Few SNP discovery NGS
tools are as follows: Among the SNP calling tools predominantly used tools are
Samtools/mpileup, SNVer, SOAPsnp, FreeBayes, GATK, Platypus, VarScan,
and VarDict. One of the popular stand-alone NGS file conversion (SAM to BAM
and vice-versa) package is Samtools. It has various modules for mapping statistics,
variant calling, and assembly visualization. SOAPsnp (Short Oligonucleotide Anal-
ysis Package) shows great accuracy and consistency (Table 17.2).

SOAPsnp aligns the raw sequencing reads against available references to find the
consensus sequence and then predicts SNPs. Another stand-alone statistical variant
calling tool SNVer runs very fast and has excellent scalability for whole-genome
sequencing. A haplotype-based variant detector tool, Freebayes, [100] detects
variants based on read sequence match to an appropriate position in the genome
while aligning to a particular target, but it does not align by the precision. This model
is a direct approach for generalization than the previous approaches and it discovers
and detects based on the alignments. The advantage is that it avoids one of the core
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problems, that identical sequences may align to multiple possible positions of the
genome.

17.3.2 Assays to Determine SNP

The simplest and cost-effective genotyping systems are KASPar and SNPline which
are capable of discovering thousands of genotyping SNPs using a laboratory proto-
col. The SNPline is updated into SNPlite or SNPline XL versions with flexibility in
sample numbers and SNP assays methods. Primer extension chemistry and MALDI-
TOF are joined together for genotyping in the iPLEX Gold technology which is
based on the MassARRAY system. The iPLEX Gold system has been implemented
and has become a popular technique due to its better precision and cost-effectiveness
(Table 17.3). GeneChip arrays (Affymetrix) and BeadChips (Illumina) are high-
throughput chip-based genotyping assays that can validate millions of SNPs per
reaction in a genome.

17.3.3 SNP Visualization Tools

The interactive SNP visualization tools that are publically available are Tablet,
SNP-VISTA or Savant, ViewGene, SNPVersity, Quality SNPng (SNP detection
and visualization), and CircosVCF (Fig. 17.4).

Table 17.2 Methods for SNP discovery

Method Tools References

The earliest method to detect SNP SNP-RFLPing 2 http://bio.kuas.edu.tw/snp-rflping2

Advanced method for SNP
discovery

Samtools/
mpileup

http://www.htslib.org/

SNVer [97]

GATK https://gatk.broadinstitute.org/hc/
en-us

FreeBayes https://github.com/freebayes/
freebayes

SOAPsnp http://soap.genomics.org.cn/soapsnp.
html

Platypus https://github.com/andyrimmer/
Platypus

VarScan [98]

VarDict [99]
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17.4 Applications

SNPs aid in constructing high-resolution genetic maps. Genetic linkage maps of
some economically important plants like rice [20], cotton [19], and Brassica [103]
were assembled using SNPs. Genetic maps of crops are widely useful in molecular
breeding to improve yield, stress tolerance, drought tolerance, and so on. By consid-
ering SNP-based genetic maps, flowering-specific genes of Brassica and maize [21]
plants were identified and molecular marker genes at particular plant growth stage
will be able to determine by SNPs. And, these kinds of gene-specific SNP markers
are mostly discovered by RNA-Seq and/or ESTs [104].

The special advantage of SNPs over other polymorphisms is that they are least
pretentious by homoplasy hence such kind of inter-species evolution could be
explained by SNPs. The SNPs of samples can be successfully implemented for
phylogenetic analysis with reduced homoplasy and similar analysis can be applied to
understand the phylogeny among crops [105]. SNPs of important genes involved in
drug metabolism are most effective for pharmacogenetics investigation and it helps
personalized medicine, and Cytochrome P450 (CYP2D6) gene is one of the best
examples [106]. A GWAS study of rice identified SNPs and constructed a

Fig. 17.4 SNP visualization tools are given for SNP analysis
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high-density haplotype map for phenotypic variances that are useful for rice genetics
and breeding [107]. Further, the GWAS investigation unravelled the salt tolerance-
specific SNPs of rice at the flowering stage thus aid in breeding salt tolerance
varieties and agronomic traits [108]. The SNPs of plant growth-regulating genes
will have a huge impact on crop yielding and growth, hence understanding and
underpinning functional SNPs could be effectively implemented to the development
of desired plant breedings [109].

17.5 Challenges

SNPs have been considered as the significant genetic marker in plant genomics to
enhance both crop improvement and breeding by predicting the phenotypic changes
based on the changes in genotype. The variations within the genome are highly very
crucial in plant genomes due to its genetic diversity among the population. With
polyploid species and their subgenomes, it is even more challenging to distinguish
the homologous SNPs that are specific to the species from the allelic SNPs
[18]. Hence several advancements were developed in the genome assembly-based
analysis to overcome the barriers and accomplish species-focused plant genome
reference assembly to decipher the relative interaction of the subgenomes within the
polyploidy and heterozygous species. The applications of NGS technologies are
SNP identification and discovery along with finding linkage map construction,
understanding genetic diversity, constructing association maps, and marker-assisted
selection breeding. These approaches are applied for several plant species and
remaining plants and crops need to be explored by these analysis. Polyploids,
repeated genetic elements, paralog sequences, and partial or incorrect reference
genomes make uncertainties in SNP calling, identification, and discovery. The read
mapping in NGS may cause misalign that leads to inaccurate SNP identification if
the sequencing contains an error (due to erroneous base calling). Hence, there is a
huge need for programs to discover SNPs with more accuracy and minimize
erroneous SNP calling. Sequencing and read mapping errors may affect the SNP
validation rate so these two major factors have to be improved. However, there are
different approaches to reduce the cost and simplify the SNP marker identification
and discovery. Henceforth, the techniques of sequencing such as haplotype phasing,
structural variant analysis, and de novo pan-genomics are the emerging frontiers in
plant genome assembly [110]. But, there is a lack of consensus among the various
tools and algorithms involved in SNP identification. Several techniques have been
reported for the detection of SNPs in crop plants yet most of them have their
respective pitfalls. In the case of genotyping by sequencing (GBS), the major
disadvantage is the improper digestion of restriction enzymes that may lead to
absence of important regions in the genome from the genomic libraries [111]. More-
over, this may also lead to erroneous data from sequencing [112]. The restriction-site
associated DNA sequencing (RAD-seq) technique does not need the prerequisite of
reference genome and this method is highly feasible; however, loss of sheared
restriction sites may occur due to sequence polymorphisms [113]. The specific
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locus amplified fragment sequencing (SLAF-seq) is a major cost-effective method
implemented for SNP-based genotyping on a large scale, yet it lacks whole-genome
coverage [114]. On considering gene expression analysis tools, application of
Chromatin immunoprecipitation with ChIP-seq approach in plants and crops is
challenging due to vigorous disruption of the cell wall, presence of phenolic
compounds, and polysaccharides, and selecting good quality antibodies for plant is
the most difficult task. Even though NGS and SNP genotyping technologies made
SNPs the most widely used marker for genetic studies, still there is a need for
technical advancements to overcome the challenges involved in plant SNPs identifi-
cation, genomic divergences of plants and in determination of the associate genomic
variations of phenotypic traits.

17.6 Future Perspective

SNP identification and discovery certainly made a quantum leap with growing
sequencing features and technologies, and there are plenty of SNPs available for
several genomes including large and complex plant and animal genomes. Unlike
model organisms such as humans and Arabidopsis, SNPs in plants and crops remain
inadequate for the time being, but with the help of advanced sequencing and
computational tools, the reference genomes of most of the crops and other plants
will be sequenced in the near future. Their understanding and SNPs will make
ground-breaking results for improved plant breeds and understanding of the
functions of plant genes and genomes.

Acknowledgements The authors thank the Centre for Bioinformatics for providing the necessary
facility for the work.

Conflict of Interest There is no conflict of interest to declare.

References

1. Consortium IH. A second generation human haplotype map of over 3.1 million SNPs. Nature.
2007;449:851.

2. Syvänen A-C. Toward genome-wide SNP genotyping. Nat Genet. 2005;37:S5–S10.
3. MacLeod C. Obituary notice. Oswald Theodore Avery, 1877–1955. Microbiology.

1957;17:539–49.
4. Mayor S. First human chromosome is sequenced. Br Med J. 1999;319:1453.
5. Khan AW, Garg V, Roorkiwal M, Golicz AA, Edwards D, Varshney RK. Super-pangenome

by integrating the wild side of a species for accelerated crop improvement. Trends Plant Sci.
2020;25:148–58.

6. Powell W, Machray GC, Provan J. Polymorphism revealed by simple sequence repeats.
Trends Plant Sci. 1996;1:215–22.

7. Jang S-J, Sato M, Sato K, Jitsuyama Y, Fujino K, Mori H, Takahashi R, Benitez ER, Liu B,
Yamada T. A single-nucleotide polymorphism in an endo-1,4-β-glucanase gene controls seed
coat permeability in soybean. PLoS One. 2015;10:e0128527.

380 C. B. Antony Raj et al.



8. Varshney R, Graner A, Sorrells M. Genomics-assisted breeding for crop improvement. Trends
Plant Sci. 2005;10:621–30.

9. Bevan MW, Uauy C, Wulff BB, Zhou J, Krasileva K, Clark MD. Genomic innovation for crop
improvement. Nature. 2017;543:346–54.

10. Yuan Y, Bayer PE, Batley J, Edwards D. Improvements in genomic technologies: application
to crop genomics. Trends Biotechnol. 2017;35:547–58.

11. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR,
Wu A, Olde B, Moreno RF. Complementary DNA sequencing: expressed sequence tags and
human genome project. Science. 1991;252:1651–6.

12. Solomon MJ, Larsen PL, Varshavsky A. Mapping proteinDNA interactions in vivo with
formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell.
1988;53:937–47.

13. Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev
Genet. 2011;12:363–76.

14. Chung W-H, Jeong N, Kim J, et al. Population structure and domestication revealed by high-
depth resequencing of Korean cultivated and wild soybean genomes. DNA Res.
2014;21:153–67.

15. Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant
Biol. 2002;5:94–100.

16. Shi Z, Liu S, Noe J, Arelli P, Meksem K, Li Z. SNP identification and marker assay
development for high-throughput selection of soybean cyst nematode resistance. BMC Geno-
mics. 2015;16:314.

17. Semagn K, Bjørnstad Å, Ndjiondjop MN. Principles, requirements and prospects of genetic
mapping in plants. Afr J Biotechnol. 2007;525(25):2569–87. https://doi.org/10.4314/ajb.
v5i25.56082.

18. Ganal MW, Altmann T, Röder MS. SNP identification in crop plants. Curr Opin Plant Biol.
2009;12:211–7.

19. Byers RL, Harker DB, Yourstone SM, Maughan PJ, Udall JA. Development and mapping of
SNP assays in allotetraploid cotton. Theor Appl Genet. 2012;124:1201–14.

20. Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, Zhang Q. Parent-independent
genotyping for constructing an ultrahigh-density linkage map based on population sequencing.
PNAS. 2010;107:10578–83.

21. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-
Garcia S, Garcia A, Glaubitz JC. The genetic architecture of maize flowering time. Science.
2009;325:714–8.

22. Akond M, Liu S, Schoener L, Anderson JA, Kantartzi SK, Meksem K, Song Q, Wang D,
Wen Z, Lightfoot DA. A SNP-based genetic linkage map of soybean using the SoySNP6K
Illumina Infinium BeadChip genotyping array. Plant Genet Genomics Biotechnol.
2013;1:80–9.

23. Yano K, Yamamoto E, Aya K, et al. Genome-wide association study using whole-genome
sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat Genet.
2016;48:927–34.

24. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic
amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of
sickle cell anemia. Science. 1985;230:1350–4.

25. Tanksley SD, Young ND, Paterson AH, Bonierbale MW. RFLP mapping in plant breeding:
new tools for an old science. Bio/Technology. 1989;7:257–64.

26. McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley
SD. Molecular mapping of rice chromosomes. Theor Appl Genet. 1988;76:815–29.

27. Gentzbittel L, Vear F, Zhang Y-X, Berville A, Nicolas P. Development of a consensus linkage
RFLP map of cultivated sunflower (Helianthus annuus L.). Theor Appl Genet.
1995;90:1079–86.

17 SNP Identification and Discovery 381

https://doi.org/10.4314/ajb.v5i25.56082
https://doi.org/10.4314/ajb.v5i25.56082


28. Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J. Construction of genetic linkage
maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl
Genet. 1986;72:761–9.

29. Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD. RFLP-based genetic
maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet. 1989;78:495–504.

30. Keim P, Diers BW, Olson TC, Shoemaker RC. RFLP mapping in soybean: association
between marker loci and variation in quantitative traits. Genetics. 1990;126:735–42.

31. Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM,
Giovannoni JJ, Grandillo S, Martin GB. High density molecular linkage maps of the tomato
and potato genomes. Genetics. 1992;132:1141–60.

32. Varshney RK, Marcel TC, Ramsay L, Russell J, Röder MS, Stein N, Waugh R, Langridge P,
Niks RE, Graner A. A high density barley microsatellite consensus map with 775 SSR loci.
Theor Appl Genet. 2007;114:1091–103.

33. Radhika P, Gowda SJM, Kadoo NY, Mhase LB, Jamadagni BM, Sainani MN, Chandra S,
Gupta VS. Development of an integrated intraspecific map of chickpea (Cicer arietinum L.)
using two recombinant inbred line populations. Theor Appl Genet. 2007;115:209–16.

34. Miller JC, Tanksley SD. RFLP analysis of phylogenetic relationships and genetic variation in
the genus Lycopersicon. Theor Appl Genet. 1990;80:437–48.

35. Desplanque B, Boudry P, Broomberg K, Saumitou-Laprade P, Cuguen J, Van Dijk H. Genetic
diversity and gene flow between wild, cultivated and weedy forms of Beta vulgaris
L. (Chenopodiaceae), assessed by RFLP and microsatellite markers. Theor Appl Genet.
1999;98:1194–201.

36. Kesawat MS, Kumar BD. Molecular markers: it’s application in crop improvement. J Crop Sci
Biotechnol. 2009;12:169–81.

37. Gupta M, Chyi Y-S, Romero-Severson J, Owen JL. Amplification of DNA markers from
evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl
Genet. 1994;89:998–1006.

38. Landegren U, Kaiser R, Sanders J, Hood L. A ligase-mediated gene detection technique.
Science. 1988;241:1077–80.

39. Duran C, Appleby N, Clark T, Wood D, Imelfort M, Batley J, Edwards D. AutoSNPdb: an
annotated single nucleotide polymorphism database for crop plants. Nucleic Acids Res.
2009;37:D951–3.

40. Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of point mutations and
DNA polymorphisms using the polymerase chain reaction. Genomics. 1989;5:874–9.

41. Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase.
Proc Natl Acad Sci. 1991;88:189–93.

42. Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic
Acids Res. 1990;18:7213–8.

43. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms
amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res.
1990;18:6531–5.

44. Cereb N, Maye P, Lee S, Kong Y, Yang SY. Locus-specific amplification of HLA class I genes
from genomic DNA: locus-specific sequences in the first and third introns of HLA-A,-B,
and-C alleles. Tissue Antigens. 1995;45:1–11.

45. Weber JL, Myers EW. Human whole-genome shotgun sequencing. Genome Res.
1997;7:401–9.

46. Chapman JA, Mascher M, Buluç A, Barry K, Georganas E, Session A, Strnadova V, Jenkins J,
Sehgal S, Oliker L. A whole-genome shotgun approach for assembling and anchoring the
hexaploid bread wheat genome. Genome Biol. 2015;16:1–17.

47. Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J, Linton L, Lander ES. An SNP
map of the human genome generated by reduced representation shotgun sequencing. Nature.
2000;407:513–6.

382 C. B. Antony Raj et al.



48. Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A. Preparation of reduced representa-
tion bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc.
2011;6:468–81.

49. Wang S, Lv J, Zhang L, et al. MethylRAD: a simple and scalable method for genome-wide
DNA methylation profiling using methylation-dependent restriction enzymes. Open Biol.
2015;5:150130.

50. van Gurp TP, Wagemaker NCAM, Wouters B, Vergeer P, Ouborg JNJ, Verhoeven KJF.
epiGBS: reference-free reduced representation bisulfite sequencing. Nat Methods.
2016;13:322–4.

51. Trucchi E, Mazzarella AB, Gilfillan GD, Lorenzo MT, Schönswetter P, Paun O. BsRADseq:
screening DNA methylation in natural populations of non-model species. Mol Ecol.
2016;25:1697–713.

52. Gugger PF, Fitz-Gibbon S, PellEgrini M, Sork VL. Species-wide patterns of DNAmethylation
variation in Quercus lobata and their association with climate gradients. Mol Ecol.
2016;25:1665–80.

53. Lea AJ, Altmann J, Alberts SC, Tung J. Resource base influences genome-wide DNA
methylation levels in wild baboons (Papio cynocephalus). Mol Ecol. 2016;25:1681–96.

54. Weyrich A, Lenz D, Jeschek M, Chung TH, Rübensam K, Göritz F, Jewgenow K, Fickel
J. Paternal intergenerational epigenetic response to heat exposure in male wild guinea pigs.
Mol Ecol. 2016;25:1729–40.

55. Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A,
Albuisson J, Heredia F, Audigier P. Assessing the impact of transgenerational epigenetic
variation on complex traits. PLoS Genet. 2009;5:e1000530.

56. Cortijo S, Wardenaar R, Colomé-Tatché M, Gilly A, Etcheverry M, Labadie K, Caillieux E,
Aury J-M, Wincker P, Roudier F. Mapping the epigenetic basis of complex traits. Science.
2014;343:1145–8.

57. Hofmeister BT, Lee K, Rohr NA, Hall DW, Schmitz RJ. Stable inheritance of DNA methyla-
tion allows creation of epigenotype maps and the study of epiallele inheritance patterns in the
absence of genetic variation. Genome Biol. 2017;18:1–16.

58. Pavey SA, Bernatchez L, Aubin-Horth N, Landry CR. What is needed for next-generation
ecological and evolutionary genomics? Trends Ecol Evol. 2012;27:673–8.

59. O’Connor M, Peifer M, Bender W. Construction of large DNA segments in Escherichia coli.
Science. 1989;244:1307–12.

60. Ariyadasa R, Stein N. Advances in BAC-based physical mapping and map integration
strategies in plants. J Biomed Biotechnol. 2012;2012:184854.

61. Sternberg N. Bacteriophage P1 cloning system for the isolation, amplification, and recovery of
DNA fragments as large as 100 kilobase pairs. PNAS. 1990;87:103–7.

62. Choi JY, Lye ZN, Groen SC, Dai X, Rughani P, Zaaijer S, Harrington ED, Juul S, Purugganan
MD. Nanopore sequencing-based genome assembly and evolutionary genomics of circum-
basmati rice. Genome Biol. 2020;21:21.

63. Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, TimpW. Detecting DNA cytosine
methylation using nanopore sequencing. Nat Methods. 2017;14:407–10.

64. Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in
plants and animals. Nat Rev Genet. 2010;11:204–20.

65. Jiao W-B, Schneeberger K. The impact of third generation genomic technologies on plant
genome assembly. Curr Opin Plant Biol. 2017;36:64–70.

66. Schmidt MH-W, Vogel A, Denton AK, et al. De novo assembly of a new Solanum pennellii
accession using nanopore sequencing. Plant Cell. 2017;29:2336–48.

67. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman
B. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–8.

68. VanBuren R, Bryant D, Edger PP, et al. Single-molecule sequencing of the desiccation-
tolerant grass Oropetium thomaeum. Nature. 2015;527:508–11.

17 SNP Identification and Discovery 383



69. Feng Z, Fang G, Korlach J, Clark T, Luong K, Zhang X, Wong W, Schadt E. Detecting DNA
modifications from SMRT sequencing data by modeling sequence context dependence of
polymerase kinetic. PLoS Comput Biol. 2013;9:e1002935.

70. Weber APM, Weber KL, Carr K, Wilkerson C, Ohlrogge JB. Sampling the Arabidopsis
transcriptome with massively parallel pyrosequencing. Plant Physiol. 2007;144:32–42.

71. Libault M, Farmer A, Joshi T, Takahashi K, Langley RJ, Franklin LD, He J, Xu D, May G,
Stacey G. An integrated transcriptome atlas of the crop model Glycine max, and its use in
comparative analyses in plants. Plant J. 2010;63:86–99.

72. Lu T, Lu G, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y, Li W. Function annotation
of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res.
2010;20:1238–49.

73. Ozsolak F, Ting DT, Wittner BS, Brannigan BW, Paul S, Bardeesy N, Ramaswamy S, Milos
PM, Haber DA. Amplification-free digital gene expression profiling from minute cell
quantities. Nat Methods. 2010;7:619–21.

74. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev
Genet. 2009;10:57–63.

75. Zhao H, Sun L, Xiong T, et al. Genetic characterization of the chromosome single-segment
substitution lines of O. glumaepatula and O. barthii and identification of QTLs for yield-related
traits. Mol Breed. 2019;39:51.

76. Jaccoud D, Peng K, Feinstein D, Kilian A. Diversity arrays: a solid state technology for
sequence information independent genotyping. Nucleic Acids Res. 2001;29:e25.

77. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A. Diversity arrays
technology (DArT) for whole-genome profiling of barley. PNAS. 2004;101:9915–20.

78. Ronaghi M, Uhlén M, Nyrén P. A sequencing method based on real-time pyrophosphate.
Science. 1998;281:363–5.

79. Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, Heiner C, Kent SBH,
Hood LE. Fluorescence detection in automated DNA sequence analysis. Nature.
1986;321:674–9.

80. Smith LM. The future of DNA sequencing. Science. 1993;262:530–2.
81. Storm N, Darnhofer-Patel B. MALDI-TOF mass spectrometry-based SNP genotyping. In:

Kwok P-Y, editor. Single nucleotide polymorphisms: methods and protocols. New York:
Springer; 2003. p. 241–62.

82. Bhardwaj A, Bag SK. PLANET-SNP pipeline: PLants based ANnotation and Establishment of
True SNP pipeline. Genomics. 2019;111:1066–77.

83. Mansueto L, Fuentes RR, Chebotarov D, et al. SNP-seek II: a resource for allele mining and
analysis of big genomic data in Oryza sativa. Curr Plant Biol. 2016;7–8:16–25.

84. Mao L, Chen M, Chu Q, et al. RiceRelativesGD: a genomic database of rice relatives for rice
research. Database (Oxford). 2019;2019:baz110. https://doi.org/10.1093/database/baz110.

85. Yan J, Zou D, Li C, Zhang Z, Song S, Wang X. SR4R: an integrative SNP resource for
genomic breeding and population research in rice. Genomics Proteomics Bioinform.
2020;18:173–85.

86. Yonemaru J, Ebana K, Yano M. HapRice, an SNP haplotype database and a web tool for rice.
Plant Cell Physiol. 2014;55:e9.

87. Scheben A, Verpaalen B, Lawley CT, Chan C-KK, Bayer PE, Batley J, Edwards
D. CropSNPdb: a database of SNP array data for Brassica crops and hexaploid bread wheat.
Plant J. 2019;98:142–52.

88. Curry EW. A framework for generalized subspace pattern mining in high-dimensional
datasets. BMC Bioinform. 2014;15:355.

89. Dereeper A, Nicolas S, Le Cunff L, Bacilieri R, Doligez A, Peros J-P, Ruiz M, This
P. SNiPlay: a web-based tool for detection, management and analysis of SNPs. Application
to grapevine diversity projects. BMC Bioinform. 2011;12:134.

384 C. B. Antony Raj et al.

https://doi.org/10.1093/database/baz110


90. Nijveen H, van Kaauwen M, Esselink DG, Hoegen B, Vosman B. QualitySNPng: a user-
friendly SNP detection and visualization tool. Nucleic Acids Res. 2013;41:W587–90.

91. Tareke Woldegiorgis S, Wang S, He Y, et al. Rice stress-resistant SNP database. Rice.
2019;12:97.

92. Consortium IP. Information commons for rice (IC4R). Nucleic Acids Res. 2016;44:
D1172–80.

93. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-
CoV-2 by full-length human ACE2. Science. 2020;367:1444–8.

94. Ware D, Jaiswal P, Ni J, et al. Gramene: a resource for comparative grass genomics. Nucleic
Acids Res. 2002;30:103–5.

95. Sakai H, Lee SS, Tanaka T, et al. Rice annotation project database (RAP-DB): an integrative
and interactive database for rice genomics. Plant Cell Physiol. 2013;54:e6.

96. Lazzari B, Caprera A, Vecchietti A, Stella A, Milanesi L, Pozzi C. ESTree db: a tool for peach
functional genomics. BMC Bioinform. 2005;6:1–6.

97. Wei Z, Wang W, Hu P, Lyon GJ, Hakonarson H. SNVer: a statistical tool for variant calling in
analysis of pooled or individual next-generation sequencing data. Nucleic Acids Res. 2011;39:
e132.

98. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, Weinstock GM,
Wilson RK, Ding L. VarScan: variant detection in massively parallel sequencing of individual
and pooled samples. Bioinformatics. 2009;25:2283–5.

99. Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, McEwen R, Johnson J,
Dougherty B, Barrett JC, Dry JR. VarDict: a novel and versatile variant caller for next-
generation sequencing in cancer research. Nucleic Acids Res. 2016;44:e108.

100. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv
preprint arXiv:1207.3907; 2012.

101. Smith SM, Maughan PJ. SNP genotyping using KASPar assays. Methods Mol Biol.
2015;1245:243–56.

102. Wu MC, Kuan P-F. A guide to illumina BeadChip data analysis. In: Tost J, editor. DNA
methylation protocols. New York, NY: Springer; 2018. p. 303–30.

103. Li F, Kitashiba H, Inaba K, Nishio T. A Brassica rapa linkage map of EST-based SNP markers
for identification of candidate genes controlling flowering time and leaf morphological traits.
DNA Res. 2009;16:311–23.

104. Kruglyak L. The use of a genetic map of biallelic markers in linkage studies. Nat Genet.
1997;17(1):21–4. https://doi.org/10.1038/ng0997-21.

105. Nakanishi N, Wada T, Arikawa K, Millet J, Rastogi N, Iwamoto T. Evolutionary robust SNPs
reveal the misclassification of Mycobacterium tuberculosis Beijing family strains into
sublineages. Infect Genet Evol. 2013;16:174–7.

106. Rai AJ, Yee J, Fleisher M. Biomarkers in the era of personalized medicine—a multiplexed
SNP assay using capillary electrophoresis for assessing drug metabolism capacity. Scand J
Clin Lab Invest. 2010;70:15–8.

107. Huang X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M. Genome-wide
association studies of 14 agronomic traits in rice landraces. Nat Genet. 2010;42:961.

108. Lekklar C, Pongpanich M, Suriya-arunroj D, Chinpongpanich A, Tsai H, Comai L,
Chadchawan S, Buaboocha T. Genome-wide association study for salinity tolerance at the
flowering stage in a panel of rice accessions from Thailand. BMC Genomics. 2019;20:76.

109. Huq MA, Akter S, Nou IS, Kim HT, Jung YJ, Kang KK. Identification of functional SNPs in
genes and their effects on plant phenotypes. J Plant Biotechnol. 2016;43:1–11.

110. Wendel JF. Genome evolution in polyploids. In: Doyle JJ, Gaut BS, editors. Plant molecular
evolution. Dordrecht: Springer Netherlands; 2000. p. 225–49.

17 SNP Identification and Discovery 385

https://doi.org/10.1038/ng0997-21


111. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide
genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet.
2011;12:499–510.

112. Kim K-T, Lee HW, Lee H-O, Song HJ, Shin S, Kim H, Shin Y, Nam D-H, Jeong BC, Kirsch
DG. Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic
strategy in metastatic renal cell carcinoma. Genome Biol. 2016;17:1–17.

113. Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of
RADseq for ecological and evolutionary genomics. Nat Rev Genet. 2016;17:81.

114. Ma J-Q, Huang L, Ma C-L, Jin J-Q, Li C-F, Wang R-K, Zheng H-K, Yao M-Z, Chen L. Large-
scale SNP discovery and genotyping for constructing a high-density genetic map of tea plant
using specific-locus amplified fragment sequencing (SLAF-seq). PLoS One. 2015;10:
e0128798.

386 C. B. Antony Raj et al.



Microsatellite Markers from Whole Genome
and Transcriptomic Sequences 18
Manoj Kumar Gupta, Ravindra Donde, S. Sabarinathan,
Gayatri Gouda, Goutam Kumar Dash, Pallabi Pati,
Sushil Kumar Rathore, Ramakrishna Vadde,
Priyadarsini Sanghamitra, C. Parameswaran, and Lambodar Behera

Abstract

Microsatellites (MS) or simple sequence repeats (SSRs) is a DNA sequence set
comprising of tandemly repeated motifs. SSRs with codominant inheritance,
higher amounts, moderately conservative flanking sequences, and rich polymor-
phism are commonly distributed throughout the plants and animals’ genome. MS
has already been employed in several crop plants for determining their seed lots’
genetic integrity and to evaluate the capacity of plant varieties to defend their
intellectual property. Thus, the key objective of this chapter is to include a revised
and comprehensive overview of the SSR marker and its applications in various
biological domains. Additionally, we have discussed genomic occurrence and the
advantage/disadvantages of employing microsatellites as genetic markers in
agricultural research.
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Abbreviations

ESTs Expressed sequence tags
GNMS Genic non-coding microsatellite
InDel Insertion-deletion
MAB Marker-assisted backcrossing
MAS Marker-assisted selection
MFRs Microsatellite flanking regions
MS Microsatellites
NGS Next-generation sequencing
QTL Quantitative trait loci
SNP Single nucleotide polymorphism
SSRs Simple sequence repeats (SSRs)

18.1 Introduction

DNA sequences set comprising of tandemly repeated motifs is known as
microsatellites (MS) or simple sequence repeats (SSRs) [1, 2]. SSRs with codomi-
nant inheritance, higher amounts, moderately conservative flanking sequences, and
rich polymorphism are commonly distributed throughout the plants and animals’
genome. The SSRs polymorphisms, generated from motif repeat times, can be
quickly identified by amplification of PCR [3]. SSR markers are thus known to be
a class of molecular markers that are cost-effective, accurate, and strongly polymor-
phic and are commonly used in genetic and breeding research [4]. Even today, while
molecular markers like single nucleotide polymorphism (SNP) or insertion-deletion
(InDel) are rapidly emerging through third-generation sequencing, SSR markers are
still important in molecular breeding, crop genetic analysis, and quantitative trait loci
(QTL) mapping. From sequences generated from transcriptome, genome, and
expressed sequence tags (EST), corresponding g-SSR, EST-SSR, and
transcriptome-SSR markers are developed, respectively [5]. The g-SSRs displayed
a higher polymorphism rate relative to the EST-SSRs and transcriptome-SSRs
[6, 7]. In addition, the majority of the g-SSRs derive from the chromosome’s
known physical position and provide more precise information, particularly in
gene/QTL mapping. SSR has already been employed in several crop plants for
determining their seed lots’ genetic integrity [8], and to evaluate the capacity of
plant varieties to defend their intellectual property [9]. These markers are often used
to a large degree to determine genetic variation and associations between species and
lines, as well as for distinguishing crop varieties. The benefits of SSRs over SNPs are
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that SSRs support relative ease of transition amongst nearly related species [10, 11]
and strong allelic diversity [12, 13].

However, SSRs have certain limitations in comparison to SNPs: the production
process for multi-locus assays is very long and costly, and the throughput is
comparatively poor. Recently, to overcome these issues, progress has been made
in the synthesis of multi-locus assays in many ways, indicating that SSR markers
remain, at least for basic applications as well as genetic studies, as important
molecular tools [14]. In reality, SSR genotyping based on PCR has rapidly evolved
within plants. Techniques have been established for the concurrent multiple marker
loci amplification augmented with semi-automated identification systems [15]. Due
to the advent of next-generation sequencing (NGS) technologies, the detection and
discovery of SSR markers have also become cheaper and quicker. In addition, it has
become much simpler to multiplex complex combinations of microsatellite markers.
The existence of capillary electrophoresis device dependent on computerized “laser-
induced fluorescence DNA technology” has also encouraged the implementation as
well as usage of this approach within relevant breeding programs [16–18]. For
classifying as well as identifying a cultivated variety and for establishing its unifor-
mity, stability and differentiation, and genotypic features, SSR analysis is an appro-
priate molecular method accessible to all organisms. They are capable of assisting
phenotypic reflection (DUS testing) [18–20]. Thus, the key objective of this chapter
is to include a revised and comprehensive overview of the SSR marker and its
applications in various biological domains.

18.2 Microsatellites: Definition and Genomic Occurrence

Tandem repeats with very small nucleotide motifs, such as TCCTCCTCCTCC, are
known as SSRs or microsatellite. The microsatellite repeats may vary from two (AG)
2 to a few dozen (ACAT)11 nucleotides, while several dozens of repeated motifs are
known as minisatellites [21]. In eukaryotes and prokaryotes, microsatellites are
largely distributed across the genome, specifically within eukaryotes’ nuclear
euchromatin and organellar DNA coding as well as a non-coding region
[22, 23]. To date, numerous studies have been conducted to support that SSRs are
not spread around the genome at random. In 2006, Lawson and Zhang showed that
SSR distribution is extremely non-random employing comparative analysis, and it
varies distinctly in various regions of the rice and Arabidopsis thaliana genome
[24]. In the major cereals, researchers have also tended to categorize microsatellites
based on various parameters. SSRs were divided into two groups within the barley
and Avena species: those with distinct sequences on either flank and those deeply
entwined with retrotransposons and other scattered repetitive components. In oat
cultivars, the second form shows less polymorphism [25, 26]. In 2001, Temnykh and
the team classified microsatellites dependent on length employing publicly accessi-
ble DNA sequence data of the rice genome and found that larger perfect repeats
(�20 nucleotides) were strongly polymorphic [27]. It has been discovered that
microsatellites with SSRs <12 bp have a mutation capacity no diverse from most
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of the distinct sequences. In addition, researchers recorded that approximately 80%
of GC-rich trinucleotides appeared within exons, while AT-rich trinucleotides were
nearly equally spread among all genomic components (untranslated regions, coding
sequences, intergenic and introns spaces). The tetranucleotide SSRs are largely
found within the rice genome’s non-coding regions, primarily intergenic regions.
Later it was detected that the SSR distributions were non-random in the maize
genome’s various regions, and untranslated regions (UTR) have the highest density,
eventually dropping off within the regions of the promoter, intergenic, intron, and
coding region [28].

Correlations of microsatellite distributions in the chromosomes of Silene latifolia
and Rumex acetosa, on the other hand, revealed that certain motifs (e.g., TAA or
CAA) in the sex chromosome’s (Y) non-recombinant regions are highly
accumulated in both plant organisms [29]. Likewise, in a group of fish species
(Leporinus spp.) that share the ZW sex system, a rather broad accumulation com-
prising primarily of microsatellites on the heterochromatic W chromosome was
recorded, suggesting an interconnectedness amongst heterochromatinization and
the repetitive sequences accumulation that has been suggested as the basis for the
sex chromosome evolution [30]. Commonly SSRs experience a large mutation rate
that is associated with gene expression, and thus it may be claimed that the incidence
of SSRs is lowest within gene regions. Studies suggest that there is an SSRs
preponderance with tri- and hexanucleotide gene motifs within coding areas, the
product of selection pressure against mutations that change the reading frame
[31, 32]. In humans, the consensus is that SSRs can often originate within coding
areas, thereby contributing to the presence within protein sequences having repeated
patterns. Tandem repeats in several proteins have been documented in protein
sequence database analyses, and the underlying mechanisms within their genesis
may lead to the rapid evolution of proteins [33, 34].

Repeat polymorphisms in the SSRs are typically the product of the complete
repeat units or motifs being inserted or omitted. Therefore, various individuals show
changes in repeat numbers as discrepancies. In other words, the polymorphisms
found within SSRs are the variations in the template number repeats induced by
DNA replication or recombination errors owing to polymerase strand-slippage.
Strand-slippage replication is a defect of DNA replication in which there is a
mismatch between the “template and nascent” strands. That implies that the strand
of the template will loop out, thereby causing contraction. The “nascent” strand may
also loop out, contributing to the extension being repeated. In addition, recombina-
tion events, like uneven crossing over as well as gene transfer, can lead to expansions
and contractions of the SSR sequence. The purer and longer the repeat, the higher the
risk of mutation, while shorter repeats of lower purity experience lower mutation
frequency. New alleles at SSR loci are produced by mutations which have evaded
correction through the DNA mismatch repair mechanism. For this cause, at a given
SSR locus, there might be multiple alleles, which suggests that SSRs are more
descriptive in comparison to other molecular markers, like SNPs. As for their
arrangement, SSRs may be classified by motif as: “(a) perfect if composed entirely
of repeats of a single motif; (b) imperfect if a base pair not belonging to the motif
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occurs between repeats; (c) interrupted if a sequence of a few base pairs is inserted
into the motif; or (d) composite if formed by multiple, adjacent, repetitive motifs”
[35, 36].

18.3 Advantage and Disadvantages of Microsatellites
as Genetic Markers

The key benefits of microsatellite markers are codominant (heterozygotes may be
differentiated from homozygotes) transmission, locus-specific in nature, strongly
polymorphic and hypervariable, strong pattern and knowledge quality, the relative
abundance of standardized genome distribution, higher-than-average mutation rate,
and simple preparation for sampling. Potential benefits of microsatellites like short
size range, continuous stretches of similar repeat units, strong polymorphism pro-
portion, insights gained in recognizing the mutational mechanism that helps to
improve statistical interpopulation comparison procedures, their prevalence in fish
and other organisms’ genomes, and the existence of microsatellite cloning
methodologies have all contributed to the creation of statistical interpopulation
comparison procedures. Microsatellites of tetranucleotides are often very effective
for paternity and human forensic examinations. New technologies such as digital
recording and automatic identification and scoring systems like automated DNA
sequences and fluorescent imaging instruments have benefited from the beneficial
properties of microsatellites [37].

Microsatellite drawbacks include the existence of shadow or stutter bands, the
occurrence of null alleles (existing alleles not detected using normal assays), homo-
plastic, and too many alleles at some positions that would need very large sample
sizes for analysis [38]. “Microsatellite flanking regions” (MFRs) often include
lengthy mutants that can generate similar lengthy variants that could undermine
studies of microsatellite population level (and comparisons of variance levels for
homologous loci across species) and phylogenetic inferences as these lengthy
variants in the flanking regions may potentially reduce the variation of allele duration
within the repeat region [39].

18.4 Biological Functions of SSRs

The introduction of repetitive sequences into genomes of eukaryotes can confer an
evolutionary adaptability advantage to novel environments [40, 41]. There have
been well-documented discussions on the SSRs’ functional role(s) within species
adaptation as well as survival [42, 43]. The effects of contraction and expansion of
the SSR motifs inside genes, however, have stimulated the assignment to SSRs’
biological function. To date, the loci associated with fragile-X and Huntington’s
disease [44] are the best-reported examples of SSRs with phenotypic effects. SSRs
can also be active in controlling the expression of neighbouring genes in the UTR
areas, as shown by the GT repeat within the “Tilapia prolactin 1” gene in fish in
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regard to the salt-related conditions [45]. By affecting mRNA splicing and its
translocation to cytoplasm, intronic SSRs can control gene expression, as seen by
the CCTG repeat within the first intron of “zinc finger protein 9” (ZNF9) of human,
in which repeat extension induces failure of one intron splicing, which in turn results
in myotonic dystrophy [46]. While biological roles have not yet been reported for
SSRs in plants, related roles are predicted in plant genes for these biomolecular
markers.

There is always a debate on whether certain SSRs functionally have an ecological
value and are they appropriate for studying biodiversity and environmental protec-
tion of endangered species. Few researchers have suggested that many of the
molecular markers used in population genetics did not undergo filtering and were
thus largely neutral. The frequency of alleles in neutral theory is calculated by
strictly stochastic processes [47]. Neutral molecular markers can be useful in con-
servation biology to provide fundamental knowledge regarding community mating
forms, gene distribution, and the population background of a species [48]. However,
as assessed by neutral RAPD markers, there was a substantial difference between
genetic divergence and that evaluated through the monkey puzzle tree’s quantitative
genetic traits (Araucaria araucaucana) (a fragile tree that is endemic to the southern
region of South America) [49]. Tienderen and the team [50] suggested that gene-
targeted functional markers can lead to ecological diversity studies, endangered
species protection, and ex situ genetic resource management. Holderegger and the
team [51] included an “adaptive versus neutral diversity” hypothesis for studying
landscape genetics in which the diversity evaluated through neutral markers is better
adapted to the gene flow processes analysis within ecosystems, while the diversity
tested through quantitative genetic tests utilizing functional markers is ideally suited
to the assessment of the evolutionary or adaptive ability of a species. They suggested
that these variations amongst adaptive and neutral genetic variance must be consid-
ered via ecologists when elucidating the landscape genetic studies’ outcome. It is
pertinent to note that, nevertheless, that variance within functional genes may depict
the selection’s previous effect, which may vary in every gene and may influence the
past, migration, and drift variation profiles [51]. Since genomic SSR markers are
largely neutral, certain adaptive functions may be maintained by genetic SSRs from
ESTs or cDNAs. This duality of selection and adaptation gives the usage of SSRs
another benefit in characterizing the genetic variability of the capital held in various
institutes of germplasm.

18.5 Development of SSR Markers

Fully sequenced genomes aid in the identification as well as the development of the
huge amount of microsatellite gene-based markers. Rice (Oryza sativa L.), for
example, is the first cereal whose genome has been completely sequenced, which
in turn led to the development of a significant number of microsatellite markers
[52]. Polymorphic 52,485 microsatellite markers amongst japonica and indica were
recently developed by Zhang et al. [53]. The main problem, however, lies in
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detecting the most appropriate as well as insightful microsatellite markers from that
much large dataset for genotyping rice. By building smaller as well as detailed
microsatellite marker databases comprising of markers situated in potentially usable
gene sequences having higher polymorphic potential, this problem can be overcome.
Parida and the team [54] reported 19,555 perfect “genic non-coding microsatellite
(GNMS)” repeats on chromosomes 12 and 1 within the rice, taking into account the
excellent genetic qualities as well as higher expected informativity of GNMS
markers. With the entire genome of rice sequenced now, within each genes’ few
thousand base pairs, microsatellite markers can be created. Research by Goff et al.
[55], for example, indicates that there is a mean of one microsatellite repetition
(demarcated as at ~8 repetitions of a 2–4 bp motif) per 8 kb, thereby generating
nearly 48,351 markers within the whole genome [56].

Saarinen and Austin [57] have designed PCR primers to amplify microsatellite
markers employing the online program, namely, Primer3 through subjectively
selecting primers “flanking the repeat regions”. The primers were subsequently
retrieved from numerous industrial manufacturers and checked for their capacity
for amplifying the microsatellites as well as distinguish polymorphisms amongst the
parental lines employed in the mapping studies of Pi-z. The RM6836 and RM527
markers, which were earlier situated nearby the Pi-z locus [58], were retrieved from
the gramene (http://www.gramene.org/) database [59] and employed in the primary
tests [60]. Different NGS technologies, like GS FLX, Roche 454, and HighSSR, are
already being employed for microsatellite exploration, with substantial cost as well
as less time [57, 61–64]. Rapid developments of NGS technologies have lowered
costs significantly while enhancing throughput and precision exponentially. At
present, the IlluminaHiSeq2000 [65] is the most cost-effective NGS tool, which
can minimize costs by 3400 times compared to conventional sequencing methods; it
is fair to believe that continuing advances would result in still lower costs [66].

Earlier DNA markers have been designed by Fjellstrom and the team [67]
employing four distinct approaches. Five of these markers (RM155, RM138,
RM101, RM166 and RM144) are focused on a previous microsatellites group
found at the University of Texas A&M through scanning repetitive sequences
from the publicly available DNA sequence database of the NCBI, as defined in
Temnykh et al. [68]. Through mapping these genes in several populations identified
by Conaway et al., the genomic positions of Pi-k, Pi-ta2, and Pi-b and their actual
linkages have been detected [69]. Three additional closely related markers have been
subsequently defined through mapping these initial markers comparative to micro-
satellite markers produced employing conventional approaches at Cornell University
[68]: RM266, RM224, and RM208. The authors mapped these markers nearby the
“blast resistance genes”, namely, Pi-k, Pi-ta2, and Pi-b, on rice chromosomes 11, 12,
and 2, respectively, after discovering candidate microsatellite markers employing
various publicly available database tools. Subsequent to the public availability of the
“Monsanto rice microsatellite database”, two additional associated microsatellite
markers, namely RM7102 and RM1233, were released [70]. Though several DNA
markers have been produced for rice blasting resistance, the majority are not
appropriate for regular usage within the MAS program comprising of large progeny
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number. Pibdom, a dominant Pi-b gene marker, has also been established dependent
on the cloned Pi-b gene sequences [71] (GenBank accession AB013448). The
introgression, as well as the pyramidization of these three blast tolerance genes
into new rice cultivars as well as elite lines [67], should be encouraged by these
markers. In addition, the “International Rice Microsatellite Initiative” (IRMI) has
established “a high-density microsatellite map with a genome coverage of approxi-
mately one microsatellite per 0.5 cM” [70], which can be used to establish closely
connected markers for a number of agronomic traits, like blast resistance. The freely
accessible full genomic sequences accessibility of the rice subspecies japonica and
indica (http://www.genomics.org.cn; http://rgp.dna.affrc.go.jp;) has allowed rice
researchers for producing additional markers for high-quality mapping of targeted
genes. Novel SSR, CAPS, and InDel markers [72] have been developed for acquir-
ing a “high-density linkage map” to generate “fine-scale mapping”within their target
area, utilizing the publicly accessible genome sequence of the rice (http://rgp.dna.
affrc.go.jp).

18.6 Applications of Microsatellites

Because of its hypervariable existence and broad genome coverage, microsatellites
have been a marker of choice for large number of plant species. In a germplasm set,
these are employed for testing genetic variance at the molecular level to allow
sufficient selection of parents for gene mapping, crosses (i.e., hybrid breeding),
and QTLs for agronomic as well as disease resistance characteristics, genome
mapping, MAS and “marker assisted backcrossing” (MAB) during breeding
projects, and gender identification. Diversity study, genetic similarity measurements
or variations between plant species are valuable knowledge for the conservation of
crops and varietal growth [73]. In addition, the knowledge is often helpful in
characterizing plant germplasm collections and for taxonomic studies. Because of
codominant existence, the high degree of polymorphism, high quality, as well as
reproducibility, microsatellite markers have proven to be a powerful instrument for
estimating genetic diversity and phylogenetic relationships of organisms dependent
on sequence conservation in recent years. In cultivar detection, microsatellites are
beneficial and are often advantageous in pedigree research since they display a single
locus. These multiallelic markers enables accurate comparative detection of allelic
heterogeneity through a broad variety of germplasm [74]. The determination of
hybridity is another significant application of microsatellites, in which the codomi-
nant structure of microsatellites plays an important role and permit for the allelic
contribution of each parent to be established in sexual as well as somatic
hybrids [75].

The female plants are economically prized for the development of fruits (papaya,
seabuckthorn, kiwi fruit, dates, etc.) and seeds. A select group of flowering plants are
sexually dimorphic (pistachio, nutmeg, black pepper, etc.). However, the most
dioecious plants’ sex is not morphologically revealed, and at the seedling stage,
the female and male plants cannot be differentiated. In species where an organism’s
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sex is only disclosed subsequent to flowering, may take many months (papaya,
Coccinia) to many years, this issue can even be more complex in few plants (nutmeg,
date palm, and jojoba). In many species, sex-related microsatellite markers have
been identified, like hemp [76], Actinidia chinensis [77], hop [78], wild strawberry
[79], Carica papaya [80]. Parasnis and the team (1999) employed a microsatellite
probe (GATA)4 in papaya as a diagnostic biomarker and revealed the sex-specific
DNA variation at every point of plant development. Recently, utilizing 644 micro-
satellite markers, Fraser et al. [77] have developed gene-rich male, female as well as
consensus linkage maps of the diploid species namely A. chinensis. They established
genetic linkage maps identifying the haploid genome’s 29 linkage classes, unveiled
the location and scale of the locus that decides sex, and also defined putative X and Y
chromosomes by sex-linked markers.

The creation of unique organelle markers (i.e., mtSSR and cpSSR) had a signifi-
cant influence on the identification of structure and diversity, as well as phylogenetic
relationships, within a natural population. The uniparental inheritance mode retained
gene order as well as absence of heteroplasmia and recombination of organelle
genomes that render them an attractive instrument for evolutionary studies, espe-
cially levels of differentiation, migration trends, as well as population histories
[81]. ESTs, though, are often employed for such research when one specifically
aims at the development of functioning genes in such experiments [74]. Genetic
complexity assessment and phylogenetic associations have culminated in the dis-
covery of certain reclassified misclassified accessions. The examination of genetic
diversity and the creation of phylogenetic relationships would provide valuable
knowledge for the collection of parental lines for carrying out breeding studies,
accessions classification to plant germplasm, and further curation as well as the
acquisition of new accessions to plant germplasm [82].

In identifying particular genomic regions associated with the development of
essential agronomic and physiological features, microsatellite markers have been
efficiently employed. In addition, microsatellite markers may also be employed for
evaluating QTLs associated with the detection of candidate interest trait genes that
are especially important for a breeding program such as yield, disease resistance,
consistency of seed and fruit, and resilience to stress [73, 83]. Nevertheless, in
comparison to genomic library microsatellite markers, EST-SSRs may lead to the
direct selection of alleles since they have putative or established roles and may be
correlated with targeted phenotype functions [84]. Association mapping relating to a
substantial molecular marker associated with a phenotypic feature is particularly
helpful for the application of marker-assisted quantitative characteristics selection in
plant breeding programs [85]. QTL mapping typically employs a bi-parental cross-
community, while association mapping employs a set of people of varying ethnicity.
Genetic maps of many plant species have been prepared in recent years, including
corn, barley, potato, wheat, sorghum, cotton, white clover, ryegrass, and raspberry.
Microsatellite markers, once mapped, may be used to tag some individual traits that
are especially important for a breeding program. In several significant crop species
such as potatoes, wheat, corn, and soybeans, association mapping using SSR
markers has been successfully carried out [82]. In potato cultivars, the interaction
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between the microsatellite marker and QTL for resistance to Verticillium dahliae has
been established, which in turn contributes to QTL cloning for resistance to
V. dahliaee [86]. The link amongst SSR markers and the wheat kernel size was
established using elite germplasm interaction mapping [85].

In addition, for MAS, a wide number of monogenic as well as polygenic loci for
different characteristics may be defined and used [74]. MAS will enable breeders to
circumvent conventional choices focused on phenotypes in the region, thus speeding
up breeding programs. In three backcross generations, the rice variety Swarna could
be effectively transformed into a submergence-resistant variety, requiring a duration
of 2–3 years utilizing marker-aided backcrossing [83]. Employing “~ 9,892
subtracted drought stress, ESTs of sorghum” accessible in the NCBI dbEST data-
base, Srinivas et al. [87] investigated microsatellite loci and proposed that it could be
relevant for drought stress in QTL research. In another study, ~20,162 salinity-
responsive as well as drought-ESTs from 10 separate root tissue cDNA libraries of
chickpea were created through Varshney and the team [88]. The created collection of
ESTs functions as a resource for high-quality gene discovery transcripts as well as
the production of functional markers related with tolerance of abiotic stress. It is also
possible to merge transgenic methods with MAS for the production of insect- as well
as disease-resistant cultivars.

Another area where microsatellites are being employed widely is genome
mapping. The mapping of genomes includes physical mapping, genetic mapping,
association mapping, and comparative mapping. Microsatellite marker genetic
mapping in plants was first recorded in tropical trees and subsequently reported in
rice, soybeans, etc. Over 80 genetic maps have been built thus far, through
employing SSR markers from several plant organisms. In several plant types,
including the legumes, Solanaceae family, crucifers, and grasses, comparative
mapping has been successfully carried out [82]. There is a strong opportunity for
comparative genomics of relatives of Arabidopsis to enhance our knowledge of the
molecular structure and evolutionary processes. A significant context for compara-
tive genomics analysis is provided by recent analyses of phylogenetic relationships
within Brassicaceae. An ancestral karyotype of these species has been concluded
through comparative linkage mapping as well as chromosome painting in the near
Arabidopsis relatives. Furthermore, Brassica’s comparative mapping established
genomic blocks that have been preserved since the Arabidopsis and Brassica
lineages diverged [89]. For comparative visualization, microsatellite markers
amongst Castanea sativa (Mill.) and Quercus robur (L.) have been employed
[90]. In rice, wheat, barley, and rye, EST-SSR markers have been employed for
comparative visualization. The conservative chromosome areas amongst wheat and
rice and the occurrence of barley EST-SSR orthologues in various organisms have
been reported as well as recognized [84, 91, 92]. For the creation of whole-genome
physical maps of model crop organisms, SSR markers have also been employed.
SSR markers have been employed for anchoring and evaluating the physical and
genetic soybean map frames [93, 94]. Employing BAC end sequences and SSR
markers, a ~ 2 Mb BAC contig’s physical map was built in the region of ~80 cM of
chromosome 2 of Arabidopsis thaliana [95].
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Because of their cost-efficiency and their application in broad-scale genotyping,
the emergence of novel technology has not influenced the utility of microsatellites.
Microsatellite-based markers, including varietal and cultivar discrimination,
map-based cloning, marker-assisted breeding, and gene flow studies, are accurate
and simple-to-use instruments for fingerprinting applications. In view of the pres-
ence of multiple main and secondary gene pools in several plants’ types, the future of
microsatellite-based markers is encouraging. These gene pools’ categorization is an
enormous challenge, and the only inexpensive, reproducible, and effective approach
that will be capable for these characterization studies is microsatellite-dependent
markers.

18.7 Software for Microsatellite Development

To date several softwares have been developed for microsatellite development
(Table 18.1) and its analysis (Table 18.2). Few have been described below.

18.7.1 Geneious

Geneious is a desktop applications package for sequence knowledge organization
and interpretation in molecular biology [96]. In order to satisfy the particular needs
of users, microsatellite architecture includes many plugins (e.g., MISA, Phobos, and
Primer3). It is a commercial software that involves the procurement of an activation
certificate, boosting the budget for testing. Phobos, which can be operated free of
charge separately from Geneious, is the part that searches for microsatellite loci.
Phobos has both command-line and GUI interfaces, and it easily processes massive
data. In less than an hour on a regular laptop, every data set checked completed the
quest (“2.5-GHz Intel Core i5, 8 GB RAM”). Phobos may not communicate
specifically with Primer3. However, the effects of the position scan in Phobos will
quickly be piped to Primer3 if Phobos is used by Geneious. Phobos is quick and
user-friendly for the production of microsatellite locations.

18.7.2 GMATo

GMATo comes with a graphical Java GUI and is available for use shortly after
execution [97]. The findings of GMATo are provided as a table of statistics for SSR
loci. It works fast; it finished the job within 52 min on a Windows desktop computer
for the “HiSeq2 data set (a 5.7-GB file) (Eight Core 3.4-GHz Intel Core i7-2600
CPU, 16 GB RAM)”. However, the distribution of repeat number motifs cannot be
regulated by the individual, and any repeat duration must be set to the same amount.
This software is incapable of generating marker generation, primer configuration, or
electronic mapping markers.
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18.7.3 HighSSR

In the PCR primers for retrieved loci, HighSSR recognizes microsatellites and
reduces redundancy [64]. Employing “Tandem Repeats Finder” (TRF; [98]), it
detects as well as grades SSRs within raw sequencing reads and stores them in a
PostgreSQL database, reporting summary information, for instance, the alleles
number of each SSR locus that can be evaluated with other applications. HighSSR
demultiplexes pooled libraries, evaluates polymorphism of the locus and applies
Primer3 for the configuration of the primer. Finally, for refining crude clusters and
extract loci from them, Muscle [99] is used. A “Java virtual machine”, however, and
database access on a PostgreSQL server are necessary. In addition, it allows it
impossible to use non-universal parameter settings, separate Java codes as well as
shell scripts. We could open just our smallest test data file for the TRF executable file
(PacBio; 445 MB).

18.7.4 MISA

MISA is an abbreviation for the “MIcroSAtellite identification tool”, which was
originally developed to produce SSR loci from EST results [100]. When Perl is
enabled and runs fast, it operates immediately; the 5.7-GB HiSeq2 data collection
was completed in 1.8 h (“one node, one processor, and 4 GB of memory”). By
modifying a configuration file (“misa.ini”), users are able to adjust the default
configurations, and MISA is capable of building primers. The reports are in tabular
form, providing a description of the numerous figures, like the occurrence of a
particular sort of microsatellite. Some reports, however, show that MISA might
have been redundantly mined in overlapping microsatellites [97, 101].

18.7.5 MSATCOMMANDER

MSATCOMMANDER facilitates quick and automatic identification of
microsatellites, the locus-specific configuration of the primer and labelling
[102]. It needs Python and provides output files in the format of a “comma-separated
value” (CSV). The findings, however, are hard to see and do not contain general
overview statistics on the types of microsatellite loci detected. In order to classify
simple data, the user must expend significant time filtering the output file (e.g., the
dinucleotide repeats number detected). It utilizes Primer3 as its engine for primer
modelling and primer-tagging.

18.7.6 PAL_FINDER

Directly from raw NGS sequencing reads, PAL FINDER discovers microsatellite
repeat elements and subsequently designs PCR primers for amplifying these repeat
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loci (“potentially amplifiable loci [PAL]”) through association with Primer3
[103]. This is a command-line program that can be changed openly through the
user via the configuration file required. Its efficiency, however, is highly sensitive to
data coverage (quality and quantity of PALs; [103]). We were unable to get the
FASTQ mode to function despite approximately 24 h of effort by modifying FASTQ
input files. In “454” mode, we could use any form of FASTA file, even paired-end
Illumina records, as long as all the readings were in a single file. Compared to the
other software packages checked, this application has a slow run time (“>24 h for
data sets >4 GB on a regular [2.5-GHz Intel Core i5 with 8 GB RAM] laptop”).

18.7.7 QDD3

QDD3 is made up of four individual operating modules with quality trimming,
microsatellite identification, redundancy elimination, contamination management,
primer architecture, and established transposable components comparative functions
[104]. It can be employed both on the command line as well as through Galaxy [105]
and operates via RepeatMasker and a number of other NGS software [106]. The
runtime is reasonably long (for a 5.7 GB data collection, 9.5 h on a high-performance
computer), and users are unable to adjust the default SSR search settings (e.g.,
specifying various repeats number for distinct length motifs).

18.7.8 SSR Locator

The SSR Locator combines SSR search features, motif frequency, primer architec-
ture, and PCR simulation with other databases. This simulation enables the execu-
tion of global alignments as well as identity and homology searches between several
amplified sequences [107]. Employing a GUI with an optimized menu system set, it
performs all the module calls. It needs some file reformatting, though, which raises
the computational time. For the HiSeq2 data collection, it took 10 min for the
Windows framework to reformat and 69 min for the SSR quest (“8 Core 3.4-GHz
Intel Core i7-2600 CPU, 16 GB RAM”).

18.7.9 SSR_pipeline

The SSR pipeline is a command-line software for detecting high-throughput
sequencing data microsatellites employing a Python environment [108]. With
components for consistency filtering as well as alignment of Illumina raw data, it
detects SSRs within paired-end reads of Illumina. Through utilizing the SSR detec-
tor module separately, SR-pipeline can also evaluate knowledge from other sequenc-
ing platforms, like 454 and Ion Torrent. Nevertheless, after 24 h of work by a
biologist competent in bioinformatics, some researchers did not effectively run test
data via the SSR pipeline.
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18.7.10 STAMP

STAMP is a revised STADEN kit for microsatellite detection as well as primer
design [109], with extensive Phobos incorporation [110] for tandem repeat recogni-
tion and evaluation. TROLL [111] is used by STAMP to trackback primer pairs to
series trace directories, Primer3 to interactively build and visualize primers, and
SQLite as a database to store the effects of research. Inclusive, STAMP is a highly
versatile, high-throughput, interactive instrument for the design of traditional and
multiplex microsatellite markers, preventing redundant markers from being pro-
duced. It is complex, however, and involves several tool command language
modules and the STADEN kit pre-installation, and it is not appropriate for
low-coverage NGS data [104].

18.8 Conclusion and Future Perspective

Since the identification of polymorphisms is a limiting factor in numerous breeding
strategies, microsatellite markers serve as an invaluable tool for plant breeders as
well as geneticists. Over the long term, in the science of rice breeding, the develop-
ment of the allele-specific marker for genes controlling both abiotic and biotic
resistance traits will become gradually important. The selection of the best suitable
marker systems for a given program depends on numerous issues, including the
technology platforms available, the cost of developing markers, the transferability of
species, the content of information, and the ease of documentation. Moreover,
additional resources for genomic analysis as well as breeding will be provided by
a higher degree of genetic variability and the localization of more markers on the
linkage map. There is therefore still scope for the development of more efficient
breeding programs, which, in the future, will help us to develop novel biotic and
abiotic resistant crop varieties.
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Abstract

The genome-wide association study (GWAS) is one of the potential approaches
for identifying QTLs/genes and complex traits associated with target traits
quickly using natural variations. With the advancement in genome sequencing
technology, it is possible to examine genome-wide genetic variants of agro-
morphological, physiological, biochemical, and molecular traits across diverse
genetic materials. In nature, natural variants of crops are generated due to
spontaneous mutations and manual breeding in the wild progenitors. Traditional
landraces are adapted to various environmental conditions, rich sources of alleles,
and genes linked with various traits valuable for variety improvement through
molecular breeding because of the availability of high-throughput sequencing
technologies and a reference genome sequence, accurate re-sequencing of a
significant number of crop genomes as possible. It aided in understanding the
genetic basis of phenotypic variance and allows for functional studies of evolu-
tionary changes in crops. This rapid development will significantly improve crop
design research using genomics-assisted breeding, allowing it to be used in gene
recognition, cloning, QTL identification, and crop breeding using marker-assisted
selection or genetic engineering. This book chapter presents an overview of the
entire process of a typical GWAS, various software applications and, its
limitations, and future perspectives.
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Abbreviations

BC Bonferroni correction
BILs Backcross inbred lines
CMLM Compress Mixed Linear Model
EMMA Effective Mixed-Model Association
EMMAX Efficient Mixed-Model Association eXpedited
FDR False discovery rate
GAPIT Genome Association and Prediction Integrated Tool
GLM General linear model
GWAS Genome-wide association study
LD Linkage disequilibrium
MAGIC Multiparent Advanced Generation Inter-Cross
MAS Marker assisted selection
MLM Mixed linear model
NAM Nested association mapping
NILs Near Isogenic lines
QTL Quantitative trait locus
RILs Recombinant Inbred Lines
SNP Single nucleotide polymorphism
TILLING Targeting induced local lesions in genome

19.1 Introduction

Since the beginning of cultivation, a huge number of crops have been adapted to
various environmental conditions because of spontaneous mutations that existed in
their wild progenitors, producing natural variants. In this aspect, crop domestication
influenced the genetic diversity of crops. Improvement in crop productivity to satisfy
the need for food demand of the growing population requires a critical understanding
of the genetic basis of phenotypic variation that can be employed in an advanced
breeding program [1–3]. With advanced genomic technologies such as genome
sequencing, “genome-wide association studies,” haplotype map, and genetic-
transformation technique [4, 5], researchers are able to mine natural variants and
their associated phenotypic variations [6, 7]. In recent years genome-wide associa-
tion study has got a lot of attention. Advancement in genomic technology initiated a
wave of association mapping in model and crop plants that enabled the study of trait
variation across diverse genetic backgrounds [8]. Rapid and continued progress in
sequencing technologies, along with the availability of reference genome,
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high-density genotyping array, and accurate phenotypic trait measurement using
high-throughput phenotyping, has made the GWAS a method of choice [9]. In the
recent decade, GWAS has transformed from a new promising tool to a powerful,
ubiquitous technique for dissecting complex traits in plants [8, 10–12].

If a phenotype exists within a subpopulation, it must be linked to the neighboring
genetic variations in their recent ancestors. This phenomenon is known as linkage
disequilibrium (LD) based on which GWAS operates. Recent advanced genotyping
technology and progress in information technology enabled genotype to phenotype
association study on a genome-wide scale in a very large population, thus
accelerating quantitative traits mapping. In contrast to linkage mapping, which is
time-consuming and has relatively low resolution, GWAS can discover genomic
regions associated with a particular phenotype in a relatively high resolution and in
an unbiased manner. Also, the experimental materials used in GWAS are more
diverse than those used in traditional linkage mapping (derived from biparental
crossing) due to many historical recombination events [13]. Most of the traits of
agronomic and evolutionary importance are complex traits that are influenced by
multi genes, environment, and their interactions [14]. To date, in many crops,
genome-wide association studies have been conducted [10, 15–17] for different
traits such as plant height, flowering time, grain yield, kernel number, and stress
tolerance [10, 15, 16, 18]. It is also used to identify genes with geographical
divergence and adaptation during domestication, [19] genes associated with bio-
chemical and molecular phenotypes, including fatty acid, flavonoid, amino acid, and
nucleic acid metabolites [20]. The high-throughput automated phenotyping system
has facilitated the measurement of the complex traits that speed up in observing the
natural variants in a very large population with much accuracy [21, 22]. It is also
used to validate the loci identified through other approaches, improve transgenic
research by recognizing genes [23], and have huge applications to identify target
genes for editing [24]. The global landscape or the genetic architecture of a trait can
also be revealed by GWAS, which includes the number of alleles of that particular
gene, their distribution pattern and interactions, and their effects [25]. Despite
multiple advantages, there are issues regarding population structure and occurence
of false-negative results due to low frequency of causal alleles [26]. In the recent
years, using several efficient statistical algorithms feasible for plant populations (the
mixed model) [27–34], hundreds of associated loci are identified in rice. The
experiments and critical factors required for a good GWAS are described in this
chapter, along with the generation of a GWAS population, softwares used, its
limitations, and future perspectives.

Association mapping is a powerful tool for recognizing particular genetic regions/
markers in crops that are associated with agronomically important traits [35]. This
method has great potential for evaluating and characterizing a wide variety of alleles.
These polymorphic alleles are very tightly linked with a locus that influences the
phenotypic effect significantly and associated with traits in a randomly mating
population, thus allowing for a much finer resolution than genetic mapping. As a
result, association mapping based on linkage disequilibrium (LD) could lead to
discovering the genes responsible for QTLs. The MAS is more likely to succeed
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in different backgrounds since the association method works for a wide variety of
germplasm. In GWAS, there is also the possibility of identifying QTLs that are
linked to several traits. Thus, applying this approach may take advantage of histori-
cal recombination events in natural populations, minimizing the expense and time
required for research. This book chapter has enlisted the application of association
mappings, for identifying QTLs linked with different agronomic traits.

19.2 History and Development of GWAS Study

In a typical GWAS, genotypes and phenotype data are collected for a large, diverse
population. After that, the significant associations of genetic markers with the
phenotype data are established using statistical methods. However, the linked
genetic markers may not always present within the causative gene of the studied
phenotype; that is why GWAS relies on linkage disequilibrium (LD) between
markers under testing and functional polymorphisms of the gene of interest. Gener-
ally, the loci nearer to each other on a chromosome have fewer chances of getting
separated through recombination than those that are distant from each other. This
nonrandom association of alleles at two loci is called linkage disequilibrium. The
SNPs nearer to the causative locus can be in high LD with the functional polymor-
phism thus associated with the phenotype of interest. These genomic regions are
identified and marked through genome-wide association studies. If the period after
the last common ancestor in which functional polymorphisms were produced by
mutation is considered in the unrelated populations desired in GWAS, the genomic
regions in LD can be narrow, making them well suited for high-resolution mapping
of the gene responsible [12, 36–38].

Quantitative trait locus (QTL) mapping through linkage analysis is the older
version of GWAS, which studies individuals with known relationships instead of
taking diverse individuals. For example, in linkage mapping, the individuals or
populations used are the progeny of biparental crosses (either F2 or Recombinant
Inbred Lines (RIL), Backcross Inbred Lines (BIL), and Near Isogenic Lines (NIL)).
Here, the QTL-linked genetic markers co-segregate with the phenotype of interest.
Since the individuals came from a biparental cross, the number of recombination
events from their most common ancestors is low, creates large linkage blocks that
can be detected with genetic markers less dense than GWAS. After the QTL
detection and validation, the targeted genomic area is used for fine mapping and
QTL cloning [10, 14, 26, 36, 39]. This technique was adopted to identify QTLs
before the sequencing technologies came into the picture. Through this technique,
the first genome-wide QTL identification was made in tomato in 1988 [40], 14 years
before the first GWAS technique was used [41]. Both linkage analysis and GWAS
are used to understand complex traits in different species in the present day.

The primary advantage of GWAS over linkage analysis is that GWAS do not
need any experimental crosses [42] and can detect genes with smaller effects [43]
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with improved resolution having smaller blocks of LD [42]. However, previous
association studies carried out before next-generation sequencing could address only
a small part of the genome or the region of interest already identified by other
methods [44]. Later, researchers made the association study genome-wide with
dense genetic markers covering the whole-genome [36, 45–47]. But the major
drawback with this technique [36, 45] was that it used to give high rates of false-
positive because of population structure [42] and multiple testing [48]. That is why
they have to wait till the publication of the draft of the human genome in 2001
(International Human Genome Sequencing Consortium, 2001) and subsequent
availability of early SNP datasets [49] and HapMap (The International HapMap
Consortium, 2003). After that, the first paper of GWAS was published in 2002,
taking 65,000 SNPs and 94 individuals [41].

The first GWAS paper in plants was published in 2005 on Arabidopsis [50]. After-
ward, many GWAS papers were published in which statistical methods were used to
associate genetic markers with phenotype to find the causative SNPs associated with
variations in phenotypes [51], which was by conducting simple ANOVA on each
SNPs considering the assumption that the difference between the trait means for any
genotype group (i.e., AA, Aa, and aa) is nil and can then be tested for every SNP.
However, this approach gave high rates of false-positives (the association declared
significant even though they were not) because of many statistical tests. To deal with
this, a significance threshold of 0.05 was used, which means the false-positive rate is
accepted only up to 5%, which was an acceptable risk. The common methods to
multiple testing correction are limiting the false discovery rate (FDR) [52, 53] or
using the Bonferroni correction, which is the proportion of desired significance
threshold to the total number of tests conducted to determine the corrected signifi-
cance threshold. However, setting an appropriate significance threshold presents
additional challenges in GWAS. Besides this, the close relatedness among the
individuals forming subpopulation with the diverse population used for GWAS
imposing other major factors contributes to the false-positives in GWAS
[27, 54]. As a result, some spurious association was displayed by the SNPs common
in the subpopulations and the phenotype of interest, if the phenotype was present at
high frequency in that group.

19.3 How GWAS Works

The size of the population is one of the important factors that determine the success
of the experiment. It is generally recommended to increase the size of the population
to at least above hundred individuals to avoid Beavis effects that greatly overrated
the phenotypic variance when the population size is small [37]. After selecting
enough number of individuals, the genotypes need to be phenotyped accurately for
a particular trait or a group of traits. Accurate phenotyping is essential and should be
repeated over replications, locations, and years. The broad-sense heritability must be
calculated since higher heritability shows that the trait of interest is mostly under
genetic regulation, which is essential for detecting genotype–phenotype
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associations. Then the genotyping is done taking the same set of individuals of
which phenotyping has been done using DNA markers. Usually, GBS-based
genotyping is done that covers the whole genome and identifies many SNPs (e.g.,
wheat, barley). Before initiating analysis, the GBS-generated SNPs must be free
from missing data, heterozygosity, and minor allele frequency. Also, the population
structure must be tested before running GWAS to select the appropriate model.

There are two statistical models, general linear model (GLM) and mixed linear
model (MLM), used for performing GWAS. The GLM does not consider population
structure into account [55, 56], whereas MLM considers population structure in its
model (Kinship or kinship + Q matrix + PCAs). Using appropriate software (e.g.,
TASSEL), phenotype and genotype data are combined through which the causative
alleles for the particular trait are detected. Phenotyping should be done before
genotyping, especially for those with no prior information, to save time and
money since the individuals of the population collected from different regions may
not adapt to the phenotyping environment where the genotypes are going to be tested
and may be lost due to poor adaptation.

After the analysis, the significance of the marker–trait association is examined
through the false discovery rate (FDR) or Bonferroni correction (BC). Bonferroni
correction method is applied by dividing the level of significance by the number of
markers at each locus that gave the information about the threshold of significant
markers for several traits at once [57, 58]. As a result, a fixed BC p-value is
generated. However, in false discovery rate returns, all the associations’ actual
significant associations are found [59]. In this test, the p-value of each marker is
given a rank after arranging them in ascending order. The FDR is calculated by
dividing the product of the rank number of marker p-value and a factor (usually 0.05)
with the total number of markers. Deriving FDR values for each trait makes it a
powerful tool in analyzing agronomic and developmental traits in crops. FDR p-
values are more flexible in detecting a highly significant association between marker
and trait than the fixed p-values of BC. In both cases, if the p-value for FDR or BC at
a particular locus is less or equal to the p-value obtained from GWAS, then the
association is considered to be true. Generally, the significance for the marker–trait
association is tested at 0.05 and 0.01 levels [60, 61]. However, the significance of
some markers–trait association measured at 20% using FDR since the marker can
detect minor effects [38]. The level of significance opted for the marker–trait
association is based on the requirement of the study in which low FDR is used to
identify candidate genes or loci. In contrast, high FDR is used to predict the whole
picture of the genetic architecture of the trait [46].

19.4 Software for Performing GWAS Study

For performing GWAS analysis, many statistical softwares are used. Frequently
used softwares for GWAS analysis is discussed here. TASSEL (Trait Analysis by
Association, Evolution, and Linkage) is the most frequently used for GWAS in
plants. It includes many statistical methods like GLM, MLM, and FaST for
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performing GWAS [47]. Analyze population structure using kinship, and PCA also
includes LD. The software is usually used for association studies in barley
[62]. However, the recent version of TASSEL can perform SNP calling using
GBS data and analyze genetic diversity. It includes many visualizing tools such as
scatter plots for PCA, LD, Manhattan plot, heatmap for genetic distance, and
phylogenetic tree construction using archaeopteryx. The newer version also enables
the researcher to quickly view genotypes, markers, missing data, heterozygous, and
the number of markers on each chromosome. The older version of the TASSEL, like
TASSEL v.2.1 can analyze taking any type of markers (SNP, SSR, AFLP, RAPD,
etc.); however, the newer version accepts only SNP data. It is a completely free
software.

GenStat is another Windows-based statistical software used for marker–trait
association analysis in a genetically diverse population using bi-allelic and multi-
allelic markers. It also uses GLM and MLM models along with population structure
correction to analyze GWAS. In this software, the threshold of the significance level
can be selected, and LD decay can also be estimated. Also, the effect of each SNP
can be estimated using its visualization of the location of the significant markers and
Q-Q plot. Therefore, it is widely used to detect the causative alleles. It is not a free
software.

PLINK facilitates the study of a large dataset of phenotypes and genotypes [63]. It
is a free program that includes features like population stratification identification,
simple interaction checks, meta-analyses, and other tests like gene-based association
tests and epistasis screening. This app can display graphical images for Manhattan
plots, Q-Q plots, and multidimensional scaling (for population structure).
Tables produced by PLINK can also be used to present the results of GWAS and
LD among SNP markers.

R statistical environment (https://www.r-project.org/) also provides a useful
package Genome Association and Prediction Integrated Tool (GAPIT) for
performing GWAS, which can deal with large numbers of SNPs and genotypes
with less computational time without conceding the statistical power [64]. Many
statistical approaches such as MLM, previously defined population parameters
(P3D), and effective mixed-model association (EMMA) are included in this pack-
age. Manhattan maps, quantile-quantile (Q-Q) plots, and a table with the p-value,
minor allele frequency, sample size, phenotypic variation explained by markers R2,
and corrected P-value after a false discovery rate can be used to demonstrate GWAS
findings [59]. Kinship analyses are shown in a heat map and a table, as well.
Furthermore, through graphs with various compression levels, the heritability
estimates and probability functions are presented. Because of the features mentioned
above, GAPIT is considered the most effective and valuable method for association
analysis [52–54]. Since GenSta was one of the first tools to perform the tests and has
several features not found in other software, there is a strong pattern of using it for
QTL and candidate gene recognition. For example, the evaluation of phenotypic and
genotypic data, the calculation for BLUE values, LD, and population structure using
PCA and kinship, and finally GWAS using either GLM or MLM can be performed
GenStat. In addition to the G X E relationship, the output contains all the relevant
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plots and statistics about the marker–trait correlations, such as the impact size of the
marker on the trait. Finally, Bonferroni correction is used to confirm the significant
correlations. For GWAS in other software/packages, each move must also be
measured separately. For GWAS, each step needs to be calculated separately in
other software/packages. The detailed list of softwares used for GWAS is provided
in the Table 19.1.

19.5 Linkage Disequilibrium Mapping in Crops

A massive sampling size typically requires thousands of individuals to decipher the
genetic foundation of complex QTLs, such as grain yield and stress tolerance. It is
now possible to genotype thousands of genomes using high-throughput sequencing
techniques. As compared with genotyping techniques, not much development has
taken place to date in phenotyping. Most phenotyping and field studies were time-
consuming and stressful; it necessitated the evaluation of several traits at multiple
time points in a large-scale experiment through a variety of ecosystems. In this
context, some sensor-based platforms for measuring biomass have been created with
near-infrared spectroscopy, and spectral reflectance on agriculture harvesters plant
canopies, respectively [165]. The advancement of phenotyping technology in the
future will hasten genetic mapping and gene exploration in crops.

For association analyses, the LD decay interval offers critical knowledge about
marker densities [166, 167]. The distribution of markers has a major impact on the
LD decay resolution for association analysis [168]. The big red blocks revealed a
high degree of LD decay between the loci, which resulted from less recombination of
LD blocks along with the triangle plot’s diagonal [35, 169, 170]. In 2003, Garris and
team have discovered LD decay at 100–200 kb intervals through a single area of
chromosome 5 [171]. Similarly, Olsen and the team have investigated a 500-kb area
on chromosome 6 and found a 250-kb selective for a waxy locus, which resulted in
an elevated LD region [172].

For genetic mapping in crops, segregating mapping populations such as F2
groups, “Recombinant Inbred Lines” (RILs), and “Backcross Inbred Lines” (BILs)
are commonly used. Fine mapping and gene cloning are often carried out, using
specialized backcross-derived populations. A mapping population has been pro-
duced from a cross between Oryza sativa ssp. indica Kasalath and Oryza sativa
ssp. japonica. According to a study reported by Harushima and the team in 1998, the
“Nipponbare varieties” have allowed for the discovery and cloning of tens of QTLs
underlying a diverse variety of traits [173]. This method has been widely used in
functional genomics studies on crops, but there are two significant drawbacks to
QTL mapping in typical recombinant populations. There are just a few recombina-
tion events in the mapping population; for example, in rice segregating populations,
one or two recombination events occur in each chromosome. Thus, fewer mapping
samples result in a poor resolution; so, very massive populations are used to get
significant result. Second, since the sequence variation between the preferred parents
accounts for just a small fraction of all genetic variance within a group of species,
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only QTLs at which the two parents differ can be observed in a single segregating
mapping population. [174].

To compensate for these disadvantages, a new method have been developed and
deployed, known as “Nested association mapping” (NAM) which was established in
maize to allow high power and high-resolution mapping via joint “linkage-associa-
tion research” [175]. Therefore, the NAM population was created by the crossing of
25 diverse inbred lines of maize with “B73” reference lines to produce 5000 RILs
population. Because of the fact that the “NAM population” possesses several
important characteristics and features, it has been used for large-scale genetic
mapping [176–179]. Similarly, Arabidopsis was used as a model plant for the
generation of the “Multi-parent Advanced Generation Inter-Cross” (MAGIC) popu-
lation, which consisted of hundreds of RILs descended from a heterogeneous stock
of 19 intermated Arabidopsis accessions [180]. Thus the “MAGIC population” was
used in a computational simulation study to identify links; QTLs show 10% pheno-
typic variation that can be described with an average mapping error of approximately
300 kb. Further, another group was crossed with eight Arabidopsis accessions to
produce a set of six RIL populations known as “Arabidopsis multiparent RIL”
(AMPRIL) [181]. Thus, the AMPRIL population was used for QTL analysis and
revealed that genetic resources could detect QTLs that explained 2% or more of a
trait’s variance.

There is some difference between the GWAS of rice and maize. The difference
arose because of the compromise in power and mapping resolution between “self-
pollinated” and cross-pollinated species. Due to “self-fertilization” and small effec-
tive population size, The LD decay in the rice genome is at �100 kb. Similarly, in
other “self-pollinated” crops like foxtail millet and soybean, the LD decay rate is
slower. Because of extended LD, sequencing with low genome coverage and
missing data is quite efficient in conducting successful GWAS in rice. However,
since rice’s LD decay rate is slower, GWAS cannot address a single gene in rice. In
contrast to rice, the maize crop is an outcrossing species because of this difference in
flowering time of male and female inflorescence. Therefore, the LD decay rate is
rapid in maize within �2 kb, and it contributes to greater genetic diversity with
higher resolution potential in GWAS. Almost all experiments on maize have
resolved at the single-gene stage using GWAS. To achieve greater resolution, the
GWAS in maize needs tens of millions of SNPs to correctly genotype various
varieties, which is a difficult and expensive challenge given the genome’s wide-
scale abundance of repeats and paralog sequences.

However, in the genetic mapping of basic qualitative traits or mutant mapping,
“Bulk segregation analysis” along with “multiple-sample pooling sequencing” may
be an alternative to traditional “linkage analysis.” For this application, various
methods and protocols have been published, including “SHOREmap” (98),
“MutMap” [169], “next-generation mapping” [182], and “MutMap-Gap” [170]
(105). To prevent possible intervention from diverse genetic origins, James et al.
[183] have described the populations produced by backcrossing a mutant line to a
nonmutagenized parent for sequencing mapping. In rice, a recessive mutation line
was crossed to the parental line used for mutagenesis, and the mutant F2 progeny
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produced were pooled for sequence mutation analysis [169]. However, this tech-
nique and strategy may be used for quantitative trait identification in crops (e.g.,
Sorting the RILs into distinct sequencing pools based on a specific trait).

19.6 Genome-Wide Association Studies in Crops

The association mapping shows that markers and traits vary because the environ-
mental factors influences the genotype performance through alterations in
phenotypes. As a result, the association study lays the groundwork for long-term
cumulative impacts to identifying new QTLs, alleles, and genes [184]. The mixed
model (Q+K) demonstrated a substantial increase in the goodness of fit in GWAS.
The K and Q matrix corrected the correlation between phenotypic traits with QTLs
linked to markers [185, 186] at P < 0.005 (GLM and MLM) and P < 0.001 (FaST).
This corresponds to prior studies [35, 186–188]. Some studies have published their
findings at a P < 0.05–0.01 level of significance, showing that the number of
markers is significantly higher [189, 190]. Therefore, the p-value plays a significant
role in association studies because it influences the degree of false-positive associa-
tion between traits and markers. It implies that lowering the p-value reduces or
eliminates the possibility of a false-positive relation [34].

Since the past decade, many GWAS has been conducted successfully in many
crops [177, 179, 184, 191–195]. Among all the crops, maximum GWAS has been
carried out in maize and rice, producing a vast magnitude of both phenotype and
genotype data in multiple environments. In a study, a sample of 1083 cultivated
O. sativa var. indica and japonica varieties of 446 wild (Oryza rufipogon) rice
accessions genome sequencing with low genome coverage was done [196], from
which a high-density haplotype map was constructed. More than 1.3 million SNPs
were used in the GWAS to detect alleles related to flowering time and ten grain-
related traits. Some of the associations match with the previously reported genes.
However, the GWAS carried out for leaf sheath color and tiller angle, taking
446 O. rufipogon accessions, revealed a higher level of genetic diversity in wild
species. In another study, 44,100 SNPs variants in 413 diverse rice accessions
revealed the complex hereditary architecture of 34 traits in rice.

Multiple candidate genes for phenotypic traits like grain yield, seed quality, leaf
angle, flowering time, leaf size, and disease resistance were identified in a GWAS of
maize. Hence, it revealed the genetic heredity and architecture of these traits
controlled by multiple QTLs with small effects [176–179]. In another study, Li
and the team reported that 368 maize lines were analyzed with over one million
genome-wide SNPs to characterize maize kernel and identify QTLs linked with oil
composition [193]. They recorded 74 loci associated with the concentration of maize
kernel oil and fatty acid composition.

GWAS has also been conducted successfully in other crops. A study that
sequenced 916 diverse fox millet varieties with low genome coverage reported
several loci for ten agronomic traits tested in five distinct ecosystems [192]. Another
research found 0.2 million SNPs in 917 globally diverse accessions and identified
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many previously identified loci correlated with plant height and inflorescence
architecture using GWAS [194]. Despite the low marker density, a panel of
224 spring barley accessions genotyped using a genotyping microarray at
957 SNP sites detected some important candidate genes [62]. In another study,
GWAS was carried out in 615 barley cultivars with a very low density of SNPs
for 32 morphologic and ten agronomic traits [197]. Transcriptomics-based identifi-
cation of SNPs from mRNA and its applicability in GWAS is tested in polyploidy
crops. Through this investigation, two QTLs with genomic deletions responsible for
glucosinolate content of seeds have been detected, leading to the identification of a
candidate gene/transcription factor HAG1 [198].

Attempts have been made to perform genome-wide association studies (GWAS)
on bread wheat, a polyploid crop with a large genome. GWAS study in “Triticum
Urartu,” an ancestor species of bread wheat genome has also been made [199]. How-
ever, implementing GWAS in wheat is technically difficult and needs great effort to
overcome challenges. These experiments demonstrate that GWAS is a versatile
strategy capable of mapping several traits genetically simultaneously. However,
there is a need to explore further the genetic basis of important agronomic, morpho-
logical and physiological traits in other species, which are close to wild relatives of
the cultivated crops. Additionally, care should be taken during GWAS for the
population structure and the balance between the increased “false-negatives” and
decreased “false-positive” rates [26, 185–187]. The highly popular method of
GWAS is the “mixed model” (MLM), which was used to detect the genotype–
phenotype association in crops [27, 182]. However, this model takes a longer time
for computation while analyzing a large population (�1000 individuals), including
enormous markers (�1 million SNPs markers).

Similarly, several scientists have reported that the use of the “Efficient Mixed-
Model Association eXpedited” (EMMAX) program and the “Compressed Mixed
Linear Model Method” has substantially reduced the computation time [29–32, 64,
188]. In addition, “GWAPP” is another web-based application or model used for
GWAS, which used a “Linear Mixed Model” known as the “accelerated mixed
model” in A. thaliana through which SNP detection is done along with population
structure [200]. Other techniques such as multiple regression and nonparametric
statistics are also used for this purpose [201, 202]. GWAS has less capability to
detect rare alleles, which make up a major portion of the natural variation. In rice,
low-frequency SNPs make up approximately 44% of the total SNPs (minor allele
frequency <0.05). However, rare alleles may be identified by constructing several
bi-parental cross populations from large populations (e.g., NAM or MAGIC).

In most cases, only one gene among the several within the GWAS locus
contributes to the QTL, which necessitates further analysis through gene annotation
and expression profile to identify the causal gene correctly. For example, the causal
gene for disease traits identified in GWAS loci contains leucine-rich repeats in their
binding sites, and the genes expressed at the grain filling stage are related to the
grain-related traits. Similarly, T-DNA mutants, artificial induction of mutations, and
analyzing candidate genes through TILLING (“Targeting Induced Local Lesions In
Genomes”) are efficient methods for validating gene–trait correlations. But through
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transgenic analysis, the causal genes and their variants can be conclusively
identified. More information will be obtained in GWAS analysis, taking diverse
germplasm panels, careful evaluation of traits, and through more functional trials
that will help to address the persisting biological questions.

GWAS approach has been widely used in rice to identify different QTLs/genes
for traits like agromorphologicl traits, yield-related traits, biotic abiotic stresses, Fe,
Zn, quality traits, and early seedling vigour [166, 203–212]. Several researchers have
been reported viz., amylose contents [203], grain yield [166], deep root mass and the
number of deep roots [204], grain quality traits [205], seed vigor [206], agronomic
traits [207, 208], plant height and grain yield [209], cold tolerance at germination
and booting stages [210], salinity tolerance [211], early seedling vigor [213],
seedling stage chilling stress [214], grain yield under water deficit [191], grain
yield under reproductive drought stress [215], panicle architecture and spikelet’s/
panicle [216], and salt tolerance in rice [217]. Chilling tolerance study was reported
by Schlappi who identified two new tolerance QTLs for low temperature at seedling
stage (LTSS)–QTL, qLTSS3-4 and qLTSS4-1, [218], Bollinedi and his team reported
26 QTLs for Fe and Zn localization through GWAS study [219]. Kumar and the
team identified QTLs for Fe, Zn, β-carotene, GPC and yield traits in bread wheat
using multi-locus and multi-traits GWAS approach [220]. The yield contributing
traits would help to break the yield ceiling greatly aided by genes/QTLs that produce
high grain yield even under various stress. Furthermore, it would be useful to
identify traits-specific donors for designing an effective breeding strategy for crop
production [166]. Thus, this book chapter aims to describe the status and prospective
of genome-wide association studies in plants.

19.7 Perspectives and Conclusion

The genome-wide association study was first applied in human genetics to unravel
the genetic basis of complex medical traits. Later it was applied to model species like
Arabidopsis, rice, and maize [185, 221–228]. GWAS has become a powerful tool in
studying complex traits in rice and other crops due to advancements in high-
throughput sequencing technology and linear mixed model. In contrast to human
GWAS, rice takes advantage of being a self-pollinated crop; it can be genotyped
once but can be phenotyped multiple times for different traits in multiple
environments. Thousands of loci associated with different agronomic and physio-
logical traits are identified in rice using GWAS, and several statistical methods are
also developed to improve the computation time. Though many GWAS have been
successfully conducted in rice, there are still new challenges [194] like epistatic
interactions and G � E interactions important for quantitative traits, which are
generally encountered while doing GWAS in rice [224, 225]. Novel statistical
methods and experimental designs need to be addressed in the future for these
interactions. To date, most of the population used in rice GWAS includes temperate
japonica and indica. However, there is a need to include tropical japonica, aus,
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basmati, and wild relatives in the GWAS panel to address the critical variants and
associations present in these collections. The loci identified through GWAS need to
be validated through gene annotation and expression analysis. There is also a need to
find out the coordinated synergistic relationship between GWAS and genome
editing. GWAS identifies the underlying gene for the traits providing targets for
genome editing; in return, genome editing helps validate gene function. Ultimately,
complementing GWAS with different genomic and phenomic technologies will help
in understanding the biological functions of specific alleles involved in biotic and
abiotic stress tolerance, improved nutritional quality, and increased grain yield,
subsequently improving crop breeding and accelerating genomic-assisted crop
breeding.
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Abstract

miRNAs, on average comprised of 22-nucleotides with small non-coding RNAs,
regulate the gene expression of targeted genes. Thousands of miRNAs have been
identified, having biological significance in many pathways. These microRNAs
have also been used as biomarkers for diagnostic and agricultural purposes. Thus,
this chapter attempts to describe in brief miRNA biogenesis pathways, miRNA
profiling methods, and bioinformatics tools of miRNA profiling. Additionally, we
will discuss the role of mi RNA and its applications. miRNA biogenesis can be
broadly categorized into canonical and non-canonical pathways. There are vari-
ous sample types and miRNA extraction procedures. miRNA sequences, once
extracted, can be subjected to various computational tools that may aid in
understanding its structure and functions. However, few researchers have
suggested that there is still scope for developing these tools with appropriate
algorithms for avoiding false positive results.
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20.1 Introduction

MicroRNAs (miRNAs) are small non-coding RNAs that have an average length of
22 nucleotides. Mostly, miRNAs are synthesized as primary miRNAs from DNA
sequences, which are further processed into precursor miRNAs and finally to mature
miRNAs, which interact with 30UTR to suppress target miRNA expression [1]. How-
ever, some authors have also reported that miRNA may also interact with exons,
promoters, 50UTR [2], and activate gene expression under certain conditions
[3]. MicroRNA only represents 0.01% of overall RNA, although it is probable that
an actual miRNA copy number may be higher than that of mRNA, that is, an average
of about 500/cell [4]. This is due to its low molecular weight and diversity. Presently,
~200–300 miRNAs have been estimated in model organisms such as
D. melanogaster, C. elegans, and A. thaliana. In humans, ~1000 miRNAs were
estimated. miRNAs regulate transcription and translation by transporting between
different subcellular organelles [5]. They play a major role in various biological
processes associated with normal development [6] and abnormal miRNA expression
[7, 8]. They also mediate various cell–cell communications [9–11]. Since they act as
signaling molecules, extracellular secreted miRNAs act as biomarkers for various
disease identification [9–11]. Thus, miRNA profiling has developed interest among
scientists working in different fields of biology and medicine [12]. Here, in this
chapter, the authors describe in brief miRNA biogenesis pathways, miRNA profiling
methods, and bioinformatics tools of miRNA profiling. Additionally, the
applications of miRNA are also discussed.

20.2 miRNAs Biogenesis

Two organized endonucleolytic cleavages, through both the RNase III enzymes
Drosha and Dicer (Fig. 20.1) [14], are involved in the evolutionarily conserved
pathway that results in mature miRNA [13]. Drosha transforms the primary miRNA
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Fig. 20.1 Biogenesis of miRNA. Drosha processes capped as well as polyadenylated pri-miRNAs
within the nucleus to produce pre-miRNAs, which are produced by DNA pol II. Pre-miRNAs are
processed through Dicer to construct the mature miRNA/miRNA* duplex after being translocated
into cytoplasm by exportin 5. MiRNAs are loaded into the RISC complex after they have been
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transcript (pri-miRNA) into a 60–100 nt hairpin structure called the precursor-
miRNA (pre-miRNA) after transcription by RNA polymerase II (RNA pol II) [15–
18]. The pre-miRNA is conveyed into the cytoplasm via exportin-5 and Ran-GTP,
where it experiences another round of processing catalyzed through Dicer (Fig. 20.1)
[19, 20]. The mature miRNA guide strand and also the miRNA* passenger strand are
separated by this cleavage event, resulting in a 22-nt double-stranded product. The
passenger strand is degraded when the mature miRNA is loaded further into
RNA-induced silencing complex (RISC) (Fig. 20.1) [21]. Despite substantial prog-
ress in understanding the underlying mechanism of miRNA biogenesis, little is
known about the complex processes that control miRNA expression. Each phase
of the generalized biogenesis pathway has also been observed to be differentially
regulated, allowing for precise control of miRNA expression, as discussed below.
Recent research has revealed that not all miRNAs are created in a similar way and
that different mechanisms account for individual miRNA control [13].

20.3 microRNA Profiling

High-quality miRNA can be extracted from a wide range of cell and tissue sources.
Although isolation principles of miRNA are the same as that of RNA, a few
exceptions are modified for retaining the small fraction of RNA [22]. miRNeasy,
mirVana,™ and PureLink™ are the widely used miRNAs commercially available.
Checking the quality of isolated RNA is important for its accuracy and to maintain
its integrity in miRNA quantification. Since many profiling approaches can be
achieved by means of total RNA, a detailed valuation of the miRNA is routine to
evaluate the yield, and miRNA integrity is checked through spectrophotometry and
automated capillary electrophoresis instruments such as Experion (Bio-Rad) and
Bioanalyzer 2100 (Agilent). For the miRNA estimation of its abundance, expressiv-
ity as the RNA quantity in the 15–40 nt window, a small RNA chip is required.
Overall, the accuracy of this method is high when the overall integrity of RNA is also
very high [23].

Nevertheless, numerous properties exclusive to miRNAs pose challenges for their
precise discovery and quantification. miRNA’s 22 nt length is insufficient for
annealing to classical primers designed for reverse transcription. Total RNA mass
is represented by a small RNA fraction, and miRNAs must therefore be selectively
identified within other diverse RNA species in the background. To overcome these
challenges, three major approaches include qRT-PCR, hybridization-based methods,
and high-throughput sequencing. In some cases, the genomic location of the
dysregulated candidate is difficult to determine.

Fig. 20.1 (continued) processed. The RISC complex is only connected with one strand of the
duplex. Within the 30UTR, the mature miRNA directs repression of mRNA with partially comple-
mentary miRNA binding sites. (Adapted from [13])
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20.3.1 Quantitative PCR (qPCR) Methods for Pre-miRNAs
and Pri-miRNA’s Analysis

miRNA analysis by qPCR was first reported by Schnittger et al. [24]. They used
three primers for pri- and pre-miRNA analysis. Two forward primers, specifically
one binds to the hairpin region outside, and the other targets the pre-miRNA inside
the region. The reverse primer specifically binds to hairpin inside the region and
amplifies pre-miRNA, whereas another primer set amplifies both pre- and
pri-miRNA. SYBR green fluorescence was quantified.

20.3.2 Quantitative PCR Methods for Mature miRNAs

20.3.2.1 Stem-Loop RT-Based Approaches
Chen et al. described the approach of the RT q-PCR stem-loop for miRNA analysis
[25], which uses stem-loop RT primer that specifically binds to a mature miRNA.
This results in cDNA amplification with miRNA-specific forward and universal
reverse primer, with the quantification of mature miRNA levels using miRNA-
specific TaqMan probe. The other group uses the pre-amplification step to allow
multiplexing, while the other independent group uses the universal TaqMan probe
[26] for multiplexing. A stem-loop RT primer (11 bp instead of 6 bp) is a cost-
effective approach, resulting in higher specificity by amplifying the longer binding
region in the miRNA sequence with the use of SYBR Green [27]. The definite
recognition of closely related members of the miRNA family results from the use of
different stem-loop RT primers (let-7) [28].

20.3.2.2 Polyadenylation-Based Approaches
For mature miRNA polyadenylation, Shi and Chiang employed poly(A) polymerase
and poly(T) adapter in order to produce cDNA [29]. Forward and reverse primer,
specific to miRNA, which binds the PCR amplification adapter to Poly(T) and uses
SYBR Green for measurement of fluorescence. Another approach uses mature
miRNAs polyadenylation and poly(T) adapters for cDNA synthesis and forward
primer and reverse universal primers unique to miRNAs. Another approach uses
polyadenylation of the miRNA and poly(T) adapters to generate cDNA, with
forward and reverse primers specific to miRNA and SYBR green for
quantification [30].

20.3.2.3 Ligation-Based Approaches
In this method, miRNAs are circularized using ligase, RT-qPCR of circularized
miRNA with SYBR green, and overlapping primers. Another method includes
ligating the universal DNA adjuster to mature miRNAs, which uses the universal
RT main, which binds to a reverse primer. miRNA-specific forward and universal
reverse primers with SYBR Green for fluorescence are used for qPCR [31]. Chen
et al. method does not distinguish 50 and 30 variants of miRNA results in the

20 Expression Profiling and Discovery of microRNA 463



Dumbbell-PCR approach. It uses RT first, universal primer, reverse primer, and
miRNA-specific TaqMan probe were used later [32].

20.3.3 Quantitative PCR Methods for Isoforms of miRNA (isomiRs)
Analysis

Small RNA high throughput analysis indicates there is diversity in the isomiRs
within cells [33, 34]. IsomiR is shaped and divided into 50 isomiR and 30 isomiR; 30

isomiRs being more common [33–35]. multi-insomiRs are of differential function-
ing and affected by many biological mechanisms and diseases due to changes in the
length or sequence of miRNAs [33–35]. The use of experiments designed to analyze
canonic miRNAs is found to be quite normal and to be impaired in biological models
and diseases [36, 37]. The use of isomiRs is shown to be quite normal. Changes in
isomiRs are less important to polyadenylation-based processes [36, 37]. The precise
recognization of mature miRNA isomers with the polyadenylation approach was
showcased by various miRNA-specified forward primers [38].

20.3.4 Microarray Platforms

20.3.4.1 One-Color Versus Two-Color Arrays
The method of making a microarray has its impression on the kind of investigational
plan and scrutiny to be achieved. Numerous microarray formats are categorized as
one-color or two-color investigation. Mostly, two-color analysis is produced by
spotting oligonucleotide probes onto the array by robotic technology. It involves
the shifting of probes by liquid adherence to either single or arrayed pins. There is a
characteristically considerable difference among specific microarrays in the quantity
of spotted material. As a result, specific microarrays are not straightly analogous
without the use of a reference sample. To perform two-color experiments with these
custom-spotted microarrays, reference as well as test samples were fluorescently
labeled and hybridized on the same array. The primary advantage of spotted arrays is
that they can be custom-produced in small batches for a moderate cost, facilitating
changes to the probe set as new miRNAs are discovered [39, 40].

20.3.4.2 miRNA Preparation Through Microarrays

Purification of miRNA
Microarray gene expression quality largely depends on the quality of RNA used.
Hence, to ensure the quality of RNA, vigorous and reproducible methods are
essential for the qualitative extraction of miRNA. Many isolation kits are available,
but they concentrated mostly on mRNA and not on miRNA. These mRNAs are
contaminated for specific isolation of miRNA. Solid-phase extraction,
microfiltration, and reverse-phase or ion-exchange chromatography are used for
separating small and large RNA fractions. Still, they didn’t provide the levels of
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recovery, purity, and reproducibility for high-quality analysis. Hence, denaturing
polyacrylamide gel electrophoresis (PAGE) is routinely used for miRNA extraction
from total RNA [36, 37, 41, 42] but is a time-consuming process. Ambion, Inc. has
developed a device (flashPAGE fractionator system) that can extract miRNA rapidly
and is reproducible with 80% yield. Relative abundance of flashPAGE-isolated
miRNAs analyzed on a microarray has been shown to be 1 ng to 10 g from
mammalian tissue.

Labeling of miRNA
Labeling of miRNA was done after its isolation for their detection on arrays.
Methods employed for labeling miRNA include direct labeling, random priming,
and amplification by PCR [43–50]. In 2003, Krichevsky et al. [51] designed the first
oligonucleotide array to detect miRNA in brain tissues by labeling low molecular
weight RNAs with radioactive isotopes. The simplest and most typical labeling
technique is direct labeling, which employs a tailing strategy with short, tagged,
and enzymatically attached miRNAs. Based on Ambion’s mirVana miRNA labeling
kit, which utilizes poly(A) polymerase (PAP) to add a combination of unmodified
and amine-modified nucleotides to the miRNA’s 30 end [52]. Then tailed miRNA
was labeled the amine-reactive reagents, including fluorescent dyes, cyor Alex dyes,
or NHS biotin for detection with streptavidin coupled to fluorescence dyes. Homo-
geneous labeling of this method provides miRNA fraction with the highest specific
activity without introducing bias. Mature miRNA labeling by this method allows
accurate profiling at lower sample input. Experiments in which known amounts of
miRNA were spiked into RNA samples indicate that this procedure permits detec-
tion of 10 pg (3 fmol) of miRNA in 10 g of total RNA [52].

In the other direct labeling method, 30 end of each miRNA was labeled with one
or two fluorophore-labeled nucleotides with T4 RNA ligase. This labeling procedure
leads without prejudice to the maximum activity. Wang et al. added dimethyl-
sulfoxide (DMSO), an important RNA denatures, in the reaction solution and
found that T4 RNA ligase activity was enhanced by up to 20% DMSO [53] for
reducing interference of structure and sequence variations between miRNAs. This
direct labeling method has been shown to be an effective tool for miRNA labeling
and to be easily performed under laboratory conditions [53–55].

Normalization Methods for Microarray Studies with miRNA
For differential expression and clustering of labeling genes, microarray data must be
normalized and corrected to achieve accurate results. Normalization is also done to
reduce bias in the marking of dye and variations in hybridization and screening
[56]. It should be highlighted that normalization is the method of eliminating
variance between array experiments from non-biological origins. In general, it is
recognized that the use of normalization methodologies for microarray experiments
has a profound effect on precision, accuracy, and overfitting [57–59]. Consequently,
downstream differential expression tests, classifier growth, and data mining are
highly dependent on the option of data processing. Even in the well-developed
field of mRNA microarray analysis, the acceptable option of standardization
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methods is still under discussion [60, 61]. This problem is further compounded in the
field of miRNA microarray analysis by the fact that the amount of miRNA extracted
from biological samples is neither quantitative nor known relative to the original
abundance of the total RNA approaches from the mRNA microarray expression
review in the expectation that assumptions and approximations are not violated.
These methods included median scaling (both global and/or chip-specific), spiked-in
control scaling, and logarithmic or other variance-stabilizing normalizations. The
most common approach to microarray normalization of miRNA includes the
pre-processing of data by means of averaging of technical replicates and background
subtraction followed by median normalization and the logarithmical transformation.
For profiling miRNA expression in human tissues, Barad et al. [62] took a similar
approach, except that post-normalization thresholds based on negative controls were
implemented.

Interpretation and Data Analysis
Variability of microarray tests can be accounted for when designing test statistics for
differential expression; fold change does not. Preferably, research statistics that
provide variation shrinkage are used. Family-wise error rate management methods
can usually be prevented by utilizing false-discovery-rate estimate procedures. It is
advised to do gene-class testing while conducting differential expression studies.
Many concerns arise about how to determine intersections of results while
evaluating several similar propositions and how to properly utilize resampling-
based inference. It also is necessary to carefully evaluate whether cluster analysis
solves the question being posed and whether enough sample sizes can be collected to
produce accurate findings before pursuing it. Cross-validation could be carried out
on data that had little role in the derivation of the prediction law. Though widely
addressed in microarray research, replication of findings demands more attention.
Validation, in addition to which parameters decide validation, is a subject that has
yet to be thoroughly discussed [60].

20.3.5 Next-Generation Sequencing (NGS)

RNA-seq has many benefits, particularly because its cost has declined in the last few
years, compared to conventional techniques for qPCR and microarrays. RNA-seq,
for example, is not linked to the predefined genes to be tested, increasing the
numerous genes to be identified and discovering novel transcripts [61]. The various
Genome Analyzer (GA) systems currently used for the next-generation analyses are
Illumina’s / Solexa, Rosche/454, ABI / SOLiD. Illumina’s GA used for microRNA
expression profiling uses massively parallel sequencing of millions of fragments.
The low difference among platforms associated with standard strategies has added
additional benefit [63].

Earlier, Rao et al. conducted a study to figure out if the RNA-Seq transcriptomic
platform provided substantial advantages over microarrays for toxicogenomic anal-
ysis. With the aid of both gene expression platforms, “RNA samples from the livers
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of rats treated for 5 days with five hepatotoxicants (α-naphthylisothiocyanate/ANIT,
carbon tetrachloride/CCl4, methylenedianiline/MDA, acetaminophen/APAP, and
diclofenac/DCLF) were examined (RNA-Seq and microarray).” Data were
contrasted to see whether there could be some benefit given by RNA-Seq compared
to microarrays. When opposed to microarrays, RNA-Seq was able to classify slightly
more differentially expressed protein-coding genes, as well as have a greater variety
of expression level shifts [64]. APAP- and DCLF-treated rats were shown to have
slightly more differentially expressed genes (DEGs) in contrast to ANIT, MDA, and
CCl4 treated rats. Approximately, 78% of the reported DEGs on microarrays are
compatible with RNA-Seq results, with a Spearman’s correlation coefficient of
0.7–0.83. Both platforms find dysregulation of liver-relevant pathways, such as
Nrf2, eiF2, cholestasis, glutathione, cholesterol biosynthesis, and LPS/IL-1-
mediated RXR inhibition. In the RNA-Seq results, an excess of liver-related DEGs
was observed that not only substantially enriched these pathways but also indicated
modulation of additional liver-relevant pathways. Additionally, RNA-Seq permitted
the identification of non-coding de novo (or freshly synthesized) expressed sequence
tags (ESTs) that could give improved mechanistic clarification. Although these
findings suggest that RNA-Seq is an appropriate alternative to microarrays for rat
toxicogenomic studies, many advantages have been discovered. Unlike cDNA
microarrays, RNA-Seq has a wider functional spectrum and is capable of detecting
a larger number of DEGs, thereby resulting in further visibility into the processes of
toxicity. It would be important to make use of more comprehensive RNA-Seq data to
make maximum use of these additional RNA-Seq data, which is particularly signifi-
cant for non-coding sequences [64].

In another study, both RNA-Seq and microarray were conducted on RNA
samples from a human T-cell activation assay to show the advantages of RNA-Seq
over microarray in transcriptome profiling [65]. In comparison to other research,
their findings aimed to emphasize the distinction rather than the parallels, between
RNA-Seq and microarray transcriptome profiling. Using the same collection of
samples, the analysis of RNA-Seq and Affymetrix gene expression datasets showed
a high correlation between the gene expression profiles produced by the two
platforms. Compared to microarray, RNA-Seq showed a wider dynamic spectrum,
allowing for the identification of more differentially expressed genes with higher
fold-change. The study of the two datasets uncovered the advantage of preventing
technological problems, such as cross-hybridization, non-specific hybridization, and
probe detection range. RNA-Seq is devoid of the problems associated with probe
redundancy and annotation, which improved the analysis of the results. Given the
greater benefits of RNA-Seq, microarrays are nevertheless commonly preferred for
transcription profiling studies. Despite this, RNA-Seq was shown to be superior in
recognizing low abundance transcripts, differentiating biologically important
isoforms and identifying genetic variants. Most researchers are also learning about
RNA-Seq sequencing technology, which is more costly than microarray, and data
storage is more complicated. The interpretation phase is more complex as well.
Based on the current circumstances, we assume that once these obstacles are
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resolved, the RNA-Seq platform would be the favored approach for transcriptome
research [65].

RNA expression from Dicer-positive and Dicer-knockout mouse ES cells was
calculated utilizing high-throughput pyrosequencing. An observational link was
identified between the sum of microRNAs sequenced and the average number of
microRNAs per cell in human embryonic stem cells, of which the bulk can be
accounted for by six distinct microRNA loci. Four of these miRNA loci or their
human homologues have been shown to play roles in cell cycle control or oncogen-
esis, indicating that the miRNA pathway may be a central driver of the production of
the stem cell-like properties of ES cells. Most of the previously uncharacterized
miRNAs were described, of which only a small percentage are articulated at a low
level and have less survival features than the well-known miRNAs. There was a low
abundance of short RNAs that matched all groups of repetitive elements in cells
without Dicer, and in comparison, some SINE- and simple repeat-associated short
RNAs were only generated in Dicer-dependent cells. Other Dicer-dependent
sequences acted similarly to miRNAs. The only Dicer appears to act as a substrate
for miRNAs at a sequencing depth that exceeds the total amount of 50

phosphorylated short RNAs per cell. This research supports the notion that miRNAs
are active in anti-repetitive element protection, a property usually applied to other
groups of short RNAs [66].

20.3.5.1 miRNA Preparation Through NGS
The basic method of sequencing RNA [67–69] is the same as DNA sequencing;
however, some additional procedures should be performed to sequence RNA. First,
the RNA can be removed from cells or tissues. For some forms of RNA, the
enrichment strategy is growing to be different. Then the single-stranded RNAs are
converted into the double-stranded cDNA by the process of reverse transcription.
From the perspective of the cDNA, the process is the same as DNA sequencing.

Wet Experiment
The reads are the unprocessed sequencing data collected from the equipment. The
microRNA sequencing [67, 70, 71] protocol is the same as messenger RNA
(mRNA) sequencing, except for the library preparation, which is different for the
microRNA sample. Usually, microRNAs need enrichment through gel electropho-
resis. In the next phase, the appropriate gel section will be cut due to the classical
scale of the microRNAs. A library is made from isolated RNA or microRNA from
cells or tissues. These ligation strategies may be done sequentially or in parallel: 30

Adapter Ligation accompanied by 50 Adapter Ligation. To extract the cDNA, the
DNA is first to be reverse transcribed. Next, the cDNA is amplified using PCR. The
microRNA has a precise duration, which allows it to purify by using gel electropho-
resis. Libraries are typically submitted to the sequencing firm.

Data Analysis
The data obtained by the NGS sequencing method must be evaluated [72]. The reads
are also the unprocessed raw data collected from a sequencing machine. The length

468 N. Rajesh et al.



of the reads will vary based on the sequencing platform used. It could be better to go
for longer reads if the aim of the study is to create a genome. A variety of tests can be
used to figure out the consistency of sequencing. Performance is the most commonly
employed measure. During the phase of base calling, every base is given a quality
ranking (base recognition). Q is computed as �10 log E, while Q and E denote the
quality score and error rate, respectively. The percentage of bases with quality scores
greater than or equal to 10, 20, and 30 is Q10, Q20, and Q30, respectively. Q20
shows that the average rate of base calling error is 1%, or that the rate of correct base
calling is 99%.

Next, providing more than five bases with consistency scores less than 20 allows
sequencing & PCR adaptors to be excluded. Adaptors are usually even longer when
it is used in miRNA sequencing to accommodate the short distances between
miRNAs. NGS sequencing methods are capable of capturing several reads simulta-
neously (mixed sequencing). You should classify the source of each sample based on
the position of the adaptors. The mature miRNA sequence is usually 20–25 nt in
length. Annotations are introduced to the sequence data by aligning them to existing
miRNA databases. The miRBase (http://www.mirbase.org/) is the most well-known
miRNA annotation database. This comprises known miRNAs from human, mouse,
and numerous other species. PMRD [73] is a database of miRNAs expressed
exclusively in plants. It comprises the largest number of model plant organisms.
(http://bioinformatics.cau.edu.cn/PMRD).

The miRNA discovery method is different when no established archive includes
it. The first stage is contrasting the miRNA to various small RNA databases, such as
piRNA. Frequently, this method allows use of Rfam [29, 30]. The Rfam database
contains information about non-coding RNAs. In case the data cannot be matched, it
would be used in the de novo miRNA discovery process. The miRDeep2 program is
widely used for miRNA discovery. miRcat is included in the sRNA toolkit and
provides the same feature. Sequenced organisms have their genome mapped, and the
miRNA precursor sequence can be deduced out from the mapped area. New
miRNAs can be represented using the folding model. A new class of miRNA
candidates is usually located upon the stem of a stem-loop system. MiRDeep [74],
CD-miRNA [75], MiRank [76], and miRCAT [77] are other approaches for miRNA
discovery.

Analysis can also be carried out to forecast the interaction between microRNA
and mRNA (microRNA: mRNA) using many computational algorithms like PicTar
[78], TargetScan [79, 80], and miRanda [79]. Diverse algorithms may produce
diverse microRNA: mRNA predictions but use the same general criteria [81]:
(1) complementarity among microRNA sequence and the mRNA sequence of
30-UTR and (2) degree of conservation of the species-to-species microRNA site.
Any algorithm provided for a prediction can create both false positives (statistically
relevant but not verifiable pair) and false negatives, as well as a compromise between
reducing false positive and false negative will be a compromise between tighter
versus lowering false negatives. Information about various tools employed in
miRNA identification is provided in Table 20.1. NGS has bioinformatic challenges
due to the number of samples, but each sample can be bar-coded, helping to
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minimize costs. Low-cost solutions could potentially be offered by the third-
generation sequencing technologies in progress [82, 83].

20.4 Application

These profiling techniques have potential applications to primarily classify new
miRNAs predicted by bioinformatics methods, dissect the upregulated and
downregulated profiling of diverse miRNAs in the same cells, and to compare
different tissues or cells with miRNA expression profiles. These arrays have been
used to decipher miRNA expression patterns during growth, differentiation, cancer,
as well as disease conditions.

20.4.1 Identification with New Small RNA (sRNA) Arrays

Northern blot analysis or cloning methods often detect new miRNAs in animal and
plant species. These techniques involve a significant quantity of total RNA as the
starting material and often do not detect low-abundance miRNAs. A combined
method to address the barriers by using computational prediction and microarray
analysis has been proposed earlier [84]. Ten of the established KSHV pre-miRNAs
were discovered through this process, along with a previously undetected novel
pre-miRNA. Using additional computational methods, the authors established a total
of 18 new Epstein-Barr viruses (EBV) pre-miRNAs that generate 22 mature miRNA
molecules. Thereby more than quadrupling, the total number of hitherto reported
EBV miRNAs [84]. Another computationally predicted >800 novel candidates for
mammalian miRNA [85]. To establish the survival properties of miRNA genes, the
authors sequenced 122 miRNAs in ten primate organisms. Good conservation is
observed in hairpin stems of miRNA, and further variety in loop sequences is
noticed. There was a surprising decrease in conservation at the nucleotide stage in
sequences immediately flanking the miRNA hairpins. This cross-species compara-
tive profile was used to estimate novel miRNAs. Nine-hundred seventy-six candi-
date miRNAs were discovered by scanning whole-genome human–mouse and
human–rat alignment assemblies. The bulk of the applicant’s novel vertebrates are
conserved throughout other vertebrates (dog, cow, chicken, opossum, zebrafish).
The outcomes of a northern blot study demonstrated that 16 of the 69 candidates had
correctly converted into mature miRNAs. The expression of 179 novel candidates is
supported by the inclusion of these candidates in gene clusters, as well as in literature
reported since these predictions were made. These observations indicate that the
human genome harbors considerably larger amounts of miRNAs than traditionally
estimated [85].
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20.4.2 Tissue-Specific miRNAs

Arrays of miRNA may provide gene expression “profiles” that reflect complex
miRNA expression patterns which are typical to cells or tissue’s microenvironmental
responses. Various tissue-specific miRNAs and, in addition, certain miRNAs exhibit
varying levels of expression across different tissues. miR-181, miR-155, miR-142,
and miR-223 were directly expressed in 17 malignant hematopoietic cell lines
[86]. They contrasted the expression profiles of malignant hematopoietic cell line-
specific microRNAs (miRNAs; miR-181, miR-155, miR-142, and miR-223) to
those of regular human B, T, monocytic, and granulocytic cell lineages and noticed
that they differed. Despite appearing to have identical expression patterns to “normal
human hematopoietic lineages,” malignant cell lines reported miRNA expression
patterns that were distinct from “normal human hematopoietic lineages,” showing
the important influence of miRNAs in human hematopoietic diseases. Their studies
substantiated the importance of miRNA expression in human hematopoiesis and
oncogenesis [86].

Other authors have demonstrated that some typical sRNAs could be exchanged
between different cells and express their unique sRNAs [53]. They employed a new
class of sRNAs that was established by integrating dynamic programming predic-
tion, enrichment of sRNAs, and microarray analysis. Information on the laboratory
techniques that their laboratories use to design capture probes and mark enriched
small RNAs was included in the study. The microarray findings indicate that their
tailored technologies are important in improving the array’s sensitivity and specific-
ity, discovering expression trends through various cells and discovering the differ-
entially expressed sRNAs during the bone marrow stem cell differentiation process.
That study supported that computational prediction and microarray analysis could be
an advantageous way of studying known and predicted small RNAs [53].

20.4.3 miRNA’s Function in Stem Cells

In tissue development, maintenance and repair of stem cells play a major role.
miRNA array technology has aided in unmasking stem cell function regulation by
comparing sRNA expression of various developmental stages of stem cells. An
important enzyme in miRNA biogenesis has been reported in mouse embryonic
stem (ES) cells with defects in differentiation and proliferation due to the loss of
Dicer, while Dicer re-expression in ES mouse cells free these functions [87, 88]. Ear-
lier Murchison et al. developed embryonic stem cell lines where the Dicer gene may
be inactivated under certain conditions. Dicer deficiency threatens microRNA matu-
ration and causes a dsRNA-triggered gene silencing error. In the absence of Dicer,
small interfering RNAs are not negatively impaired in their capacity to inhibit gene
expression. Interesting to remember, Dicer failure can clarify the phenotype previ-
ously observed in Dicer-null animals. Decreased expression of Dicer often reduces
the abundance of transcripts from mammalian centromeres but does so without
greatly influencing histone alteration status or DNA methylation at pericentromeric
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repeats. The models presented in that article aid us in dissecting the biological
functions of the RNAi machinery in cultured mammalian cells [87]. To research
Dicer feature, another group of researchers knocked out the Dcr-1 gene in embryonic
stem cells (ES cells) through conditional gene targeting. They produced Dcr-null ES
cells. Although these cells were defective in RNA interference (RNAi) and
microRNA generation, they were still viable (miRNAs). But the ES cells were
absolutely unable to distinguish in vitro or in vivo. Centromeric repeat sequences,
as well as the expression of homologous small dsRNAs, are suppressed epigeneti-
cally. Restoration of Dicer expression in knockout cells reversed these phenotypes.
Our results point to Dicer’s presence in essential biological processes, such as stem
cell differentiation and centromeric heterochromatin structure and silencing, in a
mammalian organism [88]. Thus, understanding the novel insights of stem cell
regeneration and differentiation have been provided by the identification of patterns
of miRNA expression in stem cells, but these are in their infancy [53]. Effective
combination with miRNA analysis of stem cell studies may have scientific and
medical uses. miRNA biology, self-renewal, and differentiation being vital aspects
of stem cell function.

20.4.4 miRNA and Cancer

In most respects, cancer is a genetic disease that includes both protein code and non-
protein-coding genetic alterations. Augmenting real-time quantitative RT-PCR,
miRNA arrays are used to classify and compare standard cell and tissue miRNA
expression profiles with those in tumors. Different miRNA patterns of expression
were connected by numerous kinds of tumors, and the miRNA profiles were
different from normal cancerous tissues. For example, in >80% of tumor samples,
miR-126, miR-143, and miR-145 were downregulated compared to associated
normal tissues, while in 80% of tumor samples, miR-21 was found to be
overexpressed. miRNA arrays were able to establish a correct diagnosis with slightly
higher accuracy of poorly separated samples. The benefit of miRNA over mRNA
profiling is that diagnostic profiles are clearly demonstrated in contrast to the
mRNA-based classifier [42]. Previous studies show that approximately half of all
miRNA genes were present in cancer-associated genomic regions and developed a
key nodal point in cancer growth pathways. This indicates that miRNAs may play an
important role in the pathogenesis of human cancer.

Using Affymetrix miRNA microarrays, a group of researchers examined the
miRNA profiles of samples that exhibited global miRNA declines as a consequence
of inducible Dicer1 deletion. An unusually high percentage of deregulated miRNAs
were up-regulated, and thus even up to a quarter of deregulated miRNAs found in
response to Dicer1 degradation displayed substantial up-regulation after “robust
multichip average” (RMA) context correction and quantile normalization,
suggesting a normalization bias. We discovered that when non-miRNA small
RNAs were used in place of miRNAs, the use of cyclic loess improved the accuracy
and efficiency of miRNA recognition. The findings were verified in samples from
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patients with prostate cancer, where cyclic loess normalization and array weights
were used along with rigorous normal-exponential history correction to appropri-
ately distinguish the largest number of decreased miRNAs and the lowest volume of
false-positive up-regulated miRNAs. The observation highlighted the reality that
global miRNA decreases must be compensated for when using microarrays for the
identification of miRNAs that are differentially represented. The usage of cyclic
loess made of non-miRNA small RNAs was found to help increase the sensitivity
and specificity of miRNA profiling in cancer samples with global miRNA
decrease [89].

Another group of researchers tested for miRNAs and their target genes for new
markers of tumor subtype. “Gene Expression Omnibus” (GEO) database was used to
view the miRNA expression profiles from breast cancer GSE38867, which included
seven “ductal carcinomas in situ breast” (DCIS) cancer samples, seven invasive
breast cancer samples, seven metastatic breast cancer samples, and seven normal
breast samples. The limma package was used to classify the differentially expressed
miRNAs in various subtypes of breast cancer. Using MicroRNA.org as a database
source, they predicted the target genes of the miRNAs that were observed to be
differentially expressed. To conduct the GO feature and KEGG pathway studies, we
inserted the goal genes and their interacting genes (which STRING predicted) into
DAVID [90]. The numbers of differentially expressed miRNAs found in DCIS,
invasive, and metastatic breast cancer, respectively, were 21, 47, and 107. Three
subtype-specific miRNAs (“hsa-miR-99a and hsa-miR-151-3p for DCIS breast
cancer, hsa-miR-145 and hsa-miR-210 for invasive breast cancer, and has-miR-
205 and has-miR-361-5p metastatic breast cancer”) were found to be differentially
expressed. A large number of different GO functions and KEGG pathways had
enriched in their miRNA target and gene networks that interacted with them [90].

20.5 Limitation

There are a variety of properties peculiar to miRNAs that cause difficulties when
trying to detect and measure them [12]. As an example, mature miRNAs usually
have a length of 22 nt, which is too short for annealing to standard primers designed
for PCR and reverse transcription. Additionally, in contrast to messenger RNAs,
miRNAs lack a universal primer binding site, including a poly(A) tail, which could
be used for selective enrichment or reverse transcription. miRNAs are an exception-
ally unusual (~0.01%) part of the overall RNA mass, and it is, therefore, crucial that
they be narrowly identified in the form of other, diverse RNA populations, including
pre-and pri-miRNA precursors that also comprise the mature miRNA series. Addi-
tionally, miRNAs in a family (for example, the let-7 family) may vary by a single
nucleotide, causing the ability to differentiate among the types of single-nucleotide
variations to be particularly significant. Even for a single miRNA, biological
samples may exhibit any degree of sequence duration heterogeneity. Oftentimes,
this is attributed to so-called “isomiRs” [91–93], by the addition of nucleotides to the
30 ends of mature miRNAs post-transcriptionally; also, post-transcriptional cleavage
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at the 30 end of mature miRNAs results in truncated sequences that are shorter than
the standard miRNA. Changes to the 50 end of the miRNA can have a significant
impact on its role since they may modify the sequence of the seed region, which is
usually identified as nucleotides 2–8 of the miRNA and is the primary determinant of
mRNA target selection [93–95]. Nucleotide additions to the 30 end have little effect
on the seed region but can still impact miRNA stability and mRNA-targeting
efficacy. It is necessary to bear in mind that the degree of sequence duration
heterogeneity varies between miRNAs, and the overwhelming majority of miRNAs
demonstrate only mild length heterogeneity; therefore, the importance of measuring
different types depends on the aims of a miRNA profiling experiment. Another issue
with profiling hundreds of miRNAs in parallel is that, due to their small duration, GC
content variations create a significant variability in annealing temperatures (Tm).
This influences the resultant profiles, which have prejudices peculiar to miRNAs.
Three well-established techniques exist, namely quantitative reverse transcription
PCR (qRT-PCR), hybridization-based approaches (e.g., DNA microarrays), and
high-throughput sequencing (RNA sequencing).

20.6 Conclusion and Future Perspective

In conclusion, high-throughput approaches are used for gene expression analysis,
including miRNA profiling. It would be helpful to perform further analysis on
profiling pre-miRNAs and pri-miRNAs, as well as convergence with broader
datasets, in order to further grasp the functions of miRNAs in gene regulation and
disease [12]. Additionally, miRNAs are increasingly valued to be
compartmentalized within cells (e.g., miRNA within the cytoplasm versus the
nucleus or miRNAs present within different protein complexes). As a consequence,
novel details can be revealed by miRNA profiling in unique subcellular
compartments instead of whole-cell extracts, as has historically been the case.
Characterization of miRNAs associated with their targets (e.g., through PAR-CLIP
or HITS–CLIP) is expected to increase as experimental approaches and sequencing
technologies advance. This may have a significant payback for studying biological
mechanisms in which miRNAs play a prominent role. Additionally, we should
discuss that so many non-coding RNAs, like PIWI-interacting RNAs (piRNAs),
and long intergenic non-coding RNAs (lincRNAs), are gradually recognized as
playing important roles in cellular physiology, although it is possible that other
non-coding RNA groups would be discovered. Profiling approaches like RNA-seq,
which are capable of detecting all forms of RNA, are likely to shed light on the
whole transcriptome in the future.
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Abstract

Long non-coding RNA (lncRNA) is the largest non-protein and functional RNA.
The majority of lncRNAs are functionally uncharacterized. Thus, researchers are
employing both experimental as well as computational approaches to characterize
unknown lncRNAs. Recently, the majority of lncRNAs have been characterized
using transcriptome sequencing datasets under different conditions. The informa-
tion on these transcripts was mainly restricted to genomic loci and expression
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patterns. This discrepancy in lncRNAs’ functional understanding has largely been
due to the lack of methods to classify basic genome-scale bio-molecular
interactions and resources that systematically archive these interactions. Addi-
tionally, experimental methods are time-consuming and cost-effective. To over-
come this, various bioinformatics tools have been developed to predict lncRNA.
Thus, in this chapter, the authors attempted to understand the underlying principle
of various computational approaches to detect lnRNAs. Information obtained
reveals that lncRNA may be annotated by employing its coding potential and
sequence conservation, folding algorithms, and interactions. Additionally, several
databases have also been developed to help researchers detect lncRNAs from the
large genomic dataset. Though the result obtained from these tools and databases
is useful, a systematic integrative and metadata analysis is also required to
understand diverse lncRNA regulatory mechanisms of action at various levels.
Further attempts would be made to annotate their features, which is beneficial in
understanding the underlying cell biology.

Keywords

Bioinformatic tools · Computational approaches · Database · Long non-coding
RNA

Abbreviations

CSF Codon substitution score
eRNAs Enhancer-related RNAs
lincRNAs Long intergenic RNAs
lncRNA Long noncoding RNA
ncRNA Non-encoding RNA
Profile-HMM Profile hidden Markov models

21.1 Introduction

A non-encoding RNA (ncRNA) as the name suggests is a non-encoding, non-pro-
tein, functional RNA, categorized into microRNA (miRNA), ribosomal RNA
(rRNA), transfer RNA (tRNA), and long ncRNA (lncRNA) depending on their
function and length [1–3]. Since the last decade, ncRNAs have been one of the
most discussed topics in the genomics field. Non-coding RNAs have been primarily
categorized into small and lncRNAs based on their size. This repertory has been
substantially extended to improve technology for records with single nucleotide
polymorphism [4, 5]. However, there has been no detailed examination of the
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functionality of these findings. The lncRNA class also contains transcripts identified
as macroRNAs and vlincRNAs by some authors. The MacroRNAs are long,
unspliced, and can readily form secondary structures and transcribed RNAs with
RNA pol II. MacroRNAs like Airn [6] or KCNQ1OT1 play a key role in modulating
imprinting in normal tissues. VlincRNAs, a subset of human transcriptome covering
the space between 50 and 700 kb, represent or rather long intergenic RNAs, on the
other hand. These transcripts are found in different tumors and demonstrate cellular
expression. Pluripotent or the malignancy level in certain tumors has also been
shown to be associated with them [7]. High-level techniques have allowed large-
scale non-code transcripts known as circular RNAs to be detected. Transcripts,
which have distinct molecular roles, are often included in the long non-coding
RNA repertoire. Those functional attributes can, depending on the type of molecular
interaction with other cell biomolecules, be defined as guides, decoys, signals, and
scaffolds [8].

ncRNAs have major roles in living organisms, like peptide bond formation during
translation mediated by rRNA [9], transcription and post-transcriptional gene
expression regulation mediated by miRNA of gene expression [10], and imprinting,
X inactivation, and epigenetic marks regulation mediated by lncRNA [11–13]. In
addition, they also have immense significance in the sense of numerous diseases.
The cluster miR-17-92 acts as an oncogene, while miR-15a–miR-16-1 acts as a
tumor suppressor [14].

Even if they aren’t translated into proteins, lncRNAs are functional. Indeed, as
early research shows the central role of Xist in X-chromosome inactivation, an
increasing number of studies have identified various roles for lncRNAs in several
cellular processes, including gene imprinting, differentiation and growth, antiviral
reaction, and vernalization in plants [15]. Some lncRNAs have been shown to
interact with chromatin-modifying complexes, to be active in the conformation of
nuclear domains or in the functioning of transcriptional enhancers. Others have been
seen to intervene with the transcriptional machinery and preserve the stability of
nuclear speckles [16–19]. Several human conditions, such as heart diseases, diabe-
tes, and intracranial aneurysm, are associated with lncRNA named as ANRIL
[20]. Considering this, to date, numerous experimental approaches have been devel-
oped to detect lncRNA. However, the major drawbacks of the experimental methods
are increased time and cost. Considering these, numerous bioinformatics approaches
were developed to predict ncRNAs, including lncRNA. Computational
methodologies combine genome-scale databases, expression patterns, motifs, and
structure annotations. These offer vast opportunities for interpreting the functional
role of lncRNAs. Thus, in this chapter, we present an overview of computational
approaches to classify and annotate lncRNAs functionally.
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21.2 Long Non-coding RNAs and Their Mechanisms

LncRNAs are a diverse class of ncRNA comprising transcripts longer than
200 nucleotides length but not encoding proteins [21]. Within this lncRNA group-
ing, they are often categorized based on their genomic position and majorly as
“enhancer-related RNAs” (eRNAs), intronic RNAs, transcribed ultraconserved
RNAs, natural antisense transcripts (NATs), and long intergenic RNAs (lincRNAs)
[21]. LncRNA genes are encoded either in the antisense or sense DNA strand and are
found within a protein-coding gene or inside the introns of genes [22]. Unlike
mRNA, however, lncRNAs are translated by RNA polymerase II. Many transcripts
are multi-exonic, have a poly-A tail, have a 50 cap, and experience RNA splicing.
Active promoters of such genes are typically labeled with H3K4me3, and gene
bodies show H3K36me3 histone modifications [23]. Unlike protein-coding genes,
lncRNAs do not have usable initiation and termination codons, and thus do not
contribute to the translation of protein [24]. The proteins are expressed at far lower
amounts than the protein-coding equivalents and have comparatively poor evolu-
tionary conservation. While not being strongly conserved, the expression pattern of
lncRNAs has been shown to be highly relevant to cell and tissue forms.

Regarding the mode of action of these regulatory factors, two researchers
suggested four large categories of action [8]. Signaling LncRNAs constitute a
class in which there is a large degree of spatial and temporal precision. They play
a role in signal transduction. After transcription, these signaling lncRNAs trigger
signaling pathways in response to a stimulus. Their existence can also signify a
specific cell developmental state, disorder, or behavior (Fig. 21.1) [8]. Another way
lncRNAs control their targets is by serving as decoy molecules that inhibit RNA
binding factors from binding to their partners. By impeding chromatin remodeling,
transcription factors, and microRNAs in their target genes, decoy lncRNAs may
negatively affect downstream results [8]. Interestingly, miRNAs can attack lncRNAs
directly and affect their modulation of transcription and vascular function. Assisted
by their ability to bind protein and also base pair with target sequences, lead
lncRNAs are responsible for detecting transcriptional regulators to particular areas.
In like manner to the roles performed by guide lncRNAs, scaffold lncRNAs can
mediate protein–protein interactions by creating intricate protein–protein complexes
[8]. LncRNAs are a distinct group of regulatory elements influencing transcription
that share common characteristics.

21.3 lncRNA Annotation Strategies

Several different algorithms are used to categorize, describe, annotate, and identify
RNA molecules.
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21.3.1 Coding Potential and Sequence Conservation

Statistical methods for gene finding have sought to quantify small differences in
DNA sequences among non-coding and coding regions of DNA. ORF sequences are
calculated by identifying the start and stop codon position in the translated protein.
Gene identification methods depend on codon-explicit features in several genomes
regions, which represent its function. A codon use array is employed to help in
evaluating the possible codon use of each gene [26]. LncRNA annotation may be
complicated by the presence of certain transcripts, but in reality are coding for
proteins. A significant number of lncRNAs identified with the “ambiguous ORF”
biotype are thought to be protein-coding. Still, these RNAs have more than one
ORF, and are therefore erroneously categorized as lncRNAs. Another cause of false
positives is those brief ORF and protein codon occurrences that can be quickly
ignored and the biological complexity of transcripts that function at both protein and
RNA level [27]. The collection of a small number of protein sequences is also used
to boost the specificity of motifs and the reliability of screening for lncRNAs. The
“codon substitution score” (CSF) is also employed to classify uncommon transcripts
and identify lncRNAs. The CSF scores are focused on nucleotide substitution trends
found in protein-coding transcripts, as well as employ an empirical codon substitu-
tion matrix of Ka/Ks ratios, defined as “the number of non-synonymous
substitutions per non-synonymous site (Ka) to the number of synonymous
substitutions per synonymous site (Ks)” [28]. Lower levels of non-synonymous
modifications or silent changes in codons are indicative for the conservation of
protein coding genes. This matrix combines both transversion and transformation
probabilities to assess evolution for conserved coding areas [28, 29]. The CSF score
analyses the mutation frequencies of non-coding and coding sequences, while the
substitution rates may be used to evaluate the molecular evolution. From one
perspective, it is an approximation of how likely the exonic sequences potentially
evolved through substitutions.

Assuming the null hypothesis, the CSF helps one to find the genuinely special
individual lncRNAs. Alignment and homology identification utilizing sequence data
are commonly employed in bioinformatics and can identify homologous sequences.
“Profile hidden Markov models (Profile-HMM)” can generate position-specific
profiles sequences from a multiple sequence alignment. These profiles may be
scanned to identify other matches to which they are identical. HMMER [30] is a
widely employed algorithm for creating Profile-HMMs: it allows for rigorous
modeling of coding regions with differential conservation and indels rates,
culminating in the more sensitive detection of exonic regions [30, 31]. The Profile-
HMM method suggests that new non-coding RNA sequences may be detected by
similarities to previously identified sequence profiles as well as common motifs, like
CGIs, Alu repeats, and T-UCRs [32].

“Coding Potential Calculator” (CP Calculator) is a machine-learning classifier
built on a support vector machine (SVM) that uses a number of sequence-based
features (ORF volume and sequence similarity) to identifying potential lncRNAs.
CPC is a system that computes ORF duration by utilizing the hexamer frequency as
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well as using multiple dynamic frameshift models. The frameshift model employs
penalties in the design of a splice site to regulate unnecessary insertions or deletions,
while edit distance is used to allow for mutations within lncRNA transcripts. The
program then used BlastX to classify recognized protein sequences, prior to actually
outputting a binary classification and trust score by SVM.

21.3.2 Folding Algorithms

The identification of lncRNAs might not be necessary to evaluate their role; how-
ever, higher order knowledge, including other genomic features, may be more
useful. In reality, thermodynamic folding can be employed to categorize lncRNA
sequences into categories and recognize common motifs among folded lncRNAs.
The reason for using folding algorithms in lncRNA annotation is the belief that
lncRNA plays the tasks of a scaffold by assisting in the creation of RNA/DNA
hybrids [33, 34]. The scaffold assumption means that the secondary structures of
their scaffold proteins are close enough to enable scaffold component proteins to
attach to the scaffold. Fold identification was an excellent method to find a similar
collection of secondary and tertiary motifs to classify short non-coding RNAs. Using
these detailed studies, thousands of intergenic lncRNA genes were identified in
mouse cells [23]. Pseudoknots are key functional motifs in deciding the secondary
structure of several intergenic introns [35]. During transcription, RNA folds into
pseudoknots as well as hairpin motifs to provide minimum free energy. Algorithms
like Randfold can integrate hairpins [36] and pseudoknots [37] to achieve higher
precision structure and aid in detecting increasingly complicated motifs.

21.3.3 LncRNA Interactions

The variations between different lncRNAs and how they communicate with
RNA-binding proteins (RBP) can be defined by their interactions with these
proteins. Mass spectra of lncRNA-associated peptides may be used to track map,
control, and quantity of lncRNA–ribosomal protein complexes interaction, which in
turn promote the creation of a “coding/non-coding gene co-expression network
(CNC).” The localization of lncRNA binding sites and motifs gives insight into
the genetic associations responsible for hereditary disorders and polygenic cancers.
Recent research found, on average 1.1% of RBP binding sites in human lncRNAs,
totaling 21,073 RBP–lncRNA associations in 14 cancer forms [38, 39] which
indicate a crucial regulatory relationship between RBP and lncRNAs, independent
of biotype. These functional analysis approaches may be used to forecast and
evaluate a particular lncRNA–protein complex. Preprocessing, peak calling, differ-
ential analysis applications, and StarBase employ the RBP–lncRNA relation for
prediction, as well as an annotation.

It is also established that a regulatory layer occurs in the targeting of lncRNAs by
microRNAs (miRNAs) [33, 40–46]: it is owing to the existence of “miRNA
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recognition elements (MREs)” sites in certain lncRNAs. MREs’ motifs are untrans-
lated into miRNA-binding regions situated in both 30-UTR as well as the “coding
region of gene” (CDS) regions, which in turn leads to mRNA degradation or
translational repression [47]. These miRNA–lncRNA associations are thought to
play a vital role in biological processes like organogenesis, development [48], and
disease pathophysiologies [49, 50]. For instance, lncRNAs, MRAK081523 and
MRAK088388, play a modulatory function through regulating N4bp2 as well as
Plxna4 expression via let-7i-5p and miR-29b-3p sequestration [51]. MiRcode is a
method initially developed for miRNA binding sites prediction. It uses seed com-
plementarity, evolutionary survival, and Gencode annotation to forecast lncRNA.
The microRNA (miRNA) code comprises over 10,000 annotations in the human
genome.

21.4 Databases and Public Repositories

To date, numerous databases and tools have been developed for the identification of
lncRNA (Table 21.1). One of the first databases of ncRNAs with proven or
suspected regulatory roles was created by Barciszewski’s group in 2003
[52]. Their non-coding RNA database was the first archive comprising nucleotide
sequences (obtainable in FASTA format), brief explanations of the activities of
individual ncRNAs, literature references and GenBank accession numbers.
According to the details, the number of ncRNAs in the database was less than
40, besides homologs and miRNAs. At present, the database comprising ~30,000
human sequences from 99 distinct organisms and three different realms of life,
namely Eukaryota, Bacteria, and Archaea. The primary source of sequences used
in the database was GenBank, and the additional annotation details for human and
mouse ncRNAs were also obtained from “H-inviational Integrated Database of
Annotated Human Genes version 3.4” and FANTOM3, respectively.

Another database named Rfam has been created in the same year. It conducts
several sequence alignments and covariance models describing non-coding RNA
families [53]. At first, the Rfam 1.0 database comprises over 50,000 RNA families
belonging to 25 RNA families. After incorporation with more advanced RNA
databases like miRBase, IRESite, Pseudobase, snoRNABase, the plant snoRNA
database, TransTerm, and the Yeast snoRNA database, the next edition (Rfam 9.1)
would include more than 700 completely new families, hitting a total of more than
1300 [54]. In 2005, Mattick’s group revealed the creation of RNAdb (http://research.
imb.uq.edu.au/RNAdb), a robust human ncRNA database comprising over 800 spe-
cific experimentally characterized ncRNAs, correlated with diseases and/or devel-
opmental processes. This database was further applied in 2007 with the RNAdb 2.0
where the authors presented even nucleotide sequences and annotations for tens of
thousands of non-housekeeping ncRNAs, including a wide variety of mammalian
microRNAs, small nucleolar RNAs, as well as ncRNAs expected to occur utilizing
structural features and alignments.
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A second curated database, the “H-Invitational Database (H-InvDB)” (http://
www.h-invitational.jp/), is a collaborative effort of researchers working on the
“Human Full-length cDNA Annotation project” [55]. The H-InvDB (release 3.4,
August 2006) database contains more than 1700 putative ncRNAs identified by the
omission of any open reading frame as well as by not belonging to the pseudogene
category.

Over a period of time, many other databases appeared to fill the gaps in
classifying other ncRNAs like SRP RNAs, tmRNAs, or RNase P RNAs, as well
as other ncRNAs defined as per cellular localization, feature, or sedimentation
factors (i.e., 6S RNA, 5.3S RNA, etc.). Thus, to standardize the ncRNA database,
NONCODE (http://www.noncode.org/) has been developed. The most recent edi-
tion of NONCODE (v1.0) includes non-redundant 5339 eukaryotic and
archaebacterial sequences. Over the past few years, a substantial increase in the
volume of data on ncRNAs has contributed to the NONCODE v.2.0 where the sum
of obtained ncRNAs surpassed over 206,226 sequences from 861 distinct species
[56]. In this edition, novel groups of ncRNAs, such as snRNA-like RNAs
(snlRNAs), Piwi-interacting RNAs (piRNAs), and stem-bulge RNAs (sbRNAs)
[57], have been included along with other unclassified ncRNAs. To date,
NONCODE has entered version 3.0 and now includes over 42,000 public sequences
from 125 species representing all the life types. One of the main attractions of this
database is the provision of usable data for a particular lncRNA of interest.

By merging current databases like H-invDB, 5.0 [58], FANTOM3, miRBase
[59], NONCODE [60], snoRNA (LBME db rel.3) [61], Rfam [53], RNAdb [62], and
GEO [63], another Japanese community built a framework to mine/annotate usable
RNA candidates from non-coding RNA sequences and named it fRNAdb
[64]. fRNAdb is a database offering support for computational analysis of EST
support assessment, RNA secondary structure motif discovery, cis-regulatory factor
quest, and protein homology search. Besides, the fRNAdb database is connected to a
customized “UCSC genome browser (RNA-specific custom tracks).” The upgrade
fRNAdb 3.0 helps users to annotate anonymous RNA transcripts and recognize
novel non-coding RNAs. In comparison, as in the NONCODE database, the
fRNAdb database has increased the number of sequences to over three times the
number of sequences previously available.

As previously mentioned, non-coding RNAs may be represented in a parent-
dependent fashion and are referred to as “imprinted” ncRNAs. An increasing
number of studies indicate that dysregulation of imprinted ncRNAs was related to
several human diseases like Silver–Russell syndrome, Beckwith–Wiedemann syn-
drome, Prader–Willi syndrome, and multiple tumors [65–67]. Members of this group
comprise microRNAs, antisense ncRNAs, small nucleolar RNAs, piRNAs, small
interfering RNAs, mRNA-like ncRNAs, and piwi-interacting RNAs [68]. To exam-
ine the data in a more organized way, Zhang et al. cataloged all of the imprinted
non-coding RNAs (ncRNAs) in a systematic database known as ncRNAimprint
[69]. This database includes 7094 entries, of which 6612 are piRNA, accompanied
by 187 microRNAs, 129 snoRNAs, 107 siRNAs, and 129 antisense ncRNAs
[23]. Just 33 documents are actually accessible for mammalian organisms (http://
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rnaqueen.sysu.edu.cn/ncRNAimprint). Another public repository of ncRNA expres-
sion data is the Non-coding RNA Expression Database which includes details of
more than 5000 long ncRNAs found in humans and mice. NRED combines both
evolutionary conservation and secondary structure proof to reflect lncRNAs, render-
ing it a valuable archive. Therefore, NRED provides important knowledge on
characterizing lncRNAs and their transcriptome distributions.

The researchers also found that the NRED resource has been associated with
another reference database for lncRNAs, namely lncRNAdb. This extensive data-
base maintains a listing for all the lncRNAs with a regulatory role, as well as
connected with some of the biological functions within eukaryotes. The LncRNADB
provides details regarding the sequences, genetic background, subcellular localiza-
tion, and expression. It is related to the UCSC genome viewer for visualization and
expression information from a number of sources. The database includes over
150 separate lncRNAs from 60 distinct animals. 80% of them are human, and
most of them are mammalian.

To reduce the task of determining the role of latent non-coding RNAs, a compu-
tational method was developed in which RNA sequencing data was combined with
already existing annotation tools. The authors calculated lncRNAs based on gene
similarity, structural similarity, transcriptional similarity, and orthology. They
accumulated a huge number of human lincRNAs, with a substantial proportion of
them not detected by GENCODE, RefSeq, or UCSC. Next, the authors created a
database of 8195 human lincRNAs from integrating RNA-seq data from 24 tissues
and cell types, using publicly accessible transcript annotations. They showed that the
expression of lncRNAs is tissue-specific, owing to which adjacent genes are often
expressed in the same tissue. The findings have been compiled into the Human Body
Chart lincRNAs. This interconnected and detailed catalog could help to determine
the global properties of lncRNAs enabling more studies on their role.

21.5 Conclusion and Future Directions

A large chunk of the human transcriptome is made up of lncRNAs and poses various
molecular structures, functions, and mechanisms of action. Thus, there is a demand
for the development of tools and techniques that can detect lncRNAs more precisely.
Cantered on automated sequence annotation, experimental verification, disease
association, and interaction studies, we also have a range of emerging reference
datasets. Though to date, several experimental approaches have been developed,
they demand huge capital and time. Hence, to overcome this, nowadays, several
computational modeling approaches have been developed to answer unusual queries
from transcriptome data. There are currently a variety of methods available for
elucidating whether a transcript encodes or does not encode using possible standards
for computer coding that include measuring multiple sequential characteristics. In
general, non-coding RNA sequences work by folding into secondary structures,
which are necessary for their function. Some approaches often influence these
structures in the annotation process by calculating the minimum free energy and
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conservation of these characteristics. Completely these magnitudes contribute
greatly to accurately assessing the functional capacity of these transcripts. The
additional vital feature is to recognize the RNA mechanisms. These characteristics
need to be included and tested comprehensively when designing the models. We
may be unaware this RNA folds into 20 and 30 structures and dictates complex
interactions with proteins and nucleic acid in different pipelines due to restricted
structural features. To find the optimal folding stage of an RNA, a majority of the
secondary structure methods used minimum free energy algorithms. At times, the
same transcript could serve as RNA coding as well as non-coding. Therefore, to
establish the conditions leading to gene expression, the co-factors influencing
transcription must be further studied. A systematic integrative and metadata analysis
is also required in order to understand diverse lncRNA regulatory mechanisms of
action at various levels. It is also vital to remember that it is necessary to experimen-
tally validate all these computational predictions, but they may minimize the search
space for experimentation to a large extent. Finally, many novel lncRNAs are
expected since most of the statistical methods predict lncRNAs with exactness.
There are gaps among the non-coding transcript identification and their mechanisms.
Further attempts would be made to annotate their features, which is beneficial in
understanding the underlying cell biology.
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Circular RNA in Rice (Oryza sativa) 22
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Abstract

Circular RNAs are a group of non-coding RNAs with a closed-loop structure that
produce via the atypical alternative splicing event in all eukaryotic species. As a
result of current advances in sequencing technologies and data analysis tools, an
enormous number of circRNAs have been recognized in different animal and
plant species. In contrary to the extensive researches of circRNAs in animals,
circRNA investigation in plants is in its early phase. However, the genome-wide
prediction of circRNAs in plants is rapidly emerging, indicating the important
biological roles of circRNAs in plant growth, development, and stress responses.
In this chapter, we describe the circRNA biosynthesis and its features in plants
and compare it with animals when required. We also provide the bioinformatics
resources for plant circRNA discovery and review the putative biological
functions of circRNA in plants.
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Abbreviation

ceRNA Competing endogenous RNAs
CircRNA Circular RNA
DEC Differentially expressed circular RNAs
lncRNA Long noncoding RNAs
IRES Internal ribosomal entry site
LLERCPs Reverse complementary pairs
LLEs LINE1-like elements
miRNAs MicroRNAs
ORF Open reading frames
Psa Pseudomonas syringae pv. Actinidiae
PSY1 Phytoene synthase 1
PTGMS Photo-thermosensitive genic male sterile
RBPs RNA-binding proteins
RNAase Ribonuclease
RNA-seq RNA-sequencing
snRNP Small nuclear ribonucleoprotein
SEP3 SEPALLATA3

22.1 Introduction

A group of single-stranded non-coding RNAs with a closed-loop structure named
circular RNAs (CircRNAs) are produced via the back-splicing reaction. In this
non-canonical alternative splicing event, 50 and 30 ends of pre-mRNA transcripts
are connected by a covalent bond [1, 2]. Unlike linear RNAs, the closed-loop
structure of circRNAs with neither 50 cap nor 30 poly-A tail provided greater stability
and resistance to degradation by a variety of RNAase. Hence, eukaryotic total RNA
digestion using RNAase can be beneficial for circRNAs segregation and enrichment
from other RNA types [3, 4]. In 1976, Sanger et al. discovered the first circRNAs,
viroid’s RNA that propagated in tomato and Gynura [5]. As a result of emerging
modern deep sequencing technologies along with the improved circRNA enrichment
approaches and data analysis tools, thousands of circRNAs were discovered in many
organisms, including archaea, humans, mouse, Arabidopsis, rice, and zebrafish.
Consequently, circRNAs are commonly found in all eukaryotes. According to
CIRCpedia, 183,000 circRNAs have been recognized in different human samples
as of July 2018. Similarly, various research teams have reported over 95,000
circRNAs in different plant species through June of this year (2018), in which the
highest number of identified circRNAs belonged to Oryza sativa and Arabidopsis
thaliana [6]. After miRNAs and lncRNA, a trending research topic in molecular
biology can be assigned to circRNAs. In contrast to the thorough and extensive
circRNAs characterization in animals, little attention has been paid to the plant
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circRNA discovery. Therefore, our knowledge of circRNAs was mostly originated
from researches in animals and humans. Based on these studies, numerous roles are
proposed for circRNAs, including acting as miRNA sponge, the vehicle for
RNA-binding proteins, and the regulator of gene expression and translation.
Although circRNAs are mainly categorized as non-coding RNAs, some of them
appear to serve as the template for protein synthesis as demonstrated by pieces of
evidence obtained from humans and animals. For example, a circRNA derived from
beta-catenin can translate to protein and promote liver cancer cell growth [7]. Never-
theless, the plant circRNAs might produce and regulate through different
mechanisms and have distinct functional roles as compared with animal circRNAs.
In this chapter, we have presented in brief the current studies in characterizing plant
circRNAs, with more emphasis on rice (Oryza Sativa). The biogenesis and discovery
of circRNAs as well as their characteristics in plants are discussed. Next, we offered
the available computational pipelines and circRNA databases that can be applied to
identify circRNAs across RNA sequencing reads. Finally, the putative functions of
plant circRNAs are surveyed.

22.2 Biogenesis and Discovering of Plant circRNAs

Diverse mechanisms are contributed to form the circRNAs, however, the most well-
known mechanism is the alternative back-splicing phenomenon, which occurred via
covalently joining the upstream 30 splice site (acceptor) to a downstream 50 splice site
(donor) of pre-mRNA transcripts. The circRNA molecules possess a distinctive
exon–exon junction that is not observed in the linear transcript. Remember that the
50 splice site of an upstream exon is joined to the 30 splice site of a downstream exon
during the normal alternative splicing event. Occurring RNA circulation at the
splicing sites implies that the back-splicing process requires the spliceosome
machinery, which is typically catalyzed by the linear pre-mRNA splicing [8]. As
depicted in Fig. 22.1, five different pathways are involved in the alternative back-
splicing event. First, lariat-driven circularization, in which normal alternative splic-
ing event can create circRNAs. The exon-skipping event and intronic sequence
removal in pre-mRNA transcripts can form the exon-harboring lariat and usual
intronic lariat, respectively, which might result in circRNA molecules generation
(Fig. 22.1a). Second, RBP-driven circularization in which RBPs are attached to the
specific motif in the flanking introns of the circularized exons, which bring the splice
sites closer and call the spliceosome in a back-splicing site to form the exonic
circRNAs (ecircRNA) (Fig. 22.1b). Therefore, a set of proteins catalyzed the
circRNA production via modulating the availability of back-splicing signals for
the spliceosome. Third, intron pairing-driven circularization, in which base-pairing
happens among the reverse complementary and repetitive bases at the intronic
regions of the back-spliced exons. The ecircRNA or exonic-intronic circRNAs
(EIciRNAs) will be generated in the case of removing or retaining the introns,
respectively (Fig. 22.1c). The circularization efficiency might be influenced by the
secondary RNA structure, the existence of mispairing in intronic repetitive elements,
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and low complexity regions. In the fourth, architecture of the ciRNA relies on a 7-nt
guanine-rich element and an 11-nt cytosine-rich element to prevent cleavage and
exonucleolytic degradation (Fig. 22.1d). Fifth is the tricRNA formation, in which
tRNA splicing enzymes divide the pre-tRNA into two parts: tricRNAs are generated
by a 30–50 phosphodiester bond and the other part generates tRNAs (Fig. 22.1e) [9–
12].

CircRNAs can be classified into ten categories according to the genomic origin of
back-splicing signals location. (1) exonic and (2) intronic circRNAs that are created
in the case of locating both acceptor and donor back-splice sites within single exon
and intron, respectively; while (3) exonic-intronic circRNAs generated if one back-
splice site exists at exon and another one located at intron. (4) intronic-exonic
circRNAs in which two back-splice sites are located at two diverse introns across
single or multiple exons. (5) While UTR circRNAs have resulted from two back-
splice sites positioned at the UTR region, (6) UTR-exonic and (7) UTR-intronic
circRNAs are produced if one back-splice site is situated at the UTR region and
another one located at exonic or intronic sequences, respectively. Similarly,

Fig. 22.1 Schematic illustration of five pathways involved in circular RNA biosynthesis. (Adapted
from [9])
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(8) intergenic circRNAs, which are produced when two back splice sites are located
at a specified intergenic region, whereas (9) intergenic-genic circRNAs are formed in
the case of positioning one back splice site at the intergenic region and another one at
the genic region. Finally, (10) across-genic circRNAs are derived from two back
splice sites positioned at two distinct genes. All types of circRNAs, except for
intergenic-derived circRNAs, completely or partially cover the genic region of the
genome. Most discovered circRNAs in plants have originated from annotated genes,
both exonic and intronic parts, proposing a direct or indirect role in gene expression
regulation. It has been reported that 86% and 92% of circRNAs originated from
protein-coding genes in Arabidopsis thaliana and Oryza sativa, respectively [6].

Owing to the lack of poly (A)+ tail and non-linear structure, the circRNAs are
hardly captured by the RNA-seq technology that the corresponding libraries are
normally enriched for poly-adenylated RNAs. Circular RNAs can be detected using
rRNA-depleted RNA-seq libraries or the library enrichment using RNase R, an
enzyme that especially breaks the linear RNA transcripts [13, 14]. CircRNA recog-
nition requires adequate sequencing coverage, ideally hundreds of millions of reads,
even for the circRNA-enriched libraries. Ye et al. utilized the available rRNA-
depleted RNA-seq datasets for discovering circRNAs in Arabidopsis and rice; this
study was the first report on the plant circRNAs detection at the genome level that led
to the identification of 6012 circRNAs from the leaves of Arabidopsis thaliana and
12,037 circRNAs from the roots and shoots of Oryza sativa [15]. Given the circular
conformation and a rather low expression of circRNAs, the treatment of RNA-seq
library with RNase R for the enrichment of circRNAs is a widely used and preferred
method, leading to characterize the high confidence circRNAs in various plants,
including grape, tomato, bamboo, and soybean [14, 16–19]. Nevertheless, some
circRNAs have been successfully recognized in the polyadenylated-enriched
libraries. Lu et al. separately analyzed the circRNAs in poly (A)-selected and poly
(A)-depleted samples obtained from leaf and panicle tissues of Oryza Sativa ssp.
Japonica Nipponbare [20]. They reported that the number of leaf and panicle
circRNAs identified in poly (A)-selected libraries were marginally more than poly
(A)-depleted libraries, which might be referred to as the more high-quality
transcriptomic data derived from the poly (A)-selected libraries. However, the poly
(A)-depleted libraries display much higher detection efficiency of circRNA com-
pared to poly (A)-selected samples [20]. The up-to-date list of identified circRNAs in
rice has been demonstrated in Table 22.1.

22.3 Characteristics of Plant Circular RNAs

In addition to the nuclear genome, circRNAs are derived from the mitochondrial and
chloroplast genomes, implying their possible role in the photosynthesis and respira-
tion processes [23]. The length of circRNAs is usually<1 kbp; however, their length
distribution ranges from shorter than 200 bp to longer than 100 kbp. The size of plant
circRNAs is mostly between 200 and 600 bp, only a few of them are longer than
2 kbp. The possibility of using different splice donor and acceptor sites during back
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splicing event gives rise to the generation of multiple circRNAs from a single gene
locus; only a few of the circRNAs are produced from various loci of the same gene.
For instance, it was predicted that the parental gene, LOC_Os12g02040, can create
38 circRNA isoforms in rice, in which the full-length sequence of eight isoforms was
also experimentally validated [24]. Similar to animals, the abundance of most plant
circRNAs is relatively low in different plant species and represents the stress- and
developmental-specific expression pattern [25]. Lu et al. observed that from
30 experimentally verified circRNAs in rice, four and three circRNAs exhibited
the leaf- and panicle-specific expression pattern in this plant [20]. In comparison to
the linear RNAs, circRNAs exhibit a lower expression that appears to correlate with
the expression of their parental genes. For instance, there is a negative correlation
between the expression of Os08circ16564 and the expression of its derived gene,
AK064900, in rice [20]. Similarly, the positive correlation between the transcript
level of Ac_ciRNA_04842 and its parental gene, Achn372061, was discovered in
kiwifruit [26]. Therefore, the expression level of circRNAs may modulate by the
interior regulatory mechanisms that have not been completely clarified, yet. Further-
more, circRNAs are conserved among various plant species, which may refer to their
important biological functions in plants. The researchers reported that plenty of
circRNAs originated from more than 700 orthologous genes between Arabidopsis
and rice. However, the bracketing introns of the preserved circRNAs show no
sequence similarity or common motifs, indicating that other conserved mechanisms
might be contributed to the biosynthesis of plant circRNAs [15]. In both animals and
plants, the transcription and back splicing reactions of pre-mRNAs are mediated by
RNA polymerase II. In animals, there are substantial reverse complementary
sequences in the flanking introns of circularized exons that are indispensable for
circRNA generation in these organisms. For example, long introns containing
Arthrobacter luteus (Alu) elements enclosed circularized exons in humans
[27, 28]. On the contrary, the repetitious regions or reverse complementary
sequences appeared not to be enriched in the bracketing sequences of exonic

Table 22.1 List of the genome-wide identification of circRNAs in Oryza sativa

Tissues/
developmental stages

CircRNA
count Approach

Biological
process/stress References

Roots and shoots
at the flowering time

12,037 rRNA-depleted
RNA-Seq

Pi-starvation
stress

[15]

Panicles and leaves
at the flowering time

2354 rRNA-depleted/poly
(A)+-selected
RNA-Seq

Normal
conditions

[20]

Roots of seedlings 2806 rRNA-depleted/RNase
R-treated RNA-Seq

Normal
conditions

[21]

Young panicles at
the flowering time

9994 rRNA-depleted
RNA-seq

Fertility
transition

[18]

Young leaves 2932 rRNA-depleted
RNA-seq

Magnaporthe
oryzae
inoculation

[22]
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circRNAs in plants, proposing that intron pairing-driven circularization might not be
the main pathway for plant circRNA biosynthesis. For example, in rice, Arabidopsis,
and soybean, the percentage of reverse complementary sequences in the intronic
regions surrounding exonic circRNAs was only 6.2%, 0.3%, and 2.7%, respectively
[29]. However, a circRNA-Seq study on maize revealed that LLEs and their
LLERCPs are considerably increased in the enclosing sequences of circRNAs,
demonstrating that transposons may be contributing to form the plant circRNAs
[19]. The major spliceosome, U2-dependent spliceosome, has catalyzed the removal
of intronic sequences with splicing signals of GT and AG at the 50 and 30 splice sites,
respectively, in both animals and plants. The recognized circRNAs in different
organisms are mainly surrounded by the standard splice sites, a GT at the 50 donor
site, and an AG at the 30 acceptor site [15, 30]. However, the splice signals of
circRNAs differ among plant species. It has been experimentally proved that the
back-splicing sites of many circRNAs (92.7%) identified in the root tissue of Oryza
sativa are flanked by different non-GT/AG splicing signals, such as GC/CG, CT/GC,
and GC/GT [24]. The non-canonical splicing signals surrounded the circRNA were
also specified in Cucumis sativus [31] and chloroplast of Arabidopsis thaliana
[32]. In contrast, based on the studies conducted on Arabidopsis, grape, and cotton,
most of the characterized circRNAs in these plants are spliced by the common
GT/AG splicing signals [16, 33, 34]. The investigation of circRNAs in 12 plant
species, including Arabidopsis thaliana, Gossypium arboretum, Gossypium
hirsutum, Glycine max, Gossypium raimondii, Hordeum vulgare, Oryza sativa,
Poncirus trifoliata, Solanum lycopersicum, Solanum tuberosum, Triticum aestivum,
and Zea mays, demonstrated that the majority of circRNAs contain the standard
splicing signals (GT/AG or CT/AC); however, the percentage of circRNAs with
atypical splicing signals is different among various species. The distribution of
different junction sites of circRNAs in O. sativa and A. thaliana were detected by
Chu et al. [6] which, only 6% and 9% of all discovered circRNAs have the canonical
splicing sites in rice and Arabidopsis, respectively. The discrepant splicing signals
across different species might result from diverse RNA-Seq approaches, circRNA
prediction tools, and filtering criteria used in the identification of circRNAs. All of
these could greatly influence the number and characteristics of the recognized
circRNA [6].

22.4 Bioinformatics Resources for Investigating circRNAs
in Plants

As millions of circRNA sequencing reads have been produced using high-
throughput sequencing technologies, the development of efficient computational
pipelines is essential to handle the growing RNA-seq datasets and profound percep-
tion of circRNA characteristics. The core approach for predicting circRNA from
rRNA-depleted RNA-Seq libraries (Ribominus-Seq) is based on the existence of
back-splice spanning reads. Note that the genome duplication, tandem repeat of the
genome, trans-splicing, and transcription template switching can also generate the

22 Circular RNA in Rice (Oryza sativa) 513



back–splice junctions. Hence, using accurate methods is essential to avoid the
discovery of false-positive circRNA molecules [35]. Several tools, including
circRNA finder [36], CIRCexplorer [37], CIRI [38], find circ [39], Mapsplice [40],
and PcircRNA_finder [41], have been developed for detecting circular RNAs.
Among them, PcircRNA_finder was specially designed for detecting circRNA in
plants. Furthermore, the circseq_cup pipeline was developed for detecting the full-
length circRNAs in rice [24]. At the first step of this pipeline, the paired-end
RNA-seq reads are aligned to a reference genome by publicly available tools, like
STAR-Fusion, TopHat-Fusion, and segemehl, to identify possible fusion splice
junction sites; distance between two fusion junction sites was considered to be
�5 kb for rice. At the second step and after specifying the possible fusion splice
junction sites, back-splicing sites, where the corresponding circRNA reads can be
contiguously mapped, are determined. The back-splicing sites are corroborated by
aligning the unmapped reads obtained from the alignment in the first step. At the
third step, back-splicing paired-end reads were collected for contig assembly using
Cap3 software. An assembled contig with�5 nucleotides overlap at its two ends was
referred to the potential full-length circRNA sequence (Fig. 22.2). A single mis-
match is acceptable for an overlap region equal to or more than ten nucleotides.
Additionally, in the case of a short contig length (<100 bp), the overlap length
should be �20 nucleotides [24].

Very recently, the CircPlant tool was also developed for identifying the plant
circular RNAs using multiple plant-related criteria. CircPlant is composed of four
modules: (1) circRNA identification, (2) circRNA–mRNA interplay detection,

Fig. 22.2 Identification of full-length sequences of circRNAs in rice. The computational pipeline
of circseq_cup for recognizing the full-length circRNA sequences using paired-end RNA-Seq data.
(Adapted from [24] with permission)
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(3) circRNA–miRNA–mRNA network drawing, and (4) circRNA annotation. The
authors of the tool conducted several comparison tests on simulated and real
RNA-seq data of Arabidopsis and rice and claimed that CircPlant is more accurate
and efficient than all evaluated programs [42]. For further information on circRNA
computational pipelines and analysis, we recommend readers to refer to two com-
prehensive reviews [43, 44]. Generally, current algorithms applied by the circRNA
prediction programs can be categorized into two main groups, pseudo-reference- and
fragmented-based strategies. In the pseudo-reference-based strategy, all possible
back-spliced junctions are constructed and used as a reference for mapping RNA
sequencing reads; those reads that aligned with the predicted back-spliced junctions
are retained. Considering the requirement of gene annotation for executing this
strategy, it cannot be used for circRNA discovery in the poorly annotated or
non-model genomes. However, KNIFE, a pseudo-reference-based tool for detecting
circRNAs, contains a de novo analysis module for discovering circRNAs produced
from back-splicing sites with no previous annotations [45]. In the fragmented-based
approach, RNA-sequencing reads are fragmented into small segments with about
25 nucleotides and aligned to a reference genome; segments that are aligned at back-
splicing sites are reserved [12]. Different computational pipelines apply various
methods, like the aligner and the usage of chimeric/fusion reads to predict circRNAs.
These pipelines recognize the back-splicing sites within unmapped reads or sequenc-
ing reads that do not map end-to-end using the information of mapped/unmapped
reads within the sequence alignment mapped (SAM) file. Several alignment tools,
such as Bowtie, BWA, Star, Kallisto, and TopHat are widely used for mapping reads
with reference [35]. According to the comparison of various circRNA detection tools
by Hansen et al., different tools can create highly diverse results with high false-
positive fraction; but, merging the output of the several programs can produce a
much more reliable output [46]. Similarly, another researcher group comprehen-
sively evaluated different circRNA prediction tools in terms of accuracy, sensitivity,
F1 score and area under the curve, RAM usage, running time, and the required
physical disk space; they found that CIRI, CIRCexplorer, and KNIFE outperform
according to the establishment of a balance between accuracy and sensitivity [47].

Multiple circRNA databases have been designed for the effective management
and organization of a growing number of circRNAs that are continuously being
characterized. In comparison with animals, there are only two comprehensive plant
circRNA databases, PlantcircBase [6] and PlantCircNet [48] that comprise the
circRNA data of various plant species, data browsing, potential mRNA–miRNA–
circRNA interplay networks, and BLAST. Moreover, while the tissue-specific
circRNAs in Arabidopsis have been collected in the AtCircDB database [49], the
data of expressed circRNA transcripts in response to abiotic stresses in maize and
rice are accessible in the CropCircDB database [50]. The information of experimen-
tally confirmed circRNA in both animals and plants, including Arabidopsis, rice,
wheat, tomato, cotton, and kiwifruit along with their computationally predicted
functions were collected at CircFunBase database; the circRNA–miRNA interaction
networks can be also visualized at this database [51]. Recently, the GreenCircRNA
database was developed that provides the information of 213,494 circRNAs from
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69 plant species, in which the related miRNA information for 38 plants are available
at the miRNA database (miRBase). Hence, the circRNAs that act as miRNA sponge
were identified in these 38 plants, including rice [52]. This resource can greatly
simplify the further analysis of circRNAs that operate as competitive endogenous
RNAs (ceRNA). Likewise, the miRNA-binding sites localizing at the alternative
splicing regions of linear and circular RNA transcripts at 11 plant species are
available at the ASmiR database [53]. A summary of bioinformatics resources for
plant circRNAs is presented in Table 22.2.

22.5 Plant circRNAs Functions

The expression of most circRNAs is confined to the specific cells, tissues, develop-
mental phases, and adverse conditions that are extremely controlled, indicating their
programmed generation by the eukaryotic cells under various conditions [55]. The
putative functions of plant circRNAs are miRNA trapping (sponging), transcription
regulation, translation into peptides/proteins, and modifying protein functions via
direct interaction with them [56]. All of these activities are critical for plant devel-
opment and growth, as well as appropriate reactions to diverse stressful situations.
Here, we explain the plant circRNAs functions in detail.

22.5.1 CircRNAs as miRNA Sponges

According to prior investigations in animals, the most considerable function of
circRNAs is to operate as miRNA trapping (sponging) or regulate gene expression
in a miRNA-dependent manner (Fig. 22.3IV). The miRNA sponges or ceRNAs are
the transcripts with several miRNA-binding positions that can impede the miRNA
function [28]. Some circRNAs can attach to the RBP through their specific binding
sites, proposing that they can also act as RBP sponges [55]. Moreover, several
researchers have reported that circRNAs can be potential miRNA sponges in plants;
however, the number of plant circRNAs functioning as miRNA sponges as well as
their miRNA-binding sites is fewer than animal circRNAs. Ye et al. detected the
potential miRNA-binding sites in only 5% and 6.6% of circRNAs in Arabidopsis
and rice, respectively [15]. Based on diverse studies in different plant species,
multiple circRNAs were identified as miRNA sponges in several plants including
pepper, Chinese cabbage, cucumber, and sea buckthorn. Similarly, five circRNAs
originated from Arabidopsis thaliana might operate as miRNA sponges, which only
one of them has been experimentally confirmed [28]. Investigation of the ceRNA
network and differential expression of mRNA, circRNA, and miRNA transcripts in
Arabidopsis leaves offered that circRNAs can play important regulatory roles during
leaf senescence [51]. A group of researchers have revealed that out of 235 exonic
circRNAs with potential miRNA-binding sites in Oryza sativa, just 31 circRNA
harbors two or more miRNA-binding sites, which is significantly less than that of
human circRNAs. According to this study, the miRNA-binding sites are not
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considerably elevated among rice circRNAs, inferring that miRNA sponging is not
probably the major role of circRNAs in this plant [20]. Another study in the PTGMS
rice line demonstrated that 17% of all identified circRNAs have the miRNA-binding
sites, in which the count of binding positions is highly variable. While 56% and 15%
of circRNAs possessed the miRNA-binding positions for one miRNA and two
miRNAs, respectively, 29% of circRNAs bear the putative binding positions for
more than two miRNAs. Moreover, this study has also reported that about 23% of

Table 22.2 A summary of bioinformatics resources for detecting circRNAs in plants

Name Description Weblinks
Latest
release References

pcircRNA_finder A pipeline for identifying plant
circRNAs

http://ibi.zju.
edu.cn/
bioinplant/
tools/manual.
htm

2017 [41]

Circseq-cup A pipeline to predict the
circRNAs and assembly as the
full-length sequence

https://github.
com/
bioinplant/
circseq-cup

2016 [24]

CircPlant An integrated tool for circRNA
detection and functional
prediction in plants

http://bis.zju.
edu.cn/
circplant/

2019 [42]

CircCode A tool for recognizing the
coding ability of circRNAs

https://github.
com/PSSUN/
CircCode

2020 [54]

AtCircDB A tissue-specific database of
circRNAs for Arabidopsis

http://genome.
sdau.edu.cn/
circRNA

2018 [49]

PlantCircNet A database of plant circRNA–
miRNA–gene regulatory
networks

http://bis.zju.
edu.cn/
plantcircnet/

2018 [48]

ASmiR A comprehensive database of
miRNA targets in alternatively
spliced linear and circRNAs of
plants

http://forestry.
fafu.edu.cn/
bioinfor/db/
ASmiR

2019 [53]

CropCircDB A database of plant circRNAs
in response to abiotic stresses.

http://
deepbiology.
cn/crop/

2019 [50]

PlantcircBase A comprehensive database of
plant circRNAs

http://ibi.zju.
edu.cn/
plantcircbase/
index.php

2020 [6]

CircFunBase A database for functional
circular RNAs

http://bis.zju.
edu.cn/
CircFunBase/
index.php

2019 [51]

GreenCircRNA A comprehensive database of
plant circRNAs

http://
greencirc.cn/

2019 [52]
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differentially expressed circRNAs with miRNA-binding sites in rice can act as
miRNA sponges, proposing that the interaction of miRNA and circRNA can lead
to the circRNAs act as miRNA sponges as well as the expression level of circRNAs
may be modulated via miRNA-mediated target circRNA cleavage [57]. Note that a
part of the miRNA-binding site can be hidden by the secondary structure of
circRNAs, which is mostly neglected during the identification of the possible
miRNA-binding sites in plant circRNAs [25]. It has been reported that the
overexpression of Os08circ16564 in rice, a circRNA imagined as a target imitator
of OsmiR172, can decrease the transcript level of its derived gene with no modifica-
tion on the transcript level of OsmiR172, representing that the Os08circ16564
cannot play the miR172 sponge role in vivo. It may be assumed that the association
of OsmiR172 with the circRNA is blocked through the preservation of miR172-
binding position in the stem-loop zone of Os08circ16564 [20, 25]. Generally, studies
in both plants and animals propose that operating as a miRNA sponge is not the key
function of circRNAs. Instead, it has been speculated that the plant circRNA
degradation via the miRNA-mediated cleavage pathway can regulate the expression
level of circRNAs [25]. Therefore, circRNAs may play regulatory roles in different
processes by interacting with miRNA, which should be further explored in future
researches.

22.5.2 CircRNAs in Stress Response

Prior investigations have proven that the expression of plant circRNAs is induced
under various adverse environmental conditions, comprising high temperature, salt,
chilling, dehydration, nutrient shortage, and invasion of a pathogen
(Fig. 22.3V) [28].

Several sophisticated biological pathways have been evolved in plants to deal
with the environmental challenges during their growth and development cycle, in
which enormous gene expression reprogramming has a central role. Non-coding
RNA transcripts, like miRNAs and lncRNAs, have been revealed to play central
functions in plant gene expression modulation in response to different stresses. The
circRNAs may also operate like other ncRNAs. It has been reported that the
interaction between DEC and miRNAs can regulate the expression of stress-
responsive genes and facilitate the survival of plants under damaging conditions
[28, 55]. The induced circRNAs under biotic stresses were firstly identified during
the bacterial (Pseudomonas syringae) invasion to Arabidopsis leaves; the biological
roles of these circRNAs remain to be disclosed [33]. The differentially expressed
circRNAs were also recognized during a pathogen attack in kiwifruit. In total,
584 DECs have been detected in response to the Pseudomonas syringae
pv. actinidiae (Psa) infection that their transcripts level depends on the infection
phase [26]. Later studies revealed the responsive circRNAs to the MIMV (maize
Iranian mosaic virus) infection in maize [58], the Verticillium in cotton [59], and the
TYLCV (tomato yellow leaf curl virus) in tomato [60] that can act as the negative
regulators of virus interaction and tomato. Recently, Feng et al. elucidated that
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circRNAs are contributing to the interaction of rice with rice blast fungus
(Magnaporthe oryzae) by circRNA-sequencing and transgenic methods. They dis-
covered 636 circRNAs that were specially produced in response to M. oryzae
contamination [22]. This study uncovers a new level of gene modulation and
immunity in rice under the fungal infection. Besides, many differentially expressed
circRNAs were deciphered in plants under abiotic stresses. Ye et al. characterized
the stress-specific expression of 27 circRNAs in rice roots under phosphate-
starvation conditions, of which 21 were down-regulated and 6 were up-regulated
[15]. Also, 163 chilling-responsive circRNAs were identified in tomato fruit [14] and
62 circRNAs related to the photosynthesis and hormone signal pathways were
detected to be differentially expressed under drought stress in wheat [61]. CircRNA
data analysis in cucumber uncovered that similar to rice, non-GT/AG splicing sites
are popular among identified circRNAs in this plant, and pairing-driven circulariza-
tion is not the key pathway for circRNAs biogenesis. In this research, numerous
cucumber circRNAs were detected in response to salt stress that were involved in the
modulation of transcription, metabolism adaptation, ion homeostasis related
pathways, and the regulation of proline metabolism by modulating the
corresponding biosynthesis and degradation genes under salinity conditions
[31]. Besides, differentially expressed circRNAs have been observed in pear [62],
Arabidopsis, and maize [63] under dehydration conditions. It has been reported that
the overexpression of a specific circRNA in tomato, PSY1-circ1, which is originated
from PSY1 gene, resulted in a substantial reduction of lycopene and β-carotene in the
transgenic tomato, proposing the circRNAs function during the plant developmental
stage [64]. Moreover, researchers found that the numbers of circularized exons,
alternative circularization events, and lengths of circRNAs can alter under heat stress
in Arabidopsis [65]. In contrast to the detection of numerous circRNAs in different
plant species under biotic and abiotic stresses, the detailed mechanisms underlying
their regulatory roles under these conditions are still poorly understood. As men-
tioned earlier, the closed-loop structure of circRNAs with no free 50 or 30 end
protects them against degradation by exoribonucleases. It can be speculated that
the long half-life of circRNAs can allow them to operate as slow-responding
regulators to different stresses. Moreover, plant circRNAs may act as signaling
molecules transferred in a lengthy distance through the xylem and phloem or a
short distance via cell to cell. The first identified circRNAs, plant viroids, have been
shown to control long-distance and cell-to-cell transmitting via diverse circRNA
motifs during plant development [25]. Consequently, it can be assumed that there are
probably some functional similarities between the plant innate circRNAs and
viroids.

22.5.3 CircRNAs in Gene Expression Regulation

According to increasing pieces of evidence, circRNA can influence the splicing
process of their corresponding linear transcripts (Fig. 22.3I) and control the tran-
scription of their derived genes [28] (Fig. 22.3II). During circRNA generation,
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introns can be kept between circularized exons that create a type of circRNAs called
exon-intron circRNAs or EIciRNAs. The EIciRNAs are mostly restricted to the
nucleus where their interaction with U1 snRNP can promote their parental gene
transcription, indicating the direct gene expression regulation by circRNAs. In
soybean, 293 EIciRNAs, composed of 183 and 175 have been identified in resistant
and sensitive species during the biotic stress imposed by cotton bollworm feeding,
implying the EIcircRNAs contribution to plant stress tolerance [34]. The CircSEP3
in Arabidopsis, a circRNA originated from the exon 6 of the SEP3 gene, has been
determined to control transcription and splicing of the corresponding linear cognates
[66] (Fig. 22.3III). This circRNA can strongly bind to its related DNA region and
create the RNA: DNA hybrid results in pausing its parental gene expression and
reducing the related transcript, whereas the level of a transcript without the exon
6, produced during the exon skipping process, is increased. Thus, circRNAs can
operate as trans-acting elements to regulate the expression of their parental genes at
both transcription and splicing stages [55, 66]. Similarly, the overexpression of
Os08circ16564 in transgenic rice plants can greatly diminish the transcript abun-
dance of its parental gene (AK064900) in different tissues, contrary to
non-transgenic plants. Since there were many linear transcripts in the transgenic
rice, it has been proposed that circRNAs and their related linear transcripts might
function as post-transcriptional regulators of their parental genes [20, 55]. Consider-
ing the circRNA functions are strictly linked to their subcellular localization, further
studies on circRNA locality may be critical for disclosing their biological roles in
plants. Investigating the putative functions of specific plant circRNAs involved in
modulating gene expression and alternative splining processes, as well as specifying
the circRNA impacts at the phenotypic level are crucial challenges [55].

22.5.4 CircRNAs Can Be Protein-Coding and Act as a Biomarker

In eukaryotic cells, the common translation process is initiated in a cap-related mode,
wherein the 40S ribosomes have been recruited to the cap structure at the 50 end of
mRNA transcripts [67, 68]. Due to the lack of 50 and 30 ends in the closed-loop
structure of circRNAs, they are considered untranslatable transcripts. Nevertheless,
recent studies in mammals explained that circRNA can be translated in a
cap-independent pathway; actually, IRES elements and m6A (N6-Methyladenosine)
RNA alteration can trigger the circRNAs translation [21, 69] (Fig. 22.3VI). Though
several circRNAs contained potential ORFs with IRES elements, a small number of
them have been demonstrated to translate into proteins/peptides, which their
biological functions have not been yet uncovered [70, 71]. The IRES factors are
deciphered in different organisms, including plants, animals, and viruses. Rice
yellow mottle virus is a kind of virus with a small circular RNA genome harboring
the IRES elements that can directly translate into 16 kDa proteins [72]. Additionally,
genetic engineering-based researches have revealed that in the case of inserting an
IRES element upstream of the initiator AUG codon, the circRNAs can be translated
to proteins in vitro [73]. As a result of the circular structure of circRNAs, they can
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have unlimited open reading frames, and long repeated-sequence proteins can be
originated from circRNAs in vitro and in vivo. Therefore, we can hypothesize that
the IRES elements might also be detected in some plant endogenous circRNAs and
trigger their translation. The epigenetic alteration of m6A can also stimulate the 50

cap-free translation process of mRNA transcripts at both 30-UTR and 50-UTR in
animals [25]. In plants, the enrichment of m6A has been found not only near the stop
codon and within 30-untranslated regions but also near the start codon of mRNAs in
Arabidopsis, unlike mammals. This specific distribution suggests that m6A might
also participate in the translation process in plants [74]. Recently, a group of
researchers developed a CircCode tool, a computational pipeline written in python
language, for predicting the coding capability of circRNAs. The investigation of
potentially translated circRNAs from Arabidopsis and humans using CircCode has
demonstrated that this tool has an appropriate performance in terms of high sensitiv-
ity and high accuracy in both organisms and could identify 1569 and 3610 translated
circRNAs in Arabidopsis and humans, respectively [54]. Additionally, the unique
characteristics of circRNAs, such as long half-lives, resistance to degradation, and
their facility and specificity of detection enable these RNA molecules to function as
an appropriate biomarker. In Arabidopsis, circRNAs have proved to act as a valid
biomarker of exon-skipped alternative splicing variants, including in the homeotic
MADS-box transcription factor family [66]. In contrast to animals, the identification
of plant circRNAs, acting as a biomarker, is quite a new and interesting topic that
requires further researches.

22.6 Conclusion and Future Perspectives

With the arrival of deep-sequencing technologies, numerous circRNAs have been
recognized in diverse plant species. The specific expression patterns of circRNAs
under various plant developmental stages and adverse conditions imply their vital
roles in plant growth and development, which can be considered as a new level of
transcriptional and post-transcriptional gene regulation. However, the mechanism of
plant circRNA biogenesis and biological functions is still in its infancy and requires
further studies. Therefore, it is worth characterizing circRNAs in more plant species
in response to diverse developmental periods and stress situations. Similarly, the
expression regulation of parental genes by their derived circRNAs directly or
indirectly via the mRNA–circRNA–miRNA network opens a new scope for
circRNA researches in plants. Contrarily to animals, the coding ability of circRNAs
and their role as biomarkers have not been much surveyed in plants. Therefore,
determining and understanding the functional roles of circRNAs in plants can be a
promising research topic in the future.
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Application of Metagenomics
in Improvement of Rice 23
Pallabi Pati, Gayatri Gouda, and Sushil Kumar Rathore

Abstract

Microorganisms can grow and develop in a wide variety of environmental
conditions. However, the majority of them are not cultivable or were never
cultivable. Due to metagenomics, now it is possible to study all microorganisms
regardless of whether they can be cultured or not by using genomic data obtained
directly from an environmental sample to survey microbial diversity and their role
in their specific community level, as well as the environment and other
communities. So, the microbial screening based on their specific function helps
discover novel proteins for many purposes of the scientific and industrial field.
Metagenomics also helps provide solutions to many aspects, such as unmasking
the microbe’s specific function in a specific community. The information regard-
ing inter and intra microbial community interaction and their sequence data
analysis identifies the unknown microflora found from environmental samples.
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Abbreviations

BAC Bacterial artificial chromosome
BLAST Basic Local Alignment Search Tool
CRW Chinese Rice Wine
ITS2 Internal Transcribed Spacer II
MBN Microbial biomass nitrogen
PCR-DGGE Polymerase chain reaction-denaturing gel gradient electrophoresis
QC Quality control
RFLP Restriction fragment length polymorphism

23.1 Introduction

Metagenomics deals with the microbial population diversity present in the soil.
These soil microbes are very much useful for the rice plant. To study the diversity
of microbes in the plant is very much essential to know their structural and functional
characteristics. This can be possible by studying the genomic association of
microbes with the plant species present in the particular environment where a
large, diverse microbial population is adapted [1]. Microorganisms are major
elements of soil ecology, biogeochemical mechanisms, and biodiversity. Recent
studies have generally suggested that habitat, evolutionary, and balanced systems
interact to establish the composition of the microbiome population through spatio-
temporal scales in the environment [2]. Microbial ecology is associated with the
diversity of microorganisms and their interactions with one another and their eco-
system to produce and retain that diversity. As a result, microbial ecologists have
commonly concentrated their attention on two areas of study [3]. The process of
studying the microbial diversity present in the soil sample at the DNA level is termed
metagenomics. The information on microbial diversity, structure and gene function
pattern, and metabolic pathway at the genome level provides an idea about their
contribution toward plant growth and development. Microbial function refers to
some of the functions of microorganisms in their habitats and how their interactions
relate to detected microbial diversity and biogeochemical cycling. Metagenomics
has the potential to generate new molecules and novel enzymes with a wider variety
of functions and improved properties as compared to enzymes from culturable
microorganisms [4].

The microbial population in rice rhizosphere soils has gained a lot of attention due
to the fact that numerous microorganisms act in soil functional processes [5]. The
rhizosphere is found in the soil present adjacent to the roots of plant species. The
rhizosphere microbes are mainly protecting the plant by secreting various organic
and inorganic substances, i.e., root exudates that induce resistance from specific
damage or stress that occurred in the environment. The microbes that are found at the
root of the rice plant helps it from biotic and abiotic stress [6]. Within biotic factors,
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the plants interact with the microbial communities to attain resistance, called the
plant microbiome. Rice microbiome classifies microorganisms linked with rice and
its environment. Rice crop production faces many threats, including climate change,
population growth, and a growing need for sustainable production. As the plant
microbiome plays an important function in crop improvement, various strategies are
developed to improve the plant microbiome [7]. Due to the introduction of high-
throughput platforms, other molecular techniques, such as polymerase chain
reaction-denaturing gel gradient electrophoresis (PCR-DGGE), 16S rRNA gene
cloning, and terminal restriction fragment length polymorphism analysis, were
used to characterize microbial populations in soil and rice tissues [8].

To develop strategies for sustainable agriculture, an integrated approach to
studying the bacterial and fungal communities associated with rice is necessary.
Agroecosystems are extremely complex organisms that include the crop plant and
various biotic and abiotic factors, such as bacteria and fungi. Among these insects, a
significant role is played in the development of crop plants. Thus, when designing
microbiome-based techniques for crop productivity enhancement, the relationship
between crop plants, microbiome, and insects must be recognized. Metagenomics
involves using a combination of genomic technology and bioinformatics techniques
to obtain direct access to the genetic information contained in the entire species.
Nowadays, the field of metagenomics has made significant advances in microbial
ecology, evolution, and diversity. An increase in the number of events brings an
increase in the number of methodological skills and experience that can drive
potential progress in the area [9].

This chapter reviews the function and method of metagenomic study in rice
cultivation using sequencing technology. This technique specifies the detailed infor-
mation of the rice microbiome in enhancing the potential resistance against stress
and its role in crop improvement.

23.2 Metagenome Study

The metagenomic analysis involves direct isolation of bacterial DNA, library con-
struction, and functional analysis. Initially, metagenomic studies were applied to
specific experiments designed to detect microbial diversity in the ecosystem, with
metagenomic libraries assembled using 16S rDNA amplicons [10]. With the devel-
opment of NGS, large-scale shotgun metagenomic projects became possible.

The methods for metagenome analysis involve (1) collection of the soil sample,
(2) genomic DNA extraction and purification, (3) cloning of metagenomic DNA,
(4) library construction and sequencing, (5) screening of metagenomic libraries.

1. Collection of Soil samples: For rice, the samples are collected from soil and
rhizosphere, where the microbes are present in the roots. During the different
stages of growth and development of rice plants, the sample is collected to study
the function of microbes. All samples were homogenized and sieved through a
2-mm mesh, then divided into two subsamples: one was partly air-dried for
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chemical examination and the other was put in sterile 50-mL containers and kept
at 4 �C in the dark for no more than 24 h for microbiological analysis [11].

2. Genomic DNA extraction: The extraction of soil DNA is an important stage in
these metagenomic approaches and can be classified into two broad strategies.
The first and most frequently used technique is direct DNA extraction, which
involves the lysis of cells directly within a soil sample. The second technique,
indirect DNA extraction, starts with the extraction of cells from soil [12]. As a
large quantity of DNA is required for the metagenomics study, the direct extrac-
tion method is the best method to extract a high quantity of DNA. The DNA is
purified to eliminate the contaminants present in the genomic DNA sample used
for sequencing study [13]. DNAmolecules are broken into fragments tiny enough
to be sequenced. Following that, blunt ends are added to the pieces to facilitate
further sorting. Finally, the pieces are ligated to the adaptors. Mechanical or
enzymatic fragmentation methods are available, with the later divided up into
nebulization, hydrodynamic shearing, and ultrasonication [14].

3. Cloning of metagenomic DNA: Cloning large segments of DNA extracted
directly from microbes in their natural habitats allows access to soil metagenomic
DNA. Many cloning vectors are available, such as plasmids, fosmids, lambda
vectors, and bacterial artificial chromosomes (BACs), for cloning of DNA
according to the DNA fragments to be cloned. The vector used impacts the size
of inserts that can be cloned and the frequency of expressing metagenomic genes.

4. Library construction: Large DNA fragments, that is, 25–200 kb isolated from soil
samples and cloned into particular vectors, may be used to generate metagenomic
libraries. The vector to use is determined by the length of the insert to be cloned.
To prevent noisy sequencing data, the free adaptor, adaptor dimers, and any other
components must be removed [15].

5. Sequencing of metagenomic DNA: The advance of DNA sequencing and bioin-
formatics analysis enables the discovery of the genetic complexity of the host-
associated microbial communities as well as uncultured microbial diversity.
High-throughput sequencing technologies allow the generation of large quantities
of sequence data in a short period and at a low cost. The ability of this technology
to distinguish huge amounts of organisms from diverse ecosystems is one of its
most significant applications. While the novel, cloning-independent
pyrosequencing technology has tremendous potential for a wide variety of
phyla of soil/sediment-dwelling species, the majority of a new study has mainly
focused on the biodiversity of prokaryotic populations. Various sequencing
technologies have been used in the metagenomic study that includes NGS,
Illumina, 454 pyrosequencing.

23.3 High-Throughput Sequencing

The quality, speed, and cost of high-throughput sequencing technology are rapidly
improving. As a result, it is increasingly being used to research whole populations of
prokaryotes in a variety of niches. High-throughput sequencing, alternatively
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referred to as next-generation sequencing (NGS), has advanced genomic analysis.
NGS technology has gradually advanced in recent years, with costs falling and the
amount and variety of sequencing applications expanding exponentially. Without
prior preparation, next-generation sequencing enables the analysis and identification
of species directly from their environments [16]. In comparison to first-generation
sequencing, NGS is capable of simultaneously generating several hundred thousand
to millions of sequencing reads. Additionally, sequencing may be produced without
some traditional measures, such as vector-based cloning, which minimizes the
possibility of DNA contamination from other species. As a result, many next-
generation sequencing technologies, including the Roche 454, Illumina,® Applied
Biosystems SOLiD sequencer, and Ion Torrent, have been launched. All next-
generation sequencing or real-time sequencing technologies (Roche 454, Illumina,®

and AB SOLiD) rely on optical sensors that detect luminescent signals produced by
base insertion [17, 18]. Now shotgun metagenomic sequencing is a method for
analyzing uncultured microbiota. In this method, the DNA is isolated and sheared
into small fragments and sequenced separately. This generates DNA sequences
called reads which map to several genomic positions for the sample’s diverse
genomes, including non-microbes [19].

23.4 Metagenomic Data Analysis

Metagenomic data is a set of DNA fragments from various species, which can
include microbial, bacterial, or eukaryotic organisms. Many approaches may be
used for metagenomics data analysis that includes the collection of raw reads, QC
tools, viz., FastQ, AfterQC to detect and eliminate low-quality sequences and
contaminants. FastQ Screening of raw reads enables to screen a library of FastQ
sequences against a set of sequence databases. After QC analysis, the reads may be
arranged into longer contiguous sequences known as contigs, or they can be directly
passed to taxonomic classifiers. In taxonomic classification, the direct identification
of genetic information and species with close relatives in the database is possible.
Metagenomic shotgun sequencing removes primer sampling error and allows the
identification of species from all aspects of life, assuming DNA can be isolated from
the target population. The trimming method is initiated for adaptor removal and then
the masking process is carried out. In this process, the target genes are separated
from the unmapped genes present in the genome sequence.

(a) Marker gene analysis: Marker gene analysis is one of the simplest and more
computationally effective methods for quantifying the taxonomic complexity of
a metagenome. This method involves mapping metagenomic reads to a collec-
tion of marker genes, finding reads which are marker gene homologs, and
taxonomically annotating each metagenomic homolog utilizing sequence or
phylogenetic similarities to the marker gene database sequences. The most
commonly used marker genes are rRNA or protein-coding genes, which are
usually single-copy and ubiquitous in microbial genomes.
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(b) Sequence assembly:Genome assembly is the process of reconstructing genomes
from smaller DNA segments known as reads obtained during a sequencing
method [20]. Assembly combines highly correlated metagenomic reads from
the same genome into a single contiguous sequence and is important for
producing longer sequences that facilitate bioinformatics analysis in comparison
to unassembled short metagenomic reads [21]. Mostly, reads are pair-ended or
mate-paired, which indicates they are sequenced from the same DNA fragment.
The distance between each pair of reads is generally known to overcome
ambiguities introduced by repeated sequences during assembly
[22]. Metagenomic sequence data assembly into microbial genomes is essential
for enhancing our knowledge of microbial ecology and metabolism by
illustrating the functional ability of complicated microorganisms [23].
For metagenomics data, two types of assembly methods are available, i.e.,
reference-based assembly or comparative assembly and de novo assembly.
Reference-based assembly: In reference-based assembly, the reference genome

sequence is available for metagenome sequences. The variations between the
original genomes of the metagenome sequence and the reference, such as
major insertions, deletions, or polymorphisms, may indicate that the assem-
bly is fragmented or that divergent regions are fully removed. The assembly
process involves two steps, where all reads are aligned against the reference
genome; then, by inferring the alignments, a consensus sequence is formed.
This approach is more successful at resolving repeats than de novo assembly
and therefore produces better results than de novo approaches, especially at
low coverage depths. Long repeats remain a major concern since they result
in an ambiguous alignment of reads to the genome, but the use of mate-pair
data may partially minimize this problem by assisting in the identification of
the appropriate read placement.

De novo assembly: The de novo assembly approach involves the reconstruction
of the genome from the read data in which the reference genome is not
available as this assembly process requires more computational resources, so
new tools are developed for analyzing a large amount of dataset. The most
used tool is greedy, De Bruijn graph, and overlap-layout consensus [24–
26]. In the greedy method, individual reads are combined into contigs
iteratively, starting with the overlapping reads and end with contigs where
no more sequence is available. The de Bruijn graph assembly is based on the
relation between read-derived substrings of fixed length k (k-mers) [27]. The
k-mers are arranged in a graph form, with nodes representing the k-1 prefixes
and k-mers suffixes and edges. Reads are not directly related to this approach;
rather, their overlap is inferred by the fact that they share k-mers [28]. In
2011, Peng at al developed an algorithm for de novo assembly, namely Meta-
IDBA, that divides the de Bruijn graph into independent components of
different species. It captures minor variants in the genomes of subspecies
within the same species through multiple alignments and represents the
genome of a single species using a consensus sequence [29].
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(c) Sequence binning: A technique known as binning helps to classify each
metagenomic sequence.
Binning is the method of grouping DNA sequences comprising of a single
genome or genomes from closely related species. Different algorithms have
been designed that allow two distinct types of information to present within a
target DNA sequence. In general, each sequence is either grouped into a
taxonomic group based on comparison to certain reference data or grouped
into groups of sequences that reflect taxonomic groups based on similar
characteristics, such as GC content. Sequence binning may be implemented
by the use of homology-based approaches, such as BLAST, or by the use of
composition-based approaches that compare nucleotide frequency patterns. The
compositional binning exploits the fact that genomes share a conserved nucleo-
tide structure with specific GC content [30]. However, the unknown DNA
fragment can encode a gene, and the sequence similarity to identified genes in
a reference database may be used to identify and thereby binning of the
sequence. It reduces the scope of the data, allowing for separate post-binning
analysis, viz., assembly of each sample of binned reads rather than on the whole
population of data. Binning may be performed on assembled or unassembled
files, but most algorithms claim that the precision of binning increases with
sequence duration. In general, binning algorithms fall into three categories:
sequence structure, sequence similarity, and fragment recruitment [9]. Binding
algorithms based on sequence similarity and sequence composition markers
probably depend on reference genomes or phylogenetic markers from known
microorganisms. These algorithms could not be valid in all cases due to the lack
of reference genomes and the bias and lack of markers. Unsupervised binning
algorithms are an alternative method that can accommodate fragments from
unknown organisms [31]. The various tools used for the analysis are mentioned
in (Table 23.1).

23.5 Functional Aspect of Metagenomics Study in Rice

Metagenomics study has been applied in rice research in various aspects, and this
shows tremendous applications in rice plants. Several studies have been reported for
the metagenomic approach and its application toward the development of rice plants
by controlling both pathways and mechanisms. In 2018, Kunda et al. reported the
diversity of the endophytic bacterial community in rice function using an amplicon
metagenomics approach by targeting the 16s rRNA gene. Their analysis found that
in the coastal saline condition of West Bengal, the rice species show resistance
against salt stress and various environmental stress resulting from the wide diversity
of endophytic bacteria [56]. The bacterial diversity associated with rice rhizosphere
bacterial communities from a paddy field environment in Kerala was investigated
using culture-independent molecular techniques, including 16S rRNA clone library
production, RFLP, sequencing, and phylogenetic analysis. Clones with high simi-
larity to database sequences as well as uncultured bacterial sequences were
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Table 23.1 Lists of statistical tools used in a metagenomics study

S. No. Statistical tools Application References

1 Metaviz To analyze the metagenomic data of
annotated microbiome

[32]

2 Metastats For comparing the metagenomic samples [33]

3 MEGAN To analyze large metagenomic data [34]

4 WebMGA Analysis of complex metagenome data [35]

5 ShotgunFunctionalizeR Compares the functional properties of
specific genes and whole pathways from the
metagenome data

[36]

6 METAGENassist Analysis of comparative metagenome [37]

7 MicrobiomeAnalyst Combines recent advances in statistics and
visualization techniques with novel
knowledge bases to allow comprehensive
analysis of specific microbiome data

[38]

8 MetaSim Genomics and metagenomics sequencing
simulator

[39]

9 VirFinder Tool for identification of prokaryotic viral
sequences, for metagenomic-based studies

[40]

10 MG-RAST Shotgun metagenome data analysis [41]

11 PhyloSift Integrating microbial community DNA
sequencing with evolutionary simulation and
phylogenetic research

[42]

12 MetaPhyler Phylogenetic composition identification of
metagenome sequence

[43]

13 Megahit For complex and large metagenomics
assembly

[44]

14 Phylopythia Enables accurate recognition of the majority
of sequence fragments in all taxonomic
ranks, including those from unknown species

[45]

15 S-GSOM Used to easily distinguish such species
without seeds

[46]

16 Sort-ITEMS For metagenomic sequences taxonomic
estimation

[47]

17 TACAO For identifying the taxonomic origin of
genomic fragments as short as 800 bp

[48]

18 CARMA Source of organism prediction [49]

19 Phymm and PhymmBL To classify reads as short as 100 base pairs
with accuracy

[50]

20 CAMERA A tool for high-performance computational
infrastructure for metagenomic data
processing

[51]

21 SPHINX A taxonomic binning algorithm for
metagenomic sequences

[52]

22 TETRA A tool for composition binning [53]

23 MetaCluster-TA Annotating metagenomic data taxonomically
using assembly-assisted binning

[54]

24 PCAHIER For short metagenomic fragments binning [55]
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discovered in the rhizosphere bacterial population. The 16S rRNA sequence analysis
revealed a high degree of diversity in the rhizosphere bacterial population, with most
microbes closely linked to the Proteobacteria. Just a small proportion of the 16S
rRNA sequences is extremely similar to those of Acidobacteria, Firmicutes, and
Bacteriodetes. Given the complex metabolic properties of rhizosphere-associated
microbes and their critical function in plant health, knowledge of their population
structure is critical for a proper understanding of their functions and
metagenomics [57].

Bhattacharyya et al. identified the bacterial diversity in the low-land rice rhizo-
sphere and studied the composition of carbon and nitrogen in the soil. Rice
rhizospheres with elevated CO2 + temperature (e-CO2T) exhibited greater structural
diversity and functional behaviors associated with nitrogen metabolism, including
nitrogen fixation, assimilatory and dissimilatory nitrate depletion, and denitrifica-
tion, than rice rhizospheres with ambient CO2 (a-CO2). Among the three N metabo-
lism pathways, dissimilarity pathways were more prevalent in low-land rice
rhizospheres and even more so in the presence of e-CO2T. As a result, CH4 emission,
microbial biomass nitrogen (MBN), and dehydrogenase activities were 45%, 20%,
and 35% higher under e-CO2T, respectively, than under a-CO2 [58]. Panneerselvam
et al. studied the important microbes present in the rice rhizosphere using different
statistical models. They reported that the Enterobacter species have the potential to
reduce nitrogen stress in rice plants grown naturally by increasing plant nitrogen
uptake through the cumulative contribution of nitrogen-fixing and phytohormone
synthesis traits of heterotrophic bacterial diazotrophs [59]. Erkel et al. constructed
Rice Cluster I (RC-I) in rice for methanogenic archaea to produce methane. Using a
metagenomic approach, they studied the methanogens and demonstrated the
aerotolerant, H2/CO2-dependent lifestyle and previously unknown methanogen
enzymatic capacities for carbohydrate metabolism and assimilatory sulfate reduc-
tion. These capabilities, along with a special group of antioxidant enzymes and DNA
repair mechanisms, as well as oxygen-insensitive enzymes, confer a comparative
advantage on RC-I over other methanogens in its environments, illustrating how
RC-I methanogens are so prevalent in the rice rhizosphere [60]. A metagenomic
method was used by Zecchin et al. to classify novel microorganisms involved in the
sulfur cyclin production in rice paddy [61]. Their study in Nitrospirae bacterium
Nbg-4 found the role of gypsum in rice growth. Nbg-4 encoded the whole dissimi-
latory sulfate reduction pathway and was expressed in anoxic bulk soil amended
with gypsum, as discovered by parallel metaproteomics. The study reported the
function of Nitrospirae bacterium species in rice development by regulating the
sulfur cycle [61].

In 2016, Bora et al. reported the microbial diversity in traditional rice using
whole-genome shotgun sequencing approach. They studied the function of microbes
in the production of wine from the traditional rice in the region of Assam.
Metagenomic analysis showed that the maximum availability of microbes such as
Lactobacillus plantarum, Meyerozyma gulliermondii, Mucor circinelloides, and
Rhizopus delemar in the starter rice increases the fermentation rate [62]. Hong
et al. conducted metagenome analysis on bacterial 16S rRNA gene and fungal
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Internal Transcribed Spacer II (ITS2) to study the role of the microbiome in Chinese
Rice Wine (CRW) production using glutinous rice. Their result revealed that
microbe metabolisms have an impact on the quality of wine and both the cultivation
of favorable microbes and the inhibition of undesirable microbes are essential for the
industrial brewery [63]. Aslam et al. studied the effects of traditional and no-tillage
practices on bacterial communities in rhizosphere soil were calculated during rice
cultivation using a culture-dependent approach for analyzing the bacterial commu-
nity structure. Consequently, the actinobacterial population was analyzed using
metagenomic libraries constructed using actinobacterial- and streptomycete-specific
primers [64]. Imchen et al. used a targeted amplicon-based (16S rRNA gene)
metagenomic method to characterize the rhizobiome and bulk soil from rice paddy
on a spatial and temporal scale. Their study revealed that rhizobiome modulation
occurs during the rice plant’s development. The number and diversity of plant
growth promoting bacteria increased during the growth stages, as determined by
16S rRNA gene affiliation at the genus level [65]. In 2013, Yeh et al. identified the
GH12 cellulolytic gene, RSC-EG1, from rice straw composts. Cellulase from
Micromonospora aurantiaca and Thermobispora sp. were found to be significantly
identical to the known cellulolytic gene at the amino acid stage. RSC-EG1 includes a
stretch of nearly 86 amino acids and is novel endoglucanase that is stable over a large
temperature range and pH range [66].

23.6 Conclusion and Future Perspectives

These metagenomic studies represent a step toward becoming a final commercial
product between discovering the interesting active agent and its formulation. Once
deficiencies and other problems in the plant population have been corrected, further
studies must be conducted to qualify the agent at an industrial level and to ensure the
development of an efficient and truly robust product. The acceptability by the
relevant regulatory authorities of the novel enzyme or bioactive and its source
microorganism must also be considered. After these limitations are overcome,
functional metagenomics offers the possibility to develop new innovative products
which offer new and useful industrial processes or even improve or pave the way for
the current process to be carried out more conveniently by having access to the
seemingly infinite diversity of the microbial world. Metagenomics will provide
solutions to many unanswerable questions as well as can solve many mysteries. It
requires more research to optimize its potentialities.

Conflicts of Interest None

536 P. Pati et al.



References

1. Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S. The role of soil microorganisms in
plant mineral nutrition—current knowledge and future directions. Front Plant Sci [Internet].
2017 [cited 2021 Apr 25];8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610682/.

2. Saleem M, Pervaiz ZH, Traw MB. Theories, mechanisms and patterns of microbiome species
coexistence in an era of climate change. In: Saleem M, editor. Microbiome community ecology.
Fundamentals and application [Internet]. Cham: Springer; 2015 [cited 2021 Apr 25]. p. 13–53.
https://doi.org/10.1007/978-3-319-11665-5_2.

3. Xu J. Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent
advances. Mol Ecol. 2006;15:1713–31.

4. Bashir Y, Pradeep Singh S, Kumar Konwar B. Metagenomics: An Application Based Perspec-
tive. Chin J Biol. 2014;2014:e146030.

5. Ding L-J, Cui H-L, Nie S-A, Long X-E, Duan G-L, Zhu Y-G. Microbiomes inhabiting rice roots
and rhizosphere. FEMS Microbiol Ecol [Internet]. 2019 [cited 2021 Apr 25];95. https://doi.org/
10.1093/femsec/fiz040.

6. Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol. 2013;14:209.
7. Compant S, Samad A, Faist H, Sessitsch A. A review on the plant microbiome: ecology,

functions, and emerging trends in microbial application. J Adv Res. 2019;19:29–37.
8. Kim H, Lee Y-H. The rice microbiome: a model platform for crop Holobiome. Phytobiomes

J. 2019;4:5–18.
9. Thomas T, Gilbert J, Meyer F. Metagenomics - a guide from sampling to data analysis. Microb

Inform Exp. 2012;2:3.
10. Handelsman J. Metagenomics: application of genomics to uncultured microorganisms.

Microbiol Mol Biol Rev. 2004;68:669–85.
11. Iliev I, Marhova M, Kostadinova S, Gochev V, Tsankova M, Ivanova A, et al. Metagenomic

analysis of the microbial community structure in protected wetlands in the Maritza River basin.
Biotechnol Biotechnol Equip. 2019;33:1721–32.

12. Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon JC, Soulas G, et al. DNA
extraction from soils: old Bias for new microbial diversity analysis methods. Appl Environ
Microbiol. 2001;67:2354–9.

13. Delmont TO, Robe P, Clark I, Simonet P, Vogel TM. Metagenomic comparison of direct and
indirect soil DNA extraction approaches. J Microbiol Methods. 2011;86:397–400.

14. Knierim E, Lucke B, Schwarz JM, Schuelke M, Seelow D. Systematic comparison of three
methods for fragmentation of long-range PCR products for next generation sequencing. PLoS
One [Internet]. 2011 [cited 2021 May 13];6. https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3227650/.

15. Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR, et al.
Library construction for next-generation sequencing: overviews and challenges. BioTech
Future Sc. 2014;56:61–77.

16. Mardis ER, Next-Generation DNA. Sequencing methods. Annu Rev Genomics Hum Genet.
2008;9:387–402.

17. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. Microbial diversity
in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci Natl Acad Sci.
2006;103:12115–20.

18. Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum Mol
Genet. 2010;19:R227–40.

19. Weinstock GM. Genomic approaches to studying the human microbiota. Nature.
2012;489:250–6.

20. Kececioglu JD, Myers EW. Combinatorial algorithms for DNA sequence assembly.
Algorithmica. 1995;13:7.

21. Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P. A Bioinformatician’s guide to
metagenomics. Microbiol Mol Biol Rev. 2008;72:557–78.

23 Application of Metagenomics in Improvement of Rice 537

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610682/
https://doi.org/10.1007/978-3-319-11665-5_2
https://doi.org/10.1093/femsec/fiz040
https://doi.org/10.1093/femsec/fiz040
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227650/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227650/


22. Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational
challenges and solutions. Nat Rev Genet. 2011;13:36–46.

23. Sangwan N, Xia F, Gilbert JA. Recovering complete and draft population genomes from
metagenome datasets. Microbiome. 2016;4:8.

24. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly and genotyping of
variants using colored de Bruijn graphs. Nat Genet. 2012;44:226–32.

25. Lin Y-Y, Hsieh C-H, Chen J-H, Lu X, Kao J-H, Chen P-J, et al. De novo assembly of highly
polymorphic metagenomic data using in situ generated reference sequences and a novel
BLAST-based assembly pipeline. BMC Bioinform. 2017;18:223.

26. Haider B, Ahn T-H, Bushnell B, Chai J, Copeland A, Pan C. Omega: an overlap-graph de novo
assembler for metagenomics. Bioinformatics. 2014;30:2717–22.

27. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn
graphs. Genome Res. 2008;18:821–9.

28. Compeau PEC, Pevzner PA, Tesler G. How to apply de Bruijn graphs to genome assembly. Nat
Biotechnol. 2011;29:987–91.

29. Peng Y, Leung HCM, Yiu SM, Chin FYL. Meta-IDBA: a de novo assembler for metagenomic
data. Bioinformatics. 2011;27:i94–101.

30. Sharpton TJ. An introduction to the analysis of shotgun metagenomic data. Front Plant Sci
[Internet]. Frontiers; 2014 [cited 2021 Apr 27];5. https://www.frontiersin.org/articles/10.3389/
fpls.2014.00209/full#B63.

31. Leung HCM, Yiu SM, Yang B, Peng Y, Wang Y, Liu Z, et al. A robust and accurate binning
algorithm for metagenomic sequences with arbitrary species abundance ratio. Bioinformatics.
2011;27:1489–95.

32. Wagner J, Chelaru F, Kancherla J, Paulson JN, Zhang A, Felix V, et al. Metaviz: interactive
statistical and visual analysis of metagenomic data. Nucleic Acids Res. 2018;46:2777–87.

33. Paulson JN, Pop M, Bravo HC. Metastats: an improved statistical method for analysis of
metagenomic data. Genome Biol. 2011;12:P17.

34. Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res.
2007;17:377–86.

35. Wu S, Zhu Z, Fu L, Niu B, Li W. WebMGA: a customizable web server for fast metagenomic
sequence analysis. BMC Genomics. 2011;12:444.

36. Kristiansson E, Hugenholtz P, Dalevi D. ShotgunFunctionalizeR: an R-package for functional
comparison of metagenomes. Bioinformatics. 2009;25:2737–8.

37. Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, et al. METAGENassist: a comprehensive
web server for comparative metagenomics. Nucleic Acids Res. 2012;40:W88–95.

38. Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. MicrobiomeAnalyst: a web-based
tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids
Res. 2017;45:W180–8.

39. Richter DC, Ott F, Auch AF, Schmid R, Huson DH. MetaSim—a sequencing simulator for
genomics and metagenomics. PLoS One. 2008;3:e3373.

40. Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F. VirFinder: a novel k-mer based tool for
identifying viral sequences from assembled metagenomic data. Microbiome. 2017;5:69.

41. Glass EM, Wilkening J, Wilke A, Antonopoulos D, Meyer F. Using the metagenomics RAST
server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harb Protoc. 2010;2010:
pdb.prot5368.

42. Darling AE, Jospin G, Lowe E, Iv FAM, Bik HM, Eisen JA. PhyloSift: phylogenetic analysis of
genomes and metagenomes. PeerJ. 2014;2:e243.

43. Liu B, Gibbons T, Ghodsi M, Treangen T, Pop M. Accurate and fast estimation of taxonomic
profiles from metagenomic shotgun sequences. BMC Genomics. 2011;12:S4.

44. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution
for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics.
2015;31:1674–6.

538 P. Pati et al.

http://dx.doi.org/10.3389/fpls.2014.00209/full#B63
http://dx.doi.org/10.3389/fpls.2014.00209/full#B63


45. McHardy AC, Martín HG, Tsirigos A, Hugenholtz P, Rigoutsos I. Accurate phylogenetic
classification of variable-length DNA fragments. Nat Methods. 2007;4:63–72.

46. Chan C-KK, Hsu AL, Halgamuge SK, Tang S-L. Binning sequences using very sparse labels
within a metagenome. BMC Bioinform. 2008;9:215.

47. Monzoorul Haque M, Ghosh TS, Komanduri D, Mande SS. SOrt-ITEMS: sequence orthology
based approach for improved taxonomic estimation of metagenomic sequences. Bioinformatics.
2009;25:1722–30.

48. Diaz NN, Krause L, Goesmann A, Niehaus K, Nattkemper TW. TACOA – taxonomic classifi-
cation of environmental genomic fragments using a kernelized nearest neighbor approach.
BMC Bioinform. 2009;10:56.

49. Krause L, Diaz NN, Goesmann A, Kelley S, Nattkemper TW, Rohwer F, et al. Phylogenetic
classification of short environmental DNA fragments. Nucleic Acids Res. 2008;36:2230–9.

50. Brady A, Salzberg SL. Phymm and PhymmBL: metagenomic phylogenetic classification with
interpolated Markov models. Nat Methods. 2009;6:673–6.

51. Seshadri R, Kravitz SA, Smarr L, Gilna P, Frazier M. CAMERA: a community resource for
metagenomics. PLoS Biol. 2007;5:e75.

52. Mohammed MH, Ghosh TS, Singh NK, Mande SS. SPHINX—an algorithm for taxonomic
binning of metagenomic sequences. Bioinformatics. 2011;27:22–30.

53. Teeling H, Waldmann J, Lombardot T, Bauer M, Glöckner FO. TETRA: a web-service and a
stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA
sequences. BMC Bioinform. 2004;5:163.

54. Wang Y, Leung HCM, Yiu SM, Chin FYL. MetaCluster-TA: taxonomic annotation for
metagenomic data based on assembly-assisted binning. BMC Genomics. 2014;15:S12.

55. Zheng H, Wu H. Short prokaryotic dna fragment binning using a hierarchical classifier based on
linear discriminant analysis and principal component analysis. J Bioinform Comput Biol.
2010;8:995–1011.

56. Kunda P, Dhal PK, Mukherjee A. Endophytic bacterial community of rice (Oryza sativa L.)
from coastal saline zone of West Bengal: 16S rRNA gene based metagenomics approach. Meta
Gene. 2018;18:79–86.

57. Arjun JK, Haikrishnan K. Metagenomic analysis of bacterial diversity in the rice rhizosphere
soil microbiome. Biotechnol Bioinf Bioeng. 2011;1:361–7.

58. Bhattacharyya P, Roy KS, Das M, Ray S, Balachandar D, Karthikeyan S, et al. Elucidation of
rice rhizosphere metagenome in relation to methane and nitrogen metabolism under elevated
carbon dioxide and temperature using whole genome metagenomic approach. Sci Total Envi-
ron. 2016;542:886–98.

59. Panneerselvam P, Senapati A, Sharma L, Nayak AK, Kumar A, Kumar U, et al. Understanding
rice growth-promoting potential of Enterobacter spp isolated from long-term organic farming
soil in India through a supervised learning approach. Curr Res Microb Sci. 2021;2:100035.

60. Erkel C, Kube M, Reinhardt R, Liesack W. Genome of rice cluster I Archaea–the key methane
producers in the rice rhizosphere. Science. 2006;313:370–2.

61. Zecchin S, Mueller RC, Seifert J, Stingl U, Anantharaman K, Bergen M von, et al. Rice paddy
nitrospirae carry and express genes related to sulfate respiration: proposal of the new genus
“Candidatus Sulfobium”. Appl Environ Microbiol [Internet]. 2018 [cited 2021 May 12];84.
https://aem.asm.org/content/84/5/e02224-17.

62. Bora SS, Keot J, Das S, Sarma K, Barooah M. Metagenomics analysis of microbial
communities associated with a traditional rice wine starter culture (Xaj-pitha) of Assam,
India. 3 Biotech. 2016;6:153.

23 Application of Metagenomics in Improvement of Rice 539

https://aem.asm.org/content/84/5/e02224-17


63. Hong X, Chen J, Liu L, Wu H, Tan H, Xie G, et al. Metagenomic sequencing reveals the
relationship between microbiota composition and quality of Chinese Rice Wine. Sci Rep.
2016;6:26621.

64. Aslam Z, Yasir M, Yoon HS, Jeon CO, Chung YR. Diversity of the bacterial community in the
rice rhizosphere managed under conventional and no-tillage practices. J Microbiol.
2013;51:747–56.

65. Imchen M, Kumavath R, Vaz ABM, Góes-Neto A, Barh D, Ghosh P, et al. 16S rRNA gene
amplicon based metagenomic signatures of rhizobiome community in rice field during various
growth stages. Front Microbiol [Internet]. Frontiers; 2019 [cited 2021May 12];10. https://www.
frontiersin.org/articles/10.3389/fmicb.2019.02103/full.

66. Yeh Y-F, Chang SC, Kuo H-W, Tong C-G, Yu S-M, Ho T-HD. A metagenomic approach for
the identification and cloning of an endoglucanase from rice straw compost. Gene.
2013;519:360–6.

540 P. Pati et al.

http://dx.doi.org/10.3389/fmicb.2019.02103/full
http://dx.doi.org/10.3389/fmicb.2019.02103/full


RNA-Induced Gene Silencing 24
Piyali Goswami

Abstract

RNA-mediated gene silencing using small RNAs, which developed as a natural
defence mechanism against viruses, has become an important tool in functional
genomics. It employs homology-dependent double-stranded RNA binding to the
target RNA, which leads to gene knockdown by either transcriptional suppression
or mRNA degradation. Studies in plants and C. elegans have shown that RNA
silencing is quite effective in knocking down gene expression. RNA silencing, if
employed successfully, can prove highly beneficial in therapeutics in curing
numerous diseases. In this study, we have initially discussed about the types
of small RNAs, their mechanism of inhibition and finally discussing the
applications of RNAi.
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nt Nucleotide
PAZ Piwi/Argonaute/Zwille
pi-RNA Piwi interacting RNA
pre-miRNA Precursor miRNA
pri-miRNA Primary miRNA
PTGS Post-transcriptional gene silencing
rasiRNA Repeat associated siRNA
RDRP RNA-dependent RNA polymerase
RISC RNA-induced silencing complex
RNAi RNA interference
scnRNA Small-scan RNA
shRNA Short hairpin RNA
siRNA Small interfering RNA
SNALP Stable nuclei acid-lipid particles
tasiRNA Trans-acting siRNA
TGS Transcriptional gene silencing
TRBP Transactivating response RNA binding protein

24.1 Introduction

Gene silencing or gene knockdown is the process of inhibition or suppression of
expression of a gene. Unlike gene knockout, gene knockdown is never 100%
efficient as it does not lead to complete removal of the gene. But it is a much more
preferred technique as it helps to study the role of various essential genes which are
crucial to cell survival. Over the years, gene silencing has helped researchers to
understand the numerous metabolic pathways in plants and animals [1, 2]. It has
several advantages in plants and animals. In animals, it has a lot of therapeutic
applications [3]. In plants, it has helped in the enrichment of food quality, increased
shelf-life, restored fertility, and improved bacterial and viral resistances of plants [4–
8]. Gene silencing can be carried out at the meiotic, transcriptional, and post-
transcriptional levels. At the meiotic level, gene silencing mainly occurs by
transvection. At the transcriptional level, it occurs through genomic imprinting,
paramutation, transposon silencing, transgene silencing, position effect, and
RNA-directed DNA methylation. At the post-transcriptional level, it mainly occurs
by RNA interference (RNAi) and nonsense-mediated decay. RNA-mediated gene
silencing as discussed above is mediated either at the transcriptional level (transcrip-
tional gene silencing/TGS) by suppressing gene transcription by methylation or at
the post-transcriptional level (post-transcriptional gene silencing/ PTGS) by RNA
interference (RNAi) where dsRNA-mediated target mRNA degradation occurs
[9, 10]. In our study, we have restricted our discussion to RNAi-mediated gene
silencing.
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24.2 History

Gene silencing is a spontaneous process carried out by the cell to control gene
expression during the course of development. The efforts to silence the gene began
in the early 1990s in various organisms like Petunia, C. elegans, which was termed
differently for different organisms like co-suppression in plants, quelling in fungi,
and RNA interference (RNAi) in nematodes [11, 12]. Andrew Fire and Craig
Mellow in 1998 discovered the process of dsRNA-mediated RNA interference
which resulted in effective gene silencing for which they received the Nobel Prize
in 2006 [10]. Later, this dsRNA-mediated gene silencing approach was used in
several organisms to inhibit gene expression and understand the functions of various
genes.

24.3 RNA Interference

RNA interference (RNAi) is a naturally occurring process in the cell, wherein a small
(19–31 nt long) non-coding dsRNA fragment with high sequence specificity is used
to bind the mRNA sequence. The dsRNA binding leads to degradation of the mRNA
and preventing its translation [13, 14]. The RNA-induced silencing process has
emerged as a self-defence mechanism to protect the cell. It inhibits viral replication
and transposon mobilization [15]. RNAi is extensively used in therapeutics nowa-
days, which will be described in detail in later parts of the chapter. The process of
RNAi is conserved in most of the eukaryotes. RNAi can be carried out by several
small RNAs like microRNA (miRNA), small interfering RNA (siRNA), which is
central to the system. Except these, there are also other small RNAs identified like
trans-acting siRNA (tasiRNA), small-scan RNA (scnRNA), piwi-interacting RNA
(piRNA), and its subspecies repeat-associated small interfering RNA (rasiRNA).
The major types of small RNAs involved in the RNAi process are highlighted in
Table 24.1.

Table 24.1 The major types of small RNAs involved in the RNAi process

Major
types Description

Length
(nt) Function

siRNA siRNA are short RNA fragments exogenous in
origin produced after processing of long dsRNA
fragments by DICER and has a 30 overhang of
2 nt

19–21 mRNA degradation
by cleavage

miRNA Small endogenous RNA fragments derived from
hairpin-structured precursors

21–25 Translation inhibition
or methylation of
DNA

piRNA Most abundant of small RNA in animal cells
derived from repetitive DNA and transposons.
The synthesis of piRNAs are not well
understood

25–31 Transposon
processing in germ
cells
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24.4 Components of RNAi

RNAi requires several components to carry out the entire process. Some of the
components which are essential to conduct the process are described in detail below.

24.4.1 DICER

Dicer is a ribonuclease that belongs to the RNase III family protein. Dicer processes
dsRNA and pre-miRNA into siRNA and miRNA, respectively [16]. It produces
short dsRNA fragments of 20–22 bp in size with overhangs of 2 bp in the 30 end
[17, 18]. It is encoded by DICER1 gene and is responsible for the activation of RNAi
process. The first crystal structure of DICER was identified in protozoan parasite
Giardia intestinalis [19]. Human Dicer is made up of four domains namely: amino
terminal helicase domain, dual RNAse III motifs, a dsRNA-binding domain, and
PAZ (Piwi/Argonaute/Zwille) domains. The PAZ domain is responsible for binding
the 2 nt at the 30 end, and the RNase III catalytic domain initiates the cleavage of the
dsRNA strands [19]. The dsRNA-binding domain is also known for binding the
dsRNA, and the helicase domain is known for processing of long substrates. DICER
varies largely in size in different species due to the presence of different domains
though RNAse III and PAZ domain is a common feature in all.

24.4.2 Guide RNA and RNA-Induced Silencing Complex

The RISC is a riboprotein complex consisting of RNA and protein. After the
generation of the small siRNA/ miRNA fragments by DICER, it is loaded onto the
RNA-induced silencing complex (RISC) by transactivating response RNA binding
protein (TRBP). The TRBP has three double-stranded RNA binding domains which
bind the siRNA/ miRNA generated by DICER and transfers it to the Ago 2 of the
RISC [20]. The duplex RNA is unwound by RISC, and only one of the strands acts
as a “guide strand” which binds the Argonaute protein and directs the Argonaute in a
homology-dependent manner for endonucleolytic cleavage of the targeted mRNA
[21]. The other passenger strand of siRNA/ miRNA is degraded during the course of
RISC activation [22].

One of the essential components of the RISC protein complex belongs to the
Argonaute family proteins. Human Argonaute protein has eight family members,
among which Argonaute 2 (Ago 2) is important as it is involved in targeted mRNA
cleavage. Ago 2 is also known as the catalytic centre of RISC [23, 24]. It is a
�130 kDa basic protein with characteristic features like a central PAZ domain and a
C-terminal PIWI domain [25].
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24.4.3 RNA-Dependent RNA Polymerase

RNA-Dependent RNA Polymerase (RDRP) is supposed to a play very important
role in triggering and enhancing the RNAi signal by increasing the secondary siRNA
production. RDRP genes have been identified in plants, fungi, and C. elegans but not
in Drosophila or human genome so far [23, 24, 26, 27]. RDRP is responsible for the
production of dsRNA from single-stranded transcripts either by de novo synthesis of
the second strand or by using siRNAs as primers. These RNAs are finally the targets
for sequence-specific RNA degradation.

24.5 RNAi Mechanism

As discussed above, the RNAi process requires several proteins to conduct the
complete process. RNAi can be initiated by dsRNA from both exogenous (virus
infection or laboratory manipulation) and endogenous origin (pre-microRNA). In
case of exogenous dsRNA, the dsRNA is directly transported to the cytoplasm where
it is cleaved to short fragments by DICER, whereas in case of endogenous dsRNA,
the primary transcript is first processed to pre-miRNA in the nucleus which is then
transported to the cytoplasm. But exogenous dsRNAs like shRNA can be integrated
into the genome initially and then can be transferred to the cytoplasm after further
processing. In almost all organisms studied so far, siRNAs and miRNAs are respon-
sible for silencing gene expression by RNAi majorly. The detailed mechanism used
by siRNA and miRNA is explained in detail below.

24.5.1 siRNA-Mediated Silencing

Small interfering RNA (siRNA) also known as short interfering RNA, or silencing
RNA, are small RNA fragments of 21–22 bp in size with a 2 nt overhang at the 30 end
which is responsible for shutting down the gene expression by degrading the mRNA
and inhibiting translation. siRNAs generate from either long dsRNA precursors (like
complementary RNAs, shRNA) through transgene incorporation, viral infection,
active transposons or can be synthesized chemically or biochemically. The in vitro
synthesized siRNA/dsRNA is introduced into the cells through various vectors
which are described later in this chapter. Once the dsRNA enters into the cell, it is
capable of activating DICER. DICER is an RNase III endonuclease which cleaves
the long dsRNA precursors into small siRNA fragments of 21–22 bp with 2 nt
overhangs at the 30 end (Fig. 24.1) which is the recognizing feature for RISC
[17]. siRNA can also be generated by cleaving shRNA. shRNA is also known as
short hairpin RNA. They are artificial RNA molecules that are made up of paired
sense and antisense strands making up the stem region and unpaired nucleotides
making up the loop region giving it a hairpin structure (Fig. 24.2). shRNA is
introduced into the nucleus of the cell either through viral or bacterial vectors
where it stably integrates into the host genome, but also has some side effects
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accompanying it as expression vectors are used in the transfer. Once the shRNA
integrates into the genome, it is transcribed in the nucleus by either RNA polymerase
II or RNA polymerase III [17]. These shRNA precursors are processed by a nucleus
RNase III endonuclease, DROSHA, and its dsRNA-binding partner DGCR8 to
pre-shRNA which is then transported to the cytoplasm by Exportin-5 where it is
further processed by DICER and TRBP/PACT to remove the hairpin and form
siRNA. So, both the processes (dsRNA and shRNA processing) converge in this
step where both are processed by DICER to form siRNA. The siRNA is then loaded
into RISC, which is composed of Ago-2, DICER, and TRBP. The helicase property
of DICER helps it to unwind the double-stranded siRNA. Ago-2 then cleaves the
passenger (sense) strand by its RNase-H like activity leaving the guide (anti-sense)
strand intact, activating the RISC [28]. The guide strand then directs the RISC to the
mRNA target for cleavage by Ago-2 [19, 29]. Ago-2 interacts with the guide strand
through the MID and PIWI domains at the 50 end and PAZ domain at the 30 domain.
The guide strand recognizes its target by intermolecular base pairing. The difference
in thermodynamic stability serves as the basis of selection of the guide strand and the
passenger strand [30, 31]. The guide strand must have low melting temperature and
low duplex stability toward the 50 end, whereas the passenger strand has high
melting temperature and high duplex stability, which favours its degradation. If
the guide strand has perfect complementarity with the target mRNA, then the mRNA
is cleaved off, but if there is not perfect complementarity, then the translation is
repressed. Both these cases lead to a reduction in gene expression or gene silencing.
The entire process is illustrated in Fig. 24.1.

24.5.2 miRNA-Mediated Silencing

miRNAs are small endogenous dsRNA molecules of 21–22 nucleotides. Most of the
miRNA lies in the introns and is derived from the RNA transcripts with a hairpin
structure. miRNAs are mostly transcribed by RNA pol II and RNA pol III into a long
RNA transcript known as primary miRNA (pri-miRNA). A pri-miRNA may itself
have one to six miRNA precursors. DROSHA, an RNase III endonuclease, cleaves
the pri-miRNA in the nucleus with the aid of a dsRNA-binding protein DGCR8
(DiGeorge Syndrome Critical Region 8) also known as PASHA into a 60–70
nucleotide hairpin structure known as precursor-miRNA (pre-miRNA) which has a
2-nucleotide overhang at the 30 end [32]. Exportin 5 then translocates the
pre-miRNA from the nucleus into the cytoplasm where it is further processed by
DICER to form the mature miRNA [28, 33, 34]. From here, the miRNA shares the
common downstream processing machinery as the siRNA. Only one of the strands
of the miRNA is loaded into the RISC, making it an active RISC where it interacts
with the target mRNA. The degree of complementarity decides whether miRNA will
suppress the gene expression by cleaving mRNA or inhibiting translation. In plants,
miRNA is able to silence the gene by mRNA degradation as it is completely
complimentary to its mRNA target. But in animals, miRNA primarily silences the
gene by inhibiting translation as it is not completely complementary, unlike plant
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cells. It is only able to recognize a short sequence stretch about 6–8 nucleotides
known as the “seed region” at the 50 end of the mRNA [35]. This region has to be
perfectly complementary even though the complete mRNA sequence does not
match. The biogenesis of miRNA is illustrated in Fig. 24.2.

24.6 Delivery Methods for siRNA

The in vitro synthesized siRNA can be delivered to the cells through a variety of
methods which is discussed below.

24.6.1 Viral-Mediated Delivery

Viral vectors are the widely used vectors for the transfer of siRNA due to their
efficiency in delivery. Adenovirus, adeno-associated virus, retrovirus, and lentivirus
are the most used ones [36–38]. Transfer through lentivirus is the most preferred
among the other viruses as it has a comparatively low level of immunogenicity
among the others. Viral vectors have the tendency to integrate stably into the genome
and helps in long-term gene knockdown. This quality makes it the preferable mode
of transfer as compared to the other vectors. But there are also several drawbacks of
the viral vectors. Among one of the major drawbacks is biosafety for which other
modes of transfer of siRNA into the cells are being considered [39].

24.6.2 Non-viral-Mediated Delivery

Due to the biosafety concerns, the non-viral mode of delivery has gained importance.
It can be either transferred through electroporation or through different non-viral
vectors using transfection. The non-viral vectors are majorly classified into lipid-
based vectors, non-lipid organic-based vectors, and non-lipid inorganic-based
vectors. Lipoplexes, lipopolyplexes, stable nuclei acid-lipid particles (SNALPs),
and membrane/core nanoparticles (MCNPs) are the widely used lipid vectors
[40, 41]. Among the non-lipid organic-based vectors, chitosan, dendrimers,
polyethylenimines are profoundly used [42–44]. Gold nanoparticles,
superparamagnetic iron oxide nanoparticles, silica-based nanoparticles, semicon-
ductor quantum dots are among the non-lipid inorganic-based vectors mostly used
for the transfer of siRNA [45–47]. The non-viral vectors should offer the basic
properties like non-toxicity, biocompatibility, biodegradability, stability, and protec-
tion to siRNA. Non-viral vectors also have some drawbacks, for example, they are
not highly efficient in transferring siRNA as compared to the viral vector.
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24.7 Applications of RNAi

Over the years, RNAi has gained a lot of importance in various levels as listed
below.

• RNAi has been exploited to understand the function and the behaviour of various
genes in experimental biology. It has been used in gene mapping in gene annota-
tion and also to introduce programmed genome arrangements [48].

• RNAi plays a substantial role in the development of multicellular organisms. It
has been seen to control the various gene regulation pathways and germline
development and stem cell maintenance.

• RNAi approach has been used in the treatment of many viruses like HIV, HPV,
hepatitis A, B, and C virus, influenza virus, and many others. They inhibit the
viral infection by targeting the virus and the host genes required for viral replica-
tion and entry into the cells [49].

• RNAi is also used widely in the treatment of many diseases like cancer, degener-
ative macular disease, hereditary disorders like Huntington disease, neurodegen-
erative disorders like Alzheimer’s, Parkinson’s, and polyglutamine disease
[50, 51]. RNAi is seen to be very effective as it directly targets the mutant gene.

24.8 Conclusion

RNAi, which developed as a natural defence mechanism against RNA viruses in
plants, is now widely used in functional genomics to understand the function of
various genes. It is a highly potent method for knocking down gene expression. In
recent years, it has also gained much importance in the therapeutic industry as it has
been found effective against several diseases. But there are also drawbacks
associated with this process like toxicity, efficacy, and off-target effects. Improve-
ment in the delivery strategies for RNAi can ensure its wide usage in therapeutics on
a regular basis.
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Abstract

All cellular structures are heterogeneous. Thus, investigating true cell heteroge-
neity is highly required to further understand cellular connectivity and account-
ability within a disease or normal conditions. Because of its rapidly decreasing
costs, the Next-Generation (NGS) sequence is widely used to analyze various
biological data. However, these approaches may fail to provide detailed insight
into cells’ true heterogeneity. Recently developed single-cell RNA sequencing
(scRNA-seq) technology tries to tackle these bulk NGS issues by linking
transcriptomic, epigenomic, proteomic, and molecular sequences to a specific
cell. Thus, in this chapter, the author addresses the process involved, relative
strengths, possible uses, and limitations of scRNA-seq techniques methods.
Information obtained revealed that cell isolation methods may be broadly divided
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into two categories centered on different principles. The first category centered on
physical characteristics, while the second category mainly focuses on cell’
features and primarily involves affinity approaches. After obtaining raw data,
the general approach for analyzing ScRNA-Seq data are pre-processing, batch
effect correction, normalization, dimensionality reduction, feature selection, cell
type identification, differential expression analysis, and rebuilding cell hierarchy.
scRNA-seq technologies are continuously being employed to unmask various
biological processes ranging from epigenetic regulation to biomarker identifica-
tion. However, scRNA-seq technologies do have difficulties like cumbersome
activity and high detection costs that restrict technology promotion. Hence, there
is an urgent requirement to develop more robust tools so that, in the near future,
the technology for single-cell sequencing will be streamlined and is more
efficient.

Keywords

Cellular heterogeneity · Machine learning · RNA-seq · Single-cell
transcriptomics · single cell

Abbreviation

5mC 5-Methylcytosine
5hmC 5-Hydroxymethylcytosine
AML Acute myeloid leukemia
CCA Canonical correlation analysis
cDNAs Complementary DNAs
DBC Density-based clustering
DC Dendritic cells
DE Differential expression
ESCs Embryonic stem cell
FACS Fluorescence-activated cell sorting
GSE Gene expression
HVG Highly variable genes
KM k-means
LCM Laser capture microdissection
MACS Magnetic activated cell sorting
MCS Manual cell selection
MNNs Mutually closest neighbors
NGS Next-generation sequence
PCA Principal component analysis
scRNA-seq Single-cell RNA sequencing
t-SNE T-distributed stochastic neighbor embedding
UMAP Uniform manifold approximation and projection
UMIs Unique molecular identifiers
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25.1 Introduction

It is well-documented, both theoretically and experimentally, that almost all cellular
structures are heterogeneous [1]. Heterogeneity can occur for numerous reasons and
at several levels for improving survival as well as functionality. For instance, both
single-celled as well as multicellular species employ population-level survival
techniques, like bet-hedging, for achieving a higher survival rate while facing new
constraints with a diverse culture [2]. In most cases, genomic, transcriptomic,
proteomic, and epigenomic assessments play an essential role in investigating
cellular heterogeneity across many respects. However, at one point, the level of
variation will not be the same as another. Though cells within an individual have
pretty similar genomes, they can produce several distinct types of cells with distinc-
tive expression patterns by various modifications. The genome itself can be precisely
reconfigured to create expanded genetic variation within particular cell groups, most
prominently T- as well as B-cells, via recombining V(D)J. It has also been well
established that differentiation during development enables the cellular specializa-
tion needed for intricate multicellular system work. Furthermore, complex
epigenomic modifications permit numerous distinct segregation that eventually
leads to the continuum of human cell heterogeneity and is also highly required for
cancer formation. Thus, investigating true cell heterogeneity is highly required to
further understand cellular connectivity and accountability within a disease or
normal conditions [3, 4].

Because of its rapidly decreasing costs, the Next-Generation sequence (NGS) is
being widely used to analyze a wide variety of biological data [5]. Several, usually
tens of hundreds to billions of cells are examined at once in the framework of bulk
NGS studies. This, in turn, provides the general image of a particular group of cells.
However, these approaches may fail to provide detailed insight into cells’ true
heterogeneity. Recently developed single-cell RNA sequencing (scRNA-seq) tech-
nology tries to tackle these bulk NGS issues by linking transcriptomic, epigenomic,
proteomic, and molecular sequences to a specific cell [1]. Two independent research
group, namely, Eberwine et al. [6] and Brady et al. [7], pioneered the entire
transcriptome sequences at the single-cell level, which extended per cell’s comple-
mentary DNAs (cDNAs) along with linear amplification through exponential
enhancement through PCR or in vitro transcription, respectively. Primarily, the
process was proposed for commercial DNA microarray chips and was later modified
for scRNA-seq [8]. In 2009, for the first time, scRNA-seq was employed for
describing detailed insight into early cell production [9].

Since that research, there’s been an increase in enthusiasm to unmask unicellular
heterogeneity at high-resolution. Introspectively, evaluating the disparities in gene
expression among single cells may also recognize uncommon populations that
cannot be distinguished through the bulk cell study. For instance, the capability to
find and classify uncommon cells in a population will contribute to a deeper insight
into drug resistance and recurrence during cancer treatment [10]. Significant
improvements in available laboratory methods and bioinformatics pipelines have
also rapidly allowed investigators to deconstruct very different populations of
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immune cells in both disease and healthy states [11]. Moreover, scRNA-seq is also
widely used to study the early development of myoblast differentiation [12] and
lymphocyte fate assessment [13]. scRNA-seq, nevertheless, isn’t without flaws. One
of the greatest difficulties with scRNA-seq is its prices, and while it has declined
dramatically over recent times, it remains a major concern during research setup and
technological issues, including sensitivity [1]. Thus, in this chapter, the author
addresses the process involved, relative strengths, possible uses, and limitations of
scRNA-seq techniques methods.

25.2 Single-Cell Isolation

Scientists must isolate or characterize single cells before conducting a single-cell
study. The purity (the proportion of the target cells obtained following isolation),
effectiveness or productivity (number of cells isolated at a given time), as well as the
recovery (the proportion of the target cells retrieved subsequent to isolation relative
to the initial target cells number present within the sample) describe the success of
cellular isolation. The existing strategies display various benefits on each of the three
dimensions [14]. Centered on different principles, current cell isolation methods may
be broadly divided into two categories. The first category centered on physical
characteristics, like density, electrical adjustments, size and deformability, with
techniques such as membrane filtration, centrifuge gradient density, and capture
platforms focused on microchips. Single-cell isolation without labeling is, by far, the
most desirable physical characteristics. The second category mainly focuses on cell
features and primarily involves affinity approaches like strong affinity matrix (fibers,
plates, beads) and cell-sorting enabled through fluorescence (Fig. 25.1) [14].
(a) Fluorescence-Activated Cell-Sorting (FACS)

FACS is the most advanced and user-friendly strategy for identifying as well as
distinguishing diverse cell types in heterogeneous communities depending on
their size, fluorescence, and granularity. FACS allows a multi-parameter quali-
tative analysis of individual cells [15]. Till isolation, a suspension is rendered,
and fluorescent probes specifically target cells. “Fluorophore-conjugated mono-
clonal antibodies” are the most commonly employed sample that identifies
unique target cell’s markers. Since cell suspension moves via cytometry,
every individual cell is subjected to a laser that permits fluorescence sensors
to detect cells on the basis of the characteristics selected. The device charges a
droplet (negative or positive) describing a cell of importance and the electro-
static deflection environment allows the aggregation of the charged droplets in
the proper collection tubes for subsequent investigation. While FACS has been
commonly used to separate highly filtered cell populations, FACS may also be
used for sorting single cells [16]. BD cell-sorting systems, like the BD
FACSAria™ III cell sorter, can isolate single interest cells from millions of
cells utilizing nearly 18 surface markers [14]. However, while FACS is com-
monly used in basic and clinical science, several restricted drawbacks remain.
First, FACS needs several cells (>10,000) to be suspended. Thus, the single
cells cannot be isolated from a small cell population. Second, the fast movement
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inside the machine, as well as non-specific fluorescent particles, can damage the
vitality of filtered cells, resulting in a loss of isolation. Cells or cell cultures must
also be exposed to stimulation procedures as well as processed prior FACS
examination in a different setting [14].

(b) Magnetic Activated Cell-Sorting (MACS)
MACS is yet another widely employed method of passive isolation for
separating various forms of cells according to their differentiation cluster.
MACS has been reported to differentiate unique cell populations having a purity
of more than 90% [17]. The MACS comprises enzymes, antibodies,
strepavidins, or lectins coupled with magnetic beads for attaching the target
cell to particular proteins. If an incoming magnetic field senses a mixed cell
population, magnetic beads are triggered, and the labeled cells polarize and
other cells are swept away. After the magnetic field has been switched off, the
residual cells may be obtained by elution. This approach allows the cells to be
isolated by the charge in response to the specific antigens. Color magnetic beads
utilize effective isolation methods to attract cells. On the contrary, if species-
specific compounds are unavailable, employing negative isolation procedures
that use a mixture of antibodies for covering untreated cells is a safe option. In
this scenario, unlabeled and labeled cells are retained and discarded,
respectively [18]. Even though MACS is reasonably straightforward and
cost-effective, the MACS device’s obvious drawback is its preliminary magnet

Fig. 25.1 Overview of single-cell isolation approaches. (Adapted from [14])
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separator costs, including maintenance costs. In MACS devices, the isolated
cells’ final purity also depends upon the affinity and specificity of the antibodies
used for target cells. It also relies on capturing non-specific cells. Non-specific
contamination can be triggered through adsorption of background cells to the
collection system or by their intrusion into the broad abundance of magnetic
particles used to label unusual large cells [14]. Another downside of MACS is
that it can only employ cell surface molecules for differentiating living cells.
Moreover, owing to immunomagnetic strategies that can only segregate cells
into negative and positive populations, MACS is far more constrained than
FACS. Using MACS, high and low molecule expression cannot be
distinguished [14].

(c) Laser Capture Microdissection (LCM)
LCM is an innovative technology that uses a microscope slide for separating
pure cell communities from mostly stable tissue samples [19]. It can monitor as
well as capture interested cells effectively and reliably by taking full advantage
of modern molecular analytical technologies, together with proteomics,
microarrays, and PCRs [20]. LCM’s underlying idea begins with the visualiza-
tion of the interested cells via an inverted microscope. Subsequently, it permits a
fixed location, a short time span, and a concentrated laser pulse for melting the
thin translucent thermoplastic layer onto a cap over the desired cells. The film
melts and integrates with the cells concerned. When removing the film, target
cells bind strongly to the film, whereas the tissue stays behind. To end, transfer
the cells into a buffer tube for numerous downstream analyses [21]. The major
benefit of LCM is its pace and its flexibility [22]. LCM offers a rapid as well as
an accurate approach toward obtaining pure target cell populations through
microscopic visualization from a diverse range of cell/organ preparations
[23]. Traditional molecular analysis strategies entail tissue separation, which
may lead to intrinsic issues of contamination and reduce the selectivity and
reliability of molecular studies [14].

On the contrary, LCM is a no-touch approach that doesn’t really kill
surrounding tissue after preliminary microdissection. All captured, including
the morphology of residual tissue is exceptionally well maintained, and the
probability of tissues’ degradation decreases [20]. The residual tissue on the
diaphragm can also be accessed entirely after the cells have been removed,
thereby enabling comparative molecular inspection of neighboring cells. The
key criteria for successful LCM are to correctly classify cell subpopulations or
individual cells within a complex tissue. However, the main disadvantage is the
need for a visual microscopic examination of morphological features to classify
cells of interest that, in turn, demand the involvement of a cell classification
pathologist, cytologist, or technician [20]. Another major drawback is that there
is no coverslip in the microdissected tissue portion. Covering slippage will
preclude physical access to the tissue’s surface, which is essential during the
new microdissection process. The dried portion of tissues has a refractive
consistency, which can mask cellular information at higher magnification.
LCM also incorporates many technological artifacts, including cell slicing
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mostly during the processing of tissue parts and RNA/DNA damage from laser-
cutting energy [24].

(d) Manual Cell Selection (MCS)
Manual cell selection is another easy, comfortable, & effective way of isolating
individual cells. Like LCM, MCS is often made of an inverted microscope
coupled with motorized mechanical-level micropipettes. Under the microscope,
each isolated cell may be photographed as well as analyzed, allowing impartial
separation. Compared to LCM, which always primarily isolates individual cells
from fixed tissue parts, micro-manipulation plays a significant role in isolating
embryo cells or live culture. MCS can be done effectively using a patch-clamp
device in an electrophysiology lab. However, its performance is restricted, and
highly trained specialists are needed to work since its effectiveness is restricted
when complicated adjustments are identified [14].

(e) Microfluidics
Microfluidics is a powerful and innovative tool for examining the intrinsic
cellular structures’ complexity, offering reliable fluid control, relatively low
intake, miniaturization of instruments, low analytical expense, and simple
handling of nanoliter volumes [25]. Cells could be separated through a
microfluidic chip via four approaches, namely, “cell-affinity chromatography
based microfluidic, physical characteristics of cell-based microfluidic separa-
tion, immunomagnetic beads based microfluidic separation, and separation
methods based on differences between dielectric properties of various cell
types” [14]. Microfluidics can typically be paired with several other isolation
approaches, like filtration, sedimentation, or related technologies, such as FACS
and MACS. Numerous experiments, as well as applications involving
microfluidic systems, have been published in recent years, including single-
cell evaluation, cancer study, stem-cell discovery, microbiology, drug discov-
ery, and screening [24]. Microfluidic chips simultaneously have the capability
for applications in DNA sequence, protein analysis, cells handling, and cell
composition analysis [14]. Besides, the applications of microfluidic technology
in researching heterogeneity and variability among single-cell genomes have
increased these days, ranging from cancer biology to environmental microbiol-
ogy as well as neurobiology [14].

25.3 ScRNA-Seq Analysis Approaches

To date, a variety of scRNA-seq approaches for single-cell transcriptomic studies
have been proposed. Tang et al. [9] published the first scRNA-seq tool, and
subsequently, several more scRNA-seq methods were established. The scRNA-seq
approaches may vary in at least one of the following parameters: (1) transcript
coverage; (2) cell lysis; (3) strand selectivity; (4) amplification; (5) isolation of
cell; (6) reverse transcript; and (7) UMIs (unique molecular markers, molecular
tags that can be used for detecting and quantifying the unique transcripts). One
distinct dissimilarity among these scRNA-seq approaches is that few can provide
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either full-length or almost full-length transcript sequence data (e.g., MATQ-seq,
Smart-seq2, and SUPeR-seq), while others can only collect and sequence the 50-end
(e.g., STRT-seq) or 30-end (e.g., SPLiT-seq and Drop-seq) [26] of the transcripts
[27]. Earlier studies have reported that Smart-seq2 identifies more expressed genes
in comparison to other technologies, like CEL-seq2, MARS-seq, Smart-seq, and
Drop-seq. Sheng et al. (2019) reported a full-length MATQ-seq transcript sequenc-
ing method that can identify low-abundance genes more precisely, and it
outperforms Smart-seq2 (Table 25.1).

The full-length scRNA-seq techniques give unique advantages over 30 end or 50

end counting approaches, especially during detection of allelic expression and RNA
editing due to their dominance in the transcript. In addition, the full-length scRNA-
seq approaches may be more potent than just a 30 or 50 sequencing system toward
identifying any low-expressed genes/transcripts [46]. Importantly, droplet-based
technology could typically produce lager cellular outputs and lower sequence cost
per cell relative to the full-scRNA-seq script, e.g., Drop-sq [40], Chromium [37], and
InDrop [41]. Thus, Drop-sq protocols are ideal for producing massive cell numbers
to classify specific tissue or tumor sample cell subpopulations. It is pertinent to note
that some ScRNA-seq technologies, e.g., MATQ-seq [32] & SUPeR-seq [31],
capture polyA+ and polyA-RNAs [32]. These procedures are incredibly helpful
for sequencing circular RNAs (circRNAs) and long RNAs (lncRNAs). A variety
of experiments have revealed that lncRNAs and circRNAs play a central role in a

Table 25.1 Widely used scRNA-seq technologies. (Adapted from [27])

Transcript
coverage

UMI
possibility

Strand
specific Methods References

Nearly full-length No No Tang method [9]

Full-length No No Quartz-Seq [28]

Smait-seq [29]

Smait-seq2 [30]

SUPeR-seq [31]

Full-length Yes Yes MATQ-seq [32]

50-only Yes Yes STRT-seq and STRT/
C1

[33, 34]

30-only Yes Yes CEL-seq [35]

CEL-seq2 [36]

Chromium [37]

Cyto-Seq [38]

DroNC-sea [39]

Drop-seq [40]

InDrop [41]

MARS-seq [42]

sci-RNA-seq [43]

Seq-Well [44]

SPLiT-seq [26]

Quartz-Seq2 [45]
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wide range of biological cells processes and may serve as essential biomarkers for
various diseases, including cancer, which in turn aid scRNA-seq approaches to
investigate the mechanisms of gene expression more precisely [27].

The scRNA-seq protocols experience greater technological variations relative to
conventional Bulk RNA-seq technology. Spike-ins, like “External RNA Control
Consortium controls” [47] and UMIs, have been commonly used in the subsequent
scRNA-seq analysis for measuring technological differences across different cells.
The RNA spike-ins are RNA transcripts (having acknowledged sequences &
quantities) employed for measuring RNA hybridization assay that could approxi-
mate absolute molecular amounts. Interestingly, the underlying protocol variations,
e.g., ERCC and UMIs, do not adhere to all scRNA-seq technologies. In techniques
like SUPeR-seq and Smart-seq2, Spike-ins are used but are not consistent with
InDrop methods [40]. As a result, users can select an appropriate scRNA-seq
approach based on technological characteristics and benefit, sequencing the number
of cells and costs.

25.4 Computational Approaches for Analyzing scRNA-seq Data

While several laboratories are becoming more open to experimental methods for
scRNA-seq, computational pipelines that handle raw data files still remain limited.
Some enterprises offer software applications like 10� genomics & fluidigm, but
that’s still in its development phase, and gold-standard tools are yet to be invented. In
this chapter, we will address the general computational pipelines that are commonly
employed for evaluating scRNA-seq data [8]. After obtaining raw data, ScRNA-Seq
analysis approaches mainly comprise pre-processing, batch effect correction, nor-
malization, dimensionality reduction, feature selection, cell type identification, dif-
ferential expression analysis, rebuilding cell hierarchy, and compositional analysis
(Fig. 25.2).

25.4.1 Quality Control

scRNA-seq is a lossy technology and what induces various types of failure is not
well known. Actually, this implies the first step toward quality management after the
acquisition of readings from a scRNA-seq experiment. Reads are analyzed similarly
to data obtained from the RNA-seq experiment, which subsequently allows quanti-
fication of expression. Hence, evaluation of both raw data (which can be carried out
with bulk RNA-seq tools, like Kraken [49] or FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/)) and the aligned result is very important. The cell-
by-cell quality management is imperative in scRNA-seq to ensure that low-quality
cells are excluded from subsequent studies. Many indicators may be used to deter-
mine cell efficiency, such as the amount of gene or reads observed, the ratio of
mitochondrial-genes mapping reads (which may indicate the leaks of apoptosis cells
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or cytoplasmic RNA), or the ratio of reads to externally spiken RNA molecules,
where used in experiments [50].

Fig. 25.2 The general computational pipelines that are commonly employed for evaluating
scRNA-seq data. (Adapted from [48])
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25.4.2 Batch Effect Correction

Single-cell data are usually derived from several experiments that may experience
discrepancies in capture-time, handling, reagent lots, tools, and sometimes even
platforms. These disparities contribute to a wide range of variations or batch effects
in data, which may confound important information during data integration. Suc-
cessful elimination of batch results is therefore necessary. Batch results can be
incredibly non-linear, making it hard to appropriately coordinate various datasets
while retaining significant biological changes [51]. To overcome these problems, the
scRNA-seq data is generally subjected to tools designed for microarray data’s batch
correction like Limma [52] and ComBat [53]. However, single-cell specimens
experience “drop-out” episodes because of stochastics gene expression or RNA
capture loss or amplification at the time of sequencing [54]. This has contributed
to attempts to establish novel workflows and tools for processing data of this
type [55].

Pioneered by Haghverdi et al. [55], the common and successful method defines
cell mapping among datasets and afterward recreates data in a shared space. This
methodology first selects mutually closest neighbors (MNNs) for connecting two
datasets. In the corresponding array of paired cells (or MNNs), the translation vector
is determined to match the datasets in a shared area. The benefit of this method is that
it achieves a structured gene expression matrix, which can be used for the down-
stream study. However, the processing time and memory are computationally taxing
because of the need to measure the neighbors’ list in a complex gene expression
space. The developers then implemented fastMNN (https://marionilab.github.io/
FurtherMNN2018/), which is used in feature space computed with the principal
component analysis (PCA) [56] which results in substantial improvements in per-
formance and reliability. Two other approaches, Scanorama [57] and BBKNN [58],
also often look for MNNs in dimensional-diminished spaces and use them similarly
to guide batch integration.

In 2017, the Satija lab developed the Seurat MultiCCA system from the famous
Seurat package [59]. Employing “canonical correlation analysis” (CCA) [60], it
decreases data dimensionality and captures the most associated data attributes to
match data batches. A novel variant, namely, Seurat Integration (Seurat 3) [61], first
uses CCA for projecting data into a feature space for identifying dataset similarities.
MNNs are then measured within the CCA subspace and act as “anchors” for data
correction. An alternative tool, namely, Harmony [62], employs PCA for
minimizing dimensionality. Harmony eliminates the batch results in the PCA
space iteratively. It clusters identical cells from separate batches during each itera-
tion, thereby optimizing batches’ variability inside the individual cluster, and subse-
quently determines a correction factor for each cell. This method is fast and also can
predict the important biological relation across datasets efficiently.

LIGER is a recently emerging approach that fixes a suspected limitation in other
approaches, which is expected to be attributed to technological anomalies and not
biological sources to eliminate inconsistencies between the datasets [63]. To achieve
the low-dimensional representation of the input data, LIGER uses inclusive
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non-negative matrix factorization. The illustration consists of two components: a
collection of batch factors and a set of factors exchanged. The clustering method
then follows a quest for common clusters utilizing a common neighborhood factor
diagram for linking cells having identical neighborhoods. Subsequently, the factor-
loading quantiles are normalized with the defined clusters to fit a selected dataset
(generally set with the maximum cell number), resulting in batches correction. In
recent years, researchers have also taken advantage of deep neural networks to use
neural networks for solving batch correction. Shaham et al. [64], for instance,
developed batch correction residual neural networks for minimizing the mean
difference among source and target batch distributions. Lotfollahi et al. [65] have
established a scGen, in which a VAE model is trained on the reference dataset before
the real data is corrected [66]. Subsequently, reasonable data normalization is
required, based on the research’s’ objective. Several normalization methods have
been designed, many of which respond to variations in the depth of sequencing
and/or use a spike in and/or Unique molecular identifiers (UMIs).

25.4.3 Normalization

The key purpose of normalization is to minimize the impact of technological
influences on the underlying molecular numbers and maintain the original biological
heterogeneity [67]. Generally speaking, a gene’s normalized expression level should
not correspond with a cell’s total sequencing depth. Additionally, variation within
the normalized gene (across cells) should predominantly indicate biological
variability, regardless of sequencing depth or gene abundance. For example, post-
normalization, housekeeping genes should experience low variance, whereas genes
with greater variance should be expressed differently across cell types [67]. Because
of its significance, to date, several different methods for normalizing scRNA-seq
data have been proposed [68, 69]. Broadly these approaches can be divided into two
groups. The first group tries to predict “scale influences” for each cell, like bulk
RNA-seq analysis. For instance, BASiCS employs spike-ins for infusing cell-
specific normalizing constants for differentiating technological noise generated
from cell-to-cell inconsistency. Scran tool collects cells with comparable library
sizes and employs cumulative values for estimating pool-based size factors deter-
mined by cell size factors [70]. These techniques, by doing a uniform scaling per
cell, presume that the underlying RNA content is unchanged for all cells throughout
the dataset and that a single threshold value can be extended to all genes.

Other normalization strategies model molecular counts through probabilistic
techniques. Preliminary techniques mainly focus on read-level information and
estimate each cell measurement through two components, namely, a mixture of the
drop-out (Poisson) and “amplification” (negative binomial, NB) components
[54]. For modern UMI-based measurement, modeling approaches have primarily
been centered on using the NB [71] component, with a likely additional Zero
Inflation Model (ZINB) parameter. The “ZINB noise model” [69] is also used by
DCA (https://github.com/theislab/dca) and ScVI (https://github.com/YosefLab/
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scvi-tools) either for normalizing and reducing dimensionality through Bayesian
hierarchical modeling techniques or to denoise an autoencoder. The revolutionary
methods perform beyond pre-processing and normalizations and focus on the
detailed evaluation of per-gene error models.

Recently, Hafemeister and Satija hypothesized that Pearson residuals from
“regularized negative binomial regression,” where the depth of cells sequences is
used in a generalized linear model as a covariate, this in turn, effectively eliminates
the effect of technological features from subsequent assessments while retaining
biological diversity [67]. Importantly, they demonstrate that an unrestrained negative
binomial model will overpower and conquer the scRNA-seq data through pooling
genes of identical abundances to achieve stable parameter estimations [67]. Addi-
tionally, the heuristic steps, including log transformation or pseudo count, are not
needed during downstream analytical tasks like dimension reduction, differential
expression (DE), and variable gene selection [67].

25.4.4 Dimensionality Reduction and Feature Selection

scRNA-seq data are of high-dimensionality and can contain a huge number of cells
and thousands of genes. Reduction of dimensionality and feature selection are two
main approaches for handling high-dimensional details [72]. Dimensionality reduc-
tion approaches typically map the data to a lower-dimensional space by minimizing
some primary data characteristics. PCA is a linear algorithm for dimensional reduc-
tion, presuming that the data is disseminated roughly normal. “T-distributed stochas-
tic neighbor embedding” (t-SNE) is a non-linear technique primarily developed to
visualize high-dimensional data. In multiple scRNA-seq experiments, both t-SNE
and PCA have been commonly used for minimizing data measurements and
visualize discriminated cells in various sub-populations [26, 73]. It is pertinent to
the dynamic nature of sRNA-seq data, which cannot be efficiently expressed by
PCA, and t-SNE has sluggish computational limitations and diverse embeddings to
process the same dataset numerous times [27]. scvis [74] and UMAP [75] were
recently established to reduce the scRNA-seq data dimensions. Becht et al. have
demonstrated that UMAP seems to have the fastest speeds, best reproductivity, and
more meaningful cell cluster organization in comparison to other reduction
methods [76].

The feature selection eliminates the inaccurate genes and recognizes the most
important features for reducing the dimensions’ number for downstream study.
Lowering the number of the genes through feature selection will accelerate large-
scale scRNA-seq calculations [72]. DE in bulk RNA-seq experimentations is a
commonly used technique of feature selection. However, it is problematic to use
in scRNA-seq data due to the homogeneous and/or pre-determined subpopulation
information, which is necessary to call scRNA-seq data for differential expression,
that is sometimes not accessible [27]. Unsupervised feature selection approaches,
particularly for scRNA-seq data analysis, may be divided into (1) drop-out-based;
(2) highly variable genes (HVG), and (3) spike-in-based algorithms [72]. HVG
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approaches presume that genes with strongly variable cell expression are caused by
biological effects instead of technical noise. The HVG methods employ algorithms
proposed via Seurat’s FindVariableGenes [77] and Brennecke [78] algorithms.
Spike-in-based methods distinguish genes with significantly higher variances from
spike-ins with similar expression levels. For example, BASiCS and scLVM [79]
share a common concept of HVG [72]. In another study, Andrews & Hemberg
demonstrated that their M3Drop method surpasses current filtering methods depen-
dent on variance [72].

25.4.5 Clustering and Clustering Annotation

One of the scRNASeq’s common uses is to classify and describe cell populations.
Scientifically speaking, cell groups mostly comprise distinct cell classes, e.g.,
neurons and glia in a brain study, but they may often lead to different cell-type
states, e.g., inactivated and activated T-cells [72]. From a statistical standpoint,
ScRNA-Seq’s cell populations are unsupervised. To date, the topic has been exten-
sively studied within machine learning research, and several excellently established
techniques have been developed for scRNASeq data. The clustering algorithms can
primarily be categorized into (1) k-means (KM); (2) graph-based clustering, (3) Den-
sity-based clustering (DBC), and (4) hierarchical clustering [27].

KM is a widely employed clustering algorithm at the time of single-cell analysis.
It is a straightforward approach that allocates cells to the nearest cluster’s center, and
subsequently re-calculates the cluster centroids. Nevertheless, KM involves
pre-determination of the cluster’s number and employs stochastic starting points
for every cluster. Hence, it demands that the robustness of these parameters be tested
several times. These multiple outcomes can then be integrated by measuring a
consensus, for instance, like SC3 does [80]. The major limitation of KM is that the
system presumes a pre-determined quantity of equally sized rounded clusters. When
these presumptions are breached, KM will recognize several neighboring clusters
anywhere along the differentiation route and combine uncommon cells having a
much more dominant cell type. Tools that combine k mean with outlier identification
strategies, for instance, RaceID [81], may be used to classify rare cell populations.
RaceID, however, fails miserably when data may not include rare cell
populations [81].

The clustering hierarchy is another prominent clustering tool that is widely used
for classifying cell populations [72]. Though there are numerous types of hierarchi-
cal clustering, the most widely used during cluster analysis are Ward’s [82] and
“complete.” However, the k-mean is faster in comparison to hierarchical clustering.
Nevertheless, hierarchical clustering has the benefit of evaluating the connections
between the numerous small clusters, because the outcome can be depicted as a
dendrogram. This dendrogram is then “broken” to establish several numbers of
groups at varying heights. CIDR [83], PcaReduce [84], and SINCERA [85] are
the most widely used approaches for hierarchical clustering of single-cell RNASeq
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results. However, these approaches fail to classify clusters that might have the same
type of cell [72].

DBC defines clusters as adjoining areas with a higher cell density. In comparison
to hierarchical clustering or KM, DBC does not presume clusters of a specific type or
scale. Density-based approaches, therefore, also presume that all clusters are simi-
larly dense, that is, homogeneous cell populations. Furthermore, the algorithm
requires to be granted this density through one or more criteria. The density
parameter setting is similar to selecting the number of clusters for KM or deciding
where to cut the tree for hierarchy. Because DBC involves several samples, it works
well on cytometry experiments, droplet-based datasets, and large RT-qPCR
experiments, which include data for tens of millions to billions of cells [40, 72, 86].

Graph-based clustering, also known as “community detection,” is an enhance-
ment of DBC and primarily designed for data defined as a graph, that is, a collection
of “edges”-connected cells. Because graphs can effectively be a complicated
non-linear system with limited assumptions, it is possible to classify cell populations
with varying sizes, densities, and types [87]. The graphic approaches have also been
used to scale them thousands to hundreds of cells [88, 89]. The graph’s density can
be calculated as the number of edges joining a group of cells and comparing it with a
null hypothesis, such as a totally random graph or a random graph regulated with
metric called modularity. The most common modular methods are the Louvain
algorithm [87] employed within the PhenoGraph [90] and Seurat version 1.4.
Another density measurement method employed through SNN-Cliq utilize overlaps
among each cell’s k-nearest neighbors [91].

The key disadvantage to graph-based approaches is that scRNASeq has no
underlying graph form. Thus, these methods’ efficiency depends on how efficiently
the scRNASeq data is transformed into a graph illustration. Typically, scRNASeq
data is transformed into a graph via describing cells as edge-connected nodes to their
k nearest neighbors (kNN) [77, 92]. This interpretation implies equivalent to cell
populations. Nevertheless, owing to the dimensionality curse, defining k-nearest-
neighbors could not be a robust technique [93]. Hence, feature selection and/or few
dimensionality reduction are often needed before defining kNN graphs for avoiding
biased clustering algorithms [72].

25.4.6 Differential Expression Analysis

A significant feature of the bulk RNA series is DE analysis. Several resources are
available, and DESeq2 & edgeR are the most widely used. As scRNA-seq expres-
sion data is zero-inflated, single-cell data is somewhat distinct from traditional bulk
RNA sequencing. In bulk RNAseq, DE is used primarily for evaluating a few
replicates of two or more biological conditions [94]. In scRNAseq, DE analysis is
routinely used to recognize genes in scRNA-seq experiments that can be distin-
guished among cell subpopulations, research environments, and between case-
control categories. SCDE [54], MAST [95], and ZingeR [96] are frequently used
for DE methods in scRNA-seq. Although various DE approaches allow different
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modeling assumptions for capturing different facets of the scRNA-seq data [97],
almost all tools analyze one gene at a time.

The study of a gene could contribute to possible power loss, because this method
does not use reliable DE data that would otherwise be used to boost the DE study’s
power. Various DE detecting algorithms in scRNA-seq methods may appear to favor
different DE genes in real data applications because of their low statistical capacity,
resulting in weak output and incoherency of findings across multiple techniques. It
has been well established in several other forms of association analyses such as
genome-wide association studies that Bayesian techniques, which model several of
the predictor variables, also together with a simplified composite probability tech-
nique, where information is collected via several predictors, each handled separately,
significantly increase power against univariate approaches [98].

Gene expression (GSE) analysis is often a standard task to integrate DE informa-
tion at the genes set or pathways level. GSE analysis can promote the rigorous
biological interpretation of DE findings by combining gene-level data. To date,
several various GSE analytical methods were developed, but almost all are devel-
oped in the RNAseq research environment [99]. These current GSE techniques
involve over-representation analytical techniques like the Fisher exact test [100]
and DAVID [101]; testing self-contained methods, e.g., t-test [102], and competitive
test methods such as GSEA [103], PAGE [104], and CAMERA [105]. Although the
GSE methods are plentiful, their efficiency in scRNA-seq research remains uncer-
tain. In fact, no comprehensive studies have been carried out to date to determine the
efficacy of current GSE approaches in the scRNA-seq context. Besides that, and
more critically possibly, almost all current GSE approaches consider GSE research
as a separate analytical phase after DE research.

However, GSE analysis, as well as DE analysis, are statistically connected. While
DE findings are definitely invaluable in identifying enriched gene sets to conduct
GSE analyses, enriched or non-enriched gene sets provide useful knowledge that
may provide input on DE analysis for improving their statistical strength. The
combination of DE and GSE analysis can significantly enhance both the capacity
and viability of the scRNA-seq analyses [106]. Recently, Ma et al. [106] created an
integrative and versatile computational tool, namely, iDEA, for joint DE and GSE
analysis via a Bayesian hierarchical system. By combining DE and GSE analyses,
iDEA enhances the strength, consistency, and accuracy of DE research. Importantly,
iDEA only requires DE summary statistics as inputs for productive data modeling
via complimenting and matching different current DE approaches. iDEA’s power
gain helps one to find several pathways that could not be found via other existing
approaches [106].

25.4.7 Trajectory Inferences

A key challenge during the study of developmental biology is understanding the
series of fate decisions that contribute to every mature cell type in tissue and
organism [107]. The hierarchy may be traced employing lineage tracing, in which
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a tracer molecule or DNA change is incorporated in a community of initial cells and
tracked over time, enabling the recognition of the progeny of the cells
[108]. Recently, developments in DNA sequences have rendered that thousands of
lineage trace assays can be paralleled in a single experiment by labeling cells with
particular DNA barcodes. This can be traced through lineage tracing, in which the
tracer or DNA alteration in an early cell population is inserted and over time tracked,
enabling for identifying the progeny of the cells [109, 110].

Two novel methods are widely used for performing lineage tracing. While
“Prospective” lineage tracing attempts to assess the destiny of a group of cells that
were labeled at an early stage by observing them at a specific point in time,
“Retrospective” lineage reconstruction attempts to recreate the lineage associations
among cells at a single time point as a means to conclude the past division from
branching incidents that they have undergone [111]. This method has its origins in
the practice of inferring phylogeny among organisms on the basis of their common
and unique features, like shared anatomical characteristics or gene sequence alleles
missing from an outgroup [112].

However, the need for accumulating variations within barcodes across a large
developmental window limits this phylogenetic approach. It is oblivious to destiny
options after diversification of the barcode has ceased. To date, several experimental
techniques have now been developed for continuous barcode cells [113]. However,
these approaches need optimization to enable standardized long-term barcoding
rates and evaluate tissues with variable division rates [114]. Since most of the current
approaches only mark cells inside a narrow-time window [110, 115, 116]; it may
help to establish lineage reconstruction mechanisms outside barcoding. In a
restricted situation, one might wonder if it is feasible to create a retrospective lineage
association where clonal barcoding happens only once in a single cell
population [107].

Considering this, recently, Weinreb and Klein explored whether the stochasticity
of cell fate selection during development may be used to infer lineage associations at
a single period after bar code [107]. Result obtained revealed that the approach is
most appropriate for experimental data obtained from widely used barcoding
approaches [107]. However, these findings are based on a variety of biological
hypotheses that do not necessarily adhere. For instance, the branching model
eliminates cell-cell interactions, which could not be represented by a medium area.
Though numerous mechanisms are well captured by those assumptions, some
phenomena are not considered, like strict asymmetric divisions [117]. The model
often lacks the cell death or normal replication information that might have
generated because of auto-renewal of the cell state, believing that bar codes are all
accumulated in one cell form at a single stage of growth, which only applies roughly
for specific experimental strategies [110, 116] and not for others [113, 118].

25 Single-Cell RNA Sequencing Technologies 571



25.4.8 Compositional Analysis

At the cell stage, clustered data may be studied with respect to their compositional
form. The study of compositional data revolves around the cell proportions that fall
into each cell-identity cluster. In response to illness, these proportions will change.
Salmonella infection, for example, has been shown to enhance the capacity of
enterocytes in the epithelium of the mouse intestine [119]. Thus, analyzing compo-
sitional modifications to single-cell data demands adequate cell numbers in order to
determine robustly the cell-identity cluster proportions and sufficiently sample
numbers in order to analyze predicted cell-identity cluster history variations. As
suitable databases have been accessible only recently, such methods are still to be
created. Earlier study in mouse, cell identity counts were modeled with a Poisson
procedure, including the condition as a covariate and the total number of cells as
offset detected. In this scenario, a predictive test can be conducted via the regression
coefficient to determine whether the occurrence of a certain cell identity has changed
substantially [48]. Measures on other cell identities in the same dataset are neverthe-
less not independent. When the proportion of a cell-identity cluster increases, the
proportion of all other clusters would also have shifted. Therefore, it is difficult to
determine if the general composition has modified dramatically using this model. In
the absence of special tools, visual comparison of compositional data can notify
changes in composition across samples. Future advances in this area are likely to
take advantage of mass cytometry or microbiome literature in which greater priority
has been given to compositional data analysis [48].

25.5 Applications of scRNA-seq Technologies

scRNA-seq technologies are continuously being employed to unmask various
biological processes ranging from epigenetic regulation to biomarker identification.

25.5.1 Epigenetic Modification

Epigenetic changes are characterized as transcriptional repression or activation
generated via associations produced in bulk cell populations. Nevertheless, the
research has shown this hypothesis’s naivety and the extreme complexity during
epigenetic regulation [120]. For instance, 5-Methylcytosine (5mC) is largely
believed to be a transcriptionally repressive mark, as the promoter’s methylation is
negatively linked to gene expression. In certain instances, however, DNA methyla-
tion has been positively associated with transcript, indicating that the genome
background may also influence the biological result [121]. Furthermore, global
DNA hypomethylation shown by naive embryonic stem cell(ESCs) does not require
a widespread transcriptional initiation, which indicates that the intensity of regu-
latory relationships among DNA methylation and transcription can differ on the
basis of the stage of the production and cellular background [120]. Hence, the usage
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of single-cell methods can enhance our interpretation of DNA changes as epigenetic
regulatory markers (Table 25.2). For such experiments, the latest advancements of
integrated single-cell approaches (e.g., scM&T-seq) would be great. Moreover, very
low levels of 5-Hydroxymethylcytosine (5hmC) determined in mass cell samples
(e.g. <5% of CpG sites in primed ESCs) suggest that this alteration is present in just
a few cells with some unique trace in cytosine. Therefore, simultaneous 5hmC
profiling and transcription would profoundly influence our interpretation of this
epigenetic mark. In the future, several epigenetic traits (e.g., DNA methylation and
accessibility to chromatin) can also be tested with gene expression in the same
human cell, which will contribute to more refinements in our perspective of the
epigenomic effect on the transcriptome [120] (Fig. 25.3).

25.5.2 Clinical Studies

Earlier researches have also shown that genetic variants may contribute to cellular
heterogeneity within the tumor tissue. However, conventional sequencing strategies,
like RNA-seq, are only incapable of capturing signal at cellular level. These
limitations can be adequately overcome through scRNA-seq technologies
[131]. Zhang et al. (2018) analyzed the T-cell immunoreceptor of colorectal cancer
through scRNA-seq technology and reported a potential state transition between
T-cell populations and tissue-distributed subpopulations [132]. Bian et al. employed
scRNA-seq technologies and reported association between metastasis of the human
colorectal cancer, gene expression alteration, a genomic variance of copy number,
and irregular DNA methylation [133]. In another single-cell study, T-cell immune
map of lung and liver cancer microenvironment were plotted by Chinese researchers
[134, 135]. They provided detailed insight of subgroups, tumor heterogeneity, the
features of the tissue distribution, and the pattern of gene expression. This research
provides detailed insight into the liver and lung cancer’s immune microenvironments
and, in the near future, may be useful for discovering successful biomarkers, novel
tumor immunotherapy, and drug targets [134, 135]. Ledergor et al. [136] reported
that the high variability within myeloma plasma cells can be influenced by variations
in the gene expression pattern and the samples’ chromosome layout.

scRNA-seq technologies can also identify trait/disease specific immune cells,
how these immune cells differentiate into various classes of immune cells and their
associations. This, in turn, explains the diverse immune system and also help us in
detecting a new biomarker [131]. For instance, Crinier et al. [137] through scRNA-
seq sequencing reported about distinguishing characteristics that separate spleen &
blood NK cell in humans and mice. In another study, Villani et al. identified a new
subclass of Dendritic cells (DC) with plasmacytoid but can also powerfully activate
T cells [138]. Recently, Wilk et al. employed scRNA-seq technologies for profiling
of peripheral blood mononuclear cells from seven COVID-19-hospitalized patients
[139]. They identified COVID-19-associated peripheral immune cell phenotype,
including the downregulation of HLA class II and the development of neutrophil
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Table 25.2 Current and emerging single-cell epigenetics techniques (Adapted from [120])

Technique
Epigenomic
feature Method Approach Single cell

Cytosine
modification

5mC Aba-seq 5hmC specific restriction
enzyme

Possible

BS-seq Bisulfite converts only C
but not 5hmC (or 5mC) into
U thus only methylated
sites are sequenced as “C”

Yes [122–124]

hMeDIP-
seq

Sequencing preceded via
5hmC DNA
immunoprecipitation

Not currently
possible

MeDIP-
seq

Sequencing preceded via
5mC DNA
immunoprecipitation

Not currently
possible

Methyl-
seq

Sequencing preceded via
5mC specific restriction
enzyme

Possible

oxBS-
seq

5hmC is oxidized to 5caC
so that only 5mC survives
bisulfite alteration. Readout
is pure 5mC as well as
subtraction from BS-seq
regulates 5hmC

Not possible for
measuring 5hmC
due to the need for
subtraction

TAB-seq Maps 5hmC through
enzymatic oxidation before
bisulfite treatment: only
5hmC survives conversion

Possible

Protein–
DNA
interaction

Histone
modification

ChIP-seq DNA immunoprecipitation
attached with a specific
histone variant or
transcription factor

Yes [125]

Transcription
factor binding

DamID Fusion of Dam protein and
transcription factor gene
transfect cells that
methylates adenine
residues within proximity
toward the binding site.
6 mA specific restriction
digest is employed for
mapping.

Yes for nuclear
lamina
interactions [126]

Chromatin
structure

DNA
accessibility

ATAC-
seq

Tn5 transposase enzyme
fragments and bind adapter
with open chromatin

Yes [127, 128]

DNase-
seq

DNaseI digestion of open
chromatin into small
fragments suitable for
library preparation as well
as sequencing

Yes [129]

(continued)
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community, that may lead to plasmablasts in acute respiratory failure patients
requiring mechanical ventilation [139].

25.5.3 Development and Regeneration

scRNA-seq technologies can also be used for sequencing and quantifying the
complete genome of both embryonic and germ cells at a single-cell level. This in
turn will explain the germ cells’ origin and also help us to detect, diagnose, and treat
reproductive and genetic disorders [131]. Recently, Chen et al. [140] employed
scRNA-seq technologies to unmask the complex mechanism related with spermato-
genesis in mice. Result obtained revealed the unique patterns of alternate splicing
and central regulators that are associated with the various growth stages of male
germ cells. Vento-Tormo et al. [141] conducted the early pregnancy’s placental cell
transcriptome analysis using scRNA-seq technology. The cellular compositional

Table 25.2 (continued)

Technique
Epigenomic
feature Method Approach Single cell

FAIRE-
seq

Chromatin is crosslinked,
sonicated, and
subsequently purified
through phenol–chloroform
extraction. The aqueous
layer comprises of only
DNA that are not associated
with protein

Not currently
possible

Nucleosome
positioning

MNase-
seq

Microcococal nuclease
digestion of chromatin and
sequencing of the product
which are regions protected
by nucleosomes

Possible

NOME-
seq

GpC methylation of DNA
not protected by
nucleosomes followed by
BS-seq

Possible

Three-
dimensional
organization

Chromosome
conformation

HiC DNA is crosslinked, then
restriction digested to
fragment before ligation
and reversal of the
crosslinks. Resulting
fragments are hybrids from
separate genomic locations
that were in close proximity
in three-dimensional space.
Paired-end sequencing is
used to link the two regions

Yes [130]

C cytosine, 5caC 5-carboxylcytosine, 5hmC hydroxymethylcytosine, 5mCmethylcytosine,U uracil
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analysis of the human decidua reveals sub-sets of perivascular and stroma cells in
different decidual layers. They also identified three major subsets of decidual natural
killer cells that have distinct chemokine and immunomodulatory profiles [141]. This
study has also established regulatory processes that can minimize unhealthy
mothers’ immune response. Hence, these findings are helpful toward understanding
the initial pregnancy and for detecting and treating pregnancy-associated
diseases [141].

Fig. 25.3 The diagram outlines epigenomics and the spectrum of scRNA-seq technologies. It is
pertinent to note that single-cell bisulfite sequencing (scBS-seq) conversion is not consistent with
the simultaneous amplification of RNA or DNA, because DNA methylation is not preserved during
in vitro amplification. In single cell epigenomic methods, chemical therapies are used of DNA
(conversion of bisulfite), in the analysis of DNA improvements (scBS-seq and scRRBS), immuno-
precipitation or enzyme digesting (for example, DNaseI), histone modifications (scChIP-seq,
chromatin conformation (scDamID, scHiC), and accessibility of DNA (scATAC-seq, scDNase-
seq). (Adapted from [120])
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scRNA-seq technologies has also provided us with an opportunity to study how
the cell-type specificity and temporal variation influence the regenerative response to
injury in both plants and animals at incredible cell resolution [142]. By combining
scRNA-seq technologies and inducible Cre/loxP-mediated lineage tracing
techniques, earlier researcher have demonstrated that axolotl limb regeneration is
associated with fibroblast dedifferentiation instead of pre-existing stem cells that are
not present during blastema formation [143]. A similar combinatorial method was
used by another group of researcher to understand how the dissection of the root tip
could cause root regeneration, leading to a hypothesis that root tip regeneration
primarily depends on cell’s types and phases [144, 145]. A recent single-cell study of
Arabidopsis roots has also revealed that several cell types could quickly reassemble
stem cells by recreating embryogenesis patterns [145], endorsing the notion of a
centralized stem cell management system [146]. Thus, single-cell genomic research
offers unique opportunity to detect cells that have key roles in tissue growth,
regeneration, repair, and disease formation.

25.6 Conclusion and Future Perspective

In conclusion, scRNA-seq is revolutionizing our basic view of biology. This
approach has introduced new frontiers for studying that goes well beyond descrip-
tive cell-state studies. scRNA-seq technologies are widely employed to unmask
molecular mechanisms associated with oncology, neurology, microbiology, immu-
nology, reproduction, urinary & digestive systems, and plant biology. scRNA-seq
technologies, however, do have difficulties like cumbersome activity and high
detection costs that restrict technology promotion [131]. Though there are several
protocols for scRNA-seq study, practically all require poly-A selection, thereby
restricting the opportunity to analyze non-polyadenylated transcripts, like
pre-mRNAs, histone mRNAs, small nucleolar RNAs, and long non-coding RNAs,
which may play different regulatory characters in cancer [147, 148]. Even in poly-A
allowed scRNA-seq protocols, droplet-based protocols, which limit 30 or 50, are
intrinsically more restrictive than full-transcript single-cell RNA-seq protocols.
Moreover, certain cell types (e.g., neurons, epithelial cells, and neutrophils) may
not be consistent with all scRNA-seq protocols dissociation, encapsulation, or other
processing measures [148]. Earlier researchers have suggested that the exact
shortcomings and weaknesses can be overcome by unified studies of the same cancer
samples (fresh vs. frozen and whole-cell vs. nuclei) [148]. Soon, it is hoped that
technology for single-cell sequencing will be streamlined and more efficient. Addi-
tionally, the detection cost will be too minimized so that innovations can be extended
to basic research and play a key role in clinical diagnosis and care. Coupled with
gene-editing technology, including modeling target-based regulatory networks,
single-cell sequencing may also accelerate crop improvement [149]. Additionally,
these approaches will also play a key function during clinical diagnosis and treat-
ment, which will enhance the drug discovery process.
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Diptarka Dasgupta

Abstract

Rice is one of the most treasured grains across the globe for feeding human
population. Rice genomics has taken giant strides in the direct use of fundamental
scientific advances in the molecular mechanisms for agronomic traits and the use
of various germplasm tools. In addition to multiple high-performance genome
sequencing initiatives, Next-Generation Sequencing (NGS) is a crucial technique
for the invention of domestication genes in crop flora and their wild relatives. This
understanding will assist in speeding up the domestication of the latest plant
species as seeds. Domesticated genotypes can be resequenced to classify
low-diversity domestication areas. The sequence of whole genomic shotguns
can collect species-specific data from similar wild species. This collected infor-
mation may be used for the design of species-specific PCR primers. For example,
maize, sugarcane, and eucalyptus have been used to capture genetic biodiversity
for plant enhancement. Vast numbers of individuals can be speedily screened.
The new genetic variants of related species are rapidly domesticated and effi-
ciently identified and captured by NGS. Although the next-generation sequencing
method is almost 10 years old, the informal way remains to classify highly
parallel or high-performance sequencing methods that produce genome-scale

Abhilek Kumar Nautiyal and Vishal Ahuja contributed equally with all other contributors.

A. K. Nautiyal · D. Dasgupta (*)
Biochemistry and Biotechnology Area, Material Resource Efficiency Division (MRED),
CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand, India

Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
e-mail: ddgupta@iip.res.in

V. Ahuja · S. Kshirsagar
Biochemistry and Biotechnology Area, Material Resource Efficiency Division (MRED),
CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand, India

# The Author(s), under exclusive licence to Springer Nature Singapore Pte
Ltd. 2021
M. K. Gupta, L. Behera (eds.), Bioinformatics in Rice Research,
https://doi.org/10.1007/978-981-16-3993-7_26

585

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3993-7_26&domain=pdf
mailto:ddgupta@iip.res.in
https://doi.org/10.1007/978-981-16-3993-7_26#DOI


data or beyond. The introduction of these technologies has also increased the
number of applications and procedures using genome-scale power sequencing.
This chapter briefly reviews the recent NGS advancements in rice research and its
achievements and also presents its bright future.

Keywords

Next-generation sequencing · Rice · Molecular breeding · Marker-assisted
selection · Crop improvement

Abbreviations

BIL Backcross inbred lines
BOLD Barcode of life data
BP Bac pool
BSA Bulked-segregant analysis
CBC Clone-by-clone
CNN Convolutional neural network
COI Cytochrome oxidase I
CSSL Chromosome segment substitution lines
GBS Genotyping by sequencing analysis
GO Gene ontology
GWH Genome warehouse
IL Intercrossed lines
MAFB Marker-assisted forward breeding
miRNAs Mirnas
MITEs Miniature inverted-repeat elements
ML Machine learning
NGS Next generation sequencing
PCG Protein coding genes
PM Physical map integration
QTL Quantitative trait locus
RF Random forest
RILs Recombinant inbred lines
RISC RNA-induced silencing complex
siRNAs Small interfering rnas (sirnas)
SNP Single nucleotide polymorphism
SV Structural variations
SVM Single vector method
WGS Whole genome shotgun
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26.1 Introduction

In contrast to temperate countries, tropical countries are typically underdeveloped
due to weak farm productivity [1]. The decline of farming productivity in the tropics
is attributable to a lack of technological development and various abiotic and biotic
factors. The green revolution in the late 1960s, which uplifted many developing
countries from drought, contributed to an integrated strategy that uses enhanced
cultivars, fertilizers, and pesticides. Hybridization was an effective breeding method
in the 1960s and 1980s that created many high-yielding crop varieties [2]. In the
1990s, there was a better awareness of genetics and technical advances in transgenic
crops [3]. Compared to traditional breeding methods in which undesirable genes
could also be transferred, transgenic technology was preferred since it allowed the
transfer of one or extra ideal genes. Several transgenic varieties of insect-resistant
cotton, herbicide-tolerant soy, and virus-based papaya were marketed [3]. However,
currently, genetically modified (GM) crops are controversial since they induce food
allergies and spread antibiotic resistance to intestinal bacteria [3]. The ecological
imbalance created by the gene flows with insecticidal proteins and herbicide resis-
tance genes from transgenic plants into wild varieties worries environmentalists.
Crop improvement is advocated by using gene pools of related species for enhance-
ment in the fields of agronomy, energy, and biomaterial production [4].

Next-generation sequencing (NGS) is almost 10 years old. However, the explo-
ration of NGS technologies has been started recently for various applications. The
technique performs a study of the entire genome to establish phenotypic, genetic
basis variations [5] across the species. Although it allows reasonably sized DNA
fragments to be sequenced, it is most useful as a quick sequence read. The recent
development in NGS platforms and methodologies for various applications has
tremendously increased the speed and accuracy of genome-scale sequencing in
molecular biology data analysis. The extent of data is developing because the
generation adapts to it. NGS is being implemented in crop structures and offers an
opportunity to analyze genetic ranges in vegetation and their wild family on a far
larger scale than the preceding technology [4]. It helps even the most complex
genomes of plants to be addressed [6]. The discovery of new useful variants can
also be extended to NGS (Table 26.1). NGS allows the rapid expansion of genomic
studies into the non-version species investigations [23]. Before the advent of NGS,
the analysis of variation in plant genomes was limited to applying series-based
selection [24]. To be able to exhibit different techniques in numerous meals
applications (rice), energy (sugarcane), and wooded area (Eucalyptus) species,
examples of the usage of NGS inside the discovery of this useful variant to
domesticate new genes or species could be mentioned.
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26.2 Rice: A Staple Food Crop

Although primarily consumed in Asia, rice is also a substantial food source in many
nations such as Africa and South America. The average per capita intake rice in the
Indian diet is about 72.2 and 48.2 kg annually in rural and urban areas, respectively.

Table 26.1 Advanced mapping populations reported between 2007 and 2012 and traits mapped
between wild Oryza species as the donor parent and an O. sativa cultivar as the recurrent parent

Population
Donor parent
(accession) Recurrent parent

Traits introgressed/
mapped References

BIL O. glaberrima
(Tog5675)

Indica (IR64) BPH resistance (Bph1) [7]

BIL O. glaberrima
(IRGC96717)

Japonica
(WAB56-104)

Drought resistance,
early vigor

[8]

BIL O. glaberrima
(IRGC103544)

Indica (Milyang
23)

Yield and yield
components

[9]

BIL O. nivara
(IRGC105444)

Japonica
(Koshihikari)

Hybrid breakdown
locus (�hbd 1(t))

[10]

BIL O. rufipogon
(W630)

Japonica
(Nipponbare)

Drought tolerance [11]

BIL O. rufipogon
(IRGC105491)

Tropical japonica
(Jefferson)

Early flowering [12]

BIL O. rufipogon
(YJCW)

Indica (93-11,
restorer line)

Yield-related traits [13]

BIL O. rufipogon
(IRGC105491)

Indica (IR64) Yield and yield
components

[14]

BIL O. rufipogon
(YJCWR)

Indica (TeQing) Yield and yield
components

[15]

BIL O. glumaepatula
(RS-16)

Indica (BG90-2) Grain yield, cooking
quality

[16]

BIL O. minuta
(IRGC101141)

Indica (IR31917-
45-3-2)

BPH resistance [7]

BIL O. brachyantha
(IRGC101232)

Indica (IR56) Bacterial blight [7]

BIL/NIL O. longistaminata Indica (RD23) Pollen/spikelet
fertility, plant height

[17]

CCSL O. rufipogon Indica (Teqing) Small grain panicle
and dwarfness

[18]

CSSL O. glaberrima Japonica
(Koshihikari)

Glabrous gene [19]

CSSL O. glaberrima Japonica
(Wuyujing-7)

Spreading panicle [20]

IL O. glaberrima
(Tog5681)

Indica (IR64) Drought tolerance [21]

IL/BIL O. nivara
(IRGC105444)

Japonica
(Taichung 65)

Pollen sterility gene
(S27-nivs)

[22]
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It is being cultivated as a staple crop for more than 2000 years. Crossbreeding and
selection carried out by farmers and breeders to fit the particular local conditions has
led to thousands of cultivars’ production. The full rice genome sequence based on
the Nipponbare cultivar has thus resulted in the broad characterization of other
japonica cultivars, including the well-grown and elite Koshihikari cultivar [25]
known for their excellent quality. Since the beginning of agriculture, modern-day
crops were subjected continuously to genetic selection; hence, their genomes pre-
serve the imprints of killing due to a combination of natural and synthetic selection
approaches. Rice was domesticated in China about 9000 years ago [6, 26, 27]. For
that reason, it has undergone sizeable geomorphological and physiological
alterations via human’s synthetic assortment to become one of the most vital cereal
vegetation [28]. Apart from its use as a food crop, rice has been extensively used in
genetic research due to its small genome size of only 370 million bases (Mb) [28].

26.3 Unwrapping the Genetic Structure of the Rice

In 2002, the rice genomes (Fig. 26.1), were correctly sequenced using the whole
genome shotgun (WGS) sequencing method [29, 30]. The same japonica cultivar
was also sequenced by two other private companies: Syngenta, Switzerland, and
Monsanto, USA. The genome project initiated by the Chinese Superhybrid Rice
Genome Project (CSRGP), on the other hand, has expanded beyond genome
sequencing and continued to pursue hybrid studies on rice [31]. Full genomes
were released from both rice subspecies in 2005, covering ~95% of the 389-Mb
genome [32] (Table 26.2). 37,544 protein-coding genes linked to the non-
transposable-element (nTE) have been predicted from the genome, with 34.79% of
the genomes being TEs. High-quality genome assemblies with annotation provide
excellent insight into rice genomics, evolution, and biology and aid in cloning and
molecular studies. NGS has allowed rapid sequencing of the rice genome, and
currently the database is updated to ~3000 rice accessions. The Rice Genomes
project (3K RGP 2014) has served as an extensive data source for studying rice
varieties information [4]. One of the major issues in the plant genome analysis is
TE’s location, whether within or outside a gene. TE insertions and dynamics play
significant roles within narrow taxonomy groups in genome evolution and in the
history of related genes [33] and have an enormous impact on higher taxonomy’s
genome evolution species. The second issue is related to multiplied mutation
mechanisms; in this situation, transcript-centric effective GC gradients emerge as
glaring in the Gramineae genomes [34, 35]. The GC gradients within the transcrip-
tion path are not typical, shared only by the grass family of vegetation and heat-
blooded vertebrates [34]. Another issue is the polyploidy and ancient whole-genome
duplication (WGD) of the plant genome. Whole-genome duplication is a process of
genome doubling that supplies raw genetic substances and increases genome com-
plexity. It has currently been discovered that WGD and the next destiny changes of
duplicated genes could facilitate phenotypic evolution.
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It has been inferred that high-quality sequence data and a close reference genome
are essential for gene-level comparative evaluation for its landraces and subspecific
and gene-precise members. The updated 2012 Nipponbare Reference Genome
assembly (Os-Nipponbare-Reference-IRGSP-1.0) was a fantastic instance of the
way to use quite many technologies to attain concerted efforts, from optical mapping
to CBC mapping, from clone-based assembly and heavy WGS coverage to Roche
GS FLX long-examine sequences, to short-study sequences for the Illumina Genome
Analyzer II assembly [36]. NGS has also been extensively used to categorize
domestication gene homologues in wild-type rice [37], which we will discuss in
the section below.

26.3.1 Domestication of Rice: An NGS-Based Approach

Rice became a primary crop to be used as a reference genome in 2005 [29, 32]. It
enabled researchers to use NGS as a tool to pick out variations in the genome and the
gene pool among different Oryza species. Despite these significant efforts, knowl-
edge of rice’s domestication stays tough, in all likelihood due to a complicated

Table 26.2 Sequencing status of 16 Oryza genomes and Leersia perrieri (outgroup species) based
on their Genome size (in increasing order)

Sl.
No Species (genome type)

Genome size
(Mb)

Sequencing
method Status

1. O. brachyantha (FF) 260 WGS/PM Reference
genome

2. L. perrieri (outgroup) 323 WGS/PM Draft genome

3. O. longistaminata (AA) 352 WGS Draft genome

4. O. glaberrima (AA) 354 BP Reference
genome

5. O. sativa ssp. indica (AA) 400 WGS Draft genome

6. O. sativa ssp. japonica
(AA)

400 CBC/PM Reference
genome

7. O. barthii (AA) 411 WGS/PM Reference
genome

8. O. punctata (BB) 423 BP/WGS/PM Reference
genome

9. O. meridionalis (AA) 435 WGS/PM Draft genome

10. O. rufipogon (AA) 445 WGS Draft genome

11. O. nivara (AA) 448 BP/WGS/PM Assembly IP

12. O. glumaepatula (AA) 464 WGS/PM Assembly IP

13. O. eichingeri (CC) 650 WGS Sequencing IP

14. O. rhizomatis (CC) 650 WGS Sequencing IP

15. O. officinalis (CC) 653 WGS/PM Sequencing IP

16. O. granulata (GG) 862 WGS/PM Sequencing IP

17. O. australiensis (EE) 960 WGS/PM Sequencing IP
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foundation involving a few gene movements among the japonica and indica species
[38, 39]. The whole-genome resequencing has shown that both Japonica and Indica
rice possibly share mutual areas of low variety primarily because of genetic transfer
from one population to another [40]. Many low variety areas only own a single
domestication gene. This gene is associated with low diversity domesticated rice to
shatter upright growth dependency and white grain pericarp [41]. These studies may
offer treasured information on rice domestication and the connections between rice
populations in contemporary history. NGS from wild rice populations has been used
these days to explain the distinction between wild rice populations in Asia and
Australia [42]. This study used the complete genome sequence of chloroplasts
observed inside the shotgun series of general plant samples of DNA [43]. The
Oryza rufipogon turned into domesticated variety in Asia. The Australian network
of O. rufipogon appears to show closeness to O. meridionalis than to the Asian
population’s O.rufipogon. Each of these varieties is a genetic asset for rice develop-
ment. NGS of wild rice relatives’ nuclear genome will apprehend the genetic variant
of capability advantage for rice improvement and clarify phylogenetic relationships.
Hybridization and heterosis contribute drastically to higher productivity and sustain-
able food manufacturing. In properly studied structures that include maize, NGS has
been used to assess and forecast heterosis [44]. Gene expression styles in hybrids
[45] with NGS have also been evaluated. The viable participants to rice miRNA and
little RNAs to heterosis in hybrid rice have also been demonstrated [46]. Complete
genome data and transcriptome collection may be used to compare rice varieties’
genomes and transcriptomes to select individuals with a hybrid functionality. It
enables the technology to choose new crop species as an efficient hybrid crop
alternative.

Genus Oryza encompasses more than 21 wild varieties categorized into four
species complexes: O. granulate, O. officinalis, O. ridleyi, and O. sativa—species
based on their morphological and genomic characteristics. Available literature has
emphasized rice’s origin from wild grasses that have slowly become an integral part
of human food and civilization with the domestication ofO. barthii andO. rufipogon
in Africa (3500 years ago) in the Asian subcontinent (around 10,000 years ago).
Asian rice further laid the foundation for indica and japonica [47, 48]. Previous
researches have restricted the exploration of the domestication process and identifi-
cation of critical factors.

In recent years, the evolution of NGS took domestication to the molecular level.
NGS has revealed the domestication’s fundamental basis, identified the relativeness
and closeness among new and close related varieties, and discovered domestication
genes in crop efficiently [49]. Rice genome foot-printing traces three different
epicenters for rice domestication, contributing to current Asian rice gene pools.
The rice populations from southern Yangtze Valley China represent the japonica
rice gene pool, while those from Brahmaputra Valley and Indo-China become a
source for indica rice gene pool [47, 50, 51]. Initially, morphological characteristics
like shattering, seed dispersal, seed yield, seed size, mating habits, tiller number,
pericarp structure, pericarp color, and dormancy period were identified as domesti-
cation keys. NGS has made it possible to link domestication with genes and
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quantitative trait locus (QTLs). WGS of O. rufipogon, indica, and japonica popula-
tion identified low diversity regions and domestication genes for shattering upright
growth habit and white grain pericarp within this region [40, 41, 52]. reported the
disruption of the Black hull4 (Bh4) gene in Oryza rufipogon and Oryza nivara. It has
been further revealed that the Bh4 gene, located on chromosome IV, has become
nonfunctional (due to a loss of 22 bp sequence), which altered the seed color of
Oryza sativa to become white instead of black. Comparative analysis of Illumina
sequence reads of Dongxiang wild rice (DXWR) and Nipponbare whole genome
revealed 2536 structural variations (SVs) in Nipponbare, mainly represented by
1568 deletions with 731 QTLs, especially linked to crop yield, vigor, anatomy,
quality, biochemical, and development. Nipponbare also acquired genes associated
with plant height, spikelet number, panicle number, leaf senescence, panicle length,
biomass yield, seedling vigor, leaf width, and tiller number during domestication
[53]. Whole-chloroplast genome analysis confirmed the origin of both Asian and
Australian rice from Oryza rufipogon, but Australian populations are closer to
O. meridionalis than Asian populations [43, 54]. Initially, it was suggested that
japonica and indica rice originated from the same lineage due to evolutionary
selection. The recent archaeogenetic analysis of modern-age rice and ancient rice
grains of the Liangzhu Period, collected from China, suggested that both O. japonica
and O. indica have different maternal lineages [55].

26.3.2 NGS-Based Identification of New Varieties: Improvement
of DNA Barcoding

A short-standardized collection of DNA 400–800 bp is used as DNA barcodes to
discover the latest plant species, previously acknowledged plant description, and
classification. DNA barcoding using a short DNA fragments system for rapid
identification of plants was first proposed by Hebert et al. [56]. Hollingsworth
et al. [57]. suggested the matK+rbcL two-locus mixture system as a core barcode
for land plants identification. The unique molecular markers rbcL, matK, trnH-psbA,
and ITS2 were used as DNA barcodes. DNA barcoding system has provided an
efficient tool using selective markers for plant identification and conservation of the
world’s biodiversity.

The barcode of life data system (BOLD; www.boldsystems.org) platform was
used by many researchers to match reference DNA barcodes with the specimen for
identification [58]. However, it has been observed that the BOLD data system has
many limitations for the unsampled specimens. Despite these sanger sequencing and
other identification, systems-based DNA barcoding for some closely related species
and different advanced application DNA barcode is not enough [59]. To address this,
Wilkinson et al. [60] reported NGS-based DNA barcoding as the possible solution
for unsampled specimen cases. Next-generation sequencing has many advantages
over Sanger sequencing-based in the DNA barcoding system [60]. The concept of
sanger sequencing and NGS are similar. The main difference varies in sequencing
volume. In sanger sequences, a single DNA fragment is sequenced at a time, while in
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NGS, sequencing of lots of genes can be done. NGS has many advantages over
sanger sequencing like high sensitivity, low detection limit, and rare genes with
detailed sequencing. Shokralla et al. [61] reported the first de novo next-generation
sequencing for Lepidopteran specimen of mitochondrial gene cytochrome c oxidase
subunit I (COI) 189 of 190 using 454 pyrosequencing platform. It has been studied
that in the initial stages, the NGS platform also has many limitations for barcoding
applications. However, the NGS Illumina platform has resolved the many shortfalls
and benefitted many researchers for DNA barcoding applications by pairing end
sequencing of two overlapping COI amplicons and merging reads to assemble full-
length barcodes [61].

The conventional plant DNA barcodes (matK, rbcL, psbA-trnH, and ITS) have
been used to identify the rice variants. Li et al. [62] proposed the advanced DNA
super barcode system for rice identification with the complete application package.
A DNA super barcode provides the complete information to distinguish between the
species of interest in the form of a complete genome or parts of a genome. It
constitutes the complete chloroplast or mitochondrial genomes, and their mixtures
and assemblies of single nucleotide polymorphisms represent the DNA super
barcodes. The application of DNA super barcodes can help to identify haplotypes
and seeds of closely related species. The common chloroplast gene fragments cannot
differentiate the A and C haploid genome types to address these DNA super
barcodes with a complete chloroplast genome [63]. Zhang et al. [63] reported the
detailed study description between the conventional markers as DNA barcode, rice-
specific barcodes, rice- specific nuclear DNA barcodes, and super DNA barcodes
(entire chloroplast genome) using NGS techniques. Chloroplast genomes as a DNA
barcodes sequenced using NGS-based Illumina platform as a useful tool for rice
variety discrimination have been proposed by Song et al. [64].

26.4 Machine-Learning in Gene Identification and Annotation

The advent of computation technology, coupled with sequencing platforms and
bioinformatics tools, has made genome assembly and sequence analysis a relatively
easy task. However, the functional annotation of the genomic regions is still a
challenge [65]. Even for model organisms, such as Arabidopsis thaliana, ~20% of
the predicted genes could not be assigned any functional role and elucidate their role
in biological pathways [66]. The high-volume sequencing data generated by numer-
ous scientists and researchers worldwide is only adding to the already existent
challenge to derive biological interpretation of the discovered sequences. Machine-
learning (ML) has become a powerful and popular technique to analyze high
throughput data with considerable background noise to tackle gene function discov-
ery in recent years.

ML algorithms are broadly classified into two categories, namely, the supervised
and unsupervised methods. A supervised learning model utilizes a training dataset to
deduce the plausible function, which can be further used to analyze test samples. In
an unsupervised form, the dataset does not contain any predefined label or class
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typically used to discover hidden signal patterns within the data. This learning
method is mainly applied to clump the big dataset into clusters on which supervised
(trained) algorithms can be run to classify new samples [67]. Supervised machine-
learning approaches, such as the Single vector method (SVM), Random forest
(RF) technique, etc., have been developed to detect genomic features, such as
protein-coding genes (PCG), miRNAs, and non-coding RNAs. They either use the
binary classification setting of “true” or “false,” which implies that the genome
contains any coding genes or not. Alternatively, machine-learning methods that
approach using multi-classification methods extract the feature of genes,
transposons, and miRNA. The Hidden Markov Model (HMM)-based tools (August-
us, SNAP, etc.) founded on the Artificial Neural Network performs best for struc-
tural feature prediction problems and can accurately predict the exonic regions,
splice sites, UTR’s, and regulatory regions within the genome. Ben-Hur et al. [67]
reported that the SVM-based approach using the mGene software could incorporate
heterogeneous datasets to detect genic regions, such as the transcription initiation
site and the splicing regions with higher precision HMM [67]. Gan et al. [68]
reported that gene expression information coupled with sequence-based prediction
could be successfully used to analyze multiple Arabidopsis plants’ genomes and
differentiate between gene homologues using the data heterogeneity as a modifier.

Once the coding and non-coding segments of a rice genome are identified,
machine-learning approaches can provide greater insight into the expression of
annotated genes, the location of proteins within the cell, and their interactions.
Scientists have crucially analyzed the promoter regions of up- and down-regulated
genes across the sequences deposited in the databases to identify crucial motifs using
the SVM. These motifs are used to form a training set to predict the up or
downregulation in unknown gene sets [69]. alternatively devised a unique strategy
for gene expression analysis. Using a deep-learning method such as a Convolutional
neural network (CNN) with promoter and terminator sequences, the authors
achieved ~85% accuracy in predicting whether a gene was getting expressed or
not under different treatment conditions in maize [69]. The authors concluded that
the 30-UTR was highly informative in providing the information regarding transcript
abundance. This learning method may be extended with modifications for gene
expression analysis in non-model organisms. Subcellular localization can be
predicted using N terminal regions within the protein sequences using ANN
techniques. For example, SignalP v 5.0 utilized a dataset of known proteins obtained
from Expasy Prosite as a training set and was tested to predict signal motifs on
unknown sequence sets to identify their location within the cell. The technique has
varied prediction accuracy for different cellular locations and highlighted the impor-
tance of a sufficient training dataset for prediction accuracies, which involves
considerable time and resources. Protein–protein interaction has been extensively
studied for model organisms such as A. thaliana using ANN and RF-based methods
with prediction accuracy of over 0.95 [70]. The training parameters have been
applied to predict protein–protein interactions localized within maize [71]. In his
publication, Zhu et al. [72] identified two different sets of proteins that were either

26 Recent Advancement in NGS Technologies 595



interacting physically or functionally using the SVM approach with a prediction
accuracy of more than 0.85 [72].

Prediction of biological functions, such as categorization based on Gene Ontol-
ogy (GO) and gene classification based on pathways, has been carried out by
machine-learning with considerable success. Typically, GO analysis is performed
by sequence similarity-based annotation. However, recent research has shown that
machine-learning-based algorithms provide better results than the traditional
approach. Studies demonstrated that, by utilizing structural information from the
protein database coupled with gene expression analysis, GO for unknown genes
could be predicted with high precision. Also, for proteins that share similar motif
patterns, the machine-learning software could assign a biological function to the
protein based on the motif’s function. For predicting metabolic pathways, a combi-
nation of inputs starting with gene to protein structure, properties, and homology is
required to associate a gene to a pathway and explain its activity [73]. reported
significant improvements over classical non-ML-based prediction tools by utilizing
several features. However, the dataset, particularly the seed for the ML-based
approach, is still limited. Extensive data curation needs to be undertaken to associate
them with the enzymes and the reactions they catalyze. An alternative approach
would be to combine transcriptome and metabolomics data to integrate them into an
RF framework to identify novel pathway genes.

Despite the recent advances, machine-learning-based approaches are still limited
due to the scarcity of datasets. Lack of available positive training datasets is one of
the significant impediments which results in inaccurate predictions. With the grow-
ing databases, for ML-based approaches to be successful, a strong foundation of data
validated by wet-lab experiments is essential.

26.5 Development of Novel Hybrid Crops

NGS fueled the establishment on single nucleotide polymorphism (SNP) for the
identification of genes and plant species with or without any reference genome
(orphan species). Also, it enabled gene expression analysis, development of genetic
resources, large sequences assemblies, genetic improvement, and so on [74–76]. In
the upcoming section, we will discuss the role of NGS technology and tools that
have been explicitly used for rice improvement:

26.5.1 Biotic and Abiotic Stress Tolerance

Environmental conditions like submergence, extreme temperature variations, salin-
ity, and pathogenesis significantly affect crop survival and productivity. Its influence
can be seen clearly in cellular functions like transcription, translation, and metabo-
lism. In plants, two types of sRNA moieties have been reported with distinct
biogenesis, structure, and function, i.e.,microRNAs (miRNAs) and small interfering
RNAs (siRNAs). miRNAs mainly form RNA-induced silencing complex (RISC),
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while some miRNAs are also known to play regulatory roles and stress responses. To
determine the role of miRNAs in stress tolerance, the rice population was segregated
into four groups and cultivated under control conditions and drought, cold, or salt
stress. For analysis, vegetative tissue, that is, such as inflorescences, was collected,
and separate small RNA libraries were constructed by Illumina deep-sequencing
technology. Out of 227 miRNAs, 62 miRNAs were validated from pre-published
literature and databases like DCL1, DCL3, and RDR2 RNAi lines 43 miRNAs were
identified that govern stress tolerance rice (18 droughts, 15 cold, and 10 salt stress).
Besides, 80 miRNAs were also identified that originated from transposable elements,
including miniature inverted-repeat elements (MITEs) [77]. A sudden drop in
temperature and cold environment lowered crop productivity and survival. Recom-
binant inbred lines (RILs) were established with a cross between a cold-tolerant and
cold-sensitive variety to trace the responsible QTL for cold susceptibility and
tolerance, Dongnong422 and Kongyu131, respectively. A novel QTL qPSST6 on
28.4 cM intervals on chromosome 6 was identified by integrated application of
bulked-segregant analysis (BSA) and next-generation sequencing (NGS) technology
(Seq-BSA). Within the segment, two genes, LOC_Os06g39740 and
LOC_Os06g39750, were identified to control plant response to cold; however,
LOC_Os06g39750 have a higher response rate under cold stress [78].

The plant’s ability to reprogram transcriptional networks and associated factors
like NAM, ATAF1-2, and CUC2 (NAC) to cope with stress was inferred from the
modulation of drought-responsive transcription factors in rice. OsNAC14 is reported
as a drought-responsive transcription factor in rice, usually expressed during the
meiosis stage. However, its expression was greatly influenced by drought, high
salinity, ABA, and low temperature in leaves [79]. demonstrated that the
overexpression of the OsNAC14 gene led to induced drought tolerance in the
vegetative stage and improved DNA damage repair with strigolactone biosynthesis.
ERF family transcription factor OsLG3 was also reported to participate in stress
response in rice (Oryza sativa) under drought stress, which was earlier reported to
determine rice grain length without affecting grain quality. Suppression and
overexpression of OsLG3 determine the suppression and tolerance of rice plants to
drought. It was also reported that OsLG3 involves reactive oxygen species scaveng-
ing system to improve drought stress tolerance [80]. Gene pyramiding approach has
been implemented to construct a resistant rice variety against gall midge (insect),
blast (disease), submergence, and salinity through MAS (Fig. 26.2). For example, an
indica rice variety “Lalat” with four bacterial blight resistance genes Xa4, Xa21,
xa13, and xa5 (CRRI, India, Annual Report 2011-12) was selected as a recurrent
parent (Table 26.3).

Marker-assisted forward breeding (MAFB) methods were used to develop resis-
tant rice varieties for high grain yield, resilient for abiotic and biotic stresses,
including blast, bacterial leaf blight, brown planthopper, gall midge, and drought
tolerance. Eleven genes/QTLs: Pi9 for against blast, Xa4, xa5, xa13, Xa21 for
bacterial leaf blight, Bph3, Bph17 for brown planthopper, Gm4, Gm8 for gall
midge, and qDTY1.1, qDTY3.1 for drought tolerance were targeted to prepare
seven introgression lines (ILs). The performance of all seven lines was superior to
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the respective recurrent parents (Swarna+drought) in terms of grain quality and high
amylose content (AC) (23–26%). Among these seven lines, three lines including,
viz., IL1 (Pi9+ Xa4+ xa5+ Xa21+ Bph17+ Gm8+ qDTY1.1+ qDTY3.1), IL6 (Pi9+
Xa4+ xa5+ Xa21+ Bph3+ Bph17+ Gm4 + Gm8+ qDTY1.1+ qDTY3.1) and IL7 (Pi9+
Xa4+ xa5+ Bph3+ Gm4+ qDTY1.1+ qDTY3.1) exhibited resiliency against multiple
abiotic and biotic stresses in both glasshouse and field trails. Trials confirm the
superiority of ILs under both stressed and non-stressed conditions; however, under
drought conditions, the yield advantage extended up to 1.0 t ha�1 without affecting
grain quality [92].

26.5.2 Quality and Yield Improvement

In the current situation, an increase in crop yield is necessary to satisfy society’s
hunger. Identification of genetic structure, sequences, SNPs, etc., are advantageous
for crop improvement and molecular breeding. It will help to understand the
expression level of genes, regulatory sequences’ role, and response pattern for
different environmental/growth conditions. In recent efforts, Genotyping by
sequencing analysis (GBS) revealed the role of GS3 and GIF1 genes in governing
the grain size and yield after the screening of 1,07,140 Indels and 82,59,639 SNPs

Fig. 26.2 Gene pyramiding approach to introduce and express multiple genes responsible for
different characters like various biotic and abiotic stress resistance in a single plant from multiple
parents
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from 16.3 � 107 reads [93]. Some hybrid rice varieties have exhibited higher yield
and delayed flowering. Around 2000 F2 generation progenies, obtained from two
hybrids with a heading date of ~130 days, were segregated into eight pools based on
the delayed flowering pattern. The comparative whole-genome analysis identified
responsible genes Hd1 (Heading date1) and Ghd8/DTH8 (grain number, plant
height, and heading date 8) on chromosomes 6 and 8 for delayed flowering. Besides,
delayed flowering,Ghd8/DTH8, also contributes to higher grain number and product
yield when overexpressed [94]. Another class of regulatory proteins, Argonaute
(AGO), was overexpressed in reproductive tissue, specifically among the non-dicot
AGO1 clade members in monocots, resulting in higher crop yield and robust growth,
higher-fertility, and panicle length [83]. Bommisetty and colleague mapped major
genomic regions/QTLs for grain weight on chromosomes 1, 7, and 8, viz., qGW1
(35–40 Mb), qGW7 (10–18 Mb), and qGW8 (2–5 Mb), respectively. However,

Table 26.3 Molecular markers developed in rice for yield improvement

Molecular
marker Gene/QTL/SNP Encoded protein

Trait
controlled Citation

SSR/InDel
markers

Pi54 and Pita – Blast
resistant

[81]

qGW8F/R
POT1F/R-
POT10F/R

OsSPL16/qGW8 – Grain
quality

[82]

– OSAGO17 Argonaute (AGO)’ regulatory
proteins

Higher
yield and
growth

[83]

RM3572 LOC_Os08g01490,
and
LOC_Os08g01680

– Grain
quality

[84]

78 SSR and
STS markers

Pi54, Pi1 and Pita (a) α-amylase;
(b) Triosephosphate
isomerase; (c) 19 kDa
globulin; (d) S-(+)-linalool
synthase

Blast
resistant

[85]

RM6970 and
M1

Gn1a/OsCKX2 Cytokinin oxidase/
dehydrogenase

Grain
quality

[86]

GW8 GS3 and OsSPL16 Squamosa promoter binding
protein-like 16

Grain
quality

[87]

HGW Xa13 Ubiquitin-associated domain
protein

Grain
weight

[88]

– LAZY1 Specific herb protein Panicle [89]

– OsPIN2 Auxin efflux transporter

– LAX2 Nuclear protein with a plant-
specific conserved domain

Panicle [90]

RM22475
and RM5556,
Ind8-47 and
Ind8-15

DTH8/Ghd8 OsHAP3 subunit of a
CCAAT-box-binding protein

Panicle [91]
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qGW8 was the dominant factor among the three, which occupied two candidate
genes, LOC_Os08g01490 (Cytochrome P450) and LOC_Os08g01680
(WD domain, G-beta repeat domain-containing protein). These genes were highly
expressed in reproductive organs during grain development [84]. Later, the same
QTL OsSPL16/qGW8 was engineered through CRISPR/Cas9 to enhance grain size.
Mutants were reported to have higher crop yield without affecting other agronomic
traits. The change in genetic structure resulted in upregulation and downregulation
of 33 and 11 proteins [82].

26.6 Commercialization and IP Protection: A Case Study

In-plant manufacturing and processing of food or biomaterials identification of plant
genotypes may be tremendous. The conservation of intellectual property linked to
plant genotypes often includes discriminatory identification tools. NGS provides a
new level of protection to distinguish essential genes that decide functional
characteristics [41]. Recently, the cost-effective approach for identifying plants has
been demonstrated by NGS, with a useful technique being to analyze the genome
sequence of chloroplast from the entire genome of shotgun sequencing of plant DNA
[43]. Nuclear sequences decided on at some stage in domestication can also protect
newly shaped crop species with NGS to efficiently monitor germplasm protection.
Transcriptome sequencing of barley genotypes was used to discover many SNPs that
differentiate between the genotypes and define genetic variants in the genotypes.

Similarly, plants like barley show a genetic variety of the species because of the
breeding strategies utilized in producing the assortment’s basis population. NGS
determines even minor variants based on SNPs. NGS advocates this variety and any
shifts in crop production over the years because of genetic waft. NGS era can enlarge
into wild populations and facilitate the introgression of specific genome regions with
desirable traits. The dry barley resistance becomes related to wild barley’s distinct
chromosome zones (Hordeum spontaneum) [95]. NGS needs to characterize the
component in the drought-accepting domesticated genotypes produced with the aid
of wild barley germplasm.

Genetically modified beta-carotene-containing rice, generally known as Golden
Rice (GR), is no longer being delivered in any area. Vitamin A deficiency (VAD) has
been developed in low-income rice purchasers but wishes to be advanced and
checked before being implemented into farmer’s fields. Due to preliminary publicity,
GR is the most well-known biofortification attempt with modern biotechnology. An
incredible technical fulfillment is the successful layout of the carotenoid biosynthetic
pathway (i.e., genes) in rice endosperm with the expression of seasoned vitamin A
(i.e., beta-carotene). This technological and clinical issue indeed suggests the com-
plexity of the IP of Golden Rice (GR), which, in turn, poses this sort of mission to the
developing world. It turned into a lightning rod to discuss GMOs’ use to fulfill
nutritional needs [41]. GR exhibits both the dramatic dietary advantages of modern-
day biotechnology and the fundamental barriers to eventual recognition and effect.
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The polished rice grain does not include beta-carotene, a precursor to vitamin A
that the frame transforms to vitamin A. In low-income communities wherein rice is
the primary staple, many micronutrient deficiencies are persisting, such as lack of
nutrition. These deficiencies are mainly widespread in youngsters who need a higher
dietary density to attain higher nutrient desires. Simultaneously, as the correlation
between VAD and blindness captures media attention, VAD also reduces the
immune reaction and increases the demise charge of commonplace formative years
illnesses in developing countries [43]. As such, VAD is frequently taken into
consideration, especially in terms of early life mortality consequences [41]. The
concept of rice as a medium to restore micronutrient deficiencies goes back at the
least to the early 1980s. This idea originated within the context of the Consultative
Group on International Agricultural Research (CGIAR) system. It contributed to
traditional breeding efforts to boost iron and zinc in rice in the 1990s. The develop-
ment of beta-carotene rice changed until the arrival of contemporary biotechnology
strategies [96]. The preliminary research of golden rice has been supported by the
Rockefeller basis (RF) via its Rice Biotechnology network explicitly designed for
fundamental biotechnological research in this critical food crop, which is all likely to
be disregarded with the aid of the non-public quarter in industrialized countries. In
the 1990s, with the RF’s assist, Ingo Potrykus at the Swiss Federal Institute of
technology and Peter Beyer on Freiburg, Germany, worked collectively to combine
daffodil genes to the rice. At the time, studies were complicated as it became an early
example of using pathway engineering. Their progress has been celebrated as a
significant advance within the utility of present-day biotechnology, and the work has
appeared in Science [96].

The management of intellectual property (IP) rights wishes to be tackled for farm
biotechnology (agri-biotech) to play a significant role in developing sustainable
agricultural systems. These troubles are not confined to developing countries. As
globalization increases, agricultural-biotech IP rights control impacts both develop-
ing and developed countries [41]. For instance, in developed countries, IP rights
threat control includes the defense of innovations with the aid of robust patent
portfolios. In developing countries, IP rights management requires the acquisition
of privileges needed to use technologies essential to the population’s fundamental
welfare [40]. Techniques are necessary to move these different IP control paradigms
to facilitate the powerful transition of agrobiotechnology from an industrial supply to
a growing country recipient.

Golden rice is an apt model for agri-biotech goods that may be transferred to the
developing world. Genetic engineering of cost-brought nutritional content material
in Golden rice is a whirling theme in technology and global technology adjustment.
Scientifically, the engineering of plant metabolism (in this example, rice) to enhance
the buildup of carotene is a pioneering leap forward. The transition of this promising
technology becomes need for developing countries but its exploitation from business
point of view is itself problematic. In the long term, improved international
harmonization of IP laws and control should help increase lots of these risks, and
consequently inspire the continued switch of Golden rice and capability agri-biotech
advances.

26 Recent Advancement in NGS Technologies 601



Due to the diverse viewpoints and conditions of the advanced and growing
countries, it is not easy to lay the foundation for the same and unbiased IP rights
negotiations. Many growing nations will not forget the criminal reputation of
international patents applicable. Growing nations usually are at a downside in
terms of licensing phrases because the key workforce is poorly known. Maximum
developing countries have an insufficient wide variety of licensing officers and IP
managers. Therefore, as agriculture appears to be a vital part of national sovereignty
in individual growing nations, agro-biotech piracy is more likely to be considered
reasonable [43]. The unlucky legacy of colonialism makes the scenario even greater
complicated. From a commercial standpoint, traders consider the IP portfolio of a
commercial enterprise as a sincerely critical aspect. The IP rights management
scheme influences generation transfer and funding decisions. Industrialized nations
also strongly agree that the reliable patent machine promotes invention in a support-
able way [97]. Notwithstanding the differences of opinion between developing and
evolved countries, the improved harmonization of IP rights appears to be a critical
part of each countries’ economic boom.

26.7 Conservation Strategies

While progress in genomics and breeding techniques would allow the effective
transfer of complex traits found in wild rice relatives, the lengthy-term availability
of these wild genetic assets is not always assured [98]. Dangers to populations of
wild rice relatives and plant biodiversity as a whole encompass threats to human
activities and weather alternate [99]. The expansion of city and rural regions
contributes to habitat loss and fragmentation. In India, as an instance (Andhra
Pradesh), the population of O. officinalis ssp. Malampuzhaensis is endemic to the
Nallamalais of the Eastern Ghats and desires pressing choice and protection as its
constrained range renders it extra liable to habitat disruption [100]. O. rufipogon
populations were threatened by means of overgrazing and its implications for the
drift of water in Queensland, Australia [101], and using the development of
buildings within the imperative Plains of Thailand [97]. Mounting sea tiers may be
a situation for the population of Oryza in the wetlands of Northern Australia
[101]. For this reason, the sustainable conservation of wild spouses and children
of rice is an urgent issue that desires to be tackled before the cited, and undescribed
populations that could offer good traits of interest are misplaced for all time.

Step one in conservation is the characterization and selection of species, and
populations well stated in many world components, where the wild relatives of rice
are determined [102, 103]. However, complete identity and collection are neverthe-
less required in a few regions, including Australia [101] and Venezuela [104]. There
is an immediate need to consider the genetic range and composition of populations to
incorporate conservation measures with a gold standard outcome. A vital connection
between genetic and geographical distances, in addition to an excessive diploma of
enzymatic polymorphism, became observed among O. glumaepatula accessions in
the South USA [105]. This kind of information is required to determine the need to

602 A. K. Nautiyal et al.



guard unique populations, and accelerated worldwide efforts need to be made to
systematically verify genetic diversity and experiment with gene germplasm for
beneficial genes [98]. The evaluation of present threats and the conservation popu-
larity of species and ecosystems is an essential step. Alas, the IUCN red list, which
applies the maximum commonplace criteria for determining threats to wild taxa,
presently covers a low percentage of wild crop family. There are the best three Oryza
species (O. neocaledonica, O. bureinalis, O. rufipogon), in which O. neocaledonica
is considered threatening.

Similarly, new standards should be set up to determine the genetically varied
species [99]. While such information is available, a complete rice circle of relative
conservation plan can be enforced. Classic conservation has already been properly
evolved, with ample seed gathered in GenBank, and the two most significant are the
International Rice Research Institute of the Philippines (4370 wild and hybrid
species at IRRI) and Oryzabase in Japan (1703) (http://www.shigen.nig.jp). Genetic
degradation caused by a lack of exposure to environmental variability, pressure and
genetics are linked to germplasm regeneration and is a disadvantage of ex-situ
conservation [106, 107]. Assessment of ex-situ and in-situ conservation overall
performance of O. rufipogon populations in Dongxiang, China, has proven that
ex-situ does not preserve genetic diversity, lowering allelic polymorphism by 34%
and genetic heterozygosity by 16% in 13 years [106]. On the divergent, the in-situ
protection of germplasm, along with its habitat, is a complex form of protection. It
allows populations to reply to environmental stress, mainly to improve genetic
novelties to be beneficial for future studies and breeding practices. To efficiently
maintain the environment’s biodiversity, it is vital to complement ex-situ with in-situ
conservation. Of the nine populations of O. rufipogon studied in Dongxiang in 1978,
the most effective three remained in 1995 [106]. A brick fence was changed into
built to shield two of those populations susceptible to human interest. The long-term
costs and the need for cooperation among national governments with overseas
agricultural studies programs lead to demanding situations for introducing and
managing new protected sites. A brief-term answer will be able to enhance the
control of wild relative rice populations in currently included regions.

26.8 Future Prospects

As indicated in the introductory section, improving rice yields, reducing the envi-
ronmental effect, and improving nutrition are vital targets to address nine billion
people by 2050. This persistent hassle has approximately 25 years to explain if we
are to deliver the plasma breeders to the sector that has to be tailored for unique
developing conditions. The worldwideOryzaMap Alignment Project aims to grow a
basic and translational research community, which provides immediate genomic and
functionally high-quality reference genome sequences related to populace sequenc-
ing information and clone tools. It presents instant entry to any part of the collective
Oryza genome (i.e., getting access to phenotyped advanced interspecific mapping
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populations and in situ conserved herbal populations). Any such platform will help
classify genes, molecular markers, and germplasm from an evolutionary viewpoint,
effortlessly converting various potentially extensive trends into cultivated rice.

Advances in sequencing technologies have greatly affected crop genetics, which
allows genome-sequencing and multiple crops transcriptome. While reference
genomes have been obtained for many significant crops, large-scale resequencing
and gene expression studies are essential to identify the key genes responsible for the
desired trait. This knowledge in crop breeding would strengthen the development of
better crop varieties and lead to a second green revolution. It would reduce the
hunger of billions and revolutionize the economies of developing tropical countries.
The usage of NGS for gene evaluation in plants like rice can recognize genes that
may be transformed into the domesticated gene pool. Plant breeders using NGS
would incorporate variability in their varieties more, unlike before while preserving
plant efficiency and product quality objectives. Wild germplasm can be anticipated
to be domesticated very quickly. New traits or alleles are added, while significant
domestication genes are preserved at the same time. These innovations are essential
in adapting agriculture and crops to climate change. The use of NGS and innovative
methods for screening the diverse wild resources allow for automation of genetic
discoveries and the transition to commercial genotypes.
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