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Abstract Finding frequent patterns in very large transactional databases is a chal-
lenging problem of great concern in many real-world applications. In this chapter,
we first introduce the model of frequent patterns. Second, we describe the search
space for finding the desired patterns. Third, we present four popular algorithms to
find the patterns. Finally, we present the extensions of frequent patterns.

1 Introduction

Technological advances in the field of Information andCommunicationTechnologies
have enabled organizations to collect and store big data effectively. Useful knowledge
that can empower users with the competitive information to achieve socioeconomic
development lies in this data. The field of data analytics (or data mining) has emerged
to discover the hidden knowledge in big data.

Frequent pattern mining (FPM) is an important knowledge discovery technique
in data mining. It involves finding all frequently occurring patterns in a transactional
database. A classic application is market basket analysis. It involves finding the
itemsets that were frequently purchased by the customers in the data. An example
of a frequent pattern is {Cheese, Beer} [support = 10%], which provides the
information that 10% of the customers have purchased the items ‘Cheese’ and ‘Beer’
together. Such an information may be found to be extremely useful to the users for
various purposes, such as product recommendation and inventorymanagement.Other
applications of FPM may be found at [2].

The basic model of frequent pattern is as follows: Let I = {i1, ..., in} be the set
of items. Let X ⊆ I be a pattern (or an itemset). A pattern containing k number of
items is called as k-pattern. A transaction ttid = (tid, Y ), where t id ∈ R

+ represents
the transaction identifier and Y ⊆ I represents a pattern. A transactional database,
DB = {t1.t2, · · · , tm}, m ≥ 1, is a set of transactions. The support of pattern X in
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DB, denoted as sup(X), represents the number of transactions containing X in DB.
The pattern X is said to be a frequent pattern if sup(X) ≥ minSup, where minSup
represents the user-specified minimum support threshold value. The problem def-
inition of frequent pattern mining is to find all patterns that have support no less
than minSup in DB. (Please note that the support of a pattern can also expressed in
percentage of database size. However, we employ the former definition of support
throughout this book for ease of explanation.)

Example 1 Let I = {a, b, c, d, e} be a set of items. A hypothetical transactional
database generated by the items in I is shown in Table 1. The set of items a and
b, i.e., {a, b} (or ab in short) is a pattern. This pattern contains 2 items. Therefore,
it is a 2-pattern. In Table 1, the pattern ab appears in the transactions whose t ids
are 2, 4, and 5. Thus, the support of ab in Table 1 is 3 or 60% (= (3/5) × 100).
If the user-specified minSup = 2, then ab is said to be a frequent pattern because
sup(ab) ≥ minSup. The complete set of frequent patterns generated from Table 1
is shown in Table 2.

It is important to remark that setting a minimum support value is a non-trivial
task and generally requires a profound background in the application field. Inexpert
and many expert users need to try different thresholds by guessing and re-executing
the algorithms once and again until the results are good for them. As it has been
demonstrated, a small change in the threshold value may lead to very few or an
extremely large set of solutions.

Table 1 Transactional
database

tid Items

1 ac

2 abc

3 bde

4 abe

5 abcd

Table 2 Frequent patterns
found in Table 1 Pattern Support

a 4

b 4

c 3

d 2

e 2

ab 3

Pattern Support

ac 3

ae 2

bc 2

bd 2

abc 2
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Fig. 1 Search space
representation methods. a
Itemset lattice. b Set
enumeration tree

2 Search Space

The space of items in a database gives rise to an itemset lattice (or a set enumeration
tree1). This itemset lattice represents the search space for finding frequent patterns in
a database. The size of this search space is 2n − 1,wheren represents the total number
of distinct items in the database. Reducing this huge search space is a non-trivial and
challenging task in frequent pattern mining. When confronted with this problem
in the real-world applications, researchers employed anti-monotonic property2 (see
Property 1) to effectively reduce the search space. In other words, this propertymakes
the frequent pattern mining practicable in the real-world applications.

Example 2 Let x, y, and z be three items in a hypothetical transactional database.
The itemset lattice produced by the combinations of these three items is shown in
Fig. 1a. The alternative representation of this lattice as a set enumeration tree is shown
in Fig. 1b. The size of this lattice is 7 (= 23 − 1). This lattice represents the search
space for finding frequent patterns. Frequent pattern mining algorithms search this
enormous lattice using the anti-monotonic property. For instance, a frequent pattern
mining algorithm will check the interestingness of the pattern xy if and only if all of
its non-empty subsets, i.e., x and y, are also frequent in the database.

Property 1 (Anti-monotonic property.) If X ⊂ Y , then sup(X) ≥ sup(Y ). Thus, if
sup(X) � minSup, then ∀Y ⊃ Y , sup(Y ) � minSup.

Example 3 The support of pattern cd inTable 1, i.e., sup(cd) = 1. Since sup(cd) �

minSup, cd is an infrequent pattern. Moreover, all supersets of cd will also be infre-
quent patterns because their supports cannot also be more than minSup.

1 The set enumeration tree is a high-performance data representation technique, which resembles
the depth-first search on the itemset lattice
2 Other names of this property are: apriori property and downward closure property.
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3 Popular Algorithms

Several algorithms have been described in the literature to find frequent patterns.
A recent survey on the past 25 years of frequent pattern mining may be found at
[19]. In this chapter, we present four of the widely studied frequent pattern mining
algorithms, namely Apriori [3], FP-Growth [13], Eclat [46], and LCM [37].

3.1 Apriori

Apriori is one of the fundamental algorithms to find frequent patterns in a database.
It is a breadth-first search algorithm that finds all frequent patterns by employing
“level-wise candidate-generate-and-test paradigm.” This paradigm briefly involves
the following three steps: (i) find frequent k-patterns from the candidate k-patterns,
(ii) generate candidate k-patterns by joining frequent (k − 1)-patterns among them-
selves, and (iii) repeat the above two steps until no more candidate k-patterns can be
generated. The pseudocode of this algorithm is presented in Algorithm 1.

Algorithm 1 Pseudo-code of the Apriori algorithm.
Require: I, DB, minSup {set of items, dataset and minimum support value}
Ensure: F
1: F = ∅
2: L1 = {i ∈ I | support (i, DB) ≥ minSup}
3: F = F ∪ L1
4: for (k = 2; Lk 
= ∅; k + +) do
5: C = set of candidate patterns produced by Lk−1
6: Lk = {p ∈ C | support (p, DB) ≥ minSup}
7: F = F ∪ Lk
8: end for
9: return F = ∪k Fk

Let us consider the sample transactional database DB shown in Table 1. Let us
also consider a minimum support value of three. The following is the set of frequent
patterns that can be extracted from DB: a, b, c, ab, and ac. This set highly varies
when the minimum support value is modified. Thus, considering a minimum support
value of four, then the resulting set of frequent patterns is reduced: a and b. Similarly,
if the minimum support value is decreased, then the resulting set of frequent patterns
is increased. The following is the set of frequent patterns that can be extracted from
DB with a minimum support value of two: a, b, c, d, e, ab, ac, ac, bc, bd, be, and
abc. Finally, it is important to remark that determining the exact minimum support
value is not trivial and generally requires a profound background in the application
field. Inexpert and many expert users need to try different thresholds by guessing
and re-executing the algorithms once and again until the results are good for them.
As it has been demonstrated, a small change in the threshold value may lead to very
few or an extremely large set of solutions.
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3.2 Frequent Pattern-Growth

The popular adoption and successful industrial application of the Apriori algorithm
has been hindered by the following two limitations: (i) Apriori algorithm generates
too many candidate patterns and (ii) Apriori algorithm requires multiple scans on the
database. Han et al. [13] introduced Frequent Pattern-growth (FP-growth) algorithm
to address the limitations of Apriori algorithm. It is a depth-first search algorithm
that finds the desired patterns by employing the following two steps: (i) compress
the given database into a tree structure known as Frequent Pattern-tree (FP-tree) and
(ii) find all frequent patterns by recursively mining the FP-tree.

A really efficient algorithm for mining frequent patterns was proposed by Han et
al. [13]. This algorithm, named FP-Growth, achieves a high performance by repre-
senting the data as a tree structure [31] in which nodes denote items together with
their frequency, and paths among nodes represent the patterns (set of connected
nodes). This compressed representation of the input dataset drastically reduces the
number of scans required to compute the patterns and their frequencies.

To understand how the FP-Growth algorithm works, let us explain first how
to construct the tree structure (see Fig. 2) by taking the sample transactional
dataset DB (see Table 1). The first step is to calculate the support value for each
item: support (a, DB) = 4, support (b, DB) = 4, support (c, DB) = 3, support

Fig. 2 Building a tree structure for the sample dataset shown in Table 1
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(d, DB) = 2, support (e, DB) = 2. Items are, therefore, sorted in descending order
of support in each transaction: a ≺ b ≺ c ≺ d ≺ e. After that, the process starts with
the empty node null, and each transaction of DB is analyzed. Taking the first trans-
action, it comprises items ac and they are included as a branch from the root (the
empty node). Each time a node is added to the tree, the value 1 is assigned to it as the
frequency. If a transaction shares items of any existing branch in the tree, then the
inserted transaction will be in the same path from the root to the common prefix. The
values of the common nodes increase by one. Let us see the second transaction. The
common path is a, so its value is increased by one (see transaction #2 in Fig. 2). The
rest of the items is added as a new branch from the common path. The frequencies
for the new nodes are initialized to one. The third transaction does not share any path
with the tree, so it is added as a new branch from the root, that is, the null node. The
process iterates till all the transactions are analyzed, and the resulting tree is obtained
as a compressed data format. It is important to highlight that a fixed order among the
items is required or the resulting tree structure will be meaningless.

The pseudocode of the FP-Growth algorithm is illustrated in Algorithm 2. To
construct the tree, the algorithm takes frequent items (singletons) from data. Consid-
ering a minimum frequency value of 2, the following items are considered: a appears
four times, b appears four times, c appears three times, d appears two times, and e
appears two times. Then, the tree is constructed following that order as previously
described. Once the tree is obtained, FP-Growth first takes the lowest node, that is,
item e, which occurs in 2 branches: abe with frequency 1 and bde with frequency 1.
From these branches, only one frequent pattern can be obtained: be, with a frequency
of 2. The process is repeated for each item. Taking now the item d, two branches
are analyzed: abcd and bd. Combining them, the frequent pattern bd is obtained,

Algorithm 2 Pseudo-code of the FP-Growth algorithm.
Require: T, α, minSup {Tree-structure, initial node, set of items and minimum support}
Ensure: F
1: F = ∅
2: if T contains a single path P then
3: for each combination β of nodes in P do
4: generate the pattern X = α ∪ β

5: support of X is the minimum support of nodes in β

6: end for
7: else
8: for each a in the header of T do
9: generate the pattern X = α ∪ a
10: support of X is the support of a
11: construct a conditional pattern base of X
12: construct a conditional FP-Tree TX from X
13: if TX is not empty then
14: recursive call of FP-Growth(TX , X, minSup)
15: end if
16: end for
17: end if
18: return F
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with a frequency of 2. As for the item c, two branches are analyzed: ac and abc.
The resulting frequent pattern is ac. The process iterates over all the items. As it is
demonstrated, once the tree structure is built, no further passes over the dataset are
necessary. Any frequent pattern can be obtained directly from the tree by exploring
the tree from the bottom-up (considering the items as suffixes).

Research studies on FP-Growth determined that this algorithm is efficient and
scalable. Its performance is calculated as an order of magnitude faster than Apriori.
Its main drawback is building and traversing of the tree structure, which is not trivial
in huge datasets.

3.3 ECLAT

Eclat (Equivalent CLAss Transformation) was proposed in 1997 [46] as the first
algorithm for mining frequent patterns that work on a vertical data representation.
This data representation represents the items as lists including the transactions (tids)
in which each item appears. Back to the sample transactional database DB shown in
Table 1, a vertical data representation of DB is illustrated in Fig. 3. The list formed
by item a includes transactions number 1, 2, 4, and 5. As for the item b, it includes
transactions number 2, 3, 4, and 5. Eclat considers the vertical data representation as
a set of tidsets or pointers to the transaction tids including each item. This algorithm
computes the support of each item by simply calculating the length of the tidsets.
Thus, the items a and b have a support value of 4 since they appear in 4 transactions.
The support of c is 3, and the support of both d and e is 2.

Eclat works by combining tidsets, so for each frequent pattern of length k, a
candidate pattern of length k + 1 is produced by adding the singleton that lexico-
graphically follows according to those items included in the original frequent pattern
(see Algorithm 3). A new tidset is obtained from the intersection of both tidsets
(singleton and original frequent pattern) and its size is denoted as the frequency
of the resulting pattern. The algorithm follows a breadth-first search strategy tak-
ing patterns and doing intersections with the next item in lexicographical order. For

Fig. 3 Tidsets for the
sample dataset shown in
Table 1
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Algorithm 3 Pseudo-code of the Eclat algorithm.
Require: I, minSup {set of items, and minimum support value}
Ensure: F
1: T id List = compute the tidsets of all the items in I
2: L = {l ∈ T id List | length(l) ≥ minSup}
3: F = F ∪ L
4: for ∀ l ∈ L do
5: c = l
6: for ∀ m ∈ L | m > j do
7: c′ = c ∩ m
8: if length(c′) ≥ minSup then
9: c = c′
10: F = F ∪ c
11: end if
12: end for
13: end for
14: return F

example, taking the item a and considering a minimum frequency value of 2, it is
combined with a to form the pattern ab. The intersection of their tidsets is the new
set {2, 4, 5}, and therefore, it is a frequent pattern since its frequency is 3 (length of
the tidset). In an iterative process, the pattern ab is combined with the next item in
lexicographical order, that is, c. The resulting tidset is {2, 5}, so its frequency is 2.
The resulting pattern abc is now combined with d, obtaining the tidset {5}. Hence,
this pattern is infrequent since its frequency is lower than 2. As a result, the process
does not continue with the next item and it goes back to combine a with c.

Finally, let us summarize the shortcomings of Eclat. This algorithm does not
require to scan the dataset to find the frequency of new patterns as Apriori does.
However, the bottleneck comes when the number of transactions increases, requiring
huge memory and computational time for intersecting the tidsets.

3.4 LCM

LCM (Linear Closed itemset Miner) [37] is a really fast algorithm proposed in 2003
for mining frequent patterns. This highly optimized algorithm won the FIMI2003
competition inwhichmany efficient algorithmswere proposed. LCMdoes not follow
a single data representation but two of them, so it horizontally stores transactions
and it also keeps the id of the transactions for each item (vertical data representa-
tion). What makes LCM be so fast and efficient is not the data representation but
some alluring ideas that it includes. Authors of this algorithm clearly stated [37]
that the pruning process usually included in FPM algorithms is not complete, and
it is common to operate unnecessary frequent patterns. Taking it into consideration,
they overcome the problem with a hypercube decomposition, also known as per-
fect extension pruning. An occurrence deliver schema is an additional promising
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Algorithm 4 Pseudo-code of the occurrence deliver schema.
Require: P, DBP {Pattern to be analyzed, conditional dataset}
Ensure: Bucket
1: for ∀ i ∈ P do
2: Set Bucket[i] = ∅
3: end for
4: for ∀ t ∈ DBP do
5: for ∀ e ∈ t do
6: Insert t into Bucket[e]
7: end for
8: end for

idea included in LCM to easily calculate the frequency of each pattern. The occur-
rence deliver schema (see Algorithm 4) takes as input a pattern P and a conditional
database given P . It creates the buckets for each item in P and adds into buckets those
transactions including the item. First, the algorithm orders the items based on their
frequencies and removing infrequent items from data. To understand how this proce-
dure works, let us take the transactional database DB shown in Table 1 in which items
are sorted in ascending order of support in each transaction: d ≺ e ≺ c ≺ a ≺ b. Fol-
lowing the occurrence deliver schema illustrated in Algorithm 4, the following buck-
ets are obtained (see Figure 4): Bucket[a] = {1, 2, 4, 5}, Bucket[b] = {2, 3, 4, 5},
Bucket[c] = {1, 2, 5}, Bucket[d] = {3, 5}, and Bucket[e] = {3, 4}. Thus, it is easy
to know that the pattern a is satisfied by 4 transactions, pattern b by 4 transactions,
pattern c by 3 transactions, and so on. Taking the first item in the list of sorted items,
that is, item d, a projection is performed and new buckets are obtained for that pro-
jected database (see Algorithm 4) as it is illustrated in Figure 4. Thus, given the prefix
d, it is easy to check that the itemset da appears once (Bucket[a] = {5}), whereas
the itemset db appears 2 times (Bucket[b] = {3, 5}). The process is repeated recur-
sively (a depth-first search strategy is considered) for the remaining items so the
conditional database are smaller and smaller.

As for the hypercube decomposition technique, it aims to improve the searching
process by stopping the recursive process of forming patterns. Once a perfect exten-
sion is detected, then it is directly reported. A perfect extension of a pattern I is
an item i that satisfies i /∈ I , and the frequency of I and I ∪ i is exactly the same.
Perfect extensions have the following properties: If the item i is a perfect extension
of a pattern I , then i is also a perfect extension of any pattern Q such as I ⊆ Q as
long as i /∈ Q; If E is the set of all perfect extensions of the pattern I , then all sets
I ∪ Q with Q ∈ 2E (the power set of the set E) have the same support as I . Back to
the sample transactional dataset shown in Table 1, the item a is a perfect extension
of the pattern bc since the frequency of bc is exactly the same as abc, that is, 2.
Consequently, the item a is also a perfect extension of the pattern b and c.

A new LCM version was proposed one year later [39], and it was granted for a
second year in a row with the best implementation award in FIMI2004 competition.
The new version introduced an improvement in runtime by reducing data. The algo-
rithm deletes an item if it is not present in at least α data records or if it is present in
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Fig. 4 Sample occurrence deliver using buckets on dataset shown in Table 1

all data records. Additionally, identical data records are merged into a single one. A
third LCM version was also proposed one year later [38], and it is considered as the
fastest version up to date. This version includes really efficient structures in the FPM
task: bitmaps, array lists, and prefix trees. A bitmap is efficient for dense datasets
since it enables fast intersections/unions to be performed with not so much memory
consumption. The k most frequent items are kept, known as k-items machine in the
literature. Those items not included in the bitmap representation are stored as array
lists and considered to build a prefix tree. It is essential to highlight that this third
version also comprises an occurrence deliver technique, the database reduction, and
the hypercube decomposition technique proposed in previous versions.
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4 Types of Patterns

The growing interest in pattern mining has encouraged the definition of a new type of
pattern according to the analysis required by experts in different application fields.

4.1 Maximal Frequent Patterns and Closed Frequent
Patterns

Since the objective of FPM is to find all frequently occurring patterns in the database,
this model often produces too many patterns most of which may be uninteresting to
the users. Moreover, the computational cost of finding these huge number of frequent
patterns may not be non-trivial.

Example 4 The frequent pattern model not only finds abc as a frequent pattern
in Table 1, but also finds all of its non-empty subsets, i.e., a, b, c, ab, ac, and bc as
frequent patterns. Thus, producing toomany patterns,most ofwhich are uninteresting
or redundant to the user.

When encountered with this problem in real-world applications, researchers have
tried to find a reduced set of frequent patterns, namely maximal frequent patterns
and closed frequent patterns. We now briefly discuss both of these patterns.

Definition 1 (Maximal frequent pattern X .) A frequent pattern X is said to be a
maximal frequent pattern if sup(X) ≥ minSup and ∀Y ⊃ X, sup(Y ) � minSup.

Example 5 The frequent pattern abc in Table 1 is amaximal frequent pattern because
all of its supersets are infrequent patterns. Moreover, all non-empty subsets of abc
cannot be maximal frequent patterns. Thus, maximal frequent pattern mining signif-
icantly reduces the number of patterns being discovered in a database.

Maximal frequent pattern mining helps us to find long patterns in a database
effectively. However, they lead to a loss of information as they do not record the
support information of its subsets. Thismotivated researchers to find closed frequent
patterns in a database.A closed frequent pattern is a frequent pattern that is not strictly
included in another pattern having the same frequency. Thus, closed frequent patterns
are lossless bynature as theypreserve the support informationof all frequent patterns
in a database.

Definition 2 (Closed frequent pattern X .) Let X and Y be two frequent patterns
such that X ⊂ Y . The frequent pattern X is said to be a closed frequent pattern if
sup(X) 
= sup(Y ), sup(X) ≥ minSup.

Example 6 Consider the frequent patterns a, c, and ac in Table 2. Since sup(a) 
=
sup(ac), a is a closed frequent pattern. In contrast, c is not a closed frequent pattern
because sup(c) = sup(ac).

The relationship between the set of frequent patterns (F), the set of closed frequent
patterns (C), and the set of maximal frequent patterns (M) is F ⊇ C ⊇ M .



34 J. M. Luna

4.2 Condensed Patterns

As previously stated, the mining of frequent patterns [1] is the keystone in data
analysis and the extraction of useful patterns from data. Many efficient approaches
have been proposed but it is still expensive to find the complete set of solutions (fre-
quent patterns). The daunting process may be eased by computing a small subset of
frequent patterns that can be used to approximate the frequency values of arbitrary
frequent patterns. These frequent patterns used to approximate further solutions are
known as condensed patterns [25]. The mining of these patterns drastically reduces
the runtime but, sometimes, the error in the approximation is not enough from the
domain/problem point of view. On some occasions, this process (considering a max-
imal error bound) is enough even when no full precision is achieved.

The support approximations are calculated through a function F defined on a
transactional database DB. The following can be an approximation function for any
pattern P: F(P) = 0 if there exists no superset P ′ ⊇ P such as P ′ is defined as
a condensed pattern; whereas F(P) = [support (P ′, DB) − 3, support (P ′, DB)]
being support (P ′) the minimum support for any P ′ ⊂ P such as P ′ is defined as
a condensed pattern. Considering such a function, the support of any pattern can be
estimated. Back to the sample transactional database DB (see Table 1),F(abcde) =
0 since there is no P ′ ∈ DB|abcde ⊆ P ′. On the contrary, F(ac) = [3 − 3, 3] =
[0, 3] since the minimum support of any subset of ac is support (c, DB) = 3.

This way of dealing with patterns is sometimes preferable to the mining of all
the patterns. The following are the main reasons: (1) When dealing with really large
datasets, small deviations often have minor effects on the analysis; (2) Computing
condensed patterns leads to more efficient approaches since it is only required to
operate with and access to a small portion of frequent patterns [29].

4.3 Top-k Patterns

In the task of frequent pattern mining, it is common to consider a frequency thresh-
old value to split the search space into useful and useless solutions (patterns). This
frequency threshold mainly depends on the users’ expectations and the data them-
selves. Thus, it is the user who has to specify the boundary to consider a pattern a
valid solution or not. This boundary will produce a large set of patterns (if the fre-
quency threshold is too low) or a reduced set of patterns (if the frequency threshold is
high enough). However, the problem to properly specify such a threshold value is not
easy and it also depends on the data distribution. Some datasets may not produce any
pattern for a specific frequency value, whereas other datasets may produce tons of
patterns for the same frequency value. As a result, it is not trivial to know beforehand
the right boundary value for each dataset. Additionally, twomain dangers of working
with frequency-based algorithms are: 1) setting up an incorrect threshold value may
cause an algorithm to fail in finding the interesting patterns; 2) the algorithm may
report spurious patterns that do not really exist or are not interesting at all.
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To precisely control the output size and discover the patterns with the highest
frequency are of vital importance in many application fields [27]. In this regard, it is
necessary to extract not only frequent patterns but those having ahigh significance and
low redundancy. Salam et al. [28] proposed an algorithm formining frequent patterns
without any minimum frequency threshold. To achieve this, they proposed two novel
algorithms for mining top-most and top-k frequent patterns. The top-k parameter has
been differently used by researchers: Wang et al. [41] employed a top-k parameter to
extract frequent closed patterns; Tzvetkov et al. [36] considered sequential databases;
Cheung et al. [43] retrieved the k most frequent patterns; and Chuang et al. [7] used a
top-k parameter for mining top few significant maximal frequent patterns. Fournier-
Viger et al. [35] proposed to redefine the task ofmining high utility patterns asmining
top-k high utility patterns. Luna et al. [23] also proposed a free-parameter algorithm
for mining patterns in the form of association rules.

4.4 User-Centric Patterns

Up to date, it is possible to find many research studies in the specialized literature
related to different and efficient ways of speeding up the mining of frequent pat-
terns [19]. Currently, more and more research studies are paying attention to extract
patterns according to the users’ needs or expectations. The user, as the final consumer
of the data insights, should play a relevant role in the mining process and it is not
just enough to find any pattern that overcomes some minimum frequency values,
but those patterns that provide useful information to the user. Here, it is essential
to highlight comprehensibility and flexibility as two challenging research issues in
the pattern mining field. Comprehensibility describes the degree by which a user can
understand the provided information. This is a subjective measure since a pattern can
be little comprehensible for a specific user and, at the same time, too much compre-
hensible for others. Nevertheless, it is possible to define this metric as an objective
measure with a fixed formula: the fewer the number of items included in the extracted
pattern, the more comprehensible the pattern is. Flexibility, on the contrary, refers to
the ability to adapt the solutions to the users’ requirements by introducing subjective
knowledge into the mining process. These two features, namely comprehensibility
and flexibility, have been widely studied and some authors [24] have proposed the
use of grammars in pattern mining to introduce subjective knowledge in the mining
process and to produce more flexible and expressive results.

Recently, there are some signs of progress in supplying existing pattern mining
approaches [19] with methods to extract more actionable insights [40]. Thus, the
user is playing a crucial role in the mining process restricting the search space with
various constraints based on his/her subjective knowledge of the problem [18]. Other
proposals are focused on using new andmore flexible forms of information [12]. New
methods are also being considered to handle context-sensitive concepts to avoid any
discriminative behavior [21], as well as to extract exceptional behavior [22]. As a
result, more and more researchers are paying special attention to the extraction of the
appropriate knowledge type [20], accomplishing the users’ aims or requirements.
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4.5 Weighted Frequent Patterns

In traditional frequent patternmining, itemswithin the solutions are uniformly treated
and present the same degree of importance. However, in a real-world scenario, items
usually have different importance and it is, therefore, required to weigh them. A
simple example is related to the market basket analysis, where expensive items may
contribute a large portion of overall revenue even though it does not appear in many
data records. Weighted frequent pattern mining [45] has been suggested as a promis-
ing task to find important frequent patterns by considering the weights of patterns.

Based on the previous ideas,multipleweighted frequent patternmining algorithms
have been proposed up to date. First proposals, such as MINWAL [6], WARM [33],
and WAR [42], were proposed taking the Apriori [3] algorithm as a baseline. All
these algorithms follow a breadth-first search methodology, considering a level-wise
paradigm inwhich all the candidate patterns of length k+1are obtainedbyusing all the
extracted patterns of length k. A major drawback of these algorithms is they require
multiple database scans, giving rise to poor performance. Yun et al. [44] proposed
a more efficient algorithm, named WFIM (Weighted Frequent Itemset Mining), that
was the first weighted frequent pattern algorithm based on an FP-tree. This algorithm
considered a minimumweight value and a weight range, and the FP-Tree is arranged
inweight ascendingorder.A similar algorithm, knownasWCloset,was also proposed
but instead of mining weighted frequent patterns, it aimed to extract closed weighted
frequent patterns. Ahmed et al. [4] proposed an approach to keep track of the varying
weights of each item in a prefix tree. They proposed the DWFPM (dynamic weighted
frequent pattern mining) algorithm, which is able to handle dynamic weights during
the mining process.

Recently, Uday et al. [14] introduced two pattern-growth algorithms: Sequential
Weighted Frequent Pattern-growth and Parallel Weighted Frequent Pattern-growth.
These two algorithms, which were designed to discover weighted frequent patterns
efficiently, employ three novel pruning techniques to reduce the computational cost
effectively. The first technique, called cutoff-weight, prunes uninteresting items in
the database. The second pruning technique, called conditional pattern base elimi-
nation, eliminates the construction of conditional pattern bases if a suffix item is an
uninteresting item. The third pruning technique, called pattern-growth termination,
proposes a new terminating condition for the pattern-growth technique.

4.6 High Utility Patterns

Frequent pattern mining is a widely known and useful task, but it has three essential
limitations. First, the item purchase quantities are not considered in the data records.
As a result, any item is considered equally important than buying a single unit. In
market basket analysis, this is a useless analysis since customers tend to buy more
than a single unit. Second, all items are considered as equally important, which does
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not show a real situation if a real-world problem is considered. It is more important
to sell a laptop than a keyboard since the former yields a much higher profit. Third,
the frequency of the patterns could be useless for the user, which is more interested
in the amount of profit. High utility pattern mining has recently emerged to address
all these limitations [34].

The high utility problem is, therefore, a generalization of frequent pattern min-
ing, considering that every single item has a different utility or relative importance.
Additionally, each item in the high utility problem can appear more than once in
a data record or transaction. The aim of high utility pattern mining is to find all
patterns having a utility higher than a predefined threshold value. Research stud-
ies have proposed really interesting and efficient approaches [9]. However, all of
them have an important limitation since in the high utility pattern mining problem,
the anti-monotonicity property does not hold for the utility measure. The first algo-
rithm for mining high utility patterns is called Two-Phase [10]. This algorithm is
an extension of the Apriori algorithm [3] considering an upper-bound on the util-
ity, called Transaction Weighted Utilization (TWU), which is anti-monotonic. After
that, really efficient algorithms were proposed such as UP-Growth [34]. However,
these algorithms overestimate their utility, so it is computationally hard to calculate
their real utility. To overcome such limitations, different researchers have proposed
to ease the utility calculation: HUI-Miner [17], FHM+ [8], and EFIM [47], to list
a few. Recently, high utility pattern mining algorithms are considering the time at
which transactions were made [11]. Additionally, some research studies [16] focus
on finding high utility patterns that periodically appear in data.

4.7 Periodic-Frequent Patterns

Periodic-frequent patterns were introduced by Tanbeer et al. [32] as a way of deter-
mining the interestingness of frequent patterns in terms of the shape of occurrence.
In other words, whether frequent patterns occur periodically, irregularly, or mostly
in the specific time interval in the dataset. For example, the shopkeeper in a retail
market may be interested only in those products that were regularly sold compared
to the rest.

A frequent pattern is defined as a periodic-frequent pattern if it appears and main-
tains a similar period/interval in a database. To put it in another way, a frequent
pattern is said to be periodic-frequent if it occurs at regular intervals specified by
the user in data. More technically, a pattern is called a periodic-frequent pattern if
it satisfies both of the following two criteria: 1) its periodicity is no greater than
a user-given maximum periodicity threshold value; 2) its support is no less than a
user-given minimum support threshold value. As a result, the periodic-frequent pat-
tern mining problem is to discover the complete set of periodic-frequent patterns in
a database satisfying the two aforementioned criteria.

Tanbeer et al. [32] proposed the first algorithm for mining periodic-frequent
patterns. This algorithm, known as PFP-growth, is a pattern-growth approach that
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generates periodic-frequent patterns by applying depth-first search in the pattern lat-
tice. From a single item i that satisfies the requirements (frequency and periodicity),
PFP-growth obtains larger patterns by adding one item at a time. Additionally, thanks
to the periodicity measure, which ensures the anti-monotonic property, the algorithm
is quite efficient in discovering the complete set of periodic-frequent patterns. After
this first approach, many research studies have paid attention to this interesting task
giving rise to really efficient approaches. Kiran et al. [15] and Surana et al. [30]
enhanced the PFP-growth algorithm to address the problem of rare or infrequent pat-
tern mining. Amphawan et al. [5] proposed an efficient algorithm for mining top-k
periodic-frequent patterns, reducing the resulting set andmaking it more understand-
able for the end-user. Rashid et al. [26] employed standard deviation of periods as an
alternative criterion to assess the periodic behavior of frequent patterns. They consid-
ered extensions of the well-known PFP-growth algorithm [32] to obtain a resulting
set of solutions known as regular frequent patterns.
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