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Preface

Technological advances in the field of Information and Communication Technolo-
gies (ICTs) have facilitated organizations to collect, store, and process massive
amounts of data. Useful information that can empower the end-users to achieve
socio-economic development lies in this data. However, finding interesting infor-
mation in data can be very challenging due to the sheer scale of the data. In the
last decades, researchers from the field of data mining have aimed at tackling this
challenge by proposing various techniques to discover knowledge hidden in volu-
minous real-world data. Over the years, data mining has received more and more
attention from both industry and academia. Pattern mining is one of the fundamental
knowledge discovery techniques used in data mining. It involves discovering all user
interest-based patterns in a database. Much of the past research on pattern mining
has focused on utilizing the frequency-based measures to discover different types
of interesting patterns such as frequent patterns, correlated patterns, top-k frequent
patterns, maximal frequent patterns, closed frequent patterns, rare patterns, coverage
patterns, high utility patterns, and emerging patterns.

Although discovering frequent patterns in a database is beneficial for many appli-
cations, frequency may not always be enough to find user interest-based patterns,
especially if the data contains temporal information. For example, the user may
consider an irregularly occurring frequent pattern to be less interesting over a regu-
larly occurring infrequency (or rare) pattern in the data. Based on this observation,
efforts have been put forth in the literature to discover periodically occurring patterns
(or periodic patterns) in a temporal database. Since real-world data often contain
temporal information, finding periodic patterns has received a great deal of atten-
tion. Furthermore, periodic patternmining has been extended to consider other forms
of data, such as quantitative temporal databases and sequences.

From a research perspective, discovering periodic patterns is more challenging
than frequent patternmining. It is because of twomain reasons: (i) we need to explore
new measures to determine the interestingness of a pattern in the t ime dimension,
and (i i) we need to investigate new data structures to effectively record the temporal
occurrence information of a pattern in the database. Thus, traditional frequent pattern
mining techniques cannot be directly used for finding periodic patterns. In the last
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decade, this has led to the proposal of many new interestingness measures and novel
data structures to discover periodic patterns.

The main motivation for writing this book is that the research on periodic pattern
mining has become quite mature. There is thus a need to provide an up-to-date
introduction, overview of current techniques, and recent advances in periodic pattern
mining. The book is a collection of chapters written by experienced researchers who
published several papers on the related topic in top conferences and major journals.
The chapters were selected to ensure that the key topics and techniques in periodic
pattern mining are discussed. Several of the chapters are written as survey papers to
give a broad overviewof currentwork in periodic patternmining,while other chapters
present techniques and applications inmore detail. The book is designed so that it can
be used both by researchers and people who are new to the field. Selected chapters
from this book could be used to teach an advanced undergraduate or graduate course
on pattern mining. Besides, the book provides enough details about state-of-the-art
algorithms so that it could be used by industry practitioners who want to implement
periodic pattern mining techniques in commercial software, to analyze temporal
database. Several of the algorithms discussed in this book are implemented in the
open-source PAtternMIning (PAMI) software, which is available at https://git
hub.com/udayRage/PAMI. Anyone can download this software through “pip
install pami”.

Aizu-Wakamatsu, Fukushima, Japan
June 2021

R. Uday Kiran

https://github.com/udayRage/PAMI
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Introduction to Data Mining

Jose M. Luna

Abstract This chapter introduces data mining, also known as knowledge discovery
fromdata, as a process of discovering useful, interesting and previously unknownpat-
terns from data. Some techniques and domains related to data mining are described,
explaining their similarities and differences. Some data types are then analysed since
data onmultiple data inputs might be considered due to the natural evolution of infor-
mation technology. Data processing approaches are also described, stating how to
transform raw data into a readable and useful form and presenting different data
representations. Finally, general data mining techniques are outlined. Mining fre-
quent patterns and associations; predictive analysis; supervised descriptive analysis;
cluster analysis; and outliers analysis, to list a few.

1 Introduction

Data in the twenty-first century is considered as the new oil. Like oil three centuries
ago, learning to extract and use data’s value produces huge rewards [54]. Data is,
therefore, an essential resource that powers the information economy, also known as
the knowledge economy, where the amount of data that a company or individual has
is proportional to the knowledge they have to make the right decisions. Nevertheless,
unlike oil, data availability seems infinite, and it is a cumulative resource, existing
multiple ways of representing and handling data.

The computerization of our society together with the development of data collec-
tion techniques and the reduced costs of storage tools have given rise to an explosive
growth of available data volumes. Almost any business, regardless of its type, gener-
ates enormous datasets every day. It estimates that 2.5 quintillion bytes are created by
an average person every day in 2020 [39]. Based on that, 463 exabytes of data will be
generated each day by humans as of 2025. According to the Google search statistics,
over 40,000 search queries are processed every second on average, which translates
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2 J. M. Luna

to over 3.5 billion searches per day and 1.2 trillion searches per year worldwide [39].
When Google was founded in September 1998, 10,000 search queries were served
per day. Eight years later, by the end of 2006, the same amount served in a single
second.

This growing data availability and usage are what truly makes our time the data
age. Powerful tools are needed to gather, handle and transform tons of data into
valuable information, also known as knowledge. This necessity led to the birth of data
mining [19], which is a young, dynamic and promising field of research. Data mining
is the result of considering critical procedures on databases, including data gathering
and management and advanced data analysis. Until recently, important decisions
were often made based on intuition since collected data were so diverse and huge
that no proper toolswere available to reach a conclusion/decision in a few seconds [5].
Important efforts have been made in recent years to develop expert systems with no
biases and reducing errors asmuch as possible. Hence, datamining [51] is considered
as an interdisciplinary subject related to the concept of mining knowledge from data.

Despite the data mining concept is widely used and accepted for the research
community, it is still a controversial issue. It is generally defined as a synonym
of knowledge discovery from data, while others consider it as a major step within
the process of knowledge discovery (data cleaning, data integration, data selection,
data transformation, data mining, pattern evaluation and knowledge presentation).
Confusion about the data mining term was even higher when the Big Data [8] con-
cept appeared in 2005. Since that, different companies, researchers and institutions
wrongly took Big Data as the new data mining concept [60]. The truth is that Big
Data [37] states for the source, variety, volume of data and how to store and process
this amount of data. It can be said that data mining does not need to rely on Big
Data [45], as it can be done on a small or large amount of data, but Big Data surely
does rely on data mining because if we cannot find the value of a large amount of
data, then that data will not have been useful. In this book, we adopt the data mining
concept as the process of discovering interesting patterns and knowledge from large
amounts of data considering different data sources (either small or huge ones).

Han et al. [19] rightly defined techniques and domains that fall under the umbrella
of data mining: databases, statistics, machine learning. Fig. 1 aims to illustrate how
these terms are related. At this point, it is important to highlight that authors assume
that the figure illustrates some important concepts or techniques due to the over-
whelming number of techniques that can be found nowadays would make it hardly
understandable.Machine learning appears as a subset of Artificial Intelligence, exist-
ing Artificial Intelligence techniques that do not require learning (e.g. path plan-
ners [44], traditional expert systems [57], etc.). Continuing with the analysis, and
from the author’s point of view, it is the interdisciplinary nature of data mining
research and development what eases its success. Let us start analysing the connec-
tionwith databases,which is the required input for any datamining process.Without a
database, it is impossible to perform the analysis and extraction of useful knowledge.
At this point, it is required to consider good and high-performance query languages,
query processing methods, data storage systems and data access processes so scala-
bility is guaranteed regardless of the data size and type. As for statistics, they are sets
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Fig. 1 Data mining related
terms

of mathematical functions that describe the behaviour of the items/events/objects in
terms of their associated probability distributions. Statistics are usually considered
by data mining to build models or just identify outliers, missing values or whatever
targeted variable. They are also considered by data mining to represent any type
of homogeneity and regularity in data, extracting good descriptors of intrinsic and
important properties of data. Statistics are not only useful from the mining point of
view but also to verify the outputs through statistical hypothesis testing to discard
that the results were obtained by chance. Nevertheless, a major drawback of consid-
ering statistics as a part of the data mining process is the difficulty to be scaled up,
which is amajor problemwhen truly Big Data are analysed. It turns into a bottleneck,
especially for some specific statistical methods that are time-consuming by nature.
Finally, as for machine learning, it takes data input to learn to recognize patterns
and take right decisions. Even when both machine learning and data mining are used
interchangeably [58], some differences are in their purpose. Data mining is designed
to extract useful, interesting, unknown patterns from data. Machine learning, on the
contrary, trains a model to perform complex tasks based on data and experience.
Machine learning is a well-known discipline that includes many classic problems:
supervised learning (it builds a classification model to recognize/categorize future
patterns); unsupervised learning (a synonym for clustering, that is, grouping patterns
according to some criteria); semi-supervised learning (it makes use of both labelled
and unlabelled examples when learning a model. The first ones are used to build a
model, whereas the second ones are used to refine the boundaries of labels); active
learning (it lets users play an active role in the learning process, asking users to label
specific examples, to optimize the model quality).
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2 Data Types

The key to data mining [19] is its ability to consider any kind of data input. As
previously stated, we are living in a data era what implies data being handled and
stored in multiple ways. Despite the multiple existing data types, four are the basic
forms of data considered here: databases, transactional data, data warehouse and data
lake. It is important to highlight that some of these concepts are used interchangeably
by different authors, and some of them might be gathered under the same term. We
include the four terms on purpose since it is our understanding that these data forms
are useful to be known regardless of the way they are then processed.

A database system also called a database management system [46], is a software
package properly designed and implemented to define, manage and retrieve data in a
database. The system consists of a collection of interrelated data and a set of software
programs to manage and retrieve data. The interrelated data is usually known as a
relational database and it comprises a set of tables each of which is denoted by a
unique name. Additionally, each table consists of a set of attributes/columns and
stores data records (rows). Each data record denotes an object identified by a unique
key anddescribed by a set of attribute values. Fig. 2 illustrates a toy relational database
comprising four tables, one of them being used as a fact table (sales) including
one attribute (quantity) and foreign keys to dimensional data—the rest of tables—
where descriptive information is stored. The interrelated data is semantically defined
through what is known as an entity relationship data model, which represents the
database as a set of entities and their relationships. For data accesses, a database

Fig. 2 Sample relational database in a star schema
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Table 1 Sample qualitative (binary) tabular data representation

tid Item1 Item2 Item3 Item4 Item5 Item6 Item7

#1 1 0 1 0 0 1 0

#2 0 1 1 0 0 0 0

#3 0 1 1 1 1 0 0

#4 0 0 0 1 0 1 1

#5 1 1 0 0 1 1 1

Table 2 Sample quantitative (non-binary) tabular data representation

tid Item1 Item2 Item3 Item4 Item5 Item6 Item7

#1 2.3 0 6.1 0 0 6.5 0

#2 0 1.1 4.6 0 0 0 0

#3 0 1.4 4.5 1.8 1.9 0 0

#4 0 0 0 4.3 0 2.6 6.4

#5 3.0 0.9 0 0 2.1 8.7 6.2

management systemmakes use of a relational query language [61] includingmultiple
relational operations such as join, selection and projection, as well as aggregate
functions such as sum, average, count, etc.

Transactional databases are different types of data organizations inwhich informa-
tion is kept in single tables stored in flat files. Columns represent attributes, whereas
rows state for data records. Information is therefore recorded into transactions, which
are sequences of information that are treated as a unit. A transaction typically includes
a unique identifier together with a list of the items that form the transaction. There are
different types of transactional databases depending on their organization. The most
simple one is the binary table format (see Table 1) in which each column represents
a variable or feature and each row comprises binary values for every variable. If the
variable is satisfied by a transaction, then it is represented by 1, and 0 otherwise. For
some specific problems, it is not enough to consider whether the variable or item
appear in data but its associated quantity (profit, for example). Table 2 illustrates
a tabular data representation including quantitative values. Finally, one of the most
used data formats in pattern mining tasks is the transactional database. Unlike pre-
vious data organizations, each row includes a list of items (attributes or features)
considered by such transaction. In this data representation, rows are variable in size.
Table 3 illustrates a sample transactional database where the first transaction includes
the items Item1, Item3 and Item6. As it is shown, the number of items satisfied by
each transaction varies (three items for transaction #1 and four items for transac-
tion #3). Any of these data representations can be defined through the well-known
comma-separated values file, also known as CSV, which allows data to be saved in a
tabular format and it is supported by almost all spreadsheets and database manage-
ment systems. ARFF (Attribute-Relation File Format) file is another file format to
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Table 3 Sample
transactional database

tid Sets of items

#1 Item1, Item3, Item6

#2 Item2, Item3

#3 Item2, Item3, Item4, Item5

#4 Item4, Item6, Item7

#5 Item1, Item2, Item5, Item6,
Item7

Fig. 3 Sample data warehouse database gathering information from multiple stores

keep, in ASCII text file, a list of instances sharing a set of attributes. ARFF files were
developed by the Machine Learning Project at the Department of Computer Science
of the University of Waikato for use with the Weka machine learning software [22].

On the contrary, a data warehouse [53] is usually defined as a central reposi-
tory where information comes from multiple and heterogeneous data sources. Data
are provided and managed from both transactional data and relational databases
and different data types might be stored (see Fig. 3): structured, unstructured and
semi-structured. Structured data is usually represented in a clearly defined way,
being easily understandable for the search engine. Unstructured data, on the con-
trary, is not easily searchable and includes multiple data formats like audio, image
and video. Finally, semi-structured data is a mix of the above, maintaining inter-
nal tags that identify separate data elements so information can be grouped and
sorted into a hierarchy easily. Examples of semi-structured data are more and
more common nowadays. Mark-up language XML [30] is an example of the semi-
structured document language. This is a set of document encoding rules that sim-
plifies data exchanging among systems containing data in incompatible formats.
Open standard JSON [41] is another semi-structured data interchange format. Its
main feature is that it is a language-independent data format. Thanks to the data
warehouse, which merges information coming from different sources into one com-
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prehensive database, any institution/organization ensures to have all the information
available in a central repository from which meaningful business insights can be
extracted.

Finally, it is important to talk about data lake [38], which is a centralized repository
that allows you to store all your structured and unstructured data at any scale. These
data repositories are of great interest nowadays mainly due to the interest in Big
Data. A data lake can store the data as is, that is, raw data that is required to be
processed later. The structure of the data is not defined when data is gathered so it is
possible to keep all of your data without the need to know what they will be used for
in the future. This is the main difference concerning a data warehouse, where data
are structured, and a well-defined schema is considered in advance.

3 Data Processing Approaches

Data processing can be considered as the process that transforms raw data into
meaningful information to be considered to any aim. Data processing starts with
data in its raw form and translates it into a more readable and useful form (databases,
graphs, streams, etc.). Thus, data is manipulated to produce results through a series of
steps that begin with collecting data from trustworthy data sources and storing them
with the highest possible quality, cleaning and checking for errors or inconsistencies.
The aim is therefore to fix redundant, incomplete or incorrect data, and to form
the right data structure to ease the mining process. Resulting data is therefore the
first stage in which raw data begins to take the form of usable information. This
data structure is finally considered by data mining algorithms to produce useful
insights [42], that is, it is usable to non-data scientists. All in all, what is represented
by data is essential to be known beforehand so their processing is done accordingly to
achieve the right results. The following are different data representations that do not
necessarily have a fix connection with data types provided in the previous section.

3.1 Databases

Databases are by far the most widely used data representation to be processed. Input
data generally come as normal databases on different data forms (databases, transac-
tional data, data warehouses or even data lake). Here, data is somehow static where
records are represented as strings including attributes that feature such data record.
Depending on the task to be carried out, that is, the knowledge to be extracted,
some databases (tabular representation) slightly vary including useful (extra) infor-
mation to be considered in the mining process. As a matter of example, let us con-
sider the market basket analysis in which it is useful to determine which patterns,
useful patterns, produce a low/high profit to the company regardless they are fre-
quently/infrequently purchased [28]. For this problem, it is therefore required to
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include non-binary purchase quantities for the items in the transactions and it is
also required to consider that all items are not always equally important (in terms
of profit). Such datasets, known as quantitative databases, are represented as a finite
set of distinct items I = {i1, i2, ..., in} and every single item is associated with a
positive integer that represents its utility or profit. Such datasets may also include
information about the purchased quantity for every single item. All this information
should properly be processed so the right insights can be obtained.

Sometimes, and it generally happens in real-life data, some kind of uncertainty
is present due to different reasons [1] including limitations in the understanding
of reality or just by limitations in the data-gathering devices. The major feature of
uncertain data is that users do not have any real conviction about the presence or
absence of an item i j in a transaction ti . This uncertainty is mainly expressed in
terms of a probability P(i j , ti ), denoting the likelihood of i j being present in ti . The
probability may be expressed as a percentage or in per unit basis so a value close
to 0 denotes that i j has an insignificantly low chance to be present in data, whereas
a value of 1 states that i j is present with no doubt. Processing such input data may
be considered somehow similar to traditional data (precise data), denoting items in
precise data with a probability of 1.

Up to this point, we have presented a database in a tabular data representation
where each row unequivocally identifies a single record including a set of elements or
items that characterizes a data object. In some problems, though, data information is
ambiguous so a data object may be described by an undetermined number of different
descriptions (data records) [21]. This ambiguity is required to be properly processed
so the information that describes a specific object is accurately taken from the set
of descriptions associated with such data object [32]. Formally speaking, a database
� is defined as a set of n bags � = {B1, B2, ..., Bn} and each bag B j comprises an
undetermined number of transactions that describe the data object. It is not so difficult
to understand that every bag describes different data objects. The way in which such
input data is processed depending on the goal and the users’ requirements since a
feature may be taken as a good descriptor if it appears at least once in the bag or if
it appears within a range in the bag.

Inmany application domains, data represent anykindof sequentiality among items
or events [36]. A single event is defined as a collection of items that appear together
and, therefore, they do not have a temporal ordering. However, there exists a temporal
order in the events. In a formal way [1] and considering a databases � comprising
a set of items I = {i1, i2, ..., in}, an event e j is defined as a non-empty unordered
collection of items, i.e. {e j = {ik, ..., im} ⊆ I, 1 ≤ k, m ≤ n}. Each transaction t j is
denoted as a sequence of events in the form t j = 〈e1 → ... → en〉 and each event ei

is described as an itemset {ii , ..., i j } defined in the set of items I ∈ �.
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3.2 Data Streams

Data streams [16] are known as continuous flows of data that are generated from dis-
parate sources in real time. Streaming [9] is therefore a term that denotes continuous,
never-ending sets of data (streams) with no beginning or end. A data stream is similar
to a constantly provided data input, and it is a simple analogy to how water flows
through a river, coming from various sources, in different volumes, and flow into a
single combined stream. Formally speaking, a streaming database� is a sequence of
transactions of indefinite length occurring at a time t j . In other words, the database
� can be defined as � = {t1, t2, ..., tn}. When working with data streams it is useful
to deal with slicing windows, that is, sequences of transactions occurring from time
ti to t j .

Data stream applications [16] have been widely studied and it is not so hard
to find in the specialized literature data generated by sensor networks, meteo-
rological analysis, stock market analysis and computer network traffic monitor-
ing. The main feature of all these applications is input data are far too large to
fit in main memory and usually require to keep them into a secondary storage
device. It makes it extremely challenging to extract useful knowledge from data
streams since most data mining techniques assume a finite amount of data to be
analysed. Besides, far from following a stationary data distribution, it is unpre-
dictable when referring to data streams. According to Gama et al. [9], any successful
development of algorithms in data streams has to take into account the following
restrictions:

• Data arrive continuously.
• There is no control over the order in which the data should be processed.
• The size of a stream is (potentially) unbounded.
• Data are discarded after they have been processed. In practice, one can store part
of the data for a given period of time, using a forgetting mechanism to discard
them later.

• The unknown data probability distribution may change over time.

Amain problem that is required to be addressed when working with data streams
is the concept drift phenomenon [17]. It refers to changes in the conditional distri-
bution of the output (target variable to be studied) given the input features, while
the distribution of the input may stay unchanged. Let us consider a typical exam-
ple of concept drift that is related to a change in users’ interests when following
an online news stream. Suppose that the user is searching for a new apartment so
dwelling houses are relevant for him/her, whereas holiday homes are not relevant.
In a specific moment, the user has bought a house and starts looking for a holiday
destination. From that moment on, dwelling houses become not relevant, and holi-
day homes become relevant. This scenario is what it is known as concept drift. As a
result, a learning algorithm needs to be adapted to unexpected changes to continue
working.
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The ability to process data streams is a key procedure in many fields and it can
be seen as a natural extension for the incremental learning systems [9], which build
models by considering example by example. Adaptive learning algorithms can be
seen as advanced incremental learning algorithms that can adapt to the evolution of
the data-generating process over time.

3.3 Graphs

Existing data mining approaches are mainly based on flat and tabular representations
where data is defined through rows (data records) and columns (data features or
items). Nowadays, however, there exists considerable interest in graph structures [27]
arising in technological, sociological and scientific settings. Paying attention to social
networks, it is possible to form a network that represents who trusts whom, who have
any kind of connection (familiar, friendship, etc.), who talks to whom, etc. The study
of such networks is of high interest inmany fields to determine the importance of each
node (the number of edges incident to each node) as well as the distances between
pairs of nodes (the shortest-path length).

In a formal way, a graph can be defined as a 4-tuple G = (V, E, μ, v), where V
states for the finite set of nodes, E ⊆ V × V denotes the set of edges,μ : V → LV is
a node labelling function and v : E → L E is an edge labelling function. Developing
algorithms that discover any subgraph that frequently occur in data (considering
a graph database) is particularly challenging and computationally intensive. The
frequency of a given subgraph g is calculated by considering all the graphs included
in a graph dataset � = {G1, G2, ..., Gn}. The frequency or support of g is defined
as support (g) = |�g|/|�|, where �g = {Gi : g ⊆ Gi , Gi ∈ �}. Additionally, it is
said that the subgraph g is frequent if its support value is no less than a minimum
pre-defined support threshold value.

Several algorithms have been properly designed to extract interesting subgraphs.
These solutions, however, can only cope with static graphs structures (see Fig. 4)
or graphs that do not change over time [14]. Social connections, for instance, are
not a static issue and heavily change over time (see Fig. 5). Being able to capture
the dynamics of the graph or how the graph evolves over time is very important to

Fig. 4 Sample static graph
structure
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Fig. 5 Sample dynamic graph structure

determine how friendship relationships are formed. In this sense, some authors [14]
have considered a time-ordered sequence of graph snapshots where edges and nodes
can be inserted, removed and attribute values may change at each timestamp. How-
ever, not only the proper graph structure (topology) is important but also the weights
of the vertexes. Jin et al. [23] considered a dynamic network and aimed to discover
connected subgraphs whose vertices show the same trend during a time interval of
two consecutive timestamps. The idea was to reveal important changes occurring in
a dynamic system.

4 Data Mining Techniques

We have already described some data types and data processing approaches or ways
in which raw data is transformed into meaningful structures so data mining can be
performed. At this point, it is important to denote which data mining techniques
can be applied to the input (already transformed) data so different types of patterns
can be obtained [19]. The following are some of the most widely used techniques.
However, we are aware that many new and trending techniques are being proposed
for different purposes nowadays.
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4.1 Mining Frequent Patterns and Associations

The key element in data analysis is the pattern, which represents any type of homo-
geneity and regularity in data, and serves as a good descriptor of intrinsic and impor-
tant properties of data [1]. A pattern is generally defined as a set of elements (items)
that are somehow related in a database. In a formal way, a pattern P in a database� is
defined as a subset of items I = {i1, ..., in} ∈ �. In anotherway, P ⊆ I that describes
valuable features of data [55], and its size or length is calculated as the number of
single items that it comprises. The task responsible for mining interesting and useful
patterns is known as pattern mining and it comprises multiple and varied techniques
with different purposes, depending on the type of patterns to be extracted. The most
well-known pattern mining technique is the one for mining frequent patterns, also
known as frequent itemset mining [33].

A typical example of frequent itemset mining is market basket analysis, and it is
perhaps the first application domain in which it was correctly applied. A high number
of purchases are usually bought on impulsewhen shopping, so it is of high interest for
managers to analyse in-depth the shopping behaviour to obtain valuable information
about which specific items tend to be strongly related [5]. This analysis might allow
shopkeepers to increase sales by re-locating the products on the shelves, or even
it might allow managers to plan diverse advertising strategies. In general, frequent
itemset mining aims to make sense of data, arranging elements of data to obtain
those sets that most frequently appear [34]. Such kind of algorithms requires high
efficient processes paying special attention to their computational cost. To clarify
the complexity of analysing itemsets in data and considering n different items, a
total of 2n − 1 different patterns can be found. Hence, any straightforward approach
becomes extremely complex with the increasing number of items.

Frequent itemsetmining is highly related to the task ofmining associations among
itemsets, which is known as association rulemining.Association ruleswere proposed
by Agrawal et al. [2] as a way of describing correlations among items within a
pattern (frequent itemset). Let us consider a frequent itemset or pattern P defined
in a database � as a subset of items I = {i1, ..., in} ∈ �, that is, P ⊆ I . Let us also
consider two different subsets for such pattern P , that is, X ⊂ P ⊆ I andY = P \ X .
It is important to highlight that X and Y do not have any common item, that is,
X ∩ Y = ∅. An association rule is formally defined as an implication of the form
X → Y , denoting that if the antecedent X is satisfied, then it is highly probable
that the consequent Y is also satisfied [62]. The problem of mining association rules
includes a huge large search space, even higher than the one of mining frequent
itemsets. Given a dataset comprising n items, a total of 3n − 2n+1 + 1 different
association rules can be found. This daunting process of mining association rules
can be viewed as a two-step process: (1) Find all frequent itemsets, that is, those
itemsets that occur at least as frequently as a predetermined minimum value; (2)
Generate strong association rules from the frequent itemsets, that is, rules that satisfy
a predefined minimum reliability or conditional probability P(Y |X).
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Association rules considering the frequency and reliability are not mandatorily
interesting.Theuseof these twomeasures in isolationmayproduce a large anduseless
set of generated rules. The reduction of such number of generated rules is essential
to obtain an interesting set of rules that can be easily applied to the problem at hand.
An example can be the adding of the correlation between the sets X and Y to help
to decide when an association is useful or not. Much different quality measures [35]
have been proposed so far and it has been stated that a good interestingness measure
should not be affected by data records that do not contain the itemsets of interest.
This problem is denoted as the null-invariant property, and ameasure is null-invariant
if its value is free from the influence of null-transactions.

4.2 Predictive Analysis

The predictive analysis [58] aims to make predictions about future outcomes based
on historical data by generating future insights with a significant degree of precision.
The idea is that any organization/institution can forecast trends in the future. One of
the most common predictive analytic models is classification. These models were
designed to categorise information based on historical data, which are denoted as
training data (data objects for which the class or concept are known). The classifica-
tion task might be described as a two-step process: learning and classification. The
learning step is responsible to build the classification model, whereas the classifica-
tion step is used to predict class labels for given data. One of the major problems that
any classification model has to face up is the data overfitting. This is the process by
which a model learns the training data so good that the resulting model incorporates
some particular anomalies of the training data that are not present int he general
dataset. In this regard, it is key to consider a test set, which is an independent set
containing tuples that were not considered to build the model. Thanks to this test
set the accuracy of the model is obtained as the percentage of test set tuples that are
correctly classified by the model. Last but not least, it is important to pay attention
to the first step of classification, which was related to learning (build a classifica-
tion model). The following are some methods considered in the literature to build
classification models.

A popular solution to build classification models is through decision trees. They
are flowchart-like structures in which internal nodes represent tests on attributes,
branches represent the outcome of the tests, and leaf nodes denote the provided class
label. This class label can be seen as the decision taken after testing all attributes.
Any path from the root of the tree to a leaf represents a classification rule. The use
of decision trees are really popular in classification since their construction does
not require any domain knowledge or parameter setting and it is fast and simple.
Additionally, their representation is highly intuitive and easily understoodbyhumans.
One of the first algorithms based on decision trees was proposed in the early 80s
under the name of ID3 and some improvements have been recently proposed [7]. Its
successor, known as C4.5 [48], has become a benchmark in the field and it is usually
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considered to compare any new proposed algorithm. The CART algorithm [29],
which is based on binary decision trees, was also proposed on those years in which
decision trees were built in a top-down recursive divide-and-conquer manner. Once
a decision tree is built, many of its branches may include anomalies of the training
data (overfitting) and a tree pruning process is therefore required. Pruned trees tend
to be smaller, less complex, faster and better at correctly classifying independent test
data than unpruned trees. Two ways of pruning trees are considered by researchers:
pre-pruning (pruning by stopping its construction early) and post-pruning (removing
subtrees from the already constructed tree. The branches to be removed are replaced
by a leaf, which is labelled with the most frequent class from the replaced subtree).

Bayesian classifiers [10] are also popular solutions to build classification models.
These models are based on classification, and they can predict the probability that
a given tuple belongs to a particular class. These methods are based on Bayes’
theorem, and the resulting classifiers tend to be highly accurate and fast (even for large
databases). Bayesian classification is, therefore, a probabilistic (statistical) approach
that can learn and make inferences based on a different view of what it is known
as learning from data. Before data are analysed, prior opinions about data can be
expressed in a probability distribution, and a posteriori distribution is then expressed
after analysing data. Bayesian learning can produce the probability distributions of
the quantities of interest so optimal decisions can be reached together with observed
data.

Another type of classifiers is rule-based models [19], where the classifiers are
represented as sets of IF–THEN rules. These rules are similar to those described in
association analysis, including two main parts: antecedent (left side) and consequent
(right side). In this case, rules may include one or more attribute to be tested in
the antecedent part of the rule, whereas the consequent is the class prediction [13].
If the condition, that is, all the attributes belonging to the antecedent part are true
for a given data record, then the rule is triggered. In those situations where more
than one rule is triggered, a strategy is required to determine which rule is the right
to be considered. Many different strategies are considered by different researchers.
For example, it is possible to assign the highest priority to the more restrictive rule,
or even that including a higher number of attributes in the antecedent. Associative
classification [43] is a kind rule-based classifiers. The aim is to produce association
rules in a first step and, then, build a classifier according to the previouslymined rules.
Recent studies have shown that associative classification has specific advantages over
other classification methods: they are often capable of building efficient and accurate
classification models since all possible relationships among the attribute values are
obtained during the extraction of association rules; they are easily updated and tuned
without affecting the complete ruleset; like any rule-based classifier, the final model
is easily understandable and interpretable.
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4.3 Supervised Descriptive Analysis

In pattern analysis, each pattern represents a data subset and its frequency is related
to the size of such a subset. A pattern represents a small/big part of data, denoting
a specific internal structure, and a distribution that is different from the whole data.
Sometimes, patterns are used to describe important properties of two or more data
subsets previously identified or labelled, transforming, therefore, the pattern mining
concept into a more specific one, supervised descriptive pattern mining [40]. The
main aim now is to understand underlying phenomena (according to a single ormulti-
ple target variables) and not to classify new examples. Supervised descriptive discov-
ery originally gathered three main tasks: contrast set mining [11], emerging pattern
mining [18] and subgroup discovery [4]. Nowadays, however, many additional tasks
can be grouped under the supervised descriptive pattern mining concept [56]. The
following are some examples of important tasks in the field aiming at producing
interpretable, non-redundant, potentially actionable and expressive knowledge or
information.

Contrast set mining was described by Dong et al. [11] as a way of describing
differences and similarities among datasets that the user needs to contrast. Each
dataset may correspond to a target variable of a more general dataset, or it may
represent subsets satisfying various conditions. In any case, such subsets are inde-
pendent and do not share any data record. Thus, contrast set mining aims to provide
statistical pieces of evidence that denote a data record as a member of a class (target
variable value). Formally speaking, a contrast set is defined as a pattern P which
distribution highly differ among data subsets. In general terms, contrast sets quan-
tify the difference in frequency for each subset Si . P is denoted as a contrast set if
and only if ∃i j : max(|support (P, Si ) − support (P, Sj )|) ≥ α ∈ [0, 1], denoting
support (P, Si ) as the support (frequency) of a pattern P on this subset.

Emerging pattern mining is closely related to contrast set mining [11] presenting
slight differences. Instead of comparing multiple data subsets, emerging patterns
make a comparison between two data types. It can be viewed as contrast patterns
between two kinds of data whose support changes significantly between the two
data types. This kind of patterns was formally defined in [56] as follows: given a
pattern P defined on two datasets �1 and �2, this pattern P is denoted as an emerg-
ing pattern if its support (frequency) on �1 is significantly higher than its support
(frequency) on �2 or vice versa. This difference in support is quantified by the
growth rate, that is, the ratio of the two supports (support (P,�1)/support (P,�2)

or support (P,�2)/support (P,�1)), and values greater than 1 denotes an emerg-
ing pattern. Here, the growth rate is 1 if support (P,�1) = support (P,�2) and
0 if both P does not satisfy any record from either �1 or �2. In those cases
where support (P,�1) = 0 and support (P,�2) 
= 0, or support (P,�1) 
= 0 and
support (P,�2) = 0, then the growth rate is defined as ∞ and such patterns are
denoted as jumping emerging patterns.

Subgroup discovery [4] aims to describe important features (distributional unusu-
alness) for a specific property of interest (target variable). Such descriptions are
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provided in the form of rules (P → T arget) denoting an unusual statistical distri-
bution of a pattern P (set of features) concerning the target variable T arget . The
problem was first introduced by Klösgen [25] and Wrobel [59] as follows: Given a
population of individuals (customers, objects, etc.) and a property of those individ-
uals that we are interested in, the task of subgroup discovery is to find population
subgroups that are statistically most interesting for the user, e.g. subgroups that are
as large as possible and have the most unusual statistical characteristics concerning
a target attribute of interest. The interest of the rules that describe subgroups are
quantified according to a wide variety of metrics [20] and can be grouped according
to the type of target variable. A discrete target variable includes measures that are
divided into four main types: measures of complexity (interpretability of the discov-
ered subgroups and simplicity of the extracted knowledge); generality (quality of
the subgroups according to their coverage); precision (reliability of each subgroup);
and interest (significance and unusualness of the subgroups). A numerical target vari-
able includes measures that are categorized as mean-based measures, variance-based
measures, median-based measures and distribution-based measures.

Exceptional model mining [26] is considered as a multi-target generalization
of subgroup discovery [20]. This task aims to search for data subsets on a pair
of predefined target variables (tx and ty) in which there is an unusual interaction
among the target variables. This interaction was originally quantified in terms of the
Pearson’s standard correlation coefficient ρ between tx and ty for both the data subset
and the whole dataset. Exceptional model mining also considers the complement of
the data subset instead of the whole dataset [12]. The complement of a data subset
comprises all the transactions that are not included in such subset. Recently, some
authors [31] have proposed an extension of exceptional model mining that does not
require to preset the target variables before running the algorithm. Multiple unusual
interactions may be present in a larger set of target variables simultaneously. This
extension of exceptional model mining aims to extract subgroups where several
pairwise correlations are exceptional.

4.4 Cluster Analysis

Clustering is a process in which data objects group into different groups or clus-
ters [49]. Any object within the same cluster presents a high similarity with the rest,
whereas it is very dissimilar to any object belonging to other clusters. It is important
to highlight that not every clustering method produces the same clusters on the same
dataset and it does not only depend on the metrics considered to form the clusters but
on the algorithm itself. Cluster analysis is widely used to know the data distribution,
to extract the main characteristics of each cluster, as well as just to determine clusters
to be studied in depth in the future.

It is possible to find many different clustering algorithms in the specialized liter-
ature [47] and a fixed categorization of such algorithms is hardly possible because
the categories may overlap in a high degree. Nevertheless, the major clustering algo-
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rithms can be classified into four categories: partitioningmethods, hierarchical meth-
ods, density-based methods and grid-based methods. The first category, related to
partitioning methods, determine that k partitions of the data are given (the number
of partitions needs to be lower or equal to the number of objects to be described)
and each partition must contain at least one object. In this category, most existing
methods are based on distance, cannot find complex cluster shapes, adopt popular
heuristic approaches and they suffer from large databases. An example of this cate-
gory is the k-means algorithm, which works by progressively improving the quality
of the clusters.

Hierarchical methods categorize the data objects through a hierarchical decompo-
sition according to two processes: bottom-up and top-down. The first one considers
each object as a single group, and it successively merges groups according to their
similarity. The top-down approach, on the contrary, all the objects belong to a unique
cluster which is successively split into smaller clusters. The quality of the clusters
in this category is mainly distance-based or density-based. It is finally important to
denote that the main problem of hierarchical methods is that the merge/split-step
cannot be undone once it is done.

Density-based methods form clusters according to the distance between objects.
As a result, clusters are dense regions of objects in space that are separated by low-
density regions. These methods work by increasing the size of the cluster until the
density exceeds a predefined threshold value.

4.5 Outliers Analysis

Anomaly detection or outlier detection [19] is a daunting process by which data
objects with behaviours that are very different from what it was expected are discov-
ered. An outlier is therefore defined as a data object that deviates significantly from
the rest. At this point, anyone may consider outliers as noise, but it is important to
clarify that these two concepts are not synonyms. Noise is an error in the input data,
which is uninteresting from any data analysis and they should be removed before
any method for anomaly detection (outlier detection) is performed. It is possible,
however, to consider outlier detection as a task related to novelty detection when it
is applied to data evolving. Here, some outliers in the evolving data may appear as
novel features that will become as frequent in the future. It is obvious that, once a
new feature is confirmed by novelty detection, it is not treated as outlier any more.
Outlier detection is important in many application domains such as medicine, fraud
detection or public security. Depending on the domain to be applied, outliers can
be categorized into three main groups [6]: global outliers, contextual outliers and
collective outliers. A global outlier is the simplest type of outliers and it is defined
as a data object that deviates significantly from the rest of the dataset. An important
point for this type of outliers is the use of an appropriate quality measure that deter-
mine such deviation. As for contextual outliers, they are defined as data objects that
deviate significantly concerning a specific context. It is therefore required to specify
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the context beforehand, which is usually a specific attribute (or set of attributes).
The data object needs to be an outlier for the data subset that satisfies such attribute.
Hence, unlike global outliers, which consider the whole dataset, contextual outliers
only consider the data subset for the predefined context. Finally, a collective outlier is
a different concept that determines a set of data objects as outliers if they, as a whole,
deviate significantly from the entire data. Here, it is possible that each individual
data object does not behave as an outlier.

There are many approaches in the literature to address the outlier detection prob-
lem. In such problems in which an expert labels the examples as normal or outlier,
the task can be performed by a classification model that can recognize outliers. In
other problems, however, data objects are not labelled as normal or outlier, and the
task is, therefore, to search for features that are mainly shared by the majority of
data objects so outliers can be identified. Finally, it is also possible that some other
problems include some labelled examples but such a number is not so high. Here, a
small set of normal/outlier data objects are labelled. Here, it is possible to use some
of the labelled objects to look for unlabelled data objects that are close in some way.

5 Importance of Finding Periodic Patterns in Databases

Frequent and periodic pattern mining aims to detect whether a pattern occurs fre-
quently and regularly, or mostly in a specific time interval in data. In other words, its
goal is to extract the occurrence behaviour of patterns. This task was first proposed
by Tanbeer et al. [52] as a way of determining the interestingness of frequent patterns
in terms of the shape of occurrence. When analysing periodic patterns [15], it is said
that a pattern is interesting if it is frequent and regular according to two different
threshold values (frequency and periodicity).

Let us consider the sample transactional database shown in Table 4. Here, the
following patterns or itemsets equally appear in data: {I tem2, I tem3}, {I tem5,
I tem7} and {I tem1, I tem6}. They can be considered as frequent patterns since
they appear in half of the transactions. However, these patterns may not be periodic-

Table 4 Sample
transactional database

tid Sets of items

#1 Item1, Item2, Item3, Item6

#2 Item2, Item3, Item5

#3 Item2, Item3, Item4, Item5

#4 Item4, Item5, Item7

#5 Item1, Item2, Item5, Item6,
Item7

#6 Item1, Item5, Item6, Item7
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frequent because of non-similar occurrence periods. For example, {I tem2, I tem3}
and {I tem5, I tem7} appearmore frequently at a certain part of the database. {I tem2,
I tem3} occurs during the three first transactions, whereas {I tem5, I tem7} during
the last three transactions. On the contrary, {I tem1, I tem6} does not follow a regular
interval since it appears in the first, fifth and sixth transactions. Here, it is important
to take into account that {I tem2, I tem3} and {I tem5, I tem7}may not be of interest
if we are looking for regular items (appearing along the whole dataset). On the other
hand, they are useful if the aim is to look for local periods in which a pattern is
frequent (they appear in all the first/last data transactions).

According to Tanbeer et al. [52] the mining of periodic patterns in databases is of
high importance in many application domains. Considering the market basket anal-
ysis, extracting all frequently sold products can be useless if some of such products
are bought in specific periods. Thus, it is important to extract only those products
that were regularly sold compared to the rest. As for a web administrator, he/she may
be interested in the click sequences of his/her web, so the frequency is not useful but
the periodicity of the clicks. Additionally, in bioinformatics, it is important to extract
set of genes that not only appear frequently but also co-occur at regular interval in
DNA sequences.

Many different approaches conform the state-of-the-art in frequent-periodic pat-
tern mining. Tanbeer et al. [52] proposed a pattern-growth approach that generates
periodic-frequent patterns by applying depth-first search. Kiran et al. [24] and Surana
et al. [50] addressed the periodicity problem by considering rare or infrequent item-
sets. Amphawan et al. [3] proposed an efficient algorithm for mining top-k periodic
frequent patterns.
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Discovering Frequent Patterns in Very
Large Transactional Databases

Jose M. Luna

Abstract Finding frequent patterns in very large transactional databases is a chal-
lenging problem of great concern in many real-world applications. In this chapter,
we first introduce the model of frequent patterns. Second, we describe the search
space for finding the desired patterns. Third, we present four popular algorithms to
find the patterns. Finally, we present the extensions of frequent patterns.

1 Introduction

Technological advances in the field of Information andCommunicationTechnologies
have enabled organizations to collect and store big data effectively. Useful knowledge
that can empower users with the competitive information to achieve socioeconomic
development lies in this data. The field of data analytics (or data mining) has emerged
to discover the hidden knowledge in big data.

Frequent pattern mining (FPM) is an important knowledge discovery technique
in data mining. It involves finding all frequently occurring patterns in a transactional
database. A classic application is market basket analysis. It involves finding the
itemsets that were frequently purchased by the customers in the data. An example
of a frequent pattern is {Cheese, Beer} [support = 10%], which provides the
information that 10% of the customers have purchased the items ‘Cheese’ and ‘Beer’
together. Such an information may be found to be extremely useful to the users for
various purposes, such as product recommendation and inventorymanagement.Other
applications of FPM may be found at [2].

The basic model of frequent pattern is as follows: Let I = {i1, ..., in} be the set
of items. Let X ⊆ I be a pattern (or an itemset). A pattern containing k number of
items is called as k-pattern. A transaction ttid = (tid, Y ), where t id ∈ R

+ represents
the transaction identifier and Y ⊆ I represents a pattern. A transactional database,
DB = {t1.t2, · · · , tm}, m ≥ 1, is a set of transactions. The support of pattern X in
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DB, denoted as sup(X), represents the number of transactions containing X in DB.
The pattern X is said to be a frequent pattern if sup(X) ≥ minSup, where minSup
represents the user-specified minimum support threshold value. The problem def-
inition of frequent pattern mining is to find all patterns that have support no less
than minSup in DB. (Please note that the support of a pattern can also expressed in
percentage of database size. However, we employ the former definition of support
throughout this book for ease of explanation.)

Example 1 Let I = {a, b, c, d, e} be a set of items. A hypothetical transactional
database generated by the items in I is shown in Table 1. The set of items a and
b, i.e., {a, b} (or ab in short) is a pattern. This pattern contains 2 items. Therefore,
it is a 2-pattern. In Table 1, the pattern ab appears in the transactions whose t ids
are 2, 4, and 5. Thus, the support of ab in Table 1 is 3 or 60% (= (3/5) × 100).
If the user-specified minSup = 2, then ab is said to be a frequent pattern because
sup(ab) ≥ minSup. The complete set of frequent patterns generated from Table 1
is shown in Table 2.

It is important to remark that setting a minimum support value is a non-trivial
task and generally requires a profound background in the application field. Inexpert
and many expert users need to try different thresholds by guessing and re-executing
the algorithms once and again until the results are good for them. As it has been
demonstrated, a small change in the threshold value may lead to very few or an
extremely large set of solutions.

Table 1 Transactional
database

tid Items

1 ac

2 abc

3 bde

4 abe

5 abcd

Table 2 Frequent patterns
found in Table 1 Pattern Support

a 4

b 4

c 3

d 2

e 2

ab 3

Pattern Support

ac 3

ae 2

bc 2

bd 2

abc 2
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Fig. 1 Search space
representation methods. a
Itemset lattice. b Set
enumeration tree

2 Search Space

The space of items in a database gives rise to an itemset lattice (or a set enumeration
tree1). This itemset lattice represents the search space for finding frequent patterns in
a database. The size of this search space is 2n − 1,wheren represents the total number
of distinct items in the database. Reducing this huge search space is a non-trivial and
challenging task in frequent pattern mining. When confronted with this problem
in the real-world applications, researchers employed anti-monotonic property2 (see
Property 1) to effectively reduce the search space. In other words, this propertymakes
the frequent pattern mining practicable in the real-world applications.

Example 2 Let x, y, and z be three items in a hypothetical transactional database.
The itemset lattice produced by the combinations of these three items is shown in
Fig. 1a. The alternative representation of this lattice as a set enumeration tree is shown
in Fig. 1b. The size of this lattice is 7 (= 23 − 1). This lattice represents the search
space for finding frequent patterns. Frequent pattern mining algorithms search this
enormous lattice using the anti-monotonic property. For instance, a frequent pattern
mining algorithm will check the interestingness of the pattern xy if and only if all of
its non-empty subsets, i.e., x and y, are also frequent in the database.

Property 1 (Anti-monotonic property.) If X ⊂ Y , then sup(X) ≥ sup(Y ). Thus, if
sup(X) � minSup, then ∀Y ⊃ Y , sup(Y ) � minSup.

Example 3 The support of pattern cd inTable 1, i.e., sup(cd) = 1. Since sup(cd) �

minSup, cd is an infrequent pattern. Moreover, all supersets of cd will also be infre-
quent patterns because their supports cannot also be more than minSup.

1 The set enumeration tree is a high-performance data representation technique, which resembles
the depth-first search on the itemset lattice
2 Other names of this property are: apriori property and downward closure property.
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3 Popular Algorithms

Several algorithms have been described in the literature to find frequent patterns.
A recent survey on the past 25 years of frequent pattern mining may be found at
[19]. In this chapter, we present four of the widely studied frequent pattern mining
algorithms, namely Apriori [3], FP-Growth [13], Eclat [46], and LCM [37].

3.1 Apriori

Apriori is one of the fundamental algorithms to find frequent patterns in a database.
It is a breadth-first search algorithm that finds all frequent patterns by employing
“level-wise candidate-generate-and-test paradigm.” This paradigm briefly involves
the following three steps: (i) find frequent k-patterns from the candidate k-patterns,
(ii) generate candidate k-patterns by joining frequent (k − 1)-patterns among them-
selves, and (iii) repeat the above two steps until no more candidate k-patterns can be
generated. The pseudocode of this algorithm is presented in Algorithm 1.

Algorithm 1 Pseudo-code of the Apriori algorithm.
Require: I, DB, minSup {set of items, dataset and minimum support value}
Ensure: F
1: F = ∅
2: L1 = {i ∈ I | support (i, DB) ≥ minSup}
3: F = F ∪ L1
4: for (k = 2; Lk 
= ∅; k + +) do
5: C = set of candidate patterns produced by Lk−1
6: Lk = {p ∈ C | support (p, DB) ≥ minSup}
7: F = F ∪ Lk
8: end for
9: return F = ∪k Fk

Let us consider the sample transactional database DB shown in Table 1. Let us
also consider a minimum support value of three. The following is the set of frequent
patterns that can be extracted from DB: a, b, c, ab, and ac. This set highly varies
when the minimum support value is modified. Thus, considering a minimum support
value of four, then the resulting set of frequent patterns is reduced: a and b. Similarly,
if the minimum support value is decreased, then the resulting set of frequent patterns
is increased. The following is the set of frequent patterns that can be extracted from
DB with a minimum support value of two: a, b, c, d, e, ab, ac, ac, bc, bd, be, and
abc. Finally, it is important to remark that determining the exact minimum support
value is not trivial and generally requires a profound background in the application
field. Inexpert and many expert users need to try different thresholds by guessing
and re-executing the algorithms once and again until the results are good for them.
As it has been demonstrated, a small change in the threshold value may lead to very
few or an extremely large set of solutions.



Discovering Frequent Patterns in Very Large Transactional Databases 27

3.2 Frequent Pattern-Growth

The popular adoption and successful industrial application of the Apriori algorithm
has been hindered by the following two limitations: (i) Apriori algorithm generates
too many candidate patterns and (ii) Apriori algorithm requires multiple scans on the
database. Han et al. [13] introduced Frequent Pattern-growth (FP-growth) algorithm
to address the limitations of Apriori algorithm. It is a depth-first search algorithm
that finds the desired patterns by employing the following two steps: (i) compress
the given database into a tree structure known as Frequent Pattern-tree (FP-tree) and
(ii) find all frequent patterns by recursively mining the FP-tree.

A really efficient algorithm for mining frequent patterns was proposed by Han et
al. [13]. This algorithm, named FP-Growth, achieves a high performance by repre-
senting the data as a tree structure [31] in which nodes denote items together with
their frequency, and paths among nodes represent the patterns (set of connected
nodes). This compressed representation of the input dataset drastically reduces the
number of scans required to compute the patterns and their frequencies.

To understand how the FP-Growth algorithm works, let us explain first how
to construct the tree structure (see Fig. 2) by taking the sample transactional
dataset DB (see Table 1). The first step is to calculate the support value for each
item: support (a, DB) = 4, support (b, DB) = 4, support (c, DB) = 3, support

Fig. 2 Building a tree structure for the sample dataset shown in Table 1
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(d, DB) = 2, support (e, DB) = 2. Items are, therefore, sorted in descending order
of support in each transaction: a ≺ b ≺ c ≺ d ≺ e. After that, the process starts with
the empty node null, and each transaction of DB is analyzed. Taking the first trans-
action, it comprises items ac and they are included as a branch from the root (the
empty node). Each time a node is added to the tree, the value 1 is assigned to it as the
frequency. If a transaction shares items of any existing branch in the tree, then the
inserted transaction will be in the same path from the root to the common prefix. The
values of the common nodes increase by one. Let us see the second transaction. The
common path is a, so its value is increased by one (see transaction #2 in Fig. 2). The
rest of the items is added as a new branch from the common path. The frequencies
for the new nodes are initialized to one. The third transaction does not share any path
with the tree, so it is added as a new branch from the root, that is, the null node. The
process iterates till all the transactions are analyzed, and the resulting tree is obtained
as a compressed data format. It is important to highlight that a fixed order among the
items is required or the resulting tree structure will be meaningless.

The pseudocode of the FP-Growth algorithm is illustrated in Algorithm 2. To
construct the tree, the algorithm takes frequent items (singletons) from data. Consid-
ering a minimum frequency value of 2, the following items are considered: a appears
four times, b appears four times, c appears three times, d appears two times, and e
appears two times. Then, the tree is constructed following that order as previously
described. Once the tree is obtained, FP-Growth first takes the lowest node, that is,
item e, which occurs in 2 branches: abe with frequency 1 and bde with frequency 1.
From these branches, only one frequent pattern can be obtained: be, with a frequency
of 2. The process is repeated for each item. Taking now the item d, two branches
are analyzed: abcd and bd. Combining them, the frequent pattern bd is obtained,

Algorithm 2 Pseudo-code of the FP-Growth algorithm.
Require: T, α, minSup {Tree-structure, initial node, set of items and minimum support}
Ensure: F
1: F = ∅
2: if T contains a single path P then
3: for each combination β of nodes in P do
4: generate the pattern X = α ∪ β

5: support of X is the minimum support of nodes in β

6: end for
7: else
8: for each a in the header of T do
9: generate the pattern X = α ∪ a
10: support of X is the support of a
11: construct a conditional pattern base of X
12: construct a conditional FP-Tree TX from X
13: if TX is not empty then
14: recursive call of FP-Growth(TX , X, minSup)
15: end if
16: end for
17: end if
18: return F
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with a frequency of 2. As for the item c, two branches are analyzed: ac and abc.
The resulting frequent pattern is ac. The process iterates over all the items. As it is
demonstrated, once the tree structure is built, no further passes over the dataset are
necessary. Any frequent pattern can be obtained directly from the tree by exploring
the tree from the bottom-up (considering the items as suffixes).

Research studies on FP-Growth determined that this algorithm is efficient and
scalable. Its performance is calculated as an order of magnitude faster than Apriori.
Its main drawback is building and traversing of the tree structure, which is not trivial
in huge datasets.

3.3 ECLAT

Eclat (Equivalent CLAss Transformation) was proposed in 1997 [46] as the first
algorithm for mining frequent patterns that work on a vertical data representation.
This data representation represents the items as lists including the transactions (tids)
in which each item appears. Back to the sample transactional database DB shown in
Table 1, a vertical data representation of DB is illustrated in Fig. 3. The list formed
by item a includes transactions number 1, 2, 4, and 5. As for the item b, it includes
transactions number 2, 3, 4, and 5. Eclat considers the vertical data representation as
a set of tidsets or pointers to the transaction tids including each item. This algorithm
computes the support of each item by simply calculating the length of the tidsets.
Thus, the items a and b have a support value of 4 since they appear in 4 transactions.
The support of c is 3, and the support of both d and e is 2.

Eclat works by combining tidsets, so for each frequent pattern of length k, a
candidate pattern of length k + 1 is produced by adding the singleton that lexico-
graphically follows according to those items included in the original frequent pattern
(see Algorithm 3). A new tidset is obtained from the intersection of both tidsets
(singleton and original frequent pattern) and its size is denoted as the frequency
of the resulting pattern. The algorithm follows a breadth-first search strategy tak-
ing patterns and doing intersections with the next item in lexicographical order. For

Fig. 3 Tidsets for the
sample dataset shown in
Table 1
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Algorithm 3 Pseudo-code of the Eclat algorithm.
Require: I, minSup {set of items, and minimum support value}
Ensure: F
1: T id List = compute the tidsets of all the items in I
2: L = {l ∈ T id List | length(l) ≥ minSup}
3: F = F ∪ L
4: for ∀ l ∈ L do
5: c = l
6: for ∀ m ∈ L | m > j do
7: c′ = c ∩ m
8: if length(c′) ≥ minSup then
9: c = c′
10: F = F ∪ c
11: end if
12: end for
13: end for
14: return F

example, taking the item a and considering a minimum frequency value of 2, it is
combined with a to form the pattern ab. The intersection of their tidsets is the new
set {2, 4, 5}, and therefore, it is a frequent pattern since its frequency is 3 (length of
the tidset). In an iterative process, the pattern ab is combined with the next item in
lexicographical order, that is, c. The resulting tidset is {2, 5}, so its frequency is 2.
The resulting pattern abc is now combined with d, obtaining the tidset {5}. Hence,
this pattern is infrequent since its frequency is lower than 2. As a result, the process
does not continue with the next item and it goes back to combine a with c.

Finally, let us summarize the shortcomings of Eclat. This algorithm does not
require to scan the dataset to find the frequency of new patterns as Apriori does.
However, the bottleneck comes when the number of transactions increases, requiring
huge memory and computational time for intersecting the tidsets.

3.4 LCM

LCM (Linear Closed itemset Miner) [37] is a really fast algorithm proposed in 2003
for mining frequent patterns. This highly optimized algorithm won the FIMI2003
competition inwhichmany efficient algorithmswere proposed. LCMdoes not follow
a single data representation but two of them, so it horizontally stores transactions
and it also keeps the id of the transactions for each item (vertical data representa-
tion). What makes LCM be so fast and efficient is not the data representation but
some alluring ideas that it includes. Authors of this algorithm clearly stated [37]
that the pruning process usually included in FPM algorithms is not complete, and
it is common to operate unnecessary frequent patterns. Taking it into consideration,
they overcome the problem with a hypercube decomposition, also known as per-
fect extension pruning. An occurrence deliver schema is an additional promising
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Algorithm 4 Pseudo-code of the occurrence deliver schema.
Require: P, DBP {Pattern to be analyzed, conditional dataset}
Ensure: Bucket
1: for ∀ i ∈ P do
2: Set Bucket[i] = ∅
3: end for
4: for ∀ t ∈ DBP do
5: for ∀ e ∈ t do
6: Insert t into Bucket[e]
7: end for
8: end for

idea included in LCM to easily calculate the frequency of each pattern. The occur-
rence deliver schema (see Algorithm 4) takes as input a pattern P and a conditional
database given P . It creates the buckets for each item in P and adds into buckets those
transactions including the item. First, the algorithm orders the items based on their
frequencies and removing infrequent items from data. To understand how this proce-
dure works, let us take the transactional database DB shown in Table 1 in which items
are sorted in ascending order of support in each transaction: d ≺ e ≺ c ≺ a ≺ b. Fol-
lowing the occurrence deliver schema illustrated in Algorithm 4, the following buck-
ets are obtained (see Figure 4): Bucket[a] = {1, 2, 4, 5}, Bucket[b] = {2, 3, 4, 5},
Bucket[c] = {1, 2, 5}, Bucket[d] = {3, 5}, and Bucket[e] = {3, 4}. Thus, it is easy
to know that the pattern a is satisfied by 4 transactions, pattern b by 4 transactions,
pattern c by 3 transactions, and so on. Taking the first item in the list of sorted items,
that is, item d, a projection is performed and new buckets are obtained for that pro-
jected database (see Algorithm 4) as it is illustrated in Figure 4. Thus, given the prefix
d, it is easy to check that the itemset da appears once (Bucket[a] = {5}), whereas
the itemset db appears 2 times (Bucket[b] = {3, 5}). The process is repeated recur-
sively (a depth-first search strategy is considered) for the remaining items so the
conditional database are smaller and smaller.

As for the hypercube decomposition technique, it aims to improve the searching
process by stopping the recursive process of forming patterns. Once a perfect exten-
sion is detected, then it is directly reported. A perfect extension of a pattern I is
an item i that satisfies i /∈ I , and the frequency of I and I ∪ i is exactly the same.
Perfect extensions have the following properties: If the item i is a perfect extension
of a pattern I , then i is also a perfect extension of any pattern Q such as I ⊆ Q as
long as i /∈ Q; If E is the set of all perfect extensions of the pattern I , then all sets
I ∪ Q with Q ∈ 2E (the power set of the set E) have the same support as I . Back to
the sample transactional dataset shown in Table 1, the item a is a perfect extension
of the pattern bc since the frequency of bc is exactly the same as abc, that is, 2.
Consequently, the item a is also a perfect extension of the pattern b and c.

A new LCM version was proposed one year later [39], and it was granted for a
second year in a row with the best implementation award in FIMI2004 competition.
The new version introduced an improvement in runtime by reducing data. The algo-
rithm deletes an item if it is not present in at least α data records or if it is present in
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Fig. 4 Sample occurrence deliver using buckets on dataset shown in Table 1

all data records. Additionally, identical data records are merged into a single one. A
third LCM version was also proposed one year later [38], and it is considered as the
fastest version up to date. This version includes really efficient structures in the FPM
task: bitmaps, array lists, and prefix trees. A bitmap is efficient for dense datasets
since it enables fast intersections/unions to be performed with not so much memory
consumption. The k most frequent items are kept, known as k-items machine in the
literature. Those items not included in the bitmap representation are stored as array
lists and considered to build a prefix tree. It is essential to highlight that this third
version also comprises an occurrence deliver technique, the database reduction, and
the hypercube decomposition technique proposed in previous versions.
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4 Types of Patterns

The growing interest in pattern mining has encouraged the definition of a new type of
pattern according to the analysis required by experts in different application fields.

4.1 Maximal Frequent Patterns and Closed Frequent
Patterns

Since the objective of FPM is to find all frequently occurring patterns in the database,
this model often produces too many patterns most of which may be uninteresting to
the users. Moreover, the computational cost of finding these huge number of frequent
patterns may not be non-trivial.

Example 4 The frequent pattern model not only finds abc as a frequent pattern
in Table 1, but also finds all of its non-empty subsets, i.e., a, b, c, ab, ac, and bc as
frequent patterns. Thus, producing toomany patterns,most ofwhich are uninteresting
or redundant to the user.

When encountered with this problem in real-world applications, researchers have
tried to find a reduced set of frequent patterns, namely maximal frequent patterns
and closed frequent patterns. We now briefly discuss both of these patterns.

Definition 1 (Maximal frequent pattern X .) A frequent pattern X is said to be a
maximal frequent pattern if sup(X) ≥ minSup and ∀Y ⊃ X, sup(Y ) � minSup.

Example 5 The frequent pattern abc in Table 1 is amaximal frequent pattern because
all of its supersets are infrequent patterns. Moreover, all non-empty subsets of abc
cannot be maximal frequent patterns. Thus, maximal frequent pattern mining signif-
icantly reduces the number of patterns being discovered in a database.

Maximal frequent pattern mining helps us to find long patterns in a database
effectively. However, they lead to a loss of information as they do not record the
support information of its subsets. Thismotivated researchers to find closed frequent
patterns in a database.A closed frequent pattern is a frequent pattern that is not strictly
included in another pattern having the same frequency. Thus, closed frequent patterns
are lossless bynature as theypreserve the support informationof all frequent patterns
in a database.

Definition 2 (Closed frequent pattern X .) Let X and Y be two frequent patterns
such that X ⊂ Y . The frequent pattern X is said to be a closed frequent pattern if
sup(X) 
= sup(Y ), sup(X) ≥ minSup.

Example 6 Consider the frequent patterns a, c, and ac in Table 2. Since sup(a) 
=
sup(ac), a is a closed frequent pattern. In contrast, c is not a closed frequent pattern
because sup(c) = sup(ac).

The relationship between the set of frequent patterns (F), the set of closed frequent
patterns (C), and the set of maximal frequent patterns (M) is F ⊇ C ⊇ M .
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4.2 Condensed Patterns

As previously stated, the mining of frequent patterns [1] is the keystone in data
analysis and the extraction of useful patterns from data. Many efficient approaches
have been proposed but it is still expensive to find the complete set of solutions (fre-
quent patterns). The daunting process may be eased by computing a small subset of
frequent patterns that can be used to approximate the frequency values of arbitrary
frequent patterns. These frequent patterns used to approximate further solutions are
known as condensed patterns [25]. The mining of these patterns drastically reduces
the runtime but, sometimes, the error in the approximation is not enough from the
domain/problem point of view. On some occasions, this process (considering a max-
imal error bound) is enough even when no full precision is achieved.

The support approximations are calculated through a function F defined on a
transactional database DB. The following can be an approximation function for any
pattern P: F(P) = 0 if there exists no superset P ′ ⊇ P such as P ′ is defined as
a condensed pattern; whereas F(P) = [support (P ′, DB) − 3, support (P ′, DB)]
being support (P ′) the minimum support for any P ′ ⊂ P such as P ′ is defined as
a condensed pattern. Considering such a function, the support of any pattern can be
estimated. Back to the sample transactional database DB (see Table 1),F(abcde) =
0 since there is no P ′ ∈ DB|abcde ⊆ P ′. On the contrary, F(ac) = [3 − 3, 3] =
[0, 3] since the minimum support of any subset of ac is support (c, DB) = 3.

This way of dealing with patterns is sometimes preferable to the mining of all
the patterns. The following are the main reasons: (1) When dealing with really large
datasets, small deviations often have minor effects on the analysis; (2) Computing
condensed patterns leads to more efficient approaches since it is only required to
operate with and access to a small portion of frequent patterns [29].

4.3 Top-k Patterns

In the task of frequent pattern mining, it is common to consider a frequency thresh-
old value to split the search space into useful and useless solutions (patterns). This
frequency threshold mainly depends on the users’ expectations and the data them-
selves. Thus, it is the user who has to specify the boundary to consider a pattern a
valid solution or not. This boundary will produce a large set of patterns (if the fre-
quency threshold is too low) or a reduced set of patterns (if the frequency threshold is
high enough). However, the problem to properly specify such a threshold value is not
easy and it also depends on the data distribution. Some datasets may not produce any
pattern for a specific frequency value, whereas other datasets may produce tons of
patterns for the same frequency value. As a result, it is not trivial to know beforehand
the right boundary value for each dataset. Additionally, twomain dangers of working
with frequency-based algorithms are: 1) setting up an incorrect threshold value may
cause an algorithm to fail in finding the interesting patterns; 2) the algorithm may
report spurious patterns that do not really exist or are not interesting at all.
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To precisely control the output size and discover the patterns with the highest
frequency are of vital importance in many application fields [27]. In this regard, it is
necessary to extract not only frequent patterns but those having ahigh significance and
low redundancy. Salam et al. [28] proposed an algorithm formining frequent patterns
without any minimum frequency threshold. To achieve this, they proposed two novel
algorithms for mining top-most and top-k frequent patterns. The top-k parameter has
been differently used by researchers: Wang et al. [41] employed a top-k parameter to
extract frequent closed patterns; Tzvetkov et al. [36] considered sequential databases;
Cheung et al. [43] retrieved the k most frequent patterns; and Chuang et al. [7] used a
top-k parameter for mining top few significant maximal frequent patterns. Fournier-
Viger et al. [35] proposed to redefine the task ofmining high utility patterns asmining
top-k high utility patterns. Luna et al. [23] also proposed a free-parameter algorithm
for mining patterns in the form of association rules.

4.4 User-Centric Patterns

Up to date, it is possible to find many research studies in the specialized literature
related to different and efficient ways of speeding up the mining of frequent pat-
terns [19]. Currently, more and more research studies are paying attention to extract
patterns according to the users’ needs or expectations. The user, as the final consumer
of the data insights, should play a relevant role in the mining process and it is not
just enough to find any pattern that overcomes some minimum frequency values,
but those patterns that provide useful information to the user. Here, it is essential
to highlight comprehensibility and flexibility as two challenging research issues in
the pattern mining field. Comprehensibility describes the degree by which a user can
understand the provided information. This is a subjective measure since a pattern can
be little comprehensible for a specific user and, at the same time, too much compre-
hensible for others. Nevertheless, it is possible to define this metric as an objective
measure with a fixed formula: the fewer the number of items included in the extracted
pattern, the more comprehensible the pattern is. Flexibility, on the contrary, refers to
the ability to adapt the solutions to the users’ requirements by introducing subjective
knowledge into the mining process. These two features, namely comprehensibility
and flexibility, have been widely studied and some authors [24] have proposed the
use of grammars in pattern mining to introduce subjective knowledge in the mining
process and to produce more flexible and expressive results.

Recently, there are some signs of progress in supplying existing pattern mining
approaches [19] with methods to extract more actionable insights [40]. Thus, the
user is playing a crucial role in the mining process restricting the search space with
various constraints based on his/her subjective knowledge of the problem [18]. Other
proposals are focused on using new andmore flexible forms of information [12]. New
methods are also being considered to handle context-sensitive concepts to avoid any
discriminative behavior [21], as well as to extract exceptional behavior [22]. As a
result, more and more researchers are paying special attention to the extraction of the
appropriate knowledge type [20], accomplishing the users’ aims or requirements.
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4.5 Weighted Frequent Patterns

In traditional frequent patternmining, itemswithin the solutions are uniformly treated
and present the same degree of importance. However, in a real-world scenario, items
usually have different importance and it is, therefore, required to weigh them. A
simple example is related to the market basket analysis, where expensive items may
contribute a large portion of overall revenue even though it does not appear in many
data records. Weighted frequent pattern mining [45] has been suggested as a promis-
ing task to find important frequent patterns by considering the weights of patterns.

Based on the previous ideas,multipleweighted frequent patternmining algorithms
have been proposed up to date. First proposals, such as MINWAL [6], WARM [33],
and WAR [42], were proposed taking the Apriori [3] algorithm as a baseline. All
these algorithms follow a breadth-first search methodology, considering a level-wise
paradigm inwhich all the candidate patterns of length k+1are obtainedbyusing all the
extracted patterns of length k. A major drawback of these algorithms is they require
multiple database scans, giving rise to poor performance. Yun et al. [44] proposed
a more efficient algorithm, named WFIM (Weighted Frequent Itemset Mining), that
was the first weighted frequent pattern algorithm based on an FP-tree. This algorithm
considered a minimumweight value and a weight range, and the FP-Tree is arranged
inweight ascendingorder.A similar algorithm, knownasWCloset,was also proposed
but instead of mining weighted frequent patterns, it aimed to extract closed weighted
frequent patterns. Ahmed et al. [4] proposed an approach to keep track of the varying
weights of each item in a prefix tree. They proposed the DWFPM (dynamic weighted
frequent pattern mining) algorithm, which is able to handle dynamic weights during
the mining process.

Recently, Uday et al. [14] introduced two pattern-growth algorithms: Sequential
Weighted Frequent Pattern-growth and Parallel Weighted Frequent Pattern-growth.
These two algorithms, which were designed to discover weighted frequent patterns
efficiently, employ three novel pruning techniques to reduce the computational cost
effectively. The first technique, called cutoff-weight, prunes uninteresting items in
the database. The second pruning technique, called conditional pattern base elimi-
nation, eliminates the construction of conditional pattern bases if a suffix item is an
uninteresting item. The third pruning technique, called pattern-growth termination,
proposes a new terminating condition for the pattern-growth technique.

4.6 High Utility Patterns

Frequent pattern mining is a widely known and useful task, but it has three essential
limitations. First, the item purchase quantities are not considered in the data records.
As a result, any item is considered equally important than buying a single unit. In
market basket analysis, this is a useless analysis since customers tend to buy more
than a single unit. Second, all items are considered as equally important, which does
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not show a real situation if a real-world problem is considered. It is more important
to sell a laptop than a keyboard since the former yields a much higher profit. Third,
the frequency of the patterns could be useless for the user, which is more interested
in the amount of profit. High utility pattern mining has recently emerged to address
all these limitations [34].

The high utility problem is, therefore, a generalization of frequent pattern min-
ing, considering that every single item has a different utility or relative importance.
Additionally, each item in the high utility problem can appear more than once in
a data record or transaction. The aim of high utility pattern mining is to find all
patterns having a utility higher than a predefined threshold value. Research stud-
ies have proposed really interesting and efficient approaches [9]. However, all of
them have an important limitation since in the high utility pattern mining problem,
the anti-monotonicity property does not hold for the utility measure. The first algo-
rithm for mining high utility patterns is called Two-Phase [10]. This algorithm is
an extension of the Apriori algorithm [3] considering an upper-bound on the util-
ity, called Transaction Weighted Utilization (TWU), which is anti-monotonic. After
that, really efficient algorithms were proposed such as UP-Growth [34]. However,
these algorithms overestimate their utility, so it is computationally hard to calculate
their real utility. To overcome such limitations, different researchers have proposed
to ease the utility calculation: HUI-Miner [17], FHM+ [8], and EFIM [47], to list
a few. Recently, high utility pattern mining algorithms are considering the time at
which transactions were made [11]. Additionally, some research studies [16] focus
on finding high utility patterns that periodically appear in data.

4.7 Periodic-Frequent Patterns

Periodic-frequent patterns were introduced by Tanbeer et al. [32] as a way of deter-
mining the interestingness of frequent patterns in terms of the shape of occurrence.
In other words, whether frequent patterns occur periodically, irregularly, or mostly
in the specific time interval in the dataset. For example, the shopkeeper in a retail
market may be interested only in those products that were regularly sold compared
to the rest.

A frequent pattern is defined as a periodic-frequent pattern if it appears and main-
tains a similar period/interval in a database. To put it in another way, a frequent
pattern is said to be periodic-frequent if it occurs at regular intervals specified by
the user in data. More technically, a pattern is called a periodic-frequent pattern if
it satisfies both of the following two criteria: 1) its periodicity is no greater than
a user-given maximum periodicity threshold value; 2) its support is no less than a
user-given minimum support threshold value. As a result, the periodic-frequent pat-
tern mining problem is to discover the complete set of periodic-frequent patterns in
a database satisfying the two aforementioned criteria.

Tanbeer et al. [32] proposed the first algorithm for mining periodic-frequent
patterns. This algorithm, known as PFP-growth, is a pattern-growth approach that
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generates periodic-frequent patterns by applying depth-first search in the pattern lat-
tice. From a single item i that satisfies the requirements (frequency and periodicity),
PFP-growth obtains larger patterns by adding one item at a time. Additionally, thanks
to the periodicity measure, which ensures the anti-monotonic property, the algorithm
is quite efficient in discovering the complete set of periodic-frequent patterns. After
this first approach, many research studies have paid attention to this interesting task
giving rise to really efficient approaches. Kiran et al. [15] and Surana et al. [30]
enhanced the PFP-growth algorithm to address the problem of rare or infrequent pat-
tern mining. Amphawan et al. [5] proposed an efficient algorithm for mining top-k
periodic-frequent patterns, reducing the resulting set andmaking it more understand-
able for the end-user. Rashid et al. [26] employed standard deviation of periods as an
alternative criterion to assess the periodic behavior of frequent patterns. They consid-
ered extensions of the well-known PFP-growth algorithm [32] to obtain a resulting
set of solutions known as regular frequent patterns.
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Discovering Full Periodic Patterns
in Temporal Databases

Pamalla Veena and R. Uday Kiran

Abstract Periodic patterns are an important class of regularities that exist in a tem-
poral database. These patterns were broadly classified into two types: full periodic
patterns and partial periodic patterns. In this chapter, we will first discuss these two
basic types of periodic patterns. Second, we describe a model to discover a class
of full periodic patterns, called periodic-frequent patterns, in a temporal database.
Third, we present an algorithm to find the desired patterns. Fourth, we describe
different extensions of a periodic-frequent pattern. Finally, we end this chapter by
describing the procedure to execute the periodic-frequent pattern mining algorithm
in the PAMI Python kit.

1 Introduction

A temporal database is a collection of transactions and their timestamps. Three fun-
damental properties of a temporal database are: (i) transactions were ordered by
their timestamps, (ii) uneven time gap may exist in-between the transactions, and
(iii) multiple transactions can share a common timestamp. These three properties dif-
ferentiate a temporal database from a widely studied transactional database, which
is basically an unordered collection of transactions. Many real-world applications,
such as intelligent transportation systems, eCommerce, and social networking appli-
cations, naturally produce a temporal database. The classic application is the air
crafts incident data produced by the Federal Aviation Authority, USA [2]. Table 1
lists some of the incidents reported to the Federal Aviation Authority.We can observe
that the first four incidents (or transactions) happened at irregular time intervals,while
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Table 1 Few aircraft incidents in the Federation Aviation Authority database. The format of Event
Date is “month/date/year.” The terms “US,” “IS,” and “AD” represent “The United States,” “Injury
Severity,” and “Aircraft Damage,” respectively

Event ID Event
Date

Location Country IS AD ...

20001218X45448 06/19/1977 EUREKA, CA US Fatal(2) Destroyed ...

20041105X01764 08/02/1979 Canton, OH US Fatal(1) Destroyed ...

20170710X52551 09/17/1979 Boston, MA US Non-fatal Substantial ...

20001218X45446 08/01/1981 COTTON, MN US Fatal(4) Destroyed ...

20020909X01558 01/01/1982 TUSKEGEE, AL US Non-fatal Substantial ...

20020909X01559 01/01/1982 HOBBS, NM US Non-fatal Substantial ...

20020909X01560 01/01/1982 JACKSONVILLE,
FL

US Non-fatal Substantial ...

the next three incidents happened on the same day. Thus, representing a temporal
database.

A temporal database generalizes the transactional database by considering the
items’ temporal occurrence information within a transaction. More important, we
must not transform a temporal database into a transactional database by merging the
transactions sharing a common timestamp. It is because such a process will lead to
the following errors:

• Type-I error. Merging the transactions sharing the same timestamp can result in
losing the actual support of a pattern. Consequently, we may miss discovering an
exciting pattern as a periodic-frequent pattern.

Example 1 The last three transactions in Table 1 have occurred on the same date,
which is “01/01/1982.” If we merge these three transactions into a single transaction,
then we will lose the actual support information on the number of “non-fatal inci-
dents” and “substantial aircraft damages” happened on that day. Consequently, we
may miss the interesting patterns containing “non-fatal incidents” and “substantial
aircraft damages.”

• Type-II error. Merging the transactions sharing the same timestamp may create
false correlations (or associations) between the items, thus generating an uninter-
esting pattern as a periodic-frequent pattern.

Example 2 Continuing with the previous example, merging the last transactions
may induce incorrect correlation between the locations. Consequently, an uninter-
esting pattern {Tsukege, Al: Hobbs, NM: JacksonVillege,FL} may be generated as
an interesting pattern.

The data generated by many real-world applications naturally exist as a tem-
poral database. Useful information that can empower the users with competitive
information lies within this database. However, finding this information in tempo-
ral databases is non-trivial and challenging because the renowned frequent pattern
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Table 2 A temporal database

tid ts Items tid ts Items tid ts Items tid ts Items

101 1 ab 104 4 ce f 107 7 abce 110 10 abe f

102 3 abd 105 5 ab 108 8 cd 111 11 cdg

103 3 cdgh 106 7 h 109 9 cd 112 12 ae f

mining algorithms completely disregard the items’ temporal occurrence information
in the database. When confronted with this problem in the real-world applications,
researchers have extended the frequent pattern model to discover periodic patterns in
a database [1, 5, 8]. Han et al. [5] divided periodic patterns into two types of patterns,
full periodic and partial periodic patterns. The former considers that every point in
the period contributes to the cycle behavior of the time series, such as all the hours
(days) in a day (year). According to the latter, some but not all points in the period
contribute to the cycle behavior of the time series. Thus, partial periodic patterns are
a looser kind of full periodic patterns and exist ubiquitously in real world. In this
chapter, we will study about a class of full periodic patterns, called periodic-frequent
patterns [11], that may exist in a temporal database.

2 A Model of Full Periodic Pattern

A periodic-frequent pattern is a frequent pattern that is occurring at regular intervals
in a temporal database. A periodic-frequent pattern indicates there exists something
predictable within the database. Thus, there is value in finding these patterns in
real-world applications. The model of periodic-frequent patterns is as follows.

Let I be the set of items. Let X ⊆ I be a pattern (or an itemset). A pattern
containing k number of items is called a k-pattern. A transaction, ttid = (t id, ts,Y )

is a tuple, where tid ∈ R represents transactional identifier, ts ∈ R represents the
timestamp at which the pattern Y has occurred. A temporal database T DB =
{t1, · · · , tm}, m = |T DB|, where |T DB| represents the number of transactions in
TDB.

Example 3 Table 2 shows the temporal databasewith the set of items I = {a, b, c, d,

e, f, g, h}. The set of items “a” and “b,” i.e., {a, b} (or ab, in short) is a pattern. This
pattern contains only two items. Therefore, this is a 2-pattern. In the first transaction,
t1 = (101, 1, ab), 101 represents the transaction identifier, 1 denotes the occurrence
timestamp, and “ab” represents the pattern occurring in this transaction.

Definition 1 (The support of pattern X .) If X ⊆ Y , it is said that X occurs in Y or Y
contains X . Let tsXi , i ≥ 1, denote the timestamp of a transaction containing X . Let
T SX = {ts Xj , · · · , tsXk }, 1 ≤ j ≤ k ≤ m, be an ordered set of timestamps in which
the pattern X has occurred inT DB. Thenumber of transactions containing X inT DB
is defined as the support of X and denoted as sup(X). That is, sup(X) = |T SX |.
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Example 4 In Table 2, the pattern ab appears in the transactions whose timestamps
are 1, 2, 5, 7, and 10. Therefore, T Sab = {1, 2, 5, 7, 10}. The support of “ab,” i.e.,
sup(ab) = |T Sab| = |1, 2, 5, 7, 10| = 5.

Definition 2 (A frequent pattern X .)The pattern X is said to be a frequent pattern if
sup(X) ≥ minSup, where minSup represents the user-specified minimum support
threshold value.

Example 5 If the user-specifiedminSup = 3, then “ab” is a frequent pattern because
sup(ab) ≥ minSup.

Definition 3 (The periods of pattern X .) Let tsinitial and ts f inal denote the initial
and final timestamps in T DB, respectively. The periods of a pattern X in T DB are
calculated in the following three ways:

1. The time taken for the initial appearance of X inT DB, i.e., pX
1 = (tsXj − tsinitial).

2. The inter-arrival times of pattern X in T DB, i.e., pX
z = (tsXp − tsXq ), 1 < z <

(sup(X) + 1) and tsXp , tsXq ∈ T SX , where tsXp and tsXq are consecutive times-
tamps in T SX .

3. The time elapsed after the final occurrence of X in T DB, i.e., pX
sup(X)+1 =

(ts f inal − tsXk ).

The first and the last periods, i.e., pX
1 and pX

sup(X)+1, are crucial in determining
whether a pattern is occurring periodically in the entire database or not. These
two periods also ensure that the generated periodic-frequent patterns satisfy the
downward closure property. This property makes the periodic-frequent pattern min-
ing practicable in the real-world applications. (The downward closure property of
periodic-frequent patterns was described in the next section.)

Example 6 Let the initial and final timestamps of all transactions in Table 2 are
0 and 12, respectively. That is, tsinitial = 0 and ts f inal = 12. The complete set of
periods for “ab” in Table 2 are as follows: pab1 = 1 (= 1 − tsinitial), pab2 = 1 (=
2 − 1), pab3 = 3 (= 5 − 2), pab4 = 2 (= 7 − 5), pab5 = 3 (10 − 7), and pab6 = 2 (=
ts f inal − 10). In our example, we have set tsinitial = 0. However, if the application
demands tsinitial can be set to the minimal timestamp of all the transactions in the
database.

Definition 4 (The periodicity of pattern X .) Let PX = {pX
1 , pX

2 , · · · , pX
r } be the

set of all periods for pattern X . The periodicity of X , denoted as per(X) =
max(pX

1 , pX
2 , · · · , pX

r ).

Example 7 Continuing with the previous example, the complete set of periods
of “ab” in Table 2, i.e., Pab = (0, 1, 3, 2, 3, 2). The periodici t y of “ab,” i.e.,
per(ab) = max(0, 1, 3, 2, 3, 2) = 3. It means the pattern “ab” has appeared at least
once in every 3 units of timestamps.

Definition 5 (A periodic-frequent pattern X .) A frequent pattern X is said to
be a periodic-frequent pattern if per(X) ≤ max Per , where max Per refers to the
user-specified maximum periodicity constraint.
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Table 3 Periodic-frequent patterns generated from Table 2. The terms “pat,” “sup,” and “per”
represent “pattern,” “support,” and “periodicity,” respectively

pat sup per pat sup per pat sup per

a 6 3 d 5 5 ab 5 3

b 5 3 e 4 4 e f 3 6

c 6 3 f 3 6 cd 4 5

Example 8 If the user-defined max Per = 6, then the frequent pattern “ab” is said
to be a periodic-frequent pattern because per(ab) ≤ max Per . The complete set of
periodic-frequent patterns generated from Table 2 are shown in Table 3.

Definition 6 (Problem definition.) Given a temporal database T DB and the user-
specified minimum support (minSup) and maximum periodicity (max Per ) con-
straints, find all patterns in T DB that satisfy the user-specifiedminSup andmax Per
constraints.

The support of a pattern can be expressed in percentage of |T DB|. Similarly,
the period and periodici t y of a pattern can be expressed in percentage of
(ts f inal − tsinitial). However, we employ the former definitions of support , period,
and periodici t y throughout this chapter for brevity.

A key element that makes periodic-frequent pattern mining practicable in the
real world is max Per constraint. It is used to prune the search space and limit the
number of patterns being generated. Since max Per controls the maximum time
interval within which a pattern must reoccur in the entire temporal database, the
generated periodic-frequent patterns represent full periodic patterns in a database. In
the next section, we will discuss an algorithm to find the desired patterns.

3 Periodic-Frequent Pattern Growth

The space of items in a database gives rise to an itemset lattice. This itemset lattice
represents the search space while finding the periodic-frequent patterns in a temporal
database. This search space’s size is 2n − 1, where n presents the total number of
items in a database. This colossal search space raises computational challenges while
finding periodic-frequent patterns in large temporal databases.

The Periodic-Frequent Pattern-growth (PFP-growth) algorithm [11] performs the
depth-first search on the itemset lattice to find the complete set of periodic-frequent
patterns in a database. More importantly, PFP-growth smartly addresses the huge
search space issue by exploiting the downward closure property of periodic-frequent
patterns. The downward closure property of periodic-frequent patterns is shown in
property 1. Example 9 illustrates the downward closure property of periodic-frequent
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patterns. The correctness of periodic-frequent patterns satisfying the downward clo-
sure property is based on Property 2 and shown in Lemma 1.

Property 1 (The downward closure property of periodic-frequent pattern.) All
non-empty subsets of a periodic-frequent pattern must also periodic-frequent pat-
terns. That is, if Y is a periodic-frequent pattern, then ∀X ⊂ Y and X �= ∅, X is also
a periodic-frequent pattern.

Example 9 The pattern “ab” is a periodic-frequent pattern in Table 2. Thus, its non-
empty subsets, i.e., “a” and “b,” must also be periodic-frequent patterns.

Property 2 If X ⊂ Y, then T SX ⊇ T SY . Thus, sup(X) ≥ sup(Y ) and per(X) ≤
per(Y ).

Lemma 1 Let X and Y be two patterns such that X ⊂ Y . If sup(X) < minSup or
per(X) > max Per, then neither X nor Y can be periodic-frequent patterns.

Proof If sup(X) < minSup or per(X) > max Per, then X cannot be a periodic-
frequent pattern as per Definition 5. Based on Property 2, it turns out that Y cannot
also be a periodic-frequent pattern as sup(Y ) < minSup or per(Y ) > max Per .
Hence proved.

The PFP-growth algorithm briefly involves the following steps: (i) scan the
database and identify periodic-frequent items (or 1-patterns), (i i) perform another
scan on the database and construct Periodic-Frequent tree (PF-tree) constituting of
only periodic-frequent items, and (i i i) find all periodic-frequent patterns by recur-
sively mining the PF-tree. Before we discuss the above three steps, we describe the
structure of the PF-tree.

3.1 Structure of PF-Tree

A PF-tree has two components: a PF-list and a prefix tree. The PF-list consists of
each distinct item (I ), support (S), periodicity (P), and a pointer pointing to the first
node in the prefix tree carrying the item.

The prefix tree in PF-tree resembles the prefix tree in FP-tree [6]. However, to
record the temporal occurrence information of the patterns, the nodes in PF-tree
explicitly maintain the occurrence information for each transaction by keeping an
occurrence timestamp list, called a ts-list. To achieve memory efficiency, only the
last node of every transaction maintains the ts-list. Hence, two types of nodes are
maintained in a PF-tree: ordinary node and tail node. The former is a type of
node similar to that used in an FP-tree, whereas the latter represents the last item of
any sorted transaction. Therefore, the structure of a tail node is i[tsp, tsq , ..., tsr ],
1 ≤ p ≤ q ≤ r , where i is the node’s item name and tsi ∈ R is the timestamp of a
transaction containing the items from root up to the node i . The conceptual structure
of PF-tree is shown in Fig. 1. Like an FP-tree, each node in PF-tree maintains parent,
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Fig. 1 Conceptual structure of prefix tree in PF-tree. Dotted ellipse represents ordinary node, while
other ellipse represents tail node of sorted transactions with timestamps tsi , ts j ∈ R

Fig. 2 Construction of PF-list. a After scanning first transaction. b After scanning second transac-
tion. c After scanning entire database. d Final list of periodic-frequent items

children, and node traversal pointers. Please note that no node in PF-tree maintains
the support count as in an FP-tree. To facilitate a high degree of compactness, items
in the prefix tree are arranged in support-descending order.

3.2 Step 1: Identifying Periodic-Frequent Patterns

Since periodic-frequent patterns satisfy the downward closure property, periodic-
frequent items will play an important role in effective mining of these patterns. The
set of periodic-frequent items in a temporal database for the user-defined minSup
andmax Per can be discovered by populating the PF-list with a scan on the database.
Algorithm 1 describes the discovery of periodic-frequent items by populating the PF-
list. We now illustrate this algorithm using the database shown in Table 2. Let the
user-specified minSup = 3 and max Per = 6.

Let “tsl” be a temporary list that records the timestamp of last occurrence of an
item i j ∈ I . The scan on the first transaction, “101 : 1 : ab,” inserts the items “a” and
“b” in the PF-list and sets their S, P , and tsl values to 1, 1, and 1, respectively (lines
1 to 5 in Algorithm 1). Figure 2(a) shows the PF-list generated after scanning the first
transaction. The scan on the second transaction, “102 : 3 : abd,” inserts the item “d”
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in PF-list by setting its S, P , and tsl values to 1, 3 (= 3 − 0), and 3, respectively.
In addition, the S, P , and tsl values of the already existing items “a” and “b” are
updated to 2, 2, and 3, respectively (line 6 in Algorithm 1). Figure 2(b) shows the
PF-list generated after scanning the second transaction. Similar process is followed
for remaining transactions in the database and PF-list is updated accordingly. Figure
2(c) shows the PF-list generated after scanning the entire database. Next, the actual
periodici t y of all the items in the PF-list is once again calculated using the ts f inal
value (lines 9 to 11 in Algorithm 1). Figure 2(d) shows the PF-list with the updated
periodici t y values. It can be observed that the periodici t y of h got updated from
4 to 5 to reflect its actual periodici t y in the database. The uninteresting items that
have support less thanminSup or periodici t ymore thanmax Per are pruned from
the PF-list. The remaining items are considered as periodic-frequent items and are
sorted in descending order of their support values (line 12 in Algorithm 1). Figure
2(e) shows the final PF-list containing sorted list of periodic-frequent items. Let L
denote this sorted list of periodic-frequent items.

Algorithm 1 findingPeriodicFrequentItems(T DB: Temporal database, minSup:
minimum support, max Per : maximum periodicity)
1: Let tsl be a temporary array that records the timestamp of the last appearance of each item in

T DB. Let t = {tid, tscur , X} denote the current transaction with tid, tscur and X representing
the transaction identifier, timestamp of the current transaction and pattern, respectively.

2: for each transaction t ∈ T DB do
3: if an item i occurs for the first time then
4: Insert i into the PF-list with supi = 1, peri = (tsini tial − tscur ) and tsil = tscur .
5: else
6: Set supi = supi + 1, peri = max(peri , (tscur − tsil )) and tsil = tscur .
7: end if
8: end for
9: for each item i in PF-list do
10: Set peri = max(peri , (ts f inal − tsil )).
11: end for
12: Remove items from the PF-list that do not satisfy minSup and max Per . Sort the remaining

items in PF-list in descending order of their support . Let L denote this sorted list of periodic-
frequent items.

3.3 Step 2: Construction of PF-Tree

After finding periodic-frequent items items, we conduct another scan on the database
and construct the prefix tree of PF-tree as in Algorithms 2 and 3. These algorithms
are the same as those for constructing an FP-tree [6]. However, the major difference
is that no node in PF-tree maintains the support count as in an FP-tree.

A PF-tree is constructed as follows. First, create the root node of the tree and
labeled it as “null.” Scan the database second time. The items in each transaction are
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Fig. 3 Construction of PF-tree. a After scanning first transaction. b After scanning second trans-
action. c After scanning entire database

processed in L order (i.e., sorted according to descending support count), and a branch
is created for each transaction such that only the tail nodes record the timestamps
of transactions. For example, the scan of the first transaction, “101 : 1 : ab,” which
contains two items (a and b in L order), leads to the construction of the first branch
of the tree with two nodes, 〈a〉 and 〈b : 1〉, where a is linked as a child of the root
and b : 1 is linked to a. The PF-tree generated after scanning the first transaction is
shown in Fig. 3a. The scan on the second transaction, “101 : 3 : abd,” containing the
items a, b, and d in L order, would result in a branch where a is linked to the root, b
is linked to a, and d : 3 is linked to b. However, this branch would share a common
prefix, a and b, with the existing path for first transaction. Therefore, we create a
new node 〈d : 3〉, and link d to b as shown in Fig. 3b. A similar process is repeated
for the remaining transactions and the tree is updated accordingly. Node links were
maintained between the items in the PF-tree for tree traversal. Figure 3c shows the
final PF-tree generated after scanning the entire database.

Algorithm 2 constructPFtree(T DB: Temporal database, PF-list: periodic-frequent
list)
1: Create the root of PF-tree, T , and label it “null”.
2: for each transaction t ∈ T DB do
3: Set the timestamp of the corresponding transaction as tscur .
4: Select and sort the periodic-frequent items in t according to the order of L . Let the sorted

candidate item list in t be [p|P], where p is the first item and P is the remaining list.
5: Call insert_tree([p|P], tscur , T ).
6: end for
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Algorithm 3 insert_tree([p|P], tscur , T )
1: while P is non-empty do
2: if T has a child N such that p.i temName �= N .i temName then
3: Create a new node N . Let its parent link be linked to T . Let its node-link be linked to nodes

with the same itemName via the node-link structure. Remove p from P .
4: end if
5: end while
6: Add tscur to the leaf node.

3.4 Step 3: Recursive Mining of PF-Tree

Although PF-tree and FP-tree arrange items in support-descending order, we cannot
directly apply FP-growth mining on PF-tree as this tree handles the ts-lists at the tail
nodes. In this context, PF-growth employs another pattern growth-based bottom-up
mining technique to mine periodic-frequent patterns from PF-tree.

The PF-tree is mined as follows. Start from each periodic-frequent item (as an
initial suffix pattern), construct its conditional pattern base (a subdatabase, which
consists of the set of prefix paths in the PF-tree co-occurring with the suffix pattern),
then construct its (conditional) PF-tree, and perform mining recursively on such a
tree. The pattern growth is achieved by the concatenation of the suffix pattern with
the periodic-frequent patterns generated from a conditional PF-tree.

The procedure to discover periodic-frequent patterns from PF-tree is shown in
Algorithm 4. The working of these algorithm is as follows. We proceed to construct
the conditional pattern base (or prefix tree) for each periodic-frequent item in the
PF-list, starting from the bottom-most item, say i . To construct the prefix tree for
i , the prefix sub-paths of nodes i are accumulated in a tree structure, PTi . Since i
is the bottom-most item in the PF-list, each node labeled i in the PF-tree must be
a tail node. While constructing PTi , we map the ts-list of every node of i to all
items in the respective path explicitly in the temporary array (one for each item).
This temporary array facilitates the calculation of support and periodici t y for
each item in PTi (line 2 in Algorithm 4). If an item j in PTi has sup( j) ≥ minSup
and per( j) ≤ max Per , we construct its conditional tree and mine it recursively
to discover periodic-frequent patterns (lines 3 to 8 in Algorithm 4). Moreover, to
enable the construction of the prefix tree for the next item in the PF-list, the ts-lists
are pushed up to the respective parent nodes in the original PF-tree and in PTi as
well. All nodes of i in the original PF-tree and i’s entry in the PF-list are deleted
thereafter (line 9 in Algorithm 4).

Consider item “ f ,” which is the last item in the PF-list. This item appears in
the following three branches of original PF-tree: 〈a, b, e, f : 10〉, 〈a, e, f : 12〉
and 〈c, e, f : 4〉 (see Fig. 3c). Considering f as the suffix item, we construct its
conditional pattern base (or prefix tree) as follows: 〈a, b, e : 10〉, 〈a, e : 12〉 and
〈c, e : f 〉. Figure4a shows the prefix tree of f, i.e., PTf . Among all the four items
in PFf , only item e satisfies the condition of support no less than minSup and
periodici t y no more than max Per . Therefore, the conditional tree CTf from PTf
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Fig. 4 Recursive mining of PF-tree. (a) Conditional pattern base of f , (b) conditional PF-tree of
f , and (c) main PF-tree generated after pruning f

Table 4 Mining the PF-tree by creating conditional (sub-)pattern bases

i tem Conditional Pattern base Conditional PF-tree PFPs

f {abe : 9, 11}, {ae : 4}, {dce : 8} 〈e : 4, 8, 9, 11〉 { f e : 2}
e {ab : 9, 11}, {a : 4}, {ad : 9}{dc : 8} 〈a:9,9,11〉 {ea : 2}
c {abd : 12, 12}, {ad : 1}, {d : 6, 8, 10} 〈d : 1, 6, 8, 10, 12, 12〉 {cd : 4}
d {ab : 12, 12}, {a : 1, 9} − −
b {a : 1, 3, 5, 9, 11, 12, 12} 〈a : 1, 3, 5, 9, 11, 12, 12〉 {ab : 5}

is constructed with only one item “e,” as shown in 4b. The ts-list of “e” in CTf ’ gen-
erates T Sef . The support and periodici t y of “e f ” are measured from T Sef . Since
sup(e f ) ≥ minSup and per(e f ) ≤ max Per , “e f ” will be generated as a periodic-
frequent pattern. Next, “ f ” is pruned from the original PF-tree and its ts-lists are
pushed to its parent nodes, as shown in 4c). All the above processes are once again
repeated until the PF-list �= ∅. Mining of PF-tree in Fig. 3(c) is shown in Table 4.

Algorithm 4 PF-growth(Tree, α)
1: for each ai in the header of Tree do
2: Generate pattern β = ai ∪ α. Collect all of the a′

i s ts-lists into a temporary array, T Sβ , and
calculate sup(β) and per(β).

3: if supβ ≥ minSup and per(β) ≤ max Per then
4: Construct β’s conditional pattern base then β’s conditional PF-tree Treeβ .
5: if Treeβ �= ∅ then
6: call PF-growth(Treeβ , β);
7: end if
8: end if
9: Remove ai from the Tree and push the ai ’s ts-list to its parent nodes.
10: end for
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4 Additional Topics

4.1 Maximal Periodic-Frequent Patterns

Since the rationale of periodic-frequent pattern model is to discover all patterns that
are occurring regularly in a temporal database, this model often produces too many
patterns, most of which may be uninteresting to the user. This problem is known
as combinatorial explosion problem. The notion of “maximal periodic-frequent pat-
tern” was exploited to address this problem. A maximal periodic-frequent pattern is
a periodic-frequent pattern whose supersets are not periodic-frequent patterns. The
set of maximal periodic-frequent patterns is generally a minimal subset of periodic-
frequent patterns. More importantly, the maximal periodic-frequent patterns are rep-
resentative since they can be used to recover all periodic-frequent patterns. The exact
support and periodici t y of these patterns, if needed, can later be retrieved by per-
forming a single scan on the database.

Definition 7 (Maximal periodic-frequent pattern X .) A periodic-frequent X is
said to be a maximal periodic-frequent pattern if all of its supersets, say Y ⊃ X , are
not periodic-frequent patterns. That is, if X is a maximal periodic-frequent pattern,
then ∀Y ⊃ X, sup(Y ) ≤ minSup or per(Y ) ≥ max Per .

Example 10 The complete set of periodic-frequent patterns generated from Table 2
are shown in Table 3. Among all of the nine generated periodic-frequent patterns,
only three periodic-frequent patterns, i.e., ab, e f , and cd, are considered as maxi-
mal periodic-frequent patterns it is because their supersets are not periodic-frequent
patterns. In contrast, the periodic-frequent items from a to f are not considered as
maximal periodic-frequent patterns. It is because their supersets are periodic-frequent
patterns.

A variation of PFP-growth algorithm can be employed to find maximal periodic-
frequent patterns. More details on this algorithm can be found at [7].

4.2 Closed Periodic-Frequent Patterns

The limitation of maximal periodic-frequent pattern model is that it fails to preserve
the support and periodici t y information of the subsets of a maximal periodic-
frequent pattern. The concept of closed periodic-frequent patterns represents a con-
cise lossless subset that uniquely describes the complete set of periodic-frequent
patterns along with their support and periodici t y.

Definition 8 (Closed periodic-frequent pattern X .) Let X and Y be two periodic-
frequent patterns such that X ⊂ Y . The periodic-frequent pattern X is said to be a
closed periodic-frequent pattern if sup(X) �= sup(Y ), sup(X) ≥ minSup.
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Example 11 Consider the patterns a, b, and ab in Table 3. Among these three pat-
terns, a and ab are closed periodic-frequent patterns. It is because the support and
periodici t y of a are not same as those of its superset ab, In contrast, b is not a
closed periodic-frequent pattern because its support and periodici t y are same as
those of its superset ab.

The algorithm to find the complete set of closed periodic-frequent patterns may be
found at [7].

4.3 Stable Periodic-Frequent Patterns

A key element that makes periodic-frequent pattern mining viable in the real-world
databases is the max Per constraint. Since max Per controls the maximum time
intervalwithinwhich a patternmust appear in the database, it considers an occurrence
of a pattern to be aperiodic if there exists even one period that is more than the
user-specified threshold value. In other words, max Per prunes all those interesting
patterns that have exhibited partial periodic behavior in the database. To confront
this problem, Philippe et al. [4] introduced a new measure, called liability, to find all
those patterns that have exhibited partial periodic behavior in the database. A variant
of PFP-growth algorithmwas also presented to find all desired patterns in a database.

4.4 Periodic High-Utility Patterns

High-utility patterns are an important class of regularities that exist in a quantitative
transactional database. Each high-utility pattern represents a set of items that have
recorded high value (or utility) in a quantitative transactional database. Philippe et
al. [3] explored the notion of periodicity to discover a class of user interest-based
patterns, called periodically occurring high-utility patterns, in a quantitative tem-
poral database. An efficient algorithm named PHM (periodic high-utility itemset
miner) was also proposed to efficiently enumerate all periodic high-utility patterns.
The popular adoption and successful industrial application of this model have been
hindered by its computational cost as the generated patterns do not satisfy the down-
ward closure property. Efforts are being put forth by the researchers [10] to develop
efficient algorithms to find periodic high-utility patterns.

4.5 Regular Frequent Patterns

Rashid et al. [9] have employed the variance of periods as an interestingness
criterion to discover a class of periodically occurring frequent patterns, called regular
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frequent patterns. A pattern growth algorithm employing a variant of PF-tree was
employed to discover the complete set of regular patterns in a temporal database.
The main limitation of this study is its huge search space and computational cost as
the generated regular frequent patterns do not satisfy the downward closure property.

5 Finding Periodic-Frequent Patterns Using PAMI
Software

In this section, we first describe the procedure to create a temporal database. Next, we
describe the procedure to execute PFP-growth algorithm in PAMI software. Finally,
we describe the procedure to utilize PFP-growth algorithm as a library in a Python
program.

5.1 Format to Create a Temporal Database

In order to discover periodic-frequent patterns from the data using PAMI software,
one needs to construct a temporal database such that each transaction exists in the fol-
lowing format: 〈t imestamp〉 〈i tems appearing in a transaction〉. Please note that
the t imestamp and the items appearing in a transaction must be separated by a tab
space.Moreover, the timestampmust be provided in the relative context, and thus its
initial valuemust always be equal to 1.Multiple transactions can share the same times-
tamp and irregular time gaps may exist between two consecutive timestamps. An
example of a transaction is as follows: “1<tab>a<tab>b<tab>c<tab>d<tab>e,”
where 1 represents the timestamp of a transaction and a, b, c, d, and e represent the
items occurring in the corresponding transaction.

5.2 Executing PFP-Growth in PAMI

The step-by-step procedure to execute PFP-growth algorithm in PAMI software is
as follows:

1. Clone the Github repository on your system by executing the following command
on the terminal: git clone https://github.com/udayRage/PAMI.git.

2. The above command will create a directory, named PAMI, and will download all
of the available algorithms.

3. Enter into PF-growth directory by executing the following command:
cd PAMI/periodicFrequentPattern/basic

4. Execute the PFP-growth algorithm on the terminal using the following command:
pythonPFPGrowth.py〈input File〉 〈output File〉 〈minSup〉 〈max Per〉

https://github.com/udayRage/PAMI.git
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E.g., python PFPGrowth.py sampleTDB.txt patterns.txt 0.3 0.4
Please note that if you enter minSup or max Per in float type, we calculate it as
len(Database) ∗ minSup or len(Database) ∗ max Per . If you enter minSup
or max Per in int we take it as it is.

5. The output file contains patterns and their respective support and periodici t y
values. The format of the output file is 〈Pattern : support : periodici t y〉. The
items within a pattern are separated by a tab space.

5.3 Utilizing the PF-Growth Algorithm in Your Python
Program

Please download the recent version of PAMI library from the Python Package Index
(PyPI) repository. This task can be easily achieved by executing the following com-
mand: pip install pami. Once the PAMI library was successfully installed on your
machine, utilize the PFP-growth algorithm in your Python code as shown in Algo-
rithm 5. For more information, please refer to the documentation code provided
within the PFP-growth algorithm.

Algorithm 5 Utilizing code
1: from PAMI.periodicFrequentPattern.basic import PFPGrowth as pfgrowth
2: pf = pfgrowth.PFPGrowth("inputFileName", "minSup", "maxPer")
3: pf.startMine()
4: periodicFrequentPatterns = pf.getPatterns()
5: print("Total number of PeriodicFrequent Patterns:", len(periodicFrequentPatterns))
6: pf.savePatterns("outpuFileName")
7: memUSS = pf.getMemoryUSS()
8: print("Total Memory in USS:", memUSS)
9: memRSS = pf.getMemoryRSS()
10: print("Total Memory in RSS", memRSS)
11: rTime = pf.getRuntime()
12: print("Total ExecutionTime in seconds:", rTime)
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Discovering Fuzzy Periodic Patterns in
Quantitative Temporal Databases

Pamalla Veena, R. Uday Kiran, Penugonda Ravikumar, and Sonali Aggrawal

Abstract Finding periodic patterns in very large databases is a challenging prob-
lem of great importance in many real-world applications. Most previous studies
focused on discovering these patterns in binary temporal databases by disregarding
the quantity information of the items within the database. In this chapter, we will first
explore the notion of “fuzzy sets” to discover a class of periodic patterns, called fuzzy
periodic-frequent patterns, in a quantitative temporal database. Second, we present
an algorithm to find the desired patterns. Finally, we end this chapter by describing
the procedure to execute the fuzzy periodic-frequent pattern mining algorithm in the
PAMI python kit.

1 Introduction

Periodic-frequent patterns are an important class of periodic patterns that exist in a
temporal database. Since it was first introduced in [5], the problem of finding these
patterns has received a great deal of attention [2–4, 6]. The classic application is
market-basket analytics. It analyzes how regularly the itemsets are being purchased
by the customers. An example of a periodic-frequent pattern is as follows:

{Bread, Jam} [support = 8%, periodici t y = 1 hour ]. (1)
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The above pattern says that 8% of the customers have purchased the items “Bread”
and “Jam,” and the maximum duration between any two consecutive purchases con-
taining both of these items is no more than an hour. This predictive behavior of
the customers’ purchases may facilitate the user in product recommendation and
inventory management.

The popular adoption and successful industrial application of periodic-frequent
patternmodel has been hindered by the following obstacle: “Most studies have aimed
at finding periodic-frequent patterns in a binary temporal database. Consequently,
they are inadequate to find those interesting patterns that are occurring regularly
(or periodically) in a quantitative temporal database.” When confronted with this
problem in the real-world applications, researchers explored the notion of “fuzzy
sets” to discover a class of full periodic patterns, called fuzzy periodic-frequent
patterns [1], in a quantitative transactional database. We now describe the model of
fuzzy periodic-frequent pattern.

2 Model of Fuzzy Periodic-Frequent Pattern

Let I = {i1, i2, · · · , im}, m ≥ 1, be a finite set of m distinct items. A quantitative
temporal database, QT D, is an ordered collection of transactions and their associ-
ated timestamps. Each transaction in this database contains items and their associated
quantities. That is, QT D = {(1, T1), (2, T2), · · · , (ts, Tts)}, where ts ∈ R

+ repre-
sents the timestamp and each transaction Tq ∈ QT D, 1 ≤ q ≤ ts, is a subset of I ,
containing several items with its purchase quantities viq . A set of items Y ⊆ I is
called an itemset (or a pattern). An itemset containing k, k ≥ 1, number of items is
called a k-itemset. An itemset Y is said to be contained in a transaction Tq if Y ⊆ Tq .

Example 1 Let I = {a, b, c, d, e, f } be the set of items. An hypothetical quantita-
tive temporal database generated from the recording of the items in I is shown in
Table 1. This database contains 8 transactions. Each transaction in this database is
associated with a transactional identifier (tid) and a timestamp (ts). In the first trans-
action, (101, 1, {a : 5, b : 1, c : 10, d : 2, e : 9}), 101 represents the transactional
identifier, 1 represents the timestamp, and {a : 5, b : 1, c : 10, d : 2, e : 9} represents
the transaction containing items and their associated quantities.

Definition 1 Let µ = {µ1, µ2, · · · , µh} be the set of h distinct membership func-
tions. The linguistic variable Ri is an attribute of a quantitative temporal database
whose value is the set of fuzzy terms (or items) represented in natural language
as {Ri1, Ri2, · · · , Rih} and can be defined in the membership functions µ. That is,
Ri = {Ri1, Ri2, · · · , Rih}
Example 2 Given the fuzzy membership functions as shown in Fig. 1, the linguistic
variable that can be generated for an item a, i.e., Ra = {a.L , a.M, a.H}. Similar
linguistic variables (or fuzzy items) can be generated for the remaining items in I .
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Table 1 Quantitative temporal database

tid ts Items tid ts Items

101 1 a : 5, b : 1, c :
10, d : 2, e : 9

105 5 a : 7, c : 9, d :
3

102 2 a : 8, b : 2, c :
3, f, 1

106 6 b : 2, c : 6, d :
3

103 3 b : d, c :
9, f : 10

107 7 a : 5, b : 2, c :
5

104 4 a : 5, b : 3, c :
10, e : 3

108 8 a : 3, c :
10, d : 2, e : 2

Fig. 1 The linear membership functions of linguistic 3-terms

Definition 2 The fuzzy set of an item i in Tq , denoted as fiq , is the set of fuzzy
items with their membership degrees transformed from the quantitative value viq by
the membership functions µ as follows:

fiq = µi (viq) = f viq1
Ri1

+ f viq2
Ri2

+ · · · + f viqh
Rih

, (2)

where h is the number of fuzzy terms of i transferred by µ, Ril is the l-th fuzzy
terms of i , f viql is the membership degree of viq of i in the l-th fuzzy terms Ril and
f viql ∈ [0, 1].
Example 3 The value of a in the first transaction of Table 1, i.e., va1 = 5. Based
on the membership function shown in Fig. 1, the fuzzy set of a in T1, i.e., fa1 =
0.2

(
= 6 − 5

6 − 1

)

a.L
+

0.8

(
= 5 − 1

6 − 1

)

a.M
+ 0

a.H
= 0.2

a.L
+ 0.8

a.H
. For the purpose of

simplicity, we represent fa1 = {a.L : 0.2, a.M : 0.8}. Similarly, for the items b, c, d
and e in T1, fb1 = {b.L : 1}, fc1 = {c.M : 0.2, c.H : 0.8}, fd1 = {d.L : 0.8, d.M :
0.2} and fe1 = {e.M : 0.4, e.H : 0.6}.
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Table 2 Fuzzy temporal database generated from Table 1. The “tid” information was removed
from the database for brevity

ts i temset

1 a.L : 0.2, a.M : 0.8, b.L : 1, c.M : 0.2, c.H : 0.8, d.L : 0.8, d.M : 0.2, e.M :
0.4, e.H : 0.6

2 a.M : 0.6, a.H : 0.4, b.L : 0.8, b.M : 0.2, c.L : 0.6, c.M : 0.4, f.L : 1, f.M : 0
3 b.L : 0.6, b.M : 0.4, c.M : 0.4, c.H : 0.6, f.M : 0.2, f.H : 0.8
4 a.L : 0.2, a.M : 0.8, b.L : 0.6, b.M : 0.4, c.M : 0.2, c.H : 0.8, e.L : 0.6, e.M : 0.4
5 a.M : 0.8, a.H : 0.2, c.M : 0.4, c.H : 0.6, e.L : 0.6, e.M : 0.4
6 b.L : 0.8, b.M : 0.2, c.L : 0, c.M : 1.0, d.L : 0.6, d.M : 0.4
7 a.L : 0.2, a.M : 0.8, b.L : 0.8, b.M : 0.2, c.L : 0.2, c.M : 0.8
8 a.L : 0.6, a.M : 0.4, c.M : 0.2, c.H : 0.8, d.L : 0.8, d.M : 0.2, e.L : 0.8, e.M : 0.2

Definition 3 Given a set of fuzzymembership functionsµ, a transaction Tq ∈ QT D

can be transformed into a fuzzy transaction FTq such that FTq =
⋃
i∈Tq

fiq . Thus, the

fuzzy quantitative temporal database, FQT D =
ts⋃

q=1

FTq .

Example 4 The fuzzy transaction generated from T1, i.e., FT1 = fa1 ∪ fb1 ∪ fc1 ∪
fd1 ∪ fe1 = {a.L : 0.2, a.M : 0.8, b.L : 1.0, c.M : 0.2, c.H : 0.8, d.L : 0.8,
d.M : 0.2, e.M : 0.4, e.H : 0.6}. The fuzzy quantitative temporal database gener-
ated by performing similar process on every transaction of Table 1 is shown in
Table 2.

Definition 4 Let R =
⋃
i∈I

Ri denote the set of all fuzzy items generated from I . A

fuzzy pattern X ⊆ R. If X contains k number of distinct fuzzy items, then X is called
fuzzy k-pattern. The support of a fuzzy item (or 1-pattern) Ril , denoted sup(Ril), is
the summation of scalar cardinality of the fuzzy values of fuzzy term Ril in FQT D.
That is,

sup(Ril) =
∑

Ril⊆FTq∧FTq∈FQT D

f vilq . (3)

Example 5 The complete set of fuzzy items in Table 2, i.e., R = {a.L , a.M,

a.H, b.L ,- · · · , f.H}. The set of fuzzy items a.M and b.L , i.e., {a.M, b.L} is a
fuzzy pattern. This pattern contains 2 fuzzy items. Therefore, it is a fuzzy 2-pattern.
In Table 2, the fuzzy item a.M appears in the transactions whose timestamps are
1, 2, 4, 5, 7 and 8. Thus, the support of fuzzy item a.M , i.e., sup(a.M) = f va.M1 +
f va.M2 + f va.M4 + f va.M5 + f va.M7 + f va.M8 = 0.8 + 0.6 + 0.8 + 0.8 + 0.8 +
0.4 = 4.2. Similarly, sup(b.L) = 4.6.
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Definition 5 The support of fuzzy k-pattern, k ≥ 2, denoted as sup(X), is the sum-
mation of scalar cardinality of the fuzzy values for X , which can be defined as

sup(X) = {X ∈ Ril |
∑

Ril⊆Tq∧Tq∈FQT D

min( f vaql , f vbql) (4)

where a, b ∈ X and a �= b.

Example 6 In Table 2, the pattern {a.M, b.L} appears in the transactions whose
timestamps are 1, 2, 4, and 7. Thus, the support of {a.M, b.L} in Table 2, i.e.,
sup(a.M, b.L) = min(0.8, 1) + min(0.6, 0.8) + min(0.8, 0.6) + min(0.8, 0.8) =
0.8 + 0.6 + 0.6 + 0.8 = 2.8.

Definition 6 The fuzzy pattern X is said to be a fuzzy frequent pattern if sup(X) ≥
minSup, where minSup represents the user-specified minimum support value.

Example 7 If the user-specified minSup = 2, then the fuzzy pattern {a.M, b.L} is
said to be a fuzzy frequent pattern because sup({a.M, b.L}) ≥ minSup.

Definition 7 (A period of X ) If X ⊆ FTq , it is said that X occurs in the transaction
Tq . Let tsXq denote the timestamp of the fuzzy transaction FTq containing X . Let tsXi
and tsXj , tsmin ≤ i ≤ j ≤ tsmax , denote two consecutive timestamps at which X has
occurred in FQT D. A period of X in FQT D, denoted as pk = tsXj − tsXi .

Example 8 The pattern {a.M, b.L} appears in the transactionswhose timestamps are
1, 2, 4, and 7. Thus, the periods of this pattern are 1 (= 1 − tsinitial), 1(= 2 − 1), 2(=
4 − 2), 3(= 7 − 4), and 1(= ts f inal − 7), where tsinitial = 0 represents the initial
stamp and ts f inal represents the final timestamps of all transactions in FQT D.

Definition 8 (Periodici t y of X .)Let PX = {pX
1 , p

X
2 , · · · , pX

k }, k = sup(X) + 1,
denote the set of all periods of X in the database. The periodici t y of X , denoted as
per(X), represents the maximum value among all of its periods. That is, per(X) =
max(pX

1 , p
X
2 , · · · , pX

k ).

Example 9 Continuing with the previous example, the set of all periods of
{a.M, b.L}, i.e., P {a.M,b.L} = {1, 1, 2, 3, 1}. Thus, the periodici t y of {a.M, b.L},
i.e., per({a.M, b.L}) = max(1, 1, 2, 3, 1) = 3.

Definition 9 (Fuzzy periodic-frequent pattern X .) A pattern X is called a fuzzy
periodic-frequent pattern if its periodici t y is no greater than the user-specified
maximum periodicity (max Per ) and support is no less than the user-specified min-
imum support (minSup). In other words, X is a fuzzy periodic-frequent pattern if
per(X) ≤ max Per and sup(X) ≥ minSup.

Example 10 If the user-specified minSup = 2 and max Per = 3, then the itemset
{a.M, b.L} is said to be a fuzzyperiodic-frequent pattern because per({a.M, b.L}) ≤
max Per and sup({a.M, b.L}) ≥ minSup. The complete set of fuzzy periodic-
frequent patterns generated from Table 1 are shown in Table 3.
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Table 3 FPFPs generated for working example

S.No. Pattern Support Periodici t y

1 {a.M} 4.2 2

2 {a.M, b.L} 2.8 3

3 {a.M, c.M} 2.2 2

4 {b.L} 4.6 2

5 {b.L , c.M} 2.8 2

6 {c.M} 3.6 1

Since the max Per controls the maximum time interval within which a pattern
must occur in a database, the generated fuzzy periodic-frequent patterns also repre-
sent fuzzy full periodic patterns that may exist in a quantitative temporal database.

Definition 10 (Problem definition.) Given the quantitative temporal database
(QT D) and the user-specified fuzzy membership function (µ), minimum support
(minSup) and maximum periodicity (max Per ), the problem of fuzzy periodic-
frequent patternmining involves discovering all patterns inQT D that have sup(X) ≥
minSup and per(X) ≤ max Per .

3 Proposed Algorithm

The proposed FPFP-Miner employs a fuzzy-list structure to record the fuzzy infor-
mation of the items in a FQT D. The fuzzy-list structure can be used to efficiently
and effectively speed up the computations for directly discovering FPFPs. The phases
of the proposed FPFP-Miner algorithm are described below.

3.1 Fuzzy Periodic Frequent 1-Patterns (FPFP-1)

To find FPFP-1’s, an improved maximum scalar cardinality strategy is adopted, thus
making the number of transformed terms used in later processing equal to the number
of the original items. This strategy can be used to find the most represented term of
each item in the original database.

Definition 11 Improved maximum scalar cardinality: For a linguistic variable
i , the fuzzy terms Ril with the maximum scalar cardinality (support) among the
transformed periodic fuzzy terms are used to present the linguistic variable (item).

After that, the fuzzified quantitative database is then used to find the FPFP-1’s.
The represented fuzzy terms are considered as the FPFP-1’s if the items support is
greater than or equal tominSup and periodici t y is no more than themax Per . The
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FPFP-1’s of each transformed transaction are sorted in their support-ascending order.
If two or more items have same support , then those items are sorted in periodici t y
descending order. This strategy can be used to easily find the fuzzy values between
the transformed fuzzy terms based on the designed fuzzy-list structures explained in
the next subsection

Definition 12 The support-ascending order. For the remaining fuzzy terms with
their fuzzy values in a transaction Tq , the fuzzy terms are sorted in their support-
ascending order to perform the intersection operation for discovering their support
values among the fuzzy k-items (k ≥ 2)

Based on the proposed improved maximum scalar cardinality and the support-
ascending order strategies, the original databases can be transformed as the fuzzified
databases.

3.2 Periodic Fuzzy List Structure

After the original quantitative database is transformed, the FPFP-1’s are used to build
their own fuzzy-list structures for keeping the fuzzy information. The definitions used
in the fuzzy-list structure are respectively given below

Definition 13 A fuzzy term Ril in transaction Tq , and Ril ⊆ Tq . The set of fuzzy
terms after Ril in Tq is denoted as Tq

Ril
.

Definition 14 The internal fuzzy value of a fuzzy term Ril in transaction Tq is
denoted as i f (Ril , Tq).

Definition 15 The resting fuzzy value of a fuzzy term Ril in transaction Tq is denoted
as r f (Ril, Tq) by performing the union operation to get the maximum fuzzy value
of all the fuzzy terms as the upper-bound value in Tq/Ril in Tq , which is defined as

r f (Ril , Tq) = max(i f (z, Tq)|z ∈ Tq/Ril). (5)

In the constructed fuzzy-list structure, each element consists of three attributes as

• Timestamp (ts), which indicates temporal occurence of Tq containing Ril .
• Internal fuzzy value (i f ), which indicates the fuzzy value of Ril in Tq .
• Resting fuzzy value (r f ), which indicates the maximum fuzzy value of the resting
fuzzy terms after Ril in Tq .

The initial fuzzy-list structures of the fuzzy terms in L1 are first constructed.
The support-ascending order of the fuzzy terms in L1 is (c.H < a.M < b.L). The
construction algorithm of fuzzy-list structure is shown in Algorithm 1.
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Algorithm 1 Construct
Input :PX .FL , PY .FL the fuzzy-lists of PX and PY .
Output :PXY .FL the fuzzy-list of PXY

1: initialize PXY .FL to Null
2: for each EY ∈ PX do
3: if ∃EY ∈ PY .FL and EX .tid = EY .tid then
4: EXY .tid ← EX .tid
5: EXY .i f ← min(EX .i f, EY .i f )
6: EXY .r f ← EY .r f
7: EXY ← 〈EXY .tid, EXY .i f, EXY .r f 〉
8: append EXY to PXY .FL
9: return PXY

Fig. 2 Mining process

3.3 Search Space of FPFP-Miner

Based on the designed fuzzy-list structure, the search space of the proposed FPFP-
Miner algorithmcanbe represented as an enumeration tree according to the developed
support-ascending order strategy. In this example, the search space of the enumer-
ation tree is shown in Fig. 2. Since the complete search space of the enumeration
tree is very huge for discovering all fuzzy periodic frequent patterns, it is necessary
to reduce the search space but still can completely find the fuzzy periodic frequent
patterns

Strategy 1. For a pattern X , if its SUM(X.i f ) is no less than the minSup and
periodici t y(X) less than max Per , it is considered as a Fuzzy periodic frequent
pattern. Also, if min(SUM(X.i f ), SUM(X.r f )) of X is no less than the minimum
support count, the supersets of X are required to be generated and determined

Strategy 2. If the summation of the resting fuzzy values of the itemset X is no larger
than the minimum support count, any extensions of X will not be a periodic fuzzy
frequent itemsets and can be directly ignored to avoid the construction phase of the
fuzzy-list structures of the extensions of X .

The approach for this is clearly stated in Algorithm 2
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Algorithm 2 FPFP-Miner
Input:FL pre f i x , prefix, FPFP-1, max Per and minSup.
Output : Fuzzy periodic patterns
1: while FPFP-1 �= Null do
2: FPFPsu f f i x = FPFP-1.pop()
3: FL(pre f i x‖su f f i x)=construct (FL pre f i x , FPFPsu f f i x )
4: if (sum(FL(pre f i x‖su f f i x).i f ) ≥ minSup) AND period((FL pre f i x‖su f f i x ) ≤ max Per)

then
5: Generate (pre f i x ‖ su f f i x) as a FPFP.
6: if sum(FL(pre f i x‖su f f i x).r f ) ≥ minSup then
7: FPFP-Miner(FL(pre f i x‖su f f i x),

(pre f i x ‖ su f f i x), FPFP-1,max Per,minSup)

4 Finding Fuzzy Periodic-Frequent Patterns Using PAMI
Software

In this section, we first describe the procedure to create a quantitative temporal
database. Next, we describe the procedure to execute FPFP-Miner algorithm in PAMI
software. Finally, we describe the procedure to utilize FPFP-Miner algorithm as a
library in a python program.

4.1 Format to Create a Quantitative Temporal Database

In order to discover fuzzy periodic-frequent patterns from the data using PAMI
software, one needs to construct a temporal database such that each transaction must
exist in the following format: 〈timestamp〉: 〈i tems are separated by a space〉:
〈quanti ties o f the respective i tems separated by space〉. An example of a
transaction is as follows: “1 : a b c d : 10 13 15 9,” where 1 is the timestamp, a, b, c
and d are the items occurring in a transaction with the respective values of 10, 13, 15,
and 9.

4.2 Executing FPFP-Miner in PAMI

The step-by-step procedure to execute FPFP-Miner algorithm in PAMI software is
as follows:

1. Clone the Github repository on your system by executing the following command
on the terminal: git clone https://github.com/udayRage/PAMI.git.

2. The above command will create a directory, named PAMI, and will download all
of the available algorithms.

https://github.com/udayRage/PAMI.git
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3. Enter into FPFP-Miner directory by executing the following command:
cd PAMI/periodicFrequentPattern/basic/

4. Execute the FPFPMiner algorithm on the terminal using the following command:
python FPFPMiner.py 〈input File〉 〈output File〉 〈minSup〉 〈max Per〉.
Please note that the user can specify minSup and max Per constraints either in
counts or proportion of the database size. For example, if the user executes the
following command:
python FPFPMiner.py sampleTDB.csv patterns.txt 0.3 0.4,
we consider the minSup and max Per were specified with respect to the propor-
tion of database size. If the user executes the following command:
python FPFPMiner.py sampleTDB.csv patterns.txt 30 40,
we consider the minSup and max Per in counts.

5. The output file contains patterns and their respective support and periodici t y
values. The format of the output file is 〈Pattern : support : periodici t y〉. The
items within a pattern are separated by tab space.

4.3 Utilizing the FPFPMiner Algorithm in Your Python
Program

Please download the recent version of PAMI library from the Python Package Index
(PyPI) repository. This task can be easily achieved by executing the following
command: pip install pami. Once the PAMI library was successfully installed on
your machine, utilize the FPFPMiner Algorithm in your python code as shown in
Algorithm 3. For more information, please refer to the documentation code provided
within the FPFPMiner Algorithm.

Algorithm 3 Utilizing code
1: from PAMI.periodicFrequentPattern.basic import FPFPMiner as alg
2: fpfp =alg.FPFPMiner("inputFileName",0.3,0.4)
3: fpfp.startMine()
4: periodicPatterns = fpfp.getPatterns()
5: print("Total number of Periodic Frequent Patterns:",len(periodicPatterns))
6: fpfp.savePatterns("outputFileName")
7: memUSS = fpfp.getMemoryUSS()
8: print("Total Memory in USS:", memUSS)
9: memRSS =fpfp.getMemoryRSS()
10: print("Total Memory in RSS", memRSS)
11: run = fpfp.getRuntime()
12: print("Total ExecutionTime in seconds:", run)
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Discovering Partial Periodic Patterns
in Temporal Databases

Pamalla Veena, Palla Likhitha, B. Sai chithra, and R. Uday Kiran

Abstract In the previous chapters, we have studied the models and algorithms to
discover different types of full periodic patterns in a temporal database. A key limi-
tation of these studies is that they fail to discover those interesting patterns that have
exhibited partial periodic behavior in a database. In this chapter, we will first study
the novel model of partial periodic pattern that may exist in a temporal database.
Second, we discuss an algorithm to find the desired patterns. Finally, we end this
chapter by describing the procedure to execute the partial periodic pattern mining
algorithm in the PAMI python kit.

1 Introduction

Periodic-frequent pattern mining is an important knowledge discovery technique in
data mining. It involves discovering patterns that satisfy the user-specified minimum
support (minSup) and maximum periodicity (max Per ) constraints. The minSup
controls the minimum number of transactions that a pattern must cover in a database.
The max Per controls the maximum time interval within which a pattern must reap-
pear in the entire database.A classic application ismarket basket analytics. It involves
identifying the set of items that were frequently and regularly purchased by the cus-
tomers. An example of a periodic-frequent pattern is as follows:
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{Bat, Ball} [support = 5%, periodici t y = 1 hour ] (1)

The above pattern says that 5% of the customers have purchased the items ‘Bat’
and ‘Ball,’ and the maximum duration between any two consecutive purchases con-
taining both of these items is no more than an hour. This predictive behavior of the
customers’ purchases may facilitate the user in product recommendation and inven-
tory management. Other real-world applications of periodic-frequent pattern min-
ing includes accident data analytics [8] and body sensor data analytics [7]. Mining
periodic-frequent patterns has inspired other data mining tasks such as high-utility
periodic pattern mining [2], recurring pattern mining [4].

A key element that makes periodic-frequent patternmining practicable in the real-
world applications ismax Per constraint. It is used to prune the search space and limit
the number of patterns being generated from the database. Sincemax Per controls the
maximal time interval within which a pattern must reappear in the database, the basic
model of periodic-frequent pattern prunes all those interesting frequent patterns that
may have exhibited partial periodic behavior in the database. When confronted with
this problem in the real-world applications, researchers have employed alternative
periodicity determining measures, such as periodic-ratio, variance, and liability, to
discover regularities in a temporal database. Unfortunately, these measures do not
satisfy the downward closure property. Consequently, finding periodically occurring
patterns using thesemeasures is computationally expensive process (or impracticable
on large databases).

Against this background, Uday et al. [5] proposed the practicable model of partial
periodic pattern by introducing a new measure, called period-support, that satis-
fies the downward closure property. Furthermore, the authors have also presented a
pattern-growth algorithm, called partial periodic pattern-tree (3P-tree), to find all of
the desired patterns. In the subsequent sections, we will discuss the model of partial
periodic pattern, its mining algorithm, and the implementation of the algorithm in
the PAMI library.

2 The Model of Partial Periodic Pattern

Let I = {i1, i2, · · · , in} be the set of ‘n’ items appearing in a database. A set of
items X ⊆ I is called a pattern. A pattern containing k items is called a k-pattern.
The length of this pattern is k. A transaction tr consists of transaction identi-
fier, timestamp, and pattern. That is, tr = (tid, ts,Y ) , where t id represents the
transactional identifier, ts ∈ R represents the transaction time (or timestamp) and
Y is a pattern. A temporal database T DB is an ordered set of transactions, i.e.,
T DB = {tr1, tr2, · · · , trm}, where m = |T DB| represents the database size (the
number of transactions). Let tsmin and tsmax denote the minimum and maximum
timestamps in T DB, respectively. For a transaction tr = (t id, ts,Y ), such that
X ⊆ Y , it is said that X occurs in tr and such a timestamp is denoted as tsX . Let
T SX = (tsXa , ts

X
b , · · · , tsXc ), a ≤ b ≤ c, be the ordered list of timestamps of trans-
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Table 1 A temporal database

tid ts Items tid ts Items tid ts Items tid ts Items

101 1 abg 105 5 abg 109 9 abe f 113 12 abcd

102 1 acd 106 6 cd 110 9 ade 114 12 abcd

103 3 ab 107 7 bg 111 10 cdg

104 4 ae f 108 8 cde f 112 11 abe f

actions in which X appears in T DB. The number of transactions containing X in
T DB (i.e., the size of T SX ) is defined as the support of X and denoted as sup(X).
That is, sup(X) = |T SX |.
Example 1 Table 1 shows a temporal database with I = {abcde f g}. The set of
items ‘a’ and ‘b,’ i.e., ‘ab’ is a pattern. This pattern contains two items. Therefore,
it is a two-pattern. In the first transaction, tr1 = (101, 1, abg), ‘101’ represents the
tid of the transaction, ‘1’ represents the timestamp of this transaction and ‘abg’
represents the items occurring in this transaction. Other transactions in this database
follow the same representation. This database contains 14 transactions. Therefore,
m = 14. The minimum and maximum timestamps in this database are 1 and 12,
respectively. Therefore, tsmin = 1 and tsmax = 12. The pattern ‘ab’ appears in the
transactions whose timestamps are 1, 3, 5, 9, 11, 12, and 12. Therefore, T Sab =
{1, 3, 5, 9, 11, 12, 12}. The support of ‘ab,’ i.e., sup(ab) = |T Sab| = 7.

Definition 1 (Periodic appearance of pattern X .) Let tsXj , ts Xk ∈ T SX , 1 ≤ j <
k ≤ m, denote any two consecutive timestamps in T SX . The time difference between
tsXk and tsXj is referred as an inter-arrival time of X , and denoted as iat X . That is,
iat X = tsXk − tsXj . Let I AT

X = {iat X1 , iat X2 , · · · , iat Xk }, k = sup(X) − 1, be the
list of all inter-arrival times of X in T DB. An inter-arrival time of X is said to be
periodic (or interesting) if it is no more than the user-specified period. That is, a
iat Xi ∈ I AT X is said to be periodic if iat Xi ≤ per .

Example 2 The pattern ‘ab’ has initially appeared at the timestamps of 1 and 3.
The difference between these two timestamps gives an inter-arrival time of ‘ab.’
That is, iatab1 = 2 (= 3 − 1). Similarly, other inter-arrival times of ‘ab’ are iatab2 =
2 (= 5 − 3), iatab3 = 4 (= 9 − 5), iatab4 = 2 (= 11 − 9), iatab5 = 1 (= 12 − 11)
and iatab6 = 0 (= 12 − 12). Therefore, the resultant I AT ab = {2, 2, 4, 2, 1, 0}. If
the user-specified per = 2, then iatab1 , iatab2 , iatab4 , iatab5 and iatab6 are considered
as the periodic occurrences of ‘ab’ in the data. The iatab3 is considered as an aperiodic
occurrence of ‘ab’ because iatab3 � per .

Definition 2 (Period-support of pattern X .) Let Î AT X be the set of all inter-

arrival times in I AT X that have iat X ≤ PER(X). That is, Î AT X ⊆ I AT X such
that if ∃iat Xk ∈ I AT X : iat Xk ≤ PER(X), then iat Xk ∈ Î AT X . The period-support

of X , denoted as PS(X) = | Î AT X |.
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Example 3 Continuing with the previous example, Î AT ab = {2, 2, 2, 1, 0}. There-
fore, the period-support of ‘ab,’ i.e. PS(ab) = |̂ab| = |{2, 2, 2, 1, 0}| = 5.

The period-support, as defined above, measures the number of cyclic repetitions
of a pattern in the database. In other words, the proposed measure determines the
interestingness of a pattern by taking into account both support and inter-arrival
times in the data.

Definition 3 (Partial periodic pattern X .) A pattern X is a partial periodic pattern if
PS(X) ≥ minPS, where minPS is the user-specified minimum period-support.

Example 4 Continuing with the previous example, if the user-specified minPS =
2, then ‘ab’ is a partial periodic pattern because PS(ab) ≥ minPS.

(Problem definition.)Given a temporal database (T DB), a set of items (I ), period
(per ) andminimum period-support (minPS), the problem of finding partial periodic
patterns involve discovering all patterns in T DB that have period-support no less
than minPS.

The support of a pattern can be expressed in percentage of |T DB|. The period-
support of a pattern can be expressed in percentage of |T DB| − 1, where |T DB| − 1
represents the maximum period-support a pattern can have in the database. The
inter-arrival times of a pattern and the period can be expressed in percentage of
(tmax − tmin). In this chapter, we will employ the above definitions of support ,
period-support, inter-arrival times and period for brevity.

The partial periodic patterns discovered by this model satisfy the downward clo-
sure property [1]. The correctness of this statement is based on Property 1 and shown
in Lemma 1. In the next section, we describe the 3P-growth algorithm that employs
this property to discover the complete set of partial periodic patterns from a temporal
database.

Property 1 If X ⊂ Y , then T SX ⊇ T SY . Therefore, PS(X) ≥ PS(Y ).

Lemma 1 Let X and Y be two patterns such that X ⊂ Y and X 	= ∅. If Y is a partial
periodic pattern, then X is a partial periodic pattern.

Proof According to Definition 3, if Y is a partial periodic pattern, then PS(Y ) ≥
minPS. Based on Property 1, it turns out that PS(X) ≥ PS(Y ) ≥ minPS. Hence-
forth, X is also a partial periodic pattern.

3 3P-Growth

In this section, we describe the 3P-growth algorithm to discover all partial periodic
patterns in a temporal database. Our algorithm involves the following two steps: (i)
compress the database into partial periodic pattern tree (3P-tree) and (i i) recursively
mine the 3P-tree to find all partial periodic patterns. Before we discuss these two
steps, we describe the 3P-tree structure.
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Fig. 1 Conceptual structure of prefix-tree in 3P-tree. Dotted ellipse represents ordinary node, while
other ellipse represents tail-node of sorted transactions with timestamps tsi , ts j ∈ R

3.1 The 3P-tree structure

A 3P-tree has two components: a 3P-list and a prefix-tree. The 3P-list consists of
each distinct item (i), period-support (ps) and a pointer pointing to the first node in
the prefix-tree carrying the item.

The prefix-tree in 3P-tree resembles the prefix-tree in FP-tree. However, to record
the temporal occurrence information of the patterns, the nodes in 3P-tree explicitly
maintain the occurrence information for each transaction by keeping an occurrence
timestamp list, called a ts-list. To achieve memory efficiency, only the last node of
every transaction maintains the ts-list. Hence, two types of nodes are maintained
in a 3P-tree: ordinary node and tail-node. The former is a type of node similar to
that used in an FP-tree [3], whereas the latter represents the last item of any sorted
transaction. Therefore, the structure of a tail-node is i[tsp, tsq , ..., tsr ], 1 ≤ p ≤
q ≤ r , where i is the node’s item name and tsi ∈ R is the timestamp of a transaction
containing the items from root up to the node i . The conceptual structure of 3P-
tree is shown in Figure 1. Like an FP-tree, each node in 3P-tree maintains parent,
children, and node traversal pointers. Please note that no node in 3P-tree maintains
the support count as in an FP-tree. To facilitate a high degree of compactness, items
in the prefix-tree are arranged in support-descending order.

One can assume that the structure of the prefix-tree in 3P-tree may not be memory
efficient since it explicitly maintains timestamps of each transaction. However, it has
been argued that such a tree can achieve memory efficiency by keeping transaction
information only at the tail-nodes and avoiding the support count field at each node
[6]. Furthermore, 3P-tree avoids the complicated combinatorial explosion problem
of candidate generation as in Apriori-like algorithms [1]. Keeping the information
pertaining to transactional identifiers in a tree can also be found in frequent pattern
mining [9] and periodic-frequent pattern mining [6].

3.2 Construction of 3P-tree

Since partial periodic patterns satisfy the anti-monotonic property, partial periodic
items (or 1-patterns) will play an important role in effective mining of these patterns.
The set of partial periodic items in a temporal database for the user-defined per and
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Fig. 2 Construction of 3P-List. a After scanning the first transaction. b After scanning the second
transaction. c After scanning the entire database. d Final 3P-list containing the sorted list of items

minPS can be discovered by populating the 3P-list with a scan on the database.
Figure 2 shows the construction of 3P-list for Table 1 using Algorithm 1. Please note
that the per and minPS values have been set to 2 and 2, respectively.

Let ‘sup’ and ‘tsl’ be two temporary lists that record the ‘support’ and ‘last
occurrence of an item’ i j ∈ I . The scan on the first transaction, “101 : 1 : abg,”
inserts the items ‘a’, ‘b,’ and ‘g’ in the 3P-list and sets their ps, sup, and tsl values
to 0, 1, and 1, respectively (lines 5 and 6 in Algorithm 1). Figure 2a shows the 3P-list
generated after scanning the first transaction. The scan on the second transaction,
“102 : 1 : acd,” inserts the items ‘c’ and ‘d’ in 3P-list by setting their ps, s and tsl
values to 0, 1, and 1, respectively. In addition, the ps, s, and tsl values of an already
existing item ‘a’ are updated to 1, 2, and 1, respectively (lines 8–10 in Algorithm
1). Figure 2b shows the 3P-list generated after scanning the second transaction.
Similar process is followed for remaining transactions in the database and 3P-list is
updated accordingly. Figure 2c shows the 3P-list generated after scanning the entire
database. As the partial periodic patterns satisfy the anti-monotonic property, the
aperiodic items that have ps value less than minPS are pruned from the 3P-list.
The remaining items are sorted in descending order of their support (line 11 in
Algorithm Algorithm 1). Figure 2d shows the final 3P-list containing sorted list of
partial periodic items. Let C I denote this sorted list of partial periodic items.

After finding partial periodic items, we conduct another scan on the database and
construct the prefix-tree of 3P-tree as in Algorithms 2 and 3. These algorithms are
the same as those for constructing an FP-tree [3]. However, the major difference is
that no node in 3P-tree maintains the support count as in an FP-tree.

A 3P-tree is constructed as follows. First, create the root node of the tree and
labeled it as “null.” Scan the database second time. The items in each transaction
are processed in C I order (i.e., sorted according to descending support count) and
a branch is created for each transaction such that only the tail-nodes record the
timestamps of transactions. For example, the scan of the first transaction, “101 :
1 : abg,” which contains two items (a, b in C I order), leads to the construction of
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Algorithm 1 Construction of 3P-List(T DB: temporal database, I : set of items,
minPS: minimum period-support, per : period)
1: The timestamps of the last occurring transactions of all items in the 3P-list are explicitly

recorded for each item in a temporary array, called tsl . Similarly, the support of all items in
the 3P-list are explicitly recorded in another temporary array, called sup. (The 3P-tree will be
constructed in the support descending order of items to achieve memory efficiency.) These two
arrays can be ignored after finding partial periodic items (or 1-patterns).

2: Let t = {tid, tscur , X} denote the current transaction with tscur and X representing the times-
tamp and a pattern, respectively.

3: for each transaction t ∈ T DB do
4: for each item i ∈ X do
5: if i does not exist in 3P-list then
6: Add i to the 3P-list and set ps(i) = 0, sup(i) = 1 and tsl(i) = tscur .
7: else
8: if tscur − tsl(i) ≤ per then
9: Set ps(i) + +.
10: end if
11: Set tsl = tscur and sup(i) + +.
12: end if
13: end for
14: end for
15: Prune all aperiodic-items from the 3P-list that have period-support less than minPS. Consider

the remaining items in 3P-list as partial periodic items and sort them in descending order of their
support . Let C I denote this sorted list of items.

the first branch of the tree with two nodes, 〈a〉 and 〈b : 1〉, where a is linked as
a child of the root and b : 1 is linked to a. The 3P-tree generated after scanning
the first transaction is shown in Figure 3a. The scan on the second transaction,
“101 : 1 : acd,” containing the items a, d and c inC I order, would result in a branch
where a is linked to the root, d is linked to a and c : 1 is linked to d. However, this
branch would share a common prefix, a, with the existing path for first transaction.
Therefore,we create two newnodes 〈d〉 and 〈c : 1〉, and link d to a and c to d as shown
in Figure 3b. A similar process is repeated for the remaining transactions and the tree
is updated accordingly. Figure 3c shows the 3P-tree constructed after scanning the
entire database. For simplicity, we do not show the node traversal pointers in trees;
however, they are maintained like an FP-tree does.

Algorithm 2 3P-Tree(T DB, 3P-list)
1: Create the root of 3P-tree, T , and label it “null.”
2: for each transaction t ∈ T DB do
3: Set the timestamp of the corresponding transaction as tscur .
4: Select and sort the partial periodic items in t according to the order of C I . Let the sorted

candidate item list in t be [p|P], where p is the first item and P is the remaining list.
5: Call insert_tree([p|P], tscur , T ).
6: end for
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Fig. 3 Construction of 3P-tree. a After scanning the first transaction. b After scanning the second
transaction. c Final 3P-tree generated after scanning the entire database

Algorithm 3 insert_tree([p|P], tscur , T )
1: while P is non-empty do
2: if T has a child N such that p.i temName 	= N .i temName then
3: Create a new node N . Let its parent link be linked to T . Let its node-link be linked to nodes

with the same itemName via the node-link structure. Remove p from P .
4: end if
5: end while
6: Add tscur to the leaf node.

The 3P-tree maintains the complete information of all partial periodic patterns in
a database. The correctness is based on Property 2 and shown in Lemmas 2 and 3.
For each transaction t ∈ T DB, C I (t) is the set of all partial periodic items in t , i.e.,
C I (t) = i tem(t) ∩ C I , and is called the partial periodic item projection of t (Fig. 4).

Fig. 4 Mining 3P-tree. a conditional pattern base of ‘ f .’ b conditional 3P-tree of ‘ f ’. c 3P-tree
after pruning the item ‘ f ’
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Property 2 A 3P-tree maintains a complete set of partial periodic item projections
for each transaction in a database only once.

Lemma 2 Given a T DB and user-defined per and minPS values, the complete
set of all partial periodic item projections of all transactions in the T DB can be
derived from the 3P-tree.

Proof Based on Property 2, each transaction t ∈ T DB is mapped to only one path
in the tree, and any path from the root up to a tail node maintains the complete
projection for exactly n transactions, where n is the total number of entries in the
ts-list of the tail node.

Lemma 3 The size of 3P-tree (without the root node) on a T DB for the user-
specified per and minPS values is bounded by

∑

t∈T DB

|C I (t)|.

Proof According to the 3P-tree construction process and Lemma 2, each transaction
t contributes at most one path of size |C I (t)| to 3P-tree. Therefore, the total size
contribution of all transactions can be

∑

t∈T DB

|C I (t)| at best. However, since there

are usually many common prefix patterns among the transactions, the size of 3P-tree
is normally much smaller than

∑

t∈T DB

|C I (t)|.

4 Finding Partial Periodic Patterns Using PAMI Software

In this section, we first describe the procedure to create a temporal database. Next, we
describe the procedure to execute 3P-growth algorithm in PAMI software. Finally,
we describe the procedure to utilize 3P-growth algorithm as a library in a python
program.

4.1 Format to Create a Temporal Database

In order to discover periodic-frequent patterns from the data using PAMI software,
one needs to construct a temporal database such that each transaction exists in the
following format: 〈timestamp〉 〈i tems appearing in a transaction〉. Please note
that the t imestamp and the items appearing in a transaction must be separated by
space. Moreover, the timestamp must be provided in the relative context, and thus,
its initial value must always be equal to 1. Multiple transactions can share the same
timestamp and irregular time gaps may exist between two consecutive timestamps.
An example of a transaction is as follows: “1 a b c d e,” where 1 represents the
timestamp of a transaction and a, b, c, d and e represents the items occurring in the
corresponding transaction.
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4.2 Executing 3P-Growth in PAMI

The step-by-step procedure to execute PFP-growth algorithm in PAMI software is
as follows:

1. Clone the Github repository on your system by executing the following command
on the terminal: git clone https://github.com/udayRage/PAMI.git.

2. The above command will create a directory, named PAMI, and will download all
of the available algorithms.

3. Enter into 3P-growth directory by executing the following command:
cd PAMI/partialPeriodicFrequentPattern/basic.

4. Execute the 3p-growth algorithm on the terminal using the following command:
pythonthreePGrowth.py〈input File〉 〈output File〉 〈minPS〉 〈per〉
E.g., python ThreePGrowth.py sampleTDB.txt pattext 0.3 0.4
Please note that if you enter minPS or per in float type, we calculate it as
len(Database) ∗ minPS or len(Database) ∗ per . If you enter minSup or
max Per in int we take it as it is.

5. The output file contains patterns and their respective period-support values.
The format of the output file is 〈Pattern : period-support〉. The items within
a pattern are separated by a tab space.

4.3 Utilising the 3P-Growth Algorithm in Your Python
Program

Please download the recent version of PAMI library from the Python Package Index
(PyPI) repository. This task can be easily achieved by executing the following
command: pip install PAMI. Once the PAMI library was successfully installed on
your machine, utilize the 3P-growth algorithm in your python code as shown in
Algorithm 4. For more information, please refer to the documentation code provided
within the 3P-growth algorithm.

https://github.com/udayRage/PAMI.git
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Algorithm 4 Utilising code
1: from PAMI.partialPeriodicFrequentPattern.basic import threePGrowth as 3pgrowth
2: 3p = 3pgrowth.threePGrowth("inputFileName", "minPS", "per")
3: 3p.startMine()
4: partialPeriodicPatterns = 3p.getPatterns()
5: print("Total number of partial periodic Patterns:", len(partialPeriodicPatterns))
6: 3p.savePatterns("outpuFileName")
7: memUSS = 3p.getMemoryUSS()
8: print("Total Memory in USS:", memUSS)
9: memRSS = 3p.getMemoryRSS()
10: print("Total Memory in RSS", memRSS)
11: rTime = 3p.getRuntime()
12: print("Total ExecutionTime in seconds:", rTime)
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Finding Periodic Patterns in Multiple
Sequences

Philippe Fournier-Viger, Tin Truong Chi, Youxi Wu, Jun-Feng Qu,
Jerry Chun-Wei Lin, and Zhitian Li

Abstract Discovering periodic patterns in data is an important data analysis task.
A periodic pattern is a set of values that regularly appear together over time. Finding
such patterns can be useful to understand the data and make predictions. However,
most studies on periodic patternmining have focused on identifying periodic patterns
in a single discrete sequence. But formany applications, it is desirable to find patterns
that are common to multiple sequences. For instance, it can be interesting to identify
periodic behavior that is common to several customers in a store. This chapter gives
an overview of the general problem of discovering periodic patterns in multiple
sequences, and two special cases that are to find (1) frequent patterns and (2) rare
correlated patterns in multiple sequences. Two algorithms are described, which can
be applied inmany domains where data can bemodeled as discrete sequences such as
to find periodic patterns in sequences of customer purchases, in sequences of words
in a text document, and in sequences of treatments received by hospital patients.
Research opportunities are also discussed.
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1 Introduction

Pattern mining is an important subfield of data mining that aims at finding interesting
patterns in databases [1, 47].Apattern can be described generally as some association
between values appearing in data that can help understanding the data and/or support
decision-making. Algorithms have been designed to find patterns in different types
of data such as customer transaction databases [22, 26], graphs [37], trees [9, 70],
process logs [8], trajectories [15, 71], sequences [25], spatial data [56] and ranking
data [36]. Moreover, algorithms were proposed to find various types of patterns in
data such as frequent patterns [2, 22, 25], rare patterns [40], and periodic patterns
[4, 30, 61]

In the last decade, periodic pattern mining [4, 5, 30, 38, 39, 58, 61, 63] has
emerged as an important data analysis task. It aims at finding patterns that regularly
appear in the data. The traditional input of periodic pattern mining is a customer
transaction database where each record contains a set of items purchased together at a
given time by a customer [4, 30]. In thatmodel, a periodic pattern can be, for example,
that the customer regularly buyswinewith cheese (e.g., everyweekend). Finding such
patterns can be useful for purposes such as marketing or product recommendation.
For example, an online store could provide discounts on wine with cheese to a
customer that regularly buys these items together.

Generally, a customer transaction database can be viewed as a sequence of discrete
events or symbols that are sequentially ordered. Discrete sequences can be found in
many domains besides shopping. For example, the sequence of words in a book can
be viewed as a discrete sequence, as well as the sequence of locations visited by a
person when driving a car. Hence, periodic pattern mining can be applied in many
domains.

Several variations of the problem of periodic pattern mining have been studied
but the majority of them focuses on analyzing a single discrete sequence. However,
for many applications, it is desirable to analyze more than a single sequence at a time
[20, 29]. For example, continuing the example of analyzing customer transactions,
a business owner may want to analyze sequences of transactions made by several
customers to discover periodic behavior that is common to several customers rather
than analyzing each customer separately. This can provide insights such that many
customers regularly buy bread and milk together.

Recently, a few algorithms have been designed to find periodic patterns common
to multiple sequences such as MRCPPS [29], MPFPS [20]. These algorithms utilize
different definitions of periodic patterns and also of sequences. This chapter gives an
overview of the task of mining periodic patterns in a set of discrete sequences, the
algorithms, and discuss applications and research opportunities.

The chapter is organized as follows: Section 2 briefly reviews the traditional
problem of periodic pattern mining in sequence. Then, Sect. 3 presents the main
model for discovering periodic patterns in multiple discrete sequences. Then, Sect. 4
briefly describes strategies used by the algorithms for this problem. Then, Sect. 5
discusses opportunities for research on this topic. Finally, Sect. 6 draws a conclusion.
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2 Finding Periodic Patterns in a Single Discrete Sequence

The type of data considered in traditional periodic pattern mining studies is a discrete
sequence [28], also called a sequence of transactions or transaction database [30].

Definition 1 (Discrete sequence) Let there be a set of items I (symbols or event
types). An itemset X is a subset of I , that is, X ⊆ I . An itemset containing k items is
said to be a k-itemset. A sequence s is an ordered list of itemsets s = 〈T1, T2, . . . Tm〉,
where Tj ⊆ I (1 ≤ j ≤ m), j is the transaction identifier of Tj , and Tj is said to be
a transaction.

Example 1 Let there be some products called a, b, c, d, and e that are sold in a
retail store. This set of products is denoted as I = {a, b, c, d, e}. Then, a sequence
of purchases made by a customer over time can be represented as shown in Fig. 1.
This sequence indicates that a person has bought items a, b, and c at the same time,
then purchased b and d together; then bought a, b, and e together; then purchased c;
then bought a, b, d, and e together; and so on. This sequence contains eight itemsets.
The itemset {a, b, c} is a 3-itemsets.

Sequences of transactions can be used to represent data from multiple domains
besides shopping data. For example, a sentence in a text can be viewed as a discrete
sequence where each word is an item. Another example is a sequence of locations
visited by a tourist in a city, where items represent locations. Another example of a
discrete sequence is the genome of a virus such as 〈{A}, {T }, {A}, {A}, {C}, {A}, . . .〉,
where each item is a nucleotide denoted as A, C , G, and T [49]. Thus, as it can be
observed by these examples, items in a discrete sequence can be ordered by time or
other criteria. A discrete sequence where each transaction contains a single item is
called a string, and a discrete sequence ordered by time can be called a temporal
database, temporal sequence, event sequence [6, 32], or event log [18], depending
on the context.

To find interesting patterns in a discrete sequence, it is necessary to define more
clearly what we mean by periodic pattern and also to define some measures to select
patterns that are periodic. In the traditional periodic pattern mining task, the type
of patterns to be discovered is an itemset. The measures for identifying periodic
itemsets are defined based on the following definitions.

Definition 2 (Subsequence) Let there be two sequences sa = 〈A1, A2, . . . , Ak〉
and sb = 〈B1, B2, ..., Bl〉. The sequence sa is a subsequence of sb if and only if some
integer numbers 1 ≤ i1 < i2 < ... < ik ≤ m can be found such that A1 ⊆ Bi1, A2 ⊆
Bi2, ..., Ak ⊆ Bil . The containment relationship between sequences is denoted as
sa � sb.

Fig. 1 A discrete sequence of customer purchases
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Example 2 The sequence 〈{a, b, c}, {b, e}〉 is a subsequence of the sequence illus-
trated in Fig. 1.

The traditional model for mining periodic patterns in a discrete sequence relies
on the support and maximum periodicity measure to identify periodic patterns
[4, 30].

Definition 3 (Support of an itemset in a sequence) Let there be an itemset X
and a discrete sequence s. For an itemset X , the notation T R(X, s) denotes the
ordered set of transactions T R(X, s) = 〈Tg1 , Tg2 , ..., Tgk 〉 � s where X appears in
the sequence s. The support of X in s is the number of transactions containing X ,
that is, sup(X, s) = |T R(X, s)|.
Example 3 The itemset {a, b} appears three times in the sequence of Fig. 1. Hence,
the support of {a, b} in that sequence is 3, which is denoted as sup({a, b}) = 3.

Definition 4 (Maximum periodicity of an itemset in a sequence) Let there be
a discrete sequence s. Two transactions Tx and Ty in s are said to be consec-
utive with respect to X if there does not exist a transaction Tz ∈ s such that
x < z < y and X ⊆ Tz . The period of two consecutive transactions Tx and Ty for
a pattern X is defined as per(Tx , Ty) = y − x . The periods of X in a sequence
s are pr(X, s) = {per1, per2, ..., perk+1} where per1 = g1 − g0, per2 = g2 − g1,
…perk+1 = gk+1 − gk , and g0 = 0 and gk+1 = n, respectively. The maximum peri-
odicity of an itemset X in a sequence s is defined as max Pr(X, s) =
argmax(pr(X, s)) [4].

Example 4 For example, consider the itemset X = {a, b}. That itemset appears in
three transactions of the sequence of Fig. 1, namely, T1, T3, and T5. Hence, it is said
that T R(X, s1) = {T1, T3, T5}. The periods of X in that sequence are pr(X, s) =
{1, 2, 2, 3}. The maximum periodicity of X in that sequence is max Pr(X, s) =
argmax({1, 2, 2, 3}) = 3.

In the traditional periodic pattern mining model, the goal is to find all the periodic
itemsets in a sequence s. Let there be two user-specified thresholds called the max-
imum periodicity threshold max Per and the minimum support threshold minSup.
An itemset X is deemed periodic in a sequence s if max Pr(X, s) ≤ max Per and
sup(X, s) ≥ minSup.

Example 5 If max Pr = 3 and minSup = 3, the itemset {a, b} is periodic in the
sequence of Fig. 1 because its periods are pr({a, b}, s1) = {1, 2, 2, 3}, its maximum
period is max Pr({a, b}, s) = max{1, 2, 2, 3} = 3 ≤ max Pr and sup({a, b}, s) =
3 ≥ minSup.

In the above example, the sequence does not contain timestamps. But it should
be noted that it is simple to extend the previous model to use timestamps. This can
be done by replacing transaction identifiers by timestamps.

Several algorithms have been designed for the traditional problem of mining peri-
odic patterns in a sequence [4, 30].Moreover, in the last decades, several variations of
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that problem have been proposed using alternative functions to evaluate the periodic-
ity of each itemset X . Some functions that have been used to provide more flexibility
are the minimum periodicity [30], average periodicity [30], and standard deviation
of periods [20, 50, 51], respectively, defined asminPr(X, s) = argmin(pr(X, s)),

avgPr(X, s) = average(pr(X, s)), and stanDev(X, s) =
√∑

v∈pr(X,s)(v−avgPr(X,s))2

avgPr(X,s)
.

Example 6 Continuing the previous example, minPr(X, s1) = argmin({1, 2, 2,
3}) = 1, avgPr(X, s1) = average({1, 2, 2, 3}) = 1+2+2+3

4 = 2. Also, stanDev

(X, s1) =
√

(1−2)2+(2−2)2+(2−2)2+(3−2)2

4 = √
0.5 ≈ 0.71.

Another function is the variance of periods [43, 54, 55]. In some other recent
studies, a function to evaluate the periodic stability was introduced to find patterns
that have a stable periodic behavior over time [27, 31]. The concept of periodicity has
also been combined with various other functions to evaluate other aspects besides
periodicity such as the utility (e.g., profit or importance) [12, 13, 23] and a statistical
test [50]. However, all the above models are designed to find patterns in a single
sequence rather than finding patterns that are common to multiple sequences. The
next section discusses how periodic patterns can be discovered inmultiple sequences.

3 Finding Periodic Patterns in Multiple Discrete Sequences

For many applications, the data is represented as a set of discrete sequences rather
than a single sequence. This data format is called a sequence database, and is defined
as follows.

Definition 5 (Sequence database) A sequence database D is a set of n sequences
that is ordered, denoted as D = 〈s1, s2, ..., sn〉. The i-th sequence of D is denoted as
si , and its sequence identifier is said to be i .

Example 7 A small sequence database is shown in Table 1. This database contains
four sequences that have the sequence identifiers 1, 2, 3, and 4. These four sequences
could indicate the sequence of purchases made by four customers in a store. For
example, sequence 1 indicates that a customer purchased items a, b, and e together;

Table 1 An example sequence database

Identifier Sequence

1 〈{a, b, e}, {a, b, e}, {a, d}, {a, e}, {a, b, c}〉
2 〈{c}, {a, b, c, e}, {c, d}, {a, b, c, e}, {a, b, d}〉
3 〈{b, c}, {a, b}, {a, c, d}, {a, c}, {a, b}〉
4 〈{a, b, d, e}, {a, b, e}, {a, b, c}, {a, b, d, e}, {a, b}〉
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followed by a, b, and e; followed by a and d; followed by a and e; and lastly followed
by a, b, and c.

For such data, it can be desirable to find patterns that are periodic in multiple
sequences rather than to consider each sequence separately. For this purpose, an
evaluation function called the sequence periodic ratio was proposed [20, 29]. This
function is defined as follows.

Definition 6 (Sequence periodic ratio) The number of sequences where an itemset
X is periodic in a sequence database D is denoted and defined as numSeq(X). The
sequence periodic ratio of X in D is defined as ra(X) = numSeq(X)/|D|, where
|D| is the number of sequences in D.

In other words, the sequence periodic ratio represents the percentage of sequences
from a databasewhere an itemset X is periodic. Then, the problem of finding periodic
patterns common to multiple sequences is defined as follows.

Definition 7 (General problem ofmining periodic patterns common tomultiple
sequences) Let there be a sequence database, a minimum sequence periodic ratio
threshold minRa and a definition of what is a periodic pattern in a single sequence.
An itemset X is a periodic pattern in D if ra(X) ≥ minRa. The problem of mining
periodic patterns common to multiple sequences is to find all periodic patterns in D.

It is to be noted that the above problem definition and sequence periodic ratio are
defined in a general way such that various pattern evaluation functions could be used
to evaluate if a pattern is periodic in each sequence. In the following two subsections,
two instantiations of the general problem are presented to, respectively, find (1)
periodic frequent patterns in multiple sequences and (2) rare correlated periodic
patterns. For each of these problem instantiation, different evaluation functions are
used to determine if a pattern is periodic in a sequence.

3.1 Finding Frequent Periodic Patterns

The first problem instantiation is designed to find periodic patterns that are frequent,
that is, that appear in many sequences of a sequence database. For example, an
application is to find periodic patterns that are common to many customers of a retail
store. This problem is defined as follows [20].

Definition 8 (Problem of mining periodic frequent patterns common to multi-
ple sequences)Let there be a sequence database D, and four user-defined thresholds,
namely, the minimum support threshold minSup, maximum periodicity threshold
max Pr , maximum standard deviation threshold maxStd, and minimum sequence
periodic ratio threshold minRa. In that definition, an itemset X is periodic in a
sequence s if max Per(X, s) ≤ max Pr ∧ sup(X, s) ≥ minSup ∧ stanDev
(X, s) ≤ maxStd}|. The problem of mining frequent periodic patterns common to



Finding Periodic Patterns in Multiple Sequences 87

Table 2 Periodic Frequent Patterns found in the database of Fig. 1 for different threshold values

minSup max Pr maxStd minRa Periodic frequent patterns found

2 3 1.0 0.6 {a}, {e}, {a, e}
2 3 1.0 0.4 {a}, {b}, {c}, {e}, {a, b}, {a, e},

{b, e}, {a, b, e}
2 1 1.0 0.6 {a}
3 3 1.0 0.6 {a}
2 3 1.5 0.6 {a}, {b}, {e}, {a, b}, {a, e},

multiple sequences is to find all Periodic Frequent Patterns (PFP) [20]. An itemset
X is a PFP in D if ra(X) ≥ minRa.

Example 8 Consider the database D of Table 1, and that the user specifies some
thresholds minSup = 2, max Pr = 3, maxStd = 5.0, and minRa = 0.3. Let X =
{a, b}. The itemset X is periodic in sequence s1, s2, and s4. Thus, numSeq(X) = 3.
Furthermore, as the database contains four sequences, i.e., |D| = 4, the sequence
periodic ratio of X is ra(X) = 3/4 = 0.75. Hence, X is a PFP in the database. The
list of all PFP that can be found for different threshold values is shown in Table 2.

It is interesting to observe that the traditional problem of mining periodic frequent
patterns in a single sequence can be viewed as a special case of the general problem
of mining periodic frequent patterns common to multiple sequences such that the
sequence database contains a single sequence and minRa = 0.

3.2 Finding Rare Correlated Periodic Patterns

The previous problem instantiation is designed to find periodic patterns that are
frequent (appear inmany sequences).Although these patternsmaybe interesting, rare
patterns can also be valuable. To be able to find rare patterns, a second instantiation
of the general problem of mining periodic patterns common to multiple sequence
was defined to find rare correlated periodic patterns [29]. The motivation is to find
patterns that are periodic, appear rarely but contain items that are strongly correlated
in a sequence database. For the example of analyzing customer data, this can mean
to find patterns that are periodic and rare (not purchased by many customers) but
have a strong correlation.

To find rare patterns in data, several methods have been proposed in the litera-
ture [42, 46, 59, 60] using different definitions of what is a rare pattern and how to
efficiently find these patterns. For an overview of studies on rare pattern mining, the
reader can refer to a recent survey about finding rare patterns by Koh et al. [41]. In
the following, a simple definition of what is a rare pattern is used. It is that an itemset
is rare if its support is not greater than some maximum support threshold maxSup
set by the user.
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But a problemwith rare patterns is that because they seldomly appear, it is possible
that some of them contains items that appear together by chance. To avoid this
problem and find patterns representing items that are strongly correlated, several
correlation measures have been used in itemset mining such as the bond [18, 21, 52,
69], affinity [3], all-confidence [52, 63], coherence, and mean [7, 57], each having
different advantages and limitations [33]. In the problem instantiation presented in
this section, the bond measure is used because it is a simple measure, it is easy to
calculate, and also easy to interpret. The bond of an itemset is defined based on the
following definitions.

Definition 9 (Disjunctive support) Let there be a sequence s and an itemset X .
The disjunctive support of X in s is the number of transactions that contain one or
more items from X . It is denoted as dissup(X, s) and defined as dissup(X, s) =
max{sup(X, s)|X ∈ s}.
Definition 10 (Bond) Let there be a sequence s and an itemset X . The bond of X
in s is defined as bond(X, s) = sup(X,s)

dissup(X,s) .

The bond of an itemset can take a value in the [0, 1] interval such that a value of
0 indicates a low correlation and a value of 1 indicates the maximum correlation.

Example 9 The disjunctive support of the itemset {a, e} in the first sequence (s1) of
the database of Table 3 is calculated as dissup({a, e}, s1) = 5, while the support of
{a, e} is sup({a, e}) = 3. Hence, the bond of that itemset is bond({a, e}, s1) = 3

5 =
0.6.

Based on the concept of rare patterns and the bond measure for identifying cor-
related patterns, the second problem instantiation is defined.

Definition 11 (Rare correlated periodic pattern in a sequence) Let there be
three thresholds, namely, the maximum support threshold (maxSup), minimum
bond threshold (minBond), and maximum standard deviation threshold (maxStd).
An itemset X is a rare correlated periodic pattern in a sequence s if sup(X, s) ≤
maxSup, stanDev(X, s) ≤ maxStd, and bond(X, s) ≥ minBond.

Example 10 The periods of itemset X = {a} in the sequence s2 are pr(X, s2) =
{2, 2, 1, 0}. Hence, sup(X, s2) = 4, dissup(X, s2) = 4, bond({a}) = 4

4 = 1,

Table 3 A second example sequence database

SID Sequence

1 〈{a, c, e}, {a, b, e}, {a, d}, {a, b, e}, {a, c}〉
2 〈{c}, {a, b, c, e}, {c, d}, {a, b, c, e}, {a, b, d}〉
3 〈{b, c}, {a, b}, {a, c, d}, {a, c}, {a, b}〉
4 〈{a, b, d, e}, {a, b}, {a, c}, {a, b, d, e}, {a, d}〉
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max Pr(X, s2) = 2 and avgPr(X, s2) = 2+2+1+0
4 = 1.25. The standard deviation of

periods is

stanDev(X, s2) =
√

(2−1.25)2+(2−1.25)2+(1−1.25)2+(0−1.25)2

4 = √
0.6875 ≈ 0.83. Thus,

if minBond = 0.5, maxStd = 0.9, and maxSup = 4, the itemset X is a rare corre-
lated periodic pattern in sequence s2.

Definition 12 (Sequence periodic ratio) In the context of discovering rare cor-
related periodic patterns, the number of sequences where an itemset X is a rare
correlated periodic pattern in a sequence database D is denoted and defined as
numSeq(X). Moreover, the sequence periodic ratio of X in D is defined as
ra(X) = numSeq(X)/|D|, where |D| is the number of sequences in D.

Definition 13 (Problem of mining periodic rare correlated periodic patterns
common to multiple sequences) Consider a sequence database D and four user-
specified thresholds: a maximum support threshold (maxSup), a minimum bond
threshold (minBond), a maximum standard deviation threshold (maxStd), and a
minimum sequence periodic ratio threshold (minRa). The problem of mining RCPP
common to multiple sequences is to find all the Rare Correlated Periodic Patterns
(RCPP) in the database D, that is, each itemset X where ra(X) ≥ minRa [29].

Example 11 Consider the database of Table 3 and that the thresholds are set by
the user as maxSup = 2, maxStd = 1, minBond = 0.6, and minRa = 0.70. The
itemset {b, e} is a rare correlated periodic pattern in sequence s1, sup({b, e}, s1) = 2,
stanDev({b, e}, s1) = 0.47, and bond({b, e}, s1) = 0.67. Moreover, it can be found
that {b, e} is also a rare correlated periodic pattern in sequence s2 and s4. Hence,
numSeq({b, e}) = 3 and the sequence periodic ratio of {b,e} is ra({b, e}) = 3/4 =
0.75. Thus, {b, e} is a RCPP.

The problem of discovering RCPP in a database is hard because the maximum
support and standard deviation functions cannot be directly used to reduce the search
space, as these functions are neithermonotonic nor anti-monotonic. Thus, other ideas
must be used to design efficient algorithms. Thosewill be discussed in the next section
describing algorithms.

4 Two Algorithms

This section presents two efficient algorithms for mining periodic patterns in mul-
tiple sequence. The first subsection presents the MPFPS (mining periodic frequent
patterns inmultiple sequences) algorithm to solve the first problem instantiation from
Sect. 3.1, while the following subsection presents the MRCPPS algorithm to solve
the problem instantiation of Sect. 3.2.
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4.1 The MPFPS Algorithm to Mine for Mining Frequent
Periodic Patterns in Multiple Sequences

The key challenge to find periodic patterns inmultiple sequences is how to reduce the
search space to avoid looking at all the possible itemsets. In thefield of patternmining,
several properties of pattern evaluation functions are used to reduce the search space.
For the problem of finding periodic frequent patterns in multiple sequences, an upper
bound on the sequence periodic ratio is used in the MPFPS algorithm for reducing
the search space [20, 29], which is defined as follows.

Definition 14 Let there be an itemset X , a sequence s, and themax Per andminSup
thresholds. The itemset X is a candidate in a sequence s if sup(X, s) ≥ minSup and
max Pr(X, s) ≤ max Pr . Thenumber of sequenceswhere an itemset X is a candidate
is denoted as numCand(X) and defined as numCand(X) = |{s|max Pr(X, s) ≤
max Pr ∧ sup(X, s) ≥ minSup ∧ s ∈ D}|. The boundRa upper bound of X is
denoted as boundRa(X) and defined as boundRa(X) = numCand(X)/|D|.

Two properties of the boundRa upper bound are utilized by MPFPS to reduce
the search space.

Theorem 1 For any itemset X, the relationship boundRa(X) ≥ ra(X) holds [20].

Proof We have an itemset X and:

ra(X) = numSeq(X)/|D|
= |{s|max Pr(X, s) ≤ max Pr ∧ sup(X, s)

≥ minSup ∧ stanDev(X, s) ≤ maxStd ∧ s ∈ D}|/|D|
≤ |{s|max Pr(X, s) ≤ max Pr ∧ sup(X, s) ≥ minSup ∧ s ∈ D}|/|D|
= numCand(X)/|D|
= boundRa(X).

�

Theorem 2 Let there be two itemsets X and X ′ such that X ′ ⊆ X. Then, boundRa
(X ′) ≥ boundRa(X) [20].

Theorem 3 If boundRa(X ′) < minRa for an itemset X ′, then X ′ and any superset
X ⊃ X ′ are not PFP [20].

The proof of the above theorems can be found in the paper presenting the MPFPS
algorithm [20].

The MPFPS algorithm searches for periodic patterns by first starting from 1-
itemsets, and then it recursively adds an item to each itemset to search for larger
itemsets. The items are appended to an itemset by following a total order on item
called �. During the search for periodic itemsets, the MPFPS relies on the above
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Fig. 2 The PFPS-lists of itemsets {a} (top-left), {e} (top-right), and {a, e} (bottom)

theorem to reduce the search space. If an itemset X has a boundRa that is smaller
than the minRa threshold set by the user, all its supersets cannot be PFP and thus
can be ignored to reduce the search space.

To be able to decide if an itemset is periodic, it is necessary to be able to calculate
its support, periods, and its sequence periodic ratio. This is done using a special data
structure named a PFPS-list. This data structure is constructed for each itemset that
is considered by the algorithm during the search for PFP. It is defined based on the
following definitions.

Definition 15 (Sequences containing an itemset) The ordered list of sequence
containing an itemset X is denoted as sequences(X) and defined as a list sequences
(X) = {s|sup(X, s) > 0 ∧ s ∈ D}, ordered by increasing sequence identifiers.

Example 12 For Table 1, the list of sequences containing {e} is sequences({e}) =
{s0, s1, s3}.
Definition 16 (The PFPS-list structure) Let there be an itemset X and a sequence
database D. The PFPS-list LX of X is a table containing three rows (fields) called i-
set, sid-list, and tidlist-list. The first row contains the itemset X , that is, LX.i − set =
X . The second row stores the list of identifiers of sequences containing X , that is,
LX.sidlist = {v1, v2 . . . vw} where w = |sequences(X)| and vi (1 ≤ i ≤ w) is the
sequence identifier of the i-th sequence in sequences(X). The third row, tidlist-list,
contains the identifiers of transactions containing X , for each sequence containing
X . It is formally defined as a list LX.tidlist − list = {Z1, Z2 . . . Zw} such that
w = |sequences(X)|. Let si be the i-th sequence in sequences(X) (1 ≤ i ≤ w).
The value Zi is Zi = {z|X ⊆ Tz ∧ 〈Tz〉 � si }.
Example 13 The PFPS-lists of itemsets {a}, {e}, and {a, e} are presented in Figure 2
for the database of Table 1.

The PFPS-list of an itemset X indicates (1) the list of sequences where X appears
(in the field sid − list) and (2) the list of transactions containing X for any sequence
s (in the field t idlist − list). This latter information is all is needed to calculate
pr(X, s), to then derive sup(X, s), maxpr(X, s), and stanDev(X, s), and thus
check if X is a periodic frequent pattern. Thus, using the PFPS-list structure, it is
possible to check if an itemset is periodic without scanning the database.
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The MPFPS algorithm initially reads the database once to build the PFPS-list of
each item. Then, MPFPS starts to search for larger itemsets. During this search, the
PFPS-lists of each larger itemset is obtained by joining the PFPS-lists of two of its
subsets. Thus, building the PFPS-lists of itemsets having more than 1 item does not
require scanning the database again.

For an itemset P and some items x and y, the itemset P ∪ {x} is said to be an
extension of P , which is briefly denoted as Px . The algorithm for constructing the
PFPS-list of an itemset Pxy by joining the PFPS-lists of two itemsets Px and Py
is shown in Algorithm 1 [20]. For instance, this algorithm can be applied to the
PFPS-lists of {a} and {e} to build the PFPS-list of {a, e}, which are all depicted in
Fig 2.

Algorithm 1: The Intersect procedure
input : the PFPS-lists LPx and LPy of some itemsets Px and Py
output: the PFPS-list LPxy of itemset Pxy

1 LPxy.i-set ← Px ∪ {y}; LPxy.tidlist-list ← ∅; LPxy.sid-list ← ∅;
2 foreach sequence identifier sid ∈ LPx .sid-list such that sid ∈ LPy.sid-list do
3 tidList Sid Px ← the tid list of sid in LPx .tidlist-list ;
4 tidList Sid Py ← the tid list of sid in LPy.tidlist-list ;
5 tidList Sid Pxy ← tidList Si Px ∩ tidList Si Py;
6 if tidList Sid Pxy �= ∅ then
7 LPxy.sid-list.append(sid); LPxy.tidlist-list.append(tidList Sid Pxy);
8 end
9 end

10 return LPxy;

The MPFPS (Algorithm 2) takes as input a sequence database D and the user-
defined thresholds maxStd, minRa,max Pr, and minSup. The algorithm explores
the search space using a depth-first search, and returns the set of all PFP. MPFPS
first reads the input database to calculate the following information for each item
i and sequence s: sup({i}, s), pr({i}, s), maxpr({i}, s), and stanDev({i}, s). A
loop is then done by MPFPS on each single item. An item i is considered to be
periodic in a sequence s if sup({i}, s) ≥ minSup, maxpr({i}, s) ≤ max Pr , and
stanDev({i}, s) < maxStd. Then, the algorithm calculates the sequence periodic
ratio of item i by dividing the number of sequences where i is periodic by the total
number of sequences (line 3 to 4). If this value is not less than minRa, i is a PFP
and it is output (line 5). Thereafter, the algorithm calculates the boundRa upper
bound of {i} (line 6 to 7). After the loop is completed, for each item i such that
boundRa({i}) ≥ minRa, the PFPS-list of {i} is put in a list boundPFPS (line 9),
which is then sorted by the total order � of increasing boundRa values. After that, a
Search procedure is invoked to recursively search for extensions of single items in
boundPFPS.Other itemsets donot need to be explored according toTheorem3.The
Search procedure is initially called with boundPFPS,minSup,max Pr ,maxStd,
minRa, and D.
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The Search procedure is described in Algorithm 3. The input of the procedure is
the PFPS-lists of extensions of an itemset P . Recall that an extension of an itemset
P with an item z refers to the itemset obtained by appending an item z to P , and
is denoted as Pz. Moreover, the four thresholds are also received as parameters, as
well as the input database D. When the Search procedure is first called, P = ∅ and
all its extensions are 1-itemsets (items). The procedure executes two loops to join all
pairs of extensions of P , denoted as Px and Py, where x, y are items and y � x,
(line 1 to 12). The result of a join is an extension Pxy containing |Px | + 1 items.
The PFPS-list of Pxy is obtained by calling Algorithm 1 with the PFPS-lists of
Px and Py as parameters (line 3). Then, the procedure calculates boundRa(Pxy)
and numCand(Pxy) by reading Pxy (line 4 to 5). In the case, where the condition
boundRa(Pxy) ≥ minRa is not met, Pxy and all its supersets are not PFP and
can be ignored from further processing according to Theorem 3 (line 6). If the
condition is met, the PFPS-list of Pxy is stored into a variable ExtensionsO f Px
that contains all PFPS-lists of extensions of Px having a boundRa value that is
no less than minRa (line 7). Thereafter, the algorithm calculates the ratio ra(Pxy)
and if ra(Pxy) ≥ minRa, then Pxy is output as a PFP (line 8 to 10). Finally, a
recursive call of the Search procedure is made with ExtensionsO f Px (PFPS-lists
of itemsets extending Px that are PFP) to search for potential transitive extensions
that are also PFP (line 13).

When the algorithm terminates, all PFP have been output. The proof that the
algorithm is complete is omitted but it can be easily seen based on Theorem 3, as it
guarantees that the algorithm only ignores itemsets that are non-PFP.

Algorithm 2: The MPFPS algorithm
input : D: a sequence database, maxStd,minRa,max Pr,minSup: the thresholds.
output: the set of periodic frequent patterns (PFPS).

1 Scan each sequence s ∈ D to calculate sup({i}, s), pr({i}, s), maxpr({i}, s) and
stanDev({i}, s) for each item i ∈ I ;

2 foreach item i ∈ I do
3 numSeq({i}) ← |{s|maxpr({i}, s) ≤ max Pr ∧ stanDev({i}, s) ≤

maxStd ∧ sup({i}, s) ≥ minSup ∧ s ∈ D}|;
4 ra({i}) ← numSeq({i})/|D|;
5 if ra(Px) ≥ minRa then output Px

numCand({i}) ← |{s|maxpr({i}, s) ≤ max Pr ∧ sup({i}, s) ≥ minSup ∧ s ∈ D}|;
6 boundRa({i}) ← numCand({i})/|D|;
7 end
8 boundPFPS ← {PFPS-list of item i |i ∈ I ∧ boundRa({i}) ≥ minRa};
9 Sort boundPFPS by the order � of ascending boundRa values;

10 Search (boundPFPS, minSup, max Pr , maxStd, minRa, D);

To illustrate how the algorithm is applied, a detailed example is next presented
for mining PFP in the sequence of Table 1. Consider that the parameters are set as
minRa = 0.6, max Pr = 3, minSup = 2, and maxStd = 1.0. The following steps
are performed.
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Algorithm 3: The Search procedure
input : ExtensionsO f P: a set of PFPS-lists of extensions of an itemset P ,

minSup,max Pr,maxStd,minRa: the thresholds, D: the database.
output: the set of periodic frequent patterns that extend P .

1 foreach PFPS-list L Px ∈ ExtensionsO f P and Px = LPx .i-set do
2 foreach PFPS-list L Py ∈ ExtensionsO f P and Py = LPy.i-set such that y � x do
3 LPxy ← Intersect (LPx, LPy);
4 numCand(Pxy) ← |{s|maxpr(Pxy, s) ≤ max Pr ∧ sup(Pxy, s) ≥

minSup ∧ s ∈ D}|;
5 boundRa(Pxy) ← numCand(Pxy)/|D|;
6 if boundRa(Pxy) ≥ minRa then
7 ExtensionsO f Px ← ExtensionsO f Px ∪{LPxy};
8 numSeq(Pxy) ← |{s|maxpr(Pxy, s) ≤ max Pr ∧ stanDev(Pxy, s) ≤

maxStd ∧ sup(Pxy, s) ≥ minSup ∧ s ∈ LPxy.sid-list}|;
9 ra(Pxy) ← numSeq(Pxy)/|D|;

10 if ra(Pxy) ≥ minRa then output Pxy
11 end
12 end
13 Search (ExtensionsO f Px , minSup, max Pr , maxStd, minRa, D);
14 end

1. The algorithm reads the database and first checks single items. Consider the
item a. The periods, maximum periodicity, and standard deviation of a are
calculated for each sequence. The obtained values are shown in Table 4.
Based on these values, it is found that a is periodic in the four sequences.
For instance, a is periodic in s2 because maxpr({a}, s2) = 2 < max Pr and
stanDev({a}, s2) = 0.256 < maxStd. The number of sequence where a is
periodic is numSeq({a}) = 4 and as there are four sequences in the database,
ra({a}) = 4/4 = 1 ≥ minRa. Hence, {a} is output as a PFP. The same process
is repeated for all other items. It is found that only the items {a} and {e} are PFP.

2. Then, for each item having a boundRa value that is greater or equal to minRa,
its PFPS-list is created and added to boundPFPS. In this example, only the
PFPS-lists of {a} and {e} are built. The boundRa value of {a} is 1.

3. After this, the list boundPFPS is sorted by increasing boundRa values and the
algorithm invokes the Search procedure to find extensions of {a} and {e} that
are PFP (Algorithm 3).

4. The Search procedure is a recursive method that extends itemsets having their
PFPS-lists in boundPFPS by joining pairs of them. Initially, all PFPS-lists in
boundPFPS are extensions of the empty set and the aim is to generate itemsets
having two items.

5. The procedure first considers combining {a} and {e} to obtain {a, e}. These two
itemsets can be joined because they have a common prefix (the empty set). To
create the PFPS-list of {a, e}, the I ntersect method is called with the PFPS-lists
of {a} and {e} as parameters. The sid-list of {a, e} is obtained by calculating the
union of the sid-lists of {a} and that of {e} as {0, 1, 2, 3}⋃{0, 1, 3} = {0, 1, 3}.



Finding Periodic Patterns in Multiple Sequences 95

Table 4 Periods, maximum periodicity, and standard deviation of itemset {a} in sequences from
Table 1

Sequence sx pr(a, sx ) max Pr(a, sx ) stanDev(a, sx ) {a} is periodic in
sx?

s1 [1,1,1,1,1,0] 1 0.152 yes

s2 [2,2,1,0] 2 0.256 yes

s3 [2,1,1,1,0] 2 0.632 yes

s4 [1,1,1,1,1,0] 1 0.152 yes

For sequence s1, the tidlist of {a} is {0, 1, 2, 3, 4} while that of {e} is {0, 1, 3}.
Their intersection is {0, 1, 2, 3, 4} ⋂{0, 1, 3} = {0, 1, 3}. Hence, the sequence
identifier 1 is added to sid-list of {a, e} and {0, 1, 3} is stored in the tidlist-list of
{a, e}. The same process is repeated to build the remaining part of the PFPS-list
of {a, e}. The final PFPS-list of {a, e} is shown at the bottom of Fig. 2.

6. Based on the PFPS-list of {a, e}, it is calculated that boundRa({a, e}) = 0.6
which is no less thanminRa. Hence, {a, e}may be a PFP as well as its supersets.

7. The next step is to check in which sequences {a, e} is periodic to obtain
ra({a, e}). As numSeq({a, e}) = 3, we have ra({a, e}) = 0.75 ≥ minRa.
Hence, the itemset {a, e} is output as a PFP.

8. The Search procedure then applies this process again to generate other itemsets
and recursively calls itself to find their extensions, in the same way.

It is to be noted that the MPFPS algorithm described in that subsection was
originally calledMPFPSdepth [20]. There also exists a breadth-first search version of
this algorithm called MPFPSbreadth [20], which is not presented in this chapter due
to space limitation. In terms of performance, bothMPFPSdepth andMPFPSbreadth
perform better on some datasets.

The MPFPS algorithm was applied to analyze text data where each sequences of
a book can be viewed as a sequence. Then, the discovered PFP can reveal patterns
that represent the writing styles of authors. The algorithm was also applied to find
patterns in sequences of clicks on the FIFA website, where it was discovered that
some web pages are periodically clicked by several users [20].

4.2 The MRCPPS Algorithm

TheMRCPPS algorithm [29] was created by adapting theMPFPS algorithm to solve
the second problem instantiation described in this chapter. Since both algorithms are
designed to find periodic patterns in multiple sequences, they have many similarities.
The keydifferences lie in the fact that these algorithmsuse different functions to select
patterns.WhileMPFPS aims to find frequent periodic patterns,MRCPPS is designed
to find rare correlated patterns using the bond measure.
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The MRCPPS algorithm applies an upper bound on the bond measure to reduce
the search space, which is called upBondRa, which is defined below.

Definition 17 (upBondRa) Let there be an itemset X . It is considered to be a candi-
date in a sequence s if bond(X, s) ≥ minBond, where minBond is a user-defined
threshold. Then, the number of sequences where an itemset X is a candidate in a
sequence database D is denoted as numCand(X). The upBondRa of X in D is
defined as upBondRa(X) = numCand(X)/|D|.

The following theorem indicates that upBondRa can be used to reduce the search
space [29].

Theorem 4 Let there be two itemsets X ⊂ X ′. Then, the two following relationships
hold: upBondRa(X) ≥ ra(X) and upBondRa(X) ≥ upBondRa(X ′).

To calculate the bond, max Pr , and other evaluation functions for an itemset, the
MRCPPS algorithm utilizes a novel data structure called RCPPS-list. This structure
can be viewed as a more complex structure than the PFPS-list presented in the
previous subsection. The reason is that a RCPPS-list stores additional information
required to calculate the bond measure.

A RCPPS-list is created for each itemset X considered byMRCPPS. The RCPPS-
list of X is a table providing information about an itemset X stored in three rows
(fields): (1) SIDlist: is the list of identifiers of sequences containing X . (2) list-
conTIDlist: contains the list of identifiers of transactionswhere X occurs (conTIDlist)
for each sequence in SIDlist. (3) list-disTIDlist: is the list of identifiers of transactions
containing at least one item from X (disTIDlist) for each sequence in SIDlist.

Example 14 The RCPPS-lists of {b}, {e}, and {b, e} are shown in Fig. 3, for the
database of Table 3.

Several useful information can be calculated directly from the RCPPS-list of an
itemset. The field SIDlist provides the list of sequences containing the itemset. For
instance, the field SIDlist of the RCPPS-list of {b, e} indicates that it appears in
sequences s1, s2, and s4. The size of conTIDlist for a sequence indicates the support
of the itemset in that sequence, while the bond can be calculated as the size of its
conTIDlist divided by the size of its disTIDlist for the sequence. The conTIDlist and
disTIDlist of itemset {b, e} for sequence s1 are [2, 4] and [1, 2, 4], respectively. As
a result, the bond of {b, e} in sequence s1 is 2

3 .
The stanDev and periods of an itemset can also be calculated from its RCPPS-

list, as well as the upBondRa and ra values. The ra is used by the RCPP algorithm
to determine if an itemset is a RCPP and the upBondRa value is utilized to check
if it should be extended to find larger RCPP based on Theorem 4.

The procedure Construct for intersecting two RCPPS-lists of some itemsets Px
and Py to obtain the RCPPS-list of an itemset Pxy is shown in Algorithm 4. As the
principle of that procedure is similar to the I ntersect procedure of MPFPS, it is not
described in more detail here.
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Fig. 3 TheRCPPS-lists of itemsets {b} (top-left), {e} (top-right), and {b, e} (bottom) for the database
of Table 3

Algorithm 4: The Construct procedure
input: LPx : the RCPPS-list of Px , LPy: the RCPPS-list of Py.
out : the RCPPS-list of Pxy

1 LPxy ← ∅;
2 foreach i, j where LPx.SIDlist(i) = LPy.SIDlist(j) do
3 conT I Dlist ← LPx .list-conT I Dlist (i) ∩ LPy.list-conT I Dlist ( j);
4 if conT I Dlist �= ∅ then
5 disT I Dlist ← LPx .list-disT I Dlist (i) ∪ LPy.list-disT I Dlist ( j);
6 LPxy.SI Dlist ← LPxy.SI Dlist ∪ LPx .SI Dlist (i);
7 LPxy.list-conT I Dlist ← LPxy.list-conT I Dlist ∪ conT I Dlist ;
8 LPxy.list-disT I Dlist ← LPxy.list-disT I Dlist ∪ disT I Dlist ;
9 end

10 end
11 return LPxy;

The pseudocode of MRCPPS is shown in Algorithm 5. The input is the thresholds
maxSup, maxStd, minBond, and minRa, and a sequence database D. MRCPPS
initially reads the sequence database to construct the RCPPS-lists of all items. There-
after, the algorithm creates a set I ∗ to store 1-itemsets (single items) that have an
upBondRa value that is greater or equal tominRa. Items not in I ∗ will thereafter not
be considered by the algorithm, based on Theorem 4. Then, MRCPPS sorts items in
I ∗ according to the ascending order� of upBondRa values. After that, the recursive
Find procedure (Algorithm 6) is called with the empty itemset ∅, the set of single
items I ∗, and the user-defined thresholds.

The Find procedure takes as input an itemset P , extensions of the form Pz
such that upBondRa(Pz) ≥ minRa, the sequence database D, maxSup, maxStd,
minBond, and minRa. When the Find procedure is first called, ExtensionsO f P
contains single items and P = ∅. The procedure performs a loop to process each
extension Px of P (line 1 to 15). The values numSeq(Px) and ra(Px) are first
calculated based on the information stored in the RCPPS-list of Px (line 2 to 3). If
the ra(Px) value is no less than minRa, X is output as a RCPP (line 4). And in the
case where upBondRa(Px) ≥ minRa, the procedure will consider extending Px
to generate larger itemsets. This is achieved by joining Px with each extension of the
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form Py where y � x to obtain an itemset Pxy (line 7). The algorithm builds Pxy’s
RCPPS-list by calling the Construct procedure using the RCPPS-list of Px and Py
(line 8). Each extension Pxy is added to a set ExtensionsO f P of extensions that
can be considered for further extensions if the upBondRa value of Pxy is no less
than minRa (line 11 to 13). Extensions having an upBondRa value smaller than
minRa are ignored to reduce the search space (by Theorem 4). Finally, a call to the
Search procedure is made with Pxy as argument to calculate its ra value and explore
its extensions(s) using a depth-first search (line 16). When the algorithm terminates
all RCPP have been output.

Algorithm 5: The MRCPPS algorithm
input : D: a sequence database,

maxSup, maxStd, minBond, minRa: the user-specified threshods.
output: the set of RCPPS

1 Scan D to calculate the RCPPS-lists of all items in I ;
2 I ∗ ← ∅;
3 foreach item i ∈ I do
4 numCand(i) ← |{s|bond(i, s) ≥ minBond ∧ s ∈ D}|;
5 upBondRa(i) ← numCand(i)/|D|;
6 if upBondRa(i) �= 0 ∧ upBondRa(i) ≥ minRa then I ∗ ← I ∗ ∪ {i}
7 end
8 Sort I ∗ by the order � of ascending upBondRa values;
9 Find (∅, I ∗, D, minSup, maxStd, minBond, minRa);

Algorithm 6: The Find procedure
input : P: an itemset, ExtensionsO f P: a set of extensions of P , D: the sequence database

maxSup, maxStd, minBond, minRa: the user-specified threshods.
output: the set of RCPPS

1 foreach itemset Px ∈ ExtensionsO f P do
2 numSeq(Px) ← |{s|sup(Px, s) ≤ maxSup ∧ stanDev(Px, s) ≤

maxStd ∧ bond(Px, s) ≥ minBond ∧ s ∈ D}|;
3 ra(Px) ← numSeq(Px)/|D|;
4 if ra(Px) �= 0 ∧ ra(Px) ≥ minRa then output Px ExtensionsO f Px ← ∅;
5 foreach itemset Py ∈ ExtensionsO f P such that y � x do
6 Pxy ← Px ∪ Py;
7 Pxy.RCPPS-list ← Construct(Px .RCPPS-list, Py.RCPPS-list);
8 numCand(Pxy) ← |{s|bond(Pxy, s) ≥ minBond ∧ s ∈ D}|;
9 upBondRa(Pxy) ← numCand(Pxy)/|D|;

10 if upBondRa(Pxy) �= 0 ∧ upBondRa(Pxy) ≥ minRa then
11 ExtensionsO f Px ← ExtensionsO f Px ∪ Pxy;
12 end
13 end
14 end
15 Find (Px , ExtensionsO f Px , D, maxSup, maxStd, minBond , minRa);
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To illustrate how the MRCPPS algorithm is applied, a detailed example is next
presented for mining the RCPP in the sequence database of Table 3. Consider that
the parameters are set as minSup = 2, maxStd = 1, minBond = 0.6, and minRa =
0.6. The following steps are performed:

1. The algorithm reads the database and creates the RCPPS-lists of each item. For
example, the RCPPS-lists of itemsets {b} and {e} are shown in Fig. 3.

2. The upBondRa value of each item is calculated. For the item {b}, it is found
that upBondRa(b) = 1, and thus its extensions should be considered. The items
{a}, {c}, {d}, and {e} also satisfy this condition. All these items are thus put in
the variable I ∗ and the Find procedure is called with them.

3. The Find procedure first checks item b. Because ra({b}) = 0.25 ≥ minRa, the
itemset {b} is output as a RCPP.

4. Then, extensions of {b} are considered such as {b, e}. The RCPPS-list of itemset
{b, e} is built by applying theConstruct procedure with the RCPPS-lists of {b}
and {e}. During this process, the list of sequences where both items are periodic
and have an upBondRa value no less than minRa are identified. The obtained
RCPPS-list of {b, e} is shown in Fig. 3. Because, upBondRa({b, e}) = 0.75,
the Find method is invoked to next search for extensions of {b, e}.

5. The Find procedure finds that ra({b, e}) = 0.75 ≥ minRa and thus the itemset
{b, e} is output as a RCPP. The search then continues in a similar way to process
other itemsets until all RCPP have been found.

5 Research Opportunities

There are several research opportunities related to discovering periodic patterns in
multiple sequences. A reason is that researchersworking on patternmining have up to
nowmostly focused on finding periodic patterns in a single sequence. A first research
opportunity is to designmore efficient algorithms in terms of runtime,memory usage,
and scalability. This can be done using novel data structures, search strategies, and
optimizations, but also by developing parallel versions of algorithms that can run on
multi-thread, multi-core, GPU, or big data platforms. A second research opportunity
is to adapt the definitions of periodic pattern to find other types of periodic patterns in
multiple sequences. This can be done by using different pattern selection functions
such as measures of stability [27, 31] but also by considering other types of patterns
besides itemsets such as sequential patterns [14, 19, 25, 44, 62, 67, 68], episodes [6,
32], subgraphs [16, 17, 35, 37], trajectory patterns [71], and periodic patterns with
gap constraints [65, 66]. A third research opportunity is to explore novel applications
of periodic patterns.As discrete sequences are found inmany domains,many applica-
tions can be considered such as smart homes [48], location prediction [64], sequence
prediction [34], clustering [10, 11, 45], and privacy-preserving data mining [53].
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6 Conclusion

This chapter has presented an overview of two recent algorithms for discovering
periodic patterns in a set of discrete sequences, named MPFPS and MRCPPS. The
pseudocodes of the algorithms as well as detailed examples were presented. More-
over, research opportunities were also discussed.

The original implementations and Java source code of the depth-first and breadth-
first search version of MPFPS and MRCPPS, as well as the datasets that have been
used for evaluating these algorithms can be found at http://www.philippe-fournier-
viger.com/spmf/, as part of the SPMF data mining library [24].
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Abstract Periodic frequent pattern discovery is a non-trivial task for analysing
databases to reveal the recurring shapes of patterns’ occurrences. Though signifi-
cant strides have been made in their discovery for understanding large databases in
decision-making, existing techniques still face a challenge of reporting a large num-
ber of periodic frequent patterns, most of which are often not useful as their periodic
occurrences are either by random chance or can be inferred from the periodici-
ties of other periodic frequent patterns. Reporting such periodic frequent patterns
not only degrades the performance of existing algorithms but also could adversely
affect decision-making. This study addresses these issues by proposing a novel algo-
rithm named SRPFPM (Self-Reliant Periodic Frequent Pattern Miner) for mining
and reporting the set of self-reliant periodic frequent patterns as those whose peri-
odic occurrences have inherent item relationships and cannot be inferred from other
periodic frequent patterns. Experimental analysis on benchmark datasets show that
SRPFPM is efficient and effectively prunes periodic frequent patterns that are peri-
odic due to random chance as well as those whose periodicities can be inferred from
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1 Introduction

Frequent itemset (pattern)mining [3, 9, 27, 35, 37] is a fundamental datamining task
(with a wide range of applications) that has been widely studied over the past years.
The goal in frequent patternmining is to identify all patterns that occur frequently in a
given database. For any given database, a pattern is said to be frequent if its frequency
of occurrence within the database is not less than a user-specified threshold. Over the
past years, several techniques and approaches have been proposed for mining various
categories of frequent patterns for domain-specific decision-making. Typical of such
techniques include works that employ the: a priori candidate generation approach [3,
36]; vertical representation approach [30, 35, 37], frequent pattern growth approach
[9, 27] and hierarchical approach [33].

Although traditional frequent pattern mining techniques are useful in revealing
frequently occurring patterns in databases, they are incapable of revealing the occur-
rence shapes of patterns in databases. For instance, in market basket analysis, though
frequent pattern mining algorithms will be able to reveal the frequent customer
transactions, they will not be able to detect and report the periodic customer trans-
actions. That is, they will fail to report the set of customer transactions which occur
periodically. This drawback in frequent pattern mining algorithms is as a result of
the frequency measure being the sole criteria in identifying interesting patterns in
databases. Consequently, this make frequent pattern mining algorithms inapplicable
in situations where the periodic occurrence of patterns in databases is relevant in
decision-making. For example, in cases such as analysing the behaviour of website
users or the purchase behaviour of customers, where the periodic occurrence of web-
site visits or customer purchases are important, traditional frequent pattern mining
algorithms will not be applicable.

To address this drawback in traditional frequent pattern mining and enable detect
the periodic occurrences of patterns in databases for decision-making, periodic fre-
quent pattern mining [6, 13, 20, 24, 28, 31, 32] emerged. Periodic frequent pattern
mining is a non-trivial task for analysing databases to reveal recurring shapes of
patterns’ occurrences. The main objective in periodic frequent pattern mining is to
find and report frequent patterns that occur periodically in databases. For any given
database, a frequent pattern is periodic if its occurrence interval within the database
is not more than a given periodicity threshold. Over the past years, several techniques
and approaches have been proposed for mining categories of periodic frequent pat-
terns in works such as [2, 4, 6–8, 12, 15–18, 20, 24, 32, 34].

Though periodic frequent pattern mining is essential in several applications, it is
faced with some challenges. For example, existing periodic frequent pattern mining
algorithmswhich employ theperiodicitymeasure proposed in [32], in noisydatabases
will often report the noised maximal period of a pattern as its regular period since the
periodicity measure in [32] is susceptible to noise. Further more, existing periodic
frequent pattern mining algorithms often report a large number of periodic frequent
patterns, most of which are periodic due to random chance or their periodicities can
be inferred from other periodic frequent patterns. Reporting such periodic frequent
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patterns not only degrades the performance of existing periodic frequent pattern
mining algorithms but also could adversely affect decision-making.

To address these issues, this study proposes a new framework for mining the set
of self-reliant periodic frequent patterns (that is, periodic frequent patterns whose
periodicities are not due to random chance and cannot be inferred from other periodic
frequent patterns). To our best knowledge, this topic has not been explored so far.
The contributions of this work are summarized as follows:

• Wepropose the self-reliant periodic frequent patterns as the set of periodic frequent
patternswhose periodicities have inherent item relationships and cannot be inferred
from other periodic frequent patterns.

• We further propose and develop a novel algorithm named SRPFPM (Self-Reliant
Periodic Frequent Pattern Miner) for mining the complete set of self-reliant peri-
odic frequent patterns from transaction databases.

• We perform an extensive experimental study on several real datasets to evaluate
the performance of SRPFPM. Experimental results show that SRPFPM is efficient
and effectively prunes periodic frequent patterns that are periodic due to random
chance, as well as those whose periodic occurrences can be inferred.

The rest of this paper is organized as follows. Section 2 introduces the related con-
cepts, definitions and related works. Section 3 presents the proposed definitions and
the problem statement. Section 4 presents the proposed approach to mining the set of
self-reliant periodic frequent patterns. Section 5 presents the experimental analysis
while Sect. 6 presents our conclusions.

2 Background

2.1 Preliminaries

The problem of frequent itemset mining is as follow. Let I = {i1, i2,..., im} be a set of
literals, called items. A set X1 = {ia, . . . , in} ⊆ I , where a ≤ n and a, n ∈ [1,m],
is called a pattern (or an itemset). A transaction database is a set of transactions
D = {T1, T2, T3, . . . , Tk} such that for each transaction Ta , Ta ∈ I and Ta has a
unique identifier a called its transaction ID (TID).

Example 1 Consider the transaction database in Table 1 (a sample customer trans-
action database - which will be used the running example), the set of items for this
database is I = {a, b, c, d, e, f }. Transaction T2 in Table 1 which has a transaction
ID of 2 and three items {d, e, f } is a length-3 itemset.

The coverset of an itemset, S in a database, D, denoted as cov(S) is defined as
cov(S) = {m|m ∈ D ∧ S ⊆ m}.
Example 2 InTable 1, given, S = {a, b}, then cov(S) = {1, 3, 5} since {a, b} appears
in transactions 1, 3 and 5.
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Table 1 Sample customer transactions
TID Transaction TID Transaction TID Transaction TID Transaction

T1 {a, b, c, e} T3 {a, b, c, d} T5 {a, b, c, e, f } T7 {c, d}
T2 {d, e, f } T4 {c, d, e, f } T6 {a, d, e, f } T8 {e, f }

The support count of S in D is defined as |cov(S)| and the support of S in D, denoted
as sup(S) is defined as

sup(S) = |cov(S)|
|D| (1)

Example 3 In Table 1, given S = {a, b}, then sup(S) = 3
8 = 0.375 as |cov(S)| =

|{1, 3, 5}| = 3 and |D| = 8.

Definition 1 (Frequent itemset mining). The problem of frequent itemset mining
consists of discovering frequent itemsets [3]. An itemset S is a frequent itemset in a
database D if its support, sup(S), is not less than a user-specified minimum support
threshold, minsup.

Example 4 Considering a minsup threshold of 0.5 on Table 1, the set of frequent
itemsets and their respective supports in Table 1 will be {a} : 0.5, {c} : 0.625, {d} :
0.625, {e} : 0.75, { f } : 0.625, and {e, f } : 0.625.
To mine frequent patterns from databases, several algorithms have been proposed
over the past years which employ various techniques (such as apriori candidate gen-
eration approach [3, 36]; vertical representation approach [30, 35, 37], frequent pat-
tern growth approach [9, 27] and hierarchical approach [33]) in identifying frequent
patterns. Notwithstanding the several propositions for mining frequently occurring
patterns in databases for decision-making, as mentioned previously, these proposi-
tions are incapable of detecting and revealing the occurrence shapes of patterns in
databases.

Inspired by the inability of frequent pattern mining algorithms in detecting and
revealing the periodic shapes of patterns in databases, and the numerous applications
of periodic frequent patterns in various domain-specific decision-making, several
algorithms have been proposed to discover periodic frequent patterns in transaction
databases in works such as [1, 2, 6, 10, 11, 16, 19, 23, 24, 28, 32, 38].

The concepts employed in periodic frequent pattern mining are presented as fol-
lows.

Definition 2 (Consecutive transactionsof an itemset).LetD = {T1, T2, T3, . . . , Tu}
be a database with u transactions. Let the set of transactions in D containing an item-
set S be denoted as g(S) = {Tg1, Tg2 , Tg3 , . . . , Tgn−1, Tgn }, where, 1 ≤ g1 < g2 <

. . . gn−1 < gn ≤ u. Two transactions Tx ⊃ S and Ty ⊃ S are said to be consec-
utive with respect to S if there does not exist a transaction Tw ∈ g(S) such that
x < w < y. The period of two consecutive transactions Tx and Ty in g(S) is defined
as p(Tx , Ty) = (y − x), that is the number of transactions between Tx and Ty .
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Example 5 Consider the itemset {c} in Table 1 which appears in transactions
T1, T3, T4, T5 and T7. Transactions, T1 and T3, or T3 and T4, or T4 and T5 or T5
and T7 are its consecutive transactions. The period between consecutive transactions
T1 and T3 thus become p(T1, T3) = 3 − 1 = 2.

Definition 3 (Set of all periods of an itemset). Let the set of transactions in a
database D (with u transactions) containing an itemset S be denoted as g(S) =
{Tg1, Tg2 , Tg3 , . . . , Tgn−1, Tgn }, such that 1 ≤ g1 < g2 < . . . gn−1 < gn ≤ u. The cov-
erset of S in D become, cov(S) = {g1, g2, g3, . . . , gn−1, gn}. The set of all periods of
S in D denoted as ps(S) is defined as ps(S) = {g1 − g0, g2 − g1, g3 − g2, . . . , gn −
gn−1, |D| − gn}, where g0 = 0 is a constant and |D| is the size of the database.
Example 6 Consider the itemset {a, b} in Table 1 (where |D| = 8) which appears in
transactions T1, T3 and T5. The coverset of {a, b} thus become, cov{a, b} = {1, 3, 5},
hence, the set of all periods of {a, b} in D based on Definition 3 will be evaluated as
ps({a, b}) = {1 − 0, 3 − 1, 5 − 3, 8 − 5} = {1, 2, 2, 3}.

Given the periods of an itemset, various definitions havebeenproposed for evaluat-
ing the periodicity of patterns and formining periodic frequent patterns in transaction
databases. These definitions and propositions are presented in Sect. 2.2.

2.2 Related Work

Given a transaction database D, a pattern S and its set of periods ps(S) in D, Tanbeer
et al. [32] introduced the concept to periodic frequent pattern mining by defining the
periodicity of a pattern follows.

Definition 4 (Periodicity of pattern S [32]) For any given pattern S and its set of
periods, ps(S), its periodicity is defined as Per(S) = max(ps(S)).

Example 7 Considering the itemset {a, b} in Table 1 having ps({a, b}) = {1, 2, 2, 3}
as its set of periods, the periodicity of {a, b} based on Definition 4 will be evaluated
as max({1, 2, 2, 3}) = 3.

Based on the proposed periodicity measure in Definition 4, Tanbeer et al. [32]
defined a periodic frequent pattern as a frequent pattern whose periodicity is not
greater than a user-given maximum periodicity threshold (maxPer).

Though the proposed periodicity measure and the defined periodic frequent pat-
terns introduced in Tanbeer et al. [32] have been used mining periodic frequent
patterns in transaction databases in works such as [12, 14, 31], Rashid et al. [28]
argued that employing the periodicity measure proposed in [32] in mining periodic
frequent pattern is inappropriate since it returns the maximum period for which a
pattern does not appear in a database as its periodicity. Rashid et al. [28] further
showed that, in noisy databases, the noised maximal interval will always be reported
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as the periodic interval if the periodicity measure proposed in [32] is employed in
mining periodic frequent patterns.

To address this issue of reporting the possible “noised”maximal interval forwhich
a pattern does not appear in the database as its periodicity, Rashid et al. [28] define
the periodicity of a pattern under the name patterns’ regularity as follows.

Definition 5 ((Regularity of pattern S [28]) For any given pattern S and its set of
periods, ps(S), its regularity Reg(S), is defined as Reg(S) = var(ps(S)), where
var(ps(S)) is the variance of ps(S).

With the regularity (periodicity) measure in Definition 5, Rashid et al. [28] define
a regular (periodic) frequent pattern as a frequent pattern whose regularity is not
greater than a user-given maximum regularity threshold (maxReg). This concept
proposed by Rashid et al. [28] has also been used in works such as [21, 29].

Nofong [24] with the aim of mining the set of periodic frequent patterns with
similar periodic occurrences for decision-making, defined the periodicity of a pattern
as follows.

Definition 6 ((Periodicity of pattern S [24]) Given a database D, a pattern S and
its set of periods ps(S) in D, the periodicity of S, Prd(S), is defined as Prd(S) =
x̄(ps(S)), where x̄(ps(S)) is the mean of ps(S).

With the proposed periodicity measure in Definition 6, Nofong [24] define a
periodic frequent pattern as a frequent pattern whose periodicity plus and minus
the standard deviation (among the set of periods) are within the range (p − p1) to
(p + p1), where p and p1 are the user-given periodicity threshold and difference
factor, respectively. This proposition have been used in mining periodic frequent
patterns having similar periodicities in works such as [1, 2, 25, 26].

Fournier-Viger et al. [6] also introduced PFPM, an efficient algorithm having
novel pruning techniques for discovering periodic frequent patterns in transaction
databases. Unlike the techniques proposed in [24, 28, 32], PFPM discovers periodic
frequent patterns using three measures (that is, the minimum, maximum and average
periodicity measures) without requiring the minimum support threshold.

Notwithstanding the above propositions andworks based on these propositions for
mining categories of periodic frequent patterns for decision-making, existing peri-
odic frequent pattern mining algorithms often still report a large number of periodic
frequent patterns, most of which are often due to random chance or whose periodic
occurrences can be inferred from other periodic frequent patterns. Reporting such
periodic frequent patterns not only degrades the performance of existing algorithms,
they could adversely affect decision-making if they happen to be false positively
periodic.

This study addresses this issues by proposing the self-reliant periodic frequent
patterns as the set of periodic frequent patterns whose periodic occurrences are not
due to random chance and at the same time cannot be inferred from other periodic
frequent patterns.
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3 Definitions and Problem Statement

3.1 Periodic Frequent Patterns

This study adopts the periodic frequent pattern definition proposed in [6] as follows.

Definition 7 (Periodic frequent pattern with novel periodicity measures [6]) Let
minsup, minAvg, maxAvg, minPer and maxPer be positive numbers, provided by the
user. A pattern S in D is a periodic frequent pattern if and only if sup(S) ≥ minsup,
minAvg ≤ avgper(S) ≤ max Avg, minper(S) ≥ minPer and maxper(S)

≤ max Per .

where avgper(S),minper(S) and maxper(S), respectively, refer to the average
period, minimum period and maximum period in ps(S)

For any given dataset, Definition 7 will return the set of all periodic frequent
patterns satisfying the user-given thresholds.

Example 8 Given minsup = 0.25, minPer = 1,max Per = 3, minAvg = 1 and
max Avg = 2, and the database in Table 1, nine (9) periodic frequent patterns will
be mined and returned as shown in Table 2.

For the given thresholds, the number of reported periodic frequent patterns (that is,
nine) ismore than the number of transactions in the database (that is, eight). Addition-
ally, some of these reported periodic frequent patterns contain redundant information
and their periodic occurrences can be inferred from other periodic frequent pat-
terns. Typical examples of such periodic frequent patterns in Table 2 whose periodic
occurrences can be inferred from other periodic frequent patterns are {a, b}, {b, c}
and {a, b, c}. Aside these periodic frequent patterns whose periodic occurrences can
be inferred, some might be periodic due to random chance of occurrence without
inherent item relationships.

Table 2 The set of periodic frequent patterns for the running example

PFP sup(PFP) Set of Periods minper(PFP) maxper(PFP) avper(PFP)

{a} 0.5 {1, 2, 2, 1, 2} 1 2 1.60

{b} 0.375 {1, 2, 2, 3} 1 3 2.00

{c} 0.625 {1, 2, 1, 1, 2, 1} 1 2 1.33

{d} 0.625 {2, 1, 1, 2, 1, 1} 1 2 1.33

{a, b} 0.375 {1, 2, 2, 3} 1 3 2.00

{a, c} 0.375 {1, 2, 2, 3} 1 3 2.00

{b, c} 0.375 {1, 2, 2, 3} 1 3 2.00

{c, d} 0.375 {3, 1, 3, 1} 1 3 2.00

{a, b, c} 0.375 {1, 2, 2, 3} 1 3 2.00
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To enable identify the set of periodic frequent patterns that have inherent item-
relationships (that is, are not due to random chance) in decision-making, Nofong
[24] proposed the set of productive periodic frequent patterns as follows.

Definition 8 (Productive periodic frequent pattern [24]) A periodic frequent pat-
tern, S in D, is a productive periodic frequent pattern if and only if, for all
S1, S2 such that, S1 ⊂ S, S2 ⊂ S, S1 ∪ S2 = S and S1 ∩ S2 = φ, then, sup(S) >

sup(S1) × sup(S2).

The condition (for all S1, S2 such that S1 ⊂ S, S2 ⊂ S, S1 ∪ S2 = S and S1 ∩ S2 =
φ, then, sup(S) > sup(S1) × sup(S2)) specifies that the frequency of the periodic
frequent patternmust begreater than thatwhichwouldbe expectedunder any assump-
tion of independence between any partition of the pattern S into two independent
itemsets. That is, a periodic frequent pattern is productive if and only if every rule
that can be formed from it is productive.

Example 9 Applying the productiveness criterion in mining the set of productive
periodic frequent patterns with same thresholds (that is,minsup = 0.25,minPer =
1, max Per = 3,minAvg = 1, and max Avg = 2) on the database in Table 1, eight
(8) productive periodic frequent patterns will be reported as {a}, {b}, {c}, {d}, {a, b},
{a, c}, {b, c}, and {a, b, c} with same properties as shown in Table 2. The periodic
frequent pattern {c, d} reported in Table 2 will not be reported since it does not
satisfy the productiveness criterion in Definition 8 and hence will be pruned during
the discovery process.

Afriyie et al. [1, 2] with the aim of identifying periodic frequent patterns whose
periodic occurrences cannot be inferred from other periodic frequent patterns and
additionally are more preferable in decision-making employed the concept of fre-
quent generators [22] in introducing the non-redundant periodic frequent patterns as
follows.

Definition 9 (Non-redundant periodic frequent pattern [1]) Given a database D
and the set of periodic frequent patterns from D as PerD = {S1, S2, . . . Sj }, a periodic
frequent pattern, Sn , is a non-redundant periodic frequent pattern if �Su ∈ PerD such
that, Su ⊂ Sn and, sup(Sn) = sup(Su).

The defined non-redundant periodic frequent patterns in Definition 9 based on
frequent generators differ from close periodic frequent patterns in the sense that, all
proper subsets of the non-redundant periodic frequent patterns will be non-redundant
unlike closed periodic frequent patterns (which may have some proper subsets not
closed). Additionally, unlike closed periodic frequent patterns, non-redundant peri-
odic frequent patterns will be more preferable since some closed periodic frequent
patterns might be contain redundant information. Example 10 illustrates why non-
redundant periodic frequent patternswill be preferred in decision-making over closed
periodic frequent patterns.

Example 10 Assuming {male, prostate cancer, old age, obese} is a closed periodic
frequent pattern, it is more preferable to keep its non-redundant periodic subsets
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(generators) such as {prostate cancer, obese, old age} for decision-makingover {male,
prostate cancer, old age, obese} since {male} subsumes {prostate cancer} - that
is, only males can have prostate cancer. This subsumption thus make the closed
periodic frequent pattern {male, prostate cancer, old age, obese} uninteresting since
the information about being a male when you have prostate cancer is redundant
- hence the need to keep the minimal information contained in the non-redundant
subset (generator) {prostate cancer, obese, old age}.
Example 11 Applying Definition 9 in mining the set of non-redundant periodic
frequent patterns with same thresholds (that is, minsup = 0.25, minPer = 1,
max Per = 3,minAvg = 1, and max Avg = 2) on the database in Table 1, six (6)
non-redundant periodic frequent patterns will be reported as {a}, {b}, {c}, {d}, {a, c},
and {c, d} with same properties as shown in Table 2. The periodic frequent patterns
{a, b}, {b, c} and {a, b, c} that are reported in Table 2 will pruned since their periodic
occurrence can be inferred from other periodic frequent patterns.

As can be observed from the results based on Definitions 7, 8 and 9, Definition
7 will report a set of periodic frequent patterns that contain those without inherent
item-relationships as well as those whose periodic occurrences can be inferred from
other periodic frequent patterns. Though Definition 8 will report the set of periodic
frequent patterns not due to random chance, they might report periodic frequent
patterns that contain redundant information. For example, {a, b}, {b, c} and {a, b, c}
which are reported in Definition 8 are identified as containing redundant information
in Definition 9. Also, though Definition 9 will report the set of periodic frequent
patterns whose periodic occurrences cannot be inferred from other periodic frequent
patterns, it might report those that are periodic due to random chance. For instance,
{c, d} that is reported in Definition 9 is identified in Definition 8 as non-productive.

To addresses this challenge and ensure periodic frequent patterns that have inher-
ent item relationships and whose periodic occurrences cannot be inferred from other
periodic frequent patterns are mined for decision-making, we propose and introduce
the self-reliant periodic frequent patterns as the set of periodic frequent patterns that
are periodic due to inherent item relationship and whose periodic occurrences cannot
be inferred from other periodic frequent patterns.

3.2 Self-reliant Periodic Frequent Patterns

To enable identify the set of periodic frequent patterns whose periodic occurrences
are due to inherent item-relationship and at the same time cannot be inferred from
other periodic frequent patterns, we combine the concepts of productive periodic
frequent patterns ([24]) and the non-redundant periodic frequent patterns ([1, 2])
and define the our proposed self-reliant periodic frequent patterns as follows.

Definition 10 (Self-reliant periodic frequent pattern) Given a database D and
the set of periodic frequent patterns from D as PerD = {S1, S2, . . . Sj }, a peri-
odic frequent pattern, Sn , is a self-reliant periodic frequent pattern if and only
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if: �Su ∈ PerD|Su ⊂ Sn ∧ sup(Sn) = sup(Su), and, for all S1, S2 such that, S1 ⊂
Sn, S2 ⊂ Sn, S1 ∪ S2 = Sn ∧ S1 ∩ S2 = φ, then, sup(Sn) > sup(S1) × sup(S2).

Definition 10 basically states that for any periodic frequent pattern to be self-
reliant, it must be both productive and non-redundant among the set of discovered
periodic frequent patterns. That is, its periodic occurrence in the given database
should not be easily inferred from other periodic frequent patterns and the items
within it must have inherent item relationship.

Example 12 Applying Definition 10 in mining the set of self-reliant periodic fre-
quent patterns with, minsup = 0.25, minPer = 1,max Per = 3,minAvg = 1,
and max Avg = 2 on the database in Table 1, five (5) self-reliant periodic frequent
patterns will be reported as {a}, {b}, {c}, {d}, and {a, c} (having same properties as
shown in Table 2). The periodic frequent patterns {a, b}, {b, c}, {c, d} and {a, b, c}
that are reported in Table 2 will pruned since they are either non-productive or redun-
dant.

With the self-reliant periodic frequent patterns defined in Definition 10, the problem
statement can be described as follows

Definition 11 (Problem definition) Given a transaction database D, let minsup,
minAvg, maxAvg, minPer and maxPer be positive numbers, provided by the user,
mine and report the set of self-reliant periodic frequent patterns from D where
for any reported periodic frequent pattern S in D, sup(S) ≥ minsup, minAvg ≤
avgper(S) ≤ max Avg, minper(S) ≥ minPer and maxper(S) ≤ max Per .

4 Mining Self-reliant Periodic Frequent Patterns

To identify the self-reliant periodic frequent patterns among all periodic frequent
patterns in a databases, we propose a Self-RelianceTest() functionwhich is employed
during the periodic frequent pattern mining process in pruning those that are not self-
reliant. The following subsections details the proposed self-reliance test function and
the algorithms employed in mining the set of self-reliant periodic frequent patterns.

4.1 Self-reliance Test

For a given a periodic frequent pattern S mined from a transaction database D, we
use the Self-RelianceTest() function to check if S is a self-reliant periodic frequent
pattern or not. The Self-RelianceTest() function takes as input the periodic frequent
pattern (S) to be tested and the set of productive periodic frequent patterns (pPerD).
The self-reliance of a periodic frequent pattern S is then tested as follows.
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Function Self-RelianceTest(S, pPerD)
Input: Periodic Frequent Pattern S, HashMap of Productive PFPs, pPerD
Output: S.class as either Self-Reliant or not Self-Reliant

1 Create S.class = null
2 if S is a length-1 pattern then
3 if sup(S) = sup(∅) then
4 S.class = Not Self-Reliant
5 else
6 S.class = Self-Reliant; Add S to pPerD
7 else if S is a length-2 pattern then
8 Let S1 be the first item in S and S2 the second item in S
9 if sup(S) > sup(S1) × sup(S2) ∧ sup(S1) �= sup(S) ∧ sup(S2) �= sup(S) then

10 S.class = Self-Reliant
11 Add S to pPerD /* Add S to set of productive PFPs */
12 else
13 S.class = Not Self-Reliant
14 else
15 Generate powerset of S as �, remove S and the empty set (∅) from �

16 ProductiveTest = 0
17 for each subset Si in � do
18 for each subset S j in � do
19 if Si = S j then
20 continue
21 else
22 if Si ∩ S j = ∅ ∧ Si ∪ S j = S ∧ sup(S) > sup(Si ) × sup(S j ) then
23 continue
24 else
25 ProductiveTest+=1
26 if ProductiveTest=0 then
27 Add S to pPerD /* Add S to set of productive PFPs */
28 RedundanceTest=0
29 for each subset Sk in � do
30 if sup(S) = sup(Sk) then
31 RedundanceTest+=1
32 break
33 else
34 continue
35 if RedundanceT est = 0 ∧ pPerD contains S then
36 S.class = Self-Reliant; Add S to pPerD
37 else
38 S.class = Not Self-Reliant
39 return S.class

Given a periodic frequent pattern S and the set which contains all productive
periodic frequent patterns from D (note that this set can be empty), Line 1 of the
Self-RelianceTest() function creates the class of S as null. If S is a length-1 pattern,
Line 6 assigns its class as Self-Reliant provided the support of S is not equal to that
of an empty set (an empty set occurs with a support of 1.0 in every database). S is
then added to the set of productive periodic frequent patterns (pPerD) in Line 6. If
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the support of S is equal to that of the empty set, its class is assigned as Not Self-
Reliant in Line 4. This support comparison is to test if the pattern is non-redundant
since all length-1 patterns are automatically productive. As such all length-1 periodic
frequent patterns that are non-redundant will be classified as self-reliant since they
are automatically productive.

Example 13 Using our running example in Table 1, all the length-1 periodic frequent
patterns as shown in Table 2, that is, {a}, {b}, {c}, {d}) will be classified as self-reliant
and will all be added to pPerD .

If the periodic frequent pattern S is a length-2 pattern, Line 8 assigns S1 and S2 as the
first and second items in S respectively. Line 9 in the Self-RelianceTest() function
simultaneously tests if S is productive and non-redundant. If S is both productive
and non-redundant, its class is assigned as Self-Reliant in Line 10 and S added to
the set of all productive periodic frequent patterns pPerD , otherwise the class of S
is assigned as Not Self-Reliant in Line 13.

Example 14 For our running example, given S = {a, b} from Table 2, Line 8 will
assign S1 = {a} and S2 = {b}. S is then tested for self-reliance in Line 9. Though
sup({a, b}) = 0.375 is greater than sup({a}) × sup({b}) (that is, 0.188) since the
support of S is same as that of S2, S will be classified as Not Self-Reliant in Line 13.
For the case of S = {a, c} in our running example, Line 8 will assign S1 = {a} and
S2 = {c}. S will then tested for self-reliance in Line 9. Since sup({a, c}) = 0.375 is
greater than sup({a}) × sup({c}) (that is, 0.313) and the support of S is not same as
that of S1 or S2, S will be classified as Self-Reliant in Line 10 and added to pPerD
in Line 11.

If the periodic frequent pattern S has a length of more than 2 (that is, length-3 and
above), Lines 14 to 38 of the Self-RelianceTest() function tests for its self-reliance
as follows. Line 15 generates the powerset of S as � and subsequently removes S
and the empty set in � - this leaves only the proper subsets of S in �.

Example 15 For our running example, given S = {a, b, c}, � in Line 15 initially
will be {{∅}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}, butwill finally become� =
{{a}, {b}, {c}, {a, b}, {a, c}, {b, c}} after the empty set and S are removed.

Line 16 creates a variable ProductiveTest whose value is assigned 0. Lines 17 to 25
then iteratively pick any two subsets in � to test if all possible subset combinations
satisfy productiveness criteria in Line 22. If any two possible subset combinations
do not satisfy the criteria in Line 22, the ProductiveTest variable is incremented
by 1. After all possible subset combinations are tested for productiveness, S will
be added to the set of productive periodic frequent patterns pPerD if value of the
ProductiveTest variable is still 0.

Line 28 creates the RedundanceTest variable and assigns the value 0 to it. Lines 29
to 34 iteratively pick all subsets of S in � one after the other to test if S is redundant
or non-redundant. If S is a generator periodic frequent pattern (that is, all subsets of S
do not satisfy the criteria in Line 30) and S is in the set of productive periodic frequent
patterns, the class of S is assigned as Self-Reliant in Line 36 and subsequently added
to pPerD , else its class is assigned as Not Self-Reliant in Line 38.
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Table 3 hn : unsorted length-1 items with their coversets from Table 1

Item Coverset
(TIDs)

Item Coverset
(TIDs)

Item Coverset
(TIDs)

{b} {1, 3, 5} {d} {2, 3, 4, 6, 7} {e} {1, 2, 4, 5, 6, 8}
{ f } {2, 4, 5, 6, 8} {a} {1, 3, 5, 6} {c} {1, 3, 4, 7}

4.2 The Proposed Method: SRPFPM Algorithm

Tomine the set of self-reliant periodic frequent patterns from transactional databases
for decision-making, we propose the Self-Reliant Periodic Frequent Pattern Miner
(SRPFPM) algorithm shown in Algorithm 1. The proposed SRPFPM algorithm
employs the Apriori-like candidate generation technique in [3]. However, unlike
the approach proposed in [3], SRPFPM scans the database once to store the transac-
tion IDs of each item to avoid repeated scanning of the database during the mining
process. The proposed SRPFPMalgorithm as shown inAlgorithm1 takes as input the
database and the user-desired thresholds - that is, the minimum support (minsup),
minimum average period (minAvg), maximum average period (max Avg), the min-
imum period (minPer ), the maximum period (max Per ) and returns the set of self-
reliant periodic frequent patterns (sPerD) based on the user-given thresholds.

Given a transaction database D and the desired user thresholds (minsup,minAvg,
max Avg, minPer max Per ), SRPFM mines the self-reliant periodic frequent pat-
terns from the database as follows.

Line 1 of Algorithm 1 creates a hashmap hn to store the set of all length-items
and all their transaction IDs in D while Line 2 creates the hashmaps sPerD , pPerD
and L to store the self-reliant periodic frequent patterns, productive periodic frequent
patterns and length-1 frequent items respectively. Lines 3 to 11 scan the database to
identify and store the unique length-1 items with all their transaction IDs as follows.
For each length-1 item ay in each transaction T in the database, if that item is not
in hn , Line 6 creates its coverset and adds the transaction ID to the coverset of ay .
The item together with the coverset (containing its transaction ID) is then added to
hn in Line 7. If the length-1 item ay is in hn , its coverset is obtained from hn and
updated to contain the new transaction ID in Line 10. hn is then updated in Line 11
with the new coverset of ay . After all transactions in D are scanned, hn will contain
all length-1 items with their all their respective transaction IDs in D.

Example 16 For our sample customer transaction database shown in Table 1, Lines
1 to 11 will return hn (the set of all length-items and their coversets) as shown in
Table 3.

With all length-1 items and their coversets (transaction IDs) in hn , Lines 12 to 19
of Algorithm 1 identifies the set of length-1 self-reliant periodic frequent patterns as
follows. For each item ay in hn , its coverset is obtained from hn and its set of periods
subsequently derived in Line 14 as ps(ay). The given item ay is then tested against
the user-given thresholds for frequency and periodicity in Line 15. If ay is frequent
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Algorithm 1: SRPFPM(D,minsup,minAvg,max Avg,minPer,max Per )
Input: Dataset D,minsup,minAvg,max Avg,minPer,max Per
Output: Set of Self-Reliant Periodic Frequent Patterns, sPerD

1 Create HashMap hn /* to store all length-1 items in D */
2 Create HashMaps: sPerD , pPerD , L
3 for each transaction T ∈ D do
4 for each length-1 item ay ∈ T do
5 if ay /∈ hn then
6 Create cov(ay) = { TID of ay} /* TID = Transaction ID */
7 Add (ay , cov(ay)) to hn
8 else
9 Let (ay , cov(ay)) = hn(ay)

10 Udate cov(ay) as cov(ay) = cov(ay) ∪ TID of ay
11 Update hn with (ay, cov(ay))
12 for each item ay ∈ hn do
13 Let (ay, cov(ay)) = hn(ay)
14 Get ps(ay)
15 if sup(ay ) ≥ ε ∧ minAvg ≤ avper ≤ max Avg ∧ minper ≥ minPer ∧ maxper ≤ max Per then
16 Self-RelianceTest(ay, pPerD) /* calls the self-reliance test on ay */
17 if ay.class = Self-Reliant then
18 Add (ay , ps(ay)) to sPerD
19 Add (ay , cov(ay)) to L
20 Sort L in descending order of items
21 MinePFPs(L ,minsup,minAvg,max Avg,minPer,max Per, sPerD, pPerD)
22 return sPerD

Table 4 L: sorted length-1 periodic frequent items

Item Coverset (TIDs) Item Coverset (TIDs)

{a} {1, 3, 5, 6} {c} {1, 3, 4, 7}
{b} {1, 3, 5} {d} {2, 3, 4, 6, 7}

and periodic based on the user-given thresholds, it is tested for self-reliance in Line
16 by calling the Self-RelianceTest function on ay as Self-RelianceTest(ay, pPerD).
If the Self-RelianceTest function returns the class of ay as Self-Reliant, ay with its
set of periods is added to the set of self-reliant periodic frequent patterns sPerD in
Line 18 while ay with its coverset is added to the hashmap L in Line 19. The set L
is then sorted in descending order of length-1 items in Line 20.

Example 17 For our running example, given minsup = 0.25, minPer = 1,
max Per = 3,minAvg = 1, andmax Avg = 2, Lines 12 to 20 will produce L from
hn as shown in Table 4. All items shown in Table 4 and their set of periods will
be added to the set of self-reliant periodic frequent patterns (sPerD) in Line 18 of
Algorithm 1 and the set of productive periodic frequent patterns (pPerD) in Line 27
of the Self-RelianceTest function.

The remaining self-reliant periodic frequent patterns are then mined from L by
calling Algorithm 2 on L as MinePFPs(L , minsup, minAvg, max Avg, minPer ,
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max Per , sPerD , pPerD). When Algorithm 2 exits after mining the remaining self-
reliant periodic frequent patterns, Line 22 of Algorithm 1 returns the set of all self-
reliant periodic frequent patterns (sPerD) in D.

Algorithm2mines the remaining self-reliant periodic frequent patterns as follows.
Given L which initially is supposed to contain the set of length-1 self-reliant periodic
frequent patterns, Line 1 of Algorithm 2 creates a hashmap TempL for temporary
storage. If there are no length-1 self-reliant periodic frequent patterns in L , as shown
in Lines 3 and 4, Algorithm 2 terminates and the self-reliant periodic frequent pattern
mining process ends. While L contains length-1 items, Algorithm 2 mines the self-
reliant periodic frequent patterns from L using a nested for-loops (from Lines 7 to
21 of Algorithm 2) as follows.

Algorithm 2: MinePFPs(L ,minsup,minAvg,max Avg,minPer,max Per ,
sPerD, pPerD)
Input: L ,minsup,minAvg,max Avg,minPer,max Per, sPerD, pPerD

1 Create Hashmap TempL
2 Let Pan [0, b] be the the length-b prefix of an
3 if |L| = 0 then
4 End
5 else
6 while |L| > 1 do
7 for k = 0 to |L|-1 do
8 Let (ak , cov(ak)) = L[k]
9 for l = (k + 1) to |L|-1 do

10 Let (al , cov(al )) = L[l]
11 if Pak [0, |ak |-1] = Pal [0, |al |-1] then
12 Create S = ak ∪ al , and cov(S) = cov(ak) ∩ cov(al )
13 if sup(S) ≥ minsup then
14 Get ps(S)

15 if S is periodic then
16 Self-RelianceTest(S, pPerD)
17 if S.class = Self-Reliant then
18 Add (S, cov(S)) to TempL
19 Add (S, ps(S)) to sPerD
20 L = TempL
21 TempL.clear()

In the first for-loop within L (from index k = 0 to |L| − 1), the tuple at the
kth-index, that is, (ak, cov(ak)) is obtained in Line 8 as L[k]. While still at the
kth-index, the second for-loop within L (from index l = (k + 1) to |L| − 1) starts
in Line 9 as follows. Each tuple in the lth-index, that is, (al , cov(al)) is obtained
in Line 10 as L[l]. If ak and al have common length-(|ak | − 1) prefixes, that is,
Pak [0, |ak | − 1] = Pal [0, |al | − 1], a candidate frequent pattern, S, is created in Line
12 as S = ak ∪ al and cov(S) = cov(ak) ∩ cov(al). If S is frequent in D, its set
of periods ps(S) is obtained in Line 14. If S is periodic based on the user-desired
periodicity measures, it is tested for self-reliance in Line 16. If S is self-reliant,
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S and its coverset is added to T empL in Line 18. This ensures only frequent and
self-reliant periodic patterns are kept and used in the next iteration to generate the
candidate periodic frequent patterns. This serves as a pruning mechanism. Given S is
self-reliant, S with its set of periods (ps(S)) is added to the set of self-reliant periodic
frequent patterns.

Example 18 For our running example, given L in Table 4, during the first loopwithin
L , ({a}, {1, 3, 5, 6}) will be obtained in Line 8 as the kth-index while ({b}, {1, 3, 5})
will be obtained in Line 10 as the lth-index. Since P{a}[0, |{a}| − 1] will be same as
P{b}[0, |{b}| − 1] in Line 11, candidate periodic frequent pattern S will be created as
S = {a} ∪ {b} = {a, b} and cov(S) = {1, 3, 5, 6} ∩ {1, 3, 5} = {1, 3, 5} in Line 12.
Given the minimum support threshold of 0.25, S = {a, b}will be frequent in Line 13
hence, its set of periodswill be obtained in Line 14 as ps({a, b}) = {1, 2, 2, 3}. Based
on the given periodicity thresholds (minPer = 1,max Per = 3,minAvg = 1, and
max Avg = 2), {a, b} will be periodic in Line 15. The pattern {a, b} will then be
tested for self-reliance using the Self-RelianceTest() function in Line 16. Though
{a, b} is productive, its class will be assigned in Line 13 of the Self-RelianceTest()
function asNot Self-Reliant as it is not a generator pattern, that is, {a, b} is redundant,
hence {a, b} will be pruned and not added to TempL.

For each kth-index in the first for-loop, the second for-loop repeats till all indexes
in L are iterated in the second for-loop. When both nested loops are complete, L is
recreated in Line 20 from T empL and the content of T empL is cleared in Line 21.
The size of L is checked and the nested looping repeats on L until |L| = 1 at which
point the self-reliant periodic frequent pattern mining process terminates. Line 22 of
Algorithm 1 then returns the set of self-reliant periodic frequent patterns discovered
in D based on the user-desired thresholds.

Example 19 Continuing with the running example, after the first nested for-loops,
L (which will be recreated in Line 20 from TempL) will comprise of only {a, c}
and its coverset. The pattern {a, c} which will be generated in Line 12 in the first
iteration will be self-reliant in Line 17 hence it will be added to sPerD . Since L = 1
after the first nested for-loops, self-reliant periodic frequent pattern mining process
terminates. In our running example, Line 22 of Algorithm 1 then returns sPerD =
{{a}, {b}, {c}, {d}{a, c}} and their respective set of periods.

5 Experimental Analysis

To evaluate the performance of the proposed SRPFPM algorithm, we compared its
performance with our implementations1 of PPFP [24], NPFPM [1, 2] and PFP*.
PPFP and NPFPM are existing periodic frequent pattern mining algorithms for dis-
covering productive and non-redundant periodic frequent patterns respectively while

1 These implementations are based on novel periodicity measures in Definition 7 and not the mea-
sures in periodicity measures employed in the original implementations found in [1, 2, 24]
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PFP* discovers the set of all periodic frequent patterns. The compared algorithms
(SRPFPM, PPFP, NPFPM and PFP*) are all implemented in Python. The exper-
imental analysis was carried out on a tenth-generation 64 bit Core i7 processor
running Windows 10, and equipped with 16 GB of RAM. Four benchmark datasets
as described in Table 5 (commonly used in frequent pattern mining) were utilized.

Table 5 Dataset characteristics

Dataset Unique Items Total Transactions Nature

Retail 16,470 88,162 Sparse

Mushroom 119 8,416 Dense, long transactions

Chainstore 46,086 1,112,949 Sparse

Kosarak25K 41,270 25,000 Partly dense

The experiment consisted of running the algorithms on each dataset with fixed
minPer and minAvg values, while varying the maxAvg and maxPer parameters. Exe-
cution times, memory consumption and number of patterns found were measured for
each algorithm. The execution times and memory consumption are average values of
each algorithm run ten times. All memorymeasurements were done using the Python
API except that of the original implementation of PFPM [5] which was done using
the Java API. Note that results for varying the minPer and minAvg values are not
shown because they have less influence on the number of periodic frequent patterns
reported compared to the other parameters.

5.1 Number of Reported Patterns

The number of reported periodic frequent patterns of the compared algorithms are
shown in Tables 6, 7, 8 and 9 for the Chainstore, Kosarak25K, Retail and Mushroom
datasets respectively. It can be observed that at a fixed minimum support count,
minPer, minAvg and maxAvg, the four algorithms report a larger number of periodic
frequent patterns as the maxPer increases (see Tables 6, 7 and 9).

Similarly, keeping the minimum support count, minPer, minAvg and maxPer con-
stant, the four algorithms likewise report a large number of periodic frequent pattern
mining process (see Table 8). It can be observed in Tables 7, 8 and 9 that the self-
reliance test is able to prune periodic frequent patterns that do not have inherent item
relationships as well as those whose periodic occurrences can be inferred from other
periodic frequent patterns.
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Table 6 Reported periodic frequent patterns in Chainstore dataset with minsup count = 1, minPer
= 1, minAvg = 1, maxAvg = 2000

Number of Periodic Frequent Patterns

maxPer = 5000 maxPer = 3000 maxPer = 1000

PFP* 123 50 3

PPFP 123 50 3

NPFPM 123 50 3

SRPFPM 123 50 3

Table 7 Reported periodic frequent patterns inKosarak25Kdatasetwithminsup count=50,minPer
= 1, minAvg = 5, maxAvg = 500

Reported Periodic Frequent Patterns

maxPer = 2000 maxPer = 1000 maxPer = 1

PFP* 2384 447 0

PPFP 2364 444 0

NPFPM 2381 447 0

SRPFPM 2364 444 0

Table 8 Reported periodic frequent patterns in Retail dataset with minsup count = 1, minPer = 1,
minAvg = 5, maxPer = 1500

Reported Periodic Frequent Patterns

maxAvg = 2000 maxAvg = 1000 maxAvg = 1

PFP* 313 255 0

PPFP 309 253 0

NPFPM 196 168 0

SRPFPM 192 166 0

Table 9 Reported periodic frequent patterns in Mushroom dataset with minsup count = 1, minPer
= 1, minAvg = 5, maxAvg = 2000

Reported Periodic Frequent Patterns

maxPer = 5000 maxPer = 4000 maxPer = 3000

PFP* 754 80 14

PPFP 689 75 13

NPFPM 728 80 14

SRPFPM 663 75 13
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5.2 Memory Usage Evaluation

Thememory usage of the compared algorithms are shown in Tables 10, 11 and 12 for
the Chainstore, Kosarak25K and Retail datasets respectively. It can be observed that
at a fixed minimum support count, minPer, minAvg and maxAvg, the four algorithms
consume more memory in discovering the set of periodic frequent patterns as the
maxPer increases (see Tables 10 and 11). Similarly, keeping the minimum support
count, minPer, minAvg and maxPer constant, the four algorithms likewise consume
more memory during the periodic frequent pattern mining process (see Table 12).

It can be observed that the amount memory consumed by all algorithms is depen-
dent on the database size.

Table 10 Memory usage: periodic frequent pattern discovery in Chainstore dataset with minsup
count = 1, minPer = 1, minAvg = 1, maxAvg = 2000

Memory (MB)

maxPer = 3000 maxPer = 2000 maxPer = 1000

PFP* 545.2 541.6 533.5

PPFP 544.6 540.8 532.4

NPFPM 545.4 542.1 532.7

SRPFPM 543.5 542.2 531.8

Table 11 Memory usage: periodic frequent pattern discovery in Kosarak25K dataset with minsup
count = 50, minPer = 1, minAvg = 5, maxAvg = 500

Memory (MB)

maxPer = 1000 maxPer = 500 maxPer = 1

PFP* 21.7 18.9 17.8

PPFP 20.9 18.5 17.8

NPFPM 21.0 18.7 17.8

SRPFPM 21.0 18.6 17.8
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Table 12 Memory usage: periodic frequent pattern discovery in Retail dataset with minsup count
= 1, minPer = 1, minAvg = 5, maxPer = 1500

Memory (MB)

maxAvg = 3000 maxAvg = 500 maxAvg = 1

PFP* 65.2 64.3 60.3

PPFP 64.9 64.1 60.4

NPFPM 62.7 61.8 59.9

SRPFPM 62.5 61.6 60.1

5.3 Runtime Analysis

The runtimes of the compared algorithms are shown in Figs. 1, 2, 3 and 4 for
the Chainstore, Kosarak25K, Mushroom and Retail datasets respectively. It can be
observed that at a fixed minimum support count, minPer, minAvg and maxAvg, the
four algorithms take longer times to discover the set of periodic frequent patterns as
the maxPer increases (see Figs. 1, 2 and 3). Similarly, keeping the minimum support
count, minPer, minAvg and maxPer constant, the four algorithms also take a longer
time to discover the set of periodic frequent patterns asmaxAvg increases (see Fig. 4).
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Fig. 1 Runtime: periodic frequent pattern discovery in Chainstore dataset

It can also be observed that in the four datasets, though the runtimes of all four
algorithms are quite similar, except for the Retail dataset (see Fig. 4), PFP* and
NPFPM are slightly faster than PPFP and SRPFPM. This is because the productive-
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Fig. 2 Runtime: periodic frequent pattern discovery in Kosarak25K dataset

ness test in PPFP and SRPFPM is more time consuming than the redundance test in
NRPFPM. In the Chainstore dataset for example, all four algorithms are reporting
same number of periodic frequent patterns (see Table 6). As such the productiveness
test, non-redundance test and self-reliance test will adversely affect the runtimes of
PPFP, NPFPM and SRPFPM.
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Fig. 3 Runtime: periodic frequent pattern discovery in Mushroom dataset
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Fig. 4 Runtime: periodic frequent pattern discovery in Retail dataset

5.4 Scalability

For our scalability test, we compare SRPFPM with the original implementation of
PFPM [5] with regards to runtime and memory usage in periodic frequent pattern
mining. Though PFPM takes less time in discovering periodic frequent patterns
compared to SRPFPM (see Figs. 5, 6 and 7), it consumes more memory during the
discovery process compared to SRPFPM (see Tables 13, 14 and 15).

Though PFPM is efficient with regards to time, SRPFPM is efficient with regards
tomemory usage. It is alsoworth noting that PFPMwill always report a larger number
of periodic frequent patterns for decision-making, most of which will be periodic
due random occurrence chance (that is, without inherent item relationship) or their
periodicities can be inferred from other periodic frequent patterns. Employing such
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patterns reported in PFPM in decision-making could be detrimental if they happen
to be false positively periodic. SRPFPMwill however prune such patterns and report
a smaller set of self-reliant periodic frequent patterns that will be more preferable in
decision-making.
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Table 13 Memory usage: periodic frequent pattern discovery in Chainstore dataset with minsup
count = 1, minPer = 1, minAvg = 1, maxAvg = 2000

Memory (MB)

maxPer = 3000 maxPer = 2000 maxPer = 1000

PFPM 813.4 799.5 506.2

SRPFPM 543.5 542.2 531.8

Table 14 Memory usage: periodic frequent pattern discovery in Kosarak25K dataset with minsup
count = 50, minPer = 1, minAvg = 5, maxAvg = 500

Memory (MB)

maxPer = 1000 maxPer = 500 maxPer = 1

PFPM 545.2 507.8 455.3

SRPFPM 21.0 18.6 17.8

Table 15 Memory usage: periodic frequent pattern discovery in Retail dataset with minsup count
= 1, minPer = 1, minAvg = 5, maxPer = 2000

Memory (MB)

maxAvg = 300 maxAvg = 200 maxAvg = 100

PFPM 1153.2 995.6 829.3

SRPFPM 24.4 19.8 19.0
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6 Conclusions

In this paper, we have proposed the use of a self-reliance measure in mining our pro-
posed set of self-reliant periodic frequent patterns. Using this measure provides the
advantages of reporting a smaller number of periodic frequent patterns whose peri-
odic occurrences have inherent item relationships as well as contain non-redundant
information. We subsequently propose and develop an efficient algorithm named
SRPFPM to efficiently discover only periodic frequent patterns that are self-reliant
using the self-reliant measure. Experimental analysis on benchmark datasets show
that SRPFPM is efficient and effectively prunes periodic frequent patterns that are
periodic due to random chance, as well as those whose periodicities can be inferred
from other periodic frequent patterns.
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Discovering Periodic High Utility
Itemsets in a Discrete Sequence

Philippe Fournier-Viger, Youxi Wu, Duy-Tai Dinh, Wei Song,
and Jerry Chun-Wei Lin

Abstract Periodic itemset mining is the task of finding all the sets of items (events
or symbols) that regularly appear in a sequence. One of the most important applica-
tions is customer behavior analysis, where a periodic itemset found in a sequence of
customer transactions indicates that the customer regularly buys some items together.
Using this information, marketing strategies can be tailored and product recommen-
dation can be done.However, amajor limitation of traditional periodic itemsetmining
is that the relative importance of each item is not taken into account and that each
item cannot appear more than once at each time step of the sequence. But in real
life, not all items are equally important (e.g., selling a cake yields less profit than
selling a computer) and a customer may buy multiple units of the same item at the
same time (e.g., many cakes). To address these factors, the task of periodic frequent
itemset mining was generalized as that of periodic high utility itemset mining, where
the goal is to find the sets of items that not only periodically appear in a sequence
but also have a high importance (e.g., yield a high profit). This chapter provides an
overview of this task and presents an algorithm to solve this problem. Moreover, a
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variation of this task that consisting of discovering irregular high utility itemsets is
also discussed. Finally, some research opportunities are listed.

1 Introduction

In recent decades, more and more data has been collected and stored in databases.
Making sense of this data has become challenging as analyzing large volumes of data
by hand is prone to error and time consuming. As a solution, datamining has emerged
as an important task. It consists of applying algorithms to (semi)-automatically ana-
lyze data. Various types of data can be analyzed using data mining techniques such
as spatial data [65], sequences [26], trajectories [16, 80], databases [24, 27], and
graphs [42]. Data mining algorithms can generally be viewed as designed to build
predictive models from data (to predict the future) or to find interesting patterns that
can help to understand the data (to describe the data or understand the past).

The task of finding interesting patterns in data is known as pattern mining. The
goal is to find sets of values that appear together in the data andmeet some criteria set
by the user. The most fundamental problem in pattern mining is known as frequent
itemset mining [1, 24, 52]. The input is a database of transactions (records), as well
as a parameter called the minimum support threshold minsup. The output is the
frequent itemsets, that is the sets of value that appear at least in minsup records of
the input database. For example, frequent itemsetmining can be applied on a database
of transactionsmade by a customer to reveal information such that the customer often
purchased the items cake and milk together.

Frequent itemset mining is useful and has many applications. However, it consid-
ers that records are unordered. But for several domains such as analyzing customer
transactions, the records (transactions) are ordered sequentially (e.g., by time). To
find patterns that regularly appear in a sequence of events (e.g., transactions), the
problem of frequent itemset mining was redefined as frequent periodic itemset min-
ing [3, 4, 32]. A periodic pattern is a set of values that regularly appear in a sequence.
For instance, a pattern found in transaction data from a customer may indicate that
the customer regularly buys milk with cake.

Although periodic frequent patternmining is useful, a drawback is that the relative
importance of each item is not taken into account. In other words, it is assumed that
all items are equally important. Moreover, another limitation is that the quantities of
items are assumed to be binary (an item either appears or not in a record). However,
in real life, items may appear more than once at each time step (e.g., a customer may
buy five apples or just one), and some items are more important than others (e.g.,
selling a smartphone yield more profit than selling a pen). As a result, algorithms for
periodic frequent itemset mining may find a huge amount of periodic patterns that
are not important (e.g., yield a low profit) and miss many rare periodic patterns that
have a high importance (e.g., yield a high profit). To address these issues, the task
of periodic pattern mining was generalized as that of periodic high utility itemset
mining (PHUIM) [23]. The goal is to find the sets of items that not only periodically
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Table 1 A sequence of
transactions (transaction
database)

Transaction ID Transaction

T1 a, c

T2 e

T3 a, b, c, d, e

T4 b, c, d, e

T5 a, c, d

T6 a, c, e

T7 b, c, e

appear in a sequence but also have a high importance (e.g., yield a high profit). This
chapter describes the problem of PHUIM.

The chapter is organized as follows. Section 2 briefly reviews related work on
frequent periodic itemset mining. Then, Section 3 describes the problem of periodic
high utility itemset mining and an efficient algorithm named PHM (Periodic High
utility itemset Miner) [23] to solve this problem. Thereafter, Section 4 discusses a
problem variation to find irregular high utility itemsets using an algorithm called
PHMirregular . Finally, Section 5 discusses some other variations [11] and research
opportunities, and Section 6 draws a conclusion.

2 Preliminaries about Periodic Itemset Mining

This section briefly reviews concepts from periodic itemset mining that are useful
for this chapter. Let there be a finite set I of items. An item is a symbol or event
type. An itemset X is a set of items (X ⊆ I ). An itemset X that has k items is called
a k-itemset. The input in periodic itemset mining is a sequence of transactions, also
called a transaction database.

Definition 1 (Transaction database) A transaction database is a sequence of transac-
tions s = 〈T1, T2, . . . Tm〉, where Tj ⊆ I . The integer w used to denote a transaction
Tw is called its transaction identifier and is unique.

Example 1 Consider the database of Table 1. This database is a sequence of seven
transactions made by a customer, denoted as T1, T2, . . . , T7. Each transaction is a
set of items that the customer purchased at a given time from the sets of products
I = {a, b, c, d, e}. For instance, the transaction T5 indicates that the customer has
bought items a, c and d together. In this case, transactions are ordered by purchase
times. An itemset such as {a, b, c, d, e} is a 5-itemset because it contains five items.

It is to be noted that although a sequence of transactions is often ordered by time,
it can be ordered according to other criteria. For example, a sequence of nucleotides
in the genome of a virus such as 〈{A}, {A}, {C}, {G}, {T }, {A}, . . .〉 can be viewed
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as a sequence of transactions where the order does not depend on time [54]. Another
example is to consider a text document as a sequence of transactions, where each
transaction is the set of words (items) appearing in a sentence. In that case, the
sequential ordering represents the order between sentences rather than time. If a
transaction database is ordered by time or contains timestamps, it is sometimes
called a temporal database or temporal transaction database.

To find periodic patterns in a sequence of transactions, the task of frequent periodic
itemset mining has been proposed, which aims at finding itemsets that regularly
appear over time [3, 32]. This task is defined based on the following definitions.

Definition 2 (Sequence containment) Consider a sequence sv = 〈V1, V2, . . . , Vk〉
and another sequence sw = 〈W1,W2, ...,Wl〉. It is said that the sequence sv is a
subsequence of sw (denoted as sv � sw) iff some integers 1 ≤ b1 < b2 < ... < bk ≤
m exist such that V1 ⊆ Wb1, V2 ⊆ Wb2, . . . , Vk ⊆ Wbl .

Example 2 The sequence sv = 〈(a, e), (b, d)〉 is a subsequence of the sequence of
transactions depicted in Table 1 since {a, e} is a subset of transaction T3 and it is fol-
lowedby {b, d} inT4.Another example is that 〈(a, e), (b, d)〉 � 〈(a, e), (b)(b, c, d)〉.

To check if an itemset is periodic in a sequence of transactions, it is necessary
to define what it means to be periodic using some criteria [3, 32]. This is done by
using some evaluation functions that measure how periodic a pattern is. The basic
evaluation functions used in frequent periodic itemset mining to select periodic pat-
terns are the support and the maximum periodicity, which are based on the following
definitions.

Definition 3 (Support function) The support of an itemset X in a sequence of trans-
actions s is the number of transactions from s that contain X . The support is formally
defined as sup(X, s) = |T R(X, s)| and simply denoted as sup(X) without s when
the context is clear.

Example 3 Consider the itemset X = {a, e} and the sequence s of Table 1. The
itemset X has a support of 2 since X appears in two transactions (T3 and T6). This is
denoted as sup(X, s) = 2.

Definition 4 (Consecutive transactions with respect to an itemset) For a sequence
of transactions s and an itemset X � s, the ordered list of transactions (from s)
containing X is denoted and defined as T R(X, s) = 〈Tg1, Tg2 , . . . , Tgk 〉 � s. Two
transactions Tx and Ty in T R(X, s) are said to be consecutive with respect to X if
there is no transaction Tz ∈ s such that x < z < y and X ⊆ Tz .

Example 4 Consider the sequence s of Table 1 and the itemset X = {b, c}. The list
of transactions from s containing X is T R(X, s1) = {T3, T4, T7}. The transactions
T3 and T4 are consecutive transactions with respect to X . The transactions T4 and T7
are also consecutive transactions with respect to X .
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Definition 5 (Periods of an itemset) For an itemset X , the period of two consec-
utive transactions Tx and Ty containing X is defined as per(Tx , Ty) = y − x . The
periods of an itemset X in a sequence s are denoted and defined as pr(X, s) =
{per1, per2, ..., perk+1} where per1 = g1 − g0, per2 = g2 − g1, …perk+1 =
gk+1 − gk , and g0 = 0 and gk+1 = n, respectively.

Example 5 Continuing the previous example, the periods of X in s are pr(X, s) =
{3, 1, 3, 0}. Consider another itemsetY = {a, c}. The periods ofY in s are pr(Y, s) =
{1, 2, 2, 1, 1}.
Definition 6 (Maximum periodicity function) A common evaluation function to
determine if an itemset X is periodic in a sequence s is called themaximumperiodicity
and is defined as max Pr(X, s) = argmax(pr(X, s)) [3].

Example 6 The maximum periodicity of X = {a, e} and Y = {a, c} in s are respec-
tively max Pr(X, s) = argmax({3, 1, 3, 0}) = 3 and max Pr(Y, s) = argmax
({1, 2, 2, 1, 1}) = 2.

Traditionally, an itemset X is called a frequent periodic itemset if it has a support
that is no less than aminSup threshold set by the user (sup(X, s) ≥ minsup), and if
the maximum periodicity of X is not greater than a user-specified thresholdmax Per
(max Pr(X, s) ≤ max Per ) [3, 32]. For instance, if the user sets minSup = 2 and
max Per = 2, the itemset {a, c} is a periodic itemset in the sequence of Table 1.

Though finding frequent periodic itemsets can be useful, a problem with this
definition of periodic itemset is that it is too strict since if an itemset has a single period
that is greater thanmax Per , it is deemed non-periodic. For instance, ifmax Per = 7
days and a customer bought bread every day except during 8 consecutive days, then
the itemset {bread} will not be periodic. Several alternative evaluations functions
have been proposed to address this problem. Some functions that have been studied
are

• the average periodicity [32] defined as avgPr(X, s) = average(pr(X, s)),
• the minimum periodicity [32] defined as minPr(X, s) = argmin(pr(X, s)),
• the standard deviation of periods [21, 55, 56], defined as stanDev(X, s) =
stanDev(pr(X, s)),

• and the variance of periods [44, 61, 62].

Besides, somemeasures were proposed to evaluate whether an itemset is periodically
stable over time (consecutive periods remain more or less the same) [28, 33], and
statistical testing has also been employed to find statistically significant periodic
patterns [55].

In the remaining of this chapter, the following definition of periodic itemsets is
used, as it is more general than the traditional definition [23, 32].

Definition 7 (Periodic itemset) An itemset X is considered to be a periodic itemset
if it satisfies three conditions: (1) minAvg ≤ avgper(X) ≤ max Avg, (2) minper
(X) ≥ minPer , and (3) maxper(X) ≤ max Per , where minAvg, max Avg,
minPer and max Per are positive numbers.
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This definition is quite flexible as it let the user specifies on average how large the
periods of an itemset should be (by condition 1), and two constraints on theminimum
and maximum size of periods (by conditions 2 and 3). It is to be noted that some
conditions can also be omitted if needed. For example, if only condition 3 is used,
the traditional definition of periodic pattern is obtained.

Example 7 Consider that minAvg = 1, max Avg = 2, minPer = 1, and
max Per = 3. The itemset X = {b, c, e} is a periodic itemset since avgper(X) =
1.75 ≤ max Avg, avgper(X) = 1.75 ≥ minAvg, minper(X) = 1 ≥ minPer ,
maxper(X) = 3 ≤ max Per .

It can be observed that the definition of periodic itemset does not consider times-
tamps. However, it can be easily generalized to be used for transactions that have
timestamps. In that case, the transaction identifiers can be replaced by timestamps
for the calculation of the periods of an itemset. In the case where two transactions
have the same timestamp, an arbitrary order between them can be established.

To develop efficient algorithms for finding periodic itemsets using the above
definition, a few important properties of the evaluation functions are the following [3,
23, 32].

Property 1 (The average, minimum, and maximum periodicity are monotonic)
Consider two itemsets X and Y satisfying the relationship X ⊂ Y . It follows that
avgper(Y ) ≥ avgper(X). Moreover, it can proved that minper(Y ) ≥ minper(X)

and
maxper(Y ) ≥ maxper(X).

Property 2 (Eliminating non-periodic itemsets using the maximum periodicity)
Consider an itemset X and a sequence of transaction s. The itemset X and its supersets
are not periodic itemsets if maxper(X) > max Per [3].

Property 3 (Eliminating non-periodic itemsets using the average periodicity) An
itemset X is not a periodic itemset in a sequence of transactions s if avgper(X) >

max Avg. This condition can be rewritten as |sup(X, s)| < (|s|/max Avg) − 1 [23,
32].

As it will be shown, the Property 2 and 3 can be used to avoid exploring the whole
search space of itemsets, and thus to improve efficiency of algorithms for mining
periodic itemsets.

3 Periodic High Utility Itemset Mining

Though discovering periodic frequent itemsets is useful and can reveal interesting
patterns in data [3], it has two important limitations inherited from frequent itemset
mining [1, 24, 40, 79]. They are that (1) an item cannot appear more than once
in each transaction and (2) all items are considered to have the same importance.
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However, these assumptions are not true for several applications. For instance, in
the context of customer transaction data analysis, a client may buy more than one
bottle of milk in a transaction and some items may be viewed as more important than
others because their sale yields a higher profit. Ignoring this information may lead to
finding many uninteresting patterns (e.g., patterns that yield a low profit for a store).

To find patterns that have a high importance (e.g., a high profit) rather than only
frequent patterns, the problem of frequent itemset mining was generalized as high
utility itemset mining [27]. Then, inspired by this, frequent periodic itemset mining
was generalized as periodic high utility itemset mining [23]. The next subsection first
briefly reviews concepts from high utility itemset mining and presents the problem
of periodic high utility itemset mining that is a generalization of periodic frequent
itemsetmining. Then, the next subection presents an efficient algorithm, named PHM
(Periodic High utility itemset Miner) [23].

3.1 The Problem

The input data in high utility itemset mining is a quantitative transaction database,
and the goal is to find high utility itemsets (itemsets that have a high importance such
as that yield a high profit) [27]. The concept of a quantitative transaction database is
defined next.

Definition 8 (Quantitative transaction database) A quantitative transaction database
s (also called sequence of quantitative transactions) is a transaction database where a
positive number p(i) named external utility is given for each item i , which represents
its relative importance in the database. Moreover, a positive number q(i, Tc) called
internal utility is provided to indicate the importance of each item i in each transaction
Tc.

Example 8 Table 2 lists seven transactions of a quantitative transaction database
that are the transactions made by a customer over time. There are five items I = {a,
b, c, d, e}. In each transaction, the relative importantce of each item represents its
purchase quantity. For example, in transaction T6, 2 units of item a is purchased
(q(a, T5) = 2), 6 units of item c is purchased (q(c, T5) = 6), and 2 units of item e
is purchased (q(e, T5) = 2). The relative importance of items (the external utility) is
given in the last line of Table 2. For instance, it is indicated that selling one unit of
item d yields a profit of p(d) =2$ while the sale of a unit of a gives a p(a) = 5$
profit.

Transactions in a quantitative transaction database can be ordered by time or
according to other criteria andmay represent shopping data or other types of symbolic
data. In the case where all external utility values and internal utility values are either
0 or 1, a quantitative transaction database is a transaction database, as defined in the
previous section.
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Table 2 A quantitative transaction database

Transaction ID Quantitative transaction

T1 (a, 1), (c, 1)

T2 (e, 1)

T3 (a, 1), (b, 5), (c, 1), (d, 3), (e, 1)

T4 (b, 4), (c, 3), (d, 3), (e, 1)

T5 (a, 1), (c, 1), (d, 1)

T6 (a, 2), (c, 6), (e, 2)

T7 (b, 2), (c, 2), (e, 1)

External utility values of items

p(a) = 5, p(b) = 2, p(c) = 1, p(d) = 2, p(e) = 3

In high utility itemset mining, patterns are selected based on their utility (e.g.,
importance or profit), an evaluation function defined as follows.

Definition 9 (Utility of items and itemset) Let there be a transaction T , an itemset
X , and an item i . The utility of i in T is the product of its internal and external utility,
that is u(i, T ) = p(i) × q(i, T ). For an itemset X ⊆ T , the utility of X in T is the
sum of the product of the internal and external utility of each item in X , that is :
u(X, T ) = ∑

i∈X u(i, T ). For an itemset X � T , the utility of X in T is 0, that is
u(X, T ) = 0. The utility of X in the input database s is the sum of its utility for all
transactions that is: u(X) = ∑

X⊆T∈D u(X, T ).

Example 9 For the database of Table 2, the utility of b in T7 is u(b, T7) = q(b, T7) ×
p(b) = 2 × 2 = 4. The utility of c in T7 is u(c, T7) = q(c, T7) × p(c) = 2 × 1 =
2. The utility of {b, c} in T7 is u({b, c}, T7) = u(b, T7) + u(c, T7) = 4 + 2 = 6.
The utility of {b, c} in the database is u({b, c}) = u({b, c}, T3) + u({b, c}, T4) +
u({b, c}, T7) = (10 + 1) + (8 + 3) + (4 + 2) = 28.

In the problem of high utility itemset mining, the goal is to find all high utility
itemsets. The problem is defined as follows.

Definition 10 (High utility itemset mining) Let there be an itemset X , a database
s, and a minimum utility threshold minUtil set by the user (a positive number. If
u(X) ≥ minUtil then X is a high utility itemset. Otherwise, it is a low utility itemset.
The goal of high utility itemset mining is to find all high utility itemsets.

Example 10 Continuing the running example, assume that minUtil = 35. Then,
there are three high utility itemsets, which are {b, c, d, e}with a utility of 40, {b, c, e}
with a utility of 37, and {b, d, e} with a utility of 36.

To find high utility itemsets, several efficient algorithms have been designed such
asTwo-phase [50],HUP-Growth [48], FHM[30],ULB-Miner [14],mHUIMiner [58],
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Table 3 The set of PHUIs in the running example

Itemset u(X) sup(X) minper(X) maxper(X) avgper(X)

{b, e} 31 3 1 3 1.75

{b, c, e} 37 3 1 3 1.75

{b, c} 28 3 1 3 1.75

{a, c} 34 4 1 2 1.4

EFIM [81], and HUI-Miner [49]. A good overview of techniques and algorithms for
high utility itemset mining can be found in a recent survey [27].

The concept of high utility itemset has combined with that of periodic patterns to
find patterns that are not only periodic but also have a high importance (yield a large
profit). This problem called periodic high utility itemset mining [23] is defined as
follows.

Definition 11 (Periodic high utility itemset mining) An itemset X is considered
to be a periodic high utility itemset (PHUI) if it satisfies four conditions: (1)
minAvg ≤ avgper(X) ≤ max Avg, (2)minper(X) ≥ minPer , (3)maxper(X) ≤
max Per , and (4) u(X) ≥ minUtil, where minAvg, max Avg, minPer , max Per
and minUtil are positive numbers.

Example 11 Consider again the sequence of Table 2 as example. Let minPer = 1,
max Per = 3, minAvg = 1, max Avg = 2, and minUtil = 28. The periodic high
utility itemsets discovered in this data are listed in Table 3.

It can be shown that the traditional problem of periodic frequent itemset mining
is a special case of that problem where all internal and external utility values are set
to 0 or 1 and only condition (3) is used.

3.2 The PHM Algorithm

This subsection describes the PHM algorithm to discover all periodic high utility
itemsets in a quantitative transaction database, where transactions are ordered by
time or other criteria. The PHMalgorithm is an extension of the FHM [30] algorithm,
a popular, simple, and efficient algorithm for mining high utility itemsets, which is
an improved version of the HUI-Miner algorithm [49].

The search space of periodic high utility itemset mining contains 2|I | − 1 possible
itemsets. For instance, in the running example, I = {a, b, c, d, e}. Hence, there are
2|5| − 1 = 31possible itemsets such as {a}, {b}, . . . {a, b}, {a, c} . . . {b, c, d}, {b, c, e}
. . . {a, b, c, d, e}. A naive algorithm to find all periodic high utility itemsets would
scan the database and calculate the utility and periods of all possible itemsets to find
the solution. But this is inefficient as the search space can be very large. The PHM
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algorithm adopts a different approach to avoid looking at all possibilities. The next
paragraphs introduce the key ideas of this algorithm, and then the pseudocode is
presented.

For the purpose of processing, the PHMalgorithm supposes that there exists a total
order 
 on the items from I . This order 
 can be any order such as the alphabetical
order. This order is used by PHM to search for itemsets in a systematic way, that is
to not look at the same itemset more than once.

To eliminate many itemsets that are not high utility itemsets from the search
space, PHM uses the Transaction-Weighted Utilization (TWU) measure, which was
proposed by Liu et al. [50].

Definition 12 (Transaction utility, TWU)Let there be an itemset X and a transaction
T . The notation TU (T ) denotes the transaction utility of transaction T , which is
defined as TU (T ) = ∑

x∈T u(x, T ). The notation TWU (X) denotes the TWU of
X , which is defined as TWU (X) = ∑

X⊆T∈D) TU (T ).

Example 12 Following the previous example, the transactions T1, T2, . . . T7, respec-
tively have transaction utility values of 6, 3, 25, 20, 8, 22 and 9. The TWUof the item-
set {b, c} is TWU ({b, c}) = TU (T3) + TU (T4) + TU (T7) = 25 + 20 + 9 = 54.

A powerful property for reducing the search space using the TWU is the follow-
ing [50].

Theorem 1 (Pruning search space using theTWU) For an itemset X, if TWU (X) <

minUtil, then u(X) < minUtil, and for any superset Y ⊃ X, we have u(Y ) <

minUtil. In other words, both X and Y are not high utility itemsets and can be
ignored.

To be able to calculate the utility and periods of itemsets, the PHM algorithms
utilize a structure called utility list [49], which is defined as follows. Initially, PHM
reads the database to create the utility list of each itemset containing one item.
Then, PHM generates utility lists of larger itemsets by joining utility lists of smaller
itemsets. The advantage of this approach is that all itemsets can be explored without
having to repeatedly read the database. The utility list structure is defined as follows.

Definition 13 (Utility list) Recall that 
 is a total order defined on items in I . Let
there be an itemset X and a database s. The utility list of X is denoted as ul(X)

and is defined as a list of tuples where there is a tuple (t id, iutil, rutil) for each
transaction T where X ⊆ T . The iutil element of a tuple stores the value u(X, T ).
The rutil element of a tuple stores the value

∑
i∈T∧i
x∀x∈X u(i, T ) called remaining

utility.

Example 13 For instance, assume that 
 is the alphabetical order. The utility list of
{a} contains four tuples: {(T1, 5, 1), T3, 5, 20), (T5, 5, 3), (T6, 10, 12)}. The utility
list of {d} has three tuples: {(T3, 6, 3), (T4, 6, 3), (T5, 2, 0)}. And the utility list of
{a, d} contain two tuples: {(T3, 11, 3), (T5, 7, 0)}.
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The utility lists of itemsets having single items are constructed by reading the
database. For itemsets having more than one item, the following join operation is
used to build the utility list [49]. Let there be two items x 
 y such that x, y ∈ I .
The utility list of itemset {x, y}, denoted as ul({x, y}) can be created by adding
a tuple (ex .t id, ex .iutil + ey.iutil, ey.rutil) to ul({x, y}) for each pair of tuples
ex ∈ ul({x}) and ey ∈ ul({y}) such that ex .tid = ey.t id. For itemsets containing
more than two items, the join operation is done as follows. Let there be two itemsets
P ∪ {x} and P ∪ {y} such that x 
 y and P ⊂ I . The utility list of itemset P ∪
{x, y}, denoted as ul(P ∪ {x, y}) is created by adding a tuple (ex .t id, ex .iutil +
ey.iutil − ep.iutil, ey.rutil) to ul(P ∪ {x, y}) for each set of tuples ex ∈ ul({x}),
ey ∈ ul({y}), ep ∈ ul(P) such that ex .tid = ey.tid = ep.t id.

The utility list of an itemset is useful as it allows to directly obtain its utility and
to reduce the search space. The utility of an itemset X is simply the sum of the iutil
values in ul(X). To reduce the search space using the utility, the following property
is used [49]:

Theorem 2 (Search space reduction with utility list) For an itemset X, an extension
of X is an itemset that is obtained by appending an item y to X such that y 
 i ,
∀i ∈ X. If the sum of iutil and rutil values in ul(X) is less than minUtil, X and
its extensions are low utility itemsets and can be ignored.

The utility list structure can also be used to directly calculate the periods of an
itemset X , and thus determine if it is a periodic itemset. This can be done by looking
at the tid elements of the utility list of X .

Pseudocode. The pseudocode of the main procedure of the PHM algorithm is
shown in Algorithm 1. The input is a quantitative transaction database as well as the
five thresholds minUtil, minAvg, max Avg, minPer and max Per . The algorithm
outputs the set of all periodic high utility itemsets. PHM initially reads the input
database to calculate the following values for each item i ∈ I : sup({i}), TWU ({i}),
minper({i}) andmaxper({i}). Moreover, PHM calculates γ = (|s|/max Avg) − 1,
which is needed by Property 3 to reduce the search space. Afterward, a set of items
I ∗ is created by PHM, which contains each item i that has a TWU value that is
greater or equal to minUtil, a maximum periodicity that is no less than max Per ,
and where i appears in at least γ transactions (as per the Property 3). Thereafter,
the total order 
 on items is established as in the HUI-Miner algorithm [49] as the
order of ascending TWU values and the alphabetical order when two items have the
same TWU. The next action done by PHM is to read the database again and sort in
memory each transaction according to 
. At the same time, a utility list is built for
each item i ∈ I ∗. Then, PHM starts to recursively search for periodic high utility
itemsets by calling the Search procedure with the following parameters: the empty
itemset ∅, the set I ∗, γ , minUtil, minAvg, minPer , max Per and |s|.

Algorithm 2 presents the Search procedure. It receives an itemset P , some exten-
sions of P that have the form Pz (which was obtained by adding an item z to P), as
well as the original input parameters and the input sequence length |s|. The first step
done by this procedure is to iterate over the extensions in P . For each such extension
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Algorithm 1: The PHM algorithm
input : s: a transaction database,

minUtil, minAvg, max Avg, minPer and max Per : the thresholds
output: the set of periodic high utility itemsets

1 Scan s once to calculate TWU ({i}), minper({i}), maxper({i}), and |g({i})| for each item
i ∈ I ;

2 γ ← (|s|/max Avg) − 1;
3 I ∗ ← each item i such that TWU(i) ≥ minUtil, sup({i}) ≥ γ and
maxper({i}) ≤ max Per ;

4 Establish the total order 
 on I ∗ as that of TWU ascending values;
5 Search (∅, I ∗, γ , minUtil, minAvg, minPer , max Per , |s|);

Px , the procedure first calculates the average periodicity of Px as the ratio of |s| to
the number of elements in the utility list of Px plus one. Thereafter, the procedure
checks if the following conditions are met: (1) the average periodicity of Px is no
less than minAvg and no greater than max Avg, (2) the sum of the iutil values of
the utility list of Px is no less than minUtil (by Theorem 2), and (3) according
to the utility list of Px , the minimum (maximum) periodicity of Px is no less (not
greater) than minPer (max Per ). If these conditions are met, then Px is output as a
periodic high utility itemset. Afterward, if the number of elements in the utility list
of Px is at least γ , the sum of iutil and rutil values in the utility list of Px is no less
than the minimum utility treshold, and maxper(Px) is no greater than max Per ,
extensions of Px will be considered as potential periodic high utility itemsets (based
on Theorem 2 and Properties 2 and 3). To explore these extensions, a loop is done
where each extension Py of P is merged with Px to produce a new extension Pxy
having |Px |+1 items. The Construct procedure of FHM [30] is applied to combine
the utility lists of P , Px and Py to generate the utility list of Pxy, with some minor
modifications. The difference is that periods are calculated for Pxy while building
its utility list so that max Per(Pxy) and minPer(Pxy) can be obtained. Then, the
Search procedure is recursively invoked with Px and all extensions of the form
Pxy to explore the search space and find all periodic high utility itemsets that are
transitive extensions of Px .

When the PHM algorithm terminates all periodic high utility itemsets have been
output. This can be demonstrated by observing that the algorithm can recursively
explore the whole search space and only applies Theorem 2, Properties 2 and 3, to
eliminate non-periodic high utility itemsets.

Optimizations.Note that for a fast implementation of PHM, there are several pos-
sible optimizations. Three optimizations proposed in PHM are called (1) Estimated-
Utility Co-occurrence Pruning, (2) Estimated Average Periodicity Pruning, and (3)
Abandoning List Construction early. Details about these optimizations can be found
in the PHM paper [23]. Besides, several other optimizations used in other HUI-
Miner or FHM-based algorithms could be integrated into PHM to further enhance
its performance such as the memory-buffering technique of ULB-Miner [14].
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Algorithm 2: The Search procedure
input : P: an itemset, ExtensionsOfP: a set of extensions of P , γ , minUtil, minAvg,

minPer , max Per , |s|
output: the set of periodic high utility itemsets

1 foreach itemset Px ∈ ExtensionsOfP do
2 avgper Px ← |s|/(|Px .utili t ylist | + 1);
3 if SUM(Pxy.utili t ylist.iutils) ≥ minUtil∧ minAvg ≤ avgper Px ≤

max Avg ∧ Px .utili t ylist.minp ≥ minPer ∧ Px .utili t ylist.maxp ≤ max Per then
output Px if SUM(Px .utili t ylist.iutils)+SUM(Px .utili t ylist.rutils) ≥ minUtil ∧
avgper Px ≥ γ and Px .utili t ylist.maxp ≤ max Per then

4 ExtensionsOfPx ← ∅;
5 foreach itemset Py ∈ ExtensionsOfP such that y 
 x do
6 Pxy ← Px ∪ Py;
7 Pxy.utili t ylist ← Construct (P, Px, Py);
8 ExtensionsOfPx ← ExtensionsOfPx ∪ {Pxy};
9 end

10 Search (Px , ExtensionsOfPx, γ , minUtil, minAvg, minPer , max Per , |s|);
11 end
12 end

Implementation and datasets. The original Java implementation of PHM with
all optimizations, and datasets are offered in the open-source SPMF data mining
library [25] at http://www.philippe-fournier-viger.com/spmf/.

4 Irregular High Utility Itemset Mining

The problem ofmining periodic high utility itemsets reviewed in the previous section
is interesting as it can reveal itemsets that periodically appear in a sequence of
quantitative transactions and also have a high importance (e.g., yield a high profit).
This section presents a related problem, which is that of discovering irregular high
utility itemsets. Intuitively, an irregular itemset is an itemset that typically has a long
time delay between each of its consecutive occurrences. The problem of irregular
itemset mining [45] is defined as follows.

Definition 14 (Regularity) The regularity of an itemset X in a sequence of quanti-
tative transactions s, denoted as reg(X), is the smallest period among the periods in
pr(X, s), when the first and last periods are excluded.

Example 14 Consider the sequence s of Table 1 and the itemsets X = {b, c} and
Y = {a, c}. The periods of X in s are pr(X, s) = {3, 1, 3, 0} while that of Y in s
are pr(Y, s) = {1, 2, 2, 1, 1}. Hence, the regularity of X and Y in s are, respectively,
reg(X) = 1 and reg(Y ) = 1.

Definition 15 (Irregular high utility itemset mining) An itemset X is considered
to be an irregular high utility itemset (IHUI) if it satisfies two conditions: (1)

http://www.philippe-fournier-viger.com/spmf/
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reg(X) ≥ minReg, and (2) u(X) ≥ minUtil, whereminReg andminUtil are pos-
itive numbers.

The PHM_irregular Algorithm. The problem of discovering irregular high
utility itemsets can be solved using the PHM algorithm presented in the previ-
ous section by simply setting minPer = minReg, max Per = ∞, minAvg = 0
and max Avg = ∞. The original implementation of that variation of PHM is
called PHM_irregular and is available in the open-source SPMF pattern mining
library [25] at http://www.philippe-fournier-viger.com/spmf/.

5 Other Variations and Research Opportunities

The previous section has presented the basic problem of periodic high utility itemset
mining and the variation of irregular high utility itemset mining. Some other vari-
ations have been proposed such as (1) mining periodic high utility sequential pat-
terns [9, 11–13, 46, 47, 59, 60] where each transaction is a quantitative sequence, (2)
productive-associated periodic high utility itemsets mining [41], where a statistical
test is used to filter spurious patterns, and (3) partial periodic high utility itemsets
[63], which utilizes a different measure of periodicity.

There are several possibilities for future work. A few of them are:

• Designing faster and more memory-efficient algorithms for periodic high utility
itemset mining by taking advantage of the numerous work on high utility itemset
mining [27], or other optimizations in periodic itemsetmining such as approximate
periodicity calculations [5].

• Proposing new problems by drawing inspiration from variations of the high utility
itemset mining problem such as considering multiple minimum utility thresh-
olds [64], using the average utility function [68], discovering the top-k high item-
sets having the highest utility [15, 66], mining high utility itemsets in a stream or
incrementally updated data [77, 78], discovering on-shelf high utility itemsets [37],
finding a summary of all high utility itemsets [29], and considering negative utility
values [17].

• Using different measures of periodicity or other measures related to time such as
the stability [28, 33].

• Applying periodic high utility itemset mining in new applications such as for
smart homes [53], intelligent systems [43], location prediction [71] and sequence
prediction [38].

• Designing measures to find periodic high utility itemsets common to multiple
sequences similarly to studies on mining periodic patterns common to multiple
sequences [21, 31],

• Integrating various correlation measures in the mining process to filter spurious
patterns besides the one that was used in productive-associated periodic high
utility itemset mining [41], such as the bond [22, 36, 57, 76], affinity [2], all-
confidence [57, 70], coherence and mean [7, 67].

http://www.philippe-fournier-viger.com/spmf/
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• Combining the concept of high utility periodic patterns with other concepts such as
episode patterns [6, 34, 35], subgraphs [18, 19, 39, 42], sequential patterns [20, 26,
69, 74, 75], trajectory patterns [80], and periodic patterns with gap constraints [72,
73], and clustering [8, 10, 51].

6 Conclusion

This chapter has presented an overview of how to discover periodic and irregular
high utility itemsets in a sequence of quantitative transactions (also called a trans-
action database). The problems have been described and two algorithms have been
explained, namely, PHM and PHM_irregular. There are several possible research
opportunities on this topic. Some of them have been listed in this chapter.

References

1. R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large databases. Pro-
ceedings of 20th International Conference on Very Large Data Bases (1994), pp. 487–499

2. C.F. Ahmed, S.K. Tanbeer, B. Jeong, H. Choi, A framework for mining interesting high utility
patterns with a strong frequency affinity. Inf. Sci. 181(21), 4878–4894 (2011)

3. K. Amphawan, P. Lenca, A. Surarerks, Mining top-K periodic-frequent pattern from transac-
tional databases without support threshold. Proceedings of the Third International Conference
on Advanced in Information Technology (2009), pp. 18–29

4. K. Amphawan, P. Lenca, A. Surarerks, Mining top-K periodic-frequent pattern from transac-
tional databases without support threshold. Proceedings of the Third International Conference
on Advances in Information Technology (2009), pp. 18–29. 10.1007/978-3-642-10392-6_3

5. K. Amphawan, A. Surarerks, P. Lenca, Mining periodic-frequent itemsets with approximate
periodicity using interval transaction-ids list tree. 2010 Third International Conference on
Knowledge Discovery and Data Mining (IEEE, New York, 2010), pp. 245–248

6. X. Ao, H. Shi, J. Wang, L. Zuo, H. Li, Q. He, Large-scale frequent episode mining from
complex event sequences with hierarchies. ACM Transactions on Intelligent Systems and
Technology (TIST) 10(4), 1–26 (2019)

7. M. Barsky, S. Kim, T. Weninger, J. Han, Mining flipping correlations from large datasets with
taxonomies. Proc. VLDB Endow. 5, 370–381 (2011)

8. D.T. Dinh, V.N. Huynh, k-pbc: an improved cluster center initialization for categorical data
clustering. Appl. Intell. 50, 1–23 (2020)

9. D.T. Dinh, V.N. Huynh, B. Le, P. Fournier-Viger, U. Huynh, Q.M. Nguyen, A survey of
privacy preserving utility mining. High-Utility Pattern Mining (2019), pp. 207–232

10. D.T. Dinh, V.N. Huynh, S. Songsak, Clustering mixed numerical and categorical data with
missing values. Inf. Sci. 571, 418–442 (2021)

11. D.T. Dinh, B. Le, P. Fournier-Viger, V.N. Huynh, An efficient algorithm for mining periodic
high-utility sequential patterns. Appl. Intell. 48(12), 4694–4714 (2018)

12. T. Dinh, V.N. Huynh, B. Le, Mining periodic high utility sequential patterns. Proceedings of
the 2017 International Conference on Intelligent Information andDatabase Systems (Springer,
Berlin, 2017), pp. 545–555

13. T. Dinh, M.N. Quang, B. Le, A novel approach for hiding high utility sequential patterns. Pro-
ceedings of the 6th International Symposium on Information and Communication Technology
(2015), pp. 121–128



148 P. Fournier-Viger et al.

14. Q.H. Duong, P. Fournier-Viger, H. Ramampiaro, K. Nørvåg, T.L. Dam, Efficient high utility
itemset mining using buffered utility-lists. Appl. Intell. 48(7), 1859–1877 (2018)

15. Q.H. Duong, B. Liao, P. Fournier-Viger, T.L. Dam, An efficient algorithm for mining the top-k
high utility itemsets, using novel threshold raising and pruning strategies. Knowl.-Based Syst.
104, 106–122 (2016)

16. Z. Feng, Y. Zhu, A survey on trajectory data mining: Techniques and applications. IEEE
Access 4, 2056–2067 (2016)

17. P. Fournier-Viger, Fhn: efficientmining of high-utility itemsetswith negative unit profits. Inter-
national Conference on Advanced Data Mining and Applications (Springer, Berlin, 2014),
pp. 16–29

18. P. Fournier-Viger, C. Cheng, J.C.W. Lin, U. Yun, R.U. Kiran, Tkg: Efficient mining of top-k
frequent subgraphs. Proceedings of the 7th International Conference on Big Data Analytics
(Springer, Berlin, 2019), pp. 209–226

19. P. Fournier-Viger, G. He, C. Cheng, J. Li, M. Zhou, J.C.W. Lin, U. Yun, A survey of pattern
mining in dynamic graphs. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 10(6), e1372 (2020)

20. P. Fournier-Viger, J. Li, J.C.W. Lin, T. Truong, Discovering low-cost high utility patterns.
Data Science and Pattern Recognition 4(2), 50–64 (2020)

21. P. Fournier-Viger, Z. Li, J.C. Lin, R.U.Kiran,H. Fujita,Discovering periodic patterns common
tomultiple sequences. Proceedings of the 20th InternationalConference onBigDataAnalytics
and Knowledge Discovery (2018), pp. 231–246. https://doi.org/10.1007/978-3-319-98539-
8_18

22. P. Fournier-Viger, J.C., Lin, T. Dinh, H.B. Le, Mining correlated high-utility itemsets using
the bond measure. Proceedings of the 11th International Conference on Hybrid Artificial
Intelligent Systems (2016), pp. 53–65. https://doi.org/10.1007/978-3-319-32034-2_5

23. P. Fournier-Viger, J.C. Lin, Q. Duong, T. Dam, PHM: mining periodic high-utility itemsets.
Proceedings of the 16th Industrial Conference, ICDM 2016, ed. by P. Perner (Springer, New
York, 2016), pp. 64–79. https://doi.org/10.1007/978-3-319-41561-1_6

24. P. Fournier-Viger, J.C. Lin, B. Vo, T.C. Truong, J. Zhang, H.B. Le, A survey of itemset mining.
Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 7(4), e1207 (2017)

25. P. Fournier-Viger, J.C.W. Lin, A. Gomariz, T. Gueniche, A. Soltani, Z. Deng, H.T. Lam,
The spmf open-source data mining library version 2. Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (Springer, Berlin, 2016), pp. 36–40

26. P. Fournier-Viger, J.C.W. Lin, U.R. Kiran, Y.S. Koh, A survey of sequential pattern mining.
Data Science and Pattern Recognition 1(1), 54–77 (2017)

27. P. Fournier-Viger, J.C.W. Lin, T. Truong-Chi, R. Nkambou, A survey of high utility itemset
mining. High-Utility Pattern Mining (Springer, Berlin, 2019), pp. 1–45

28. P. Fournier-Viger, Y. Wang, P. Yang, J.C.W. Lin, Y. Unil, A survey of sequential pattern
mining. Appl. Intell. Data Sci. Pattern Recog. 1(1), 54–77 (2021)

29. P. Fournier-Viger, C.W. Wu and V.S. Tseng, Novel concise representations of high utility
itemsets using generator patterns. International Conference on Advanced Data Mining and
Applications (Springer, Berlin, 2014), pp. 30–43

30. P. Fournier-Viger, C.W. Wu, S. Zida, V.S. Tseng, Fhm: Faster high-utility itemset mining
using estimated utility co-occurrence pruning. International Symposium on Methodologies
for Intelligent Systems (Springer, Berlin, 2014), pp. 83–92

31. P. Fournier-Viger, P. Yang, Z. Li, J.C.W. Lin, R.U. Kiran, Discovering rare correlated periodic
patterns in multiple sequences. Data Knowl. Eng. 126, 101–733 (2020). https://doi.org/10.
1016/j.datak.2019.101733

32. P. Fournier-Viger, P. Yang, J.C.W. Lin, Q.H. Duong, T. Dam, L. Sevcik, D. Uhrin, M. Voznak,
Discovering periodic itemsets using novel periodicity measures. Advances in Electrical and
Electronic Engineering 17(1), 33–44 (2019)

33. P. Fournier-Viger, P. Yang, J.C.W. Lin and R.U. Kiran, Discovering stable periodic-frequent
patterns in transactional data. Proceedings of the 32nd International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent Systems (Springer, Berlin, 2019),
pp. 230–244

https://doi.org/10.1007/978-3-319-98539-8_18
https://doi.org/10.1007/978-3-319-98539-8_18
https://doi.org/10.1007/978-3-319-32034-2_5
https://doi.org/10.1007/978-3-319-41561-1_6
https://doi.org/10.1016/j.datak.2019.101733
https://doi.org/10.1016/j.datak.2019.101733


Discovering Periodic High Utility Itemsets in a Discrete Sequence 149

34. P. Fournier-Viger, P. Yang, J.C.W. Lin and U. Yun, Hue-span: Fast high utility episodemining.
Proceedings of the 14th International Conference onAdvanced DataMining andApplications
(Springer, Berlin, 2019), pp. 169–184

35. P. Fournier-Viger, Y. Yang, P. Yang, J.C.W. Lin, U. Yun, Tke: Mining top-k frequent episodes.
Proceedings of the 33rd International Conference on Industrial, Engineering and Other Appli-
cations of Applied Intelligent Systems (Springer, Berlin, 2020)

36. P. Fournier-Viger, Y. Zhang, J.C.W. Lin, D.T. Dinh, H. Le Bac, Mining correlated high-utility
itemsets using various measures. Logic Journal of the IGPL 28(1), 19–32 (2020)

37. P. Fournier-Viger, S. Zida, Foshu: faster on-shelf high utility itemset mining–with or without
negative unit profit. Proceedings of the 30th Annual ACMSymposium onApplied Computing
(ACM, New York, 2015), pp. 857–864

38. T. Gueniche, P. Fournier-Viger, R. Raman, V.S. Tseng, Cpt+: Decreasing the time/space
complexity of the compact prediction tree. Pacific-Asia Conference on Knowledge Discovery
and Data Mining (Springer, Berlin, 2015), pp. 625–636

39. S. Halder, M. Samiullah, Y.K. Lee, Supergraph based periodic pattern mining in dynamic
social networks. Expert Syst. Appl. 72, 430–442 (2017)

40. J. Han, J. Pei, Y. Yin, R. Mao, Mining frequent patterns without candidate generation: A
frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004)

41. W. Ismail,M.M.Hassan, G. Fortino, Productive-associated periodic high-utility itemsetsmin-
ing. 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC)
(IEEE, New York, 2017), pp. 637–642

42. C. Jiang, F. Coenen, M. Zito, A survey of frequent subgraph mining algorithms. Knowl. Eng.
Rev. 28, 75–105 (2013)

43. Kim, H., Yun, U., Vo, B., Lin, J.C.W., Pedrycz, W.: Periodicity-oriented data analytics on
time-series data for intelligence system. IEEE Systems Journal (2020)

44. V. Kumar, V. Kumari, Incremental mining for regular frequent patterns in vertical format.
International Journal of Engineering and Technology 5(2), 1506–1511 (2013)

45. S. Laoviboon, K. Amphawan, Mining high-utility irregular itemsets. In: High-Utility Pattern
Mining (Springer, Berlin, 2019), pp. 175–205

46. B. Le, D.T. Dinh, V.N. Huynh, Q.M. Nguyen, P. Fournier-Viger, An efficient algorithm for
hiding high utility sequential patterns. Int. J. Approximate Reasoning 95, 77–92 (2018)

47. B. Le, U. Huynh, D.T. Dinh, A pure array structure and parallel strategy for high-utility
sequential pattern mining. Expert Syst. Appl. 104, 107–120 (2018)

48. C.W. Lin, T.P. Hong, W.H. Lu, An effective tree structure for mining high utility itemsets.
Expert Syst. Appl. 38(6), 7419–7424 (2011)

49. M. Liu, J. Qu, Mining high utility itemsets without candidate generation. Proceedings of the
21st ACM international conference on Information andKnowledgeManagement (ACM,New
York, 2012), pp. 55–64

50. Y. Liu, W.K. Liao, A. Choudhary, A two-phase algorithm for fast discovery of high util-
ity itemsets. Pacific-Asia Conference on Knowledge Discovery and Data Mining (Springer,
Berlin, 2005), pp. 689–695

51. N.V. Lu, T.N. Vuong, D.T. Dinh, Combining correlation-based feature and machine learn-
ing for sensory evaluation of Saigon beer. International Journal of Knowledge and Systems
Science (IJKSS) 11(2), 71–85 (2020)

52. J.M. Luna, P. Fournier-Viger, S. Ventura, Frequent itemset mining: A 25 years review. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 9(6), e1329 (2019)

53. I. Mukhlash, D. Yuanda, M. Iqbal, Mining fuzzy time interval periodic patterns in smart home
data. International Journal of Electrical and Computer Engineering 8(5), 3374 (2018)

54. S. Nawaz, P. Fournier-Viger, A. Shojaee, H. Fujita, Using artificial intelligence techniques
for covid-19 genome analysis. Appl. Intell. 51(5), 3086–3103 (2021)

55. V.M. Nofong, Discovering productive periodic frequent patterns in transactional databases.
Annals of Data Science 3(3), 235–249 (2016)

56. V.M. Nofong, Fast and memory efficient mining of periodic frequent patterns. Proceedings
of the 10th Asian Conference on Intelligent Information and Database Systems (Springer,
Berlin, 2018), pp. 223–232



150 P. Fournier-Viger et al.

57. E.Omiecinski,Alternative interestmeasures formining associations in databases. IEEETrans.
Knowl. Data Eng. 15(1), 57–69 (2003). https://doi.org/10.1109/TKDE.2003.1161582

58. A.Y. Peng, Y.S. Koh and P. Riddle, mhuiminer: A fast high utility itemsetmining algorithm for
sparse datasets. Pacific-AsiaConference onKnowledgeDiscovery andDataMining (Springer,
Berlin, 2017), pp. 196–207

59. M.N. Quang, T. Dinh, U. Huynh and B. Le, MHHUSP: An integrated algorithm for mining
and Hiding High Utility Sequential Patterns. Proceedings of the 8th International Conference
on Knowledge and Systems Engineering (IEEE, New York, 2016), pp. 13–18

60. M.N. Quang, U. Huynh, T. Dinh, N.H. Le and B. Le, An Approach to Decrease Execution
Time and Difference for Hiding High Utility Sequential Patterns. Proceedings of the 5th
International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision
Making (Springer, Berlin, 2016), pp. 435–446

61. M.M. Rashid, I. Gondal, and J. Kamruzzaman, Regularly frequent patterns mining from
sensor data stream. Proceedings of the 20th International Conference on Neural Information
Processing (Springer, Berlin, 2013), pp. 417–424

62. M.M. Rashid, M.R. Karim, B.S. Jeong and H.J. Choi, Efficient mining regularly frequent pat-
terns in transactional databases. Proceedings of the 17th International Conference onDatabase
Systems for Advanced Applications (Springer, Berlin, 2012), pp. 258–271

63. T.Y. Reddy, R.U. Kiran, M. Toyoda, M., P.K. Reddy and M. Kitsuregawa, Discovering partial
periodic high utility itemsets in temporal databases. International Conference on Database
and Expert Systems Applications (Springer, Berlin, 2019), pp. 351–361

64. H. Ryang, U. Yun, K.H. Ryu, Discovering high utility itemsets with multiple minimum sup-
ports. Intelligent data analysis 18(6), 1027–1047 (2014)

65. S. Shekhar, M.R. Evans, J.M. Kang, P. Mohan, Identifying patterns in spatial information: A
survey of methods. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
1(3), 193–214 (2011)

66. W. Song, L. Liu and C. Huang, Tku-ce: Cross-entropy method for mining top-k high util-
ity itemsets. International Conference on Industrial, Engineering and Other Applications of
Applied Intelligent Systems (Springer, Berlin, 2020), pp. 846–857

67. A. Soulet, C. Raïssi, M. Plantevit and B. Crémilleux, Mining dominant patterns in the sky.
Proceedings of the 11th IEEE International Conference on Data Mining (IEEE, New York,
2011), pp. 655–664

68. T. Truong, H. Duong, B. Le, P. Fournier-Viger, Efficient vertical mining of high average-utility
itemsets based on novel upper-bounds. IEEE Trans. Knowl. Data Eng. 31(2), 301–314 (2018)

69. T. Truong, A. Tran, H. Duong, B. Le, P. Fournier-Viger, Ehusm:Mining high utility sequences
with a pessimistic utility model. Data Science and Pattern Recognition 4(2), 65–83 (2020)

70. J.N. Venkatesh, R.U. Kiran, P.K. Reddy and M. Kitsuregawa, Discovering periodic-frequent
patterns in transactional databases using all-confidence and periodic-all-confidence. Proceed-
ings of the 27th International Conference on Database and Expert Systems Applications Part
I (Springer, Berlin, 2016), pp. 55–70

71. M.H. Wong, V.S. Tseng, J.C. Tseng, S.W. Liu and C.H. Tsai, Long-term user location pre-
diction using deep learning and periodic pattern mining. Proceedings of the 12th Conference
on Advanced Data Mining and Applications (Springer, Berlin, 2017), pp. 582–594

72. Y. Wu, C. Shen, H. Jiang, X. Wu, Strict pattern matching under non-overlapping condition.
SCIENCE CHINA Inf. Sci. 60(1), 1–16 (2017)

73. Y. Wu, Y. Tong, X. Zhu, X. Wu, Nosep: Nonoverlapping sequence pattern mining with gap
constraints. IEEE transactions on cybernetics 48(10), 2809–2822 (2017)

74. Y. Wu, L. Wang, J. Ren, W. Ding, X. Wu, Mining sequential patterns with periodic wildcard
gaps. Appl. Intell. 41(1), 99–116 (2014)

75. Y. Wu, C. Zhu, Y. Li, L. Guo, X. Wu, Netncsp: Nonoverlapping closed sequential pattern
mining. Knowl.-Based Syst. 196, 105–812 (2020)

76. N.B. Younes, T. Hamrouni and S.B. Yahia, Bridging conjunctive and disjunctive search spaces
for mining a new concise and exact representation of correlated patterns. Proceedings of the
13th International Conference on Discovery Science (Springer, Berlin, 2010), pp. 189–204

https://doi.org/10.1109/TKDE.2003.1161582


Discovering Periodic High Utility Itemsets in a Discrete Sequence 151

77. U.Yun, D.Kim, E. Yoon, H. Fujita, Dampedwindow based high average utility patternmining
over data streams. Knowl.-Based Syst. 144, 188–205 (2018)

78. U. Yun, H. Ryang, G. Lee, H. Fujita, An efficient algorithm for mining high utility patterns
from incremental databases with one database scan. Knowl.-Based Syst. 124, 188–206 (2017)

79. M.J. Zaki, Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 12(3),
372–390 (2000). https://doi.org/10.1109/69.846291

80. D.Zhang,K.Lee, I. Lee,Hierarchical trajectory clustering for spatio-temporal periodic pattern
mining. Expert Syst. Appl. 92, 1–11 (2018)

81. S. Zida, P. Fournier-Viger, J.C.W. Lin, C.W.Wu, V.S. Tseng, Efim: a fast andmemory efficient
algorithm for high-utility itemset mining. Knowl. Inf. Syst. 51(2), 595–625 (2017)

https://doi.org/10.1109/69.846291


Mining Periodic High-Utility Sequential
Patterns with Negative Unit Profits

Ut Huynh, Bac Le, Duy-Tai Dinh, and Van-Nam Huynh

Abstract This chapter focuses on mining periodic high-utility sequential patterns
where external utility values may be positive or negative (PHUSPN). This type of
patterns not only yields a high-utility (e.g., high profit) but also appears regularly
in a sequence database. Finding PHUSPN is useful for several applications such as
market basket analysis, where it can reveal recurring items sold with a negative profit
in a package with other items at a higher positive return. Several efficient algorithms
have been proposed for the task of mining periodic high-utility sequential patterns
or mining high-utility sequential patterns with negative item values. But no work
considers the combination of two tasks in the literature although such items occur
in many real-life sequence databases. We propose an algorithm name PHUSN to
discover such kinds of patterns efficiently.An experimental evaluationwas performed
on real-life datasets to compare the performance of PHUSN with state-of-the-art
algorithms in terms of execution time, memory usage, and the number of generated
patterns. Experimental results show that the PHUSN can efficiently discover the
complete set of PHUSPN and faster than compared algorithms since it can prune
many redundant patterns.

1 Introduction

High-utility sequential pattern mining (HUSPM) is the task of finding sequential
patterns that have a high-utility in sequence databases where items may appear zero,
once or multiple times in each itemset [1]. In addition, items are associated with
weights indicating their unit profit (external utility) or relative importance. HUSPM
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has been commonly studied for various tasks such as market basket analysis, website
clickstream analysis, customer behavior analysis, and stock market analysis. How-
ever, a problem of traditional HUSPM algorithms is that they often generate a large
amount of patterns, such that a majority of them may be considered uninteresting or
redundant depending on the applications and user requirements. For this challenge,
many extensions of HUSPM have been proposed by using various constraints in
HUSP [2–4]. Such algorithms not only reduce the number of patterns found but also
discover more interesting patterns.

A periodic high-utility sequential pattern (PHUSP) is a high-utility pattern that
appears regularly in a sequence database. PHUSP mining (PHUSPM) considers the
periodic appearance of patterns as a criterion to select interesting HUSP. In customer
behavior analysis, when analyzing customer transactions, a retail store manager may
be interested in finding the high-utility patterns that appear regularly and have a
high sale volume. Detecting these purchase patterns is useful for understanding the
behavior of customers and thus adopting effective sales and marketing strategies. In
market basket analysis, marketers can use PHUSPM algorithms to detect some sets
of products that are sold on approximately a daily or weekly basis. From that, they
can better understand the behavior of customers and thus adapt efficient marketing
strategies. In website clickstream analysis, the number of clicks or time spent on
each web page or user interface element can be viewed as the quantities of item
in sequences. Then, administrators can discover the web pages or user interface
elements where users spendmost of their time and utilize periodically. Based on that,
administrators can improve the functions and user interface of websites to better suit
these important periodic behaviors.

Although the above algorithm can discover concise and interesting HUSP, they
have not designed for the task of finding HUSP where external utility values may
be positive or negative [2]. Such patterns also appear commonly in real life. For
example, in cross-selling, a product may be sold at negative profit when it is packed
with another one with much higher positive return. But again, such algorithms may
discover large numbers of patterns that may redundant in some cases. Thus, this
chapter considers both periodicity and negative unit profits inHUSPM. It proposes an
efficient algorithmnamed PHUSN to determinewhether aHUSP occurs periodically,
irregularly, or mostly in specific time intervals in a sequence database that contains
itemwith negative unit profits. To the best of our knowledge, this is the first work that
takes account of periodic and negative properties in discovering high-utility patterns.
The main objective is to provide a theoretical framework for the community of the
same field, as well as a tool for practical uses.

The rest of this chapter is organized as follows. Section2 reviews related work;
Sect. 3 introduces the preliminaries and problem statement; Sect. 4 describes the pro-
posed algorithm; Sect. 5 shows comparative experiment; Sect. 6 draws a conclusion
and outlines the direction for the future work.
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2 Related Work

2.1 High-Utility Sequential Pattern Mining

The goal of HUSPM is to find all sequential patterns that have a utility greater than
or equal to a minimum utility threshold (minUtil) in a sequence database. HUSPM is
quite challenging as the utilitymeasure is neithermonotone nor anti-monotone unlike
the support measure traditionally used in SPM. Numerous algorithms have been pro-
posed for HUSPM and its extension [3–16]. Yin et al. [13] proposed an algorithm
named USpan for HUSPM. This algorithm builds a lexicographic q-sequence tree
(LQS-Tree) to maintain all generated sequences during the mining process. In addi-
tion, it uses two concatenation mechanisms: I-Concatenation and S-Concatenation,
in combination with two pruning strategies: width and depth pruning. Wang et al.
[11] proposed an algorithm named HUS-Span. The algorithm uses a utility-chain
structure to represent the search space of HUSPM. It also introduces two tight utility
upper bounds: prefix extension utility (PEU) and reduced sequence utility (RSU),
as well as two companion pruning strategies to identify HUSPs. The experimental
evaluation showed that HUS-Span outperforms USpan in terms of execution time.
The reason is that using PEU and RSU, HUS-Span can generate less candidates than
USpan.

Recently, Le et al. [10] proposed two algorithms named AHUS and AHUS-P.
The algorithms use a pure array structure (PAS) to represent sequences. This data
structure is very compact and contains sufficient information of sequences, thus it
can reduce memory usage and effectively support to the mining process. Moreover,
the two algorithms use two upper bounds to prune the search space. AHUS-P uses
a parallel mining strategy to concurrently discover patterns by sharing the search
space to multiple processors. Each processor independently performs its mining
task and does not wait for other tasks. AHUS-P is more efficient than the serial
AHUS algorithm for large-scale dataset. More recently, Gan et al. [6] proposed an
algorithm named ProUM that uses a projection-based utility mining on sequence
data. It uses a data structure named utility-array to keep the position, time order, and
utility of sequences from the projected sequence dataset. It also utilizes an upper
bound named sequence extension utility (SEU) in combination with two pruning
strategies called PUO and PUK to reduce the search space. The results show that the
ProUM outperforms USpan and HUS-Span algorithms.

For the task of mining HUSP with negative unit profits, Xu et al. [2] proposed an
algorithm named HUSP-NIV for mining HUSPN. This algorithm extends the USpan
algorithm for the mining process. It redefines the concepts of sequence utility and
remaining utility of utility matrix to maintain the utility of a sequence that contains
items with negative external utility values.
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2.2 Periodic High-Utility Sequential Pattern Mining

For the task of frequent-based mining, Kiran et al. [17] proposed the PFP-growth
and the PFP-growth++ algorithms for mining periodic-frequent patterns (PFP). PFP-
growth compresses the database into a PF-tree structure and recursively mines the
PF-tree to discover all PFP. PFP-growth++ is similar to PFP-growth but it employs
an improved PF-tree++ structure instead of the PF-tree. In 2017, Kiran et al. [18]
proposed a new interestingness measure called periodic-ratio and a pattern-growth
algorithm named GPF-growth to discover partial periodic-frequent patterns. More-
over, Kirin et al. [19] proposed a model to find partial periodic itemsets in temporal
databases. A measure called periodic-frequency was used to determine the periodic
interestingness of itemsets by taking into account their number of cyclic repetitions
in the entire data. Recently, Kiran et al. [20] proposed an algorithm to find fuzzy
periodic-frequent patterns in a quantitative temporal database. The algorithm uses a
pruning technique called improved maximum scalar cardinality to reduce the search
space and the computational cost of the mining process. In general, the above algo-
rithms only use the support (frequency) of patterns for PFPM. Thus, they are unable
to discover patterns that yield a high profit.

For the task of utility-based mining, Fournier-Viger et al. [21] proposed an algo-
rithm named PHM for mining periodic high-utility itemsets (PHUI) on transaction
database. This algorithm combines the concept of periodic itemsets with the con-
cept of high-utility itemsets. It also introduces two novel measures named minimum
periodicity and average periodicity to more precisely assess the periodic behavior
of patterns. On sequence database, Dinh et al. [3] proposed an algorithm named
PHUSPM for mining periodic HUSP. It relies on the USpan algorithm to discover
HUSP and defines several properties to obtain PHUSP. However, it is time consum-
ing since it does not use any pruning strategy to reduce the search space of PHUSPM.
Moreover, Dinh et al. [4] proposed an algorithm named PHUSN that uses a novel
structure called the PUSP structure to facilitate the mining process. It uses a periodic
pruning strategy named MPP to prune non-periodic patterns and thus speed up the
discovery of PHUSP. Experimental results indicate that PHUSN outperforms four
other algorithms in terms of execution time and memory usage.

3 Preliminaries

Given a set of m distinct items I = {i1, i2, . . . , i�}. A quantitative (q-) item is a
pair of the form (i, q) where i ∈ I and q is a positive number indicating how many
units of this item were purchased, so-called internal utility. Each item ik ∈ I (1 ≤
k ≤ �) is associated with a weight denoted as p(ik) representing the unit profit
or relative importance of ik , so-called external utility. For the problem of HUSPM
with negative unit profits, p(ik) is either a positive or a negative value. A q-itemset
X = [(i1, q1)(i2, q2) . . . (im, qm)] is a set of one or more q-items where (ik, qk) is a
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Table 1 External utility values

Item Quality

a 2

b 5

c −3

d 4

e 6

f −1

g 7

Table 2 A q-sequence database

sid tid Transactions tu su

1 1 (a, 5)(c, 2)(g, 5) 45 91

2 (a, 3)(b, 1)(c, 3)( f, 2) 11

3 (b, 3)(d, 2)(e, 2) 35

2 1 (c, 2)(e, 1) 6 96

2 (a, 2)(b, 2)( f, 5) 14

3 (b, 2)(c, 1)(e, 4)(g, 6) 76

3 1 (a, 1)(b, 1)(e, 3) 25 82

2 (c, 3)(d, 2)(g, 3) 29

3 (b, 2)(e, 1) 16

4 (d, 3) 12

4 1 (b, 1)c(1)(e, 2)(g, 5) 52 114

2 (a, 3)(b, 2)(e, 4)( f, 2) 40

3 (b, 2)(c, 1)(e, 2) 22

5 1 (a, 4)(d, 2)( f, 2)(g, 10) 86 86

q-item (1 ≤ k ≤ m). Without loss of generality, assume that q-items in a q-itemset
are sorted according to a total order ≺ (e.g., the lexicographical order). In addition,
the quantity of a q-item i in a q-sequence s is denoted as q(i, s). A q-sequence s is an
ordered list of q-itemsets s = 〈X1X2 . . . Xn〉 where X j (1 ≤ j ≤ n) is a q-itemset. A
q-sequence database SDB = {s1, s2, . . . , sN } is a set of N q-sequences where each
sequence sid ∈ SDB (1 ≤ id ≤ N ) is a subset of I .

Example 1 Table1 shows the items with their external utilities, in which items
c and f have negative unit profits. Table2 represents a q-sequence dataset with
five sequences, denoted from s1 to s5. Each q-sequence consists of one or several
q-itemsets (transactions). Each transaction consists of one or several q-items. For
example, the q-sequence s1 contains three q-itemsets [(a, 5) (c, 2) (g, 5)], [(a, 3)
(b, 1) (c, 3) ( f, 2)] and [(b, 3) (d, 2) (e, 2)], where the internal utility of q-item c in
the first q-itemset and the second q-itemset are 2 and 3, respectively. In the following,
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Table 3 The utility matrix of s1
Item tid1 tid2 tid3

a 10 6 0

b 0 5 15

c −6 −9 0

d 0 0 8

e 0 0 12

f 0 −2 0

g 35 0 0

Table 4 The remaining utility matrix of s1
Item tid1 tid2 tid3

a 81 40 35

b 81 35 20

c 81 35 20

d 81 35 12

e 81 35 0

f 81 35 0

g 46 35 0

the notation itid will be used to refer to the occurrence of the item i in the t id-th q-
itemset of a q-sequence. For example, in the q-sequence s1, the notation c1 means that
the q-item c appears in the first q-itemset of s1, that is (c, 2). Similarly, c2 represents
(c, 3) in the second q-itemset of s1. Without lost of generality, the lexicographical
order≺ is used to sort q-items in each q-itemset of a sequence. For example, a1 ≺ c1,
a1 ≺ a2 in q-sequence s1.

Definition 1 (Q-sequence utility) The utility of a q-item (i, q) in a q-sequence s is
calculated as u(i, q) = p(i) × q(i). The utility of a q-itemset X in s is calculated as

u(X) =
m∑

ik∈X∧p(ik )>0
u(ik, qk). The utility of a q-sequence s is calculated as u (s) =

n∑

j=1
u(X j ).

Example 2 The utility of a1 in s1 is u(a, 5) = 2 × 5 = 10. The utility of [(a, 5)
(c, 2) (g, 5)] in s1 is u([(a, 5) (c, 2) (g, 5)]) = u(a, 5) + u(g, 5) = 2 × 5 + 7 × 5
= 45. The utility of s1 is u(s1) = u([(a, 5) (c, 2) (g, 5)]) + u([(a, 3) (b, 1) (c, 3)
( f, 2)]) + u([(b, 3) (d, 2) (e, 2)]) = 45 + 11 + 35 = 91.

Definition 2 (Remaining utility) Given a q-sequence s = 〈X1X2 . . . Xn〉 where Xk

= [(ik1 ,qk1) (ik2 ,qk2) …(ikm ,qkm )] is a q-itemset of s. The remaining utility of q-item
ikm in s is denoted and defined as ru(ikm , s) = ∑

i ′∈s∧ikm ≺i ′∧p(ik )>0
u(i ′).
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Example 3 The values ru(a1, s3), ru(b1, s3) and ru(b3, s3) are respectively equal
to 89, 84 and 18.

Definition 3 (Utility and Remaining utility matrices) A utility matrix/remaining
utility matrix of a q-sequence s = 〈X1X2 . . . Xn〉 is a m × n matrix, where m and n
are respectively the number of q-items and q-itemsets in s. The element at the position
(k, j) (0 ≤ k < m, 0 ≤ j < n) of the utility matrix stores the utility u(ik, q) of the
q-item (ik, q) in the q-itemset j . The element at the position (k, j)(0 ≤ k < m,
0 ≤ j < n) of the remaining utility matrix stores the ru(ik, s) of q-item (ik, q) in
q-itemset j .

Example 4 The utility and remaining utility matrices of q-sequence s1 are shown
in Tables3 and 4, respectively.

Definition 4 (Q-subsequence) Given two q-itemsets X= [(i1,q1) (i2,q2) …(im ,qm)]
and X ′= [(i ′1,q ′

1) (i ′2,q ′
2) …(i ′m ′ ,q ′

m ′)], where ik and i ′k ′ ∈ I . If there exist positive
integers 1 ≤ j1 ≤ j2 ≤ . . . ≤ jm ≤ m ′, such that i1 = i ′j1 ∧ q1 = q ′

j1
, i2 = i ′j2 ∧ q2 =

q ′
j2
, . . . , im = i ′jm ∧ qm = q ′

jm
then X ′ is said to contain X , which is denoted as

X ⊆ X ′.
Given two q-sequences s = 〈X1X2 . . . Xn〉 and s ′ = 〈X ′

1X
′
2 . . . X ′

n′ 〉 (n ≤ n′),
where Xk, X ′

k ′ are q-itemsets (1 ≤ k ≤ n, 1 ≤ k ′ ≤ n′). If there exists positive inte-
gers 1 ≤ j1 ≤ j2 ≤ . . . ≤ jn ≤ n′, such that X1 ⊆ X ′

j1
, X2 ⊆ X ′

j2
, . . . , Xn ⊆ X ′

jn
,

then s is a q-subsequence of s ′ and s ′ is a q-supersequence of s, denoted as s ⊆ s ′.

Example 5 The q-sequences 〈[(a, 5)(c, 2)(g, 5)]〉 and 〈[(b, 3)(d, 2)(e, 2)]〉 are two
q-subsequences of s1.

Definition 5 (Matching) Given a q-sequence s = 〈(i1, q1)(i2, q2) . . . (iα, qα)〉 and
a sequence t = 〈t1 t2 . . . tβ〉, s is said to match t iff α = β and ik = tk for 1 ≤ k ≤ α,
denoted as t ∼ s.

Example 6 Sequence 〈(ce)(ab f )(bceg)〉 matches the q-sequence s2.

Definition 6 (Ending q-item maximum utility) Given a q-sequence s = 〈X1X2

…Xn〉 where X j (1 ≤ j ≤ n) is a q-itemset and a sequence t = 〈t1t2 . . . tm〉. If
any q-subsequence sa = 〈Xa1Xa2 . . . Xam 〉 (sa ⊆ s and sa ∼ t) where Xam=[(ia1 ,qa1)
(ia2 ,qa2) . . . (iam ,qam )], then (iam ,qam ) is called the ending q-item of sequence t in
q-sequence s. The ending q-item maximum utility of a sequence t in a q-sequence s
is denoted and defined as u(t, i, s) = max{u(s ′)|s ′ ∼ t ∧ s ′ ⊆ s ∧ i ∈ s ′}.
Example 7 The ending q-items of t = 〈(ac)〉 in q-sequence s1 are c1, c2 and their
ending q-item maximum utility are respectively u(〈ac〉, c1, s1) = max(4) = 4,
u(〈ac〉, c2, s1)= max(−3) = −3.

Definition 7 (Sequence utility) The sequence utility of a sequence t = 〈t1,t2,…, tm〉
in a q-sequence s = 〈X1X2 . . . Xn〉 is denoted and defined as v (t, s) = ⋃

s ′∼t∧s ′⊆s
u(s ′).

The utility of t in SDB is denoted as v(t) and defined as a utility set: v (t) =⋃

s∈SDB
v(t, s).
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Example 8 The utility of the sequence t = 〈(ac)〉 in the q-sequence s1 is v(t, s1) =
{u(〈((a, 5)(c, 2))〉), u(〈((a, 3)(c, 3))〉)} = {4,−3}. Since 〈(ac)〉 only appears in s1,
the utility of t in the dataset is also {4,−3}.
Definition 8 (Sequence maximum utility) The maximum utility of a sequence t in a
q-sequence s is denoted and defined as umax(t, s) = max{u(t, i, s) : ∀i ∈ s ′ ∧ s ′ ∼
t ∧ s ′ ⊆ s}. The maximum utility of a sequence t in SDB is denoted and defined as
umax(t)=

∑
umax(t, s) : ∀s ∈ SDB}.

Example 9 The maximum utility of t = 〈(ac)〉 in the sequence dataset is umax(t) =
umax(〈(ac)〉, s1) = 4.

Definition 9 (High-utility sequential pattern) A sequence t is said to be ahigh-utility
sequential pattern if umax(t) ≥ minUtil, where minUtil is a given user-specified
minimum utility threshold.

Example 10 Given minUtil = 30, 50, 80, and 100, we found 2; 854; 1; 892; 488,
and 97 HUSPs from the dataset shown in Table2, respectively.

Definition 10 (Period set of sequence) Given a q-sequence database SDB =
{s1, s2, . . . , sN } and a sequence t . The set of q-sequences containing t is denoted
as S(t) = {sα1 , sα2 , . . . , sαk }, where 1 ≤ α1 < α2 < · · · < αk ≤ N .

Definition 11 (Consecutive q-sequences) Given two q-sequences sα , sβ and a
sequence t such that t ∼ s ′ ∧ s ′ ⊆ sα ∧ sα ∈ S(t) and t ∼ s ′′ ∧ s ′′ ⊆ sβ ∧ sβ ∈ S(t).
sα and sβ are said to be consecutive with respect to t iff there is not a q-sequence
sγ ∈ S(t) such that α < γ < β.

The period of two consecutive q-sequence sα and sβ is denoted and defined as
pe(sα ,sβ) = β − α. In other words, pe(sα ,sβ) is the number of q-sequences between
sα and sβ .

Example 11 The sequence 〈(ag)〉 appears in two q-sequences s1 and s5. Hence,
pe(s1,s5) = 5 − 1 = 4.

Definition 12 (Periods of a sequence) Given a sequence t and S(t) = {sα1 , sα2 , . . . ,

sαk } (1 ≤ α1 < α2 < · · · < αk ≤ n). The periods of a sequence t is a list of peri-
ods denoted and defined as pes(t) = ⋃

1≤z≤k+1
pe(sαz−1 , sαz ), where α0 and αk+1 are

constants defined as α0 = 0 and αk+1 = n.

Example 12 The sequence 〈ac〉 has pes(〈ac〉) = {1, 1, 1, 1, 1}. The sequence
〈(ag)〉 has pes(〈(ag)〉) = {1, 4, 0}.
Definition 13 (Maximum, minimum and average periodicity measures) The max-
imum periodicity, minimum periodicity and average periodicity of a sequence t
are denoted and defined respectively as max Per(t) = max(pes(t)), minPer(t) =
min(pes(t)) and avgPer(t) = ∑

x ∈ pes(t)/|pes(t)|.
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Example 13 The periods of 〈(a f )b〉 are pes(〈(a f )b〉) = {1, 1, 2, 1}. Thus,
max Per(〈(a f )b〉) = 2,minPer( 〈(a f )b〉) = 1 and avgPer( 〈(a f )b〉) = 5/4 = 1.25.

Property 1 (Relationship between average periodicity and support [4]) Given a
sequence t and a q-sequence database SDB. An alternative and equivalent method
of calculating the average periodicity of t is avgPer(t) = |SDB| /(|S(t)| + 1).

The rationale for combining three measures is to avoid discovering patterns that
occur with too short or too long periods [4]. Specifically, the average periodicity
measure is used to avoid finding patterns that infrequently appear in a dataset. The
minimum and maximum periodicity thresholds allow to specify that the periods of
patterns must not be too short and long, respectively. We give multiple options to the
users of the proposed algorithm, users can choose to use or not use the minimum
and average periodicity measures. If the minimum periodicity measure is not used,
the minimum periodicity threshold is set to 0. If the average periodicity measure is
not used, the minimum and maximum average periodicity threshold can be set to 0
and +∞, respectively.

Definition 14 (Periodic high-utility sequential patterns with negative unit profits)
Given five positive user-specified thresholds:minUtil,minAvg,max Avg,minPer
andmax Per . A sequence t is a periodic high-utility sequential pattern iff t is a HUSP
and minAvg ≤ avgPer(t) ≤ max Avg, minPer(t) ≥ minPer and max Per(t) ≤
max Per .

The goal of PHUSPN mining is to discover the set of PHUSPNs that satisfies defi-
nition 14.

Example 14 LetminUtil = 140,minPer = 1.0,max Per = 3.0,minAvg = 1.0
and max Avg = 2.0. The complete set of PHUSPN is 〈(ab)(be)〉: 147, 〈(cg)(be)〉:
150, 〈(g)(ab f )(be)〉: 142, 〈(g)(ab)(be)〉: 146, 〈(g)(be)〉: 168.
Definition 15 (ULPN: utility list structure) Assume that a sequence t has k (k > 0)
ending q-items i in a q-sequence s where i1 < i2 < . . . < ik . The ULPN of t in s is
a list of k elements, where the αth(1 ≤ α ≤ k) element in the ULPN contains⎧
⎪⎨

⎪⎩

tid : is the itemset ID of iα of t in s

acu : is the maximum utility of iα in t

link : is a pointer pointing to either the (α + 1)th element or null

Definition 16 (UCPN: utility-chain structure) Given a sequence t and a q-sequence
s. The UCPN of t in s is denoted and defined as

UCPN (t, s)=

{
peuts : is the prefix extension utility of t in s

U LPN : is the ULPN of sequence t in s

Definition 17 (PHUSN: node structure) Given a sequence t , the PHUSN of t in
SDB is denoted and defined as

PHUSN (t)=

⎧
⎨

⎩

sidSet : is the set of sequence IDs of all q-sequences containing t in SDB

ucpSet : is the set of UCPN (t, s) in SDB,which is defined as ucpSet = ⋃

s∈SDB
(UCPN (t, s))
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Definition 18 (Concatenation) Given a sequence t , there are two types of concate-
nation of t :{
I − Extension : is the action of inserting an item into the last itemset of t

S − Extension : is the action of adding a new itemset having one item at the end of t

Example 15 For example, 〈(acg)〉 and 〈(ac)(a)〉 are generated by performing an
I-Extension and a S-Extension of sequence 〈(ac)〉, respectively.
Definition 19 (SWU: sequence weighted utilization) The SWU of a sequence t in
SDB is defined as

SWU (t) =
∑

s ′∼t∧s ′⊆s∧s⊆SDB
u(s).

For example, SWU (〈a(be)〉) = u(s1) + u(s2) + u(s3) + u(s4)= 91 + 96 + 82 + 114 =
383.

Theorem 1 (Sequence weighted downward closure property) Given t1 and t2, if t2
contains t1, then SWU (t2) ≤ SWU (t1).

Theorem1 can be used to evaluatewhether an item is promising [3, 4, 13]. In PHUSN
algorithm, this theorem is also used to prune all items that have a SWU < minUtil.

Definition 20 (PEU: prefix extension utility) Given a sequence t and a q-sequence
s. The PEU of t in s is denoted and defined as

PEU (t, s) = max{PEU (t, ik, s) : ∀ik that is an ending q-item of t in s}

PEU (t, ik, s) =

{
u(t, ik, s) + ru(ik, s), if ru(ik, s) > 0,

0, otherwise.

The PEU of t in SDB is denoted and defined as

PEU (t) = ∑

s ′∼t∧s ′⊆s∧s⊆SDB
PEU (t, s).

Given t1 and t2, if t2 contains t1 then u(t2) ≤ PEU (t1).

Definition 21 (RSU: reduced sequence utility) Given a sequence t and a q-sequence
s. The RSU of t in s is denoted and defined as

RSU (t, s) =

{
PEU (t ′)|t ′ ⊆ t ∧ s1 ∼ t ∧ s1 ⊆ s ∧ s2 ∼ t ∧ s2 ⊆ s,

0, otherwise.

The RSU of sequence t in SDB is denoted and defined as

RSU (t) = ∑

s ′∼t∧s ′⊆s∧s⊆SDB
RSU (t, s).

Given t1 and t2, if t2 contains t1 then u(t2) ≤ RSU (t1).
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Theorem 2 (Pruning strategy by PEU and RSU [4, 11]) Given a pattern t, PEU (t)
and RSU (t) are considered as upper bounds on the utility of t and its descendants.
If PEU (t) < minUtil or RSU (t) < minUtil, then t and its descendants can be
pruned from the search space without affecting the result of the mining process.

Theorem 3 (MPP: maximum periodicity pruning [4]) Given a sequence t, if
max Per(t) > max Per, then the sequence t and its descendants are not PHUSPN.

4 The PHUSN Algorithm

The pseudo code of the PHUSN algorithm is shown in Algorithm 1. The input is a
sequence t , a q-sequence database SDB and five predefined thresholds: minUtil,
minPer , max Per , minAvg and max Avg. Initially, PHUSN scans the SDB to
calculate the total number of q-sequences (|SDB|) and calculates the SWU of all
items in SDB (line 1). It then selects all items having a SWU that is no less than
minUtil and builds the PHUSN structure as well as the lexicographic tree required
by the mining process (line 2). The topmost node in that tree is the root node, where
its children are q-sequences that contain a single item. Each node other than the root
stores a sequence t , the PHUSN structure of t , utility matrices and remaining utility
matrices of q-items in q-sequences of SDB. If PEU (t) is less than minUtil, then
the algorithmwill consider t as a leaf andwill not expand the lexicographic tree using
node t , i.e., all its descendants will be pruned (lines 3–4). In the next step, PHUSN
scans the projected database that includes the PHUSN of t in SDB to collect all items
that can be combined with t to form a new sequence by I-Extension or S-Extension
(line 5). Each item having a RSU value that is lower thanminUtil is discarded from
the mining process (line 6). Then, PHUSN performs a loop over all items in the iExts
and sExts. For each item i in the iExts, the algorithm performs an I-Extension with
this item to form a new sequence t ′ by inserting i in the last itemset of t . In addition,
the PHUSN structure and maximum utility of t ′ are constructed and calculated by
extending the PHUSN of t . In the next step, PHUSN applies the MPP strategy
(Theorem 3) to discard non-periodic patterns. If yes, PHUSN stops considering
these patterns and backtracks to the previous step. Otherwise, it checks whether t ′ is
a HUSPN (line 11) and calls the check_Periodic procedure to check the periodicity
of t ′ (line 12). The input of this procedure is the set S(t ′),minPer ,max Per ,minAvg
and max Avg. The procedure first calculates the minimum periodicity, maximum
periodicity and average periodicity of t ′ (Property 1) by scanning S(t ′) that is the
sidSet in the PHUSN structure (lines 1 to 3). If t ′ is a periodic pattern (line 4), the
procedure returns true (line 5). Otherwise, it returns false (line 7). Next, PHUSN
recursively calls itself to expand t ′ (line 14). A similar process is performed for all
items in sExts. Note that, PHUSN passes a sequence and its projected database to
each recursive call as input parameters. The sequence database SDB and lines 1, 2
are used only for initializing the algorithm and are not performed during recursive
calls. For each item in sExts a new pattern is generated by performing an S-Extension
(lines 15 to 22). When the algorithm terminates, it has an output of all PHUSPN.
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Algorithm 1: The PHUSN algorithm
input : SDB: a q-sequence database, minUtil: the minimum utility threshold, t : a

sequence with its PHUSN, minPer , max Per , minAvg, max Avg
output: The set of PHUSPN

1 Scan SDB to calculate |SDB| and SWU for all items
2 Remove all items that have SWU < minUtil
3 if (PEU (t) < minUtil) then
4 return

5 Scan the projected database to:
a. put I-Extension items into iExts,
b. put S-Extension items into sExts

6 Remove low RSU items from iExts and sExts
7 foreach item i ∈ iExts do
8 (t ′, v(t ′)) ← I-Extension(t, i)
9 Construct the PHUSN structure of t ′

10 if (max Per(t ′) ≤ max Per) then
11 if (umax(t ′) ≥ minUtil) then
12 if (check_Periodic(S(t ′), minPer, max Per, minAvg, max Avg)) then
13 output t ′

14 PHUSN (t ′, minUtil, minPer , max Per , minAvg, max Avg)

15 foreach item i ∈ sExts do
16 (t ′, v(t ′)) ← S-Extension(t, i)
17 Construct the PHUSN structure of t ′
18 if (max Per(t ′) ≤ max Per) then
19 if (umax(t ′) ≥ minUtil) then
20 if (check_Periodic(S(t ′), minPer, max Per, minAvg, max Avg)) then
21 output t ′

22 PHUSN (t ′, minUtil, minPer , max Per , minAvg, max Avg)

23 return;

Algorithm 2: check_Periodic procedure
input : S(t) a set of sid, minPer , max Per , minAvg, max Avg
output: return true if t is a periodic sequential pattern. Otherwise, return f alse

1 Calculate minPer(t) = min(pes(t)) based on S(t)
2 Calculate max Per(t) = max(pes(t)) based on S(t)
3 Calculate avgPer(t) = |S|/(|S(t)| + 1)
4 if (minPer(t) ≥ minPer ∧ max Per(t) ≤ max Per ∧ minAvg ≤ avgPer(t) ≤ max Avg)
then

5 return true;

6 else
7 return f alse;



Mining Periodic High-Utility Sequential Patterns with Negative Unit Profits 165

5 Comparative Experiment

Experiments were performed to evaluate the performance of PHUSN on a com-
puter with a 64 bit Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz, 8 GB of
RAM, running Windows 10 Enterprise LTSC. The source code can be found at
https://github.com/uthuyn/PHUSN. All the algorithms were implemented in C#. The
proposed algorithm was compared with two algorithms. The first algorithm is an
extension of the HUS-Span algorithm [11] for mining HUSPNs, namely HUS-Span-
NIV. The second algorithm is HUSP-NIV [2] that is designed for mining HUSPN.
The performance of the three algorithms has been compared on both synthetic and
real datasets, which were previously used in [4, 10]. For each dataset, we randomly
selected 1/20 the number of items to change their external utility to negative values.
The characteristics of these datasets are shown in Table5. They are eight real-life
datasets and a synthetic dataset named Sd1000k. They have varied characteristics
such as sparse and dense datasets; short and long sequences. For each dataset, the
minUtil was decreased until a clear winner was observed or algorithms became too
long to execute. In some cases, a constraint on the maximum length of PHUSPN
(maxLength) was used to speed up the experiments. For each other positive user-
specified thresholds includingminAvg,max Avg,minPer , andmax Per , a suitable
empirical value was chosen for each dataset to ensure that the algorithms discovered
a certain number of PHUSPN.

First, the execution time of PHUSN is compared with HUSP-NIV and HUSP-
Span-NIV. Figure1 show that PHUSN outperforms the compared algorithms on
all datasets. In each subfigure, the vertical axis and horizontal axis represent the
execution time (in millisecond) and minimum utility threshold values, respectively.
In general, for all datasets, when the minimum utility threshold is decreased or
when datasets contain more sequences or longer sequences, the running time of the
algorithms increase. In that case, PHUSN can be much more efficient than the two
algorithms, especially on Sign, Bible, Foodmart, Online retail, and Tafeng datasets.

Table 5 Characteristics of the datasets

Dataset Size #Sequence #Item Avg. seq
length

Type

Sign 375 KB 800 310 51.99 Realistic

Kosarak10k 0.98 MB 10, 000 10, 094 8.14 Realistic

Fifa 7.21 MB 20, 450 2, 990 34.74 Realistic

Bible 8.56 MB 36, 369 13, 905 21.64 Realistic

BMSwebview2 5.46 MB 77, 512 3, 340 4.62 Realistic

Tafeng 8.00 MB 32, 266 23, 811 3.71 Realistic

Foodmart 3.00 MB 8, 842 1559 6.59 Realistic

Online retail 4.60 MB 4, 335 3, 928 4.24 Realistic

Sd1000k 156 MB 920, 467 10, 000 5.0 Synthetic

https://github.com/uthuyn/PHUSN
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Fig. 1 Runtimes for various minimum utility threshold values

It can be observed that the PHUSN runs faster than the HUS-Span-NIV algorithm. It
means that theMPP pruning strategy of PHUSN is effective and can prunemany non-
periodic patterns. In addition, the results show that the PHUSN runs faster than the
HUSP-NIV algorithm. It means that the modified q-sequence utility, utility matrix,
and remaining utility matrix are suitable for the framework of mining PHUSPN.
Especially, the SWU of items in PHUSN is less than ones in HUSP-NIV. Thus,
PHUSN can prune more non-candidates than the HUSP-Span-NIV. Generally, the
PHUSN structure is more compact and efficient than the one used in HUSP-NIV.

Second, the compared algorithms have been also compared in terms of mem-
ory performance for the nine datasets for the same minUtil, minAvg, max Avg,
minPer , max Per and maxLength values as in the runtime experiment. Results
are shown in Fig. 2 in terms of memory usage (vertical axes) for various minimum
utility values (horizontal axes). In general, PHUSN consumes less memory than
HUSP-NIV and HUS-Span-NIV in most cases, except for the Foodmart dataset.
Generally, for each dataset, the memory usage increases when the minimum util-
ity threshold is decreased, and it is also greater for larger datasets. It is observed
that PHUSN consumes less memory than HUSP-NIV in most cases. It means that
the PHUSN structure is more effective than the structure used by the HUSP-NIV
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Fig. 2 Memory usage for various minimum utility threshold values

algorithm. In addition, the PHUSN consumes less memory than HUS-Span-NIV,
although they are very close in some cases. Thus, the MPP pruning strategy used by
PHUSN helps to reduce the memory usage of this algorithm.

Finally, the number of patterns was measured for various maximum periodicity
threshold values on each dataset. In Fig. 3, vertical axes denote the number of patterns
and horizontal axes indicate the corresponding maximum periodic threshold values.
In general, HUSP-NIV and HUS-Span-NIV generate the same number of HUSPN
for each dataset. For all datasets, the values minPer = 1 and minAvg = 1 were
used. On Sign, the max Per , max Avg thresholds were set to 20 and 5, respectively.
For minUtil from 35,000 to 12,000, PHUSN found 2, 7, 30, 90, 122, 179, 225,
264, 310 and 361 PHUSPN, respectively. On Kosarak10k, the max Per , max Avg
thresholds were set to 100 and 20, respectively. In addition, the maxLength = 3
is used for minUtil = 10, 000 and 20,000. For minUtil from 10,000 to 100,000,
PHUSN found 2, 2, 3, 3, 3, 4, 6, 10, 20 and 20 PHUSPN, respectively. On Fifa, the
max Per , max Avg thresholds were set to 100 and 5, respectively. In addition, the
maxLength = 3 is used for all cases. ForminUtil from 400,000 to 40,000, PHUSN
found 11, 36, 86, 185, 325, 530, 666, 707, 735 and 752 PHUSPN, respectively. On
Bible, themax Per ,max Avg thresholds were set to 100 and 5, respectively. In addi-
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Fig. 3 Number of patterns for various minimum utility threshold values

tion, themaxLength=5 is used for all cases. ForminUtil from 350,000 to 100,000,
PHUSN found 10, 16, 17, 22, 23, 23, 23, 23, 24 and 24 PHUSPN, respectively. On
BMSwebview2, the max Per , max Avg thresholds were set to 1000 and 70, respec-
tively. ForminUtil from 100,000 to 10,000, PHUSN found 1, 2, 5, 7, 10, 17, 23, 25,
26 and 25 PHUSPN, respectively. On Foodmart, the max Per , max Avg thresholds
were set to 300 and 50, respectively. In addition, the maxLength=3 is used for all
cases. ForminUtil from 2,900 to 2,000, PHUSN found 3, 5, 9, 15, 21, 26, 39, 37, 50
and 63 PHUSPN, respectively. On Online retail, the max Per , max Avg thresholds
were set to 1,000 and 10, respectively. In addition, the maxLength=2 is used for
all cases. For minUtil from 10,000 to 1,000, PHUSN found 27, 28, 28, 29, 29, 29,
29, 29, 29 and 30 PHUSPN, respectively. On Tafeng, themax Per ,max Avg thresh-
olds were set to 18,000 and 100,000 respectively. In addition, the maxLength=4
is used for all cases. For minUtil from 10,623,900 to 10,623,000, PHUSN found
24 PHUSPN for all cases. On Sd1000k, the max Per , max Avg thresholds were set
to 1,000 and 50, respectively. In addition, the maxLength=3 is used for all cases.
For minUtil from 500,000 to 50,000, PHUSN found 11, 11, 12, 12, 12, 12, 13,
15 16, 16 PHUSPN, respectively. From these results, it can be observed that the
maximum periodicity pruning strategy (Theorem 3) eliminate many non-candidate
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patterns from the search space and thus reduce the runtime and memory usage of the
PHUSN algorithm.

6 Conclusion

This paper has proposed an algorithm named PHUSN for mining periodic high-
utility sequential pattern with negative unit profits. The proposed algorithm extends
the PUSP structure [4] to the PHUSN structure for efficiently mining PHUSPN.
Experimental results indicate that PHUSN outperforms HUSP-NIV and HUS-Span-
NIValgorithms in termsof execution time andmemoryusage.Thenumber of patterns
generated by the three algorithms was also measured for various minimum utility
threshold values. The results show that all the pruning strategies used in PHUSN
can eliminate many non-PHUSPN and thus speed up the mining process. In future
work, we will design a parallel framework that can enhance the computational cost
of PHUSN, as well as extend the pattern mining framework for other tasks [22, 23].
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Hiding Periodic High-Utility Sequential
Patterns

Ut Huynh, Bac Le, and Duy-Tai Dinh

Abstract Periodic high-utility sequential pattern (PHUSP) is a subset of HUSP that
appears commonly in various applications such asmarket basket analysis, healthcare,
and gen analytics. The sensitive PHUSP can be leaked by adversaries if datasets are
released without using any privacy-preserving methods. The traditional high-utility
sequential patterns hiding algorithms can hide the completed set of HUSP. However,
such methods are maybe not appropriate to protect PHUSP since the number of
found PHUSP is much less than HUSP. Thus, they take high computational cost,
produce highmissing cost with low quality sanitized datasets. This chapter addresses
their limitations by introducing a novel algorithm named PHUS-Hiding for hiding
PHUSP. The experiment was conducted on several real-life datasets to compare the
performance of PHUS-Hiding with state-of-the-art algorithms in terms of execution
time, memory usage, and missing cost. The experimental results show that PHUS-
Hiding efficiently hides all PHUSP and faster than the compared algorithms.

1 Introduction

Privacy-preserving and information security are major challenges in the I nternet era.
A company has a high risk of information leakage when the datasets that contain sen-
sitive or valuable information are taken illegally. For such reasons, privacy-preserving
algorithms have been designed to protect sensitive information from hackers or com-
petitors. These algorithms can be classified into two groups: data hiding and knowl-
edge hiding. Data hiding techniques handle directly on the raw data by usingmanipu-
lation methods such as encrypt, anonymization, randomization to transform data into
sanitized copies. Such algorithms are also called as Privacy-Preserving Data Pub-
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lishing (PPDP) [1]. However, PPDP may reduce the usability and utility of data. In
other words, it may lead to inaccurate or non-retrievable knowledge. Hiding knowl-
edge aims to protect the knowledge from data mining algorithms. It is also called
as Privacy-Preserving Data Mining (PPDM). PPDM methods design a strategy to
completely hide the knowledge without loosing the usability and utility of data. The
knowledge inside the data can be association rules, useful patterns, classifications,
high-utility itemset, high-utility patterns, among others.

The utility-based mining (UBM) has been extensively studied by researchers
in recent years. The UBM algorithms can be classified into two main branches:
high-utility itemset mining (HUIM) [2–8] and high-utility sequential pattern mining
(HUSPM) [9–14]. Periodic high-utility sequential patterns mining (PHUSPM) is a
topic in UBM. This kind of patterns not only comes with a high-utility (e.g., high
profit) value but also encounters frequently in a sequence database. PHUSPM can
be applied into many applications such as customer behavior, market basket and
biomedical analysis. In the traditional retail or the new e-commerce, understanding
the customer behaviors is a key success factor for retailers. Detecting these periodic
purchased patterns from the market basket helps sale managers knows the frequently
or seasonally sale product chains. With this support, the managers can make suitable
marketing strategies. The frequently purchased products with high profit may need
short storage cycle and a routinelymarketing campaign. As a supply chainmanagers,
they are always looking for an effective way to predict the customer demands in sort
and long term periods. Based on the customer needs, they can prepare a propitiate
plan to deliver goods and optimize the progress of products produce. Nowadays,most
of the consumers do online shopping. The operations of users on the website such as
the number of clicks or the time that customers spent on a page can be tracked easily.
By website click-stream analysis, the administrators can understand the behaviors
of customers and thus can improve their functions to better suit customer needs.
For example, they can arrange or suggest periodic products in ways that are more
convenient for users based on personal behaviors. In biological sciences, genetics
is a field that attempts to analysis and predicts how mutations, individual genes,
and genetic interactions can affect organisms. Disease resistance is the ability to
prevent or reduce the presence of diseases. It can arise from genetic or environmental
factors. Genetic analysis may be done to identify genetic/inherited disorders and the
relationships between the important genes or select relevant sequences according to
a specific disease. Biologists can discover the important genes by using HUSPM
algorithms. Furthermore, the importance and periodic instance of gene patterns in
DNA sequences can be detected by PHUSPM algorithms.

The data mining algorithms can extract the useful knowledge from the data [15–
18]. However, in terms of privacy preserving, the sensitive information can be also
disclosed by such algorithms. Privacy-Preserving Utility Mining (PPUM) aims to
protect the sensitive information from UBM algorithms. Several algorithms have
been proposed for such tasks [19–22]. These algorithms were designed for hiding
HUSPs in sequencedatasets. Thus, theymaynot suitable for hidingPHUSPs although
this type of patterns appears commonly in real-life applications. The experimental
results in [13, 23] have shown that the cardinality of PHUSPs is much less than that
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Fig. 1 The general model of PPUM on a utility database

of HUSPs. Thus, the data structure was used in previous works is not optimal for the
problem of hiding PHUSPs. In addition, hiding inappropriate patterns may lead to
high computation cost and also high missing cost (MC). Obviously, the utility of the
sanitized data is also decreased. To address these limitations, this chapter proposes
a novel algorithm named periodic high-utility sequential patterns hiding (PHUS-
Hiding) for hiding PHUSPs. An extensive experiment was conducted on real-life
datasets to compare the performance of the proposed algorithm with the state-of-
the-art HUS-Hiding [24]. The experimental results revealed that PHUS-Hiding can
efficiently hide PHUSPs and outperforms the HUS-Hiding algorithm in terms of
computational cost and missing cost.

The rest of this chapter is organized as follows: Section2 reviews the related
work. Section3 introduces the preliminaries. Section4 proposes a hiding algorithm.
Section5 discusses the experimental results. Finally, Sect. 6 summaries the findings
of this chapter.

2 Related Work

The general process for PPUM is described in Fig. 1 [20–22]. First, a mining algo-
rithm is used on a quantitative transaction database or a sequence database to discover
all HUIs or HUSPs, respectively. Next, the sensitive patterns are selected from the
full set of high-utility patterns based on the hiding goals or business requirements.
This is an optional step and patterns can be arranged according to the descending
order of utility [22]. Finally, a PPUMalgorithm is used to sanitize the original dataset.
Each sensitive pattern is modified by decreasing its utility until less than the min-
imum utility threshold minUtil. Consequently, the sanitized database contains no
sensitive patterns. Thus, it can be shared with the partners without worrying that the
sensitive information can be disclosed by HUPM algorithms.

The previous surveys [25, 26] give an overview of PPUM algorithms. Figure2
shows a taxonomy of PPUM algorithms. In general, these algorithms can be grouped
into two groups. In the first group, algorithms are classified based on the approaches
they use to hide sensitive patterns: transaction protection and item protection. The
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transaction protection uses heuristic or genetic algorithms to modify the original
transactions by inserting or deleting appropriate new items or transactions. The item
protection modifies one or more appropriate properties of item in HUIs or HUSPs.
In the second group, PPUM algorithms are designed for transaction or sequence
dataset.

Several PPUM algorithms have been proposed for hiding high-utility sequential
patterns [20–22, 24]. Regarding the workflow, they can be divided into two types:
separate and integrated models. In the separate model, the mining and hiding steps
perform individually. First, all HUSPs are discovered by using a HUSPM algo-
rithm. The HUSPs are then selected based on business requirements as an optional
step. Next, a HUSPH algorithm is applied to modify the selected patterns. HHUSP
and MSPCF algorithms [20] first find HUSPs by using an extension of the USpan
algorithm [10]. HUSPs are then modified by two strategies. HHUSP algorithm mod-
ifies the item that has the maximal utility in each HUSP, whereas MSPCF modifies
the item that appears most frequently in each HUSP. The results have shown that
HHUSP outperformsMSPCF in terms of computation cost. HHUSP-A andHHUSP-
D [22] arrange HUSPs based on their utilities before the modification. Specifically,
HHUSP-A sorts HUSPs by the ascending order, whereas HHUSP-D sorts them by
the descending order of utilities. The results have shown that HHUSP-D outperforms
HHUSP-A and HHUSP algorithm. For the group of the integrated model, the algo-
rithms first discover a HUSP and then modify that HUSP such that its utility is lower
than minUtil. The process is performed iteratively until all patterns are found and
sanitized. This model has the advantage of decreasing the computation complexity
on large-scale datasets. MHHUSP algorithm [21] compresses the search space into a
LQS-Tree and uses a utility matrix structure to maintain the operation state. For each
found HUSP, the procedure named modifyProcedure is used to reduce the utility of
the pattern to lower than the minUtil.

Recently, HUS-Hiding algorithm [24] uses a new structure called utility chain
for hiding (UCH) to maintain the search space and supports for the hiding process.
First, HUS-Hiding scans the database and builds the UCH for items that have the
sequence weighted utility (SWU) greater than or equal to minUtil. For each pattern
p on LQS-Tree, the algorithm stops expanding the search space for patterns that take
p as the prefix if the prefix extension utility (PEU) of p is lower than minUtil. From
the 1-sequences UCH, HUS-Hiding expands p to p′ by concatenating p with the I-
Extension and S-Extension items through scanning p’s projected dataset. An utility
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upper bound called reduced sequence utility (RSU) is used to prune unpromising
items from I-Extension and S-Extension items from the mining process. If p′ is an
HUSP, then the algorithm modifies its utility. The algorithm calls itself recursively
to discover and modify all HUSPs. HUS-Hiding is proven to be superior compared
to other algorithms in terms of computational cost and scalability.

Discovering periodic patterns is a common task in pattern mining. On transaction
dataset, PFP-growth and PFP-growth++ [27] algorithms were proposed for mining
periodic frequent patterns (PFPs). Recently, Kiran et al. [28] proposed a pattern-
growth algorithm named GPF-growth to find partial PFPs in a database. Fournier-
Viger et al. [29] designed an algorithm named PHM to discover periodic high-utility
itemsets (PHUIs) in a transaction database. They proposed several measures named
minimum, maximum and average periodicity to find PHUIs. On sequence dataset,
Dinh et al. [13] proposed an algorithm named PHUSPM. This algorithm uses the
Uspan algorithm for mining HUSPs. They also define several measures to filter
PHUSPs from the full set of HUSPs. Recently, Dinh et al. [23] proposed an algorithm
name PUSOM that utilizes a data structure named PUSP tomaintain the search space
and a pruning strategy named MPP to cut down non-periodic patterns. The results
have shown that the PUSOM algorithm can efficiently discover the complete set of
PHUSPs and reduce the computational cost.

3 Preliminaries and Problem Statement

Let I = {i1, i2, . . . , in} is a set of all distinct items or products where ik ∈ I (1 ≤ k ≤
n) is associated with a weight or also called external utility and denoted as w(ik).
w(ik) value represents for the unit profit, the unit cost or the importance ratio of
ik . Let SDB = {s1, s2, . . . , st } be a quantitative sequence database or q-sequence
database for short, where ssid(1 ≤ sid ≤ t) such that s is a q-sequence and sid is its
unique identifier. A q-sequence s is a list of quantitative transactions or q-itemsets for
short, s = 〈t1t2 . . . tm〉where tk(1 ≤ k ≤ m) is a q-itemset. Basically, q-itemsets of q-
sequence is ordered by purchased time. A q-itemset t = [(i1, q1)(i2, q2) . . . (in, qn)]
is a set of one or more q-items where (ik, qk) is a q-item (1 ≤ k ≤ n) such that i is
a product where i ∈ I and q is purchased quantity or also called internal utility. The
total of quantity of a q-item i in a q-sequence s is denoted as q(i, s). In the rest of this
chapter, the brackets are omitted if a q-itemset contains only one q-item for the sake
of brevity. If there are two or more q-items in a q-itemset, they are sorted according
to a definite order �. The common order in use � is the alphabetical order. In the
examples of remaining work, we use Tables1 and 2 for the cases. Table2 consists
five q-sequences. For example, the q-sequence s1 shows 3 q-itemsets, such that b(3),
[a(5)b(2)], and [c(1)e(6)]. In this q-sequence, the internal utility of q-item b in the
first and the second q-itemset are, respectively, 3 and 2. Table1 presents the items
and it’s external utility or also called weight. There are five items includes a, b, c, d,
and e appear with weight values are 2, 10, 4, 3, 1, respectively.
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Table 1 External utility
values

Item i Weight w(i)

a 2

b 10

c 4

d 3

e 1

Table 2 A quantitative
sequence database

SID Q-sequence

1 b(3)[a(5)b(2)][c(1)e(6)]
2 [c(5)e(4)][a(3)b(1)]d(6)[a(2)d(8)]
3 [c(2)d(1)][c(5)d(6)e(1)]e(1)a(2)

4 [a(1)d(5)][a(3)b(2)][b(1)d(4)][a(2)b(1)][d(6)e(1)]
5 [a(1)c(2)e(3)][a(40)c(1)e(1)][a(5)c(1)e(1)]d(1)

The utility of a q-item (i, q) denoted as u(i, q), the utility of a q-itemset t denoted
as u(t), and the utility of a q-sequence s denoted as u(s) are defined as follow:

u(i, q) = w(i) × q(i) (1)

u(t) =
n∑

k=1

u(ik, qk) (2)

u(s) =
n∑

k=1

u(tk) (3)

Definition 1 (q-itemsets subset) Given two q-itemsets ta = [(ia1 , qa1) (ia2 , qa2)…
(ian , qan )] and tb = [(ib1 , qb1) (ib2 , qb2)…(ibm , qbm )]. Iff for each integer k ∈ [1, n],
there exists an integer l ∈ [1, m] such that iak = ibl and qak = qbl then ta is called a
subset of tb and denoted as ta ⊆ tb.

Definition 2 (q-sequence sub-sequence) Given a q-sequence s = 〈t1, t2,…, tn〉 and
a q-sequence s ′ = 〈t ′

1, t ′
2,…,t ′

m〉 where 1 ≤ m ≤ n. Iff there exist a set of integers
1 ≤ j1 < j2 < · · · < jk ≤ m such that t ′

k ⊆ t jk then q-sequence s is called super-
sequence of s ′ or s ′ is called sub-sequence of s and denoted as s ′ ⊆ s.

Definition 3 (Matching) Given a sequence p = 〈t1t2 . . . tn〉 and a q-sequence s =
〈(s1, q1)(s2, q2) . . . (sn, qn)〉, s is said to match p iff sk = tk for 1 ≤ k ≤ n, denoted
as p ∼ s.

Definition 4 (Utility of a sequence) The utility of a sequence can be defined in
several methodologies, based on business requirements to conduct utility functions
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[9–11]. In this study, the utility of a sequence will be calculated by the maximum
utility function which proposed in [11]. Given a sequence p = 〈t1, t2, . . . , tm〉, the
utility of p in a q-sequence s is defined as u(p, s) = max{u(s ′)|s ′ ∼ p ∧ s ′ ⊆ s}.
Sequence p occurs multiple times in SDB. Therefore, the utility of p in SDB is
defined and denoted as u (p) = ∑

s∈SDB
u(p, s).

Definition 5 (Upper bound utility of a sequence—SWU) Sequence weighted utility
(SWU) is used as upper bound utility of a sequence. SWU of a sequence p in SDB is
maximum utility value that p can reach that is u(p) ≤ SWU (p). SWU of p defined
as SWU (p) = ∑

s ′∼p∧s ′⊆s∧s⊆SDB
u(s).

Definition 6 (High-utility sequential pattern—HUSP) A sequential pattern p is a
HUSP ifu(p) ≥ minUtil,whereminUtil is a predefinedminimumutility threshold.

Definition 7 (Periods of sequence) Given a sequential pattern p in a q-sequence
database SDB = {s1, s2, . . . , sn}. The q-sequences contains p is selected into a
set which is denoted as T (p) = {st1 , st2 , . . . , stk } where 1 ≤ t1 < t2 < · · · < tk ≤ n.
There are two q-sequences sl and sm where sl ∈ T (p) ∧ sm ∈ T (p) ∧ l < m are
sustained sequences of p if there is without q-sequence sr ∈ T (p) such that l < r <

m. The number of q-sequences between two sustained sequences sl and sm is called
a periodic of p which is denoted and defined as pn(sl ,sm) = (m − l). If p appears in
multiple q-sequences, the periods of p are denoted as ps(p) = {t1 − t0, t2 − t1, t3 −
t2, . . . , tk − tk−1} where t0 = 0 and tk = n are constant. Mathematically, ps(p) =⋃
1≤z≤k

(tz − tz−1).

To assess the periodicity of p, we also used three measures as in [23]. The maxi-
mum periodicity is denoted and defined as max Per(p) = max(ps(p)). The mini-
mum periodicity is denoted and defined as min Per(p) = min(ps(p)). The average
periodicity is denoted and defined as avg Per(p) = ∑

t∈ps(p)

t/|ps(p)|. The average

periodicity can be easily calculated as proposed in [23] by property avg Per(p) =
|SDB|/(|T (p)| + 1).

For example, considering the sequence 〈(ce)〉 occurs in s1, s2, s3, and s5 then
T (〈(ce)〉)= {s1, s2, s3, s5} and ps(〈(ce)〉) ={1, 1, 1, 2, 0}. So themax Per(〈(ce)〉) =
2, the min Per(〈(ce)〉) = 0 and the avg Per(〈(ce)〉) = 1.

The rationale for combining three measures is to avoid discovering patterns that
occur with too short or too long periods [23]. Specifically, the average periodicity
measure is used to avoid finding patterns that infrequently appear in a dataset. The
minimum and maximum periodicity thresholds allow to specify that the periods of
patterns must not be too short and long, respectively. We give multiple options to the
users of the proposed algorithm, users can choose to use or not use the minimum
and average periodicity measures. If the minimum periodicity measure is not used,
the minimum periodicity threshold is set to 0. If the average periodicity measure is
not used, the minimum and maximum average periodicity threshold can be set to 0
and +∞, respectively.
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Table 3 Six PHUSPs of the example

Pattern p u(p) min Per max Per avg Per

〈(a)(d)〉 137 1 2 1.25

〈(ce)(a)〉 146 1 2 1.25

〈(ce)(a)(a)〉 135 3 3 5/3

〈(ce)(a)(d)〉 148 3 3 5/3

〈(c)(a)〉 138 1 2 1.25

〈(c)(a)(d)〉 141 3 3 5/3

Definition 8 (Periodic high-utility sequential patterns—PHUSP) Given a pre-
defined minimum utility threshold minUtil and periodical thresholds min Avg,
max Avg, min Per , max Per . A HUSP p is also a PHUSP iff min Avg ≤ avg Per
(p) ≤ max Avg, min Per(p) ≥ min Per , max Per(p) ≤ max Per .

For example, if predefined utility thresholds minUtil = 135, min Per = 1,
max Per = 3, min Avg = 1, max Avg = 2, the complete set of six PHUSPs of the
above example show in Table3.

4 The Proposed Hiding Periodic High-Utility Sequential
Pattern

Definition 9 (Remaining utility) Given a q-itemset tm=[(im1 ,qm1) (im2 , qm2) . . .

(imk ,qmk )] of a q-sequence s = 〈t1t2 . . . tn〉 where 1 ≤ m ≤ n, then the remaining
utility of q-item iml where 1 ≤ l ≤ k is defined as ru(iml , s) = ∑

i ′∈s∧iml ≺i ′
u(i ′, s).

For example, ru(b1, s1), ru(a2, s1) and ru(b2, s1) values are 40, 30 and 10, respec-
tively. A remaining utility chain of q-sequence s1 is depicted in Table4.

Table 4 Remaining utility chain of q-sequence s1
Item indexes 1 2 3 4 5

Sequence b(3) [a(5) b(2)] [c(1) e(6)]

Remaining
utility

40 30 10 6 0
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4.1 Index-Chain Support Hiding Structure

Utility chain for Hiding (UCH) was introduced by Le et al. [24]. UCH structure
supports effectively for hiding task but field tidset of it still is not direct points to
items in a q-sequence. In this study, we developed a new structure called index-chain
support hiding (ICH) that is defined as follow:

Definition 10 (Index-set (idx Set) of a sub-sequence p in a q-sequence s) Given a q-
sequence s =〈t1, t2,…, tn〉 and a sub-sequence p =〈t ′

1, t
′
2,…, t ′

m〉where 1 ≤ m ≤ n ∧
p ⊆ s. If all items of s included the duplication are collected into a ordering preserved
string and denoted as str(s) = {i1, i2, . . . , il} then idx Set (s) = {1, 2, . . . , l} is set
of all index values. Sub-sequence p occurs multiple times in s. A set of index values
where corresponding to the instance k of p in s is denoted as idx Set (pk, s) where
idx Set (pk, s) ⊆ idx Set (s). Then, all index-sets of sub-sequence p in sequence s is
denoted and defined as idx Set (p, s) = ⋃

pk⊆s
idx Set (pk, s)

Definition 11 (Index-chain support hiding—ICH) A sequence p occurs multiple
times in q-sequences of SDB. A instance k of p in a q-sequence is presented by a
tuple in ICH. Each tuple in ICH contains four dimensions:

• sid is the identity of q-sequence s.
• idxSet is the index-set of p in s that is corresponding to the instance pk .
• u is the utility of p in s that is corresponding to the instance pk .
• ru is the remaining utility of p in s that is corresponding to the instance pk .

Table5 shows the ICH of sequence 〈b〉. Sequence 〈b〉 appears two times in q-
sequence s1 at index = 1 and index = 3, respectively. The utility and the remain-
ing utility of 〈b〉 in q-sequence s1 (Table4) at index = 1 are u = 30, ru = 40 and
at index = 3 are u = 20, ru = 10, respectively. Next, sequence 〈(b)(e)〉 is formed
by an external concatenation 〈b〉 with 〈e〉. Furthermore, in q-sequence s1, sequence
〈(b)(e)〉 can be formed two times by composing sequence 〈b〉 at index = 1 with 〈e〉
at index = 5 and sequence 〈b〉 at index = 3 with 〈e〉 at index = 5, respectively.
Therefore, idx Set (〈(b)(e)〉, s1) = [1, 5] and [3, 5] that are corresponding to the util-
ity values are u = 36 and u = 26.Moreover, the item e is placed at index = 5 where
is the end of s1 then ru = 0 for the two instances (Table6).

Table 5 The ICH of sequence 〈b〉
sid idxSet u ru

1 [1] 30 40

[3] 20 10

2 [4] 10 46

4 [4] 20 55

[5] 10 45

[8] 10 19
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Table 6 The ICH of sequence 〈(b)(e)〉
sid idxSet u ru

1 [1, 5] 36 0

[3, 5] 26 0

4 [4, 10] 21 0

[5, 10] 11 0

[8, 10] 11 0

4.2 PHUS-Hiding Algorithm

The pseudo-code of PHUS-Hiding algorithm is shown in Algorithm 1. In the first
phase, the algorithm scans the database and calculates the SWU for each item ik ∈ I .
An item i is pruned if SWU (i) < minUtil. At this phase, the algorithm also collects
the ICH of each item ik ∈ I . For each item, PHUS-Hiding gets an input including
SDB, minUtil and a sequence p that contains one item i with its ICH. First, the
algorithm collects all items that can be concatenated with p into two lists named
iExts and sExts (line 1). For each item in iExts list, new sequence p′ is generated
by using the I-Extension mechanism (line 3), which also constructs the ICH of p′
(line 4). If p′ is a HUSP, f n I s Periodic function is called to determine that p′ is
a PHUSP (line 5). The pseudo-code of f n I s Periodic function is shown in Algo-
rithm 2. This function gets inputs including a sequence p′ with its ICH and the
user-specified minPer, maxPer, minAvg, maxAvg thresholds. The minimum peri-
odicity, maximum periodicity are calculated by scanning the ICH of p′ to create
the ps(p′). The minimum, maximum, and average periodicity values of p′ are then
determined from ps(p′). If p′ satisfies the user-specified conditions, then p′ is a
PHUSP (line 5). The function f nHidingOne is then used to modify p′ (line 6).
The algorithm invokes itself recursively to process all sequences prefixed by p′ (line
7). All items in the sExts list are processed by the S-Extensionmechanism in the same
manner as the items in the iExts list (lines 8–13). Finally, the algorithm can hide the
complete set of PHUSP in the input dataset and returns the sanitized dataset (line 14).

The pseudo-code of f nHidingOne function is shown in Algorithm 3. This func-
tionmodifies utility of a PHUSP p in the samemanner as algorithms in [20] and [22].
The input includes the ICH of p and utility value of p. This function first calculates
the total reduction utility value that is denoted by di f f = u(p) − minUtil (line 1).
A loop is performed to modify p until di f f ≤ 0 (line 2). The function selects the
item im that has the largest utility value among items in p (line 3). This step is per-
formed by using the idx Set in the ICH of p which points directly to the indexes in
q-sequence. It is worth noting that an item may occur multiple times in a q-sequence
with different indexes and quantities. Thus, each occurrence is considered as a sep-
arate item. A PHUSP also appears multiple times in q-sequences. In the next step,
the function calculates the reduction rate denoted by α (line 4). This rate is used to
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Algorithm 1: The PHUS-Hiding Algorithm
input : A quantitative sequence database of SDB or p-projected database for the next

phase, the minimum utility threshold minUtil, sequence p with its ICH
output: A sanitized database SDB ′

1 Scan the projected database once to:
a. Put I-Extension items into iExts, or
b. Put S-Extension items into sExts

2 foreach item i ∈ iExts do
3 p′ ← I-Extension(p, i)
4 Construct the ICH of p′
5 if u(p′) ≥ minUtil∧ fnIsPeriodic(p′) then
6 f nHidingOne(p′, u(p′))
7 PHUS-Hiding(p′)
8 foreach item i ∈ sExts do
9 p′ ← S-Extension(p, i)

10 Construct the ICH of p′
11 if u(p′) ≥ minUtil∧ fnIsPeriodic(p′) then
12 f nHidingOne(p′, u(p′))
13 PHUS-Hiding(p′)
14 return SDB’;

Algorithm 2: fnIsPeriodic Function
input : ICH of p, min Per , max Per , min Avg, max Avg
output: T rue if p is a periodic sequential patterns, otherwise False

1 if min(ps(p)) < min Per then
2 return False

3 if max(ps(p)) > max Per then
4 return False

5 avg Per(p) = |SDB|/(|T (p)| + 1)
6 if min Avg ≤ avg Per(p) ≤ max Avg then
7 return T rue

8 return False

determine the quantity to be decreased of an item im on each q-sequence where p
occurs. For each q-sequence s in the ICH of p, the quantity of im is then modified
based on α and the reduction quantity (dq) (lines 5–8). As a special case, the quantity
of im is assigned as one if α ≥ 1 to assure that the function does not remove im from
its q-sequence. When di f f ≤ 0, p is no longer a PHUSP.
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Algorithm 3: fnHidingOne Function
input : A PHUSP p with its ICH and u(p)

1 di f f = u(p) − minUtil
2 while di f f > 0 do
3 Select im ∈ p where

∑
u(im) = max{ ∑

s∈UC H(p)

u(i p, s)}
4 Calculate the reduction rate of im : α = di f f/

∑
u(im)

5 foreach s|s ∈ I C H(p) do

6 Declare dq =
{

q(im , s) × α, i f α < 1
q(im , s) − 1, i f α ≥ 1

7 Reduce internal utility of im : q(im , s) = q(im , s) − dq
8 Set di f f = di f f − dq × w(i)

4.3 Missing Cost (MC)

PPUM algorithms transform the original database into a sanitized version. As a
result, the transformation produces side effects on the sanitized database. In this
work, missing cost (MC) is used to measure the amount of side effects that the
PPUM algorithm produces after the hiding process. In other words, MC represents
the similarity between the original database and the sanitized database. The PPUM
algorithm that produces a lower MC value is a better one. Let SDB and SDB ′ be
the original quantitative sequence database and a sanitized version, respectively. The
MC is defined and measured as following:

MC = su (SDB) − su
(
SDB ′) (4)

According to the Eq.4, the MC is calculated by subtracting the sanitized database
utility from the original database utility.

5 Experiment

Experimentswere performed to evaluate the performance of PHUS-Hiding algorithm
and HUS-Hiding on a computer with a Intel Core i7-6770HQ CPU @ 2.60GHz,
16 GB of RAM, running Windows 10 Pro 64bit. The source code is provided at
https://github.com/uthuyn/PHUS-Hiding. All algorithms were implemented in C#.
The proposed algorithm was compared with state-of-the-art HUS-Hiding algorithm
[24]. The performance of the algorithms has been compared on nine realistic datasets
that were obtained from the SPMF data mining library website [30] and in [14, 23].
These datasets have varied characteristics such as short and long sequences; sparse
and dense datasets. The internal utility of items in each sequence was randomly gen-
erated from 1 to 9. The external utility of each itemwas generated using a log-normal

https://github.com/uthuyn/PHUS-Hiding
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Table 7 Characteristics of the experimental datasets

Dataset Size #Sequence #Item Avg. seq
length

Type

Sign 375 KB 800 310 51.99 Realistic

Kosarak10K 0.98 MB 10, 000 10, 094 8.14 Realistic

Fifa 7.21 MB 20, 450 2, 990 34.74 Realistic

Bible 8.56 MB 36, 369 13, 905 21.64 Realistic

BMS-
WebView-1

2.8 MB 59, 601 497 2.51 Realistic

BMS-
WebView-2

5.46 MB 77, 512 3, 340 4.62 Realistic

Tafeng 8.00 MB 32, 266 23, 811 3.71 Realistic

Foodmart 3.00 MB 8, 842 1559 6.59 Realistic

Online retail 4.60 MB 4, 335 3, 928 4.24 Realistic

distribution as described in [23]. The characteristics of these datasets are shown in
Table7. For each dataset, theminimumutility thresholdminUtil was decreased until
a clear winner was observed or algorithms became too long to execute. In some cases,
a constraint on the maximum length threshold of PHUSP (max Length) was used
to speed up the experiments. For each other positive predefined thresholds includ-
ing min Avg, max Avg, min Per , and max Per , appropriate empirical values were
selected for each dataset to ensure that the algorithms discovered a certain number
of PHUSPs.

5.1 Runtime and Memory Usage

The execution time of PHUS-Hiding is compared with the HUS-Hiding algorithm.
The results are presented in Fig. 3. In each of these charts, the vertical axis and
horizontal axis represents the execution time and minimum utility threshold val-
ues respectively. It can be observed that PHUS-Hiding outperforms the state-of-
the-art HUS-Hiding algorithm for all datasets. On BMS-Webview-2, HUS-Hiding
needs 12,469, 22,016, and 45,203 ms for hiding patterns for the minUtil from
30,000, 20,000, and 10,000, respectively. PHUS-Hiding needs 4,640, 7,719, and
11,781 ms for hiding all patterns for the same minUtil and with the min Per ,
max Per , min Avg, max Avg were set to 1, 1000, 1, 70, respectively. On Tafeng
with max Length = 4, HUS-Hiding needs 37,937, 93,781 and 1,805,281 ms for
hiding patterns for the minUtil from 400,000, 300,000, and 200,000, respectively.
PHUS-Hiding needs 48,765, 109,890 and 343,391 ms for hiding all patterns for the
same minUtil and with the min Per , max Per , min Avg, max Avg were set to 1,
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9000, 1 and 3000, respectively. Similar observations can be applied for the other
datasets.

The memory usage of PHUS-Hiding is compared with HUS-Hiding algorithm.
The results are presented in Fig. 4. In each of these charts, the vertical axis and
horizontal axis represent the memory usages in megabytes and minimum utility
threshold values, respectively. Generally, for each dataset, memory usage increases
when the minimum utility threshold is low or for larger datasets. In general, PHUS-
Hiding consumes less memory and more stable than HUS-Hiding in most cases.
On Sign, HUS-Hiding requires 45, 46, 45, 46, 45, 47, 50, 47, 47, and 48 MB to
hide all patterns for the minUtil from 15,000 to 6,000, respectively. PHUS-Hiding
requires 45 MB to hide all patterns at the same minUtil and with the min Per ,
max Per , min Avg, max Avg were set to 1, 20, 1, and 5, respectively. On Foodmart,
the two algorithms require similar memory usage. Specifically, they need 75 MB for
minUtil from 2,900 to 1,100. A special case happens on the Bible dataset where
HUS-Hiding requires less memory usage than PHUS-Hiding. For the minUtil from
350,000 to 100,000 with max Length = 5, HUS-Hiding needs 207, 210, 231, 239,
242, 320, 236, 263, 273, and 236 MB, respectively, whereas PHUS-Hiding needs
243, 259, 260, 268, 273, 279, 276, 281, 285, and 296MBwith themin Per ,max Per ,
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Fig. 4 Memory usage for various minimum utility threshold values

min Avg, max Avg were set to 1, 100, 1 and 5, respectively. Similar observations
can be applied for the other datasets.

5.2 Number of Patterns

The experimental results in Fig. 5 show that the cardinality of PHUSP is much less
than that of HUSP. In each of these charts, the vertical axis represents the total
number of HUSPs for HUS-Hiding and PHUSPs for PHUS-Hiding, respectively.
The horizontal axis represents minimum utility threshold values. For each dataset,
the number of HUSPs found were depended on the minimum utility threshold value,
whereas the number of PHUSPs foundwere also depended on themin Per ,max Per ,
min Avg,max Avg values.OnBMS-Webview-2,HUS-Hiding found1, 2, 5, 8, 15, 24,
51, 106, 318, and 2765HUSPs for theminUtil from 100,000 to 10,000, respectively.
PHUS-Hiding found 1, 2, 5, 7, 8, 14, 21, 22, 26, and 26 PHUSPs for the same
minUtil and with the min Per , max Per , min Avg, max Avg were set to 1, 1000,
1, 70, respectively. On Bible with max Length = 5, HUS-Hiding found 10, 15, 19,
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Fig. 5 Numbers of patterns for various minimum utility threshold values

26, 54, 58, 66, 77, 89, and 114 HUSPs for the minUtil from 350,000 to 100,000,
respectively. PHUS-Hiding found 9, 12, 13, 16, 19, 19, 20, 21, 23, and 23 PHUSPs
for the same minUtil and with the min Per , max Per , min Avg, max Avg were set
to 1, 100, 1 and 5, respectively. On Online retail with max Length = 2, HUS-Hiding
found 509, 654, 840, 1,096, 1,469, 2,084, 3,078, 4,586, 7,849 and 19,118 HUSPs
for the minUtil from 10,000 to 1,000, respectively. PHUS-Hiding found 28, 29, 29,
30, 30, 30, 30, 30, 30, and 31 PHUSPs for the same minUtil and with the min Per ,
max Per , min Avg, max Avg were set to 1, 1000, 1 and 10, respectively. The results
shown that the cardinality of hiding PHUSPs is much less than that of hiding HUSPs
in all cases. Similar observation can be applied for other datasets.

5.3 Missing Cost (MC)

In this section, the missing costs of PHUS-Hiding and HUS-Hiding algorithms were
evaluated as shown in Fig. 6. PHUS-Hiding modifies less patterns than HUS-Hiding.
Thus, PHUS-Hiding outperforms HUS-Hiding in most cases. It means that PHUS-
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Fig. 6 MC for various minimum utility threshold values

Hiding produces less side effects than HUS-Hiding. On BMS-Webview-2, HUS-
Hiding produces the MC of 728,503, 1,173,778, and 2,216,717 for the minUtil of
30,000, 20,000, and 10,000, respectively. PHUS-Hiding produces theMCof 581,288,
786,427, and 974,993 for the same setting and with the min Per , max Per , min Avg,
max Avg were set to 1, 1000, 1, 70, respectively. On Bible with max Length =
5, HUS-Hiding produces the MC of 2,533,699, 2,686,156, and 2,846,887 for the
minUtil of 120,000, 110,000, and 100,000, respectively. PHUS-Hiding produces
the MC of 1,653,442, 1,691,325, and 1,734,577 for the same setting and with the
min Per , max Per , min Avg, max Avg were set to 1, 100, 1, and 5, respectively.
Online retail with max Length = 2, HUS-Hiding produces the MC of 5,357,576,
6,445,502, and 7,982,640 for the minUtil of 3,000, 2,000 and 1,000, respectively.
PHUS-Hiding produces the MC of 578,798, 600,065, and 617,733 for the same
setting and with the min Per , max Per , min Avg, max Avg were set to 1, 1000, 1,
and 10, respectively. Similar observation can be applied for the other datasets. In
some cases, if the number of HUSPs is equal to the number of PHUSPs, the missing
costs produced by two algorithms are comparative.
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6 Conclusion

This chapter has proposed an algorithm named PHUS-Hiding to efficiently hide
PHUSPs from quantitative sequence datasets. A new data structure called ICH was
designed to speed up the hiding step. An extensive experiments were conducted on
nine real-life datasets to evaluate the performance of the PHUS-Hiding algorithm.
The results have shown that PHUS-Hiding outperforms the state-of-the-art HUS-
Hiding [24] in terms of runtime, memory usage, and side effect. In future work, we
will improve the PHUS-Hiding to achieve better privacy with lower computation
costs.
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NetHAPP: High Average Utility Periodic
Gapped Sequential Pattern Mining

Youxi Wu, Meng Geng, Yan Li, Lei Guo, and Philippe Fournier-Viger

Abstract Sequential pattern mining is a key data mining task, where the aim is to
find subsequences appearing frequently in sequences of items (symbols). To pro-
vide more flexibility and reveal more valuable patterns, sequential pattern mining
with a periodic gap has emerged as an important extension. Algorithms for this task
identify repetitive gapped subsequences (patterns) in a sequence. Although this has
many applications, patterns are only selected based on their occurrence frequency
and the external utility (relative importance) of each symbol is ignored. Conse-
quently, these methods can find many unimportant frequent patterns and neglect
some low frequency but extremely important patterns. To address this problem, this
chapter presents a novel task of High Average Utility Periodic Gapped Sequential
Pattern (HAPP) mining and proposes an efficient algorithm called Nettree for HAPP
(NetHAPP), which involves two key steps: support calculation and candidate pattern
generation. To calculate the support of patterns, a backtracking strategy is adopted
that effectively reduces the time complexity of algorithm. To reduce the number of
candidate patterns, an average utility upper bound method is combined with a pat-
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tern join strategy. A wide range of experimental results show that NetHAPP is not
only more efficient than competitive algorithms but can also discover more valuable
patterns.

1 Introduction

Sequences of items (symbols) are found in many domains. To analyse such data, a
key task is sequential patternmining (SPM) [13, 32, 56]which consists of identifying
frequently occurring subsequences (also called patterns) in sequences. SPMhas been
widely applied in fields such as biological sequence analysis [45, 50], behavioural
analysis of customer purchases [29, 60], time series analysis [16, 46, 51], web
detection [6] and inspection report analysis [20, 21]. To meet the requirements of
different applications, algorithms have been developed for different variations of the
task of SPMsuch as high utility patternmining [14, 15, 62],maximal frequent pattern
mining [25, 27], tri-partition pattern mining [30], negative sequential pattern mining
[9, 18], tree patternmining [48], and closedpatternmining [7, 24]. In traditional SPM,
a sequence is described in the form ofmultiple set items that are sequentially ordered.
For instance, the sequence <c(abd)(bd)(cd)> indicates that item c was followed by
items a, b and d, then followed by b and d, and then by c and d. But a limitation of
traditional SPM algorithms is that they only consider whether or not a pattern such
as bd appears in a sequence, and ignore the fact that a pattern may appear multiple
times in the same sequence. A solution to this problem is to consider a sequence
representation where simultaneous items are forbidden, such as <cabdbdcd>, and
to count all occurrences of each pattern.

Since there are no constraints on the gaps between items in SPM, a phenomenon
arises in which the gap between two consecutive items of a pattern can be relatively
large, thus failing tomeet the users needs. Hence, several algorithms have been devel-
oped for SPM with gap constraints [17, 47] in recent years. Although SPM becomes
more difficult when gap constraints are added, it can reveal patterns that describe
well the behaviour of sequences, are tailored to the user’s needs, and can be applied
in many real-world applications. This study focuses onmining patterns with periodic
gaps [55], that is, where all the gap constraints are the same. For example, a pattern
C[0, 2]T [0, 2]T indicates that an item C is followed by an item T zero to two items
after, and then followed by another item T , up to two items after. Generally, the above
pattern can be described as having the form p = p1[min1,max1]p2[min2,max2]p3
where the notation [mini ,maxi ] indicates the minimum and maximum gap after the
i-th item pi . Since the size of the gaps in this pattern is always the same (min1 = min2
and max1 = max2), the gap constraint is said to be periodic.

Table1 compares the characteristics of four pattern mining tasks: association rule
mining [3], SPM [13, 32, 56], gapped SPM [17, 47] and periodic gapped SPM [55].

The SPM methods mentioned above only take into account the occurrence fre-
quencies of patterns to find frequent patterns. They do not consider other factors
that can help to evaluate the importance of patterns such as purchase quantities, unit
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Table 1 Comparison of different types of mining

Types Characteristics

Association rule mining Considers the internal relations between items, but not their ordering

SPM Focuses on the order between items, but does not consider repetitive
patterns or gaps between items

Gapped SPM Pays attention not only to the order between items and repetitions,
but also considers constraints on the gaps between items

Periodic gapped SPM Requires the same gap constraints any two consecutive items.

profits of items [39], or the interest and weight of an item. As a result, the information
extracted by traditional SPM algorithms is insufficient for many applications. For
example, in biological sequences, the frequency may not allow for the discovery of a
gene sequence related to a certain disease, since even though a gene may not appear
frequently, its high expression may cause the gene to be very significant. Conversely,
an inhibitory gene may occur frequently but may have less effect. Researchers have
therefore proposed a pattern mining task called high utility SPM [43], which extends
traditional SPM by adding external utility values to items to not only consider the
occurrence frequencies of patterns but also the importance of each item. However,
this method has a serious flaw, as it does not take into account the lengths of patterns,
meaning that it is easy to mine long but meaningless patterns. Inspired by the high
average utility method [26], we propose a task called High Average Utility Periodic
Gapped Sequential Pattern (HAPP) mining. The main contributions of this work are
as follows:

1. This chapter describes HAPP mining and proposes an efficient mining algorithm
namedNetHAPPwhich performs twokey steps: support calculation and candidate
pattern reduction.

2. To calculate the support effectively, this chapter proposes the NetBTM algorithm,
which adopts a backtracking matching strategy and employs a Nettree data struc-
ture [37, 53].

3. We impose an upper bound on the average utility and combine this with a pattern
join strategy to generate candidate patterns. These strategies can effectively reduce
the number of candidate patterns.

4. Experimental results on the DNA and VIRUS datasets show that not only
NetHAPP outperforms competitive algorithms but also that HAPPs have sig-
nificance.

The structure of this chapter is as follows: Section2 introduces related work.
Section3 defines the problem. Section4 proposes the NetHAPP algorithm, and pro-
vides a complexity analysis. Section5 reports results of comparative experiments
on the DNA and VIRUS datasets, and analyses the experimental results. Section6
presents the conclusion to this chapter.
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Table 2 Comparison of patterns found by different mining methods

Mining method Results Count

Frequent SPM A, G, T, AA, AG, GA, GT,
TG, AAA, AGT, GAA, GAG,
GTG, AGTG, GAGT, GAGTG

16

High utility SPM C, T, AA, AG, GA, GT,
TG,AAA, ACG, ACT, AGA,
AGG, AGT, ATA, ATC, ATG,
ATT, CGG, CGT, CTG, …,
GAGTAAGAATCGTG

357,913,712

High average utility SPM G, T, GT, TG, GTG 5

2 Related Work

SPM [2] has been used in numerous fields, and various mining methods have been
proposed. For example, web log mining [22] and transaction flow mining [12] have
been proposed for different types of databases, and rare SPM [33], maximum SPM
[34] and closed SPM [10, 58] have been designed for different pattern features.
Tri-partition alphabet SPM [30], negative SPM [8] and high utility SPM [1] have
been designed for different mining tasks. The last of these has been widely used in
many essential fields, such as customer purchase behaviour analysis [40], disease
diagnosis [35], sentiment classification [5] and event log discovery [11]. Ryang and
Yun [36] proposed an efficient algorithm for mining high utility patterns based on a
novel indexed list data structure, and experimental results showed that the proposed
algorithm effectively mined high utility patterns. Nam et al. [31] proposed the DHUP
algorithm, which applied the concept of a damped window model for increased
memory usage and scalability testing. Table2 compares patterns found by different
mining methods, namely, frequent SPM, high utility SPM and high average utility
SPM in the sequence s =GAGTAAGAATCGTGunder the nonoverlapping condition
(occurrences of a pattern are not allowed to overlap for the purpose of counting their
occurrences). Note that it is assumed that some utility values (positive numbers) are
assigned to each symbol (A, G, T and C) of that sequence to indicate their relative
importance (not shown in Table2).

As observed in Table2, frequent SPM finds patterns that appear frequently. In
this example, 16 frequent patterns were discovered such as AAA and AGT. High
utility SPM mines patterns whose utilities are greater than a minimum threshold,
but ignores the influence of the pattern length, and several long and useless patterns
are discovered. HAPP mining reveals only five patterns that have a high average
utility (defined as the utility of a pattern divided by its length). In this example,
A, AA and AG are frequent patterns but not HAPPs, since the utility of item A is
low. GAGTAAGAATCGTG is a high utility pattern, but not a HAPP, due to its long
pattern length. Generally, high average utility SPM has more applications than SPM
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Fig. 1 All occurrences of pattern p in sequence s

and high utility SPM [38, 41], and so has become a topic of intense research interest
since it comprehensively considers the effects of pattern length and utility.

The SPM algorithms with gap constraints can be categorized into three types:
using no condition [55], the one-off condition [49, 57] and the nonoverlapping con-
dition [7]. The following examples illustrate the differences between these three
constraints.

Example 1 Consider the sequence s = s1s2s3s4s5 = CTCTT, containing five items.
The pattern p = p1[0, 3]p2[0, 3]p3 = C[0, 2]T[0, 2]T has four occurrences in that
sequence, which are presented in Fig. 1. In that figure, the numbers 1, 2, 3, 4 and 5
represent positions in the sequence s. For instance, the first occurrence < 1, 2, 4 >

of pattern p appears at position 1, 2 and 4 of s.

As shown in Fig. 1, no condition means that there are no constraints on the occur-
rences of a pattern. Thus, all occurrences of p are considered, that is, <1,2,4>,
<1,2,5>,<1,4,5> and<3,4,5>. However, the support (occurrence frequency) does
not satisfy the Apriori property [23]. This means that the number of occurrences of
a pattern may be greater than that of its sub-patterns. But it is necessary to use some
form of Apriori property to reduce the search space and efficiently discover sequen-
tial patterns [61]. The one-off condition means that any character in the sequence can
be used at most once. In this example, there is only one occurrence under the one-
off condition, i.e. <1,2,4>. Although this constraint satisfies the Apriori property,
the support calculation is an NP-hard problem [4], and mining algorithms for this
scenario are thus approximate. The nonoverlapping condition means that although
any character (item) in the sequence can be matched multiple times, it must not be
in the same position. There are two occurrences of p in s under the nonoverlapping
condition, i.e. <1,2,4> and <3,4,5>. This example shows that the nonoverlap-
ping condition is stricter than no condition and looser than the one-off condition.
Nonoverlapping SPM not only satisfies the Apriori property but also can find all fre-
quent patterns, and therefore outperforms the other two competitive methods. Table3
gives a comparison of studies in this area.

It can be seen from Table3 that the work in [54] is the closest to the scheme
presented here. The differences between the approaches in [54] and in this chapter
can be summarized as follows:
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Table 3 Comparison of related studies

Literature Pattern type Gap constraint Type of
condition

Pruning strategy Mining type

Wu et al. [55] Frequent Periodic gap No condition Apriori-like Exact

Wu et al. [38] Frequent Periodic gap One-off
condition

Apriori Approximate

Ding et al. [25] Frequent No Nonoverlapping
condition

Apriori Approximate

Yao et al. [59] High utility No – Other –

Tseng et al. [42] High utility No – Other –

Hong et al. [19] High average
utility

No – Other –

Lu et al. [28] High average
utility

No – Other –

Wu et al. [54] Frequent Periodic gap Nonoverlapping
condition

Apriori Exact

This chapter High average
utility

Periodic gap Nonoverlapping
condition

Apriori Exact

1. The work in [54] focuses on mining frequent patterns, while the method in this
chapter mines HAPPs. We find that HAPP mining has more actual significance
than frequent SPM.

2. The work in [54] employs the NETGAP algorithm to calculate the support. It first
creates a whole Nettree and then prunes the invalid nodes after a nonoverlapping
occurrence is found. In this chapter, we propose the NetBTM algorithm, which
employs a backtracking strategy to calculate the pattern support without pruning
invalid nodes. Therefore, NetBTM outperforms NETGAP.

3. The pattern support in [54] satisfies the Apriori property, and uses it to generate
candidate patterns. The average utility in this chapter does not satisfy the Apriori
property, and an upper bound on the average utility is defined to improve the
mining efficiency and avoid incomplete mining results.

3 Problem Definition

A sequence of length n is denoted as s = s1s2 . . . sn , where si (0 ≤ i ≤ n) ∈ �, �

represents the set of items in sequence s, and the size of � can be expressed as |�|.
For example, in a DNA sequence, � is {A,T,C,G} and |�| = 4.

Definition 1 (Periodic Gap Pattern) A periodic gap pattern p of length m is
denoted as p = p1[a, b]p2 . . . [a, b]pm (or abbreviated as p = p1 p2 . . . pm with
gap = [a, b]), where a and b (0 ≤ a ≤ b) are integers indicating the minimum and
maximum gaps between any two consecutive items p( j−1) and p j , respectively.
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Definition 2 (Occurrence and Nonoverlapping Occurrence) Suppose we have a
sequence s = s1s2 . . . sn and a pattern p = p1[a, b]p2 . . . [a, b]pm . Then, L =<

l1, l2, . . . , lm > is an occurrence of pattern p in sequence s if and only if p1 = sl1 ,
p2 = sl2 ,…pm = slm (0 < l1 < l2 < · · · < lm ≤ n) anda ≤ l j − l j−1 − 1 ≤ b. Sup-
pose we have another occurrence L ′ =< l ′1, l ′2, . . . l ′m >. Then, L and L ′ are two
nonoverlapping occurrences if and only if ∀ 1 ≤ j ≤ m and l j �= l ′j .

Definition 3 (Support) The support of pattern p in sequence s is the number of
nonoverlapping occurrences, which is denoted as sup(p, s).

Example 2 The occurrences of pattern p = C[0, 2]T[0, 2]T in sequence
s = CTCTTG are <1,2,4>, <1,2,5>, <1,4,5> and <3,4,5>. The nonoverlapping
occurrences are <1,2,4> and <3,4,5>. The fourth item of the sequence (s4) exists
in both occurrences but matches the positions p3 and p2 of p, respectively. Hence,
sup(p, s) = 2.

Definition 4 (Utility and Average Utility) Let U (p j ) be a positive number that is
assigned to each item p j , and represents its relative importance. The utility of a
pattern p of length m in a sequence s is the sum of the utilities of its item multiplied
by its support, that is:

PU(p, s) =
m∑

j=1

U (p j ) × sup(p, s) . (1)

The average utility is the ratio of the pattern’s utility to its length, which is denoted
as

PAU(p, s) = PU(p, s)
m

=
∑m

j=1U (p j ) × sup(p, s)

m
. (2)

Example 3 In Example 1, the nonoverlapping occurrences of p in s are<1,2,4> and
<3,4,5>, and the utilities of C and T are 8 and 3, respectively.We therefore know that
PU(p, s) = ∑m

j=1U (p j ) × sup(p, s) = (8 + 3 + 3) × 2 = 28. Hence,

PAU(p, s) = PU(p,s)
m = 28

3 = 9.3.

Definition 5 (HAPP) If the average utility of the periodic gap pattern p is not less
than the minimum threshold minpau, then pattern p is a HAPP; otherwise, it is a
non-HAPP.

Our aim is to mine all HAPPs in a sequence.

Example 4 Suppose we have a sequence s = CTCTTG, gap = [0, 2], the utilities
of T, C and G are 3, 8 and 8, respectively, and minpau=8. Then, all HAPPs are
{C,T,G,C[0, 2]C,C[0, 2]T,C[0, 2]G,C[0, 2]C[0, 2]G,C[0, 2]T[0, 2]T} .
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Fig. 2 Nettree of pattern p in sequence s. There are four levels, since the pattern length is four.
Nodes n11, n

3
1, n

6
1, n

8
1, n

10
1 and n151 are roots, and nodes n64, n

8
4, n

10
4 and n154 are leaves. The same

node ID can appear at different levels, for example, n61 and n64 both have ID 6, and are created in
the first and fourth levels, respectively. Some nodes may have more than one parent, for example,
node n42 has two parents, n

1
1 and n31

4 Proposed Algorithm

To discover all HAPPs in a sequence, the main factors affecting the performance
are the calculation of the average utility and the generation of candidate patterns.
The core difficulty in calculating the utility is associated with calculating the support
[44]. Section4.1 describes the design of the NetBTM algorithm, which employs a
backtracking strategy to calculate the support. Then, Sect. 4.2 presents the pattern
join strategy that relies on an upper bound on the average utility to efficiently generate
candidate patterns. Finally, Sect. 4.3 describes the NetHAPP algorithm, and analyses
its time and space complexities.

4.1 Calculation of the Average Utility

In calculating the average utility of a pattern, the key issue is the calculation of
the support of the pattern. Wu et al. [52] proposed the NETGAP algorithm, which
was based on Nettree, thus giving a complete method for calculating the support.
However, the weakness of NETGAP is its low efficiency.We therefore design a more
effective algorithm called NetBTM to calculate a pattern’s support which employs
a backtracking strategy. Examples 5 and 6 will illustrate the principles of NETGAP
and NetBTM, respectively.

Example 5 Suppose we have sequence s = s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15 =
CACATCAC
TGTAGTC, a pattern p = p1 p2 p3 p4 = CATC, and gap = [0, 3]. The principle of
NETGAP is as follows:
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1. First, we create a Nettree based on the sequence s and pattern p, as shown in
Fig. 2.

2. The next step is to prune the invalid nodes, i.e. non-leaf nodes without children.
In this example, the invalid nodes are n42 and n151 .

3. We then start from the leftmost root n11, and find the leftmost child n22, until the leaf
is found. It is easy to obtain the first path < n11, n

2
2, n

5
3, n

6
4 > (marked in yellow),

whose corresponding occurrence is < 1, 2, 5, 6 >.
4. Nodes n11, n

2
2, n

5
3 and n

6
4 are then pruned. Following this, NETGAP prunes invalid

nodes in the new Nettree. In this example, the invalid node is n84.
5. The above steps are iterated, and NETGAP obtains the second occurrence

< 3, 7, 9, 10 >, (marked in green). Nodes n31, n
7
2, n

9
3 and n104 are then pruned,

and the invalid nodes n61 and n113 are also pruned. Finally, the third occur-
rence < 8, 12, 14, 15 > (marked in blue) is found. Hence, NETGAP finds three
nonoverlapping occurrences.

From the above example, it can be seen that the NETGAP algorithm is ineffi-
cient, since invalid nodes must be pruned after an occurrence is found. The NetBTM
algorithm proposed in this chapter employs the backtracking strategy to avoid this
pruning operation.

Example 6 Consider again the sequence and pattern of Example 5. The principle
of NetBTM is as follows:

1. As in Example 5, we first create a Nettree based on the sequence s and pattern p,
as shown in Fig. 2.

2. NetBTM does not need to prune invalid modes, such as n42 and n
15
1 , and finds the

first occurrence < 1, 2, 5, 6 >.
3. The next step is to find the next occurrence from the second root n31. Node n

4
2 is

the first child of n31, and has no child. In this case, the algorithm backtracks to the
parent node n31 and finds the second child node, n72. Thus, NetBTM obtains the
second occurrence < 3, 7, 9, 10 >.

4. Similarly, NetBTMfinds the third occurrence< 8, 12, 14, 15 >. There are no fur-
ther occurrences. Hence, NetBTM also finds three nonoverlapping occurrences.

From Examples 5 and 6, we know that both NETGAP and NetBTM find the
same nonoverlapping occurrences. However, NetBTM employs the backtracking
strategy, and does not need to prune invalid nodes. Pseudocode for NetBTM is given
in Algorithm 1.

Theorem 1 The time and space complexities of NetBTM are both O(m × n × w) in
the worst case, and the average time and space complexities are O(m × n × w / r
/ r), where m, n, w and r represent the pattern length, sequence length, gap width
(w = b − a + 1, gap = [a, b]) and item number |�|, respectively.
Proof A Nettree has m levels. Each level has no more than n nodes, and each node
has no more than w children. Each node can be visited no more than once. Hence,
the time and space complexities of NetBTM are both O(m × n × w) in the worst
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Algorithm 1 NetBTM
Input: Sequence s with length n, pattern p with length m, gap = [a, b]
Output: sup(p, s)
1: Create a Nettree according to p and s;
2: for each root do
3: occ ← Get an occurrence by iteratively selecting the leftmost child with the backtracking

strategy;
4: sup(p, s)++;
5: Delete occ;
6: end for
7: return sup(p, s)

case. In the average case, each level has n/r nodes, and each node has w/r children.
The time and space complexities of NetBTM are therefore O(m × n × w / r / r) in
the average case.

4.2 Candidate Pattern Generation

In this subsection, we introduce our method for candidate pattern generation based
on an average utility upper bound. Example 7 illustrates that the average utility does
not satisfy the Apriori property.

Example 7 Suppose we have sequence s = GAGTAAGAATCGTG, pattern p1 =
GA, p2 = GAG, gap = [0, 3] and minpau = 25. The utilities of each item for this
example are shown in Table4.

The supports of patterns p1 and p2 are sup(p1, s) = 3 and sup(p2, s) = 3, respec-
tively. We calculate the average utility of the two patterns using Definition 4:
PAU (p1, s) = PU (p1,s)

2 = 15×3
2 = 22.5, PAU (p2, s) = PU (p2,s)×3

3 = 75
3 = 25. p1 is

not a HAPP, since PAU (p1, s) < minpau. Although p2 is a super-pattern of p1, p2
is a HAPP, since PAU (p2, s) ≥ minpau. It can be seen from this example that the
average utility does not satisfy the Apriori property. But an enumeration tree strategy
can be used to generate candidate patterns. In Example 7, p1 =GA can generate four
candidate patterns: GAA, GAT, GAC and GAG. However, using the enumeration
tree strategy may yield an exponential number of candidate patterns. To tackle this
issue, we propose using a pattern join strategy based on an average utility upper
bound. We first give a definition of the upper bound on the average utility.

Table 4 Utility of each item

Item A T C G

Utility value 5 3 8 10
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Definition 6 (Upper Bound on the Average Utility and High Average Utility Upper
Bound Pattern (HABP)) The upper bound on the average utility of pattern p is the
product of its support and the maximum utility, as follows:

SPU(p, s) = sup(p, s) ×Umax , (3)

where Umax represents the maximum utility among items. If SPU(p,s) is not less
than minpau, then pattern p is a HABP.

Example 8 The upper bound on the average utility for the patterns p1 and p2 of
Example 7 is calculated as follows. According to Table4, Umax =10. From Eq.3,
SPU (p1, s) = 3 × 10 =30 and SPU (p2, s) = 3 × 10 =30.

Theorem 2 If pattern p is a non-HABP, then it is a non-HAPP.

Proof We know that
∑m

i=1U (pi ) ≤ m ×Umax . Hence, PAU (p, s) =∑m
i=1 U (pi )×sup(p,s)

m ≤ m×Umax×sup(p,s)
m = sup(p, s)×Umax=SPU (p, s). SPU (p, s) <

minpau since pattern p is a non-HABP. Thus, PAU(p,s) is less than minpau, and
pattern p is a non-HAPP.

Theorem 3 The upper bound on the average utility satisfies the Apriori property.

Proof According to Eq.3, the upper bound on the average utility of a pattern is its
support multiplied by a fixed value. It is known that the pattern support satisfies the
Apriori property. Hence, the upper bound on the average utility also satisfies the
Apriori property.

According to Theorems 2 and 3, candidate patterns can be generated by employing
a pattern join strategy.

Definition 7 (Maximum Prefix Pattern, Maximum Suffix Pattern and PatternJoin)
Suppose we have a pattern p = p1[M, N ]p2 . . . [M, N ]pm , and items r and l.
If q = pr = p1[M, N ]p2 . . . [M, N ]pm[M, N ]r , then p is called the maximum
prefix pattern of q, and is denoted as pre f i x(q) = p. Similarly, if d = lp =
l[M, N ]p1[M, N ]p2 . . . [M, N ]pm , then p is called the maximum suffix pattern
of d, and is denoted as su f f i x(d) = p. We obtain a new pattern t of length m+2,
denoted as t = d ⊕ q = lpr , and this process is called pattern join.

Example 9 Suppose we have two patterns p1 =ACC and p2 =CCA, gap = [0, 2],
Pre f i x(p2) =CC, and su f f i x(p1) =CC.Then, since Pre f i x(p2) = Su f f i x(p1),
pattern p = p1 ⊕ p2 = ACCA can be generated by pattern join.

Theorem 4 Suppose HUm is the set of HABP patterns. The candidate pattern set
Cm+1 can be generated from HUm using the pattern join strategy. We can safely say
that HUm+1 ⊆ Cm+1.
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Table 5 Number of candidate patterns with different lengths
Pattern length Length = 1 Length = 2 Length = 3 Length = 4 Length = 5 Length = 6 Total

Number of candidate
patterns from enumera-
tion tree

4 12 28 28 12 4 88

Number of candidate
patterns from pattern
join

4 9 23 5 1 0 42

Number of HAPPs 2 1 1 0 0 0 4

Proof The proof is by contradiction. Suppose pmi j
is a HABP, but pmi j

is not in the set
Cm+1. The maximum prefix and suffix patterns of pmi j

are pmi
and pm j

, respectively,
i.e. Pre f i x(pmi j

) = pmi
and Su f f i x(pmi j

) = pmi
. According to Theorem 3, pmi

and
pmi

are two HABPs. According to Definition 7, pmi j
= pmi ⊕ pm j . Thus, pmi j

is in
the set Cm+1, which contradicts the hypothesis.

According to Theorem 4, we know that all candidate patterns can be generated by
the pattern join strategy. The following example shows that the pattern join strategy
outperforms the enumeration tree strategy.

Example 10 Supposewehave a sequence s =GAGTAAGAATCGTG, gap = [0, 3]
and minpau =25. The utilities are shown in Table4. The set of length 3 HABPs is
HU3 = {AAA,AGT,ATG,GAA,GAG,GAT,GTG}.Wewill generate 7 × 4 = 28
candidate patterns using the enumeration tree strategy, since eachHABPwill generate
four candidate patterns. However, according to the pattern join strategy, there are five
candidate patterns: C4 = {AAAA,AGTG, GAAA,GAGT,GATG}. From Table5,
we can see that the number of candidate patterns generated by the pattern join strategy
is much smaller than using the enumeration tree strategy. Hence, the pattern join
strategy is more effective than the enumeration tree strategy.

4.3 NetHAPP Algorithm

In this subsection, we propose the NetHAPP algorithm and analyse its time and space
complexities. The steps of the NetHAPP algorithm are as follows:

Step 1: Scan the sequence database (SDB), calculate the average utility of each
item, and store the HAPPs of length 1 into HAU and the HABPs of length 1 into
HU1.

Step 2: Generate the candidate pattern set Cm+1 from HUm using the pattern join
strategy.

Step 3: For each pattern p in set Cm+1, calculate its average utility and the upper
bound on the average utility. If pattern p is a HAPP, then store it in the setsHAU and
HUm+1. If pattern p is an HABP, then store it in the HABP set HUm+1.
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Step 4: Repeat Steps 2 and 3 until Cm+2 or HUm+1 is empty. The HAPPs are now
in set HAU. Pseudocode for the NetHAPP algorithm is shown in Algorithm 2.

Algorithm 2 NetHAPP
Input: Sequence database SDB, minpau, gap = [a, b] and the utilities
Output: The set of HAPPs H AU
1: Scan the SDB, calculate the average utility of each character, store the HAPPs with length 1 into

H AU1, and store the HABPs with length 1 into HU1;
2: m ← 1;
3: while Cm+1 �= null do
4: for each pattern p in Cm+1 do
5: sup(p, s) ← NetBTM(SDB, p, gap);
6: Calculate PAU (p, s) and SPU (p, s) according to Equations 2 and 3, respectively;
7: if PAU (p, s) ≥ minpau then
8: H AUm+1 ← H AUm+1

⋃
p;

9: HUm+1 ← HUm+1
⋃

p;
10: else if SPU (p, s) ≥ minpau then
11: HUm+1 ← HUm+1

⋃
p;

12: end if
13: end for
14: m ← m + 1;
15: Cm+1 ← Patternjoin ( HUm ) ;
16: end while
17: return H AU ;

Theorem 5 The time complexity of the NetHAPP algorithm is O(m × n × w × L)

in the worst case, and O(m × n × w × L/r/r) in the average case, where m, n, w,
L and r are the pattern length, sequence length, gap width (w = b − a + 1, gap =
[a, b]), number of candidate patterns and item number |�|, respectively.
Proof According to Theorem 1, the time complexity of theNetBTMalgorithm in the
worst case is O(m × n × w), and the average time complexity is O(m × n × w ×
L/r/r). Since each candidate pattern runs once, the time complexity of NetHAPP
is O(m × n × w × L) and O(m × n × w × L/r/r) in the average case.

Theorem 6 The space complexity of the NetHAPP algorithm is O(m × (n × w +
L)) in the worst case, and O(m × (n × w/r/r + L)) in the average case.

Proof The space used by NetHAPP consists of the space for candidate patterns
and the space required by NetBTM. Obviously, the space complexity of candidate
patterns is O(m × L). According to Theorem1, the space complexity of theNetBTM
algorithm in the worst case is O(m × n × w), and the average time complexity is
O(m × n × w/r/r). Hence, the space complexity of NetHAPP is O(m × (n × w +
L)) in the worst case and O(m × (n × w/r/r + L)) in the average case.
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5 Experiments and Analysis

This section presents the experimental evaluation. Section5.1 describes the exper-
imental data, and Sect. 5.2 introduces the competitive algorithms. Section5.3 com-
pares and analyses the mining ability of the proposed algorithm and competitive
algorithms. Section5.4 analyses the running performance for different strategies for
generating candidate patterns and calculating the support. Section5.5 compares the
mining results of NetHAPP and NOSEP, and analyses the advantages of our method.

All experiments were carried out on a computer with a Intel(R)Core(TM)i5-
4210U processor, 8 GB memory, Windows 8.1 operating system, and VC++6.0 as
the experimental environment.

5.1 Database

Table6 describes the experimental database used in this chapter. It contains sequences
having various lengths.

5.2 Baseline Method

To evaluate the effectiveness of NetHAPP, three experiments were designed. In the
first, we appliedNetHAPP to different lengths ofDNAand virus sequences to explore
the mining ability of this algorithm. The second experiment was designed to evaluate
the running performance by reporting the running time and the number of candidate
patterns. The third experiment was designed to analyse the superiority of adding a
high average utility to traditional SPM. Brief descriptions of these algorithms are
given below:

Table 6 Database

Dataset Type From Length

DNA1a DNA Homo sapiens AL158070 6,000

DNA2 DNA Homo sapiens AL158070 8,100

DNA3 DNA Homo sapiens AL158070 10,000

VIRUS1b Virus Severe acute respiratory
syndrome corona virus 2

7,000

VIRUS2 Virus Severe acute respiratory
syndrome corona virus 2

9,000

VIRUS3 Virus Severe acute respiratory
syndrome corona virus 2

11,000

a DNA13 were used in [44], and can be downloaded from http://www.ncbi.nlm.nih.gov/nuccore/
AL158070.11
b VIRUS13 are the gene sequences of the virus causing COVID-19, and can be downloaded from
https://www.ncbi.nlm.nih.gov/nuccore/MN908947

http://www.ncbi.nlm.nih.gov/nuccore/AL158070.11
http://www.ncbi.nlm.nih.gov/nuccore/AL158070.11
https://www.ncbi.nlm.nih.gov/nuccore/MN908947
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1. NetHAPP_nogap: To analyse the impact of the introduction of periodic gap con-
straint to NetHAPP on the mining results, the NetHAPP_nogap algorithm was
used to mine the high average utility patterns with no gap constraints.

2. NetHAPP_nc and NetHAPP_oo: To explore the mining performance when the
nonoverlapping condition is introduced to NetHAPP, the NetHAPP_nc and
NetHAPP_oo algorithms were used to mine the high average utility patterns with
gap constraints with no condition and the one-off condition, respectively.

3. NOSEP [44]: To analyse the difference betweenNetHAPP and the classical repet-
itive SPM algorithm, the NOSEP algorithm was run as a competitor.

4. NetHAPP_bf and NetHAPP_df: To determine the efficiency of the pattern join
strategy in NetHAPP to generate candidate patterns, we applied the NetHAPP_bf
and NetHAPP_df algorithms, which used breadth-first and depth-first strategies
to generate candidate patterns, respectively.

5. NetHAPP_ng: To demonstrate the superiority of NetHAPP due to the use of
the backtracking strategy to calculate the support, we used the NetHAPP_ng
algorithm, which adopts the NETGAP algorithm in the support calculation step.

5.3 Mining Ability

Three competitive algorithms (NetHAPP_nogap, NetHAPP_nc and NetHAPP_oo)
were run to compare the mining ability of the NetHAPP algorithm for different
lengths of sequences. Six datasets were selected: DNA1, DNA2, DNA3, VIRUS1,
VIRUS2 and VIRUS3. The parameters were gap = [0, 3], minpau =210, U (A) =
0.2, U (G) = 0.3, U (C) = 0.2 and U (T) = 0.3. The running times and numbers of
patterns are shown in Figs. 3 and 4, respectively.

The following experimental results were found. The introduction of periodic gap
constraints can effectively improve the mining ability of the algorithm. For example,
for the DNA3 data in Fig. 4, we can see that the NetHAPP_nogap and NetHAPP
algorithms mined 7 and 68 HAPPs, respectively. All of the other experiments gave
similar results. The reason for this is that NetHAPP introduces periodic gap con-
straints, which makes the mining results more flexible and targeted.

The mining ability of the proposed algorithm under nonoverlapping condition is
better than with no condition and the one-off condition. For example, from Fig. 4,
we can see that the numbers of HAPPs mined by NetHAPP_nc, NetHAPP_oo and
NetHAPP were 3E+02, 12 and 25, respectively, and the running times of these three
algorithms were 2E+03, 168.6 and 3.5 s for the VIRUS1 database, respectively. The
reason for this result is that the nonoverlapping condition is stricter than with no con-
dition and looser than the one-off condition. Therefore, this method will neither gen-
erate toomany valueless patterns nor ignore meaningful patterns. NetHAPP employs
the backtracking strategy to calculate pattern support, which effectively improves the
efficiency of the algorithm in terms of running time. In this way, NetHAPP canmine a
moderate number of HAPPs and is faster than both NetHAPP_nc and NetHAPP_oo.
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Fig. 3 Comparison of running times

Fig. 4 Comparison of numbers of patterns
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Fig. 5 Comparison of numbers of HAPPs

5.4 Running Performance

In this subsection, we will compare the running performance of the NetHAPP algo-
rithm using different strategies for candidate pattern generation and support cal-
culation. Six datasets were used: DNA1, DNA2, DNA3, VIRUS1, VIRUS2 and
VIRUS3. The parameters were gap = [0, 3], minpau =210, U (A) = 0.2, U (G) =
0.3,U (C) = 0.2 andU (T) = 0.3. The numbers of HAPPs, running times and num-
bers of candidate patterns are shown in Figs. 5, 6 and 7, respectively.

The following observations were made:
The pattern join strategy outperforms the breadth-first and depth-first strate-

gies. For example, from the VIRUS3 data in Fig. 5, we know that all of the algo-
rithms discovered 134 HAPPs. However, NetHAPP was faster than NetHAPP_bf
and NetHAPP_df, and the running times for NetHAPP_bf, NetHAPP_df as well as
NetHAPP are 104.5, 105 and 43.5 s, respectively, as shown in Fig. 6. From Fig. 7, it
can be seen that the numbers of candidate patterns for the three algorithms were 996,
996 and 681, respectively. NetHAPP_bf and NetHAPP_df generated more candidate
patterns than NetHAPP. All of the other experiments showed similar results. Thus,
our experiment verified that the pattern join strategy can effectively prune candidate
patterns, and therefore gives better performance than breadth-first and depth-first
strategies.

The backtracking strategy can effectively improve the mining performance of the
algorithm. From Figs. 5 and 7, we can see that the numbers of HAPPs and candidate
patterns for NetHAPP_ng and NetHAPP were the same. However, NetHAPP was
faster than NetHAPP_ng, as shown in Fig. 6. For example, from the DNA2 data in
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Fig. 6 Comparison of running times

Fig. 7 Comparison of numbers of candidate patterns
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Fig. 8 Comparison of running times

Fig. 6, the running times of NetHAPP_ng and NetHAPP were 9.8 and 6.8 s, respec-
tively. The reason for this is that NetHAPP employs the backtracking strategy, which
does not need to prune invalid nodes.

5.5 High Average Utility Pattern Mining and Frequent
Pattern Mining

In this subsection, we compare the mining results from NetHAPP and NOSEP, and
analyse the benefits of adding high average utility to traditional SPM. To ensure a
fair comparison, we setminpau = 210 in NetHAPP andminsup = 210/0.3 = 700
in NOSEP to ensure that the numbers of candidate patterns generated by the two
algorithms are the same. Six datasets were selected: DNA1, DNA2, DNA3, VIRUS1,
VIRUS2 and VIRUS3. The parameters were gap = [0, 3],minpau = 210,U (A) =
0.2, U (G) = 0.3, U (C) = 0.2 and U (T) = 0.3. The running times and numbers of
patterns are shown in Figs. 8 and 9.

The following experimental results were found.
For each of the different databases, the mining ability of NetHAPP was superior

to that of NOSEP. For example, it can be seen from Fig. 8 that NetHAPP is faster
than NOSEP. This is because NetHAPP uses the NetBTM algorithm to calculate the
pattern support, which effectively reduces the calculation time. From the VIRUS2
data in Fig. 9,we can see that the numbers of patternsmined byNOSEPandNetHAPP
were 107 and 59, respectively. The reason for this is because NOSEP only uses the
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Fig. 9 Comparison of numbers of patterns

support to evaluate the importance, while NetHAPP employs both the support and
the utilities to evaluate the importance. The latter can thus better meet the needs of
users.

6 Conclusion

To solve the high average utility periodic gapped SPM problem, we addressed the
issue of HAPP mining with the following three characteristics: (i) the pattern has
periodic gap constraints, i.e. each gap constraint is the same; (ii) the nonoverlapping
constraint is used in the support calculation, i.e. the characters in the sequence can
be used repeatedly in different positions and (iii) the mining method mines patterns
with high average utility. The concept of high average utility is interesting as it takes
into account not only the frequency of each pattern and the utility value of each
item, but also the pattern length. To efficiently find all HAPPs, we proposed the
NetHAPP algorithm. When calculating the average utility of a pattern, the difficulty
lies in calculating the pattern’s support. To overcome this problem, a backtracking
strategy was adopted that effectively reduces the time complexity. When generating
candidate patterns, the difficulty lies in reducing the number of candidate patterns
as the average utility does not satisfy the Apriori property. To address this problem,
an upper bound on the average utility and a pattern join strategy were proposed,
which effectively reduces the numbers of candidate patterns. Extensive experiments
were conducted on DNA and virus sequences. The experimental results showed that
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in terms of mining ability, the NetHAPP algorithm was superior to the traditional
SPM algorithm, as it not only improved the running time significantly but could also
mine infrequent but important patterns. In terms of mining performance, both the
backtracking and the pattern join strategies significantly reduced the time and space
complexities, thus greatly improving the efficiency of the algorithm.

There are several possibilities for future work such as applying the proposed
algorithm in various applications, designing faster and more memory-efficient algo-
rithms, and to study algorithms for mining sequential patterns respecting other types
of constraints.
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Privacy Preservation of Periodic
Frequent Patterns Using Sensitive
Inverse Frequency

Usman Ahmed, Jerry Chun-Wei Lin, and Philippe Fournier-Viger

Abstract Pattern mining methods help to extract valuable information from a large
dataset. The extraction of knowledge might result in the risk of privacy issues. Some
potential information might disclosure the insights about customers’ behaviors. This
leads us to the issue of privacy-preserving data mining (PPDM) that hides sensitive
information as much as possible but remains valid information for the further knowl-
edge discovery methods. In this paper, we first propose a sanitization approach for
hiding the sensitive periodic frequent patterns. The proposedmethodutilizes theTerm
Frequency and Inverse Document Frequency (TF-IDF) to select the transactions and
items for sanitization based on the user-defined sensitive periodic frequent patterns.
The designed approach can select the victim items in the transactional database for
data sanitization. Experimental results showed that the model can perform better for
sparse and dense datasets under different user-defined thresholds.

1 Introduction

Privacy preservation data mining (PPDM) has become a significant research issue by
considering the General Data Protection Regulation (GDPR)1 regulation. With this
invention, data privacy is one of the main concerns related to the data-driven appli-
cations. Personal information includes some confidential information, i.e., social

1https://eur-lex.europa.eu/eli/reg/2016/679/oj.
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security numbers, address information, credit card numbers, credit ratings, and cus-
tomer purchasing behaviors), is collected and used in the analytical streams to track
user interests. This information helps extract the personal traits individually and then
based on the traits, micro-level targeting is done, and disinformation campaigns can
be conducted. Moreover, the collected information sometimes will be sold to the
organization and used for further analysis and marketing. Legislation of data pro-
tection law has been developed to protect the privacy of the sensitive information.
Thus, privacy preservation has become a mandatory progress in data mining tasks.

PPDM has become the primary research area as a result of prevailing issues.
The main goal is to hide sensitive information while permitting usable knowledge
for further knowledge discovery. A common approach for sanitizing the database is
through the addition or deletion operations to hide the sensitive information. Several
models are developed to sanitize the database using the above operations [8, 18,
22, 23]. Those developed approaches tend to perform well for protecting individual
data. However, they can produce numerous side effects in the sanitization progress.
Another issue related to PPDM is frequent itemset mining (FIM) that is the primary
usage of the sanitization approaches [2]. However, FIM is not designed to discover
patterns that appear periodically in a database [11, 16]. Therefore, hiding sensitive
items that have periodically occurrence is much important to user privacy. Extracting
and hiding the patterns are vital for the business as they result in lucrative sale offers
and help in product launches [14]. Thereby, selecting and sanitizing patterns that
occurred based on the periodicity helps to improve the privacy of the user-centric
data.

In 2006, Aggarwal et al. introduced the concept of PPDM [1]. Lindell et al. used
the ID3 algorithm to solve the PPDM issue. Clifton et al. [5] solved the associ-
ated problems of PPDM. A multiplicative perturbation algorithm was proposed that
balances the utility and privacy of the data [21]. A vertical partition-based data saniti-
zation is also proposed by the Dwork et al. [7]. Lin et al. proposed Genetic Algorithm
(GA) and Particle Swarm Optimization models for data sanitization using the evo-
lutionary computation [24, 26]. Many FIM-based algorithms were also proposed in
PPDM [22, 23, 25, 27, 34].

In-text mining, the term frequency–inverse document frequency (TF-IDF) [31]
is used to extract words based on their importance in the document. The TF-IDF-
based method is usually based on the statistical measure that finds the importance
of its appearance number in each document. Hong et al. then presented the SIF-IDF
model for data sanitization [18]. However, the SIF-IDF model does not focus on the
periodic patterns but only frequent patters. This paper proposes a new TF-IDF-based
model called periodic sensitive items frequency–inverse database frequency (PSIF-
IDF) that is used to evaluate the transactions associationwith sensitive itemsets based
on their periodicity. The proposed approach used the TF-IDF concept to reduce the
frequency of periodic itemsets for sanitization. The proposed PSIF-IDF algorithm
can easily make good trade off between periodic privacy preservation, sanitized data
utilization and execution time. The key contribution of the proposed PSIF-IDF are
as follows:
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• This is the first paper to hide the periodic frequent patterns for data sanitization in
PPDM.

• Based on the user-defined sensitive threshold value, the designed model used the
periodic frequent inverse transaction frequency to select and sanitize the periodic
patterns efficiently.

• Experimental results indicated that the designed approach achieves good perfor-
mance.

The rest of the paper is organized as follows. Section2 described some related
works. The proposed algorithm is stated in Section . An example and methodology is
mentioned in Sect. 3 and experimentation are given in Sect. 4. Finally, the conclusion
is given in Sect. 5.

2 Related Work

In this section, we then discuss the works related to periodic frequent pattern mining
and the privacy-preserving data mining.

2.1 Periodic Frequent Pattern Mining

In data mining, several algorithms [9, 17] have been extensively discussed to find
the set of frequent itemsets or the association rules based on the minimum support
and minimum confidence thresholds. However, most of the existing algorithms in
association-rule mining cannot be directly applied to discover the periodic behavior
of patterns. In general, periodic pattern mining algorithms ignore a pattern as being
non-periodic if it has a single period greater than a maximal periodicity threshold,
which is mainly defined by user’s preference.

The PFP-tree algorithm was first designed to mine the periodic frequent patterns
(PFPs) [32]. It uses the tree-based stricture and FP-growth mining method to mine
the PFPs. Amphawan et al. [3] then presented a top-k mining algorithm to apply the
depth-first search and vertical database structure to mine the PFPs without threshold
constraint. Amodel called ITL-tree [4]was presented tomine the approximate results
of PFPs. Kiran et al. [19] presented an improved model for mining the approximate
PFPs efficiently. A MIS-PF-tree [20] was proposed to mine the PFPs with multiple
minimum support thresholds. Several works regarding the periodic frequent pattern
mining were extensively studied and most of them are presented in progress [10, 11,
16, 30].
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2.2 Privacy-preserving Data Mining

PPDM is being identified as a critical issue when data sanitization and side effects
are kept in mind. There is also a keen interest in hiding sensitive information while
keeping the database utilization preserved.Agrawal et al. proposed ametric that helps
to evaluate the sanitization utility of PPDM methods [1]. Verykios et al. addressed
the PPDM classification system [33]. Shared data privacy is also addressed that hides
the sensitive information when data exists in the shared datasets [29]. Evmievski et
al. presented new privacy measures and the development of a group of algorithms
that can be used to randomize categorical and numerical data in PPDM [8]. Clifton
et al. [5] then presented a toolkit that can be applied in the distributed system and
environment. Dehkordi et al. [6] then introduced the GA-based model for hiding
the sensitive information in PPDM. However, the artificial and missing rules are the
main side effects regarding Dehkordi’s model. Several GA-based algorithms for data
sanitization are proposed by Lin et al. which includes sGA2DT, pGA2DT [23, 28]
and cpGA2DT [24]. In addition, Lin et al. proposed PSO-based algorithms for data
sanitization [26]. In recent advancement, amachine learning-basedmodel is deployed
in real time for data sanitization [2]. Recently, the periodic stable, correlated, and
top-k periodic pattern mining approaches are proposed that extract pattern based on
a different measure of periodicity [13–15]. To the best of our knowledge, there is
no sanitization model that can be used to disturb the original database for hiding the
periodic frequent patterns, and it will be investigated in this paper.

3 Proposed Methodology

In periodic frequent mining and PPDM, we used the Periodic Frequent PatternMiner
(PFPM) [11] for the periodic pattern mining, which is based on three periodic mea-
sure for the discovery of the periodic frequent pattern, i.e., the minimum, maximum,
and average periodicity. This helps to mine the flexible periodic patterns. PFPM used
the Eclat algorithm [35] to scan the database based onminimumperiodicity andmax-
imum periodicity first. Then the designed algorithm defines periodic itemsets having
periodicity not greater than maximum periodicity. The new itemsets are then sorted
based on the support of the itemsets. Another database scan was then performed in
depth-first search recursively as the exploration way to scan the remaining combina-
tions of new itemsets. The formal definitions of the studied problems are shown as
follows.

Let there be a database having itemset X i.e., s(X) = {
Ts1 , Ts2 . . . , Tsk

}
, where

1 ≤ s1 < s2 < . . . < sk ≤ n andn transactions D = {T1, T2, . . . , Tn}. In transactions
Tx ⊃ X and Ty ⊃ X , if there is no transaction between them, then we consider it as
consecutive with respect to X . In consecutive transactions Tx and Ty in s(X), the
periodicity is the number of transactions between Tx and Ty , i.e., pe

(
Tx , Ty

) =
(y − x).
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For example in Table1, consider the itemset {a, f }. This itemset appears in
transactions T1, and T4, and there are five transactions in the database, therefore,
s({a, f }) = {T1, T4}. The periods of this itemset are ps({a, f }) = {1,2,1}. Peri-
odic frequent pattern (PFP) is thus defined if |s(X)| ≥ minimum support minsup
and maximum periodicity max Per (X) < maxPer, where minsup and maxPer are
user-defined thresholds [11].

In PPDM, the users should first provide the set of sensitive itemsets that is required
to be hidden, i.e., SI = {si , s2, . . . , si }; they are required to be removed from the
database. We aim to preventing sensitive itemsets and reducing its frequency from
the periodic database D and let the modified database being as D′. In contrast to
hiding sensitive itemsets and avoiding those patterns to be mined in the further
mining progress, other objectives such as the side effects should be minimized. For
instance, the non-sensitive itemsets should not be sanitized in the database D′. In
addition, the artificial information that is not presented in the database D should not
be included in the database D′ either. An example for the scenario is then illustrated
as follows.

Algorithm 1 PSIF-IDF
Input: A transaction dataset D = {T1, T2, . . . , Tn}, items I = {

i1, i2, . . . , i p
}
, minimum sup-

port threshold s, and a set of m user-specified periodic sensitive itemsets PS =
{psi1, psi2, . . . , psim}.

Output: A sanitized database.
1: Find the set of PFPs.
2: Select PS based on user-defined threshold.
3: PSI Fi j = |psii j |

|Ti |
4: for i tem = 1, k do
5: PMRCk = maxmj=1 RCkj .

6: P I DFk = log |n|
| fk−PMRCk | .

7: PSI F − I DF (TK ) = ∑n
k=1

( |psik j |
|Tk | × ∑p

y=1 log
|n|

| fy−PMRCy |
)
.

8: for j = 1, p do
9: Sort T I D in descending order of PSIF-IDF values.
10: Select i j with the highest frequency.
11: Delete the selected item i j in T I D.
12: Update items’ frequency.
13: Repeat steps 9–13 until all sensitive itemsets are hidden.
14: Return A sanitized database.

Let the user define the threshold value for support. After that, the PFPM [11] is
first executed to extract the periodic frequent patterns. Let us assume the threshold
value is set as 40%, and we extracted the sensitive itemsets S = {c f, a f }. The support
represents that the minimum count is calculated as: 0.4 × 5, which is 2. After that,
the sanitization steps are performed as mentioned in Table1 and Algorithm 1 (Lines
1 and 2). We calculate periodic sensitive items frequency (SIF) in each transaction.
For instance, {c f, a f }. The number of sensitive itemsets for {c f, a f } is 2/5 and 2/5 as
{c f } and {a f } are two items, and the total items in that transaction is five (Table2).
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Table 1 A database with five transactions

TID Item

T1 a, b, c, d, f

T2 a, b, d, e

T3 b, c, d, f

T4 a, b, c, f

T5 c, d, e

Table 2 The PSIF of items in the transactions

TID Item PSI Fcf PSI Fa f

T1 a, b, c, d, f 2/5 2/5

T2 a, b, d, e 0/4 1/4

T3 b, c, d, f 2/4 0/4

T4 a, b, c, f 2/4 2/4

T5 c, d, e 0/3 0/3

Table 3 The MRC value of transactions

Item RCcf RCa f MRC

a − 1 1

b − − 0

c 2 − 2

d − − 0

e − − 0

f 2 1 2

Periodic Inverse Database Frequency (PIDF) is calculated for the transaction
items. We used the reduced count (PRC) for each item and then calculated the max-
imum value among the sensitive items as mentioned in Table3 that is shown in
Algorithm 1 (Line 5). For example, for the item c, we calculate it as max{3 − 0.4 ×
5 + 1, 0}, where 3 is frequency of the item c with respect to {c f }, and 0.4 is support
threshold. The MRC value, therefore, is calculated as 2. The result is then shown in
Table3.

The PIDF item value is then calculated. We take the item c as an example to
illustrate the steps. The occurrence count of the item c is calculated as 4 and the
PMRC value is 2. Therefore, we calculate its PIDF value as log10(5/(4 − 2)),
which is 0.39. In this way, we then calculate the values as mentioned in Table4 and
Algorithm 1 (Line 6).

After that, we calculate the Periodic Sensitive Items Frequency (PSIF) value of
each sensitive itemset in the transaction. For instance, the itemset {c f }, the value for
first transaction with respect to itemset {c f }, are 0.39 and 0.69. As results of 0.39
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Table 4 The PIDF value of each item

Item Count PIDF PMRC

a 3 0.39 1

b 4 0.09 0

c 4 0.39 2

d 4 0.09 0

e 2 0.39 0

f 3 0.69 2

Table 5 The PSIF value of each sensitive itemset in each transaction

TID PSI Fcf PSI Fa f

T1 1.10 1.10

T2 0.0 0.40

T3 1.10 0.00

T4 1.10 1.10

T5 0.40 0.00

+ 0.69, it is calculated as 1.10 for T1. In this same way, we calculated the sensitive
itemsets {c f, a f }, as mentioned in Table5 and Algorithm 1 (Line 7).

The PSIF-IDF value is then calculated for the sensitive itemsets. It multiples the
PSIF value by its P I DF value in the transaction. For instance, in the first transaction,
the PSIF value of the sensitive itemset {c f } in the first transaction is 2/5, as shown
in Table6 and its PIDF value is 1.10 as shown in Table6 . Then PSIF-IDF value is
calculated by multiplying the as 2

5 × 1.10, which is 0.43. The other PSIF-IDF values
for the sensitive itemsets {a f } is calculated as 0.43, and then the first transaction
is summed as 0.43 + 0.43, which is 0.88. In this way, all other transactions are
processed as mentioned in Table6 and Algorithm 1 (Line 7). After that, we sorted the
transactions based on the PSIF-IDFvalues asmentioned inTable6, 7 andAlgorithm1
(Line 10). Based on the item frequency asmentioned inTable4,we delete the item c in
transaction 4. In this way, the occurrence frequency of the {cf :3, af :2} has become
as {cf :2, af :1}. We then update the item frequency and repeat the same steps as
mentioned in Algorithm 1 (Lines 10–14) until the support value of the sensitive
information is lower than the given support threshold value.

4 Experimental Results

The experiments were carried out on a Linux system with Core I7 processor and
16 GB of RAM. We used two real-world datasets, i.e., mushrooms and foodmart.
Both of the datasets are available on the SPMFdatamining library [12]. For the exper-
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Table 6 The PSIF-IDF values of all the transactions

TID Item PSI Fcf I DFcf PSI Fa f I DFa f PSIF-IDF

T1 a, b, c, d, f 2/5 1.10 2/5 1.10 0.88

T2 a, b, d, e 0/4 1.10 1/4 0.40 0.10

T3 b, c, d, f 2/4 1.10 0/4 0.00 0.55

T4 a, b, c, f 2/4 1.10 2/4 1.10 1.10

T5 c, d, e 0/3 0.40 0/3 0.00 0.00

Table 7 The sorted transaction according PSIF-IDF values

TID Item PSIF-IDF

T4 a, b, c, f 1.10

T1 a, b, c, d, f 0.88

T3 b, c, d, f 0.55

T2 a, b, d, e 0.10

T5 c, d, e 0.00

Table 8 The used datasets in the experiments

Dataset |I | |D| AvgLen. Type

Mushroom 8,124 119 23.0 Dense, long
transactions

Foodmart 4,141 1,559 4.4 Sparse, short
transactions

imental purposes, we selected the periodic patterns randomly between the threshold
percentage of 1% and 2%. Also, we set the periodicity values, i.e., minimum peri-
odicity, maximum periodicity, and minimum average based on the characteristics of
the dataset mentioned in Table8. Figure1 compares the side effects of the designed
algorithm under various parameter values.

4.1 Side Effect Analysis

In Fig. 1, three side effects such as α, β, and γ represented the numbers of hiding fail-
ures (ratio of periodic patterns before and after sanitization), missing rules (number
of missing rules after sanitization), and artificial rules (number of pattern of artificial
rules created after sanitization), respectively. Results showed that the designedmodel
successfully hides the information and does not add any impurity into the database.
This means that all the sensitive itemsets are removed from both datasets. Also, no
side effects of artificial rules are generated. The number of missing rules is larger
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(a) mushroom dataset.

(b) foodmart dataset.

Fig. 1 Side effect analysis in terms of hiding factor α, missing rules β, and artificial rules γ

because some itemsets are removed from the transactions. As results, it causes the
removal of the patterns. The lower periodicity values tend to extract patterns fast,
and the reason is that model reduces the search space. With a lower number of rare
sensitive items, the frequency calculation performed fast due to the less search space.
The foodmart data is sparse and has high cost to find the periodicitymeasures. In gen-
eral, the user can control the hiding factor parameters and utilization of the periodic
patterns. However, reducing or hiding the patterns is good for privacy preservation,
but the data has become no usage as it will reduce the number of discovered patterns
or even produce null patterns in the knowledge discovery phase. This describes that
PFPM helps to extract the periodic patterns and non-periodic patterns effectively.
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Fig. 2 Execution time analysis

As results, PSIF-IDF is able to hide the sensitive information under user-defined
threshold value.

4.2 Execution Time Analysis

For each dataset, periodicity threshold values are empirically selected based on
two datasets that can be observed in Fig. 2. Note that the parameters of the designed
algorithm are different periodicity values, which are minimum periodicity, maxi-
mum periodicity, and minimum average consequentially. In general, the sanitization
progress is much faster as the proposed model can prune search space for finding the
periodic patterns and applying the sanitization model. From the results, we can see
that the sparse nature of the foodmart dataset is relatively slow as calculating peri-
odicity measures required to prune more items. In addition, the restricted threshold
values help to extract and sanitize itemsets.

4.3 Pattern Analysis

In Fig. 3a, we analyze the total number of the discovered periodic patterns extracted
under varied user-defined thresholds. In Fig. 3b, the number of the deleted patterns
regarding the developedmodel for data sanitization is then discussed. First, the PFPM
model helps to extract the periodic patterns effectively. As results, PSIF-IDF is able
to hide the sensitive information under varied user-defined thresholds. The results
showed that the lower threshold values result in producing more periodic frequent
patterns. If the percentage of the sensitive item is less, then the less number of patterns
is successfully deleted.When the higher percentage is set, themore sensitive itemsets
are needed to be processed. For example, when the maximum periodicity is set to
1,000 under the 0.25 threshold for the mushroom dataset, 160 patterns are extracted,
and 18 patterns are deleted. However, in the case of the foodmart dataset, when



Privacy Preservation of Periodic Frequent Patterns Using Sensitive Inverse Frequency 225

Fig. 3 Pattern analysis results

maximum periodicity is set as 2,000, then 1,432 patterns are extracted, and 365
patterns are deleted based on a user-defined 0.25 threshold value. This due to the
number of itemset variations, i.e., mushroom dataset has 119 items and foodmart has
1,559 items in the database. The deletion is highly dependent on the defined periodic
threshold values, user sensitivity rate and internal dataset characteristics, i.e., the
number of itemsets and transactions.

5 Conclusion and Future Work

In this paper, we proposed the privacy preservation-based periodic frequent pattern
sanitization approach that uses the PFPM method to extract periodic patterns and
then use the sensitive frequency–inverse documentmethod to sanitize the database by
removing the sensitive itemsets from the database. Themodel used the user-specified
sensitive itemsets in the experiments to show the performance of the designed model
regarding runtime, number of side effects, and number of the deleted patterns. In the
future, more factors regarding the periodicity calculation will be discussed and the
deep learning methods can be thus used to select the optimized threshold without
users input. Also, the evolutionary-based models can be discussed and incorporated
with the periodic preservation data mining mechanism.



226 U. Ahmed et al.

References

1. C.C. Aggarwal, J. Pei, B. Zhang, On privacy preservation against adversarial data mining,
in ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
510–516 (2006)

2. U. Ahmed, G. Srivastava, J.C.W. Lin, Amachine learning model for data sanitization. Comput.
Netw. 189, 107914 (2021)

3. K. Amphawan, P. Lenca, A. Surarerks, Mining top-k periodic-frequent pattern from transac-
tional databases without support threshold, in Advances in Information Technology, pp. 18–29
(2009)

4. K. Amphawan, A. Surarerks, P. Lenca, P, Mining periodic-frequent itemsets with approxi-
mate periodicity using interval transaction-ids list tree, in The International Conference on
Knowledge Discovery and Data Mining, pp. 245–248 (2010)

5. C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, M.Y. Zhu, Tools for privacy preserving dis-
tributed data mining. ACM SIGKDD Explor. Newsl. 4(2), 28–34 (2002)

6. M.N. Dehkordi, K. Badie, A.K. Zadeh, A novel method for privacy preserving in association
rule mining based on genetic algorithms. J. Soft. 4(6), 555–562 (2009)

7. C. Dwork, F. McSherry, K. Nissim, A. Smith, Calibrating noise to sensitivity in private data
analysis, in Theory of Cryptography Conference, pp. 265–284 (2006)

8. A. Evfimievski, R. Srikant, R. Agrawal, J. Gehrke, Privacy preserving mining of association
rules. Inf. Syst. 29(4), 343–364 (2004)

9. P. Fournier-Viger, J.W. Lin, B. Vo, T. Truong, J. Zhang, H. Le, A survey of itemset mining.
Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 7(4), e1207 (2017)

10. P. Fournier-Viger, J.C.W. Lin, Q.H.Dong,D.T. Lan, Phm:mining periodic high-utility itemsets,
in Industrial Conference on Data Mining, pp. 64–79 (2016)

11. P. Fournier-Viger, C.W. Lin, Q.H. Duong, T.L. Dam, L. Ševčík, D. Uhrin, M. Voznak, Pfpm:
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Real-World Applications of Periodic
Patterns

R. Uday Kiran, Masashi Toyoda, and Koji Zettsu

Abstract Previous chapters of this textbook have mainly focused on introducing
different types of periodic patterns and their mining algorithms. Some chapters have
also focused on evaluating the algorithms. In this chapter, we will present three
real-world applications of periodic patterns. The first case study is traffic congestion
analytics, where periodic-frequent pattern mining was employed to identify the road
segments in which users have regularly encountered traffic congestion in the trans-
portation network. The second case study is flight incidents data analytics, where
partial periodic pattern mining was employed to identify factors that are regularly
causing flight incidents in the data. The third case study is air pollution analytics,
where fuzzy periodic pattern mining was employed to identify the geographical
regions where people were exposed to harmful levels of air pollution.

1 Introduction

The data generated by many real-world applications naturally exist as a tempo-
ral database. Useful information that can empower the users with the competitive
knowledge to achieve socio-economic development lies in this data. Periodic pattern
mining is one of the best available techniques to discover competitive information in
a temporal database. It is because a periodic pattern indicates something predictable
within the data. This chapter presents three use cases to demonstrate the usefulness of
periodic patterns in real-world applications. The first case study is traffic congestion
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data analytics. In this analytics, users employ periodic-frequent pattern mining to
identify the road segments in which regular traffic congestion was observed in the
network. In the second case study, we discuss incident data analytics, where par-
tial periodic pattern mining was employed to discover useful information regarding
the air crafts’ incidents reported in Federal Aviation Authority (FAA) database. In
the third case study, we present air pollution data analytics in which fuzzy periodic-
frequent patternminingwas employed to identify the geographical locations inwhich
people were regularly exposed to harmful levels of an air pollutant.

2 Traffic Congestion Data Analysis

Improving public transport in smart cities is a challenging problem of great concern
in Intelligent Transportation Systems. An efficient transportation system can save
the life of several thousands of people during disasters. Many countries across the
globe are giving considerable research and development attention to improving their
transportation networks. In particular, ASEAN countries, which are often prone to
natural disasters (e.g., earthquakes, tsunamis, and typhoons), prioritize their national
budgets to improve their transportation networks. Consequently, analyzing trans-
portation data receives significant attention in many disciplines such as data mining,
machine learning, and statistics.

Japan is particularly vulnerable to natural disasters because of its topography and
climate. It has experienced countless earthquakes, tsunamis, typhoons, and other
types of disasters. The Government of Japan has set up road traffic information cen-
ter [5] tomonitor traffic congestion and safely transport people from disaster-affected
places to safe places. This information center has deployed a nationwide sensor net-
work to monitor traffic congestion. Figure1a shows the road network covered by
the traffic congestion measuring sensors in Kobe, Japan. Figure 1b shows the hypo-
thetical raw data generated by this network. Figure1c shows the temporal database
generated from the raw data. Periodic-frequent pattern mining on this database pro-
vides the information regarding the road segments in which people have regularly

Fig. 1 Traffic congestion analytics using periodic patterns
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Table 1 Some of the interesting periodic-frequent patterns generated in Congestion database. The
terms “sup” and “per” represent “support” and “periodici t y,” respectively

S. No. Patterns sup per

1 {137,1487, 1473, 1471, 1442, 140, 759} 1116 225

2 {556,325, 1442, 2234, 759} 2312 216

3 {243, 325, 168, 390, 2234, 1442, 759} 2504 237

4 {1502, 2274, 168, 1442, 2234, 759} 1837 222

Fig. 2 Spatial locations of periodic-frequent patterns in Table1

faced congestion in the network (see Fig. 1d). A hypothetical periodic-frequent pat-
tern discovered from this database is as follows:

{1, 2, 5} [support = 3%, periodici t y = 30min].

The above pattern indicates that 3% of the congestions were regularly observed (i.e.,
at least once in every 30min) on the set of road segments whose identifiers were
1, 2, and 5. When such an information is visualized along with other data sources,
say rainfall data of a typhoon as shown in Fig. 1e, the produced information may
found to be extremely useful to the users for various purposes, such as monitoring
the traffic during disastrous and suggesting police patrol routes to reduce accidents.

Kobe is the seventh-largest city in Japan. It is also the capital city of Hyogo
Prefecture. On July 17, 2015, this citywas stuckwith a heavy typhoon calledNangka.
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Fig. 3 Interpolating hourly rainfall data of Typhoon Nangka on periodic-frequent patterns

This typhoon resulted in 29 inches of rainfall, thereby displacing 550,000 people.
Uday et al. [2] collected that traffic congestion data of Kobe of this day and applied
periodic-frequent pattern mining to identify the sets of regularly congested road
segments. Some of the interesting patterns found in this data are shown in Table1.
Figure2 shows the spatial locations of these patterns.Whenweoverlay hourly rainfall
data as shown in Fig. 3, the produced information can be found extremely beneficial
to the users to monitor the traffic and suggest police patrol routes. The red circles in
each of these figures represent the road segments that face regular congestion and
encounter heavy rainfall in the respective time duration.
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3 Incidents Data Analysis

Federal Aviation Administration (FAA) keeps track of various incidents that hap-
pened to air crafts in the United States of America. This incidents database, called
Federal Aviation Administration-incidents (FAA-incident) database, naturally exists
as a temporal database with many incidents reporting on the same day. Venkatesh
et al. [6] constructed FAA-incidents database by gathering the incidents recorded
by the Federal Aviation Authority (FAA) from January 1, 1978 to December 31,
2014. Partial periodic pattern mining on this database identified useful patterns that
have regularly appeared in the database. Table2 shows some of the interesting partial
periodic patterns discovered in FAA-accidents at per = 2 years andminPS = 100.
The first pattern reveals useful information that 546 personal flights driven by private
pilots have gone through substantial damages while carrying out general operating
rules. The second pattern provides the information that 110 flights were completely
destroyed while following the general operating rules. The third pattern provides the
information that 205 personal flights have witnessed substantial damages when the
flight phase is a level-off touchdown. The final pattern provides the information that
388 Cessna flights driven by private pilots have gone through minor damages while
following instrument flight rules. Such a piece of information may be handy to the
users in the Federal Aviation Administration in coming up with appropriate training
practices to reduce human and machine losses.

4 Air Pollution Data Analysis

Air pollution is the major cause of many cardio-respiratory problems reported in
Japan. On average, 42.6 thousand people are dying every year in Japan due to pol-
lution [3]. In this context, a nationwide sensor network called Atmospheric Envi-
ronmental Regional Observation System (AEROS) [4] was set up by the Ministry

Table 2 Some of the interesting partial periodic patterns discovered in FAA-accidents database

S. No. Patterns Periodic-support

1 {GENERAL-OPERATING-RULES, 546

PERSONAL, PRIVATE-PILOT, SUBSTANTIAL}

2 {GENERAL-OPERATING-RULES, 110

INCIDENT, DESTROYED}

3 {PERSONAL, LEVEL-OFF-TOUCHDOWN,
SUBSTANTIAL}

205

4 {INSTRUMENT-FLIGHT-RULES, PRIVATE-PILOT,
CESSNA,

388

MINOR}
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Fig. 4 Air pollution analytics

Fig. 5 Fuzzy membership functions

of Environment, Japan, to monitor pollution. Figure4a shows the spatial locations
of these sensors in Japan. This network produces raw data at hourly intervals as
shown in Fig. 4b. This data can be modeled as a quantitative temporal database as
shown in Fig. 4c. Using the fuzzy membership functions as shown in Fig. 5, the
quantitative temporal database can be transformed into a fuzzy temporal database
as shown in Fig. 4d. Fuzzy periodic-frequent pattern mining (see Fig. 5e) on this
database identifies the useful patterns as shown in Fig. 4f. These patterns provide the
environmentalists and policymakers with useful information regarding the areas (see
Fig. 4g) inwhich peoplewere regularly exposed to harmful levels of air pollution. The
discovered information may benefit the users for various purposes, such as alerting
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local authorities and introducing new pollution control policies. More information
on fuzzy periodic-frequent patterns and the related application is available at [1].
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Insights for Urban Road Safety: A New
Fusion-3DCNN-PFP Model to Anticipate
Future Congestion from Urban Sensing
Data

Minh-Son Dao , R. Uday Kiran, and Koji Zettsu

1 Introduction

Traveling is an essential demand of humankind as we all need to commute between
our home and workplace by using different means of transport daily. Because of
the rapid growth in population and urbanization, modeling traffic data is becoming
more complicated. Various factors could, directly and indirectly, influence traffic
flows, such as weather, public infrastructure, human activities, and natural disasters.
Owing to IoT and AI’s exponential development, those factors have been measured
and utilized to model urban traffic applications in smart cities like [1, 7, 27, 35] in
recent years.

Predicting future traffic data is the most prominent study topic of urban traffic
modeling. In the early days, researchers employed various statistical and machine
learning methods [18, 19]. As the collected data becomes more massive over time,
deep neural networks have gained popularity rapidly [30]. Themost significant prob-
lem of those contemporary studies is that their output results lack interpretability
because of the nature of the utilized methods. Even though methods like decision
trees can explain how the results are generated but are not as good as deep neural
networks on multiple factors like predictive accuracy and scalability (e.g., working
with multi-modal data) [21]. Due to the interpret-ability-related problem mentioned
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above, it is challenging to explain to relevant stakeholders how traffic congestion
appears. Questions like “Are there any traffic bottlenecks in the city?,” “How long
heavy rain (measured in what millimeters) will lead to heavy traffic congestion?,”
and “How long will an accident affect congestion?” remain unanswered. If they are
found out, authorities can fix potential flaws in the design of traffic networks and plan
resources to deal with traffic congestion based on real-life events more effectively.
It is worth mentioning that traffic pattern discovery [32, 33, 37, 39], another study
branch of urban traffic modeling, can somewhat answer such questions. The problem
is, however, they use observed data to discover traffic patterns, so they cannot tell us
if (1) whether such patterns will happen in the future, (2) when they will occur, and
(3) how long they will last.

In [5], the authors proposed a systemof systems concept that, in our opinion, can be
utilized to address the problemsmentioned above. It consists of two systems: System
1 takes care of producing fast, and intuitive answers for the problem and System 2
handlesmore complex problems like reasoning and explaining howSystem 1 reaches
the answers. The authors proposed to use machine learning methods to build System
1 while left methods behind System 2 unanswered. They suggested that System 2 is
built on top of System 1 and uses the data generated by System 1.

In light of the above discussions, in this work, we propose a dynamic system con-
sisting of two systems: (1) long-term traffic congestion prediction systemusingmulti-
modal urban sensing data and (2) predicted congestion patterns discovery system.
To build System 1, we propose a novel deep learning model called Fusion-3DCNN.
About System 2, we evaluated different periodic-frequent pattern discovery algo-
rithms and utilized the most efficient one called maxPFP-growth proposed in [16].
The system aims to tackle the following problem: “Predicting future long-term traffic
congestion using multi-modal urban sensing data and discovering future high traf-
fic demand regions dynamically.” We consider future high traffic demand regions
equivalent to sets of Earth portions predicted to have heavy-periodic-frequent con-
gestion in this work. From the system’s target, it is clear that the first component to
predict long-term traffic congestion is straightforward in the spectrum of machine
learning, while the second to discover predicted congestion patterns requires com-
plex calculations. The system’s output is interactively dynamic maps showing the
people information about future traffic congestion and regions predicted to be in high
traffic demand according to periods. They provide a significant value proposition to
both municipal authorities and citizens. As we know, many cities worldwide have a
shortage of traffic police officers, so they need to choose which regions to monitor
traffic flows wisely. Without a doubt, high traffic demand regions should be prior-
itized. Besides, citizens could refer to the generated dynamic maps to reroute their
itinerary to avoid getting stuck in traffic jams.

Our contributions are summarized as follows:

• We propose a novel deep learning model called Fusion-3DCNN, which is an
enhanced version of the 3DCNN multi-source deep learning model proposed in
[8]. The model aims to anticipate long-term traffic congestion using multi-modal
urban sensing data. It uses multiple data sources in different formats like numeric
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data (e.g., congestion, rainfall, accident) and text data (e.g., Tweets) with the help
of two data fusion functions (one was introduced in [8]).

• We propose a novel system of systems to integrate the traffic congestion predic-
tion model introduced above and a periodic-frequent pattern mining algorithm
to discover future high traffic demand regions that are predicted to have heavy-
periodic-frequent traffic congestion. Herein, the frequency and periodicity of the
predicted congestion information stored in temporal databases are fully explored.

• Experimental results on real data collected in the city of Kobe, Japan from 2014
to 2015 shows that the system is not only highly accurate in predicting traffic
congestion but also time efficient in discovering predicted congestion patterns.

• Analyses of prevalent patterns, a case study, and two interesting use cases are also
presented to demonstrate the usefulness of the system.

The remainder of this chapter is organized as follows. Section2 compiles related
works in the field of urban traffic modeling and introduces related concepts and
algorithms to discover periodic-frequent patterns. Section3 introduces our Fusion-
3DCNN deep learning model. Section4 explains how we integrate the traffic con-
gestion prediction model, and a periodic-frequent pattern discovery algorithm to
realize the dynamic system. Section5 presents experiments, shows a case study of
high traffic demand regions, and proposes some use cases to deal with future traffic
congestion. Finally, Sect. 7 concludes the study.

2 Background

This section reviews related works and introduces the periodic-frequent pattern min-
ing model and the PFP-growth++ and maxPFP-growth algorithms.

2.1 Related Works

In this section, we review related works in the area of urban traffic modeling. They
can be broadly classified into three types: (i) traffic prediction [1, 2, 7, 11, 12, 18,
19, 21, 27, 30, 35], (i i) traffic pattern discovery [3, 22, 28, 32–34, 37, 39], and
(i i i) hybrid where a pattern discovery model are used to generate a training data for
predictive models [10, 38, 40].

Studies on traffic prediction have primarily focused on predicting future traffic
conditions over different geographical sizes in short-term time horizons limited under
60min [18, 21]. In 2018, [18, 19] compiled many studies that modeled prediction
systems based on statistical and machine learning techniques. In those works, only
traffic data was utilized, and complexity levels of the data were low. Recent studies
started to use multi-modal data to model their systems as listed following. Chou et al.
used traffic and weather data [7]. Fan et al. used traffic data and sensing information
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collected around buildings [11]. Alkouz et al. used traffic, and social networking data
[1]. Their ultimate purpose is to enhance the predictive accuracy of the model. Those
contemporary works proposed prediction systems built on top deep neural networks
to utilize their computational powers [30]. The mentioned studies encounter three
problems as follows. First, short predictive timewindowsmake the proposed systems
not very practical in real life as traffic police forcesmust prepare action plansmultiple
times per day (24 times per day if the predictive timewindow is 60min). Second, those
predictive systems can predict future traffic congestion situations at a particular time
instance but cannot determine if such a condition will happen periodically/frequently
in the future requiring special care from traffic police officers. Third, although deep
neural networks generate highly accurate results, they work as a black-box model. It
means that people cannot explain how the predicted information is generated by the
system (i.e., they lack interpretability). If authorities know how traffic congestion
prediction systems work, they may allocate resources to tackle traffic congestion
more effectively.

Studies on traffic pattern discovery aim to identify factors that may cause traffic
congestion by using observed traffic data [39]. They can be classified into two minor
groups. First, discovering internal road factors (e.g., designs of traffic networks and
public infrastructure) and external factors (e.g., traffic accidents, natural disasters,
and timings of the day) causing traffic congestion. Second, interpreting how con-
gestion propagates from one area to others and discovering which paths will lead to
large-scale traffic congestion. The studies belonging to the first group could be found
in [3, 28, 37, 39]. Publications [22, 32, 33] introduced different methods belonging
to the second group. Those studies’ ultimate purposes are: (1) detecting potential
traffic network design flaws and (2) alarming people about factors leading to traffic
congestion. The methods of this topic have two main limitations as follows. First,
they can discover traffic patterns from historical data, but they cannot decide whether
those patterns will happen in the future and how long they will remain when occur-
ring, so traffic congestion reaction plans cannot be made in advance for a particular
time instance. Second, to discover traffic pattern, they consider only frequency and
disregarded the temporal occurrence information of the events, so they are inade-
quate to discover periodic regularities which are an essential characteristic of traffic
data [29].

Traffic prediction and traffic pattern discovery models can be used together to
form hybrid methods [10, 38, 40]. They applied the same integration scheme as
follows. A pattern discovery model is used to generate training data for a predictive
model. The purpose is to enhance the predictive accuracy of the system. Themethods
of this research group encounter the same problems as the traffic prediction studies
analyzed above.

To the best of our knowledge, most previous works are not capable of discovering
future periodic-frequent traffic congestion patterns. The dynamic system proposed
in this study will address this important issue.
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2.2 Periodic-Frequent Pattern Mining Model

Periodic-frequent pattern mining is an important model in data mining, having many
real-world applications. The basic model to discover periodic-frequent patterns is as
follows [17]:

Let I = {i1, i2, . . . , in}, n ≥ 1, be the set of items. Let X ⊆ I be an itemset (or
a pattern). If an pattern contains k number of items, then it is called a k-pattern.
A transaction t = (ts,Y ) is a tuple, where ts represents the timestamp and Y is a
pattern. A transactional database (T DB) over I is a set of transactions, i.e., T DB =
{t1, t2, . . . , tm},m = |T DB|. If X ⊆ Y , it is said that t contains X and such timestamp
is denoted as tsXj . Let T SX = {tid X

j , . . . , tid
X
k }, 1 ≤ j ≤ k ≤ n, be the set of all

timestamps where X occurs in T DB. The support of a pattern X is the number
of transactions containing X in T DB, denoted as Sup(X). Therefore, Sup(X) =
|T SX |. Let tsXi and tsXj be two consecutive timestamps where X appeared in T DB.
A period of a pattern X is the number of transactions between tsXi and tsXj . Let
PX = {pX

1 , p
X
2 , . . . , p

X
r }, r = Sup(X) + 1, be the complete set of periods of X in

T DB. The periodicity of a pattern X is the maximum difference between any two
adjacent occurrences of X , denoted as Per(X) = max(pX

1 , p
X
2 , . . . , p

X
r ). A pattern

X is said to be a periodic-frequent pattern if Sup(X) ≥ minSup and Per(X) ≤
max Per , where minSup and max Per represent the user-specified threshold on
minimum support and maximum periodicity, respectively.

Example 1 Let I = {a, b, c, d, e, f, g} be the set of items (or mesh codes). Each
mesh code uniquely identifies a portion of area on the earth surface. Let Table1 be a
hypothetical (predicted) temporal database generated by the Fusion-3DCNN model
described in the previous subsection. This database contains 10 transactions. There-
fore, the database size, i.e., T DB = 10. The first transaction, “1 : abcg,” provides
the information that traffic congestion was observed in the mesh codes of a, b, c and
g at the timestamp of 1. Similar statements can be made on the remaining trans-
actions in the database. The set of items a and b, i.e., {a, b} (or ab, in short) is a
pattern. This pattern contains two items. Therefore, it is a 2-pattern. The pattern
ab appears in the transactions whose timestamps are 1, 3, 5, 7, and 9. Therefore,
T Sab = {1, 3, 5, 7, 9}. The support of ab, i.e., Sup(ab) = |T Sab| = 5. The peri-
ods for this pattern are: pab1 = 1 (= 1 − tsinitial), pab2 = 2 (= 3 − 1), pab3 = 2 (=
5 − 3), pab4 = 2 (= 7 − 5), pab5 = 2 (= 9 − 7), and pab6 = 1 (= ts f inal − 9), where
tsinitial = 0 represents the timestamp of initial transaction and ts f inal = |T DB| =
10 represents the timestamp of final transaction in the database. The periodicity of ab,
i.e., Per(ab) = maximum(1, 2, 2, 2, 2, 1) = 2. If the user-specifiedminSup = 4
andmax Per = 3, then ab is a periodic-frequent pattern. This periodic-frequent pat-
tern is expressed as follows:

ab [support = 5 (= 50%), periodici t y = 2]. (1)

The above pattern provides useful information that 50% of the regular conjunctions
happen on the mesh codes a and b. It can be observed that such a discovered infor-
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Table 1 Temporal database

ts Items ts Items

1 abcg 6 cde f

2 bcde 7 abcd

3 abcd 8 ae f

4 acd f 9 abcd

5 abcdg 10 bcde

mation may found to be extremely useful to the users for various purposes, such as
suggesting police patrol routes and diverting the traffic.

Several algorithms have been described to find periodic-frequent patterns like
Periodic-Frequent Pattern-growth++ (PFP-growth++) [17]. It has a very efficient
runtime, but it generates too many patterns causing difficulties in visualization. To
address that problem, [16] introduced the maximal periodic-frequent pattern mining
model using Maximum Periodic-Frequent Pattern-growth (maxPFP-growth) algo-
rithm. In the next two sections, we briefly introduce them. We will also compare
the interestingness about patterns generated by those algorithms and their execution
time in experiments.

2.3 Periodic-Frequent Pattern-growth++ (PFP-growth++)
Algorithm

The PFP-growth++ algorithm is an enhanced version of PFP-growth. Different from
the original, it employs greedy techniques during the process of pruning candidate
itemsets. It has a very efficient runtime and works as follows:

1. (Construction of PF-tree.) Compress the given temporal database into a tree
called Periodic-Frequent tree (PF-tree). The max Per (maximum periodicity)
parameter is employed in this stage to determine aperiodic items that have period-
icity larger thanmax Per . They are removed from tree. At the end of this process,
we have ∀x ∈ tree, Per(x) ≤ max Per .

2. (Mining PF-tree.) Perform recursively until PF-tree is empty as follows:

• Step 1: Choose a leaf node i of PF-tree, build a Prefix Tree i called PTi . PTi
contains all branches of PF-tree having i as a leaf.

• Step 2: For each node j or a group of nodes belonging to PTi , we combine
it/themwith node i to form a k-pattern. It means that k = 1 + N where N is the
number of nodes taken from PTi and combined with i . We have 2 ≤ k ≤ |L j |.
Assume that we combine only node j with i , we have a 2-pattern called i j .
We calculate its support Sup and periodicity Per . If Sup(i j) ≥ maxSup and
Per(i j) ≤ max Per , then i j is a periodic-frequent pattern.
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• Step 3: Remove i out of PFT and restart from step 1.

Please refer to [17] for more information about this algorithm.

2.4 Maximal Periodic-Frequent Pattern Growth
(maxPFP-Growth) Algorithm

The maxPFP-growth algorithm still employs the operations to build and mine
periodic-frequent patterns on PFP trees like PFP-growth++. However, the significant
difference is that this algorithm only discovers maximal periodic-frequent patterns
rather than finding all periodic-frequent ones. As a result, the number of generated
patterns reduces significantly. It works as follows:

1. (Construction of PFP-tree.) Compress the given database into a tree, called
Periodic-Frequent Pattern tree (PFP-tree).

2. (Initialization of maxPFP-tree.) Initialize another tree, called maximum
Periodic-Frequent Pattern tree (maxPFP-tree), by setting its root node equal to
null.

3. (Constructing maxPFP-tree by recursively mining PFP-tree.) For each item
i in the PFP-tree, construct i’s conditional pattern base (CPBi ), and i’s condi-
tional PFP-tree (cPFP-treei ). Determinewhether i ∪ cPFP-treei is amaximal
periodic-frequent pattern by performing subset_checking function of maxPFP-
tree. If i ∪ cPFP-treei is a maximal periodic-frequent pattern, insert
i ∪ cPFP-treei into maxPFP-tree. Else, reject i ∪ cPFP-treei . Please note
that we do not generate all periodic-frequent patterns from cPFP-treei as
in traditional periodic-frequent pattern mining algorithms. Instead we stop
recursive mining of cPFP-treei once the resultant tree contains only one
branch.

4. (Reducing the size of PFP-tree.) Prune the item i in the PFP-tree by pushing its
node information (i.e., the list of timestamps) to its parent nodes. Keep repeating
the steps 3 and 4 until the PFP-tree is empty.

Please refer to [16] for more information about this algorithm.

3 Fusion-3DCNN Deep Learning Model

This section explains the process of building the Fusion-3DCNN deep learning
model. It is used for long-term traffic congestion using multi-modal urban sens-
ing data. There are two main stages involved: (1) converting multiple sources of
urban sensing data to 3D multi-layer raster images, and (2) fusing and feeding the
data sources wrapped in those images to the deep learning model used for long-term
traffic congestion prediction. The first step utilizes the method proposed in [9], while
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the second leverages two fusion functions and a deep neural network, which will be
described in later sections.

3.1 3D Multi-layer Raster Image Creation

This section explains the process to create a 3D multi-layer raster image called
3DMRI from multi-modal urban sensing data. The process is illustrated in Fig. 1.
It assumes that we have three urban sensing data sources: congestion, rainfall, and
Tweets having content related to heavy traffic congestion, heavy rain, and traffic
accidents. Firstly, we introduce related concepts of 3DMRI . Each image consists
of many layers. If we separate 3DMRI images by layers, we will obtain 3D single-
layer raster images called 3DSRI . Each 3DSRI image contains the evolution of an
urban sensing data type over a particular period. Each pixel on the images represents
a rectangular geographic portion on the Earth denoted by mesh code. The value of
each pixel is an accumulation of related data appearing in the related mesh code.
Below we explain the workflow in more detail:

1. For each urban sensing data type j , at time Ti , we create the representative layer
RIi j as follows:

a. We divide the examined area into a grid ofmesh codes and create the associated
2D single-channel raster image called RIi j whose pixel values are initialized
by zero. To do so, we reuse the Quarter Grid Square standard defined by
the Statistics Bureau of Japan under Announcement No. 143 issued by the
Administrative Management Agency on July 12, 1973.1 The area size denoted
by each mesh code is equivalent to a 250m×250m portion on the Earth.

b. We accumulate the value of data that appears in each mesh code and assign it
to the associated pixel. For example, assume that mesh code M has three road
segments whose average congested length measured at Ti are 200m, 150m,
and 180m. It means that the value of the pixel associated with mesh code M
for the traffic congestion data is 200 + 150 + 180 = 530.

c. We normalize the pixels’ value into [0, 255] range and have the final data of
the RIi j image.

2. We superimpose all 2D single-channel images RIi j generated frommultiple urban
sensing data at time Ti to create a 2D multi-channel image MRIi .

3. We arrange all MRIi images along the time dimension over a predefined period
to get the 3D multi-channel raster image 3DMRI , which becomes the input of
our Fusion-3DCNN model.

For more information about this process, please refer to [9].

1 http://www.stat.go.jp/english/data/mesh/02.html.

http://www.stat.go.jp/english/data/mesh/02.html
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Fig. 1 Creating 3D multi-layer raster image from multi-modal urban sensing data

3.2 Architecture of the Fusion-3DCNN Deep Learning
Model

3.2.1 Data Fusion Functions

This section explains how we feed multiple urban sensing data sources into the
Fusion-3DCNN deep learning model. It is done with the help of two data fusion
functions. We observe that the traffic is affected by two types of sensing data: social
networking data and environmental factors.

The social networking data (the first group) concerns users’ posts on social net-
working platforms like Twitter or Facebook or others consisting of keywords about
the bad surrounding environment. We consider such posts are online warnings. As
we know, if a person sees an online warning about bad environmental conditions
like heavy rain, earthquakes at a location in his commuting route, he would avoid
reaching it. Therefore, the adverse effects of those events on traffic congestion would
be alleviated. Thus, the severity of traffic congestion is reduced. In [24], the authors
attempted to use locations where posts on Twitter intending to warn about bad envi-
ronmental conditions were collected. The data was used alongside traffic data to
anticipate future congestion. The aim was to enhance the predictive accuracy of the
model but failed as the improvement was limited. We think the reason for that prob-
lem is they treated the social networking data as independent learnable factors. It
means that features related to social networking data were treated on par with traffic
congestion data. This work makes social networking data dependent on environmen-
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tal factors (e.g., traffic congestion, rainfall amount, traffic accident-will be explained
later). We integrate the former into the latter by using a weight multiplication func-
tion. The integration is done as follows. Firstly, we categorize the content of social
networking posts by using a set of specific keywords into three different online warn-
ing groups: (1) heavy traffic congestion/traffic delay, (2) rain/natural disasters, and
(3) traffic accidents. We divide the posts into three groups because we have three
different environmental factors, namely, traffic congestion, rainfall, and accident, in
our experimental dataset. For other studies that use different environmental factors,
the number of online warning types should be grouped accordingly. After that, we
integrate online warnings into the corresponding environment factor using Eq.2. It
means that online warnings related to heavy traffic congestion/traffic delay will be
integrated into observed traffic congestion data, and so on.

x f
(i, j) =

{
(1 − p) × x f

(i, j), if y f
(i, j) = 1

x f
(i, j), otherwise,

(2)

where

• x f
(i, j) is the normalized value of the environmental factor f collected at location
(i, j) on raster images at time t ;

• y f
(i, j) is a binary value indicating an existence of online warnings relating to factor

f at time t and location (i, j). If y f
(i, j) = 1, there is an online warning collected.

Otherwise, y f
(i, j) = 0; and

• p is a hyperparameter defining the integrating weight.

The second group of data contains traffic congestion, precipitation, and vehicle
collisions. They are called “environmental factors.” Those data sources are firstly
integrated with online warnings explained above. After that, the integrated data
sources are treated as learnable factors and supplied directly to the Fusion-3DCNN
deep learning model as follows:

X =
N∑
i=1

W fi × x fi , (3)

where

• fi is individual learnable factors;
• x fi is integrated data of factor fi ;
• W fi is weights of the neural network branch relating to factor fi ; and
• X is learned features.
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3.3 Disclosure

The Fusion-3DCNN deep learning model proposed in this study is an enhanced ver-
sion of the 3DCNN multi-source deep learning model proposed in [8] which is our
previous work. The significant difference between this work and [8]’s is that we
newly introduce a new data fusion to integrate social networking data into environ-
mental factors. It is related to Eq.2. In [8], we treated all data sources as independent
learnable factors. It means that we did not separate social network posts into online
warnings. We treated it in a way that if a social network post related to (1) heavy
traffic congestion/traffic delay, (2) rain/natural disasters, and (3) traffic accidents is
detected, we set 1 to the corresponding locations on raster images. The data was
supplied directly to the model. However, in this work, we treat social networking
data as a dependent source, which has been explained in detail in Sect. 3.2.1.

3.3.1 Predictive Model

This section discusses the Fusion-3DCNN deep learning model’s architecture. It is
illustrated in Fig. 2. The model receives 3D multi-layer raster images prepared in
Sect. 3.1. It then separates the images into 3D single-layer raster images containing
spatiotemporal information of a specific data source over a particular period. Each
image contains k (k ∈ N+) 2D single-layer raster image, which comprises spatial
information of a specific data source at k particular time instances. The data contained
in the 3D single-layer raster images are fused by two data fusion functions explained
in Sect. 3.2. Themodel’s output is 3D single-layer raster images containing predicted
traffic congestion of the whole examined geographic region over a predefined period.
Each image contains m (m ∈ N+) 2D single-layer raster image showing predicted
congestion information at m time instances. In Fig. 2, please note that the “Decision
making block” is used only when m = 1

2k.
The models are implemented in Keras2 with Tensorflow backend.3 All 3D-CNN

layers used in the model have kernel size equal to (3, 3, 3) and are set to the
same padding, one-step striding. In Feature learning and Fused learning blocks,
each 3DCNN layer is followed by a Batch Normalization layer. The purpose is to
speed up the learning process of the model [4]. The models are optimized with Adam
optimizer and the Mean Square Error (MSE) loss function.

2 https://keras.io/.
3 https://www.tensorflow.org/.

https://keras.io/
https://www.tensorflow.org/
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Fig. 2 Architecture of the Fusion-3DCNN deep learning model

4 Dynamic System to Discover Future Traffic Congestion
Patterns

In this section, we introduce the dynamic system to discover predicted traffic con-
gestion patterns dynamically. The system aims to generate dynamic maps containing
future high traffic demand regions over different periods. It provides holistic informa-
tion to authorities about future traffic congestion situations and high traffic demand
regions according to different periods, helping people make effective traffic manage-
ment strategies. The system is developed in three steps as follow:

1. Predicting long-term traffic congestion using multi-modal spatiotemporal urban
sensing data;

2. Extracting future heavily congested mesh codes; and
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Fig. 3 Development process of the dynamic system (“MID” stands for “Mesh code IDentifier”)

3. Mining future high traffic demand regions.

The workflow of the system is briefly illustrated in Fig. 3.

4.1 Predicting Future Long-Term Traffic Congestion

The first step is to build a traffic congestion prediction system, which is viewed as
System 1 of the dynamic system. It aims to anticipate the long-term congestion length
of citywide mesh codes in the examined region. It utilizes the Fusion-3DCNN deep
learning model introduced in Sect. 3. The model uses multi-modal spatiotemporal
urban sensing data for congestion prediction.

4.2 Extracting Future Heavily Congested Mesh Codes

The main target of the second step is to extract future heavily congested mesh codes.
As we all know, there are many locations (i.e., mesh codes) having traffic congestion
at a time instance in real life. It is also true for predicted congestion data. The
majority ofmesh codeswouldbepredicted to have light andnormal traffic congestion,



250 M.-S. Dao et al.

which will disappear in normal circumstances without police intervention. Currently,
traffic police forces in many cities worldwide are running short of resources, so
authorities must prioritize some mesh codes to monitor the traffic at certain time
instances. Obviously, the mesh codes included in high traffic demand should be paid
special attention to. Because of that, this step aims to choose future heavily congested
locations for further analysis.

Besides, since both the PFP-growth++ andmaxPFP-growth algorithms only work
on temporal databases, we need to convert the extracted data to that format. It is
performed as follows. Firstly, we convert the predicted congestion information gen-
erated by the Fusion-3DCNN model to a time series dataset. There are three fields
per row: timestamp, mesh code identifier and predicted congestion length measured
in meters. Secondly, we define a binary threshold called heavyCongestion to fil-
ter future heavily congested mesh codes. For example, in Fig. 3, assume that we
set heavilyCongestion = 250. The predicted congested length in M1 at 02:00 and
M2 at 02:05 are dropped since their predicted congestion lengths are smaller than
heavyCongestion. It is because they are predicted to have light traffic congestion.
Finally, we group mesh codes that are predicted to have heavy traffic congestion
according to time instances. In other words, at time instance Ti , we will have the
list Li containing mesh codes predicted to be heavily congested. Please note that the
database does not store the predicted congestion length of mesh codes.

4.3 Discovering Future High Traffic Demand Regions

The purpose of Step 3 is to discover future high traffic demand regions. They contain
sets of mesh codes predicted to have heavy-periodic-frequent traffic congestion. It is
done by using either the PFP-growth++ or maxPFP-growth algorithms based on the
temporal database prepared in Step 2. The operations behind those algorithms have
been explained in Sect. 2.2. This component is viewed as System 2 of the dynamic
system.

5 Experiments and Promising Applications

This section explains the dataset used for experiments and followed by the results of
our proposed methods. The section finishes with some compelling use cases that we
have discovered which could be used to tackle traffic congestion in the real world.
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Fig. 4 The geographical region of collected data

5.1 Experimental Setup

For the experimental purposes, we use the datasets about traffic congestion, rainfall
amount, traffic accidents, and Twitter posts collected in Osaka Bay, Kobe City, Japan.
That region is illustrated in Fig. 4 and covers a portion of 20km× 15km on the Earth.
The data is collected in two periods: 01/05/2014 to 31/10/2014 and 01/05/2015 to
31/10/2015 (format: day/month/year).

• The traffic congestion data [13] contains 658 items (equivalent tomesh codes) and
8,707,516 transactions. The format of the data is “timestamp:mesh code identifier:
average congestion length of road segments running through the mesh code (m).”

• The precipitation (or rainfall) data [14] contained 1,327 items and 747,398 trans-
actions. The format of the data is “timestamp:mesh code identifier: rainfall amount
(mm).”

• The traffic accidents data [25] contains 283 items and 1,100 transactions. The
data format is “timestamp: mesh code identifier.”

• The social networking data [31] contains 1,562 items and 15,627 transactions.
The format of the data is “timestamp: mesh code identifier: Tweet’s content.”

All the related algorithms, namely, (1) training learning models for traffic conges-
tion prediction presented in Sect. 5.2, (2) extracting future heavily congested loca-
tions and storing in a temporal database, and (3) PFP-growth++, maxPFP-growth
were written in Python 3.6.9. They are executed on a machine with an Intel i5-3470
CPU running at 3.20GHz and 12GB of RAM. The graphics card of this machine
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is Nvidia GeForce GTX 750 Ti with 2GB of VRAM. The operating system of the
machine is Ubuntu 18.04LTS.

5.2 Evaluation of the Fusion-3DCNN Deep Learning Model

In this section, we evaluate the predictive performance of the Fusion-3DCNN deep
learning models. In this context, we compare the predictive accuracy of Fusion-
3DCNN against the 3DCNN multi-source deep learning model [8] and some other
baselines listed below. The models’ predictive accuracies are measured by the Mean
Absolute Error (MAE) metric. The lower the predictive error of the model is, the
higher the predictive accuracy it obtains.

In the evaluation, allmodelswill predict traffic congestion in the next 6hwith three
immediate timestamps (the interval between two consecutive timestamps is 2h). To
do so, themodels look back 12h of collected urban sensing data sources. In a nutshell,
we prepare and compare the following state-of-the-art and highly influential models’
predictive accuracy. Models 1–3 use single-source data that is traffic congestion
information. Models 4–6 utilize multi-source data that consists of traffic congestion,
rainfall amount, number of accidents, and Tweets.

1. Historical Average: this model is used in many real-world traffic congestion
prediction systems [21] and has a very efficient runtime. Many traffic congestion
prediction studies also employed this model as a baseline like [6, 12, 23, 35, 36].
We use the average traffic congestion lengths of observed data as the predicted
result for all three immediate timestamps.

2. Vector Autoregression: this is a traditional statistical model and used widely in
traffic congestion prediction studies like [26, 29, 41].

3. 3DCNN: this deep learningmodel uses only one data source that is traffic conges-
tion. We self-develop this model and make its architecture similar to the 3DCNN
multi-source and Fusion-3DCNNmodels. The difference between this model and
the other two is it does not have two data fusion functions explained in Sect. 3.2.1
and learning branches related to exogenous data factors shown in Fig. 2. The use of
thismodel aims to evaluate the effectiveness of our approach in usingmulti-modal
urban sensing data.

4. Seq2Seq: thismodel was proposed in [20]. It employed the Sequence to Sequence
(Seq2Seq) architecture based on LSTM. We implement Liao et al.’s proposed
Seq2Seq + AT (stands for Attributes) + NB (stands for Neighboring–Spatial
Relation) model that uses auxiliary information and neighboring traffic data.
Specifically, the AT component contains exogenous data like weather, accidents,
and online warnings. It is placed at the Decoder part of the model. For the NB
module, we use traffic data of two nearby locations. It is placed in the Encoder
part of the network.
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Table 2 Experimental results of long-term traffic congestion prediction models (measured by
MAE, lower is better)

Model MAE

Historical average 10.24

Vector autoregression 9.44

3DCNN 8.82

Seq2Seq AT+NB [20] 8.75

3DCNN multi-source [8] 8.67

Fusion-3DCNN (this work) 8.13

5. 3DCNN multi-source: this model was proposed in [8] and has been briefly
explained in Sect. 3.3. The model uses all four data sources introduced in Sect. 5.1
and treats them as independent learnable factors.

6. Fusion-3DCNN (p = 0.5): this model uses all four data sources and treats the
social networking data dependent on environmental factors. p = 0.5 indicates the
integrating weight used in Eq.2. It means that the impacts of the environmental
factors on traffic congestion are reduced by 50%.

We use the data collected from 01/05/2014 to 31/10/2014 to train models. The
data got from 01/05/2015 to 31/10/2015 is reserve to test/evaluate themodels. Table2
presents predictive error values of the models.

As shown clearly from Table2, the Fusion-3DCNN model is the best performer
among participants. Paying attention to detail, models 4–6 have higher predictive
accuracy than models 1–3. The results indicate that using multi-source data helps
improve the predictive performance of the models. Comparing predictive perfor-
mance between models 1–3, we can observe that the 3DCNN model is the best per-
former. It shows that reserving spatiotemporal correlations of data done by 3DCNN
layers enhances predictive accuracy. Therefore, our choice in utilizing such layers in
building our models is correct. Moving models 4–6, we can see that Seq2Seq [20]
has lower predictive accuracy than our proposed models even though all three mod-
els use the same set of data sources. We can conclude that LSTM components used
inside Seq2Seq are not as good as 3DCNN in capturing spatiotemporal dependencies.
Again, it rectifies our choice in using 3DCNN. Finally, the Fusion-3DCNN model
has predictive accuracy higher than the 3DCNN multi-source model [8] by about
6%. It indicates that making online warnings dependent on environmental factors
will significantly enhance predictive accuracy rather than treating all data sources as
independent factors.

Since the Fusion-3DCNNmodel proposed in thiswork is the best performer, using
the predicted data generated by it will ensure the output’s quality of the subsequent
system. Therefore, we will perform experiments on the PFP-growth++ and maxPFP-
growth algorithms on the data generated by it. Theywill be presented in later sections.



254 M.-S. Dao et al.

5.3 Execution and Evaluation of the PFP-growth++ and
MaxPFP-Growth Algorithms

This section explains how we execute and evaluate the PFP-growth++ and maxPFP-
growth algorithms. The two algorithms’ input data is the predicted congestion infor-
mation generated by the Fusion-3DCNN model proposed in this work. Please note
that the data has been post-processed, as explained in Sect. 4.2.

As explained in Sect. 5.2, the Fusion-3DCNNmodel predicts future traffic conges-
tion information in 6-hour intervals. During the predicted periods, three immediate
timestamps are evenly spaced by two hours. As we all know, two-hour is usually
the duration of traffic rush hour in most cities worldwide. For example, the rush
hour in Japan is 07:00 to 09:00 in the mornings and 17:00 to 19:00 in the evenings.
Therefore, we will discover future high traffic demand regions in two-hour periods as
they will give authorities more useful information to deal with traffic congestion. We
also slide discovery periods by one hour in order to detect interesting patterns during
the transitional time. As a result, we will have 24 transactional databases containing
predicted congestion information per day. The first one is called data-1 contains
predicted congestion data from 00:00 to 01:59. The second one data-2 concerns
data from 01:00 to 03:59, and so on. Each transactional database contains many
transactions. Each consists of “timestamp” and “the list of mesh code identifiers
predicted to have heavy traffic congestion at timestamp.” In other words, the future
heavily congested mesh code is predicted to have an average congestion length of at
least heavyCongestion meters. The described transactional databases are used by
the PFP-growth++ and maxPFP-growth algorithms, which will generate k−patterns
(k > 1). Each consists of k mesh codes that are predicted to have heavy-periodic-
frequent traffic congestion. In other words, each k−pattern is a high traffic demand
region concerning k mesh codes.

Next, we evaluate the PFP-growth++ and maxPFP-growth algorithms by two cri-
teria: (1) the number of generated patterns and (2) execution time.We fix the value of
heavyCongestion to 350. Itmeans that future heavy congestionwill have an average
traffic congestion length of at least 350m. That value is defined by expert knowledge.
Wevary the values ofminSup by {30%, 50%, 70%, 90%} and periodity by {15min,
30min, 45min, 1h}. For example, any k traffic congestion patterns discovered on
the combination of (heavyCongestion,minSup, periodici t y) = (350, 50%, 30
minutes) will have the following characteristics: “all k involved mesh codes are
predicted to have congestion length larger than or equal to 350m at least 50% and
repeat per 30min.”

Firstly, we fix the value ofminSup to 30%.We illustrate the statistics according to
the two criteria mentioned above in Fig. 5. For each parameter’s combination shown
in the chart, the bars show the number of generated patterns by the algorithms, and the
lines reveal their execution time.Wealsowrite the algorithms’ statistical values on the
corresponding setting to show differences more clearly. As can be seen, the numbers
of patterns discovered by the PFP-growth++ algorithm are significantly higher than
that of maxPFP-growth. At the same time, the execution time of the former is also
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Fig. 5 Comparison of PFP-growth++ and maxPFP-growth at fixed minSup = 30%

Fig. 6 Comparison of PFP-growth++ and maxPFP-growth at fixed periodici t y = 1h

longer than the latter. Digging into patterns generated by PFP-growth++, we see
that they are mostly uninteresting as the patterns are redundant. Taking the following
4-pattern “89114;98143;98144;98145” as an example. The PFP-growth++ algorithm
discovers in total 24 − 1 = 15 patterns containing items in that 4-pattern, which leads
to difficulty in analyzing the data. In contrast, the output of the maxPFP-growth
algorithm contains only one pattern, which is the longest. This finding also confirms
the observation discussed in [16].

Next, we fix the value of periodici t y to 1h and vary the values of minSup. We
show the statistics according to the two criteria mentioned above in Fig. 6. We can
also observe the same patterns discussed in Fig. 5. The number of generated patterns
of the PFP-growth++ algorithm is higher thanmaxPFP-growth. Besides, the former’s
execution time is also longer than the latter.
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Obviously, the maxPFP-growth algorithm is better than PFP-growth++ at discov-
ering periodic-frequent patterns, so we will utilize it later to analyze the data.

5.4 Analyses of Discovered Traffic Congestion Patterns

We found that the maxPFP-growth algorithm produces the most adequate patterns
on combination (heavyCongestion,minSup, periodici t y) = (350, 30%, 1hour).
Therefore, in this section, we analyze future traffic congestion patterns discovered
by executing the algorithm on that combination. Firstly, we present some interesting
patterns according to the time below:

1. The periods from 02:00 to 05:00 and 07:00 to 09:00 per day are the most antic-
ipated to have high traffic demand regions. For the periods from 07:00 to 09:00,
they are coincident with Japan’s rush hour. We suggest authorities allocate more
resources to monitor traffic during that timeframe. For the periods from 02:00
to 05:00, please see the analysis below. It is worth mentioning that few patterns
are discovered in afternoons and evenings (from 12:00 onwards). Except for the
timeframe from 16:00 to 18:00, many patterns were discovered but not as many
as of morning’s rush hour.

2. Saturdays and Sundays are the days that are most often predicted to have high
traffic demand regions. Interestingly, 02:00 to 04:00 is the most crowded time on
Saturdays. In indicates the locals’ intent to have late parties on Friday nights and
come back home around that time. The most congested period on Sunday is from
08:00 to 13:00, explained by people’s weekend trips. We suggest the authorities
allocate resources to monitor traffic on Sunday mornings to prevent long-term
congestion.

3. June and August are the two months with the highest traffic demand regions
discovered, collectively accounting for 50%. June is the month with the highest
average rainfall amount annually in Kobe City, Japan, indicating that more rain
leads to more severe traffic congestion. The same observation is explained for
August as this month witnesses many thunderstorms.

Next, we describe some aspiring patterns discovered according to mesh codes
below:

1. The region covering Route 428 connecting two big residential areas of Kobe City
is mostly predicted to be in high traffic demand and has the biggest number of
high traffic demand mesh codes. Route 428 is the only and nearest way to connect
those areas. The most crowded period of this region is from 06:00 to 09:00.

2. The second crowded region involves a working complex (water treatment plant)
and airport. The region is located right at the center of Osaka Bay, Kobe City, and
on the city’s main coastal road where people have to travel through on their paths.
The most crowded time of this region is from 08:00 to 09:00, being coincident
with Japan’s rush hour.
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5.5 A Case Study of Future High Traffic Demand Regions

In this section, we present a case study, apart from patterns presented in the previous
section, to explain the factors behind forming a traffic demand region. As we are
all aware, regions that usually witness heavy traffic congestion are likely to involve
high public infrastructure. In Fig. 7, we illustrate such an example. The shown region
is usually predicted to be in high traffic demand. Looking at the figure, we can see
it contains many public facilities like three hospitals and two elementary schools.
It is straightforward for authorities to determine which geographical regions have
complex public infrastructure. However, it is challenging for them to know when
those regions will experience high traffic demand. With the help of the proposed
dynamic system, they can get such insights with ease, thus, enhancing their efficacy
in managing traffic flows and dealing with traffic congestion.

Fig. 7 A case study explaining future high traffic demand regions
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5.6 Proposals of Use Cases to Tackle Future Traffic
Congestion

This section proposes two use cases that the authorities can build to tackle future
traffic congestion. They are discovered by using the output of the dynamic system.

5.6.1 Building a Database of Future Traffic Management Strategies

In this section, we present the first use case. It is done solely by using the output of the
dynamic system. As we know, in cities, some traffic hotspots usually encounter high
traffic demand. The traffic flows at those locations require special care from traffic
police officers. However, the effectiveness of dealing with traffic congestion varies
among officers. Some may employ very effective strategies, while some may not.
Therefore, if the effective plans are shared among officers, a high level of efficacy in
dealing with traffic congestion could be ensured. Motivated by that goal, we propose
the following procedure to achieve that ambition.

• Step 1: Determining the duration of traffic congestion patterns. As explained in
Sect. 5.3, if a k-pattern is discovered in a transactional database data-x , the cor-
responding region of k mesh codes is predicted to have high traffic demand for
2h covered by data-x . In this context, when observing one or many consecutive
data-xi transactional databases that the pattern is discovered, we will know its
duration.

• Step 2: Grouping similar patterns and accumulating them in a database for future
analyses. We propose to gather patterns with similar duration and time instances
of starting time in the same group.

• Step 3: When the number of accumulated patterns is large enough, choose the
most popular patterns and prepare a traffic management strategy for them.

Figure8 illustrates an example of the presented use case. Herein, using the Fusion-
3DCNNmodel allowsus to knowhow traffic congestionwill happen in the futurewith
exact time instances (T 1, T 5, . . .). We will then discover traffic congestion patterns
employing a periodic-frequent pattern (PFP) mining algorithm (preferably, maxPFP-
growth). Supposeduringperiods [T 3, T 5] and [T 7, T 9], the dynamic systempredicts
a set of patterns that have been anticipated to happen many times. In this case, the
officers just need to take the predefined strategies stored in the database to manage
traffic flows in those time instances. For other milestones, they may apply flexible
plans according to real-life situations. If they happen more frequently in the future,
a strategy to tackle congestion in such regions could be defined.
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Fig. 8 Making strategies to deal with future traffic congestion

5.6.2 Determining the Right Time to Tackle Traffic Congestion

This section presents another use case tomitigate traffic congestion by combining the
Fusion-3DCNN model’s output information and the dynamic system. The Fusion-
3DCNN model aims to predict the average traffic congestion length of citywide
mesh codes at different time instances. The dynamic system’s output is a set of
traffic congestion patterns that concern regions predicted to be heavily-periodically-
frequently congested. Combining such information will give officers how the traffic
demand of a region transform from low to high. Therefore, looking at that, authorities
can decide the right timing to start monitoring traffic to prevent the traffic demand
of that region from becoming high.

Figure9 illustrates an example and related concepts. The figure shows the pre-
dicted congestion information of a location starting from 14/08/2015 06:00:00
GMT+09 (shown as (T + 1) on the chart). The height of bars indicates the aver-
age congestion length of the corresponding time instances predicted by the Fusion-
3DCNN model. The dynamic system discovered that this location would be in high
traffic demand from 09:00:00 to 14:00:00 (totally, 5h). The bars concerning the
time instances during which the location will be in high traffic demand are shown
in red. In contrast, blue bars reveal time instances that the location will be in low
traffic demand. It can be seen from the chart, the average traffic congestion length of
this location is predicted to increase from (T + 1) to (T + 3), resulting in the traffic
demand of the location become high from (T + 4) to (T + 8). If the traffic policemen
could manage traffic flows effectively to reduce traffic congestion severity during the
period from (T + 1) to (T + 3), congestion length in later time instances could be
alleviated. Residents could also be notified about that potentially dangerous region
so that they may avoid traveling. As a result, the duration of high traffic demand in
this region might be shortened (i.e., from 12h to 4–8h). Please note that although
the congestion lengths from (T + 9) to (T + 11) are higher than [(T + 4), (T + 8),
that period will not be considered as a high traffic demand period. It is because this
region is predicted to be not heavily-periodically-frequently congested.
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Fig. 9 Example of a predicted congestion situation of a high traffic demand location

6 Discussions

In this section, we discuss open topics relating to what people might investigate to
improve our system.

6.1 Abnormal and Sudden Factors

Abnormal factors also play a significant role in traffic congestion management. For
example, social events (e.g., Olympic, Woodstock, expo fair, film festival) regularly
happen at a particular time that might increase traffic congestion. Nevertheless, upon
completion of these events, traffic should come back to normal. Another example of
abnormal factors is Covid times. During this time, traffic congestion may decrease
in many parts of the world. The common point of these factors is that they can be
known or aware before. Therefore, to cope with these factors, we can utilize the fixed
weight to consider their impacts, as described in Equation (2). The adaptive model,
specially designed for these events, has one more input channel with a related fixed
weight.

Sudden factors are another concern in traffic congestion management. These fac-
tors do not give us time to prepare. When they happen, the chaos will immediately
burst out. For example, natural disasters such as sudden snowfall, earthquake, and
flood can cause chaos in traffic congestion management. Thus, we can consider
Equation (3) with learnable weight representing these factors. The learnable model
is upgraded from the original model with learnable weights to have the ability to
predict traffic patterns in this case.

Another solution thatmightwork for both casesmentions above is the conditional-
Fusion-3D-CNN,whenone layer of<spation, temporal> condition is added to specify
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when and where abnormal or sudden events happened (or will happen). The training
can be done with historical data.

6.2 Visualization Dashboard

The strengths of our system can be maximized if there is a visualization dashboard
that would cater to different types of stakeholders. Different stakeholders need to see
different information. For example, traffic police need to see causality of congestion
such as accidents and road obstacles or the priority of each congestion zone to coor-
dinate workforce. Fire brigade authorities need to see the optimal route, especially
the possibility of passing through, to reach the target (because fire trucks are large
and need more space to travel on the road). Town planners need additional informa-
tion about the neighborhood (e.g., shops, facilities) on the roads to cope with heavy
traffic infrastructure zones management.

Wewill integrate our system into the cross-data collaboration platform introduced
in [15]. Using the smart navigation design tools of this platform, we expect to have
a visualization dashboard that satisfies the criteria mentioned above.

7 Conclusion

This study introduces a novel dynamic system to discover future heavy-periodic-
frequent traffic congestion (high traffic demand) regions consisting of two systems:
(1) traffic congestion prediction system and (2) periodic-frequent pattern discovery
model. The system works as follows. Firstly, the traffic congestion prediction system
predicts citywide traffic congestion at multiple time instances. After that, a periodic-
frequent pattern discovery algorithm is utilized to extract useful traffic congestion
patterns. The output of the system is (1) predicted congestion situations at multiple
time instances, (2) high traffic demand regions, and (3) duration that regions are
predicted to experience high traffic demand.

Our work also proposes the Fusion-3DCNN deep learning model which is an
enhanced version of the 3DCNNmulti-source deep learning model [8] for long-term
traffic congestion by proposing a new data fusion function. It makes social network-
ing data dependent on environmental information (congestion, rainfall, accident).
The experimental results show that the predictive accuracy of the enhanced model
improved significantly compared to the original.

Finally, we propose two use cases that authorities can use to deal with future traffic
congestion more effectively.

In the future, we will present some new use cases of the system and propose new
integration schemes of models.
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