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Preface

Technological advances in the field of Information and Communication Technolo-
gies (ICTs) have facilitated organizations to collect, store, and process massive
amounts of data. Useful information that can empower the end-users to achieve
socio-economic development lies in this data. However, finding interesting infor-
mation in data can be very challenging due to the sheer scale of the data. In the
last decades, researchers from the field of data mining have aimed at tackling this
challenge by proposing various techniques to discover knowledge hidden in volu-
minous real-world data. Over the years, data mining has received more and more
attention from both industry and academia. Pattern mining is one of the fundamental
knowledge discovery techniques used in data mining. It involves discovering all user
interest-based patterns in a database. Much of the past research on pattern mining
has focused on utilizing the frequency-based measures to discover different types
of interesting patterns such as frequent patterns, correlated patterns, top-k frequent
patterns, maximal frequent patterns, closed frequent patterns, rare patterns, coverage
patterns, high utility patterns, and emerging patterns.

Although discovering frequent patterns in a database is beneficial for many appli-
cations, frequency may not always be enough to find user interest-based patterns,
especially if the data contains temporal information. For example, the user may
consider an irregularly occurring frequent pattern to be less interesting over a regu-
larly occurring infrequency (or rare) pattern in the data. Based on this observation,
efforts have been put forth in the literature to discover periodically occurring patterns
(or periodic patterns) in a temporal database. Since real-world data often contain
temporal information, finding periodic patterns has received a great deal of atten-
tion. Furthermore, periodic pattern mining has been extended to consider other forms
of data, such as quantitative temporal databases and sequences.

From a research perspective, discovering periodic patterns is more challenging
than frequent pattern mining. It is because of two main reasons: (i) we need to explore
new measures to determine the interestingness of a pattern in the time dimension,
and (i7) we need to investigate new data structures to effectively record the temporal
occurrence information of a pattern in the database. Thus, traditional frequent pattern
mining techniques cannot be directly used for finding periodic patterns. In the last
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decade, this has led to the proposal of many new interestingness measures and novel
data structures to discover periodic patterns.

The main motivation for writing this book is that the research on periodic pattern
mining has become quite mature. There is thus a need to provide an up-to-date
introduction, overview of current techniques, and recent advances in periodic pattern
mining. The book is a collection of chapters written by experienced researchers who
published several papers on the related topic in top conferences and major journals.
The chapters were selected to ensure that the key topics and techniques in periodic
pattern mining are discussed. Several of the chapters are written as survey papers to
give abroad overview of current work in periodic pattern mining, while other chapters
present techniques and applications in more detail. The book is designed so that it can
be used both by researchers and people who are new to the field. Selected chapters
from this book could be used to teach an advanced undergraduate or graduate course
on pattern mining. Besides, the book provides enough details about state-of-the-art
algorithms so that it could be used by industry practitioners who want to implement
periodic pattern mining techniques in commercial software, to analyze temporal
database. Several of the algorithms discussed in this book are implemented in the
open-source PAttern MIning (PAMI) software, which is available at ht tps: //git
hub.com/udayRage/PAMI. Anyone can download this software through “pip
install pami”.

Aizu-Wakamatsu, Fukushima, Japan R. Uday Kiran
June 2021
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Abstract This chapter introduces data mining, also known as knowledge discovery
from data, as a process of discovering useful, interesting and previously unknown pat-
terns from data. Some techniques and domains related to data mining are described,
explaining their similarities and differences. Some data types are then analysed since
data on multiple data inputs might be considered due to the natural evolution of infor-
mation technology. Data processing approaches are also described, stating how to
transform raw data into a readable and useful form and presenting different data
representations. Finally, general data mining techniques are outlined. Mining fre-
quent patterns and associations; predictive analysis; supervised descriptive analysis;
cluster analysis; and outliers analysis, to list a few.

1 Introduction

Data in the twenty-first century is considered as the new oil. Like oil three centuries
ago, learning to extract and use data’s value produces huge rewards [54]. Data is,
therefore, an essential resource that powers the information economy, also known as
the knowledge economy, where the amount of data that a company or individual has
is proportional to the knowledge they have to make the right decisions. Nevertheless,
unlike oil, data availability seems infinite, and it is a cumulative resource, existing
multiple ways of representing and handling data.

The computerization of our society together with the development of data collec-
tion techniques and the reduced costs of storage tools have given rise to an explosive
growth of available data volumes. Almost any business, regardless of its type, gener-
ates enormous datasets every day. It estimates that 2.5 quintillion bytes are created by
an average person every day in 2020 [39]. Based on that, 463 exabytes of data will be
generated each day by humans as of 2025. According to the Google search statistics,
over 40,000 search queries are processed every second on average, which translates
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to over 3.5 billion searches per day and 1.2 trillion searches per year worldwide [39].
When Google was founded in September 1998, 10,000 search queries were served
per day. Eight years later, by the end of 2006, the same amount served in a single
second.

This growing data availability and usage are what truly makes our time the data
age. Powerful tools are needed to gather, handle and transform tons of data into
valuable information, also known as knowledge. This necessity led to the birth of data
mining [19], which is a young, dynamic and promising field of research. Data mining
is the result of considering critical procedures on databases, including data gathering
and management and advanced data analysis. Until recently, important decisions
were often made based on intuition since collected data were so diverse and huge
that no proper tools were available to reach a conclusion/decision in a few seconds [5].
Important efforts have been made in recent years to develop expert systems with no
biases and reducing errors as much as possible. Hence, data mining [51] is considered
as an interdisciplinary subject related to the concept of mining knowledge from data.

Despite the data mining concept is widely used and accepted for the research
community, it is still a controversial issue. It is generally defined as a synonym
of knowledge discovery from data, while others consider it as a major step within
the process of knowledge discovery (data cleaning, data integration, data selection,
data transformation, data mining, pattern evaluation and knowledge presentation).
Confusion about the data mining term was even higher when the Big Data [8] con-
cept appeared in 2005. Since that, different companies, researchers and institutions
wrongly took Big Data as the new data mining concept [60]. The truth is that Big
Data [37] states for the source, variety, volume of data and how to store and process
this amount of data. It can be said that data mining does not need to rely on Big
Data [45], as it can be done on a small or large amount of data, but Big Data surely
does rely on data mining because if we cannot find the value of a large amount of
data, then that data will not have been useful. In this book, we adopt the data mining
concept as the process of discovering interesting patterns and knowledge from large
amounts of data considering different data sources (either small or huge ones).

Han et al. [19] rightly defined techniques and domains that fall under the umbrella
of data mining: databases, statistics, machine learning. Fig. 1 aims to illustrate how
these terms are related. At this point, it is important to highlight that authors assume
that the figure illustrates some important concepts or techniques due to the over-
whelming number of techniques that can be found nowadays would make it hardly
understandable. Machine learning appears as a subset of Artificial Intelligence, exist-
ing Artificial Intelligence techniques that do not require learning (e.g. path plan-
ners [44], traditional expert systems [57], etc.). Continuing with the analysis, and
from the author’s point of view, it is the interdisciplinary nature of data mining
research and development what eases its success. Let us start analysing the connec-
tion with databases, which is the required input for any data mining process. Without a
database, it is impossible to perform the analysis and extraction of useful knowledge.
At this point, it is required to consider good and high-performance query languages,
query processing methods, data storage systems and data access processes so scala-
bility is guaranteed regardless of the data size and type. As for statistics, they are sets
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Fig. 1 Data mining related
terms
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of mathematical functions that describe the behaviour of the items/events/objects in
terms of their associated probability distributions. Statistics are usually considered
by data mining to build models or just identify outliers, missing values or whatever
targeted variable. They are also considered by data mining to represent any type
of homogeneity and regularity in data, extracting good descriptors of intrinsic and
important properties of data. Statistics are not only useful from the mining point of
view but also to verify the outputs through statistical hypothesis testing to discard
that the results were obtained by chance. Nevertheless, a major drawback of consid-
ering statistics as a part of the data mining process is the difficulty to be scaled up,
which is a major problem when truly Big Data are analysed. It turns into a bottleneck,
especially for some specific statistical methods that are time-consuming by nature.
Finally, as for machine learning, it takes data input to learn to recognize patterns
and take right decisions. Even when both machine learning and data mining are used
interchangeably [58], some differences are in their purpose. Data mining is designed
to extract useful, interesting, unknown patterns from data. Machine learning, on the
contrary, trains a model to perform complex tasks based on data and experience.
Machine learning is a well-known discipline that includes many classic problems:
supervised learning (it builds a classification model to recognize/categorize future
patterns); unsupervised learning (a synonym for clustering, that is, grouping patterns
according to some criteria); semi-supervised learning (it makes use of both labelled
and unlabelled examples when learning a model. The first ones are used to build a
model, whereas the second ones are used to refine the boundaries of labels); active
learning (it lets users play an active role in the learning process, asking users to label
specific examples, to optimize the model quality).
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2 Data Types

The key to data mining [19] is its ability to consider any kind of data input. As
previously stated, we are living in a data era what implies data being handled and
stored in multiple ways. Despite the multiple existing data types, four are the basic
forms of data considered here: databases, transactional data, data warehouse and data
lake. It is important to highlight that some of these concepts are used interchangeably
by different authors, and some of them might be gathered under the same term. We
include the four terms on purpose since it is our understanding that these data forms
are useful to be known regardless of the way they are then processed.

A database system also called a database management system [46], is a software
package properly designed and implemented to define, manage and retrieve data in a
database. The system consists of a collection of interrelated data and a set of software
programs to manage and retrieve data. The interrelated data is usually known as a
relational database and it comprises a set of tables each of which is denoted by a
unique name. Additionally, each table consists of a set of attributes/columns and
stores data records (rows). Each data record denotes an object identified by a unique
key and described by a set of attribute values. Fig. 2 illustrates a toy relational database
comprising four tables, one of them being used as a fact table (sales) including
one attribute (quantity) and foreign keys to dimensional data—the rest of tables—
where descriptive information is stored. The interrelated data is semantically defined
through what is known as an entity relationship data model, which represents the
database as a set of entities and their relationships. For data accesses, a database

Customer =t
(13
(13
cit
Y Type
Age Sales city
Sex .
Quantity #Employees
CustomeriD
Product Storeld
()3 v ProductiD
Price
Tg‘Pd
wetght
Brand

Fig. 2 Sample relational database in a star schema
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Table 1 Sample qualitative (binary) tabular data representation

tid Item1 Item2 Item3 Item4 Item5 Item6 Item7
#l1 1 0 1 0 0 1 0
#2 0 1 1 0 0 0 0
#3 0 1 1 1 1 0 0
#4 0 0 0 1 0 1 1
#5 1 1 0 0 1 1 1

Table 2 Sample quantitative (non-binary) tabular data representation

tid Item1 Item2 Item3 Item4 Item5S Item6 Item7
#1 2.3 0 6.1 0 0 6.5 0

#2 0 1.1 4.6 0 0 0 0

#3 0 14 4.5 1.8 1.9 0 0

#4 0 0 0 4.3 0 2.6 6.4
#5 3.0 0.9 0 0 2.1 8.7 6.2

management system makes use of a relational query language [61] including multiple
relational operations such as join, selection and projection, as well as aggregate
functions such as sum, average, count, etc.

Transactional databases are different types of data organizations in which informa-
tion is kept in single tables stored in flat files. Columns represent attributes, whereas
rows state for data records. Information is therefore recorded into transactions, which
are sequences of information that are treated as a unit. A transaction typically includes
aunique identifier together with a list of the items that form the transaction. There are
different types of transactional databases depending on their organization. The most
simple one is the binary table format (see Table 1) in which each column represents
a variable or feature and each row comprises binary values for every variable. If the
variable is satisfied by a transaction, then it is represented by 1, and O otherwise. For
some specific problems, it is not enough to consider whether the variable or item
appear in data but its associated quantity (profit, for example). Table 2 illustrates
a tabular data representation including quantitative values. Finally, one of the most
used data formats in pattern mining tasks is the transactional database. Unlike pre-
vious data organizations, each row includes a list of items (attributes or features)
considered by such transaction. In this data representation, rows are variable in size.
Table 3 illustrates a sample transactional database where the first transaction includes
the items Iteml, Item3 and Item6. As it is shown, the number of items satisfied by
each transaction varies (three items for transaction #1 and four items for transac-
tion #3). Any of these data representations can be defined through the well-known
comma-separated values file, also known as CSV, which allows data to be saved in a
tabular format and it is supported by almost all spreadsheets and database manage-
ment systems. ARFF (Attribute-Relation File Format) file is another file format to
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Table 3, Sample tid Sets of items
transactional database
#1 Item1, Item3, Item6
#2 Item2, Item3
#3 Item?2, Item3, Item4, Item5
#4 Itemd4, Item6, Item7
#5 Item1, Item?2, Item5, Item6,
Item7

_

Pata é

warehouse

‘“"'-\—\_

o=

| stores
A

Data analysis
tools

Insight
. V\.‘SLQS

%
. -

Fig. 3 Sample data warehouse database gathering information from multiple stores

keep, in ASCII text file, a list of instances sharing a set of attributes. ARFF files were
developed by the Machine Learning Project at the Department of Computer Science
of the University of Waikato for use with the Weka machine learning software [22].

On the contrary, a data warehouse [53] is usually defined as a central reposi-
tory where information comes from multiple and heterogeneous data sources. Data
are provided and managed from both transactional data and relational databases
and different data types might be stored (see Fig. 3): structured, unstructured and
semi-structured. Structured data is usually represented in a clearly defined way,
being easily understandable for the search engine. Unstructured data, on the con-
trary, is not easily searchable and includes multiple data formats like audio, image
and video. Finally, semi-structured data is a mix of the above, maintaining inter-
nal tags that identify separate data elements so information can be grouped and
sorted into a hierarchy easily. Examples of semi-structured data are more and
more common nowadays. Mark-up language XML [30] is an example of the semi-
structured document language. This is a set of document encoding rules that sim-
plifies data exchanging among systems containing data in incompatible formats.
Open standard JSON [41] is another semi-structured data interchange format. Its
main feature is that it is a language-independent data format. Thanks to the data
warehouse, which merges information coming from different sources into one com-
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prehensive database, any institution/organization ensures to have all the information
available in a central repository from which meaningful business insights can be
extracted.

Finally, it is important to talk about data lake [38], which is a centralized repository
that allows you to store all your structured and unstructured data at any scale. These
data repositories are of great interest nowadays mainly due to the interest in Big
Data. A data lake can store the data as is, that is, raw data that is required to be
processed later. The structure of the data is not defined when data is gathered so it is
possible to keep all of your data without the need to know what they will be used for
in the future. This is the main difference concerning a data warehouse, where data
are structured, and a well-defined schema is considered in advance.

3 Data Processing Approaches

Data processing can be considered as the process that transforms raw data into
meaningful information to be considered to any aim. Data processing starts with
data in its raw form and translates it into a more readable and useful form (databases,
graphs, streams, etc.). Thus, data is manipulated to produce results through a series of
steps that begin with collecting data from trustworthy data sources and storing them
with the highest possible quality, cleaning and checking for errors or inconsistencies.
The aim is therefore to fix redundant, incomplete or incorrect data, and to form
the right data structure to ease the mining process. Resulting data is therefore the
first stage in which raw data begins to take the form of usable information. This
data structure is finally considered by data mining algorithms to produce useful
insights [42], that is, it is usable to non-data scientists. All in all, what is represented
by data is essential to be known beforehand so their processing is done accordingly to
achieve the right results. The following are different data representations that do not
necessarily have a fix connection with data types provided in the previous section.

3.1 Databases

Databases are by far the most widely used data representation to be processed. Input
data generally come as normal databases on different data forms (databases, transac-
tional data, data warehouses or even data lake). Here, data is somehow static where
records are represented as strings including attributes that feature such data record.
Depending on the task to be carried out, that is, the knowledge to be extracted,
some databases (tabular representation) slightly vary including useful (extra) infor-
mation to be considered in the mining process. As a matter of example, let us con-
sider the market basket analysis in which it is useful to determine which patterns,
useful patterns, produce a low/high profit to the company regardless they are fre-
quently/infrequently purchased [28]. For this problem, it is therefore required to
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include non-binary purchase quantities for the items in the transactions and it is
also required to consider that all items are not always equally important (in terms
of profit). Such datasets, known as quantitative databases, are represented as a finite
set of distinct items I = {iy, i, ..., i} and every single item is associated with a
positive integer that represents its utility or profit. Such datasets may also include
information about the purchased quantity for every single item. All this information
should properly be processed so the right insights can be obtained.

Sometimes, and it generally happens in real-life data, some kind of uncertainty
is present due to different reasons [1] including limitations in the understanding
of reality or just by limitations in the data-gathering devices. The major feature of
uncertain data is that users do not have any real conviction about the presence or
absence of an item i; in a transaction f;. This uncertainty is mainly expressed in
terms of a probability P (i;, t;), denoting the likelihood of i; being present in ¢;. The
probability may be expressed as a percentage or in per unit basis so a value close
to 0 denotes that i; has an insignificantly low chance to be present in data, whereas
a value of 1 states that i; is present with no doubt. Processing such input data may
be considered somehow similar to traditional data (precise data), denoting items in
precise data with a probability of 1.

Up to this point, we have presented a database in a tabular data representation
where each row unequivocally identifies a single record including a set of elements or
items that characterizes a data object. In some problems, though, data information is
ambiguous so a data object may be described by an undetermined number of different
descriptions (data records) [21]. This ambiguity is required to be properly processed
so the information that describes a specific object is accurately taken from the set
of descriptions associated with such data object [32]. Formally speaking, a database
Q is defined as a set of n bags Q@ = {B!, B2, ..., B"} and each bag B/ comprises an
undetermined number of transactions that describe the data object. Itis not so difficult
to understand that every bag describes different data objects. The way in which such
input data is processed depending on the goal and the users’ requirements since a
feature may be taken as a good descriptor if it appears at least once in the bag or if
it appears within a range in the bag.

In many application domains, data represent any kind of sequentiality among items
or events [36]. A single event is defined as a collection of items that appear together
and, therefore, they do not have a temporal ordering. However, there exists a temporal
order in the events. In a formal way [1] and considering a databases 2 comprising
a set of items / = {i{, i2, ..., i}, an event e; is defined as a non-empty unordered
collection of items, i.e. {e; = {ix, ..., i,u} € I, 1 < k, m < n}. Each transaction ¢; is
denoted as a sequence of events in the form #; = (¢ — ... — ¢,) and each event ¢;
is described as an itemset {i;, ..., {;} defined in the set of items I € Q.
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3.2 Data Streams

Data streams [16] are known as continuous flows of data that are generated from dis-
parate sources in real time. Streaming [9] is therefore a term that denotes continuous,
never-ending sets of data (streams) with no beginning or end. A data stream is similar
to a constantly provided data input, and it is a simple analogy to how water flows
through a river, coming from various sources, in different volumes, and flow into a
single combined stream. Formally speaking, a streaming database €2 is a sequence of
transactions of indefinite length occurring at a time ;. In other words, the database
2 can be defined as 2 = {71, 15, ..., ,}. When working with data streams it is useful
to deal with slicing windows, that is, sequences of transactions occurring from time
1 to t;.

Data stream applications [16] have been widely studied and it is not so hard
to find in the specialized literature data generated by sensor networks, meteo-
rological analysis, stock market analysis and computer network traffic monitor-
ing. The main feature of all these applications is input data are far too large to
fit in main memory and usually require to keep them into a secondary storage
device. It makes it extremely challenging to extract useful knowledge from data
streams since most data mining techniques assume a finite amount of data to be
analysed. Besides, far from following a stationary data distribution, it is unpre-
dictable when referring to data streams. According to Gama et al. [9], any successful
development of algorithms in data streams has to take into account the following
restrictions:

Data arrive continuously.

There is no control over the order in which the data should be processed.

The size of a stream is (potentially) unbounded.

Data are discarded after they have been processed. In practice, one can store part
of the data for a given period of time, using a forgetting mechanism to discard
them later.

The unknown data probability distribution may change over time.

Amain problem that is required to be addressed when working with data streams
is the concept drift phenomenon [17]. It refers to changes in the conditional distri-
bution of the output (target variable to be studied) given the input features, while
the distribution of the input may stay unchanged. Let us consider a typical exam-
ple of concept drift that is related to a change in users’ interests when following
an online news stream. Suppose that the user is searching for a new apartment so
dwelling houses are relevant for him/her, whereas holiday homes are not relevant.
In a specific moment, the user has bought a house and starts looking for a holiday
destination. From that moment on, dwelling houses become not relevant, and holi-
day homes become relevant. This scenario is what it is known as concept drift. As a
result, a learning algorithm needs to be adapted to unexpected changes to continue
working.
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The ability to process data streams is a key procedure in many fields and it can
be seen as a natural extension for the incremental learning systems [9], which build
models by considering example by example. Adaptive learning algorithms can be
seen as advanced incremental learning algorithms that can adapt to the evolution of
the data-generating process over time.

3.3 Graphs

Existing data mining approaches are mainly based on flat and tabular representations
where data is defined through rows (data records) and columns (data features or
items). Nowadays, however, there exists considerable interest in graph structures [27]
arising in technological, sociological and scientific settings. Paying attention to social
networks, it is possible to form a network that represents who trusts whom, who have
any kind of connection (familiar, friendship, etc.), who talks to whom, etc. The study
of such networks is of high interest in many fields to determine the importance of each
node (the number of edges incident to each node) as well as the distances between
pairs of nodes (the shortest-path length).

In a formal way, a graph can be defined as a 4-tuple G = (V, E, i, v), where V
states for the finite set of nodes, E € V x V denotes the set of edges, u : V — Ly is
anode labelling function and v : E — L is an edge labelling function. Developing
algorithms that discover any subgraph that frequently occur in data (considering
a graph database) is particularly challenging and computationally intensive. The
frequency of a given subgraph g is calculated by considering all the graphs included
in a graph dataset Q2 = {G, G», ..., G,}. The frequency or support of g is defined
as support(g) = |Q21/|2|, where Q, = {G; : g C G;, G; € Q}. Additionally, it is
said that the subgraph g is frequent if its support value is no less than a minimum
pre-defined support threshold value.

Several algorithms have been properly designed to extract interesting subgraphs.
These solutions, however, can only cope with static graphs structures (see Fig. 4)
or graphs that do not change over time [14]. Social connections, for instance, are
not a static issue and heavily change over time (see Fig. 5). Being able to capture
the dynamics of the graph or how the graph evolves over time is very important to

Fig. 4 Sample static graph
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Fig. 5 Sample dynamic graph structure

determine how friendship relationships are formed. In this sense, some authors [14]
have considered a time-ordered sequence of graph snapshots where edges and nodes
can be inserted, removed and attribute values may change at each timestamp. How-
ever, not only the proper graph structure (topology) is important but also the weights
of the vertexes. Jin et al. [23] considered a dynamic network and aimed to discover
connected subgraphs whose vertices show the same trend during a time interval of
two consecutive timestamps. The idea was to reveal important changes occurring in
a dynamic system.

4 Data Mining Techniques

We have already described some data types and data processing approaches or ways
in which raw data is transformed into meaningful structures so data mining can be
performed. At this point, it is important to denote which data mining techniques
can be applied to the input (already transformed) data so different types of patterns
can be obtained [19]. The following are some of the most widely used techniques.
However, we are aware that many new and trending techniques are being proposed
for different purposes nowadays.
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4.1 Mining Frequent Patterns and Associations

The key element in data analysis is the pattern, which represents any type of homo-
geneity and regularity in data, and serves as a good descriptor of intrinsic and impor-
tant properties of data [1]. A pattern is generally defined as a set of elements (items)
that are somehow related in a database. In a formal way, a pattern P in a database €2 is
defined as a subsetof items I = {iy, ..., i,} € Q2.Inanother way, P C I that describes
valuable features of data [55], and its size or length is calculated as the number of
single items that it comprises. The task responsible for mining interesting and useful
patterns is known as pattern mining and it comprises multiple and varied techniques
with different purposes, depending on the type of patterns to be extracted. The most
well-known pattern mining technique is the one for mining frequent patterns, also
known as frequent itemset mining [33].

A typical example of frequent itemset mining is market basket analysis, and it is
perhaps the first application domain in which it was correctly applied. A high number
of purchases are usually bought on impulse when shopping, so it is of high interest for
managers to analyse in-depth the shopping behaviour to obtain valuable information
about which specific items tend to be strongly related [5]. This analysis might allow
shopkeepers to increase sales by re-locating the products on the shelves, or even
it might allow managers to plan diverse advertising strategies. In general, frequent
itemset mining aims to make sense of data, arranging elements of data to obtain
those sets that most frequently appear [34]. Such kind of algorithms requires high
efficient processes paying special attention to their computational cost. To clarify
the complexity of analysing itemsets in data and considering n different items, a
total of 2" — 1 different patterns can be found. Hence, any straightforward approach
becomes extremely complex with the increasing number of items.

Frequent itemset mining is highly related to the task of mining associations among
itemsets, which is known as association rule mining. Association rules were proposed
by Agrawal et al. [2] as a way of describing correlations among items within a
pattern (frequent itemset). Let us consider a frequent itemset or pattern P defined
in a database 2 as a subset of items I = {iy, ..., i,} € 2, thatis, P C I. Let us also
consider two different subsets for such pattern P, thatis, X C P C IandY = P \ X.
It is important to highlight that X and Y do not have any common item, that is,
X NY = (. An association rule is formally defined as an implication of the form
X — Y, denoting that if the antecedent X is satisfied, then it is highly probable
that the consequent Y is also satisfied [62]. The problem of mining association rules
includes a huge large search space, even higher than the one of mining frequent
itemsets. Given a dataset comprising n items, a total of 3" — 2"+! 4 1 different
association rules can be found. This daunting process of mining association rules
can be viewed as a two-step process: (1) Find all frequent itemsets, that is, those
itemsets that occur at least as frequently as a predetermined minimum value; (2)
Generate strong association rules from the frequent itemsets, that is, rules that satisfy
a predefined minimum reliability or conditional probability P (Y |X).
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Association rules considering the frequency and reliability are not mandatorily
interesting. The use of these two measures in isolation may produce a large and useless
set of generated rules. The reduction of such number of generated rules is essential
to obtain an interesting set of rules that can be easily applied to the problem at hand.
An example can be the adding of the correlation between the sets X and Y to help
to decide when an association is useful or not. Much different quality measures [35]
have been proposed so far and it has been stated that a good interestingness measure
should not be affected by data records that do not contain the itemsets of interest.
This problem is denoted as the null-invariant property, and a measure is null-invariant
if its value is free from the influence of null-transactions.

4.2 Predictive Analysis

The predictive analysis [58] aims to make predictions about future outcomes based
on historical data by generating future insights with a significant degree of precision.
The idea is that any organization/institution can forecast trends in the future. One of
the most common predictive analytic models is classification. These models were
designed to categorise information based on historical data, which are denoted as
training data (data objects for which the class or concept are known). The classifica-
tion task might be described as a two-step process: learning and classification. The
learning step is responsible to build the classification model, whereas the classifica-
tion step is used to predict class labels for given data. One of the major problems that
any classification model has to face up is the data overfitting. This is the process by
which a model learns the training data so good that the resulting model incorporates
some particular anomalies of the training data that are not present int he general
dataset. In this regard, it is key to consider a test set, which is an independent set
containing tuples that were not considered to build the model. Thanks to this test
set the accuracy of the model is obtained as the percentage of test set tuples that are
correctly classified by the model. Last but not least, it is important to pay attention
to the first step of classification, which was related to learning (build a classifica-
tion model). The following are some methods considered in the literature to build
classification models.

A popular solution to build classification models is through decision trees. They
are flowchart-like structures in which internal nodes represent tests on attributes,
branches represent the outcome of the tests, and leaf nodes denote the provided class
label. This class label can be seen as the decision taken after testing all attributes.
Any path from the root of the tree to a leaf represents a classification rule. The use
of decision trees are really popular in classification since their construction does
not require any domain knowledge or parameter setting and it is fast and simple.
Additionally, their representation is highly intuitive and easily understood by humans.
One of the first algorithms based on decision trees was proposed in the early 80s
under the name of ID3 and some improvements have been recently proposed [7]. Its
successor, known as C4.5 [48], has become a benchmark in the field and it is usually
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considered to compare any new proposed algorithm. The CART algorithm [29],
which is based on binary decision trees, was also proposed on those years in which
decision trees were built in a top-down recursive divide-and-conquer manner. Once
a decision tree is built, many of its branches may include anomalies of the training
data (overfitting) and a tree pruning process is therefore required. Pruned trees tend
to be smaller, less complex, faster and better at correctly classifying independent test
data than unpruned trees. Two ways of pruning trees are considered by researchers:
pre-pruning (pruning by stopping its construction early) and post-pruning (removing
subtrees from the already constructed tree. The branches to be removed are replaced
by a leaf, which is labelled with the most frequent class from the replaced subtree).

Bayesian classifiers [10] are also popular solutions to build classification models.
These models are based on classification, and they can predict the probability that
a given tuple belongs to a particular class. These methods are based on Bayes’
theorem, and the resulting classifiers tend to be highly accurate and fast (even for large
databases). Bayesian classification is, therefore, a probabilistic (statistical) approach
that can learn and make inferences based on a different view of what it is known
as learning from data. Before data are analysed, prior opinions about data can be
expressed in a probability distribution, and a posteriori distribution is then expressed
after analysing data. Bayesian learning can produce the probability distributions of
the quantities of interest so optimal decisions can be reached together with observed
data.

Another type of classifiers is rule-based models [19], where the classifiers are
represented as sets of [IF-THEN rules. These rules are similar to those described in
association analysis, including two main parts: antecedent (left side) and consequent
(right side). In this case, rules may include one or more attribute to be tested in
the antecedent part of the rule, whereas the consequent is the class prediction [13].
If the condition, that is, all the attributes belonging to the antecedent part are true
for a given data record, then the rule is triggered. In those situations where more
than one rule is triggered, a strategy is required to determine which rule is the right
to be considered. Many different strategies are considered by different researchers.
For example, it is possible to assign the highest priority to the more restrictive rule,
or even that including a higher number of attributes in the antecedent. Associative
classification [43] is a kind rule-based classifiers. The aim is to produce association
rules in a first step and, then, build a classifier according to the previously mined rules.
Recent studies have shown that associative classification has specific advantages over
other classification methods: they are often capable of building efficient and accurate
classification models since all possible relationships among the attribute values are
obtained during the extraction of association rules; they are easily updated and tuned
without affecting the complete ruleset; like any rule-based classifier, the final model
is easily understandable and interpretable.
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4.3 Supervised Descriptive Analysis

In pattern analysis, each pattern represents a data subset and its frequency is related
to the size of such a subset. A pattern represents a small/big part of data, denoting
a specific internal structure, and a distribution that is different from the whole data.
Sometimes, patterns are used to describe important properties of two or more data
subsets previously identified or labelled, transforming, therefore, the pattern mining
concept into a more specific one, supervised descriptive pattern mining [40]. The
main aim now is to understand underlying phenomena (according to a single or multi-
ple target variables) and not to classify new examples. Supervised descriptive discov-
ery originally gathered three main tasks: contrast set mining [11], emerging pattern
mining [18] and subgroup discovery [4]. Nowadays, however, many additional tasks
can be grouped under the supervised descriptive pattern mining concept [56]. The
following are some examples of important tasks in the field aiming at producing
interpretable, non-redundant, potentially actionable and expressive knowledge or
information.

Contrast set mining was described by Dong et al. [11] as a way of describing
differences and similarities among datasets that the user needs to contrast. Each
dataset may correspond to a target variable of a more general dataset, or it may
represent subsets satisfying various conditions. In any case, such subsets are inde-
pendent and do not share any data record. Thus, contrast set mining aims to provide
statistical pieces of evidence that denote a data record as a member of a class (target
variable value). Formally speaking, a contrast set is defined as a pattern P which
distribution highly differ among data subsets. In general terms, contrast sets quan-
tify the difference in frequency for each subset S;. P is denoted as a contrast set if
and only if 3ij : max(|support (P, S;) — support(P, S;)|) = « € [0, 1], denoting
support(P, S;) as the support (frequency) of a pattern P on this subset.

Emerging pattern mining is closely related to contrast set mining [11] presenting
slight differences. Instead of comparing multiple data subsets, emerging patterns
make a comparison between two data types. It can be viewed as contrast patterns
between two kinds of data whose support changes significantly between the two
data types. This kind of patterns was formally defined in [56] as follows: given a
pattern P defined on two datasets 2| and €25, this pattern P is denoted as an emerg-
ing pattern if its support (frequency) on €2; is significantly higher than its support
(frequency) on €2, or vice versa. This difference in support is quantified by the
growth rate, that is, the ratio of the two supports (support (P, Q1)/support (P, ;)
or support (P, 2,)/support (P, €21)), and values greater than 1 denotes an emerg-
ing pattern. Here, the growth rate is 1 if support (P, S21) = support(P, Q2,) and
0 if both P does not satisfy any record from either 2; or €2,. In those cases
where support (P, ;) = 0 and support (P, ;) # 0, or support (P, 1) # 0 and
support (P, 2;) = 0, then the growth rate is defined as co and such patterns are
denoted as jumping emerging patterns.

Subgroup discovery [4] aims to describe important features (distributional unusu-
alness) for a specific property of interest (target variable). Such descriptions are
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provided in the form of rules (P — Target) denoting an unusual statistical distri-
bution of a pattern P (set of features) concerning the target variable T'arget. The
problem was first introduced by Kldsgen [25] and Wrobel [59] as follows: Given a
population of individuals (customers, objects, etc.) and a property of those individ-
uals that we are interested in, the task of subgroup discovery is to find population
subgroups that are statistically most interesting for the user, e.g. subgroups that are
as large as possible and have the most unusual statistical characteristics concerning
a target attribute of interest. The interest of the rules that describe subgroups are
quantified according to a wide variety of metrics [20] and can be grouped according
to the type of target variable. A discrete target variable includes measures that are
divided into four main types: measures of complexity (interpretability of the discov-
ered subgroups and simplicity of the extracted knowledge); generality (quality of
the subgroups according to their coverage); precision (reliability of each subgroup);
and interest (significance and unusualness of the subgroups). A numerical target vari-
able includes measures that are categorized as mean-based measures, variance-based
measures, median-based measures and distribution-based measures.

Exceptional model mining [26] is considered as a multi-target generalization
of subgroup discovery [20]. This task aims to search for data subsets on a pair
of predefined target variables (f, and ¢,) in which there is an unusual interaction
among the target variables. This interaction was originally quantified in terms of the
Pearson’s standard correlation coefficient p between ¢, and ¢, for both the data subset
and the whole dataset. Exceptional model mining also considers the complement of
the data subset instead of the whole dataset [12]. The complement of a data subset
comprises all the transactions that are not included in such subset. Recently, some
authors [31] have proposed an extension of exceptional model mining that does not
require to preset the target variables before running the algorithm. Multiple unusual
interactions may be present in a larger set of target variables simultaneously. This
extension of exceptional model mining aims to extract subgroups where several
pairwise correlations are exceptional.

4.4 Cluster Analysis

Clustering is a process in which data objects group into different groups or clus-
ters [49]. Any object within the same cluster presents a high similarity with the rest,
whereas it is very dissimilar to any object belonging to other clusters. It is important
to highlight that not every clustering method produces the same clusters on the same
dataset and it does not only depend on the metrics considered to form the clusters but
on the algorithm itself. Cluster analysis is widely used to know the data distribution,
to extract the main characteristics of each cluster, as well as just to determine clusters
to be studied in depth in the future.

It is possible to find many different clustering algorithms in the specialized liter-
ature [47] and a fixed categorization of such algorithms is hardly possible because
the categories may overlap in a high degree. Nevertheless, the major clustering algo-
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rithms can be classified into four categories: partitioning methods, hierarchical meth-
ods, density-based methods and grid-based methods. The first category, related to
partitioning methods, determine that k partitions of the data are given (the number
of partitions needs to be lower or equal to the number of objects to be described)
and each partition must contain at least one object. In this category, most existing
methods are based on distance, cannot find complex cluster shapes, adopt popular
heuristic approaches and they suffer from large databases. An example of this cate-
gory is the k-means algorithm, which works by progressively improving the quality
of the clusters.

Hierarchical methods categorize the data objects through a hierarchical decompo-
sition according to two processes: bottom-up and top-down. The first one considers
each object as a single group, and it successively merges groups according to their
similarity. The top-down approach, on the contrary, all the objects belong to a unique
cluster which is successively split into smaller clusters. The quality of the clusters
in this category is mainly distance-based or density-based. It is finally important to
denote that the main problem of hierarchical methods is that the merge/split-step
cannot be undone once it is done.

Density-based methods form clusters according to the distance between objects.
As a result, clusters are dense regions of objects in space that are separated by low-
density regions. These methods work by increasing the size of the cluster until the
density exceeds a predefined threshold value.

4.5 OQutliers Analysis

Anomaly detection or outlier detection [19] is a daunting process by which data
objects with behaviours that are very different from what it was expected are discov-
ered. An outlier is therefore defined as a data object that deviates significantly from
the rest. At this point, anyone may consider outliers as noise, but it is important to
clarify that these two concepts are not synonyms. Noise is an error in the input data,
which is uninteresting from any data analysis and they should be removed before
any method for anomaly detection (outlier detection) is performed. It is possible,
however, to consider outlier detection as a task related to novelty detection when it
is applied to data evolving. Here, some outliers in the evolving data may appear as
novel features that will become as frequent in the future. It is obvious that, once a
new feature is confirmed by novelty detection, it is not treated as outlier any more.
Outlier detection is important in many application domains such as medicine, fraud
detection or public security. Depending on the domain to be applied, outliers can
be categorized into three main groups [6]: global outliers, contextual outliers and
collective outliers. A global outlier is the simplest type of outliers and it is defined
as a data object that deviates significantly from the rest of the dataset. An important
point for this type of outliers is the use of an appropriate quality measure that deter-
mine such deviation. As for contextual outliers, they are defined as data objects that
deviate significantly concerning a specific context. It is therefore required to specify
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the context beforehand, which is usually a specific attribute (or set of attributes).
The data object needs to be an outlier for the data subset that satisfies such attribute.
Hence, unlike global outliers, which consider the whole dataset, contextual outliers
only consider the data subset for the predefined context. Finally, a collective outlier is
a different concept that determines a set of data objects as outliers if they, as a whole,
deviate significantly from the entire data. Here, it is possible that each individual
data object does not behave as an outlier.

There are many approaches in the literature to address the outlier detection prob-
lem. In such problems in which an expert labels the examples as normal or outlier,
the task can be performed by a classification model that can recognize outliers. In
other problems, however, data objects are not labelled as normal or outlier, and the
task is, therefore, to search for features that are mainly shared by the majority of
data objects so outliers can be identified. Finally, it is also possible that some other
problems include some labelled examples but such a number is not so high. Here, a
small set of normal/outlier data objects are labelled. Here, it is possible to use some
of the labelled objects to look for unlabelled data objects that are close in some way.

5 Importance of Finding Periodic Patterns in Databases

Frequent and periodic pattern mining aims to detect whether a pattern occurs fre-
quently and regularly, or mostly in a specific time interval in data. In other words, its
goal is to extract the occurrence behaviour of patterns. This task was first proposed
by Tanbeer et al. [52] as a way of determining the interestingness of frequent patterns
in terms of the shape of occurrence. When analysing periodic patterns [15], it is said
that a pattern is interesting if it is frequent and regular according to two different
threshold values (frequency and periodicity).

Let us consider the sample transactional database shown in Table 4. Here, the
following patterns or itemsets equally appear in data: {/rem2, Item3}, {ItemS5,
Item7} and {Item]1, Item6}. They can be considered as frequent patterns since
they appear in half of the transactions. However, these patterns may not be periodic-

Table 4_ Sample tid Sets of items

transactional database
#1 Item1, Item2, Item3, Item6
#2 Item2, Item3, Item5
#3 Item2, Item3, Item4, Item5
#4 Item4, Item5, Item7
#5 Item1, Item2, Item5, Item6,

Item7

#6 Item1, ItemS5, Item6, Item7
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frequent because of non-similar occurrence periods. For example, {Item2, Item3}
and {ItemS5, Item7} appear more frequently at a certain part of the database. {Item?2,
Item3} occurs during the three first transactions, whereas {/tem5, I[tem7} during
the last three transactions. On the contrary, { [tem1, Item6} does not follow a regular
interval since it appears in the first, fifth and sixth transactions. Here, it is important
to take into account that { Item?2, Item3} and {ItemS5, Item7} may not be of interest
if we are looking for regular items (appearing along the whole dataset). On the other
hand, they are useful if the aim is to look for local periods in which a pattern is
frequent (they appear in all the first/last data transactions).

According to Tanbeer et al. [52] the mining of periodic patterns in databases is of
high importance in many application domains. Considering the market basket anal-
ysis, extracting all frequently sold products can be useless if some of such products
are bought in specific periods. Thus, it is important to extract only those products
that were regularly sold compared to the rest. As for a web administrator, he/she may
be interested in the click sequences of his/her web, so the frequency is not useful but
the periodicity of the clicks. Additionally, in bioinformatics, it is important to extract
set of genes that not only appear frequently but also co-occur at regular interval in
DNA sequences.

Many different approaches conform the state-of-the-art in frequent-periodic pat-
tern mining. Tanbeer et al. [52] proposed a pattern-growth approach that generates
periodic-frequent patterns by applying depth-first search. Kiran et al. [24] and Surana
et al. [50] addressed the periodicity problem by considering rare or infrequent item-
sets. Amphawan et al. [3] proposed an efficient algorithm for mining top-k periodic
frequent patterns.
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Discovering Frequent Patterns in Very m
Large Transactional Databases e

Jose M. Luna

Abstract Finding frequent patterns in very large transactional databases is a chal-
lenging problem of great concern in many real-world applications. In this chapter,
we first introduce the model of frequent patterns. Second, we describe the search
space for finding the desired patterns. Third, we present four popular algorithms to
find the patterns. Finally, we present the extensions of frequent patterns.

1 Introduction

Technological advances in the field of Information and Communication Technologies
have enabled organizations to collect and store big data effectively. Useful knowledge
that can empower users with the competitive information to achieve socioeconomic
development lies in this data. The field of data analytics (or data mining) has emerged
to discover the hidden knowledge in big data.

Frequent pattern mining (FPM) is an important knowledge discovery technique
in data mining. It involves finding all frequently occurring patterns in a transactional
database. A classic application is market basket analysis. It involves finding the
itemsets that were frequently purchased by the customers in the data. An example
of a frequent pattern is {Cheese, Beer} [support = 10%], which provides the
information that 10% of the customers have purchased the items ‘Cheese’ and ‘Beer’
together. Such an information may be found to be extremely useful to the users for
various purposes, such as product recommendation and inventory management. Other
applications of FPM may be found at [2].

The basic model of frequent pattern is as follows: Let I = {iy, ..., i,} be the set
of items. Let X C [ be a pattern (or an itemset). A pattern containing k number of
items is called as k-pattern. A transaction t,;; = (tid, Y), where tid € R* represents
the transaction identifier and ¥ C I represents a pattern. A transactional database,
DB = {t1.tr, --- , t,,}, m > 1, is a set of transactions. The support of pattern X in
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DB, denoted as sup(X), represents the number of transactions containing X in D B.
The pattern X is said to be a frequent pattern if sup(X) > minSup, where minSup
represents the user-specified minimum support threshold value. The problem def-
inition of frequent pattern mining is to find all patterns that have support no less
than minSup in D B. (Please note that the support of a pattern can also expressed in
percentage of database size. However, we employ the former definition of support
throughout this book for ease of explanation.)

Example 1 Let I ={a,b,c,d, e} be a set of items. A hypothetical transactional
database generated by the items in / is shown in Table 1. The set of items a and
b, i.e., {a, b} (or ab in short) is a pattern. This pattern contains 2 items. Therefore,
it is a 2-pattern. In Table 1, the pattern ab appears in the transactions whose tids
are 2, 4, and 5. Thus, the support of ab in Table 1 is 3 or 60% (= (3/5) x 100).
If the user-specified minSup = 2, then ab is said to be a frequent pattern because
sup(ab) > minSup. The complete set of frequent patterns generated from Table 1
is shown in Table 2.

It is important to remark that setting a minimum support value is a non-trivial
task and generally requires a profound background in the application field. Inexpert
and many expert users need to try different thresholds by guessing and re-executing
the algorithms once and again until the results are good for them. As it has been
demonstrated, a small change in the threshold value may lead to very few or an
extremely large set of solutions.

Table 1 Transactional tid Ttems
database
1 ac
2 abc
3 bde
4 abe
5 abed
Table 2 Frequent patterns
found in Table 1 Pattern  Support Pattern Support
a 4 ac 3
b 4 ae 2
¢ 3 bc 2
d 2 bd 2
e 2 abc 2
ab 3
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2 Search Space

The space of items in a database gives rise to an itemset lattice (or a set enumeration
tree'). This itemset lattice represents the search space for finding frequent patterns in
adatabase. The size of this search space is 2" — 1, where n represents the total number
of distinct items in the database. Reducing this huge search space is a non-trivial and
challenging task in frequent pattern mining. When confronted with this problem
in the real-world applications, researchers employed anti-monotonic property* (see
Property 1) to effectively reduce the search space. In other words, this property makes
the frequent pattern mining practicable in the real-world applications.

Example 2 Let x, y, and z be three items in a hypothetical transactional database.
The itemset lattice produced by the combinations of these three items is shown in
Fig. 1a. The alternative representation of this lattice as a set enumeration tree is shown
in Fig. 1b. The size of this lattice is 7 (= 23 — 1). This lattice represents the search
space for finding frequent patterns. Frequent pattern mining algorithms search this
enormous lattice using the anti-monotonic property. For instance, a frequent pattern
mining algorithm will check the interestingness of the pattern xy if and only if all of
its non-empty subsets, i.e., x and y, are also frequent in the database.

Property 1 (Anti-monotonic property.) If X C Y, then sup(X) > sup(Y). Thus, if
sup(X) # minSup, thenVY DY, sup(Y) % minSup.

Example 3 The support of pattern cd inTable 1,i.e., sup(cd) = 1.Since sup(cd) #
minSup, cd is an infrequent pattern. Moreover, all supersets of cd will also be infre-
quent patterns because their supports cannot also be more than minSup.

! The set enumeration tree is a high-performance data representation technique, which resembles
the depth-first search on the itemset lattice

2 Other names of this property are: apriori property and downward closure property.
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3 Popular Algorithms

Several algorithms have been described in the literature to find frequent patterns.
A recent survey on the past 25 years of frequent pattern mining may be found at
[19]. In this chapter, we present four of the widely studied frequent pattern mining
algorithms, namely Apriori [3], FP-Growth [13], Eclat [46], and LCM [37].

3.1 Apriori

Apriori is one of the fundamental algorithms to find frequent patterns in a database.
It is a breadth-first search algorithm that finds all frequent patterns by employing
“level-wise candidate-generate-and-test paradigm.” This paradigm briefly involves
the following three steps: (i) find frequent k-patterns from the candidate k-patterns,
(ii) generate candidate k-patterns by joining frequent (k — 1)-patterns among them-
selves, and (iii) repeat the above two steps until no more candidate k-patterns can be
generated. The pseudocode of this algorithm is presented in Algorithm 1.

Algorithm 1 Pseudo-code of the Apriori algorithm.

Require: I, DB, minSup {set of items, dataset and minimum support value}
Ensure: F

1: F=0

2: Ly ={i €I | support(i, DB) > minSup}

3: F=FUL,

4: for (k =2; Ly #0;k++) do

5:  C = set of candidate patterns produced by Lj_1
6: Ly ={p € C |support(p, DB) > minSup}
7. F=FULyg

8: end for

9: return F = U Fy

Let us consider the sample transactional database D B shown in Table 1. Let us
also consider a minimum support value of three. The following is the set of frequent
patterns that can be extracted from DB: a, b, c, ab, and ac. This set highly varies
when the minimum support value is modified. Thus, considering a minimum support
value of four, then the resulting set of frequent patterns is reduced: a and b. Similarly,
if the minimum support value is decreased, then the resulting set of frequent patterns
is increased. The following is the set of frequent patterns that can be extracted from
DB with a minimum support value of two: a, b, ¢, d, e, ab, ac, ac, bc, bd, be, and
abc. Finally, it is important to remark that determining the exact minimum support
value is not trivial and generally requires a profound background in the application
field. Inexpert and many expert users need to try different thresholds by guessing
and re-executing the algorithms once and again until the results are good for them.
As it has been demonstrated, a small change in the threshold value may lead to very
few or an extremely large set of solutions.
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3.2 Frequent Pattern-Growth

The popular adoption and successful industrial application of the Apriori algorithm
has been hindered by the following two limitations: (i) Apriori algorithm generates
too many candidate patterns and (ii) Apriori algorithm requires multiple scans on the
database. Han et al. [13] introduced Frequent Pattern-growth (FP-growth) algorithm
to address the limitations of Apriori algorithm. It is a depth-first search algorithm
that finds the desired patterns by employing the following two steps: (i) compress
the given database into a ¢ree structure known as Frequent Pattern-tree (FP-tree) and
(ii) find all frequent patterns by recursively mining the FP-tree.

A really efficient algorithm for mining frequent patterns was proposed by Han et
al. [13]. This algorithm, named FP-Growth, achieves a high performance by repre-
senting the data as a tree structure [31] in which nodes denote items together with
their frequency, and paths among nodes represent the patterns (set of connected
nodes). This compressed representation of the input dataset drastically reduces the
number of scans required to compute the patterns and their frequencies.

To understand how the FP-Growth algorithm works, let us explain first how
to construct the tree structure (see Fig. 2) by taking the sample transactional
dataset DB (see Table 1). The first step is to calculate the support value for each
item: support(a, DB) = 4, support(b, DB) = 4, support(c, DB) = 3, support

Transaction #1 4
# Transaction #2

(ks ]
S

ol Lo
|

©,

Transaction #3

Transaction #5

Fig. 2 Building a tree structure for the sample dataset shown in Table 1
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(d, DB) = 2,support(e, DB) = 2. Items are, therefore, sorted in descending order
of support in each transaction: a < b < ¢ < d < e. After that, the process starts with
the empty node null, and each transaction of DB is analyzed. Taking the first trans-
action, it comprises items ac and they are included as a branch from the root (the
empty node). Each time a node is added to the tree, the value 1 is assigned to it as the
frequency. If a transaction shares items of any existing branch in the tree, then the
inserted transaction will be in the same path from the root to the common prefix. The
values of the common nodes increase by one. Let us see the second transaction. The
common path is a, so its value is increased by one (see transaction #2 in Fig. 2). The
rest of the items is added as a new branch from the common path. The frequencies
for the new nodes are initialized to one. The third transaction does not share any path
with the tree, so it is added as a new branch from the root, that is, the null node. The
process iterates till all the transactions are analyzed, and the resulting tree is obtained
as a compressed data format. It is important to highlight that a fixed order among the
items is required or the resulting tree structure will be meaningless.

The pseudocode of the FP-Growth algorithm is illustrated in Algorithm 2. To
construct the tree, the algorithm takes frequent items (singletons) from data. Consid-
ering a minimum frequency value of 2, the following items are considered: a appears
four times, b appears four times, ¢ appears three times, d appears two times, and e
appears two times. Then, the tree is constructed following that order as previously
described. Once the tree is obtained, FP-Growth first takes the lowest node, that is,
item e, which occurs in 2 branches: abe with frequency 1 and bde with frequency 1.
From these branches, only one frequent pattern can be obtained: be, with a frequency
of 2. The process is repeated for each item. Taking now the item d, two branches
are analyzed: abcd and bd. Combining them, the frequent pattern bd is obtained,

Algorithm 2 Pseudo-code of the FP-Growth algorithm.

Require: T, o, minSup { Tree-structure, initial node, set of items and minimum support}
Ensure: F

I: F=0

2: if T contains a single path P then

3:  for each combination 8 of nodes in P do

4: generate the pattern X = o U

5: support of X is the minimum support of nodes in
6: end for

7: else

8:  for each a in the header of T do

9: generate the pattern X = o Ua

10: support of X is the support of a

11: construct a conditional pattern base of X

12: construct a conditional FP-Tree Ty from X

13: if Tx is not empty then

14: recursive call of FP-Growth(Tx, X, minSup)
15: end if

16:  end for

17: end if

18: return F
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with a frequency of 2. As for the item ¢, two branches are analyzed: ac and abc.
The resulting frequent pattern is ac. The process iterates over all the items. As it is
demonstrated, once the tree structure is built, no further passes over the dataset are
necessary. Any frequent pattern can be obtained directly from the tree by exploring
the tree from the bottom-up (considering the items as suffixes).

Research studies on FP-Growth determined that this algorithm is efficient and
scalable. Its performance is calculated as an order of magnitude faster than Apriori.
Its main drawback is building and traversing of the tree structure, which is not trivial
in huge datasets.

3.3 ECLAT

Eclat (Equivalent CLAss Transformation) was proposed in 1997 [46] as the first
algorithm for mining frequent patterns that work on a vertical data representation.
This data representation represents the items as lists including the transactions (tids)
in which each item appears. Back to the sample transactional database DB shown in
Table 1, a vertical data representation of DB is illustrated in Fig. 3. The list formed
by item a includes transactions number 1, 2, 4, and 5. As for the item b, it includes
transactions number 2, 3, 4, and 5. Eclat considers the vertical data representation as
a set of tidsets or pointers to the transaction tids including each item. This algorithm
computes the support of each item by simply calculating the length of the tidsets.
Thus, the items a and b have a support value of 4 since they appear in 4 transactions.
The support of c is 3, and the support of both d and e is 2.

Eclat works by combining tidsets, so for each frequent pattern of length k, a
candidate pattern of length k£ 4 1 is produced by adding the singleton that lexico-
graphically follows according to those items included in the original frequent pattern
(see Algorithm 3). A new tidset is obtained from the intersection of both tidsets
(singleton and original frequent pattern) and its size is denoted as the frequency
of the resulting pattern. The algorithm follows a breadth-first search strategy tak-
ing patterns and doing intersections with the next item in lexicographical order. For

Fig. 3 Tidsets for the a

sample dataset shown in b ¢ d €
Table 1
e 2 b =2 3
% = 2 5 “+
+ 4 5
3 5
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Algorithm 3 Pseudo-code of the Eclat algorithm.

Require: /, minSup {set of items, and minimum support value}
Ensure: F

1: TidList = compute the tidsets of all the items in /

2: L={leTidList |length(l) > minSup}

3: F=FUL

4: forVI € Ldo

5 c=1

6: forVm € L|m> jdo
7: d=cnNm

8 if length(c’) > minSup then
9: c=c

10: F=FUc

11: end if

12:  end for

13: end for

14: return F

example, taking the item a and considering a minimum frequency value of 2, it is
combined with a to form the pattern ab. The intersection of their tidsets is the new
set {2, 4, 5}, and therefore, it is a frequent pattern since its frequency is 3 (length of
the tidset). In an iterative process, the pattern ab is combined with the next item in
lexicographical order, that is, c. The resulting tidset is {2, 5}, so its frequency is 2.
The resulting pattern abc is now combined with d, obtaining the tidset {5}. Hence,
this pattern is infrequent since its frequency is lower than 2. As a result, the process
does not continue with the next item and it goes back to combine a with c.

Finally, let us summarize the shortcomings of Eclat. This algorithm does not
require to scan the dataset to find the frequency of new patterns as Apriori does.
However, the bottleneck comes when the number of transactions increases, requiring
huge memory and computational time for intersecting the tidsets.

34 LCM

LCM (Linear Closed itemset Miner) [37] is a really fast algorithm proposed in 2003
for mining frequent patterns. This highly optimized algorithm won the FIMI2003
competition in which many efficient algorithms were proposed. LCM does not follow
a single data representation but two of them, so it horizontally stores transactions
and it also keeps the id of the transactions for each item (vertical data representa-
tion). What makes LCM be so fast and efficient is not the data representation but
some alluring ideas that it includes. Authors of this algorithm clearly stated [37]
that the pruning process usually included in FPM algorithms is not complete, and
it is common to operate unnecessary frequent patterns. Taking it into consideration,
they overcome the problem with a hypercube decomposition, also known as per-
fect extension pruning. An occurrence deliver schema is an additional promising
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Algorithm 4 Pseudo-code of the occurrence deliver schema.
Require: P, DBp {Pattern to be analyzed, conditional dataset}
Ensure: Bucket

l:forVi € Pdo

2:  Set Bucket[i] =0

3: end for

4: forVt € DBp do

5: forVe € tdo

6: Insert ¢ into Bucket[e]

7.

8:

end for
end for

idea included in LCM to easily calculate the frequency of each pattern. The occur-
rence deliver schema (see Algorithm 4) takes as input a pattern P and a conditional
database given P. It creates the buckets for each item in P and adds into buckets those
transactions including the item. First, the algorithm orders the items based on their
frequencies and removing infrequent items from data. To understand how this proce-
dure works, let us take the transactional database DB shown in Table 1 in which items
are sorted in ascending order of support in each transaction: d < e < ¢ < a < b.Fol-
lowing the occurrence deliver schema illustrated in Algorithm 4, the following buck-
ets are obtained (see Figure 4): Bucket[a] = {1, 2, 4, 5}, Bucket[b] = {2, 3,4, 5},
Bucket[c] = {1, 2,5}, Bucket[d] = {3, 5}, and Bucket[e] = {3, 4}. Thus, it is easy
to know that the pattern a is satisfied by 4 transactions, pattern b by 4 transactions,
pattern ¢ by 3 transactions, and so on. Taking the first item in the list of sorted items,
that is, item d, a projection is performed and new buckets are obtained for that pro-
jected database (see Algorithm 4) as it is illustrated in Figure 4. Thus, given the prefix
d, it is easy to check that the itemset da appears once (Bucket[a] = {5}), whereas
the itemset db appears 2 times (Bucket[b] = {3, 5}). The process is repeated recur-
sively (a depth-first search strategy is considered) for the remaining items so the
conditional database are smaller and smaller.

As for the hypercube decomposition technique, it aims to improve the searching
process by stopping the recursive process of forming patterns. Once a perfect exten-
sion is detected, then it is directly reported. A perfect extension of a pattern [ is
an item i that satisfies i ¢ I, and the frequency of I and 7 Ui is exactly the same.
Perfect extensions have the following properties: If the item i is a perfect extension
of a pattern /, then i is also a perfect extension of any pattern Q such as I € Q as
long asi ¢ Q; If E is the set of all perfect extensions of the pattern /, then all sets
1 U Q with Q € 2F (the power set of the set E) have the same support as /. Back to
the sample transactional dataset shown in Table 1, the item a is a perfect extension
of the pattern bc since the frequency of bc is exactly the same as abc, that is, 2.
Consequently, the item a is also a perfect extension of the pattern b and c.

A new LCM version was proposed one year later [39], and it was granted for a
second year in a row with the best implementation award in FIMI2004 competition.
The new version introduced an improvement in runtime by reducing data. The algo-
rithm deletes an item if it is not present in at least & data records or if it is present in
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Fig. 4 Sample occurrence deliver using buckets on dataset shown in Table 1

all data records. Additionally, identical data records are merged into a single one. A
third LCM version was also proposed one year later [38], and it is considered as the
fastest version up to date. This version includes really efficient structures in the FPM
task: bitmaps, array lists, and prefix trees. A bitmap is efficient for dense datasets
since it enables fast intersections/unions to be performed with not so much memory
consumption. The k most frequent items are kept, known as k-items machine in the
literature. Those items not included in the bitmap representation are stored as array
lists and considered to build a prefix tree. It is essential to highlight that this third
version also comprises an occurrence deliver technique, the database reduction, and
the hypercube decomposition technique proposed in previous versions.
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4 Types of Patterns

The growing interest in pattern mining has encouraged the definition of a new type of
pattern according to the analysis required by experts in different application fields.

4.1 Maximal Frequent Patterns and Closed Frequent
Patterns

Since the objective of FPM is to find all frequently occurring patterns in the database,
this model often produces too many patterns most of which may be uninteresting to
the users. Moreover, the computational cost of finding these huge number of frequent
patterns may not be non-trivial.

Example 4 The frequent pattern model not only finds abc as a frequent pattern
in Table 1, but also finds all of its non-empty subsets, i.e., a, b, ¢, ab, ac, and bc as
frequent patterns. Thus, producing too many patterns, most of which are uninteresting
or redundant to the user.

When encountered with this problem in real-world applications, researchers have
tried to find a reduced set of frequent patterns, namely maximal frequent patterns
and closed frequent patterns. We now briefly discuss both of these patterns.

Definition 1 (Maximal frequent pattern X.) A frequent pattern X is said to be a
maximal frequent pattern if sup(X) > minSup and VY D X, sup(Y) # minSup.

Example 5 The frequent pattern abc in Table 1 is a maximal frequent pattern because
all of its supersets are infrequent patterns. Moreover, all non-empty subsets of abc
cannot be maximal frequent patterns. Thus, maximal frequent pattern mining signif-
icantly reduces the number of patterns being discovered in a database.

Maximal frequent pattern mining helps us to find long patterns in a database
effectively. However, they lead to a loss of information as they do not record the
support information of its subsets. This motivated researchers to find closed frequent
patterns in a database. A closed frequent pattern is a frequent pattern that is not strictly
included in another pattern having the same frequency. Thus, closed frequent patterns
are lossless by nature as they preserve the support information of all frequent patterns
in a database.

Definition 2 (Closed frequent pattern X.) Let X and Y be two frequent patterns
such that X C Y. The frequent pattern X is said to be a closed frequent pattern if
sup(X) # sup(Y), sup(X) > minSup.

Example 6 Consider the frequent patterns a, ¢, and ac in Table 2. Since sup(a) #
sup(ac), a is a closed frequent pattern. In contrast, ¢ is not a closed frequent pattern
because sup(c) = sup(ac).

The relationship between the set of frequent patterns (F), the set of closed frequent
patterns (C), and the set of maximal frequent patterns (M) is F 2 C 2 M.
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4.2 Condensed Patterns

As previously stated, the mining of frequent patterns [1] is the keystone in data
analysis and the extraction of useful patterns from data. Many efficient approaches
have been proposed but it is still expensive to find the complete set of solutions (fre-
quent patterns). The daunting process may be eased by computing a small subset of
frequent patterns that can be used to approximate the frequency values of arbitrary
frequent patterns. These frequent patterns used to approximate further solutions are
known as condensed patterns [25]. The mining of these patterns drastically reduces
the runtime but, sometimes, the error in the approximation is not enough from the
domain/problem point of view. On some occasions, this process (considering a max-
imal error bound) is enough even when no full precision is achieved.

The support approximations are calculated through a function F defined on a
transactional database DB. The following can be an approximation function for any
pattern P: F(P) = 0 if there exists no superset P’ O P such as P’ is defined as
a condensed pattern; whereas F(P) = [support(P’, DB) — 3, support(P’, DB)]
being support(P’) the minimum support for any P’ C P such as P’ is defined as
a condensed pattern. Considering such a function, the support of any pattern can be
estimated. Back to the sample transactional database DB (see Table 1), F(abcde) =
0 sin