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Abstract Artificial intelligence techniques have been intensively used for android
malware detection and analysis in the last past few years. The proposed method-
ologies do not suffice the requirement while characteristics of malwares are
changing so rapidly and evolving new complex malwares. Therefore, it is a very
complex task to classify and identify these malwares. This paper presents an
organized and comprehensive survey for the detection techniques of android mal-
ware(s) in chronological order. These detection and analysis techniques are elab-
orated in two core categories: statics and dynamic analysis and hybrid analysis with
machine learning or artificial intelligence. The core contributions of this paper are:
(1) explaining a methodical, chronicle and organized summary of the existing
techniques of android malware detection, (2) exploring the major elements and
challenges in the detection methods and (3) explaining the importance of artificial
intelligence for android malware detection. The detection approaches are explained
in a manner that new approaches are compared with the old ones based on their
features. The advantages and disadvantages of each approach are discussed. This
study facilitates researchers and academics to have a wide-ranging conception of
the field of android malware detection and provides a platform to enhance the
fundamental knowledge to implement the new idea and subsequent improvement
further in existing techniques.
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1 Introduction

The smart mobile phones are attracting all due to their tremendous features and
have provided online banking, online marketing, online study, etc., in addition to
fundamental telephony services. These mobile terminals are outfitted with huge
processing power and ample storage that holds a variety of sensitive and critical
data like contacts, pictures, passwords, cookies, credit card details, location infor-
mation, etc. As per statista’s report, the global figure of subscribers of smart mobile
phone has reached 4.01 billion in 2020 and is expected to reach 4.7 billion in 2022
[1]. However, this popularity of smartphones has attracted the attention of hackers
who may steal the data stored in smartphones and further may deduce the code to
unlock the mobile to compromise the device or manipulate popular services. The
various Android Operating Systems (OS) is the most accepted operating systems
for the existing smartphones (82.8%) [2]. On one hand, the Android OS is an
open-source software system to provide a wide range of accessibility to users and
on the other hand, Android OS is more susceptible to cyber-attacks. The malicious
apps or malwares are developing so rapidly worldwide that was never observed in
the past. Normally, android apps and games are downloaded and installed from the
Play store verified by play protect developed by Google. However, android apps
and games can also be installed from other non-authenticated and not verified stores
where apps and games are integrated with malicious codes that contaminate the
android phones and exfiltrate the critical data to hackers. The protected Play store is
also not secured from the hackers even after their continuous effort to monitor and
remove infected applications. Moreover, several variants of Android Operating
System are available in multiple manufacturer’s devices and all variants are needed
patches and updates regularly from the respective developer immediately. There are
some major aspects like diverse ARM processors, limited RAM, and power battery
restriction, etc. that create the complexity in detection of malicious codes.
TrendMicro declared in the first quarter of 2020 that, mobile cyber espionage
operations have increased by 1400%, distributed among multiple firmware(s) and
operating systems from 2015 to 2019 [3].

Several anti-malware techniques, frameworks and solutions have been devel-
oped to protect android phones. These analysis frameworks are divided into static
and dynamic features analysis. The static features analysis is based on the reverse
engineering of.apk file of apps. Applications are scanned for malicious code instead
of executing them. This is helpful for detecting the malicious codes that only run in
explicit circumstances like rebooting; however, the same techniques are not able to
identify the encrypted and dynamically loaded malicious codes of android. In the
dynamic feature analysis, runtime activities of apps are analyzed and encrypted and
dynamically loaded malicious codes of android are identified. Since, all execution
paths cannot be examined, which limits overall and complete analysis of the code/
apk. The Hybrid techniques combine the advantage of static and dynamic features
analysis; however, these techniques have several limitations that force the
researchers to develop new hybrid analysis technique based on artificial or machine
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learning to achieve high detection rates. All analysis techniques have some
advantages and weaknesses for the detection of android malwares. It is also
observed that there are several deficiencies in the surveyed presented in the research
paper. A quantity of papers has not considered the latest articles in the comparison
and analysis. On the other hand, some surveys have not classified the detection
techniques systematically for their research work. To overcome these flaws, this
paper presents an organized literature survey on the latest android malware detec-
tion and analysis frameworks. The main contributions of this paper and study are:

(a) resenting a systematic, chronically and categorized study of the current
approaches to android malware detection.

(b) Exploring the architecture and elements of noteworthy android malware
detection methods and challenges in these methods.

(c) Demonstrating the importance of deep learning and artificial intelligence for
android malware detection and analysis techniques.

The paper is organized as follows. “Review of Android Malware Analysis
Techniques” presents a systematic assessment of the existing techniques for
detection and analysis of android malwares. In “Discussion,” a brief tabulated
comparison of malware detection techniques is presented for ready reference.
A comparison chart for the efficiency of major android malware detection methods
is presented which can work as a benchmark level for new research works. At last,
“Conclusion” exhibits the crux of the same study.

2 Review of Android Malware Analysis Techniques

The existing android malware detection and analysis framework are elaborated
based on their basic architecture, feature extraction module, test data set, efficiency
and advantages and disadvantages. The technique is divided into two parts. The first
basic techniques including static and dynamic analysis that are base for any artificial
intelligence technique are discussed in chronological order. Then, the latest artificial
intelligent techniques for the analysis of android malware are analyzed in detailed.

2.1 Integrated Static and Dynamic Malware Analysis
Techniques

There are several android malware analysis techniques that implement the combi-
nation of static and dynamic analysis to improve the accuracy of detection of
malware. The general architecture of an integrated static and dynamic analysis
framework is shown in Fig. 1. Blaising [4] demonstrated an android application
(AA) sandbox in 2010 that detects the malicious activities in android apps through
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analysis both statically and dynamically. In the section of static analysis, android
api/code is decompiled by the Baksmali module. Then, the decompiled smali files
are scanned and static features are extracted. In the section of dynamic analysis, the
apk/code is run through the emulator devices. The Monkey module is also inte-
grated to activate the apps with testing parameters like gestures and clicks. This
framework is loaded in the kernel under a fully controlled environment for exe-
cution of the apk/code that generates the logs files by capturing the system calls.
Vectors are defined based on the log of static and dynamic behavior analysis and
these same vectors are inserted into a framework for monitoring of malicious
activities of apps and further detection. The main constraint of AASandbox was that
it could not be implemented in a large volume of android devices as the root
privilege is required for capturing system calls. Authors did not calculate the
accuracy of the proposed framework.

Zhou et al. [5] developed a new framework DroidRanger in 2012 for detection of
unknown and known malwares. In first section, DroidRanger examines and detects
the essential permissions which are used by the malwares to execute the malicious
actions that segregate the malicious apps for further analysis in second stage. This
data is then collaborated with the defined behavioral rules to distinguish, filter and
analysis of identified malwares. However, detection of unknown malwares is
achieved in two segments: In the first segment, the filter is defined based on
heuristic algorithms. Researcher has implemented two heuristics algorithms in this
technique. In the first heuristic technique, the code from the remote server is loaded

Fig. 1 Statics and dynamic combined malware analysis
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dynamically. In the other heuristic technique, the native code is loaded dynamically
and the behavior of app is monitored. If app is not stored in default directory, then
this behavior is noticeable. Heuristic technique facilitates the framework to deter-
mine the malwares which exploit the OS kernel and get root access and provides a
capability to detect the DroidDreamLight [6]. Dynamic executions are performed to
monitor the runtime behavior of applications. A data set of 204040 android
applications was collected in which 75% and 25% were taken from the official and
other alternative android markets, respectively. The limitation of this framework is
that it developed for only official android markets (Google Playstore) and alter-
native android markets (eoe market, gfan, alcatelclubm mmoovv, etc.), not for
android devices.

Talha et al. [7] developed a new framework for android malware analysis, i.e.,
APK Auditor in 2015, that uses permissions features for detection of malware
behavior. This framework comprises of following segments: (1) database for sig-
natures: store signatures of all the apps; (2) android client: offers the facility of
malware analysis to clients; (3) server for processing, which offers a connection
between android client and database and processing. The server executes the
analysis without installing the apps on the device and optimizes the available assets.
APK Auditor monitors all the permissions as called by the apps and determines the
value of permission malware score (PMS). Thereafter, this tool classifies the apps as
malware if the value of PMS apps scores higher than the threshold value. The
outcome demonstrated that APK Auditor accomplished 92.5% accuracy but cannot
identify the malicious payloads which installed dynamically.

Abraham et al. [8] developed a 2-Hybrid malware detection framework in 2016
which executes the detection and analysis of android malwares on the server
installed at a distant location. The extractor module of framework extracts and
accumulates the parameters of the apps and classifies the apps as malware or
benign. This framework does not conclude the categorization of apps only based on
host analysis but also sent to the server installed at a distant location for exhaustive
analysis. If malicious activities are observed in app then server forwards the same
data to local device for future detection. As a test set, 39 malicious samples were
collected and 69 permissions were monitored from these samples. The results were
satisfactory; however, authors did not compare the efficiency of this framework
with other frameworks.

Sun et al. [9], developed a new framework MONET in 2017, that detects the
malicious codes of an already acknowledged malware family. This framework
extracts the static parameters, disassemble the codes, and monitors the dynamic
activities of apps for uncovering of malwares. MONET uses client-end applications
that run on the user device for analysis of application and design its specific
signature. The sets of signatures are stored in the server and a signature matching
algorithm is applied. A test set of 3723 and 500 malwares and legitimate apps,
respectively, were used for experiments. MONET demonstrated 99% accuracy of
detection of malware but shown lacks of resource efficient.
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2.2 Hybrid Malware Analysis with Artificial Intelligence

The general architecture of the hybrid malware analysis technique with artificial
intelligence is shown in Fig. 2. Wang et al. [10] developed a hybrid malicious code
analysis framework in 2015 which performs both static and dynamic analysis
and implement machine learning for training the framework. It implements
signature-based detection to detect the malwares. In first stage, the manifest file is
used for static features extraction and android packaging tools are used for disas-
sembling the dex files [11]. In second stage, Cuckoo Droid [12] and Robotium [13]
are used for dynamic features extraction. These static and dynamic features are
converted into vectors and mapped into vector space. Different feature extraction
and selection methods are implemented in this method to increase the accuracy and
susceptibility for misuse and anomaly detection. In misuse detection, SelectKBest
method is applied where k highest scoring features are selected and Chi2 is used as
a scoring function. After feature selection, SVC [14] and SVM classifier [15] are
applied for the classification of known and unknown malware, respectively. Based
on the probability of signature matching, apps are categorized as malwares and
training database is updated accordingly. In case, if there is any uncertainty, then
only anomaly detection is applied and if any abnormal behavior is detected, then
app is classified as unknown malware and training database is updated accordingly.
A test set of 12000 and 5560 for benign and malware apps are collected,

Fig. 2 Hybrid malware analysis using artificial intelligence
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respectively, from various App stores. The Outcome demonstrated that the
framework can detect the malwares with an accuracy of 98.79% from the used test
set.

Sahijo et al. [16], developed an integrated framework for malware detection and
analysis based on machine learning in 2015. This framework assimilates the static
analysis and dynamic analysis for detection and analysis with training of modules
of machine learning. Framework extracts printable strings information as static
feature from app and then sorted as per the rate of incidence in each file. After
extraction, feature selection is performed such that PSI features with the rate of
incidence above benchmark are selected. Selected features are then enlisted into
global list named feature list. This feature list is used for creating static feature
vector. In next stage, Cuckoo platform is implemented and API call logs are
extracted for dynamic feature extraction of apps. API call grams are generated for
all codes and sorted as per the rate of incidents. The vectors for static and dynamic
features are designed and inserted into two separate machine learning modules
SVM [17, 18] and random forest [19] for classification. This framework demon-
strated 98.7% accuracy on a test set of 997 malicious and 490 benign apps; how-
ever, huge storage and high processing power are required for the same framework.

Yuan et al. [20] developed an online framework DroidDetector in 2016 to detect
malwares online. In this framework, both the static and dynamic features extraction
tools are implemented in the servers hosted remotely and then machine learning
modules are integrated for discriminating between malwares and benign apps.
Major permissions and sensitive API are monitored to determine the static features.
DroidBox is applied for a specific period of time to monitor the dynamic activities
of apps. The static and dynamic features are mapped into vectors and these features
are inserted into the machine learning module for learning of detection of malicious
apps. A test set of 20,000 apps of a combination of both legitimate and malware
apps is used to evaluate the framework of DroidDetector. Experimental results
demonstrated the achievement of 96.7% accuracy for the detection of malwares.
The key flaw of this framework is that the various malicious apps can be escaped
from the detection of framework if malicious behavior of apps is not observed
during the observation time-period.

Yu et al. [21] developed a hybrid automatic static-dynamic switch framework in
2016 to counter the transformation technique adopted by the malwares. This
framework can distinguish the malicious codes of apps by either static or dynamic
detection and analysis technique. In first section, apps are decompiled through
Apktool [22] and accordingly manifest and Smali files are created and static mal-
ware analysis is applied. The extracted static features are mapped into the vectors
and these vectors are inserted into machine learning modules for detection of the
apps as malware. However, if apps are not properly decompiled due to transfor-
mation techniques, then automatic dynamic malware analysis is executed on the
apps. In the same way, dynamic malware analysis is performed on apps and
extracted dynamic features are mapped with vectors. These vectors are also inserted
into machine learning modules like kNN and Naive Bayes, etc., for training of
framework for detection. Framework demonstrated the 99% accuracy for static
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detection and 90% accuracy for dynamic detection. However, the main flaw of this
framework is that only static malware analysis process is executed if the app is
decompiled properly. Framework does not have capability of detection of
dynamically loaded codes in the app. Therefore, app that is not able to execute
accurately cannot be analyzed properly and accordingly cannot be classified as
malware or benign app.

Saracino et al. [23], developed a host-based novel framework MADAM in 2016
which suspicious the apps based on their misbehavior and malicious activities. The
framework segregates the malware into a number of behavioral modules and each
module execute specific misbehavior that is tagged with the same malware.
Framework extracted and correlated features at four stages: package, application,
user, and kernel. MADAM structural design consists of four main pillars that are
App Risk Assessment, Global Monitor, App Monitor, and User Interface and
Prevention. MADAM executes App Risk Assessment process and generates a list
of suspicious apps. Framework applies the static and dynamic analysis to determine
the risk of app. The Global monitor process monitors the system call, user activity,
message and activity logger and generates feature vectors. These vectors are
inserted in a machine learning module like kNN and are used to train the framework
for legitimate and malicious behaviors. App monitor process decompiled the
malicious codes by analyzing the behavior of malwares at API and kernel level.
App Monitor continuously monitors the (a) Background apps with administrator
privileges, (b) Automatic SMS send-receive apps, and (c) Foreground apps. Lastly,
the user interface warns about the malicious apps and assistance for blocking and
removing these apps. The proposed framework is tested on a test set collected from
virus share and demonstrated 96.9% detection rate. However, MADAM framework
has one flaw that a root privilege is required on the device to execute the detection
and this cannot be executed in the mass market.

Hou et al. [24] developed a heterogeneous information network, i.e., Hindroid
for android malware analysis in 2017. This framework created higher-level
semantics in place of application programming interface (API) calls. HinDroid
framework created a heterogeneous information network (HIN) of android appli-
cations and a meta-path to provide connection to these applications. All meta-path
is required to calculate a similarity measure over android applications and auto-
matically weighted by the learning algorithm to make predictions. The authors
claimed that HinDroid shows better performance than other android malware
detection systems; however, accuracy and efficiency were not provided.

Karbab et al. [25] developed an automatic framework MalDozer using deep
learning in 2018 for android malware analysis. MalDozer automatically extracts the
features and learns the new patterns from the actual samples to detect the malwares.
MalDozer can be deployed not only on remote servers but also on android mobile
agents. MalDozer offered many advance features like automatic features extraction
in the training phase and minimal preprocessing power. A test sets of 33,000
malwares and 38,000 benign apps are used to evaluate the performance of frame-
work. MalDozer demonstrated that malware can be correctly detected with an
F1-Score of 96–99%.
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Li et al. [26] introduced a new framework in 2018 for malware analysis system
based on Significant Permission IDentification (SigPID). This framework is
designed in three systematic stages of pruning approach with machine learning
techniques to identify the most significant permissions so that framework can be
utilized effectively. SigPID demonstrated that only 22 permissions out of 132
permissions are significant and improve the runtime performance by 85.6%. This
framework also demonstrated that 90% of precision can be achieved by the support
vector machine (SVM). A test set of 1,000 malwares was applied for testing and
SigPID technique demonstrated 93.62% and 91.4% efficiency in detection of
known malware and unknown/new malware samples, respectively.

Feng et al. [27] proposed an innovative ensemble learning-based EnDroid in
2019 for android malware detection. This framework integrated multiple types of
dynamic features and analysis techniques and achieved very precise malware
detection accuracy. These analysis techniques include the monitoring of malicious
behavior of system and application level like stealing of critical data, uploading on a
remote server, and update of firmware with malicious codes. Two datasets were
taken for experiments and result demonstrated that stacking accomplished the
best detection performance and exhibits 96.56% efficiency in android malware
detection.

Zhou et al. [28] presented a new framework incorporating the control flow graph
with machine learning algorithms in 2019 for android malware analysis. In this
framework, the applications are decompiled and a control flow graph is constructed
to obtain the API information. Three types of system API uses data sets, (1) API
calls, (2) API frequency, and (3) API sequence based on control flow graphs are
constructed to develop three detection models. The accuracy of all three models is
compared using Precision, Recall and F-score metrics. The Framework demon-
strated 98.98% detection precision on a test set of 10,683 malicious and 10,010
benign applications.

Mehtab et al. [29] proposed an innovative approach, AdDroid in 2019 to detect
android malwares based on a variety of permutations of artifacts. The rules/artifacts
designate the activities of codes of android device like establishing a connection to
the ISP through the internet, secretly uploading personal data to the pre-defined
server, updating malicious package/patches of firmware, etc. AdDroid uses
ensemble-based machine learning algorithms, i.e. Adaboost to train the model for
static analysis of android apps. AdDroid is able to extraction and selection of statics
feature and then able to recognizing malicious applications based on the most
unique rules. This machine learning framework is trained and developed by
applying a test set comprising 1,420 apps including 910 malicious and 510 benign
android apps. The framework demonstrated an accuracy of 99.11% on a similar test
set. The Authors did not include dynamic features for machine learning.

Ma et al. [30] proposed the deep learning-based framework Droidetec in 2020,
for android malware detection and exact localization of malicious codes in the apps.
This framework implemented an innovative feature extraction method to monitor
behavior sequences from malicious apps. Extracted behavior sequences are repre-
sented as a vector that automatically scrutinizes the semantics of sequence of
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fragment and determines the malicious code. A test set of 9,616 malicious and
11,982 benign programs is used to evaluate the capability of Droidetec framework
and the result demonstrated a precision of 97.22% for detection.

Mohammed et al. [31] proposed a deep learning framework, i.e., DL-Droid in
2020 to detect the malicious apps through dynamic features and generation of
stateful input. DL-Droid framework is implemented with 30,000 benign and mal-
ware apps on real android terminals. Result demonstrates that the performance of
detection of this framework with deep learning module is better than existing
traditional methods. DL-Droid achieved accuracy of 97.8% for detection with
dynamic features only and accuracy of 99.6% for detection with dynamic and static
features. However, self-adaptation for intrusion detection systems is not available to
improve the performance of model for malware detection.

Su et al. [32] proposed DroidPortrait in 2020, an approach of construction of
multi-dimensional and vertical behavioral representation for detection of android
malwares. In the analysis, the behavior of android malware is monitored and static
and dynamic behavior as dataset are extracted. In the next phase of analysis, dif-
ferent kinds of behaviors are segregated based on android malware and a specific
and unique behavioral tag is attached with its signature. Machine learning
(ML) algorithms are implemented to correlate these behavioral tags with specific
malwares automatically. A high performance machine learning algorithm, i.e.,
random forest algorithm is very suitable and easily integrates with the basic
framework to detect the android malware. The result demonstrated that
DroidPortrait framework can illustrate the behavior appearances of android mal-
ware with high accuracy. The efficiency level was 90% which is lower and can be
increased further.

Mahindru et al. [33] proposed MLDroid in 2020, the web-based model to
analyze the android apps as malware and benign. Authors implemented feature
selection techniques and trained the framework by these techniques. These selected
features developed an innovative model by implementing different machine
learning algorithms. A test set of 500,000 plus android apps are used for the
experiment and the four distinct machine learning algorithms (1) deep learning,
(2) first and farthest clustering, (3) YMLP, and (4) nonlinear ensemble decision tree
forest is applied in parallel. Experiment results exhibit that framework developed by
considering all the algorithms can achieve an accuracy rate of upto 98.8% for
detection of malware from android apps.

Zhang et al. [34] proposed an automatic framework TC-Droid in 2020, for
android applications analysis based on text classification technique. In this frame-
work, the text sequences of APPs are analyzed by AndroPyTool and generated
analysis reports are feed in deep learning algorithms. A machine learning algorithm,
i.e., convolutional neural network (CNN) is used to extract considerable informa-
tion instead of manual feature engineering from the same analysis report. A variety
of well-known samples were collected for evaluation, and it is demonstrated that the
performance of TC-Droid is better than other classic algorithms, i.e., NB, LR,
KNN, RF, etc. However, actual data for accuracy and efficiency were not provided
for comparison.
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Thongsuwan et al. [35] demonstrated a hierarchical approach in 2021 using
extraction of authorization-sensitive feature and implementing deep learning
algorithms to design an android malware detection framework. This framework
extracts four sensitive features: basic blocks, permissions, api, and key functions
used for authorization. An innovative machine learning model, i.e., convolution
neural network and eXtreme Gradient Boosting (CNNXGB) are implemented for
training, learning and detection of malware. This framework sequences the key
functions as per the timing of API calls and collects a similar section that confines
the global semantics of malware family. Permissions and API calls were extracted
from 1,330 android test samples to drill the model by XGBoost. The result
demonstrated that efficiency increased upto 98% by the CNNXGB model.
However, as the input data for analysis is increased, the number of the convolution
layers and complexity increases.

McDonald et al. [36] developed a framework based on manifest permission and
machine learning for android malware detection in 2021. In this framework, four
different machine learning algorithms (1) random forest, (2) support vector
machine, (3) Gaussian Naïve Bayes and (4) K-Means are applied in conjunction
with features selected from android manifest file permissions to distinguish the apps
as malicious or benign. A test set of 5,243 samples are used to test the framework
and it was demonstrated that random forest ML algorithm performed the best with
82.5% precision and 81.5% accuracy.

Above mentioned techniques are briefly explained and tabulated in Table 1 for
ready reference for researchers.

Table 1 Overview of the existing framework and research gaps

S.no Reference Year Methodology/
contribution

Research gap

Integrated static and dynamic malware analysis techniques

Android application
(AA) sandbox [4]

2010 Uses static and dynamics
analysis

Root privilege is needed
to capture the system
calls

DroidRanger [5] 2012 Uses static and dynamic
analysis

Developed for official
android and alternative
android markets only

APK Auditor [7] 2015 Uses static analysis with
permission-based
malware detection

Framework is installed at
central server, and
therefore, internet
connection is required
for android terminal for
the malware analysis at
server

(continued)
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Table 1 (continued)

S.no Reference Year Methodology/
contribution

Research gap

Novel hybrid android
malware detection [8]

2016 Static and dynamic
features of the
applications, are extracted
at the server configured at
distant. If app is
distinguished as risk,
database is updated for
this risk signature

Efficiency and accuracy
of framework were not
determined and
compared with another
existing framework

MONET [9] 2017 The specific signatures
for respective malware
are generated and
forwarded to server for
matching and detection

This framework works
only with android DVM;
however, latest android
supports only ART

Hybrid malware analysis with artificial intelligence

A novel anomaly and
misuse hybrid mobile
malware detection
system [10]

2015 Static features from
manifest file and dynamic
features through
CuckooDroid are used
with SVC classifier in
misuse detection

Comparison table for
detection with other
frameworks are not
computed

Detection and
mitigation of android
malware through deep
learning [16]

2015 Static features from
printable strings
information (PSI) and
dynamic features from
Cuckoo are extracted.
These features are
inserted in machine
learning modules for
classification

Power and storage
consumption are intense

DroidDetector [20] 2016 The extracted static and
dynamic features through
different tools are applied
in deep learning
algorithm for
classification as malware

Malwares are escaped
from the detection
system during the
dynamic monitoring
time-interval

A hybrid automatic
static-dynamic switch
framework [21]

2016 Analysis is
conditional-based. If
properly decompiled the
app, extracted static
vectors are inserted into
deep learning algorithms
like SVM, kNN and
Naïve Bayes. However, in
case, app is not
decompiled properly then
only dynamic are inserted
into machine learning for
classification

Only performs one
analysis, i.e., static or
dynamic. Framework
will not be able to detect
the malicious codes if
app is decompiled
properly

(continued)
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Table 1 (continued)

S.no Reference Year Methodology/
contribution

Research gap

MADAM [23] 2016 Features are extracted at
four stages: (1) package,
(2) application, (3) user
and (4) kernel. These
features are mapped with
vectors and inserted as
input in machine learning
kNN classifier for training

It runs only on rooted
device, therefore, not
supported in the large
users. Moreover,
pre-loaded apps/games
cannot be analyzed by
this framework

Hindroid [24] 2017 Created heterogeneous
information network
(HIN) of android
applications is used with
machine learning
algorithms

Accuracy and efficiency
were not provided

MalDozer [25] 2018 Automatically extracts the
features and learns the
new patterns from the
actual samples through
machine learning
algorithms

Less effective in
malware family
attribution

Significant permission
IDentification (SigPID)
[26]

2018 Instead of all android
permissions, only most
significant permissions
SigPID are extracted and
utilized for machine
learning models

The analysis can be
performed only on the
rooted devices

EnDroid [27] 2019 Dynamic features with
system-based behavior
trace and common
apps-based malicious
behaviors are used for
deep learning

Power consumption is
very high

A control flow
Graph-based android
malware detection
including machine
learning [28]

2019 An ensemble of three
detection models is
created based on control
flow graph of three data
sets for android malware
detection and analysis

Capability to establish
the malware family is
not presented

AdDroid [29] 2019 Only static features are
extracted and inserted
into the ensemble-based
machine learning model
that is trained by the
Adaboost

Artifacts called rules
were defined for only
static analysis. Dynamic
analysis is not integrated
with the model

(continued)
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Table 1 (continued)

S.no Reference Year Methodology/
contribution

Research gap

DroidDetec [30] 2020 An innovative behavior
sequences feature is
extracted for analysis of
syntax of linked segments
and finding of malicious
code

Not accurate framework
for further classification
into various malware
families

DL-Droid [31] 2020 Dynamic feature
extraction with stateless
approach is used with
deep learning algorithms
for analysis of malicious
android apps

Self-adaptation for
Intrusion detection
systems is not available
to improve the
performance of model

DroidPortrait [32] 2020 Extracted static and
dynamic behavior and
create an informative
behavior dataset that
includes specific behavior
tag for specific android
malware

The efficiency level was
90% which can be
increased further

MLDroid [33] 2020 Static and dynamic
features are extracted and
inserted into 04 different
machine learning
algorithms in parallel

This framework has
capability for only
detection the app as
malware or benign.
Detection rate is lower

TC-Droid [34] 2020 Convolution neural
network (CNN) algorithm
is used for extraction of
significant tags instead of
manual features

Data for accuracy and
efficiency were not
provided

ConvXGB [35] 2021 Authorization-sensitive
features are extracted for
machine learning
algorithm of convolution
neural network and
eXtreme gradient
boosting (CNNXGB)

Number of the
convolution layers is
increased, depending on
the input data for
analysis

Manifest permission
(MP) and machine
learning (ML)-based
framework [36]

2021 Static features are
selected and inserted into
four different machine
learning algorithms for
grading the apps as
malicious or benign

Other remaining static
features can also be
explored further to form
a greater feature set
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3 Discussion

Based on the review of all frameworks, an overall comparative analysis among all
malware detection frameworks based on static and dynamic features and hybrid
features using artificial intelligence are analyzed. We discover that the hybrid
method using artificial intelligence has the best accuracy in comparison with statics
and dynamic malware analysis detection approaches. The accuracy efficiency of
each framework is analyzed and it is observed that all frameworks have an accuracy
efficiency higher than 80%. It is also examined that the DL-Droid malware analysis
framework has maximum accuracy efficiency that is 99.6% [31], and machine
learning-based android malware detection framework using manifest permissions
has minimum accuracy efficiency that is 81% [36].

4 Conclusion

A methodical and chronically literature investigation of the detection and analysis
frameworks and techniques for android malware are explained. The work done by
researches were reviewed and investigated and existing android malware analysis
frameworks were categorized into two categories: (1) static and dynamic malware
analysis and (2) hybrid malware analysis using artificial intelligence. These mal-
ware analysis frameworks were compared and analyzed according to their specific
features and technique. The advantage and disadvantage of each analysis frame-
work were deliberated. It is essential to develop the frameworks which automati-
cally learn without the intervention of human and detect the zero-day malwares.
Therefore, artificial intelligence techniques surfaced as a potential solution to
handle the different types of malwares. This state-of-the-art research survey is a
fundamental instrument for further any research which can make a tremendous
change in the development of a new framework.
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