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Cross-View Gait Recognition Using Deep o
Learning Approach

Jyoti Bharti and Lalit Lohiya

Abstract Walking speed is used principally to assess the status of human health.
Recent gait recognition systems often experience difficulties, including variations in
the viewing angle and enormous variations in the intraclass. For decades, computer
vision-based approaches are in great demand and more effective in clinical gait anal-
ysis. Used referenced dataset is under well-controlled conditions. Gait movement
rate is the predominant human biomechanical determinant. This paper proposes a
scientific way of determining the pattern of gait movement at a particular speed of
healthy people. Based on deep learning technology, our proposed model comprises of
a fully convolutional neural network accompanied by batch normalization and max
pooling. Proposed models on large-scale gait datasets were being extensively tested
and have been compared with the benchmark approaches. The proposed model’s
overall average accuracy is about 93.0%. Where various clothing and transport
conditions have been encountered, the method is also robust for such conditions.

6.1 Introduction

Gait is one of the most popular biometric aspects of humans because it can be bona
fide excluding subject cooperation at a distance from a lens. In the gait recognition
model, the speed difference between matching pairs plays an important role and the
gait mode of walking or running makes it more challenging. The distinctive features
of the human body, such as handwriting, voice, and gait, have been highly studied
for many years to make excellent progress in biometrics [1]. Every individual has a
particular way of walking that happens because of facilitated and worked together
activities of the skeletal muscles and sensory system. This makes the biometric step a
ground-breaking marker to decide obsessive behavior caused by actual injury, matu-
ration, or related issues. These inside and outside variables legitimately influence the
movement and activity of the body and result in walk impedance [1]. Biomechanical
examples of human movement are by and large speed-dependent, the adequacy of
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explicit development normally levels with the development speed (stride velocity is
a determining factor in the nature of phases) [1, 2].

In an average walk examination, patients perform stride preliminaries at their
agreeable speed and their step designs are regularly contrasted, and a reference
design is from a regulating information base. Nonetheless, the impact of stride speed
is commonly not represented when the step example of obsessive people is contrasted
and sound ones who do not walk at an equal speed [2].

A repeated pattern consisting of steps and strides is the gait loop. A step phase
began with one foot’s initial contact and finishes with the other foot’s initial contact.
The stride phase begins with one foot’s initial contact and finishes with the same
foot’s next initial contact, which comprises of two steps. There are two main phases
in the gait cycle: stance phase comprises of 60% of the entire gait cycle and swing
phase comprises of 40 percent of the full gait cycle. The step is the time when the
foot is in touch with the ground and the weight is borne by the limb. The swing
process is the time during which the reference foot is not in touch with the surface
and swings in the air, indicating the weight of the body is borne by the contralateral
limb [1, 3-5].

6.2 Related Work

6.2.1 Gait Recognition System

Human authentication based on gait has significant importance and a wide scope of
research. The science of recognizing or identifying people by their physical charac-
teristics is known as biometrics. One form of biometric technology is gait recognition
[5]. The authors are working on gait recognition biometric technology to analyze the
movements of body parts such as the foot, the knee, the shoulder, and so on. There
are various gait acquisition technologies such as cameras, wearable sensors, and
non-wearable sensors. Figure 6.1 demonstrates the gait recognition system.

Any recognition system is developed based on the training phase and the testing
phase. There are two approaches, such as authentication and recognition. Automatic
video processing was the basis for the first gait recognition [3, 6, 7]. It generates a
mathematical model of motion. This method is the most common and requires the
study of video samples of walking subjects, joint trajectories, and angles. In order
to perform detection, the second approach uses a radar system to monitor the gait
period that is then compared with the other samples [7].

1.Classifier
Gait Aquisition —— Preprocessing [——» Fealure Extraction ——>»| Feature Selection ——» 2.Identification
3.Recognition

Fig. 6.1 Gait recognition system
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Fig. 6.2 Gait energy image extraction

A potential solution for this issue would be to gather a few walking preliminaries
at different walking rates to construct a reference information base for essentially
any conceivable step speed [8—11]. The tedious idea of such an assortment of knowl-
edge, however, would be cost-restrictive and unviable. Scientists have suggested
regression techniques as a reachable alternative for anticipating phase limits based
on exploratory facts to resolve this barrier. The expectation data depends purely on
the normal, slow, and fast walking speeds for stable subjects but only 10% time frame
phase period when the complete step cycle was considered. [1, 2, 7, 12, 13]

The gait energy image (GEI) is an enhanced spatiotemporal feature to analyze a
subject’s gait and posture characteristics. Binary silhouette sequence normalization
was used instead of direct silhouette sequence to provide robustness. GEI can be
stated as,

Sy

=
GEI:S— E I,(u,v,s) (6.1)

I 5=

where Sy states the total number of silhouette images in the gait cycle and s is an image
number at an instant. I, (u, v) denotes the silhouette frame at an instant. Figure 6.2
shows the extracted GEI image from full gait cycle.

6.3 Proposed Work

6.3.1 Implementation Details of Proposed Model and Model
Summary

CASIA B Gait Dataset contains silhouette sequence for each of the view angle. This
silhouette sequence of images has been converted to gait energy image. So, there are
in total 13,640 images. 11 angle view * 10 categories * 124 subjects = 13,640 GEIs.
To evaluate the proposed method, all the sequences have been converted to a gait
energy image (GEI), then set of GEIs are fed to gait recognition proposed model.
Figure 6.3 shows the various GEIs under three conditions and 11 view angles.

One layer consists of a 2D convolutional layer followed by batch normalization
and max pooling in the proposed deep learning model for cross-view gait recognition.
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Fig. 6.3 GEI examples from an individual’s CASIA B dataset under various conditions from view
0° to 180° with an 18° interval. Top row: regular walking, middle row: coat-wearing, and bottom
row: bag-wearing

Conv2D Conv2D ConviD ConvzD
I Activation - Relu | Activation - Relu | 5, Activation -Relu | Dropout L
RIS * Batch Nomalization * Baich * Baich > Dense > QUL
Max-pooling2D Max-pooling2D Max-pooling2D Flatten

Fig. 6.4 Proposed model

As such, three stacks of layers are available in total. Figure 6.4 shows the design of
the model proposed. Table 6.1 shows description of the model proposed.

6.3.1.1 Convolutional 2D Layer

A convolutional layer is a part of the deep neural network that can intake an input
image, attribute importance to the different aspects/objects in the frame by learning
weights and biases, and distinguish one from the other. The preprocessing needed
for the convolutional neural network is much lower than for other classification
algorithms. The size of input image is (240 x 240), and size of convolutional kernel
is (7 x 7). The input image is downsampled, and output of convolutional 2D layer
is about (234 x 234). Output of convolution layer is nothing but the feature map.
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Table 6.1 Summary of proposed model (BN—batch normalization, MP—max pooling, and
Conv—convolution layer)

Layers Output size No. of filters Filter size Padding Params
Conv 1 234 x 234 x 16 16 7x7 1 2368
BN 234 x 234 x 16 - - - 64

MP 1 117 x 117 x 16 16 2x2 2 0
Conv 2 111 x 111 x 16 16 7x7 1 12,560
BN 111 x 111 x 16 - - - 64
MP 2 55 x 55 x 16 16 2x2 2 0
Conv 3 49 x 49 x 16 16 7 x7 1 12,560
BN 49 x 49 x 16 - - - 64

MP 3 24 x 24 x 16 16 2x2 2 0
Conv 4 18 x 18 x 64 64 7x17 1 50,240

6.3.1.2 Batch Normalization

Batch normalization helps each network layer to learn much more independently
of other layers. Higher learning values can be used because batch normalization
assures that no activation has actually went high or really low. It reduces overfitting
due to a slight regulation effect. To stabilize a neural network, it normalizes the
performance of a previous activation unit by deducting batch average and dividing
by batch confidence interval.

6.3.1.3 Pooling 2D

An issue with a feature map output is that they are sensitive to input feature position.
To fix this sensitivity, sample the function maps is one approach. Pooling layers offer
an approach to sample feature maps by summarizing features in the feature map
kernel. Pooling is needed to detect feature in feature maps. We used max pooling.
Results are pooled function maps highlighting the kernel’s most present feature. The
kernel size is (2 x 2).

6.3.1.4 Dropout

To simulate having a large number of distinct network architectures, a single model
can also be used by arbitrarily lowering out nodes during training. This is known
as dropout and provides a very inexpensive and effective regularization impact for
reducing overfitting and enhancing generalization error in deep neural networks.



50 J. Bharti and L. Lohiya

There are two sets of GEIs known as gallery set and probe set. While training the
model gallery set is used and for evaluation probe set is used. As there are 11 views,
there will be 11 models trained and tested.

6.4 Experiments and Result Analysis

6.4.1 CASIA-B Gait Dataset

This is a large multiview gait database; the information was gathered from 11 views
and consists of 124 subjects. There are three varieties of variations clothing and
carrying conditions including wide range of view angles and also consist of extracted
silhouettes.

With 124 subjects, including both genders, 93 males and 31 females in an indoor
environment, the data was gathered at 25 fps and a size of frame is 320 x 240. There-
fore, there are 13,640 sequences in total. Figure 6.5 shows how data was collected
from different angles [1-6, 14]. CASIA-B dataset contains 124 subjects; data is
captured from 11 angle views from 0° to 180° with 18° interval. There are in total

Fig. 6.5 11 angle view of CASIA-B dataset
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10 categories such as normal walking with 6 subsets, walking while carrying bags
with 2 subsets, and walking while wearing coat with 2 subsets.

6.4.2 Experimental Environment

To perform our experiment, we have used Python 3.7, Jupyter Notebook, and
Anaconda Environment. TensorFlow 2.0 is used. The dataset used is CASIA-B
dataset.

6.4.3 Result Analysis on CASIA-B Dataset

Proposed model is trained at 11 angle views, and each trained model is evaluated
against different viewing angles probe set. Table 6.2 shows the experimental results
on probe set.

It should be noted that the proposed method achieves the best recognition accu-
racies at almost all angles. This is the result of gait energy image over the silhou-
ette sequence. For evaluation of the proposed model, we compared our model with
GEI template methods, as input to model is GEIs. This are the models—Gait-Net
[5], L-CRF [15], LB [16], RLTDA [17], CPM [12], and DV-GEIs [14]. Table 6.3
shows the comparison of the benchmark approaches and state-of-the-art models with
the proposed approach with respect to some of the probe evaluation CASIA-B gait
dataset.

Table 6.2 Shows cross-view gait recognition accuracy on CASIA-B dataset

Gallery | Probe
0° 18° 36° 54° 72° 90° 108° | 126° | 144° |162° |180°

0° - 95.71 | 94.86 | 94.25 | 95.97 | 95.98 |96.03 | 95.98 |95.98 | 95.99 | 96.03
18° 95.27 |- 94.38 1 95.50 | 95.98 |95.94 |95.98 |95.94 |95.89 | 95.76 |95.72
36° 95.51 95.69 |- 91.92 | 91.51 | 90.08 | 92.39 | 94.73 | 94.79 | 95.97 |95.63
54° 93.50 92.24 |89.29 |- 77.47 | 73.39 | 75.78 | 85.42 | 90.84 | 94.45 |93.63
72° 95.62 |95.57 |95.70 |95.63 |- 94.56 | 93.65 | 94.86 | 95.57 |95.86 |95.60
90° 96.00 95.90 |96.01 [95.76 | 96.50 |— 95.99 | 95.78 1 95.99 |96.02 |95.95
108° 95.93 95.87 |96.09 |96.25 | 96.64 | 96.68 |— 96.17 | 96.11 |96.02 |95.97
126° 96.04 |95.73 |95.86 |96.07 | 96.30 | 96.44 | 96.51 |- 96.15 |95.99 |96.06
144° 93.29 |89.35 |89.71 |91.23 |90.13 | 88.09 |85.84 | 87.40 | — 90.67 | 90.29
162° 93.80 92.73 | 89.15 |84.83 | 84.35 | 83.15 | 81.94 | 86.97 |89.26 |- 94.17
180° 94.35 90.64 |88.35 |86.80 | 85.74 | 85.37 | 84.27 | 86.56 |90.72 | 95.37 |-
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Table 6.3 Comparison with under different walking view angles on CASIA-B by accuracies

Probe | Gallery | Proposed model | GaitNet[5] |L-CRF[38] |LB[37] |RLTDA [17]
54° 36° 91.92 91.6 93.8 92.7 80.8
54° 72° 95.63 90.0 91.2 90.4 71.5
90° 72° 94.56 95.6 94.4 93.3 75.3
90° 108° 95.99 87.4 89.2 88.9 76.5
126° 108° 96.17 90.1 92.5 93.3 66.5
126° 144° 87.40 93.8 88.1 86.0 72.3
Mean 93.61 91.4 91.5 90.8 73.8

Table 64 Compar.ison of Methods Average accuracy (%)

recognition cross-view

accuracy on CASIA-B dataset CPM [12] 24.1
GEI-SVR [13] 422
CMCC [18] 439
ViDP [19] 45.4
LB [16] 56.9
L-CRF [15] 67.8
Gait-Net [5] 81.8
DV-GEIs [14] 83.4
Proposed model 93.0

It should be noted from Table 6.2. The average accuracy of the proposed model is
around 93.0%, which outperforms the GaitNet with 12.2% and DV-GEI with 9.6%.
Compared the output with state-of-the-art methods like L-CREF, use GEIs instead of.

Silhouette sequence as an input to the model, this is another proof that our gait char-
acteristics strongly illustrate all major gait variations. Table 6.4 shows the comparison
of cross-view recognition accuracy on CASIA-B dataset.

6.5 Conclusion

The deep learning approach is proposed in this paper. The proposed method can
efficiently extract spatial and temporal parameters. In this model, we fed gait energy
image (GEISs) as input to the model rather than gait silhouette series. This method is
efficient than conventional methods. The gait energy image keeps the dynamic and
static facts of a gait sequence, although time is not properly considered, this is the
one limitation of the proposed method. The proposed model is robust in variations
including obstructive objects, clothes, and viewing angles. Eventually, gait awareness
develops stronger. Our model was tested on a broad CASIA-B dataset. Max pooling
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layer is used to adapt the spatial information, improving the mapping efficiency.
Recognition results obtained demonstrated our model’s dominance over well-known
approaches.
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