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Abstract. In this paper we present a generalized algorithm for unsharp mask-
ing of medical images which takes as one of its inputs a high contrast image
underwent local adaptive contrast enhancement. Selection of optimal values of
the number of histogram bins, processing window size and intensity lower and
upper limits in iterative manner is part of applying Contrast Limited Adaptive His-
togram Equalization (CLAHE). Experimental results reveal higher quality of the
output images both in terms of root mean square contrast and sharpness. Achieved
quality, both visually and quantitatively, is compared to that from the Adaptive His-
togram Equalization (AHE) algorithm, limited histogram stretching and ordinary
histogram equalization which proves its applicability. The algorithm is considered
appropriate for processing a number of types of images, such as CT, X-ray, etc.
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1 Introduction

Medical images contrast plays extremely important role during visual inspection of the
internal structure of the human body for issuing correct diagnosis and further treatment
of patients. Over the years there are many proposed techniques for contrast enhancement
[1-3].

One of the more recent studies related to the CT image analysis, using deep learning,
also include an aspect of predicting the contrast enhancement [4]. A number of maps,
such as class activation, its gradient-weighted variant, saliency and backpropagation
modifications are combined in a new type of a map which further eases the prediction
process. As a result voxel visualization is reported to be more clear and allows for more
precise feature selection to improve overall accuracy. Prediction probability for some of
the modifications tried goes over 90% with registering higher specificity for the saliency
map in particular.

Kallel and Hamida [5] rely on more direct approach, that is the discrete wavelet
transform with singular value decomposition in order to implement adaptive gamma
correction. Singular values are found from the low-low frequency sub-band and then
modified by a factor, followed by classification of the whole sub-band into low and
average contrast types. Adaptive gamma correction is applied over the low contrast
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areas. All these steps take place in wavelet domain prior restoring the final enhanced
image. Increased efficiency is reported over other well-known methods.

Another recent approach for CT contrast enhancement [6] employs clustering-based
algorithm where the input image is at first converted through one-dimensional separation
on a column basis. Then, data sorting of the elements follows prior the clustering of
subsequent elements, ending with a labeling in order to get the output image. As main
benefit of the approach, it is pointed out its lower processing time with regards to 5 other
algorithms.

Enhancement of X-ray images also has its own development in the recent years.
Irrera et al. [7] apply multiscale contrast enhancement after patch-based filtering of
X-ray images. Noise presence is estimated in a parametric fashion in order to opti-
mize the level of contrast increase without corrupting intolerably the quality of output
images. Visual evaluation, as well as the signal and contrast to noise ratios, prove the
proposed approach applicable. Kushol et al. [8] achieve contrast enhancement of X-ray
images by morphological operators. They apply the top-hat and bottom-hat operations
and the parameters of the structuring element are autonomously estimated from the
intensity gradient over processed area. Visual comparison of resulting images with the
contrast-limited adaptive histogram equalization (CLAHE) proves the applicability of
this technique. Another autonomous algorithm [9] making use of CLAHE at the addi-
tion of noise and high-pass filters aims to adapt its performance based on few tunable
parameters to the modality being registered. Around 48% of the test database involved
in the study got highest evaluation score of 5 as a subjective measure, given by medical
personnel and other experts.

The aim of the study presented in this paper is to evaluate the performance of the three
of the most popular image contrast enhancement algorithms — histogram equalization,
image adjustment and CLAHE when applied on CT and X-ray images for unsharp
masking. Based on experimental results, simple general purpose algorithms for selecting
the optimal parameters of all input arguments for these algorithms are proposed in Sect. 2.
Their efficiency is presented in Sect. 3 where the experimental results are reported. In
Sect. 4 a conclusion is made.

2 Algorithms Description

The well-known unsharp masking algorithm for general purpose images [3], especially
in photography, is given in Fig. 1. In its form here, it takes a grayscale input image I(i,j),
where i and j are the spatial coordinates of the pixels. In order to get a better contrast
and details, a Gaussian kernel [10] blurs it to G(i,j) and by subtracting with the original
a contour mask C(i,j) is found. After applying any contrast enhancement algorithm the
resulting image E(i,j) is combined with (i,j) and C(i,j) to get the final result O(i,j).

According to the purpose of the current study, three of the most popular contrast
enhancement algorithms are tried within the unsharp masking scheme — the histogram
equalization (histeq) [1], image intensity adjustment (imadjust) [2] and the contrast-
limited adaptive histogram equalization (CLAHE, adapthisteq) [11].

Since histeq has the number of histogram bins (2", n = 1, 2, 3,...) as input argument,
the imadjust — the clipping limit ¢/ of the intensity level in the range of low intensities
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Fig. 1. General unsharp masking scheme

and (1 — cl) — in the high, and the CLAHE - the tile size over one dimension m, again
the clipping limit ¢/, and the number of histogram bins 2", there is a need to select those
based on certain criteria. A simple way of doing so, is to seek for the highest possible
root mean square contrast RMSC [12]:

1 M—1 N-1 =2
RMSC=\/W Do 2o (0GH=O), O]

where M and N are the number of rows and columns of the resulting image O with its
mean intensity O. In addition to that one would expect also as high as possible sharpness
(Shrp) [13] of the image which could be found over particular direction (d), according
to:

1 P
Shrpa = (Ti = T) Zp:l Sy, @)

where T'; and T'; are the maximum and minimum densities of an area of the image over
which the Shrpy is sought; P — the number of points through which the change of the
intensity profile S, (slope) is traced. More generally, the sharpness as a vector filed could
be found from the gradient of the intensity in all image points. The norm of that vector
is what is used as a scalar in this study.

It may turn out that both the RMSC and Shrp could rise or fall monotonically without
any expressed maximum and in the same time the quality of the processed image decrease
significantly, rendering it unusable. In order to avoid that, the peak signal-to-noise ratio
(PSNR) [3] and the structural similarity index (SSIM) [3] are used as limiting factors into
the selection of appropriate input arguments for the contrast enhancement algorithms.
Optimal selection for histeq and imadjust is given in Fig. 2.

The three input arguments for the CLAHE algorithm could be found, following the
iterative approach, presented in Fig. 3.
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Fig. 2. Finding optimal parameters for histogram equalization (a) and image adjusting (b)
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Fig. 3. Finding optimal parameters for contrast-limited adaptive histogram equalization

3 Experimental Results

The test database consists of 103 CT images with dimensions 512 x 512 pixels each,
16 bpp, part of the DeepLesion gathering [14] and 105 X-ray images, 1024 x 1024 pixels
in size, with 8 bpp representation, which come from the ChestX-ray8 [15] collection. All
experiments are implemented on a desktop computer with Intel Core i5 x64 processor,
having 4 cores and operating at 3.1 GHz, 12 GB of RAM under the control of Linux
Ubuntu LTS 14.04. The simulation environment is Matlab R2016a.
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The only adjustable parameter for the histeq algorithm, being the number of bins
to process from the histogram of the input image 2", is found to be 64, that is n = 6.
While the average RMSC and Shrp from all CT images are high for n = 1, around 0.5
and 0.028, respectively (Fig. 4), the PSNR and SSIM for the processed images are too
low, below 10 dB and 0.3 in the same time. A saturation for the similarity from above
between the original image and enhanced one is observed for n = 6 and higher, where
SSIM reaches around 0.6. That bound is thought to define the optimal . Similar results
are obtained for the X-ray images.
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Fig. 4. Finding the optimal number of bins for the histogram processed by histeq

Analogous approach is undertaken when estimating the optimal clip limit for the
imadjust algorithm. Both the RMSC and Shrp parameters rise monotonically but SSIM
starts to fall from almost 1 after ¢/ = 0.01 and PSNR drops significantly below 50 dB
after that value which means significant deterioration of the image structure. Hence,
clop; is selected to be 0.01. This result is true for both CT and X-ray images.
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CLAHE supports high RMSC and Shrp for 2 histogram bins (n = 1) — around 0.18
and 0.016, respectively, which decrease gradually to 0.02 and 0.002 for n = 8 in the case
of CT enhancement. PSNR and SSIM however constantly rise close to 35 dB and 0.99,
respectively. The observed change of RMSC for X-ray images is from around 0.195 up
to 0.245, and Shrp changes from 0.01 up to 0.022 in the interval [1, 8] for n. SSIM is
above 0.8 when n n = 8. That’s why all subsequent experiments use n n = 8. In Fig. 5
the mutual influence of the clip limit (c/ — from 0 to 0.3) and tile size (m —from 2 x 2 to
64 x 64 pixels) reveals significant change in RMSC and Shrp of enhanced CT images.
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Fig. 5. Finding the optimal clip limit and tile size for the adapthisteq

The highest RMSC is obtained for ¢/ = 0.3 (Fig. 5a) but PSNR drops below 20 dB
(Fig. 5¢) and SSIM is around 0.7 (Fig. 5d). There is almost none dependency on the tile
size for all four parameters at fixed cl. In order to get most of the details in the image
preserved the following selection is made — clyp; = 0.0l and m =1 (2 x 2 tile).
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The average RMSC, Shrp and processing time for each of the tested contrast enhance-
ment algorithms, when applied separately outside the complete unsharp masking proce-
dure, are presented in Table 1. It seems that histeq and adapthisteq are close one to each
other and better than imadjust with regards to all 3 registered parameters. The adapthis-
teq leads to higher sharpness in X-ray images but is slower than histeq for both types of
images. The fastest algorithm is imadjust.

Table 1. Average performance for histeq, imadjust and adapthisteq alone.

Algorithm | CT images X-ray images

RMSC | Shrp Time, s | RMSC | Shrp Time, s
Input images | 0.0084 | 0.0005 | N/A 0.2320 | 0.0099 | N/A
histeq 0.2656 | 0.0185 | 0.0026 |0.2926 | 0.0142 | 0.0071
imadjust 0.0210 | 0.0012 | 0.0012 | 0.2363 | 0.0101 | 0.0029
adapthisteq | 0.1850 | 0.0108 | 0.0159 | 0.2832 | 0.0156 | 0.0183

Table 2 contains the final average RMSC, Shrp and processing time, which represents
the period needed for the Gaussian blurring, finding the contour mask and the fusion of
it with the original and the contrast enhanced image (Fig. 1). The optimal parameters of
the Gaussian kernel, found empirically based on highest RMSC and Shrp in a separate
experiment carrying out test unsharp masking, are o = 10 for the CT and 0 = 0.8
for the X-ray images. Naturally, the Time is higher for the X-ray images due to their
higher resolution. The histeq algorithm has the peak values of RMSC but comparable to
those for adapthiseq and for the X-ray photos Shrp is higher for the adapthisteq. Both
parameters are considerably lower for the imadjust algorithm.

Table 2. Unsharp masking average evaluating parameters.

Algorithm | CT images X-ray images

RMSC | Shrp Time, s | RMSC | Shrp Time, s
Input images | 0.0084 | 0.0005 | N/A 0.2320 | 0.0099 | N/A
histeq 0.1220 | 0.0086 | 0.0087 | 0.2232 | 0.0118 | 0.0207
imadjust 0.0155 |/ 0.0011 | 0.0076 |0.1992 | 0.0102 | 0.0196
adapthisteq | 0.0851 | 0.0051 | 0.0076 |0.2162 | 0.0125 | 0.0191

The visual comparison between input and processed images (Fig. 6) show more
details in the range of the low and high intensities from the human body when employ-
ing adapthisteq algorithm in the unsharp masking. Slightly lower contrast and some
more difficult to distinguish areas appear in images, obtained with the histeq algorithm.
The overall contrast and some of the details’ visibility are lower for the imadjust with
comparison to the other two algorithms.
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Fig. 6. Original —a (CT), e (X-ray), and processed by histeq —b, f, imadjust —c, g, and adapthisteq
—d, h images

4 Conclusion

In this paper simple optimization procedures are presented for the histogram equaliza-
tion, intensity adjusting and the contrast-limited adaptive histogram equalization algo-
rithms in order to find optimal parameters for them. The root mean square contrast, the
sharpness and structural similarity between the contrast enhanced and original image
play the role of target parameters. Tests with CT and X-ray images confirm the plau-
sibility of the undertaken approach and the applicability of resulting images for the
unsharp masking algorithm to use them as input. The contrast-limited adaptive his-
togram equalization yields more detailed and contrast enhanced final images, followed
by the histogram equalization and the image adjusting algorithms at the price of more
computational time. The unsharp masking in this general and easy to implement form
is thought to be an useful tool for medical imaging purposes.
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