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Preface

Welcome to the Proceedings of the 2021 International Conference on Medical
Imaging and Computer-Aided Diagnosis (MICAD 2021) which was held virtually
on March 25–26, 2021. MICAD is an annual conference which aims to provide a
communication platform for top scholars, engineers, scientists, as well as graduate
students to share ideas and discuss the latest technology in medical imaging and
computer-aided diagnosis or related fields such as artificial intelligence and
machine learning, to encourage growth, raising the profile of this multidisciplinary
field with an ever-increasing real-world applicability.

The diverse range of topics reflects the growth in development and application of
medical imaging and computer-aided diagnosis. The main topics covered in the
proceedings are (i) computer-aided detection/diagnosis, (ii) automated medical
image analysis, (iii) medical image segmentation, registration and reconstruction,
and (iv) machine learning and deep learning.

MICAD 2021 received submissions from 16 countries, in total, 80 full papers,
and each paper was reviewed by at least three reviewers in a standard peer-review
process. Based on the recommendation by three independent referees, finally 45
papers were accepted for MICAD 2021 (acceptance rate of 56%).

Many people have collaborated and worked hard to produce successful MICAD
2021. First, we would like to thank all the authors for submitting their papers to the
conference, for their presentations and discussions during the conference. Our
thanks go to program committee members and reviewers, who carried out the most
difficult work by carefully evaluating the submitted papers. Our special thanks to
James Duncan (Yale University, USA), Leo Joskowicz (The Hebrew University of
Jerusalem, Israel), Alejandro F Frangi (University of Leeds, UK), Joseph M.
Reinhardt (The University of Iowa, IA, USA), Le Lu (PAII Inc., Bethesda Research
Lab, Maryland, USA), Erik Meijering (University of New South Wales, Australia),
Tanveer Syeda-Mahmood (Medical Sieve Radiology Grand Challenge Almaden
Research Center, IBM), Raphael Sznitman (University of Bern, Switzerland),
Robin Strand (Uppsala University, Sweden), Kensaku Mori (Nagoya University,
Japan), Ayelet Akselrod-Ballin (Zebra Medical Vision Ltd.), and David Golan (Viz.
ai) for the exciting keynote talks. We express our sincere thanks to the organizing
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committee chairs for helping us to formulate a rich technical program. We hope you
enjoy the proceedings of MICAD 2021.

With warmest regards,

Ruidan Su
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A Dual Supervision Guided Attentional Network
for Multimodal MR Brain Tumor Segmentation

Tongxue Zhou1,2,3, Stéphane Canu1,3, Pierre Vera4, and Su Ruan2,3(B)

1 INSA Rouen, LITIS - Apprentissage, 76800 Rouen, France
2 Université de Rouen Normandie, LITIS - QuantIF, 76183 Rouen, France

su.ruan@univ-rouen.fr
3 Normandie Univ., INSA Rouen, UNIROUEN, UNIHAVRE, LITIS, Rouen, France

4 Department of Nuclear Medicine, Henri Becquerel Cancer Center, 76038 Rouen, France

Abstract. Early diagnosis and treatment of brain tumor is critical for the recovery
of the patients. However, it is challenged by the various brain anatomy structure,
low image contrast and fuzzy contour. In this paper, we present a dual supervi-
sion guided attentional network for multimodal brain tumor segmentation. The
backbone is a multi-encoder based U-Net. The multiple independent encoders
are used to obtain individual feature representation from each modality. A dual
attention fusion block is proposed to extract the most informative feature rep-
resentation from different modalities. It consists of a spatial attention module
and a modality attention module. Since the same brain tumor regions can be
observed in the different modalities, therefore, the spatial feature representations
from different modalities can provide the complementary feature representations
for segmentation. To this end, a spatial attention based supervision is introduced
to enable hierarchical learning of the multi-scale feature representations, and also
to provide addition constraint for the segmentation decoder. In addition, an image
reconstruction based another supervision is integrated to the network to regularize
the encoders. The ablation experiments and the visualization results evaluated on
BraTS 2019 dataset prove that the proposedmethod can achieve promising results.

Keywords: Brain tumor segmentation · Fusion · Deep supervision · Deep
learning · MRI

1 Introduction

A brain tumor is one of the most aggressive cancers in the world. There are 700,000 peo-
ple livingwith a primarybrain tumor in theUnitedStates, it’s predicted that 18,020people
will die because of the malignant brain tumor in 2020. Therefore, early diagnosis and
treatment is critical for recovery of the brain tumor patient. Magnetic resonance imaging
(MRI) [1] is a common imaging technique tomeasure the tumor because it usesmagnetic
fields to produce detailed images without radiation. And differentMRmodalities such as
Fluid Attenuation Inversion Recovery (FLAIR), contrast enhanced T1-weighted (T1c),
T1-weighted (T1), and T2-weighted (T2) images can provide complimentary informa-
tion for accurate segmentation. However, MR brain tumor segmentation still faces with

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
R. Su et al. (Eds.): MICAD 2021, LNEE 784, pp. 3–11, 2022.
https://doi.org/10.1007/978-981-16-3880-0_1
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various challenges due to the various brain anatomy structure between patients, and the
fuzzy tumor contour due to low contrast. Figure 1 shows a case in BraTS 2019 dataset.

In recent years, automatic brain tumor segmentation based on deep learning has
gained much attention, and there are many related works [2–4]. However, multi-modal
brain tumor segmentation is still confronted with some challenges. The first challenge
is how to exploit the individual feature representation of each modality due to the differ-
ent image characteristics between modalities. The segmentation network architectures
can be generally grouped into single-encoder-based network and multi-encoder-based
network. And the multi-encoder-based method can provide more accurate segmentation
results than the single-encoder-based one [5, 6]. To this end, we used the multi-encoder
basedU-Net [7] to extract individual feature representation of eachmodality. The second
challenge is how to fuse the complementary features to enhance the segmentation result.
Inspired by the spatial and channel SE (scSE) blocks [8, 9], we proposed a dual attention
fusion block to exploit the most useful feature representation. It consists of a modality
attention module and a spatial attention module. Considering a fact that the location of
brain tumor region is the same in different modalities, the multi-scale spatial feature
representations are used as a deep supervision path to guide the network to extract tumor
related features. In addition, the reconstruction decoders are used as another supervision
path to provide additional guidance to the shared encoders.

There are four contributions in ourwork: 1)Adual supervision guided attentional net-
work is proposed to segment multimodal brain tumor in MRI. 2) A dual attention fusion
block is applied to extract the most discriminative feature representation for segmenta-
tion. 3) A dual deep supervision strategy is proposed to guide the model to emphasize
on the interested regions to improve the segmentation performance. 4) The experiments
evaluated on BraTS 2019 dataset prove that the proposed method can outperform the
state-of-the-art methods.

Fig. 1. A case from BraTS 2019 dataset. The left four columns are the input modalities: T1,
FLAIR, T1c, T2, the fifth column is the real annotations. Blue: non-enhancing tumor and necrotic
regions, yellow: edema region, red: enhancing tumor region.

2 Method

The proposed network framework is depicted in Fig. 2. It consists of four parts: encoders,
fusion block, segmentation decoder and two auxiliary deep supervision paths. Let xi rep-
resents the input images, where xi = {xF , xT1, xT1c, xT2}. The four individual encoders
can be denoted as f ien. At the endpoint of the encoders, we can obtain four individual
feature representations Fi, Fi = f ien(xi, θi), where θ is the parameters of the encoders.
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To obtain the most important feature representations from different modalities, a dual
attention fusion block fatt is introduced. It includes a modality attention module fm and
a spatial attention module fs, fatt = fm ⊕ fs, where ⊕ is element-wise summation. It
first concatenates the four individual feature representations Fi and then re-weight the
feature represents along modality path and spatial path according to their contribution
for the segmentation to achieve the fused representations ff . Then the fused feature rep-
resentation is guided by two novel deep supervision paths (fre and fsa) to obtain the
segmentation.

Fig. 2. The overview of our proposed network architecture.

2.1 Encoder and Decoder

The four individual encoders are used to extract the individual feature representations
from the modalities. They have the same architecture, which consists of a convolutional
block and a res_dil block. The res_dil block can increase the receptive field, which is
a combination of residual block and dilated convolutions. The decoder starts with an
up-sampling layer and a convolution. And the skip connection is used to integrate the
upsampled semantic features with the shallow features from the encoder. Following that,
the res_dil block is used. All the convolutions used are 3 × 3 × 3.

2.2 Dual Attention Fusion Block

The key challenge of multimodal segmentation is to fuse the different modality infor-
mation and utilize the complimentary feature information. Therefore, we proposed a
dual attention fusion block, which consists of a modality attention module and a spatial
attention module. The former one is to distinguish the contribution of each modality,
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and the latter one is to extract the useful spatial information to boost the segmentation
result. The architecture is shown in Fig. 3. First, the concatenation is used to combine the
four independent feature representations Fi to obtain the input feature representation,
then they are passed to the dual attention fusion block. In the modality attention module
fm, the global average pooling is used to transform the input feature representation to
four hidden nodes, then two fully connected layers are used to produce the modality
weight based on the contribution of each modality for the final segmentation. In the
spatial attention module fs, a 1 × 1 × 1 convolution is introduced to get the spatial
weights. Finally, the two attentional feature representations are obtained by multiplied
with the input feature representation, and the fused feature representation ff is achieved
by integrating the two attentional feature representations.

Fig. 3. The architecture of dual attention fusion block.

2.3 Dual Supervision Strategy

Since the different MR modalities from the same patient have the same brain tumor
regions, it is intuitive that utilizing the spatial feature information of different modalities
to guide the network to achieve better performance. Based on the spatial attention mod-
ule, we proposed a spatial attention based deep supervision fsa. We first extract spatial
feature representations at different levels of the network, and then we can predict the
multi-scale segmentation results using these spatial feature representations. Finally, we
integrate all the multi-scale segmentation results by element-wise summation to obtain

the segmentation, Segmentation = fde
(
ff

) ⊕
N∑

l=1
f ls , f

l
s is the spatial attention feature

representation of layer l, N = 5. In addition, a reconstruction based supervision fre is
introduced to the network, xi = fre

(
ff

)
. These additional decoders can help regularize

the shared encoders. In addition, it can cope with the limitation of input images. The
architecture of the dual supervision strategy is described in Fig. 2 (highlighted in blue
and pink).
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2.4 The Choice of Loss Function

A hybrid loss is introduced to train our network, defined in Eq. 1. Ld is the dice loss
for segmentation, and Lr is the Mean Absolute Error (MAE) for reconstruction, β is the
weighting parameter, β = 0.3.

L = Ld + βLr (1)

Ld = 1 − 2

∑C
c=1

∑N
n=1 P

c
i T

c
i∑C

c=1
∑N

n=1(P
c
i + Tc

i )
(2)

Lr =
∑M

i=1
MAE‖ri(f ) − xi1‖ (3)

where N denotes the number of the examples, C denotes the number of the classes, Pc
i

and Tc
i are the probabilities of voxel i belonging to class c.M is the number of modality,

r is the reconstruction path, f is the fused representation, x is the input modality.

3 Experiments

3.1 Dataset and Implementation Details

The BraTS 2019 dataset is applied to validate our method. The training set includes
335 cases, the validation set has 125 cases with hidden ground truth. Each case includes
four modalities: FLAIR, T1, T2 and T1c, and the three target segmentation regions are
Whole Tumor (WT), Tumor Core (TC) and Enhancing Tumor (ET). The N4ITKmethod
[10] and normalization are applied as the pre-processing. The original image size is
155 × 240 × 240, we cropped and resized them to 128 × 128 × 128. The network is
implemented by Keras with an Nvidia GPU Quadro P5000 (16G), and Adam optimizer
is used. The initial learning rate is 5e−4, and it will be half reduced when the validation
loss is not improved during 10 epochs. Early stopping is used to avoid over-fitting if the
validation loss is not improved in consecutive 50 epochs.

3.2 Evaluation Metrics

All the prediction results are uploaded to the public evaluation system1 based on Dice
Score and Hausdorff Distance. Dice Score (DSC) is to calculate the overlap rate of
prediction results and ground truth.Hausdorff distance (HD) is to evaluate the boundaries
of the prediction results and ground-truth.

DSC = 2TP

2TP + FP + FN
(4)

where TP, FP and FN denote the true positive, false positive, and false negative
predictions, respectively.

HD = max
{
supr∈∂R dm(s, r), sups∈∂S dm(r, s)

}
(5)

where ∂S and ∂R are the sets of the predicted tumor border voxels and the real tumor
border voxels, and dm is the minimum of the Euclidean distances.

1 (https://ipp.cbica.upenn.edu/)

https://ipp.cbica.upenn.edu/
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3.3 Experiment Results

Wefirst conducted the ablation studies to assess the effect of each proposed components.
Then we visualized the segmentation performance to further prove that the proposed
method can obtain a promising segmentation result. Finally, we compare with the state-
of-the-art methods.

Ablation Experiments of Our Proposed Method. We first conducted the ablation
studies to prove the importance of the proposed components. We refer the baseline
as the proposed method without dual attention fusion block and dual supervision strat-
egy. Table 1 shows the comparison results. We can observe that the baseline achieves
76.8 and 8.7 in the terms of average Dice Score and average Hausdorff Distance, respec-
tively. The proposed components can gradually improve the segmentation performance
in each tumor region. The proposed method obtains 80.4 and 8.2 in the terms of average
Dice Score and average Hausdorff Distance, respectively, which improved the baseline
by 4.7% and 5.7% respectively. Figure 4 shows the visual comparison results of these
methods, the green box highlights the mis-segmented regions. We can observed that our
method can attribute to a promising segmentation result.

Table 1. Evaluation of our proposed method on BraTS 2019 training dataset, (1) Baseline (2)
Baseline + Dual attention fusion (3) Baseline + Dual attention fusion + Spatial attention based
supervision (4) Baseline+Dual attention fusion+Dual supervision strategy. WT, TC, ET denote
whole tumor, tumor core and enhancing tumor, respectively, Avg denotes the average score across
the three tumor regions, bold results denotes the best scores.

Methods DSC (%) HD (mm)

WT TC ET Avg WT TC ET Avg

(1) 83.1 73.0 74.3 76.8 9.2 10.3 6.6 8.7

(2) 86.5 76.0 75.6 79.4 12.3 9.3 7.6 9.7

(3) 86.7 76.7 75.7 79.7 9.1 9.5 6.3 8.3

(4) 88.7 76.5 75.9 80.4 7.9 8.8 8.0 8.2

Comparison with the State-of-the-Art. We further compare our method with the
existing state-of-the-art methods on BraTS 2019 dataset. The results are illustrated in
Table 2. Starke et al. [11] used a multi-view segmentation network. Kim et al. [12] used
a two-step segmentation network to achieve the segmentation. Amian et al. [13] intro-
duced a multi-resolution 3D CNN for brain tumor segmentation. Compared with them,
we can observe the proposed method can achieve a better segmentation performance,
which achieves 79.3 and 7.3 in the terms of average Dice Score and Hausdorff Distance,
respectively.

Effectiveness of the Dual Supervision Strategy. First, we selected an example to
visualize the featuremaps of the spatial attention based supervision inFig. 5 (left part).We
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Table 2. Comparison of different methods on BraTS 2019 validation dataset, bold results denotes
the best scores.

Methods DSC (%) HD (mm)

WT TC ET Avg WT TC ET Avg

Starke et al. [11] 85.1 71.0 71.0 75.7 8.9 10.3 6.6 8.6

Kim et al. [12] 87.6 76.4 67.2 77.1 14.1 11.6 8.8 11.5

Amian et al. [13] 86.0 77.0 71.0 78.0 8.4 11.5 6.9 8.9

Proposed 88.2 77.1 72.7 79.3 5.7 9.0 7.3 7.3

Fig. 4. The comparison results of different methods. (1) Baseline, (2) Baseline + dual fusion,
(3) Baseline + dual fusion + spatial attention supervision, (4) Baseline + dual fusion + dual
supervision strategy. Blue: necrotic and non-enhancing tumor, yellow: edema, red: enhancing
tumor.

can observe that thanks to the spatial attentionmodule, the network can extract the tumor
related features. Therefore the multi-scale spatial information can be considered as a
supervision to guide the network to achieve better segmentation performance. Then we
visualize the reconstruction results in Fig. 5 (right part), it can be seen that the network
has a good reconstruction result.We conclude that the proposed dual supervision strategy
can enable the segmentation network to obtain a better result.
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Fig. 5. Visualization of the feature maps. The first row: ground truth and the prediction result.
The first column: input modalities, the next five columns: feature maps of spatial attention based
supervision from different levels. The last column: reconstruction results.

4 Conclusion

In this work, we presented a dual supervision guided attentional network to do the mul-
timodal brain tumor segmentation. The network consists of four encoders for feature
extraction, one decoder for segmentation, and two auxiliary supervision paths. The pro-
posed dual attention fusion block can emphasize the most discriminative features from
different modalities. The dual supervision strategy can not only help the network focus
on the ROIs but also help to regularize the shared encoders. The experiment results
evaluated on BraTS 2019 proved the effectiveness of our method.
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Abstract. The key role of three-dimensional reconstructions in the analyses of
medical imagery has gainedmore recognition over the past 20 years throughmany
fields such as computer graphics and biologicalmedicine. Specifically, lighting the
role of isolated discrete mammalian cardiac tissues or organs typically involves
a more accurate anatomical reconstruction procedure. To date, however, there
has been no unified approach that could be extended to model establishments.
This article seeks to amend these problems by introducing a new approach for
studying the three-dimensional distribution of Pnmt+ cell-derived cells in iso-
lated mouse hearts. Related data comes from Scientific Data that describes a
new cardiomyocyte population which is a specific class of phenylethanolamine
n-methyltransferase (Pnmt+) cell-derived cardiomyocytes (PdCMs). Rigid regis-
tration was implemented to match the raw sliced images of the murine heart using
TrakEM2. Compared to previous reconstruction approaches, our methods have
accomplished automated 3D reconstruction using image processing. The primary
purpose of this paper is to propose an automatic image processing pipeline to
recreate the 3D image of the murine heart, which prevents cell distribution distor-
tion induced by handcrafted noise removal. The final 3D reconstructed exhibition
was displayed by Paraview.

Keywords: 3D reconstruction ·Murine heart · Image processing

1 Introduction

This typically involves the ability to recreate the multicellular system model [1], there
is no question that such study is allowed by a thorough anatomical reconstruction. As
computing technology advances exponentially, medical imaging and computer science
are profoundly intertwined. The possibility of a very wide implementation lies in the
use of 3D reconstruction technologies to restore the anatomical institutions and to track
their distribution and function in the organ.

Reconstructing a variety of tissue slices in three dimensions (3D) is one of the
most efficient means of displaying nearly all forms of tissue structures correctly and
with great resolution, which was used extensively in the biological sciences. Full and
continuous slices of tissue provide an important base for subsequent reconstruction. The
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continuous slices should have constant, similarly remote, flat characteristics, without
loss or deformation. Nevertheless, most tissue parts are prone to noise, contamination
and incomplete staining. Manual sorting is typically used to process slices that require
a great deal of time and effort to manage slices; because it is manual processing, the
results after each processing may be different. To cope with these noises and emissions
and to reconstruct the whole surface profile, we use digital imaging technologies for
slice processing. The processed images are then reconstructed to show the dynamic
three dimensional (3D) framework of biological tissue and can rotate the restored 3D
model freely.

In this paper, we present a method for tissue slice batch processing and 3D rebuild-
ing through images processed. Rigid registration (stiff rotation and translation) has been
used to coordinate the images with TrakEM2 based on landmarks. Technique such as
sampling [2], binarization, dilatation, compression, channel enhancement throughMAT-
LAB, slice images have been handled by digital image processing. After which, in a
single VTK format file rebuilt by MATLAB software, the processed slices were recon-
structed. Finally, the 3D model has been reconstructed using Paraview software (http://
www.paraview.org/), for viewing purpose.

2 Related Work

In the previous study [3, 4], channelrhodopsin 2(ChR2) was introduced into the mouse
gene that expressing the Phenylethanolamine N-methyltransferase(Pnmt) [5], which
encode the enzyme responsible for transformation of noradrenaline to adrenaline. In
this mouse model, it is convenient to identify a specific class of Pnmt-expressing neu-
roendocrine cells and their descendants. Furthermore, the Pnmt+ cells derived cardiomy-
ocytes are similar to routinemousemyocytes in electrical,morphological, and contractile
properties. They use blued light to controls cardiac rhythm in the whole heart by opto-
genetic control technology. Optogenetics is the genetic approach for controlling cellular
process with light. It provides spatiotemporal, quantitative and reversible control over
biological signalling and metabolic processes, overcoming limitations of chemically
inducible systems [6]. This new mouse model demonstrates the functional anatomy of
cardiac myocytes by optogenetics. To find out the potential roles of PdCMs, then an
anatomical reconstruction of this model was applied, using the dataset generated by
experiment and calculation and this data set was published in Scientific Data.

Data sets have many advantages and unique characteristics. Firstly, the conditional
expression of Pnmt-Cre/ChR2 promoted the tissue-specific expression of ChR2/TD
tomato protein, and the ChR2/TD fluorescent tomato protein promotes the imaging.
Secondly, a series of fixed tissue sections of Pnmt Cre/ChR2 mouse heart was imaged
by wide-field deconvolution fluorescence microscope. This technique produces high-
equality digital images, equivalent to high contrast and resolution confocal images, but
with low fluorescence, and these images were assembled into two-dimensional coronal
slice images [7]. These images were manually repaired to remove background noise and
light, the manual repairment requires a certain degree of professional background, and
most importantly, it is hard to recurrence and no operability. Then, a positive staining
channel was defined in the previous study and so we continue to use that definition, 100
was added to the positive staining channel to mark the positive region.

http://www.paraview.org/
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3 Method

Firstly, the softWoRx [8] (Scientific Imaging, USA) was used to stitch raw frames that
could capture fractional heart block sections; then the stitched images were tuned to
the AutoContrarTool ImageJ [9], which increased the positive and negative areas to
distinguish high contrast images. The high contrast images as shown in Fig. 1 are then
physically inspected, stored as JPEG images (8-bits) and 48 of them are shown ready
for restoration.

Fig. 1. High contrast image of murine heart

In order to minimize the size of the image and speed up the rendering of the image,
the nearest neighbour interpolation has been used to scale the slices of the image to 0.2
to the original resolution. Subsequently, rigid registration (stiff translation and rotation,
as shown in Fig. 2) was applied to such scaled image slices to match heart slices using
TrakEM2 [10], an open source plugin in Fiji [11]. The specific method is to extend the
scale of each image slice to same, and then change or flip the angle of the image slices
to property position. In our method, the size and position of the initial part of the data
set is used for rigid correction, and then the processed image is exported for subsequent
reconstruction work.

After that, each heart slice picture was divided from the positive staining area and
negative staining area where the positive spot area was defined as the channel area higher
than 30. In the visualization of the image, the red region represents a positive staining
area, and the blue area represents a negative staining area, the black area represents a
non-tissue backdrop. At the same time, there are a lot of noises in the results as shown
in Fig. 3.



Three-Dimensional Image Reconstruction of Murine Heart 15

Fig. 2. Rigid rotation (stiff rotation and translation) was applied to murine heart slice images

Fig. 3. Binary image of murine heart image which can find many noises around the heart.

We have transformed it into a gray-scale image using MATLAB [12] for the blue
surface of each image that reflects the negative surface stain-scale. Following the surgery,
a number of injuries arise due to the discontinuous coloring of the skin. Thereby, we
inflate with 5x5 square structuring factor the blue area of the heart slice, and that is
working well. Median filtering is a nonlinear technology that can efficiently eliminate
noise on the basis of statistical sorting [13]. The fundamental principle ofmedian filtering
is that the value of a region is replaced by the median value of each point in a digital
image, so that the pixel value surrounding it comes close to the actual value. In order
to remove discrete noise, the grey image level is modified by reclassification through
median filtering. The discrete, minor noises in the heart slice picture can be completely
removed after this step. Nevertheless, there were still large noise blocks that could not
be eliminated through median filtering in the blue region of murine heart slice images.
Considering that what we need to maintain is the entire part of the heart as well as we
have used inflate operation to eradicate heart image fracture, which means that within
the heart contour a wide connected region was created and smaller connected regions
outside the heart were formed. The smaller related regions are known to be the major
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Fig. 4. The negative staining region image processing pipeline of 3D reconstruction based on
murine heart slices images

noise blocks that cannot be removed by median filtering. We are attempting to create a
filter for the shape of the heart to remove these noise blocks. The following are the basic
steps: Firstly, the image is converted into a binary image for further mask fabrication.
Secondly, the non eight connected regions and small areas will be removed, and a full
heart contour picture will be obtained without missing the internal details of the heart,
and the noise blocks outside the heart can be excluded. After this step, a binary heart
contour mask can be obtained. Finally, to multiply the processed image, we use the
binary mask of the heart, so we can delete the noise blocks outside the image of the heart
contour. The whole process is shown in Fig. 4.

For the red area of each heart slice image, which reflects a positive staining region,
the red area is a small part of the larger staining area, thus it is quite simple to handle. We
wish to highlight the red regions because it is the positive staining area of murine heart
slices. Therefore, the red channel of each heart slice image was added 200 to enhance the
strength of the red region with a threshold of 30, and then it was sequentially converted
into a gray scale image using MATLAB. After that operation, we enhance the gray level
by adding 120 to those pixels which gray value over 50. Finally, the processed blue
region image and red region image of murine heart slice image are superimposed to
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Fig. 5. The positive staining region image processing pipeline of 3D reconstruction based on
murine heart slices images

obtain a new image. The conversion process is shown in Fig. 5. The original image will
be used to next three-dimensional reconstruction.

The resulting data were then written to VTK data file using MATLAB for next
visualization [14]. Then down-sampling was applied to VTK file to reduce the size of
the file, which can facilitate fast visualization on typical office desk-top(with Inter(R)
Core(TM) i5 CPU 8 GB RAM). Lastly, the resultant data were visualized in Paraview
[15], an application for data processing and visualization. The image processing and
visualization process is shown in Fig. 6, and the 3D visualization result of staining
region is shown in Fig. 7.

Fig. 6. The image processing pipeline of 3D reconstruction based on murine heart slices images
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Fig. 7. 3DReconstruction result of positive staining region and negative staining region ofmurine
heart slice image in multiple views

4 Experimental Results

Compared with the previous reconstruction process, the traditional method needs to
manually erase the noise andneed a lot ofmanual inspection,which is not only inefficient,
but also does not have repeatability. When facing a large amount of data to be processed,
it needs to spend a lot of time. Our method uses digital image processing technology
to reconstruct three-dimensional image slices of mouse heart, which reduce the cost
and difficulty of processing. The raw data file, the VTK format file and the AVI format
(as shown in Fig. 8) file of 3D reconstruction results of mouse heart are given below.
The raw data is provided by Scientific Data (https://doi.org/10.6084/m9.figsh-are.c.369
2131). The experimental results are listed in Table 1.

Table 1. The data description of three-dimensional reconstruction of mouse heart.

Name Description Format

Stitched raw image 1 27 serial 2D section images with strong negative staining
background covering the Pnmt-Cre/ChR2 mouse heart

JPEG

Stitched raw image 2 27 serial 2D section images with weak negative staining
background covering the Pnmt-Cre/ChR2 mouse heart

JPEG

Visualization A VTK file containing the 3D reconstructed of the
distribution of mouse heart. Data can be visualised using
Paraview

VTL,PVSM

Reconstruction video A Video show the reconstruction result AVI

https://doi.org/10.6084/m9.figsh-are.c.3692131
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Fig. 8. The reconstruction visualization result of murine heart in Paraview

5 Conclusions

In this paper, we use digital image procession technology and MATLAB to realize the
whole process from murine heart slice to three-dimension reconstruction. Compared
with the previous reconstruction methods, our methods have achieved an automatic 3D
reconstruction using image analysis. Previousmethods needmuchhandcrafted denoising
and restoration, and may change the origin distribution of some critical cell-type. Our
key insight is that providing an automated image processing pipeline to reconstruct 3D
image of murine heart. However, there are still some deficiencies that need to be further
improved. In the process of denoising by filter, some staining details in mouse heart slice
images may disappear. Although the disappearance of staining details can be reduced by
adjusting the size of the filter and other parameters, it may cause more noise and affect
the 3D reconstruction effect of mouse heart.
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Networks-Based Data Augmentation

Mengjun Tao1(B) and Youwei Yan2

1 New York University, New York, USA
2 City University of Hong Kong, Hong Kong, China

Abstract. Early detection of melanoma is extremely important because
melanoma is curable at the early stage. Due to the state-of-the-art per-
formance of the Convolutional Neural Networks (CNNs), the CNNs have
been widely used for the task. However, hand labeled data is not easily
obtained in practical settings. In this paper, we firstly employ generative
adversarial network (GAN) to artificially enlarge the dataset, which can
generate fake data based on the generative confrontation network. There-
fore, the problem of insufficient training samples in melanoma classifica-
tion tasks has been alleviated. Second, CNNs is employed in our paper to
automatically classification, which proved to be more effectively solve the
problem of small discrimination between different categories. Based on
the proposed method, the experimental results show that the use of deep
learning technology can effectively improve the performance of the model
in the melanoma classification task, with an average accuracy value of
94.5%, which is nearly 1.9% higher than the previous approaches.

Keywords: Cycle-consistent adversarial networks · Data
augmentation · Melanoma · Images classification · Deep convolutional
neural network

1 Introduction

It is widely Known that melanoma is one of the threatening skin cancer in the
world, which is developed from normal moles and pigment spots on the skin.
Despite the high mortality rate of this type disease, most of the patients can
be cured at the early stage. With accurate early detection and recognition of
melanoma images, it is curable for the most of the patients. Unfortunately, due to
the short supply for experienced highly-trained dermatologists and professional
equipment, the misdiagnosis rate of melanoma is very high, which lead to many
death.

Therefore, the advanced computer assisted classification methods should be
brought in to improve the accuracy of melanoma diagnosis. To address the
problem, computer aided approaches have been applied to analyze dermoscopy
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images [1]. For the traditional machine learning algorithms, the feature extrac-
tion was employed first and then these extracted features will be classified, which
has been proved to be time-consuming and challenging. Recently, deep learning
has been witnessed dramatically progress. The performance for melanoma clas-
sification has been improved dramatically, using deep learning methods [2,3].
Despite its advantage on images classification, traditional deep learning approach
still has its limitations. During last several decades, the convolutional neural net-
work (CNN) has been widely-used for melanoma classification, which has out-
performed in the classification accuracy and performance. Despite its advantage,
CNN is still facing some difficulties such as meeting unbalanced data, uneven
quality image, and inconsistent image styles of pictures from different sources in
reality. What’s more, in the training process, the model tends to overly fit to the
samples in the training set, which will result in poor generalization and uncer-
tainty of the network. Data augmentation approaches are employed to avoid the
overftting problem through enlarging the size of the training set to obtain abun-
dant required melanoma images, which has turned out to be of the great help
to improve the performance of the model.

In this paper, we employed a novel and powerful data augmentation tech-
nique called generative adversarial network (GAN) with the goal of improving
classification accuracy. With proposed data augmentation method, the accu-
racy of automatic detection for malignant melanoma has been improved and
the effectiveness and efficiency of the model have been optimized as well. We
also conducted large number of the experiments and evaluation for the model,
and the results have proved that the proposed data augmentation methods are
excellent in improving the performance of the training model.

This paper is organized as follows. In Sect. 2, the related work is given, which
describes the employed data augmentation methods called Generative adversar-
ial network(GAN) and its variants. Section 3 provides a detailed description of
methodology, and Sect. 4 gives the experimental results evaluated on the devel-
opment dataset. Finally, Sect. 5 summarizes the paper and provides conclusions.

2 Related Work

2.1 Previous Study on Melanoma Image Classification

The previous study on the melanoma classification can be divided into three
stages. At the first stage, manually features without using computer aided app-
roach were analyzed. Although these traditional manual recognition methods
can achieve a certain diagnostic effect, they are time-consuming and energy-
consuming with low efficiency and high cost. And then at the second stage of the
research, traditional machine learning methods using computer was introduced.
The melanoma diagnosis classification system was built combining the powerful
computing power with the manual analysis ability to reduce the misdiagnosis
rate and improve the efficiency of diagnosis, which yield much experiences for
melanoma classification. For example, at the stage of feature extraction, Celebi
ME et al. [4] extracted relevant features such as shape, color and texture from
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images, using multi-features selection algorithm to sort the features and then
inputs the top-ranked features into the support vector machine (SVM) for clas-
sification. In the classification and recognition phase, [5] used K-nearest neighbor
model (KNN) for classification and recognition after extracting color and tex-
ture features. Despite its reference meaning, the traditional image classification
method has poor performance on the tasks due to the fact that they depends too
much on low-dimensional information such as color and texture of images for clas-
sification. At the third stage, deep learning approach is widely used in computer
vision, and Convolutional Neural Network [6] is widely-employed as the basic
deep learning method in melanoma detection. For example, the first proposed
CNN is LeNet [7], then VGG [8], GoogleNet [9], ResNet [10], DenseNet [11], etc.
These architecture has superiority in dealing with the tasks of image classifica-
tion, target detection and natural language recognition.

2.2 Data Augmentation

The neural networks is prone to overfitting due to the lack of the data. In order to
tackle this problem, the employment of data augmentation approaches are nec-
essary. In general, data augmentation can be divided into two categories. The
first category is the offline methods on dealing with smaller data sets includ-
ing flipping, cropping [12], rotation, zoom deformation, translation, folding, and
RGB transformation [13], the second category is data augmentation approaches
including Augmix, mixup, cutmix, Generative Adversarial Nets [14]. Among
them, Generative Adversarial Nets (GAN) is a novel model [15]. And it has
been continuously improved to generate DCGAN [16], WGAN [17], PGGAN [18],
CycleGAN [19], InfoGAN [20] and other new models used in the field of image
natural language processing and even speech processing. Subsequently, intro-
duction of the new activation function Selu makes the training more stable and
perform excellent [21]. In this paper, we explored a novel Generative Adversarial
Nets based on data augmentation method called CycleGAN. And we further
explored its performance on enlarging the dataset and improving the generaliza-
tion ability of the model so as to finally improve the classification accuracy.

3 Methodology

In deep learning method, to solve the problem of insufficient data, the data
generation model should be built to generate the fake data which corresponds
to the distribution of training data. In most cases, due to the restriction of the
objective conditions, it is impossible to obtain more data unless to generate data
from the raw data. Therefore, Generative adversarial networks are increasingly
been used in data augmentation. In our paper, we employ deep convolutional
generative adversarial networks known as CycleGAN to enlarge the dataset and
discuss whether their melanoma classification performance can be improved.
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3.1 GAN

GAN is a powerful generative model, which has outperformed in image gener-
ation, image editing, and characterization learning. Two important models are
contained in the GAN model, including a generator and a discriminator. The
function of discriminator is to discriminate whether a given image is real or fake,
and the generator is used to generate images that look as if they are natural and
real and even similar to the original data.

The main goal of GAN is to force the discriminator D to assist generator G
to generate fake data similar to the real data distribution, where G and D are
generally non-linear mapping functions. These functions are usually represented
by network structures such as convolutional neural networks.

3.2 CycleGAN Image Transformation

Two generator networks and two discriminator networks are employed using the
method of CycleGAN to realize the mutual mapping between two pictures X
and Y . The generator G is defined to perform the mapping X → Y and the gen-
erator F performs the mapping Y → X. The discriminator DX is to distinguish
whether the data comes from X or the generated FY . The discriminator DY is
to distinguish whether the data comes from Y or the generated G(x). CycleGAN
also employs a cycle consistency loss [22], in which the picture X is mapped to
Y and should be mapped back again at the same time. Finally, the loss of the
original picture X and the picture mapped back is calculated, which is called the
cycle consistency loss. The loss is trying to make F (G(x)) ≈ x and G(F (y)) ≈ y.
Figure 1 shows the structure of the network.

Fig. 1. The samples of the augmented dataset by using CycleGAN. In Fig. 1(a), G and
F are the mapping functions, and DX and DY are the corresponding discriminators,
respectively; Fig. 1(b) and Fig. 1(c) are two cycle consistency losses.

The objective function of adversarial loss is maintained same with the orig-
inal GAN, where the objective function of the mapping function G and the
discriminator DY are defined by:

LGAN (G,DY ,X, Y ) = Ey∼pdata(y) [log DY (y)] + Ex∼pdata(x) [log(1 − DY (G(x)))]
(1)
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Similarly, we can define the objective function of the mapping function F and
the discriminator DX by:

LGAN (F,DX , Y,X) where the cycle consistency loss directly calculates the
norms of the picture mapped back and picture L1 in the original image:

Lcyc(G,F ) = Ex∼pdata(x) [‖F (G(x)) − x‖1] + Ey∼pdata(y) [‖G(F (y)) − y‖1] (2)

Here, the complete objective function is:

L(G,F,DX ,DY ) = LGAN (G,DY ,X, Y ) + LGAN (F,DX ,X, Y )P + λLcyc(G,F )
(3)

where λ represents the importance of the two losses in the objective function.

3.3 Melanoma Detection Framework Based on Data Augmentation

In our study, a melanoma lesion screening framework based on data augmenta-
tion (CycleGAN) was designed for solving the binary classification problem of
melanoma and non-melanoma to generate supplementary data using CycleGAN
network. The framework of the algorithm includes: data augmentation mod-
ule, preprocessing module and CNN-based image classification module. Figure 2
shows the framework for the whole approach.

Fig. 2. Melanoma identification framework based on data augmentation.

First, the new immersive data is generated on the extracted data set using
the generative adversarial network to generate, aiming to enlarge the dataset.
Then, in the preprocessing stage, the supplementary data will be input in the
extracted original data to generate new melanoma images dataset. Finally, the
basic classification network will be trained to generate final classifier.

4 Experimental Results

4.1 Dataset

The dataset employed in our experiment for the melanoma classification task is
provided by Kaggle competition. 33,126 training images and 10,980 test images
are collected in the dataset. These images are all attached with correspond-
ing patients information including sex, age approx, unique identifier, patient id,
diagnosis and indicator of malignancy of imaged lesion.
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4.2 Quantitative Comparisons Between Different Data
Augmentation Methods

To make a fair comparison between different data augmentation approaches, we
employ four widely-used augmentation approach in our experiment and Effi-
cientNet is used as our the classification model. The experimental results are
presented in this section. As can be seen from Fig. 3, it can be found that the
CycleGAN data augmentation method is better than the other four data aug-
mentation approaches, and the AUC reaches 0.945, which is significantly higher
better other augmentation methods. Therefore, the extended data generated by
CycleGAN can replace the real data to a certain extent, and it can obviously
improve the training effect of the model.

Fig. 3. Accuracy with different data augmentation approachess.

4.3 Quantitative Comparison Using Different Network
Architectures

To further demonstrate the effectiveness of CycleGAN-based data augmenta-
tion, different neural network architectures are also tested, which include VGG,
ResNet, Xception and EfficientNet. The experimental results are demonstrated
in Table 1. It can be seen from Table 1 that, EfficientNet B1 has achieved bet-
ter classification results compared to the other three networks, with accuracy
reaching 0.945.
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Table 1. Results of different network architectures.

Network architectures ACC ACU

VGG 0.891 0.822

ResNet50 0.913 0.863

Xception 0.926 0.881

EfficientNet B1 0.945 0.923

5 Conclusion

Melanoma image detection plays an important role in accurately identifying the
disease for clinical diagnosis, while this task is challenging for many devoted
researchers who have contributed to the previous study of the melanoma clas-
sification. Our study aim to explore a novel data augmentation strategy named
CycleGAN based on deep learning approaches to tackle the problem. Extensive
experiments have been employed to test the effectiveness of the strategy. The
empirical findings in this study suggest that CycleGAN can alleviate the adverse
effects of data imbalance on melanoma classification tasks to a certain extent.
With regard to the research methods, some limitations need to be acknowl-
edged. For the future work, we would like to further test our methods on the
larger dataset to improve the classification accuracy.
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Abstract. It is widely known that diabetic retinopathy has become the
main cause of irreversible vision loss among the working-age population
world-widely. For clinical treatment, early and accurate identification of
diabetic retinopathy using fundus image is a high-priority step, as early
detection of diabetic retinopathy occurrence can be very helpful to pre-
vent vision loss. Previous attempts for the detection task are based on the
handcrafted-feature extraction and shallow architecture-based classifier
(such as random forest, support vector machine). Recently, deep con-
volutional neural network (CNN) was successfully applied for the clas-
sification task. Despite sustainable efforts have been made, the task is
still short of accuracy and time-consuming. In this paper, we propose an
ensemble learning framework with the goal to improve the detection per-
formance, using both handcrafted features and deep learning approaches.
By leveraging the complementary information provided by handcrafted
features and deep learning approaches, the ensemble learning framework
is endowed with more discriminative power. Extensive experiments are
conducted on the benchmark dataset, and the proposed framework pro-
vides superior performance, which demonstrated the effectiveness of pro-
posed method.

Keywords: Medical image classification · Deep learning ·
Convolutional neural network · Ensemble learning

1 Introduction

The number of people having diabetic retinopathy has witnessed dramatic
increasing over the last several decades, and diabetes increases the risk of many
eye diseases, of which diabetic retinopathy is one of the most severe diseases [1].
Moreover, diabetic retinopathy is the leading cause of blindness among the
working-age world widely. Early detection and routine eye examples can be
helpful to prevent diabetic retinopathy and screening has become a high-priority
healthcare service [2]. Although researchers have conducted sustainable efforts
to improve the accuracy of automated diagnosis, th automatic analysis is still
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short of robustness and accuracy. Currently, early detection of diabetic retinopa-
thy is quite time-consuming and error-prone processing even for a well–trained
optometrist or ophthalmologist. Nowadays, the fact that in the current medical
system, there is limited medical staff and limited medical resources has greatly
aggravated the handcrafted labor quantity. During the clarification process for
retinal images, the automated system can significantly reduce the onerous con-
sumption of manual labor and improve its selection efficiency for doctors to
diagnosing diabetic retinopathy images from a huge number of images.

In our study, we focus on the automated classification of retinal images into
based on the severe level. Indeed, dramatic progress has been made using image
feature extraction and machine learning methods through previous efforts. Var-
ious features were used to classify the images, including hard exudates [3], red
lesions [4], micro-aneurysms [5] and blood vessel detection [17]. Based on the
handcrafted features, different shallow-architecture-based classifiers can be used
to classify the images: such as sparse representation classifiers [18], linear discrim-
inant analysis (LDA) [6], support vector machine (SVM) [7], k-nearest neighbors
(KNN) algorithm [16]. Unfortunately, the manually-designed features cannot
cover all the diabetic retinopathy symptoms in the images, and even it turned
out massive time were wasted to diagnose the normal case due to the mistake
and fraction case. Consequently, it constrained the practical applications of the
diagnosing system.

Since the revolution of deep neural network, convolutional neural networks
(CNNs) method has achieved tremendous progress to conduct classification
tasks, whose variants have gradually been employed in its relative fields of com-
puter vision, such as, object detection, image classification, object tracking, edge
detection. Compared to manual-designed features, CNN can learn a hierarchy of
features in classifying images using the automatic manner. The hierarchy method
can conduct multi-tasks in higher layers: identify more complex features, transla-
tion, identify distortion features as well. CNN-based image classification method
possesses higher accuracy. According to this assumption, CNN-based approach
was used in many previous research for diabetic retinopathy detection [13–15].
Different CNN architectures have been proposed in last years. In this paper, we
aim to employ the complementary information provided by handcrafted features
and deep learning method. To that end, an novel ensemble learning is proposed
in this paper, with the goal to improve the classification performance.

This paper is organized as follows: different CNN architectures and the
ensemble learning framework is introduced in this Sect. 2. Section 3 presents the
task definition and present the results for the quantitative comparison between
different neural network architectures. The conclusion and future work are dis-
cussed in Sect. 4 (Fig. 1 and Table 1).
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Fig. 1. Different severity level for diabetic retinopathy.

Table 1. The severity level of diabetic retinopathy.

Level ID Severity level

0 No diabetic retinopathy

1 Mild diabetic retinopathy

2 Moderate diabetic retinopathy

3 Severe diabetic retinopathy

4 Proliferative diabetic retinopathy

2 Methodology

2.1 Ensemble Learning Framework

It is widely known that ensemble diverse classifiers can improve the accuracy
and robustness for the classification task. However, the ensemble learning has
been under-explored for the diabetic retinopathy detection task. In this paper,
we propose a novel ensemble learning framework, leveraging the deep learning
and handcrafted features, with the goal to improve accuracy and robustness
of the detection task. Figure 2 shows the proposed ensemble learning frame-
work used in our task, which is composed of two levels: feature extraction part
and modeling part using gradient boosting trees. In our experiments, the first
layers are composed of 3 different CNN architectures to build out-of-fold meta-
features. The out-of-fold predicted probabilities of different deep convolutional
neural networks will be concatenated to generate meta-features. Except for the
deep learning-based meta features, we also employ the traditional handcrafted
features (the details of handcrafted are given in the following part). For step 2,
we employ the gradient tree boosting machine (GBM) for the detection task.
LightGBM is used to implement the ensemble learning approaches [12].
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Fig. 2. Ensemble learning framework for automated detection of diabetic retinopathy.
In the framework, both deep learning and handcrafted features are used for our task.

2.2 Deep Convolutional Networks Models

We employ three widely used convolutional network architectures, including
VGGNet, Inception and ResNet, to build out-of-fold meta-features. The details
of the CNN architectures are given in the following part.

VGGNet. VGGNet is characterized by its simplicity [11], using only 3×3 con-
volutional layers stacked on top of each other in increasing depth. VGGNet aims
to increase the depth by reducing the size of receptive field. On the other hand,
reducing volume size is handled by max pooling. Max-pooling is performed over
a 2×2 pixel window, with a stride of 2. Two fully-connected layers, each with
4,096 nodes are then followed by a softmax classifier.

Inception. Inception model [10] originates from GoogLeNet [9]. One important
property of the module is that it has a the bottleneck layer, which leads to
massive reduction of the computation requirement. Inception model suggests to
replace the fully-connected layers at the end with a simple global average pooling
which averages out the channel values across the two dimension feature map,
after the last convolutional layer, which drastically reduces the total number of
parameters.

ResNet. ResNet [8] is a form of different architecture that relies on network-in-
network architectures. The term network-in-network architecture refers to the
set of blocks used to construct the network. A collection of micro-architecture
building blocks (along with standard convolution, pooling, etc. layers) leads to
the macro-architecture (i.e.,. the end network itself). ResNets uses a global aver-
age pooling followed by the classification layer. Through the changes mentioned,
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ResNets were learned with network depth of as large as 152. It achieves bet-
ter accuracy than VGGNet and GoogLeNet while being computationally more
efficient than VGGNet.

2.3 Handcrafted Features

Different manual designed features have been tested in previous studies, to auto-
matically detect diabetic retinopathy. Here, two different kinds of handcrafted
features are implemented to demonstrate that the manual designed features can
provide complementary information for deep learning.

– Blood vessels density Firstly, we convert the RGB image to its CMY rep-
resentation, followed by morphological processing. After the morphological
processing and histogram matching that increases its contrast, the resulting
image is binary. To decrease the contamination of noise, dilation and erosion
operations are conducted on the binary image. In the end, the density of
white pixels (i.e., blood vessels) is computed.

– Hard exudates: During the early diagnose of diabetic retinopathy, hard exu-
dates detection is an important characteristic. In our experiments, to detect
hard exudates, we employed the threshold-based binarization approach for
the CMY representation. Then, a dilation operation is employed to the pro-
cessed image. In the end, an erosion operation is conducted, followed by the
computing the density of hard exudates.

3 Experimental Results

3.1 Dataset

We employ a large set of high-resolution retina images taken under different
imaging conditions, and the details of the dataset can be found in Kaggle
website1. Both left and right field is employed for every subject. Images are
labeled with a subject id as well as either left or right. Trained clinician has
rated the presence of diabetic retinopathy in each image on a scale of 0 to 4,
according to the following scale given in Table 2.

3.2 Implementation Details

In our experiments, the input sizes for different CNN architectures are kept same
(as 224×224). It takes 8 h for the training process for different CNN architectures;
however, the identification of diabetic retinopathy on test data can be almost
real-time, which can be helpful in the clinical practice. The parameters of the
CNN model are optimized with stochastic gradient descent. The cross-entropy
was selected as the objective function. Moreover, an L2 weight decay penalty
of 0.002 was employed in our model. The model is evaluated according to a
four-fold cross-validation scheme. Finally, the overall quadratic weighted kappa
is calculated by averaging the four per-fold accuracy.
1 https://www.kaggle.com/c/aptos2019-blindness-detection/data.

https://www.kaggle.com/c/aptos2019-blindness-detection/data
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3.3 Evaluation Metrics

The quadratic weighted kappa is used for the evaluation, which measures the
agreement between two ratings. The quadratic weighted kappa is calculated
between the scores assigned by the human rater and the predicted scores. In
our piratical settings, the retina images have five possible ratings. Each retina
image can be labeled by a tuple (e, e), which corresponds to its scores by Rater
A (domain experts) and Rater B (predicted). The quadratic weighted kappa is
calculated as follows. First, an N × N histogram matrix O is calculated, such
that O corresponds to the number of images that received a rating i by A and a
rating j by B. An N× N matrix of weights, w, is calculated based on the differ-
ence between raters’ scores: an N×N histogram matrix of expected ratings, E, is
calculated, assuming that there is no correlation between rating scores. This is
calculated as the outer product between each rater’s histogram vector of ratings,
normalized such that E and O have the same sum.

3.4 Quantitative Evaluation

We employ the classification performance for the quantitatively studies between
different experiential settings.

In the experiment, we firstly employ different CNN architectures for the clas-
sification task so that the performance of the single deep model can be evaluated.
The CNN architectures used here consists of VGGNet, Inception and ResNet.
Moreover, the handcrafted features-based model is also used evaluated using
the GBM model. In the end, we test the performance of our ensemble learning
framework on this dataset. The quadratic weighted kappa obtained by different
experiential settings are given in Table 2.

As can be seen from the table, deeper CNN a showed better performance
as ResNet outperforms VGGNet and Inception. It is worthwhile to notice that
handcrafted feature can provide satisfied performance, with a quadratic weighted
kappa of 0.755. On the other hand, the proposed ensemble learning framework
yields superior predictions in comparison with other approaches under the exper-
imental conditions, which demonstrating its advantage in this particular task.
It may also imply that the ensemble learning can employ the complementary
information provided by handcrafted features and deep learning, which can be
helpful to improve the accuracy for the detection task. In brief, the ensemble
learning approach has high stability and good performance on this dataset.
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Table 2. Performance comparison with different approaches.

Method Quadratic weighted kappa

VGGNet 0.748

Inception 0.769

ResNet 0.784

Handcrafted features +GBM 0.755

Ensemble learning 0.803

4 Conclusion

It is widely known that ensemble learning has proven effective in many pat-
tern recognition tasks. However, the ensemble learning is not fully explored for
the diabetic retinopathy detection task in previous studies. In this paper, we
proposed a novel ensemble learning framework for the detection task. A quanti-
tative comparison is conducted between handcrafted feature-based method, deep
learning approaches and our ensemble learning-based approaches. Experimental
results demonstrate the effectiveness of our method. To the best knowledge of
the authors, this is the first attempt of the ensemble learning which leveraging
different deep learning and handcrafted features for the detection task. In our
future work, we would like to test our framework on larger data set.
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Abstract. In recent years, an enormous amount of fluorescence
microscopy images were collected in high-throughput lab settings. Ana-
lyzing and extracting relevant information from all images in a short
time is almost impossible. Detecting tiny individual cell compartments
is one of many challenges faced by biologists. This paper aims at solving
this problem by building an end-to-end process that employs methods
from the deep learning field to automatically segment, detect and classify
cell compartments of fluorescence microscopy images of yeast cells. With
this intention we used Mask R-CNN to automatically segment and label
a large amount of yeast cell data, and YOLOv4 to automatically detect
and classify individual yeast cell compartments from these images. This
fully automated end-to-end process is intended to be integrated into an
interactive e-Science server in the PerICo (https://itn-perico.eu/home/)
project, which can be used by biologists with minimized human effort
in training and operation to complete their various classification tasks.
In addition, we evaluated the detection and classification performance of
state-of-the-art YOLOv4 on data from the NOP1pr-GFP-SWAT yeast-
cell data library. Experimental results show that by dividing original
images into 4 quadrants YOLOv4 outputs good detection and classifi-
cation results with an F1-score of 98% in terms of accuracy and speed,
which is optimally suited for the native resolution of the microscope and
current GPU memory sizes. Although the application domain is optical
microscopy in yeast cells, the method is also applicable to multiple-cell
images in medical applications.

Keywords: Segmentation · Detection · Classification · Data
augmentation · Convolutional neural network · Deep learning ·
Cross-validation · Cell microscopy · Organelles · Cell compartments

1 Introduction

The existence of modern microscopy facilitates the generation of high-
throughput data: It is now possible to produce very large collections of micro-
scopic images of cell samples in a short time. The enormous amount of data
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opens the door for the biologists to study important and more complex aspects
in their research field. However, one of many challenges they are recently fac-
ing is how to process such amount of data in a short time, extracting as much
information as possible, as well as identifying biologically and clinically relevant
diseases such as human diseases. Analyzing a huge volume of microscopy images
by manually going though every image is a tedious task, can lead to fatigue and
decision errors. Therefore, there is a desire to automatically process and analyse
data in a high-throughput setting with minimized human effort in training and
operation. Integrating techniques from the deep learning field of artificial intel-
ligence seems to be a promising solution for this problem. Automatic detection
and classification of details in microscopic images would dramatically speed up
their research and contribute to their field of knowledge.

In this paper, our focus is on a specific problem in the field of biology,
which is the automatic detection of individual-cell compartments in fluorescence
microscopy images of yeast cells, notably organelle, as well as automatic specifica-
tion of their type. In fact, the highlight of this paper is on the application of deep
learning algorithms to biological data, i.e., images from optical cell microscopy.
In this study we will not go into details to cover biological concepts.

Object detection and classification is one of the hottest topic in the deep
learning field. Different approaches were developed for the detection, seg-
mentation and classification of various cell types. In traditional approaches,
each of these steps were implemented as separate algorithms. As an exam-
ple, such approaches used morphology methods for detection [1,2], whereas new
approaches use machine learning and/or deep learning methods to realize these
steps in a more realistic manner. Notably, Convolutional Neural Networks (CNN)
are able to realize the same functionality using end-to-end training [3,4], as
opposed to meticulous design of a processing pipeline with individual processing
stages. In [5], for instance, a morphological gray reconstruction based on a fuzzy
cellular neural network is applied to detect white blood cells. Xipeng et al. [4]
proposed a novel multi-scale fully CNNs approach for regression of a density map
to detect both nuclei of pathology and microscopy images. Xie et al. [6] devel-
oped two convolutional regression networks to detect and count cells. Wang et
al. [7] in 2016 combined two CNN for simultaneously detecting and classifying
cells.

Although there are many specialised methods that are capable of detecting
different types of cells, to the best of the authors knowledge there exists no
generic system for detecting all kinds of cell compartment in an accurate and
easy way. In this paper, we present a fully automated end-to-end process for
yeast-cell data that is capable of solving various segmentation, detection and
classification tasks. For that, we use Mask-RCNN [8] to automatically segment
and label images from the input data, and YOLOv4 [9] to automatically detect
and classify individual yeast cell compartments from these images. This end-to-
end process is currently intended to be integrated into an interactive e-Science
server in the PerICo1 project. We also evaluate the detection and classification

1 https://itn-perico.eu/home/.

https://itn-perico.eu/home/
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performance of YOLOv4 on data from the NOP1pr-GFP-SWAT yeast-cell data
library. We chose this particular algorithm because it is capable of detecting small
objects, such as individual cell compartments, requiring a limited computation
time. YOLO detects and classifies objects in only one stage, i.e., in one run.

The remainder of the paper is structured as follows: Sect. 2 presents the
used data. In Sect. 3, our end-to-end process is introduced. Section 4 provides an
overview of the our experimental design. The results of our study on the chosen
dataset is presented in Sect. 5, while the last section concludes the paper and
indicates the future works.

2 Data

To evaluate the end-to-end process we used publicly available fluorescence
microscopy data from a library of yeast strains each expressing one protein under
control of a constitutive promoter (NOP1) and fused to a Green Fluorescent Pro-
tein (GFP) at the N terminus (NOP1pr-GFP-SWAT library) [10]. This library
contains annotated GFP and Bright Field (BF) yeast images of nearly 6000
strains each residing in a specific organelle in the cell. Overall, there were 18432
images from 16 well-plates, each consists of 1152 images for each channel with
the dimension of 1344 x 1024 pixels. With respect to deep learning, each image is
represented by a pre-defined class that describes the objects found in the image.
Here, the classes are defined by the cell-compartments names.

Table 1. Number of unique images for cell compart-
ments that have more than 300 images.

Name of cell compartments # Unique images
ER (Endoplasmic Reticulum) 376
Cytosol & Nucleus 401
Mitochondria 461
Nucleus 660
Cytosol 1566

Table 1 lists the classes
that have more than 300
unique images. In Fig. 1,
merging a BF and GFP
channels of a random sam-
ple image is shown. The BF
is shown on the left side
of this Figure, while GFP
channel is shown in the
middle side of the Figure.
The results of merging both channels are shown in green and grey colors in the
right side of Fig. 1. We chose this particular data because individual cells are too
small to detect, it contains overlapped and close cells, and it consists of different
cell sizes and shapes as can be seen in this Figure.

3 End-to-End Process

The main goal of this paper is to present the fully automated end-to-end segmen-
tation, detection and classification process as well as to evaluate the individual-
cell compartments detection performance of the state-of-the-art YOLOv4 model
on fluorescence microscopy images. The traditional approach in the deep learn-
ing for carrying out any kind of task is to execute it in two phases: training- and
testing phase. For that, the data will randomly be divided into two unmixed



40 A. Haja and L. R. B. Schomaker

Fig. 1. Merging BF and GFP channels of a randomly selected image [Plate15 J9].

sets: train- and test sets, each contains the same amount of data for each class.
In a training plus validation phase, we teach the model to detect individual-cell
compartment by providing it with the different locations of almost all individual
cells in the training images. In order to test the trained model, we provide it
with test images that the model did not see before. In the end, the model is
evaluated based on specific metrics that decide how well the model has learned
the specific tasks, the detection and classification tasks in this case.

Every image in our data is characterized by a label (cell-compartment name).
However, we are not only interested to know which type of cells can be found in
the image but also the exact locations of each individual cell. One of many state-
of-the-art solutions to automatically segment individual objects is the mask-
RCNN model proposed in [8]. According to [11], a pre-trained mask-RCNN
model can be used to segmented yeast cells without fine-tuning. We used their
implementation to segment individual cells in our dataset. It is to be noticed that
the segmentation is completed in an unsupervised manner, done on the bright-
field channel and not on the GFP channel. For the detection and classification
of the individual-cell compartments we use the state-of-the-art YOLOv4 model
developed by Bochkovskiy, Wang and Liao [9]. The primary goal of their paper
is to design a fast-operating object detector for production systems that is also
optimized for parallel computations, and more importantly is that the training
should be done on one single conventional GPU. In comparison to other existing
state-of-the-art models, YOLOv4 outperforms them in term of speed, accuracy
and performance [9]. Not only that but it seems a good candidate to use for
detecting small objects seeing all modifications that were added to it, which are
considered as a significant upgrade to its previous well-known versions. There-
fore, we consider it as the best starting point for addressing the where and what
question, i.e., detection and classification, in microscopic images.

Figure 2 shows the pipeline of the training phase. First, we use Mask-RCNN
model to segment individual cells on each BF channel in the training set [seg-
mentation step]. Simultaneously, we merge both BF and GFP channels for each
image [pre-processing step]. With the purpose of training YOLOv4, we create
specific YOLOv4 files from both the merged and the segmented images [post-
processing step]. The last step in this phase would be to train YOLOv4 using
both the created files and the merged images from the training set [training
the model step]. In Fig. 3, a pipeline of the testing phase is presented. Similar
to the training phase, we first need to merge both BF and GFP channels from
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the unseen images in the test set [pre-processing step]. We use these images to
test the trained YOLOv4 model [testing the model step]. As a result, YOLOv4
yields files for each test image, where the predicted location of each individual
cell is computed. We use these files to evaluate the performance of YOLOv4
[analysis step]. The results described by the segmentation outcome of the train-
ing images, the trained model parameters, and the outcome of the detection and
classification of the trained model on the test images are presented to the user.

Fig. 2. Pipeline of the training phase.

Fig. 3. Pipeline of the testing phase including analysis.

4 Experimental Design

In addition to building an end-to-end process for fluorescence microscopy images
of yeast cells, this paper aims to evaluate the detection and classification per-
formance of the state-of-the-art YOLOv4 algorithm on individual small objects.
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Table 2. Experiment, image size, classes [ER, Mitochondria (M), Cytosol (C) and
Nucleus (N)], number of images in train-, validation-, and test set.

# Experiment Images size Classes # Train images #

Validation

images

# Test images

Exp1 1344 × 1024 M ≈990 ≈110 ≈270

Exp2 1344 × 1024 ER, M ≈1620 ≈180 ≈450

Exp3 1344 × 1024 ER, M, C, N ≈2980 ≈330 ≈912

Exp4 672 × 512 M ≈3960 ≈440 ≈1110

Exp5 672 × 512 ER, M ≈6480 ≈720 ≈1800

Exp6 672 × 512 ER, M, C, N ≈12710 ≈1410 ≈3640

Table 3. Training time, mAP and average loss error [Time/mAP/avg loss] at the end
of the training phase for each experiment.

1-class 2-classes 4-classes

Full-size image 1h20/91%/15.02 2h30/91%/15.54 5h30/91%/14.54

Quadrants of image 0h40/94%/03.60 1h40/93%/03.45 2h50/93%/03.59

Here, we use five-fold cross validation, where each time one fold is used to test
the model and the remaining folds are used to train the model. From the training
set we randomly selected 10% of the train images to be used for validating the
model during the training phase. We used the dataset introduced in Sect. 2 to
evaluate YOLOv4. Based on the numbers of unique images shown in Table 1,
we determine to assess the capability of YOLOv4 to classify single- and multi-
class objects using 6 various experiments as defined in Table 2. In this Table,
the approximate number of images in each fold in the train-, validate-and test
sets for each experiment are shown. It is to note that YOLOv4 was trained on
original images sizes (Exp1, Exp2 and Exp3) versus quadrant of the images
(Exp4, Exp5 and Exp6). On average, 187k, 306k and 575k individual cells has
been cropped for Exp1, Exp2 and Exp3, respectively, while for Exp4, Exp5 and
Exp6, 173k, 284k and 539k individual cells has been cropped on average. Since
the cells on the border of the images are not considered, less cells are cropped
for quadrant of the images compared to full-size images.

5 Results and Discussion

This section presents and analyses the results obtained from 6 trained YOLOv4
models defined in Sect. 4. Each model describes one experiment and is obtained
by employing the end-to-end process on the introduced dataset from Sect. 2.
Table 3 reports the average training time, the average mAP2 and the average
loss error computed on the corresponding validation set for all folds. As it can
be seen, the mAPs computed on quadrant of the images for all classification type

2 Mean average precision.
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Table 4. Test results for 5-fold cross validation on four classes for full-size images (left)
and quadrant images (right).

Fold Precision Recall F1 Accuracy

0 0.989 0.989 0.989 0.989

1 0.984 0.984 0.984 0.984

2 0.987 0.986 0.987 0.986

3 0.984 0.984 0.984 0.984

4 0.978 0.978 0.980 0.980

AVG 0.985 0.985 0.985 0.985

Fold Precision Recall F1 Accuracy

0 0.980 0.980 0.980 0.980

1 0.974 0.974 0.974 0.974

2 0.978 0.978 0.978 0.978

3 0.973 0.973 0.973 0.973

4 0.965 0.965 0.965 0.965

AVG 0.974 0.974 0.974 0.974

(Exp4, Exp5 and Exp6) are higher than the mAPs computed on full size of the
original images (Exp1, Exp2 and Exp3). This indicates that the detection on
quadrant of the images works better than on the full-size image. Average loss
error computed for quadrant of the images is around 3.5, which is way lower than
for full-size images. This implies that the classification of quadrant of the images
is better than on the complete images. Both of these observations suggest that
YOLOv4 is able to detect and classify small objects best in native resolution, as
opposed to a complete but subsampled image.

Table 4 reports the average precision, recall, F1-score and accuracy computed
for each test fold for Exp3 (left) and Exp6 (right). The last row represents the
average for all folds. Using the cross validation trick, it is evident that YOLOv4
is robust since its performance on various parts of the data is similar. Obviously,
the outcomes of all these measures show that the classification of individual cells
on full-size images is 1% better than on quadrant of the images. The reason for
this is because less cells are detected on original image compared to quadrants
of the image. This can be seen in the black circles in Fig. 4, where the left side
of this Figure shows the detection of individual cells on the original image, and
and right side shows the detection on each quadrant of the image. In addition,
the labeling for each individual cell is not obtained from human experts but
from the label class of the original image. A cell where the nucleus is seen more
sharply than the ER should be called nucleus, even if the plate label is ER.

In Fig. 5, the detection results of randomly selected test images from Exp6
are shown. It is apparent that all images have different brightness in their back-
ground, but this is not necessarily the general case in our dataset. The title of the
images contains information about the plate number, position in the plate, cell
compartment type, and cropped position from the original images. The latter
can be TL, TR, BL, BR, which corresponds to top-left, top-right, bottom-left,
and bottom-right, respectively. Clearly, YOLOv4 demonstrates good detection
results on these images. It is also capable of detecting parts of cells found on
the border of these images. However, the most remarkable result to emerge from
the data is that the detection of the individual cells for ER, in contrast to other
classes, has much lower accuracy. As it can be seen from bottom-left of Fig. 5,
YOLOv4 fails to detect the tiny cells. According to biologists, ER in yeast always
surrounds the nucleus. Therefore, differentiating it from a nuclear signal is not
so easy. To demonstrate this, Table 5 represents the normalized confusion matrix



44 A. Haja and L. R. B. Schomaker

Fig. 4. Detection and classification results for an image [Plate3 P24] using both the
complete, subsampled image and the native-resolution quadrants.

Fig. 5. Randomly selected test images for 4-classes [ER, Mitochondria, Cytosol and
Nucleus] classification and by using only quadrant of the images.

of one fold of Exp6. Here, we count the number of the true prediction and the
negative prediction for all cell compartments. For example, for all ER images,
we count the number of ER, Cytosol, Mitochondria and Nucleus predicted cell
compartments, respectively. In this case, the latter three classes are considered
the false prediction. Finally, we normalize all these four values, and show them
in the first row of the normalized confusion matrix. From Table 5, it is noticeable
that the classification for classes Nucleus and Mitochondria are the best with a
99% correct prediction, while the classification for ER is the worst with only 93%
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correct individual cells prediction. The red text in Table 5 supports the previous
assumption, since 3% of individual ER cells are predicted as Nucleus.

Table 5. Confusion matrix for one fold in Exp6.

Predicted

True ER C M N

ER 0.931 0.022 0.012 0.034

C 0.005 0.969 0.001 0.025

M 0.001 0.001 0.995 0.002

N 0.003 0.005 0.001 0.991

Further analysis shows that the classification results using majority vote of
all quadrants to classify the whole plate are similar to using the majority to
classify the full-size image. As previously mentioned, less cell compartments are
detected when using full-size images as input for YOLOv4 (Exp1, Exp2 and
Exp3). Combining this result with the previous presented results, we deduce
that the trick used to divide the images into 4 quadrants reveals better results
when taking the training speed into account. Accordingly, the outcome of all
parts of the images obtained from YOLOv4 can be combined and presented as
one final result. All results shown in this section are presented to the user at the
end of the testing phase of our end-to-end process.

6 Conclusion and Future Work

We presented our developed fully automated end-to-end process that employs
methods from deep learning: Mask R-CNN for segmentation and YOLOv4 for
detection and classification. This end-to-end system is designed for biologists,
who are interested in performing any segmentation, detection or classification
tasks with only a limited knowledge in the deep learning field. Although the
application domain is optical microscopy in yeast cells, the method is also appli-
cable to multiple-cell images in medical applications. Moreover, we evaluated the
detection and classification performance of YOLOv4 on fluorescence microscopy
images from the NOP1pr-GFP-SWAT library. We chose these images as they
contain tiny cell compartments that are hard to detect. The results obtained
from the last version of YOLO, YOLOv4, reveal its capability of detecting and
classifying tiny objects. However, it has been shown that there is still a room
for improvements. We showed that in term of accuracy and speed it is recom-
mended to use the trick of dividing the original image into 4 quadrants, which
is optimally suited for the native resolution of the microscope and current GPU
memory sizes. Our approach also works for cell images with more than two chan-
nels. We are currently in the process of integrating this approach in a publicly
available website that can also be used by external users in addition to PerICo
users.
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Abstract. Glioblastoma Multiforme is a very aggressive type of brain
tumor. Due to spatial and temporal intra-tissue inhomogeneity, loca-
tion and the extent of the cancer tissue, it is difficult to detect and
dissect the tumor regions. In this paper, we propose survival progno-
sis models using four regressors operating on handcrafted image-based
and radiomics features. We hypothesize that the radiomics shape fea-
tures have the highest correlation with survival prediction. The proposed
approaches were assessed on the Brain Tumor Segmentation (BraTS-
2020) challenge dataset. The highest accuracy of image features with
random forest regressor approach was 51.5% for the training and 51.7%
for the validation dataset. The gradient boosting regressor with shape
features gave an accuracy of 91.5% and 62.1% on training and validation
datasets respectively. It is better than the BraTS 2020 survival predic-
tion challenge winners on the training and validation datasets. Our work
shows that handcrafted features exhibit a strong correlation with sur-
vival prediction. The consensus based regressor with gradient boosting
and radiomics shape features is the best combination for survival predic-
tion.

Keywords: Brain tumor segmentation (BraTS 2020) · Glioblastoma ·
Survival prediction

1 Introduction

Glioblastoma multiforme (GBM) is the commonest type of primary malignant
brain tumor. In the case of adults, glioblastoma makes up 60% of all brain tumors
[1]. The World Health Organization (WHO) classified GBM as a grade IV type
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of cancer due to its invasive and diffusive nature. Patients suffering from GBM
have a poor prognosis, with a median survival rate of about ten months [1].
This is due to its aggressive nature, highly heterogeneous appearance, location,
shape, and unpredictable response to therapy [2].

Magnetic Resonance Imaging (MRI) has been widely utilized to examine
tumors due to its non-hazardousness, high contrast and superior resolution. Gen-
erally, manual segmentation of a tumor in MRI is time consuming and prone to
subjective error. In this regards an automated segmentation method would be
of enormous help to oncologists and clinicians. It can help in early diagnosis as
well as in therapeutic strategy planning. In recent years, deep learning-based
segmentation approaches have outperformed traditional state-of-the-art meth-
ods [3,4]. Segmentation delineates the brain tumor into Whole Tumor (WT),
Enhancing Tumor (ET), and Tumor Core (TC). Handcrafted features extracted
from these segments are used to classify the survival days of the patients.

There are many segmentation models available. Recently, Jiang et al. [5], in
the BraTS 2019 challenge, proposed a two-stage asymmetry cascaded U-Net [2]
structure. Each model is made up of a larger encoder in order to be able to extract
more complex semantic features and a smaller decoder part for generating a seg-
mentation map with a size identical to the input. Zhao et al. [3] proposed multi-
ple methods to generate robust segmentation results. They grouped it into data
processing, model devising, and optimization modules. Multiple methods are
assimilated into each of these modules to enhance segmentation results. McKin-
ley et al. [4] proposed a Densenet based U-Net architecture. Convolutions that
were dilated were used to bring about an increase in the receptive field, which
retains spatial information. The model was trained by combining label uncer-
tainty loss, binary cross-entropy and focal loss. Dice scores on the BraTS-2019
validation dataset were 0.91(WT), 0.83(TC), 0.77(ET), and on the BraTS-2019
test dataset were 0.89(WT), 0.83(TC), 0.81(ET). Therefore, researchers seem to
be favouring the U-Net based architecture for segmentation.

Once the tumor is segmented, features are extracted for overall survival pre-
diction. Agravat et al. [6] used dense layers U-Net trained on the focal loss for
segmentation. Next, age, statistical features and radiomic features train the Ran-
dom Forest Regressor (RFR) for survival prediction and the obtained accuracy
on the test dataset was 0.58. Wang et al. [7] used U-Net and U-Net ensembles
with attention gates trained on soft dice scores and cross-entropy segmentation.
For survival prediction, they proposed the following prognosis models: i) baseline
model where only the age feature was used to train a linear regressor model. ii)
Radiomic model where morphological and texture features were extracted from
segmentation results. iii) Tumor invasiveness model, where relative invasiveness
coefficient (RIC) and age feature train the support vector regressor model. The
tumor invasive model was found best for survival prediction. The accuracy for
survival prediction was 0.59 and 0.56 for BraTS-2019 validation and test dataset
respectively. Feng et al. [8] used an ensemble of U-Net models. The models were
trained on patches having brain pixels. The main advantage of using an ensem-
ble method is that the network parameter need not be fine-tuned. Further, for
OS prediction, volume and surface area features were extracted for each Region
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of Interest (ROIs) and age to train a linear regression model. The training and
testing set accuracy was reported as 0.31 and 0.55 respectively on the BraTS-
2019 datasets. Wang et al. [9] utilized a 3D U-Net-based model, and the training
occurred in two phases using patching methods. The first phase included both
brain and background pixels, whereas the second included only brain pixels. The
dice score coefficient loss function was utilized to train the 3D U-Net model. Fur-
ther for survival prediction, volume, surface area and age were used to train the
ANN model. The training, validation, and testing accuracy of the models were
0.515, 0.448, and 0.551 respectively. Islam et al. [10] proposed a 3D U-Net archi-
tecture for segmentation, where attention blocks have been desegregated with
the decoder modules. For survival prediction, various geometric, fractal, and
histogram-based features were extracted to train multiple regressor models, i.e.,
support vector machine (SVM), multi-layer perceptron (MLP), random forest
regressor (RFR), and eXtreme gradient Boosting (XGBOOST). The validation
accuracies were: 0.329 for SVM, 0.414 for MLP, 0.356 for RFR and 0.429 for
XGBOOST.

The proposed paper aims to establish the correlation between handcrafted
features and overall survival prediction. Unlike the existing state-of-the-art meth-
ods used for survival prediction [6–9], the paper uses four predictors and two
feature sets to establish their correlation with overall survival prediction of High
Grade Glioma (HGG) patients. Shape features and gradient boosting regres-
sors achieve better survival prediction accuracy than state-of-the-art methods.
It establishes that shape features have a strong correlation with survival predic-
tion. The organization of the remainder of the paper is as follows: The Brain
Tumor Segmentation (BraTS) dataset is described in Sect. 2, survival prediction
methods with four predictors and two feature sets are in Sect. 3, Sect. 4 contains
results and discussions and finally the conclusion of the paper is in Sect. 5.

2 BraTS Dataset

Due to different standards and differences in the dataset, evaluating brain tumor
segmentation methods objectively and predicting overall survival is a challenge.
Nevertheless, for a comparison of different tumor segmentation and survival
prediction techniques, the BraTS (brain tumor segmentation challenge) [11–14]
has become a popular platform. Since the year 2018, there are three tasks that
are included in this platform. The first task is the process of segmenting the brain
tumor. The second task is predicting the overall survival (OS) and the third task
is estimating the uncertainty for the predicted tumor sub-regions. The process
of tumor segmentation involves delineating the tumor into three sub-regions,
namely, the whole tumor, the tumor core, and the enhancing tumor. Specificity
and sensitivity metrics as well as Dice score and Hausdorff Distance are used for
evaluating performance.

The overall survival prediction task classifies survival days into the following
categories: long-term survivors (>15 months), intermediate-survivors (between
10 and 15 months), and short-survivors (<10 months). Samples with resection
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status GTR (gross total resection) are used to rate the performance of the OS
prediction. An accuracy metric is used for performance evaluation, whereas mean
and median square error are used for postanalysis.

The BraTS 2020 training dataset includes 369 volumetric samples of high-
grade glioma (HGG) and low-grade glioma (LGG) cases. It includes metadata
of 236 samples such as age, survival days, and resection status for survival days
prediction (Grosstotal Resection (GTR) = 119, Sub-total Resection (STR) = 10,
and NA = 107). The validation dataset includes 125 sample images and metadata
(age, survival days, and resection status) with 29 images having a GTR resection
status. Each subject includes four MRI scans that are preoperative (T1-weighted,
T1-CE, T2-weighted, and FLAIR) and manually annotated ground truth results.
The annotations of ground truth include Necrotic and Non-Enhancing tumor
core NCR/NET (label-1), Edema (label-2), Active Tumor (label-4), and 0 for
everything else. The dataset has been pre-processed, i.e., all the scans are co-
registered to the same anatomical structure, skull stripped and resampled to
an isotropic resolution of 1 × 1 × 1mm3. The width, height, and depth of each
sample are 240, 240, and 155 respectively.

3 Survival Prediction Methodology

We use the 3D U-Net model for brain tumor segmentation proposed by Isensee
et al. [15]. This is the highest ranking and simple model in BraTS 2017. Like
the U-Net [2], this model [15] comprises a contracting path to extract more
feature information with increasing network depth. It has an expansion path
to generate a segmentation mask with precise localization information and a
skip connection for better feature reconstruction at every stage of the expansion
path. In our work we have used the bias field correction, normalization, clipping
maximum/minimum intensity to remove outliers, rescaled to [0, 1] and setting
non-brain pixels to 0. The model was trained on a patch size of 128× 128× 128,
randomly generated from all the input MRI modalities. The obtained dice score
on the BraTS 2020 validation dataset is 0.880(WT), 0.858(TC), 0.759(ET). The
segmentation of tumor tissue of a validation sample is as shown in Fig. 1. The fig-
ures show a visual comparison of an input FLAIR image and a predicted image.
The segmented parts are then used for survival prediction with the prognosis
methods with 1) Image-based features, 2) Radiomics based features, and the
following four predictors.

3.1 Predictors and Parameter Tuning

We have used four predictors and their parameter tuning in this paper. These
are (1) Artificial Neural Network (ANN) [9,10], (2) Linear Regressor (LR) [7,8],
(3) Gradient Boosting Regressor (GBR) [10], and (4) Random Forest Regressor
(RFR) [6,10,15]. All these predictors were used by the top performing models
in all recent BraTS challenges. These predictors deal with a small dataset and
overfitting problems. The image-based prognosis method uses only seven features
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. Segmentation results of training set: (a) Axial FLAIR slice (b) Axial Ground
truth (c) Axial Segmentation (d) Coronal FLAIR slice (e) Coronal Ground truth (f)
Coronal Segmentation (g) Sagittal FLAIR slice (h) Sagittal Ground truth (i) Sagittal
Segmentation, four color codes are: Brown for label-1(NCR/NET), white for label-
4(Active Tumor), orange for label-2(Edema), black for label-0(back ground)

making it less vulnerable to overfitting. We retain default parameters for ANN
and LR, while parameters for GBR and RFR are hyper-tuned using a grid search.
We tuned the number of estimators, depth of the tree, sample split, and learning
rate parameters for the GBR. In the case of the RFR, the number of estimators
and the depth of the tree were hyper tuned. The predictors with radiomics
features were also tuned.

For radiomics features it turns out that an ANN with five hidden layers was
better compared to 2 or 3 hidden layers. Further, we tuned epochs, learning
rate, number of neurons, and an optimizer for ANN. In the LR model, a search
was also performed for the penalty term, the number of iterations, and up-
grading of feature parameters using LASSO and a ridge regressor. We tuned the
number of estimators, maximum depth, and learning rate for the GBR. In the
RFR model, we tuned the number of estimators, maximum depth of the tree,
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minimum sample split, minimum samples in a leaf node, and maximum features
parameters. Since the random forest and gradient boosting regressor work on
ensemble-based learning, they are robust, efficient, and less prone to overfitting.

3.2 Prognosis Using Features

Image-Based Features [8,9]. Shape features extracted from the segmentation
were used in the OS prediction. These features were volume of the WT, TC,
and ET, surface area of the WT, TC, and ET, age. Since the tumor size was
the decisive predicting factor for various cancer types, we extracted the volume
and surface area of the WT, TC, and ET. The features were extracted from the
segmentation maps and input images without any library dependency. Training
with fewer features has the advantage that it limits the dimensions of feature
space. Hence, the model did not overfit. However, we found saturation in the
performance due to high bias in the model.

Radiomics Based Features [16]. Radiomics based feature extraction is widely
used for disease diagnosis, classification, and survival prediction like lung cancer
[17], breast cancer [18], and Alzheimer’s disease [19]. Along with the size of the
tumor, exploring the correlation of the other features with survival prediction is
crucial to increase the performance of the predictor models. Radiomics features
addresses this problem. It allows extracting various statistical, shape, intensity,
and texture features from radiographic scans. Also, radiomics allow extracting
features from many imaging techniques.

Using the package PyRadiomics [16], the following 107 features were
extracted:

1. Shape features: Elongation, flatness, axis lengths, maximum diameter, mesh
volume, sphericity, surface area, and surface volume ratio.

2. Gray level features: Gray-level size zone (GLSZ), Gray-level co-occurrence
matrix (GLCM), Gray-level run-length matrix (GLRLM), Gray-level depen-
dence matrix (GLDM), and Neighbouring gray-tone difference matrix
(NGTDM).

3. First-order statistical features: Energy, entropy, minimum intensity value,
maximum intensity value, mean, median, interquartile range, percentiles,
absolute deviation, skewness, variance, kurtosis, and uniformity.

Radiomics features are typically multi-collinear and redundant [20]; hence the
correlation between these features needs to be validated for specific real-world
problems. We performed feature selection through recursive feature elimination
(RFE) [21] to remove weaker features and avoid the curse of dimensionality.
RFE is an example of backward feature elimination. With the given number of
estimators, it selects principal features recursively from the feature set. It refits
the model until the desired number of selected features is eventually reached.
Out of 107 features, we selected 20 best ranking features.

In summary, the four predictors: ANN, RFR, LR, and GBR, are applied to:
i) the seven image-based features, ii) 107 radiomics features, iii) 20 principal
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radiomics features, and iv) only shape radiomics features. Literature [6,15] also
suggests dominance of shape features so we also used all predictors with only
shape features for survival prediction. We trained the models with all the resec-
tion status (i.e., GTR, STR, and NA) given with the dataset to increase the
database size and reduce overfitting.

4 Results and Discussions

Image-based feature prediction is derived from the BraTS 2019 dataset, and
the BraTS 2020 dataset was used for radiomics based feature extraction. The
results are shown in Tables 1, 2, 3 and 4. We have not participated in the BraTS
2020 challenge and do not have access to the test dataset. Therefore, results are
derived on the training and validation datasets.

4.1 Image-Based Feature Prediction

We observe that the ensemble-based models, i.e., GBR and RFR, show a better
performance on the training and validation dataset. Their consistency in the
training and validation accuracy suggests that the model does not overfit.

Table 1. OS Performance comparison using image-based feature on training and vali-
dation BraTS-2019 dataset. MSE, medianSE, stdSE, and SpearmanR denote the mean
square error, median square error, standard deviation squared error, and Spearman’s
ranking coefficient.

Dataset Regressor Accuracy MSE medianSE stdSE SpearmanR

Training ANN 0.51 86148.10 21316 181346 0.48

LR 0.49 87724.00 20736 183685 0.47

GBR 0.52 63234.40 16900 126534 0.61

RFR 0.52 63234.40 16900 126534 0.61

Validation ANN 0.45 098312.70 39204 141392 0.24

LR 0.52 100509.00 38809 141263 0.29

GBR 0.52 102999.00 36481 152694 0.27

RFR 0.52 102999.00 36481 152694 0.27

4.2 Radiomics Feature-Based Prediction

As mentioned, we extracted 107 radiomic features from the segmentation results
of the BraTS 2020 images and fed them as input to four regressor models; ANN,
LR, GBR, and RFR. It was observed that RFR gave the best results, and they
are shown in Table 2. The other regressors performed poorly compared to RFR,



54 S. Rajput et al.

and even the fine-tuning of the parameters did not improve the performance.
The possible reasons are the redundant nature of radiomics [20], over complex-
ity due to too many features and fewer training samples. Radiomics features
are shallow and low-order image features, and unable to fully describe distinct
image characteristics [22]. Also, when the number of observations is less for large
extracted features, survival prediction is an ill-posed problem [20].

Table 2. OS performance evaluation using 107 radiomics features and Random Forest
Regressor.

Dataset Accuracy MSE medianSE stdSE SpearmanR

Training 0.479 079176.96 20702.21 169474.53 0.684

Validation 0.379 115424.30 28779.30 214028.11 0.138

It can be observed from Table 2 that the large feature set is unable to yield
state-of-the-art accuracy results. Therefore, we reduced the feature set by apply-
ing recursive feature elimination to find the 20 most dominant features. Domi-
nant features obtained using RFE are: age, amount of edema, elongation, max-
imum 2D diameter slice, sphericity, surface-volume ratio, minimum and maxi-
mum intensity, interquartile range, skewness, kurtosis, root mean absolute devi-
ation, cluster prominence, cluster shade, inverse variance, coarseness, and depen-
dence variance. We then applied four regressors on the dominant feature set, and
performance has been noted in Table 3.

Table 3. OS performance comparison on 20 principal radiomics features.

Dataset Regressor models Accuracy MSE medianSE stdSE SpearmanR

Training ANN 0.393 8.90E+12 2.46E+12 3.36E+13 0.125

LR 0.462 96853.55 33279.52 190733.00 0.417

GBR 0.923 17213.25 00000.00 074717.13 0.938

RFR 0.744 31829.75 06077.32 075572.44 0.810

Validation ANN 0.448 2.20E+20 3.46E+12 8.03E+20 0.290

LR 0.483 2.73E+08 056167.55 9.86E+08 0.456

GBR 0.414 255096.40 101995.06 420861.25 0.025

RFR 0.448 098369.46 035521.48 126218.18 0.126

We observe that the linear regressor with regularisation outperforms all
other regression models with the highest accuracy on the validation dataset.
LR also provides similar accuracy for the training and validation datasets. The
Spearman-R is also highest for LR. In contrast, RFR achieves the lowest mean
square error (MSE) on the validation dataset.
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Radiomic Shape Features Based Prediction. Reviewing the correlation
between radiomics features and survival prediction, we found that radiomic
shape features play a crucial role in survival prediction [6,15]. Shape features
show significant statistical differences across ROIs [23]. Hence, shape features
can capture tumor features related to genetic anomalies and profoundly impact
survival prediction. We formulate the hypothesis that shape features profoundly
impact survival prediction. In order to validate the hypothesis, we trained pre-
dictor models with the following shape features: the amount of necrotic, edema,
enhancing tumor, the extent of the tumor, coordinates of tumor, elongation,
flatness, axis lengths, 2D diameter row, 2D diameter column, 2 D diameter slice,
maximum 3D diameter, mesh volume, sphericity, surface area, surface volume
ratio, centroid of necrosis and age information. The performance of each predic-
tor model has been noted in Table 4.

Table 4. OS performance comparison on BraTS-2020 dataset using radiomics shape
features set.

Dataset Predictor models Accuracy MSE medianSE stdSE SpearmanR

Training ANN 0.400 4.41E+11 7.15E+10 7.97E+11 0.149

LR 0.470 89890.41 35160.09 162137.20 0.461

GBR 0.915 31068.75 00000.00 150724.63 0.849

RFR 0.615 62930.78 18562.88 130788.18 0.759

Validation ANN 0.448 4.73E+11 2.14E+11 5.97E+11 0.149

LR 0.414 087228.24 47820.00 111960.30 0.215

GBR 0.621 141065.30 23528.48 236728.70 0.338

RFR 0.448 109746.60 34689.29 200725.98 0.116

We observe that GBR and RFR have better performance. Specifically, the
gradient boosting regressor outperforms all other regression models. In contrast,
LR with regularization achieves the lowest mean square error (MSE) on the
validation dataset.

4.3 Discussions

It has been observed that classical machine learning techniques performed bet-
ter than the deep learning neural network-based models for survival prediction.
Radiomics based approaches are well suited for survival prediction. Traditional
regression algorithms have better interpretability than deep learning-based algo-
rithms, they have fewer learnable parameters than CNN, and perform better with
smaller sample data. A large sample dataset for training is crucial for direct
regression from image modalities using CNN.

The predictors trained on the 107 radiomics features underperformed. The
predictors modelled on the 20 principal features improved the performance. Fur-
ther, to alleviate performance, we experimented and trained predictors on shape
features and found a strong correlation with survival prediction. Shape features
trained on the consensus model obtained state-of-the-art survival prediction
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accuracy. It was observed that the gradient boosting regressor model performed
better than other classical algorithms because of: additive model, and with each
tree built, the model becomes more expressive based on the ensemble learning
model. The proposed GBR model is compared with the survival prediction chal-
lenge winners of BraTS 2020 and prediction accuracy for the state-of-the-art
methods was obtained from the unranked leader board1. Performance compar-
ison of the GBR model with top-ranking models has been noted in Table 5. It
can be observed that shape-based features with the gradient boosting regressor
outperform the best-ranking methods over the validation dataset.

Table 5. OS performance comparison with top-ranking models on the BraTS-2020
validation dataset.

Team name Accuracy MSE medianSE stdSE SpearmanR

SCAN 0.414 098704.65 36100.00 152175.57 0.253

Redneucon 0.517 122515.76 70305.26 157673.99 0.134

VLB 0.379 093859.54 67348.26 102092.41 0.280

COMSATS-MIDL 0.483 105079.42 37004.93 146375.99 0.134

Proposed 0.621 141065.30 23528.40 236728.70 0.338

5 Conclusion

Predicting oncological outcomes is always very tricky due to multiple challenges
from clinical and engineering perspectives. In this work, we have evaluated two
feature sets over four predictors. We proposed the image-based and the radiomic
based prognosis approaches for survival prediction. The image-based prognosis
models performed well, but the performance saturates beyond a certain point
because of fewer features, and models could not learn complexity. Similar obser-
vations are also made for the 107 radiomics features/20 principal features and
the regressor combination. All above the combinations exhibited correlation with
survival prediction. However, we recommend that shape based features with the
gradient boosting regressor is the best combination for survival prediction. Com-
paring models, it was found that ensemble-based learning models became more
useful for survival prediction because of their robustness. Whereas ANN con-
verges speedily compared to classical models but due to lack of ample training
samples, it overfits easily. With the availability of a large dataset and more clin-
ical non-imaging information such as gender and treatment, survival prediction
can be robust. It can further be applied to clinical practice.

1 https://www.cbica.upenn.edu/BraTS20/lboardValidation.html.

https://www.cbica.upenn.edu/BraTS20/lboardValidation.html
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Abstract. Virtual reality technology is now gradually being used in the field of
clinical medicine. This paper presents a method of reconstruction abdominal tis-
sue structure from laparoscope images and videos. The method is designed based
on ORB-SLAM and introduced a two branch Siamese Network to extract more
features for dense reconstruction. The contributions of this study are as follows: (i)
We introduce a data augmentation thread to augment data and a dense reconstruc-
tion thread with GPU acceleration to get dense features without interruption of the
original sparse reconstruction. (ii) We design an improved Census Transformation
to reduces the effect of changes caused by camera gain and bias. For the outer
point near the deep discontinuity, the robustness is improved. (iii) An experimental
system was built to test the 3D reconstruction of liver, stomach, greater omentum
and omental bursa from the public laparoscope datasets. (iv) Introducing the pre-
sented method to clinical surgery virtual reality system. This method achieved
1.2 ± 0.8 RMSE reconstruction accuracy in low time cost. Lens distortion has
been considered to get more accurate feature detection and matching support for
operation scenario application effectively. Compared with the current mainstream
algorithm, it demonstrates the practicability and superiority of abdominal tissue
images 3D reconstruction by laparoscope in clinical scenarios, such as surgical
navigation, auxiliary diagnosis, surgery simulation, etc.

Keywords: Virtual Reality · Clinical Surgery · 3D Reconstruction · SLAM

1 Introduction

Laparoscopic surgery is a type of minimally invasive process which has shown great
advantages when compared to the traditional methods, leading an inevitable trend in the
development of the future operation method [1]. Laparoscopic greatly reduce trauma,
surgical procedure and postoperative recovery, less painful intra-abdominal viscera to
disrupt small, to avoid the air and dust in the air bacteria to stimulate and pollution of
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the abdominal cavity the advantages and disadvantages of laparoscopic surgery. Laparo-
scopic surgery in the surgical instrument is through belly piercing holes into the abdom-
inal cavity operation, small operation wound at the same time because of the surgical
wound, light postoperative pain in patients with rapid recovery. The disadvantage is that
the surgeon used a monitor to observe the abdominal picture during the operation, and
the picture quality directly affects the completion of the operation. Therefore, for some
complex surgeries and operations in relatively dangerous areas, some surgical difficul-
ties and risks will be caused. Methods to produce a detailed reconstruction of objects
or scenes from images and video have improved significantly over time. Introduce 3D
reconstruction and virtual reality (VR) technology into the field of clinical medicine is
of great benefit to surgical effect and medical training [2].

TRADITIONAL 
CLINICAL SURGERY

3D DENSE 
RECONSTRUCTION

VR SYSTEM

2D FramesLaparoscope

Data Processing Server

3D Reconstruction

GPU Acceleration

Scenario Application

Database

TRAINING & E-LEARNING

OR

Position Tracker

Motion trap

Interactive devices

Interactive Tools

Media Processing Software

Learning Management 
System

Basic Environment

Fig. 1. Virtual reality application for laparoscope in clinical surgery

We focus on these problems mentioned above and made contributions as follows:

(i) A dense three dimensional (3D) reconstruction method from laparoscope images
is designed based on ORB-SLAM, using a two branch Siamese Network to extract
more features for dense reconstruction. We introduce a data pre-processing thread
which contains data augmentation and evaluation of input frames to improved the
quality of the depth and motion prediction from unmarked video.

(ii) We encode the global information to avoid semantic information lose and elim-
inate false matching. What’s more, there’s no need for memory vault or special
architecture.
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(iii) We extract ORB features and predict the camera’s internal parameters based on the
projection principle which is derived from Multi-Layer Perceptron (MLP) from
the two dimensional (2D) frames, and introduce a dense reconstruction thread with
GPU acceleration to get dense and live depth estimation without interruption of
the original ORB-SLAM sparse reconstruction.

(iv) An experimental system was built to test the 3D reconstruction of liver, stomach,
greater omentum and omental bursa computed from the public datasets and proved
to achieve 1.2 ± 0.8 RMSE reconstruction accuracy in low time cost.

(v) We design a VR system based on the proposed 3D reconstruction method for
clinical surgary and medial training.

The method has considered the lens distortion, which get more accurate feature
detection and match to support for operation scenario application effectively. Compared
with the current mainstream 3D reconstruction algorithm, we made tests and proved that
this method has stronger practicability. What’s more, the 3D reconstruction method can
be further applied in the virtual reality of clinical medicine shown in Fig. 1.

2 Proposed Approach

A new method to reconstruct the 3D structure of abdominal tissues is described in this
section.

2.1 Approach Overview

The method of 3d reconstruction of medical images by laparoscope based on contrastive
learning andORB-SLAM is presented as follows. Through encoding the global informa-
tion and eliminating the ambiguity in mismatching, the system requires no more special
architecture or memory bank. The data could be evaluated by a linear model of data
augmentation such as random crops and color distortion [3]. In parallel with the tradi-
tional ORB-SLAM thread, we use a MLP projection/mapping and convolutional neural
network to train and evaluate the density depth of 2D data. We outline the system archi-
tecture in Fig. 2. The proposed system consists of five threads, which expressed as Data
Pre-Processing, Sparse Tracking, Sparse Reconstruction, Keyframe Cluster Selection
and Dense Reconstruction.

IMPUT
FRAMES

DATA
PRE-

PROCESSING

SPARSE 
TRACKING

MAPPING

SPARSE 
RECONSTRUCTION

DENSE
RECONSTRUCTION

KEYFRAME&FRAME CLUSTER 
SELECTION

Fig. 2. 3D Reconstruction Network Architecture (The white box represents the original ORB-
SLAM thread, and the yellow box represents our proposed optimization and the addition of a
dense rebuild thread.)
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2.2 Data Collection and Pre-processing

The data pre-processing is performed to estimate camera intrinsic parameters and to
extract input images for SLAM. To increase the diversity of existing data and reduce the
generalization error of the network, data augment technology was considered during the
image analysis. Inspired by the recent contrastive learning, SimCLR algorithm, we intro-
duced a new thread performing data augmentation based on a traditional ORB-SLAM
architecture. Firstly, we applied two simple augmentations, random crop and color dis-
tortion, to the source image sequence in order to obtain good performance. The data
decomposed into base layer and detail layer by a neural network base encoder and aver-
age filter. The data decomposed into low-rank and sparse parts by convex optimization.
What’s more, a visual saliency map is constructed on the basis of sparse features, and
a weighted image is constructed to keep the spatial consistency between source image
sequence and layers. The data augmentation pipeline is represented in Fig. 3.

SOLVING
CONNEX

SALIENCY
MAPS

FAST GUIDED 
FILTER OPTIMIZE

Fig. 3. Data pre-processing pipeline

• Random cropping and color distortion are performed on the input frame in the data
augment module, in which the output is identified as im and in respectively. The
network receives these two images as input.

• We use a MLP with one hidden layer and introduce a learnable nonlinear transforma-
tion representation and a contrast loss, the quality representation of learning is greatly
improved.

• A contrastive loss function defined by a contrastive prediction task. Sequence i+
defines as a positive sample which is same to i, whereas i− defines as negative sample.

We optimize the following expectation,

E
i,i+,i−

[
− log

(
exp(f (i)T f (i+))

exp(f (i)T f (i+)) + exp(f (i)T f (i−))

)]
(1)
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If we have i positive samples andN −1 negative samples in a sequence, then the loss
can be regarded as an N classification problem, which is actually a cross entropy, and
this function is called InfoNCE in the comparative learning articles. In fact, minimizing
the loss can maximize the lower bound of the mutual information of f (i) and f (i+)

and make them closer. Most importantly, there’s no need for ground truth to extract the
feature from the laparoscope images by self-supervised contrastive learning.

2.3 Traditional Sparse Tracking and Reconstruction

The traditional SLAM thread of sparse tracking thread is responsible for tracking the fea-
ture points of the laparoscope frames in real time, which is responsible for extracting the
ORB feature points from each new image and comparing them with the latest keyframe
to calculate the location of the feature points and roughly estimate the camera position.
Local Bundle Adjustment (BA) [4] optimization achieves sparse reconstruction, includ-
ing feature points and camera pose in local space, and is responsible for solving more
detailed camera pose and feature point spatial position, which takes the responsible for
visual odometry (VO).

2.4 Densification and Cluster BA

Estimate the depth of each pixel of a selected subset of key frames Ir in the dense recon-
struction thread. A subset of key frame selected automatically to reduce the computation
cost. The selection criteria are the current coverage of dense reconstruction in a given
keyframe Ir , by setting it to 50%, and selecting densification if it less than 50%.

The pose of the frames in the cluster is imprecise because traditional sparse recon-
struction does not perform any BA on them. Therefore, we accurately improve these
gestures with a complete BA. Take advantage of the tracking features of ORB-SLAM
and minimize (2) among all frames and keyframes (up to 15 keyframes). We selected
those features that existed most commonly to keyframes Ir .

argmin
Ti,Ij

∑
i,j

ρh(||ii,j − π(Ti, Ij)||2) (2)

2.5 Keyframe’s Depth Map Reconstruction

1) The Variational Formulation
We use a variational energy minimization to get the inverse depth map estimation
ρ(u) : � → R for a keyframe Ir which is grayscale and denoted by Ir : � → R,
where� ∈ R2 is the 2D image domain. Our energy is the sum of regularization term
R(u, ρ(u)), and the weighted Census data term C(u, ρ(u)) with the form,

E(ρ) =
∫

�

{λ(u)C(u, ρ(u)) + R(u, ρ(u)))du (3)

λ(u) � λρ(u) (4)
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Where constant λ and spatially-varying non-convexweighting factor λ(u) determine
value of the data term of pixel u. Geometricall, the accuracy of depth estimation of
the point far from the laporascopic is higher than that of the near point, because
they have lower parallax. Using ρ(u) to scale the weight and reduce the strength of
distant points data term.

2) Census Data Term
Census transformation is a non-parametric transformation used for local stereo
matching. The transformation process is simple and only uses addition and sub-
traction and xor operations [3]. Controlling the resource consumption of Census
transformation is of great significance to the overall resource management and con-
trol of the stereo matching system. We used an improved Census transformation to
calculate the matching cost. Meanwhile, the value of each pixel being weighted and
averaged from itself and other pixels in the neighborhood. The specific method is as
follows. The support window is used to scan every pixel in the image. The weighted
average gray value of neighborhood pixels is used as the Census reference value in
the support window. That means, the closer to the center, the pixel weight is higher,
and the further away, the weight is lower.
We use the reference value calculation formula and the weight calculation formula
as follows,

Iωm = 1

D

∑
p∈N

WpqIp (5)

Wpq = e−(ωx+ωy)
2/σ 2

(6)

where Iωm denotes the reference value, Ip is the grayvalue of pixel p, the weight
Wpq equals to the distance between the center pixel p and pixel q, D is the sum of
weight ofWpq, s denotes the pixels in the supporting window, p, q is the index pixel
respectively, ωx, ωy is the coordinate of pixel in the supporting window, σ is the
standard deviation. We can calculate the bit string by Census transform,

Ccen(p) = ⊗p∈N ′ξ(Iωm, Iq) (7)

s.t ξ(x, y) =
{
1 , x < y

0 , else
(8)

where⊗ denotes bitwise connect operation,N ′ is the neighborhood pixels in the sup-
porting window, Iq is the neighborhood pixel values. The matching cost calculation
model based on improved Census transformation follows,

Ccen(p, d) = min{Hammin g[ccen(p), lccen(p − d),Tcen]} (9)

whereCcen(p, d) is thematching cost computation of pixel pwhen the parallax value
is d , Tcen is the cutoff value of improved Census transformation, Hammin g is the
calculated Hamming distance, Ccen(p) is the binary bit string corresponding to pixel
p, Ccen(p, d) is the binary bit string corresponding to pixel p − d .
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3) The Regularizer
To make the reconstruction smooth and preserve depth discontinuities, we intro-
duce a weighted Huber norm over the gradient of inverse depth image, the convex
regularizer term descriped as

R(u, ρ(u)) = g(u)‖∇ρ(u)‖∈ (10)

where ∈ is a free parameter of Huber norm to reduce the effect of the undesired stair-
casing resultant from a pure TV. Parameter ∈ depends on L1 forming Total Variation
(TV) or L2 norm [5]. We use per-pixel weight g(u) to keep the depth discontinuities
at the edges of the image, and reference a free parameterω in the reference keyframe
Ir to reduce the regularization intensity of high-gradient pixels.

g(u) = exp(−ω‖∇Ir(u)‖2) (11)

4) Initialization and Energy minimization
In order to evaluate the keyframe, the 3D cost-volumemethod is used. The dimension
of M × N × ξ , represents the image resolution of the frame Ir , where M × N is
the number of points starting from the inverse depth ξ sampling ranging from ρmin
to ρmax. This cost quantity is calculated only once, and the initial depth map is
estimated from the cost quantity by selecting ρ(u) that minimize value (2) for each
pixel u. To get a strong local minimum, we approximate the energy function with
an auxiliary map a : � → R

E(ρ, a) =
∫

�

{λ(u)C(u, a(u)) + 1

2θ
(ρ(u) − a(u))2 + R(u, ρ(u))}du (12)

The coupling term 1
2θ (ρ(u)−a(u))2 enforces ρ(u) and a(u) to be equal as θ → 0, at

which point E(ρ, a = 0) = E(ρ). The discretization level used for the cost volume
construction impact the accuracy. As a result, we perform a single Newton step at
each iteration to obtain a sub pixel accuracy.

2.6 Depth Maps Alignment of Keyframes

The computed depth map is combined into one coordinate system to obtain a globally
consistent reconstruction, namely SLAM map coordinate system. We use the corre-
sponding 3D points of traditional sparse SLAM points on the dense map as anchor
points. Anchor points are used to keep the depth map aligned with the sparse SLAM
map. As a result, any update to the SLAM map will result in a realignment of the dense
map.

Each time BA refines the sparse points and keyframe pose which includes both
rotation and translation, as well as scaling improvements that may cause failure of dense
depth map alignment in SLAM map. Therefore, it is recommended to align each depth
chart with a similarity transform.
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2.7 VR System for Clinical Surgery and Medical Training

The VR virtual surgery system designed by us uses the previously designed 3D recon-
struction method based on laparoscopy to build a virtual surgery simulation scene. Doc-
tors, trainees and other intelligent systems perform surgical training, operation and plan-
ning in the scene with the help of virtual reality equipment. This system enables medical
workers to immerse themselves in virtual scenes, learn the actual operation of various
surgeries by using audio-visual perception, and simulate the clinical operation process.
It can save the cost of training medical personnel, improve the training efficiency for
the hospital and reduce the risk of mistakes in the practical operation of interns, which
plays an important role in the medical education and the practical work of the hospital.

3 Result and Discussion

3.1 Benchmark Hardware and Compared Methods

The system is implemented using c++ and OpenCV, a desktop computer with 16 GB
of RAM and an Intel(R) Core i7 CPU with 3.4 ghz GeForce RTX2070 GPU.Based on
ground truth method (two leading dense three-dimensional methods [6, 7]), the accuracy
of dense reconstruction is quantitatively evaluated.In addition, we compare the proposed
systemwith one of the best multi-view stereo methods in the closest approach to SLAM,
contemporary endoscope SLAM [7], LSD-SLAM [5], and [8], in which the camera
attitude is calculated by SfM.

3.2 Quantitative Evaluation

We adopt two leading stereovision methods [6] and [7] intensive reconstruction as our
gold standard for reconstruction.According to [9], the stereo imaging method of [8] is
one of the endoscopic imaging methods with the best performance.

1) Datasets
Four groups of laparoscope image sequences named as Sequence I II III and IV,
from public Hamlyn [10] and anonymous videos offered by Tianjin Academy of
Traditional Chinese Medical Affiliated Hospital and Tianjin Hongqiao Hospital of
Traditional Chinese Medicine, are selected and shown in Fig. 4 which descriped as
liver, greater omentum, stomach and omental bursa respectively.
We used images from a monocular laparoscopic camera to reconstruct the scene.
Figure 5 compares the point cloud of sparse and dense reconstruction of proposed
method and algorithm [8] on different sequences. For evaluation, we used patients
with CT data and compared with dense stereoscopic reconstruction method we
proposed.

2) Evaluation metrics
Reconstruction coverage per keyframe, stereo coverage metric, monocular scale
recovery and averaged reconstruction error of algorithm [5–7] and proposed method
are compared in Table 1 with four sequence, which is Sequence I to IV. Every
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sequence we choose have varied α1 and α2 and submitted the reconstruction cov-
erage, parallax and error calculated by different methods.The reconstructed cover-
age rate per keyframe is interpreted as the percentage of reconstructed pixels per
keyframe.

Fig. 4. Sample frames of liver, stomach, greater omentum and omental bursa sequences with
smooth or strongly curved surfaces used from public Hamlyn, PhysioNet and hospitals. (c) (d)
shows weak textures and (a) (b) have repetitive textures.

Fig. 5. Visualized as point cloud comparision of sparse(a-d) and dense(e-f) reconstruction of
proposed method and algorithm (i-l) on different sequences. SLAM keyframes and points are
colored in blue, and the selected keyfrmaes used for the dense reconstruction and frames cluster
are colored in red.

We also calculate the root mean square error (RMSE). With the same or higher par-
allax by monocular cases, we achieve� 1.2 ± 0.8 RMSE. To all the pixels in all the key
frames, we use our method and compared methods to estimate depth and measure the
distance. We use two stereo approaches [6] and [7]. Our reconstruction is proportional
(as with anymonocular reconstruction method), so before the RMSE calculation, we use
Least-Squares fitting to align by scale, where the initial hypothesis value is calculated
using the robustness estimate of the LeastMedian of Squares.We report the use of RMSE
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Table 1. Comparision of Evaluation metrics of different methods.

Sequence I Sequence II

Method Proposed [7] [5] [8] Method Proposed [7] [5] [8]

Reconst.
Coverage per
KeyFrame /%

69 X 36 65 Reconst.
Coverage per
KeyFrame /%

52 1.1 29 47

Stereo
coverage %

93 90 X 42 Stereo
coverage %

88 84 76 38

Mono pllx
/deg

12.3 6.4 X 6.7 Mono pllx
/deg

8.9 8.9 X 14.2

Stereo pllx
/deg

12.9 Stereo pllx
/deg

7.2

Avg. RMSE
/mm

0.7 1 X 2.3 Avg. RMSE
/mm

2.5 2.9 4.7 3.6

Avg. RMSE
/mm

0.4 1.2 X 2.1 Avg. RMSE
/mm

2.3 3.1 6.1 3.1

σ 0.2 0.2 X 0.2 σ 0.1 0.2 1.1 0.2

Sequence III Sequence IV

Method Proposed [7] [5] [8] Method Proposed [7] [5] [8]

Reconst.
Coverage per
KeyFrame /%

48 1.6 15 44 Reconst.
Coverage per
KeyFrame /%

67 2.1 28 45

Stereo
coverage %

89 80 8.5 34 Stereo
coverage %

86 84 99 47

Mono pllx
/deg

12.1 9.2 X 10.1 Mono pllx
/deg

10.2 4.8 X 6.1

Stereo pllx
/deg

11.9 Stereo pllx
/deg

9.5

Avg. RMSE
/mm

0.7 0.9 2.1 3.6 Avg. RMSE
(mm)

1.9 3.5 3.8 2.9

Avg. RMSE
/mm

0.9 1.1 2.6 3.2 Avg. RMSE
/mm

2.2 3.3 5.3 3.1

σ 0.1 0.1 1 0.3 σ 0.5 0.6 6 0.2

standard deviation (σ ). In addition, the average reconstruction coverage and reconstruc-
tion error of [7] are due to strong respiration and failure due to excessive deformation
due to the contractions of the touching surgical instrument. Parameter settings are shown
in Table 2. Figure 6 shows the data increase (a - c) and reconstruction of sequence II (d
- I) processing steps.
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Table 2. Parameters settings.

α1 α2 θ1 θend λ ω ωk W

0.2 0.01 0.2 0.0005 0.5 0.01 8 19

βmin βmax ξ ∈ τ Tg Th Tcen

0.8 5 51 0.001 30 4.245 1 45

Fig. 6. Data Augment (a-c) and Reconstruction (d-i) processing of Sequence II by steps

4 Results and Discussion

In this paper, we propose a novel VR system,which can track the pose of laparoscope and
reconstruct the 3D surface structure of internal organs according to the extracted image
features. The high quality and dense reconstruction achieved by this method can be used
in surgical scenes and medical training. More importantly, it uses a single monocular
video input, without requiring any benchmarks or external trackers. Therefore, it can
be easily extended on existing medical equipment. The method has been validated and
evaluated on the sequence of abdominal tissues, showing robustness to different light
changes and different scene textures. Finally, we designed a complete VR system that
can be used for medical training and surgical navigation.

However, the method of this paper still has limitations. Due to the limited computing
power devices (such as GPU), the processing efficiency is to be further improved. The
time delay will also affect the user experience of VR system. In the future, we will
optimize the algorithm to improve the reconstruction efficiency.
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Abstract. The main aim of this research is to improve the experience of medical
staff in recognizing three different lung diseases by making an analysis for chest
Computed Tomography (CT) scan in the Sultanate of Oman. To facilitate differen-
tial diagnosis for patients with respiratory diseases; we usedDeep transfer learning
(DTL) from pre-trained network on ImageNet of convolutional neural networks
(CNN) through using Fine-Tuning onKeras and TensorFlow 2.0 with tf.keras. The
first purpose of the research is to Classify chest CT results either positive which
means infected patients, with Covid-19, pneumonia viral or pneumonia bacterial.
The other outcome is chest CT result is negative, so no-infection. The second pur-
pose is improving the CNN architecture and to overcome its defects. The results of
this study revealed that the best performance was chosen among five pre-trained
network and it was ResNet50 model, which showed accuracy with (99%). After
the chest CT image has been analyzed, we were able to match the actual diagnosis
of the seven volunteer patients out of 8 (87.5%) the eighth patient (12.5%) was
classified as covid-19 positive but actually the volunteer has no infection.

Keywords: Convolutional neural networks · Keras · Tensorflow · Deep transfer
learning · Fine-tuning

1 Introduction

Coronaviruses are a large family of viruses that may cause illness in animals or humans
[2]. One of the types of this family covid-19 and unknown before the outbreak began
in Wuhan in December 2019 [3]. COVID-19 disease is threat worldwide and infectious
disease because of its impact was on the individual’s health, the economy of all countries
[4]. Diagnosis of Covid-19 disease is time-consuming due to overlap, where the first
symptoms are similar to flu-like and be similar in Computed Tomography (CT) images
[5]. We turned to CT image instead of techniques X-ray due to provide low false positive
rates, but it has a high cost [6], as shown in Fig. 1.

In the Sultanate of Oman, patients Infected with COVID-19 have been observed, and
the community symptoms were divided as follows: 1) the common clinical symptoms
as fever, fatigue, dyspnea, exhaustion and dry cough [7]. 2) Less common symptoms:
Some patientsmay have pains inmuscle, headache, conjunctivitis, Diarrhea, and losing a
sense of taste or smell. 3) Rare symptoms: colds and digestive complaints, such as bowel

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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Fig. 1. The visualization Chest CT scan sample for COVID-19 disease.

movements, nausea, and vomiting. 4) The worst symptoms: it resembles symptoms of
pneumonia and possibility of evolution to multiple organ dysfunction syndromes like
kidney failure and even death [8]. 5) Chronic diseases as diabetes, cancer, heart problems
blood pressure cardiovascular, kidney and lungs [9].

2 Methodology

Dataset was collected from eight patients, who has respiratory symptoms with different
medical diagnosis. 8 participants were randomly chosen from different areas in the sul-
tanate of Oman. Consent form taken and confidentiality of data was protected. Eligible
participants have made Computed Tomography (CT) imaging to analyze and predict
COVID-19. In order to gain a better insight dataset split into a training dataset and a val-
idation dataset, which is known as cross-validation. To validate the model performance,
we used a dataset that was extracted from training and validation. it was distributed as fol-
lows: Training 427/ Validation 143/ Test 55 images of non-infected patients, 492/164/9
images for patients with Covid-19 virus, 490/166/8 images for patients with pneumonia
bacterial and 738/246/10 images for patients with pneumonia virus. Workflow was as
the following: 1) Feature Extraction stage, Divided into two parts, a) Freeze all layers in
model to avoid destroying any of the information during training. b) Add new trainable
layers. 2) Fine-tuning stage, executed on the entire model, by unfreezing. 3) In both
stages, a) run our dataset on the new model. b) Standardized the images by resizing
them and using Data Augmentation to suite a neural network.

3 Tensor Flow and ImageNet

Tensor Flow and Keras are artificial neural network and open source software library
for data flow [10, 11]. They ways to program deep learning models framework for high
performance numerical computation. Keras was originally created and developed by
Francois Chollet [12]. Tensor Flow developed byGoogle Brain Team in 2015 for internal
use to google [13]. Google announced TensorFlow 2.0 in June 2019, they declared that
Keras is high-level API of TensorFlow [13]. Francois stated that the first release of Keras
2.3.0, makes it in sync with tf.keras and final release of Keras which will support other
backgrounds such as Theano. Keras’ default backend was Theano until Keras started
supporting TensorFlow became the default backend for Keras. Some researchers have
usedTransfer learning, to take the features learned on one problem, and take advantage of
them on a, similar problem, such as team ImageNet, it is researchers and goal is to obtain
image archive. The ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
allowed their models to be open source to test for image classification. Team ImageNet
and ILSVRC an annual mutual competition between them hosted by the ImageNet team
since 2010, where research teams test their computer vision algorithms for various visual
recognition tasks [1, 15].
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4 Convolutional Neural Networks

We had built Convolution Neural Networks (CNN) model that analyzes medical images
and classify them based on Transfer Learning from pre-trained network [10]. CNN have
internal layers, as follows: 1) Convolution layer leads to the production of Feature Map
(activation map) by execute 32 filter (Feature Map), it is size 3 × 3. 2) Pooling layer
leads to the production of pooled Feature Map by execute Max pooling, it is size 2 ×
2, which called bottleneck layer. 3) Flatten layer leads to the production of first layer
of full connection (ANN). CNN each layer contains multi-stage operation, as follows:
a) Activation function Rectifier (ReLU) to allow only the positive values and makes
all negative values to be zero. b) Filter (Feature Detector): is filters or weights, and this
weight values have a spatial relationship. c) Training is updating theweight and biases by
iterative optimization to learning rate. Learning ratemean amount of jumps equals 0.001,
this technique is called the gradient descent optimizer. d) In this research, The last layer
of full connection(ANN) have Soft-Max classifier and four neurons, where one neuron
for negative which means is no-infection (normal), and three neuron for positive in cases
of pneumonia virus, pneumonia bacterial andCovid-19 [16]. Drawbacks of CNN are that
it needs more time to train, and more parameters to reach better recognition accuracy,
which makes it more complicated.

5 Deep Transfer Learning (DTL)

CNN training network needs huge datasets and if get the data, it takes amount time to
train the network. Overcome the shortcomings of the CNN model, we reuse learned
feature maps (weights trained), and apply it to chest CT analysis, which called Deep
Transfer Learning (DTL). DTL is Pre-trained network of Keras Applications of CNN
canned architectures with weights, which also called an off-the-shelf. DTL accelerate
the training because it does not re-training the network from scratch, Feature extraction
with better precision and working with very small datasets [17]. we used in this paper
to Feature Extraction, library Keras and TensorFlow 2.0 with tf.keras and using pre-
trained network as Xception, ResNet50, ResNet, InceptionV3, MobileNetV2 models.
We would build Deep Transfer Learning from five pre-trained networks of CNN to
classify CT images, for feature extraction in steps, it is: The first step, a) we used input
size (width= 75× height= 75Xchannels= 3). b) Using Pre-loaded weights trained on
ImageNet (by setting weights = ‘imagenet’). c) Pre-loaded one of the five pre-trained
network, that doesn’t include the classification layers at the top, (by setting include_top
= False). The second step, Freezing, freeze bottleneck layer which is last layer before
the flatten operation in convolutional (by setting model.trainable = False). The third
step, Fine-Tuning; Unfreezing with add layers during training and Using the weights
that updated in the top layers (by setting model.trainable = True).

6 Result and Discussion

6.1 Performance Evaluation

As shown in Table 1, after fine tuning stage our model reaches 100% accuracy on the
training and validation set in ResNet50 and Xceptionmodel. In freezing stage, the model
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nearly reaches 98, 97, 60% accuracy on the validation set in ResNet50, ResNet50V2
and Xception respectively. The Xception model almost similar as ResNet50, after Fine-
Tuning stage, but it was excluded because the validation loss is much higher than the
Test loss 4.670%, which indicate the presence of some overfitting.

Table 1. Accurate performance of deep learning transfer in Train, Validation and Test Sets.

Performance Fine-Tuning Freezing

Train Validation Test Train Validation Test

ResNet50 Accuracy 1.000 1.000 0.660 1.000 0.981 0.678

Loss 0.000 0.000 0.702 0.000 0.060 4.174

ResNet50V2 Accuracy 1.000 0.962 0.744 0.999 0.979 0.714

Loss 0.000 0.312 3.102 0.002 0.111 3.705

Xception Accuracy 1.000 1.000 0.662 0.613 0.604 0.545

Loss 0.000 0.000 4.670 5.945 6.094 7.074

MobileNetV2 Accuracy 0.613 0.604 0.545 0.612 0.653 0.566

Loss 5.959 6.094 7.074 5.969 5.344 6.791

VGG19 Accuracy 0.667 0.654 0.557 0.616 0.604 0.545

Loss 5.118 5.315 5.998 5.902 6.094 7.074

The best performance among the five pre-trained networks models for CT analysis
is ResNet50 model. The accuracy of MobileNetV2 model has the worst performance of
precision = 0.058% correct predictions, as shown in Table 2.

Figure 2 shows a two-stage ResNet50V2 model 1) freezing stages: the learning
curves of the training and validation accuracy/loss. 2) Fine-Tuning stage, as show in
Fig. 3 a)Performance evaluation related tovalidationdata byConfusionMatrix.Diagonal
Elements represent the number of correct prediction,Other than that represent the number
of the wrong prediction of the classification algorithm. As show Fig. 3 b) The Receiver
Operating Characteristics (ROC) related to validation data in order to verify the ability to
classify three lung diseases COVID-19, virus and bacterial in the CT images. As shown
in Fig. 3 c) In the last few layers of fine tuning stage we were able to display vertical
line with learning curves of cross-validation.

6.2 Classification of Diseases

We used the Pre-trained ResNet50 models with fine-tuned for Covid-19 disease recog-
nition with who volunteer in the questionnaire, to distinguish between eight chest CT
images. Diagnosis of volunteer patients in our model (ResNet50) for positive and neg-
ative cases, as follows two patients of Covid-19 disease and pneumonia virus, three
patients of pneumonia bacterial, and one patient of no-infection, as shown as Fig. 4.
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Our model, it is Pre-trained ResNet50 models with fine-tuned matched the actual
diagnosis except for one patient who volunteered for the questionnaire did not have
Covid-19 disease with the actual diagnosis, but it was not-infection.

7 Conclusion

We used Deep Transfer Learning (DTL) of ResNet50 Pre-trained network to Feature
Extraction using two stages which are freezing and Fine-Tuning. It is more accurate,
faster, takes a few lines of codes and very accessible. We used a very low learning
rate, during training to avoid overfitting. Training performance proved the efficacy of
the pre-trained CNNs fine-tuned in ResNet50 outperformed all pre-trained networks in
Fine-tuning stage and has a better performance than freezing and CNN model. This
model was able to classify respiratory diseases to improve the diagnostic performance
and overcome workload through analyzing CT scan images, it’s as accurate as 98%.
Training performance evaluations indicate that the ResNet50 Network architectures not
only built a CNN from scratch but able to reuse a pre-trained network to get much
higher accuracy on our CT image in a few epochs and speeds up the training process.
It contributes in detecting the complications, formulate rapid and accurate diagnosis,
and therefore helps with early intervention to rescue high-risk patients. Furthermore,
resources allocation will be managed appropriately and help junior radiologists and time
saving. Future work includes, extending the CNN to three-dimensional data provided
by CT volume scans.

Table 2. Comparison of the performance of the five models pre-trained network.

Confusion matrix Covid-19 Normal Bacterial Virus Total

ResNet50 Precision 1.000 1.000 1.000 0.960 0.990

Recall 1.000 1.000 0.940 1.000 0.985

F1-score 1.000 1.000 0.970 0.980 0.987

ResNet50V2 Precision 0.970 1.000 1.000 0.810 0.946

Recall 1.000 1.000 0.630 1.000 0.908

F1-score 0.980 1.000 0.770 0.900 0.914

Xception Precision 0.000 0.000 0.000 0.340 0.086

Recall 0.000 0.000 0.000 1.000 0.250

F1-score 0.000 0.000 0.000 0.510 0.127

MobileNetV2 Precision 0.000 0.000 0.230 0.000 0.058

Recall 0.000 0.000 1.000 0.000 0.250

F1-score 0.000 0.000 0.380 0.000 0.094

VGG19 Precision 0.000 0.000 0.000 0.340 0.086

Recall 0.000 0.000 0.000 1.000 0.250

F1-score 0.000 0.000 0.000 0.510 0.127
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Loss and Accuracy Curves.

Fig. 2. Freezing stage; Evaluation results ResNet50 from pre-trained networks.

a) Multi-Class Confusion Matrix  
(4-Class confusion matrix) 

b) Roc Curves  

c) The Vertical Line of Fine-Tuning 

Fig. 3. Fine-Tuning; Evaluation results ResNet50 from pre-trained networks.
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Fig. 4. Classification lung diseases using InceptionV3 and the actual diagnosis by CT scan.
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Abstract. Microscopic images from multiple modalities can produce
plentiful experimental information. In practice, biological or physical
constraints under a given observation period may prevent researchers
from acquiring enough microscopic scanning. Recent studies demonstrate
that image synthesis is one of the popular approaches to release such con-
straints. Nonetheless, most existing synthesis approaches only translate
images from the source domain to the target domain without solid geo-
metric associations. To embrace this challenge, we propose an innovative
model architecture, BANIS, to synthesize diversified microscopic images
from multi-source domains with distinct geometric features. The experi-
mental outcomes indicate that BANIS successfully synthesizes favorable
image pairs on C. elegans microscopy embryonic images. To the best
of our knowledge, BANIS is the first application to synthesize micro-
scopic images that associate distinct spatial geometric features from
multi-source domains.

Keywords: Cross domain synthesis · Bidirectional adversarial
networks · Multi-source microscopic images · Geometric matching

1 Introduction

Multi-source observation, which observes the same objective from different
sources, has been widely used in many different areas, such as biology and medi-
cal fields [2,5,6,8,12–14,16–21,23–27]. For example, microscopic imaging of cell
nucleus and membrane separately, with different fluorescent materials, is one
kind of multi-source observations.

Cross-domain synthesis [1,3,9,11,15] is one potential solution to augment
multi-source observation. Given a source domain A, cross-domain synthesis aims
at generating corresponding images of the same objective in a target domain B, or

This study is supported by an NIH research project grants (R01GM097576).
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vice versa. According to [3], such synthesis can be divided into two main types,
the registration-based [11,15] and the intensity-transformation-based methods
[1,9]. The registration-based method assumes that images within both the source
domain and the target domain are geometrically associated with each other. This
method generates images from a co-registered set of images [15]. On the other
hand, the intensity-transformation-based method does not fully rely on the geo-
metric relationship. For example, multimodal is a deep learning approach for
MRI image synthesis [1]. The model takes multi-source images as input from
source contrasts and yields high-quality images in the target contrast. How-
ever, both types of methods mentioned above could not solve the issue that two
domains come from different sources with quite different spatial features.

In this study, we propose a novel model, Bidirectional Adversarial Networks
for microscopic Image Synthesis (BANIS), which uses bidirectional adversar-
ial network to synthesize geometrically matched images from multiple domains.
BANIS, to the best of our knowledge, is the first cross-domain synthesis appli-
cation with multi-source images of entirely separated spatial patterns. In the
experiment, we deploy our model to a set of microscopic images from C. elegans
embryogenesis. The experimental results demonstrate that BANIS successfully
synthesizes diversified, geometrically matched microscopic images and outper-
forms two baseline models.

Our contribution in this work can be summarized as follows:

• We propose a novel model, BANIS, to synthesize geometrically matched
images from multiple domains. To the best of our knowledge, BANIS is the
first cross-domain synthesis application with multi-source images of entirely
separated spatial patterns.

• The experiments indicate that BANIS successfully synthesizes diversified,
geometrically matched microscopic images and outperforms two baseline
models. We will make the model source code and the C. elegans embryo
microscopic dataset publicly available after the paper acceptance1.

2 Methodology

2.1 Preliminary Background

The Generative Adversarial Network (GAN) is one of popular deep learning
techniques for cross-domain synthesis [4,7]. Vanilla GAN [7] consists of two key
components, a generator G and a discriminator D. Given a prior distribution Z
as input, G maps a point z ∼ Z from the latent space to the data space as G(z).
On the other hand, D attempts to distinguish an instance x from a synthetic
instance G(z), generated by G. The training process is set up as if G and D are
playing a zero-sum game. On the one hand, G tries to generate the synthetic
instances that are as close as possible to real instances. On the other hand, D
distinguishes the synthetic instances from the real instances. After the model

1 Our code is available on Github at: https://github.com/junzhuang-code/BANIS.

https://github.com/junzhuang-code/BANIS


Bidirectional Adversarial Networks for Microscopic Image Synthesis (BANIS) 81

converges, both G and D reach a Nash equilibrium. At this point, G is able to
generate instances which are very close to the real one. The objective function
V of Vanilla GAN can be written as a summation of two Expectation values E

as follows:

min
G

max
D

V (D,G) = E
x∼X

[logD(x)] + E
z∼Z

[log(1 − D(G(z)))] (1)

where X and Z are the corresponding distribution that x and z are sampled
from.

In cross-domain synthesis, however, many instances are unpaired between
domains [28]. Zhu et al. [28] propose cycle-consistent loss to map the synthetic
instances as close as possible to the original instances through the cycled gen-
eration, which is combined with two sets of generators and discriminators. The
cycle-consistent loss function is described as follows:

Lcyc(GA,GB) = E
a∼A

[‖GB(GA(a)) − a‖] + E
b∼B

[‖GA(GB(b)) − b‖] (2)

where a and b are instances from domain A and B.

2.2 Model Architecture

In this paper, we propose a novel model, Bidirectional Adversarial Networks for
microscopic Image Synthesis (BANIS). As displayed in Fig. 1, BANIS contains
two Pioneers P, two Successors S and two Coordinators C. The Pioneer is com-
posed of a Generator G and a Discriminator D. The P is mainly responsible
for pre-training in the warm-up stage to speed up the progress of synthesis. The
Successor consists of an Encoder E and shares the Generator G with the Pioneer.
The S uses its E to compress an input image into latent variables and then uses
its G to reconstruct the new image from these latent variables. The Coordina-
tor uses pixel-wise methods to preserve the geometric relationship between the
images reconstructed by two Successors and the original observed images.

The training procedure of BANIS contains two stages. BANIS simultaneously
takes the input images from domain A and domain B. On the warm-up stage,
PA and PB are trained with given random uniform priors z and then respec-
tively generate images Agen and Bgen. Preliminary images start forming without
geometric matching between these images. After the warm-up stage, both S and
C join the training to enforce the geometrical relationship between these syn-
thesized images. SA and SB learn prior knowledge from observed images, B and
A, and reconstruct images with its pre-trained generators from the Pioneers. At
the same time, CA and CB respectively reinforce the spatial similarity between
observed images, B or A, and reconstructed images, Brec and Arec, separately.
The model does not stop training until the geometric relationship between image
pairs forms. After that, we decrease the learning rate of both S and C on subse-
quent training to improve the quality of synthesized images.
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Fig. 1. Our model, BANIS, contains two Pioneers, two Successors, and two Coordina-
tors. The Pioneer is composed of a generator G and a discriminator D. With random
uniform priors z as inputs, PA and PB generate images Agen or Bgen, respectively.
The Successor consists of an encoder E and shares the generator G with the Pioneer.
SA and SB learn the prior knowledge from observed images, B and A, and reconstruct
new images Arec or Brec. By sequentially connecting two Successors, the Coordinators
CA and CB are designed to reinforce the spatial similarity between the reconstructed
images, Brec and Arec, and the observed images B and A, separately. The right side
of Fig. 1 shows an exemplar architecture of E, G and D. The number indicates the size
of network layer. For example, encoder E takes 64 × 64 image as input and outputs a
100-dimension vector of latent variables. 5 × 5 2 × 2 conv represents 2D convolutional
layer with 5 × 5 kernel size and 2 × 2 strides. BN , LkReLU and DO stand for batch
normalization layer, LeakyReLU activation layer, and dropout layer, respectively.

2.3 Loss Functions

BANIS uses three types of loss functions, Adversarial Loss, Identical Loss, and
Pair-matched Loss, to help synthesize geometrically matched images.

Adversarial Loss [7] is employed to enforce the generated image Agen or
Bgenas similar as possible to the observed image A or B. The adversarial loss
applies to the Pioneer in the whole training process. Given a random uniform
prior, however, generated images don’t preserve the spatial information between
multiple source domains. Note that our model synthesizes the pair of images
simultaneously. Thus, this loss applies to both domain A and domain B. Here
we use the same denotation as Vanilla GAN.

Ladv(G,D) = E
x∼X

[logD(x)] + E
z∼Z

[log(1 − D(G(z)))] (3)



Bidirectional Adversarial Networks for Microscopic Image Synthesis (BANIS) 83

Identical Loss applies to the Successor. To solve previous limitations, the
Successor takes specific prior and attempts to reconstruct the images Arec or
Brec. Note that the Pioneer helps speed up the synthesis in the warm-up stage.
Pioneer’s generator is shared with Successor. In other words, reconstructed
images are expected to be as close as possible to both observed images A or B
and generated images Agen or Bgen. Identical loss ensures the quality of recon-
structed images. In this paper, we use mean squared error (MSE) to measure
the similarity.

Lid(SA,SB ,GA,GB) = E
b∼B,a∼A

[‖SA(b) − a‖] + E
b∼B,z∼Z

[‖SA(b) − GA(z)‖] +

E
a∼A,b∼B

[‖SB(a) − b‖] + E
a∼A,z∼Z

[‖SB(a) − GB(z)‖]

(4)
Pair-matched Loss applies to the Coordinator. This loss enforces the pro-

jection inside each Successor to ensure these two domains are spatially matched.
The Coordinator sequentially connects these two Successors. CA takes B as input
and uses SA and SB sequentially to generate Brec. Then it compares the new
images with the observed image B. CB operates similarly with observed image
A. In other words, pair-matched loss helps preserve spatial information among
two domains. In this paper, we also use MSE to measure the quality of the
projection.

Lpm(CA,CB) = E
b∼B

[‖CA(b) − b‖] + E
a∼A

[‖CB(a) − a‖] (5)

Algorithm 1: Geometric Matching Index (GMI)
Input: Testing set (Atest, Btest), Threshold TS

1 Initialize two counters, cnttotal and cntmatched as 0;

2 for all (a{i}, b{i}) ∈ (Atest, Btest) do
3 cnttotal ← cnttotal + 1;

4 a
{i}
rec, b

{i}
rec = SB(a{i}),SA(b{i});

5 a
{i}
bi , b

{i}
bi = Bi(a

{i}
rec),Bi(b

{i}
rec);

6 DiceAB = DSC(a
{i}
bi , b

{i}
bi );

7 if DiceAB < TS then
8 cntmatched ← cntmatched + 1;
9 end

10 end

11 return cntmatched
cnttotal

.

2.4 Geometric Matching Index

Although the individual synthesized images come from different domains and
have different geometric patterns, the pair of images should be geometrically
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matched. For example, in our microscopic data case, membranes and nucleus
should be spatially matched without overlapping. For this purpose, we propose
a new evaluation metric, Geometric Matching Index (GMI), to measure the
quality of image synthesis. As the pseudo-code presented in Algorithm1, GMI
first extracts the binary masks from reconstructed image pairs and then measures
their contours’ overlapping by the Dice Similarity Coefficient (DSC) [29]. Less
overlapping in our case means better matching. Given an overlapping threshold,
GMI counts the number of well-matched image pairs whose DSC is lower than
the given threshold and returns the percentage of these well-matched image pairs
over the total number of reconstructed image pairs at the end.

3 Experiments

3.1 Dataset and Preprocessing

In this experiment, our model is evaluated on a set of C. elegans microscopy
image dataset [22]. Each set contains 300 voxels, and each of them may contain
one to three embryos. The scanner takes 75-second intervals on each voxel over
the first 375 min of embryogenesis. We select 50 pseudo-3D voxels and each of
them contains three embryos. Each voxel contains 30 slices at 1µm vertical
distance that covers the entire embryo(s). Each slice contains one 512 × 512
membrane image and one 512 × 512 nuclei image.

We use ImageJ to split these image stacks and pick the raw images from the
middle 15 layers of each stake for our model experiments. We split the raw images
into two 512 × 512 images, each contains membrane- or nuclei-only information.
These 512 × 512 images are then converted to gray scale and denoised with
a Gaussian filter. Then, we resized these images into 128 × 128 for a better
computational efficiency. After that, we crop out a single embryo and generate
smaller 64×64 images. Finally, we normalize the pixel value of the image between
−1 and 1. 10% of images is used as a test set and the rest part is for training.
Some samples of the 64 × 64 microscopic images are illustrated in Fig. 2.

Fig. 2. Samples of the observed microscopic images
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3.2 Model Parameters and Training

The shape of input images is 64× 64× 1. The latent dimension for both random
uniform prior and encoded prior is 100. Both D and P are trained with Adam
optimizer. The initial learning rate for GB is set as 1 × 10−5 and the learning
rates for GA, DA and DB are set as 2 × 10−5. Both S and C are trained by
Stochastic Gradient Descent (SGD) optimizer. Their initial learning rates are
1 × 10−4. The batch size is empirically set as 128.

The model is trained with 17,000 epochs in the warm-up stage at the initial
learning rate until adversarial the loss converges and the preliminary images start
forming. After that, both S and C join the training for subsequent 13,000 epochs
until both identical loss and pair-matched loss converge. To improve the quality
of synthesized images, both S and C are trained with another 10,000 epochs at
a new learning rate, which is decreased by 50%. The total model training with
40,000 epochs takes approximately 12.3 h on a Linux machine, which configured
with 4 Intel Xeon central processing units (E5-1620 v4), 64-GB memory, and a
16-GB Nvidia GP104 graphical processing unit.

After the training, we evaluate the BANIS performance by calculating the
GMIs of the entire synthesized dataset with different overlapping thresholds
TSdsc. A lower TSdsc indicates a more strictly geometric matched is required.

3.3 Experimental Results

In this experiment, we first examine the performance of synthesis between
BANIS and baselines. We select Cycle-GAN [28] and Auto-Encoder [10] as our
baselines since BANIS is inspired by both of them. We train Cycle-GAN/Auto-
Encoder to converge with 200/300 epochs, respectively. Rest experimental set-
tings remain the same as BANIS. Figure 3 presents the synthesized images.
BANIS can synthesize geometrically matched image pairs (the 1st and 2nd rows).
These synthesized images have clear C. elegan’s image features of membrane or
nuclei and simultaneously preserve the geometric relationship between them. It
is clear that these synthesized image pairs have very similar patterns shown in
Fig. 2. On the contrary, the synthesized images from Cycle-GAN (the 3rd and 4th
rows) couldn’t preserve the geometric relationship as Cycle-GAN is only good at
transferring the style or texture between two images with similar shapes. Auto-
Encoder only generates fuzzy images with unclear contours (the 5th and 6th
rows). What’s worse, the nuclei are barely seen in some synthesized samples. We
argue that partial information irreversibly gets loss in the encoding stage, which
leads to this unsatisfied synthesis. Note that these images are slices and thus
may not display all nuclei in one slice. These synthesized images demonstrate
that BANIS achieves superior performance against two baselines.

We also evaluate the performance based on the aforementioned metric, GMI.
We run each experiment five times and present the mean and standard devi-
ation in Table 1. The outcome reveals that BANIS yields satisfied synthesized
images under strict thresholds TSdsc and outperforms the other two baselines
across three different thresholds. Most (over 95%) images of the total image pairs
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Fig. 3. Exemplar synthesized images from BANIS, Cycle-GAN, and Auto-Encoder

Table 1. Evaluation on the synthesized images By GMI

TSdsc (%) 0.1 0.2 0.3

BANIS 75.26 (±0.65) 87.27 (±0.32) 95.39 (±0.11)

Cycle-GAN 69.04 (±0.48) 82.89 (±0.67) 90.14 (±0.28)

Auto-Encoder 71.48 (±1.21) 83.86 (±0.98) 90.91 (±0.51)

have an overlapping value less than 0.3. Even with a very restricted threshold
requirement of 0.1 (that is less than 10% of overlapping between any two simul-
taneously synthesized images), the GMI of the total synthesized image pairs
reaches 75.26%. We observe that Auto-Encoder achieves higher GMI, but it fails
to synthesize nuclei images. We argue that this failure decreases the overlapping
and thus increases GMI. Overall, GMI is a qualified metric to measure the geo-
metrical matching relationship between two synthesized domains. However, it
sometimes fails if other reasons weaken the overlapping as well.
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4 Conclusion

In this study, we present an innovative model architecture, BANIS, to synthesize
microscopic images from multiple domains. BANIS, to the best of our knowledge,
is the first model that synthesizes geometrically matched images from multiple
domains that exist entirely separated spatial patterns. The experiment using
microscopic data from C. elegan’s embryogenesis proves that our model can
synthesize diversified and geometrically matched images that are as comparable
as the observed microscopic images.
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Abstract. Most attempts to provide automatic techniques to detect and locate
suspected tumors in Magnetic Resonance images (MRI) concentrate on a single
MRI modality. Radiologists typically use multiple MRI modalities for such tasks.
In this paper, we report on experiments for automatic detection and segmentation
of tumors in which multiple MRI modalities are encoded using classical color
encodings. We investigate the use of 2D convolutional networks using a classic
U-Net architecture.

Slice-by-slice MRI analysis for tumor detection is challenging because this
task requires contextual information from 3D tissue structures. However, 3D con-
volutional networks are prohibitively expensive to train. To overcome this chal-
lenge, we extract a set of 2D images by projecting the 3D volume of MRI with
maximum contrast. Multiple MRI modalities are then combined as independent
colors to provide a color-encoded 2D image. We show experimentally that this
led to better performance than slice-by-slice training while limiting the number of
trainable parameters and the requirement for training data to a reasonable limit.

Keywords: Tumor segmentation ·MRI ·Modality fusion ·Medical imaging

1 MRI Segmentation

Radiologists detect pathologies by visual inspection of X-rays, Computerized axial
tomography (CAT) scans, andMagnetic Resonance Images (MRI). Unfortunately, com-
petent diagnosis requires years of experience, and many common pathologies are mis-
diagnosed. MRI images, in particular, are difficult to interpret, as an accurate diagnosis
can require adjustments to a number of parameters and the use of multiple MRI image
modalities.

The automatic segmentation of MRI images offers a unique set of challenges. Pixels
in each 2D image must be considered as part of a 3D volume as neighboring voxels
provide contextual information that can be important for interpretation. This information
can be lost when processing each slice independently. Approaches based on slice-by-
slice segmentation of pathologies tend to ignore this information. On the other hand,
3D convolutional neural networks used for direct 3D segmentation require training large
models as well as a considerable computational power and training data to converge. One
possible approach to overcome this limitation is to transform theMRI 3Dvolume into 2D
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images using projections or slices at various angles [1, 2, 13]. However, different MRI
modalities provide different information. Radiologists use multiple modalities when
manually segment pathologies in MRI images.

Fig. 1. Color-based fusion of MRI modalities. First row is slice-by-slice fusion. Second row is
fusion of the Maximum Intensity Images of each modality. The fused modalities are (Flair, T1GD
and T2) on different color-space channels, respectively.

Traditionally, radiologists use classical segmentation methods to segment different
MRI modalities using techniques such as thresholding, region growing, edge detection,
K-means [8, 15, 18]. With the rapid advances of artificial neural networks, a variety of
MRI segmentation methods have been demonstrated to provide very promising tools
to help radiologists. These approaches take an MRI image and produce a segmented
image on areas of interest. Such approaches either process the whole 3D volume at
once as in 3D U-Net [5] or they treat the MRI image slice-by-slice where each slice is
processed independently. In some cases, slice-by-slice analysis is followed by intra-slice
processing in a form of recurrent neural networks as in [3, 7, 14]. Approaches that treat
the image slice-by-slice can be more affordable in terms of model size and number of
parameters than approaches that treat the whole image at once. However, this generally
comes at the cost of a reduction of performance.

Most work on automatic MRI segmentation either rely on a single MRI modality or
consider eachmodality separately. To overcome the limitations of 2Dapproaches, several
works have investigated ideas to transform the 3D MRI volume into 2D while keeping
some kind of contextual information. These techniques include the use ofmultiple planes
from different angles of an MRI image [6, 9, 13]. In addition, some recent works have
investigated the use of MRI image projections from 3D to 2D using statistical measures
such as Maximum Intensity Projection (MIP) [1, 2]. Few works have investigated the
effect fusion of different medical imaging modalities. In [4], (CT, PET andMRI) images
are color-fused whichmake them visually appealing and offer an accurate representation
of the source images, and thus improving the diagnosis.
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Fig. 2. Ourmodel architecture. The input is a color-fused image ofMRImodalities projectedwith
Maximum Intensity projection. The 3D MRI image is rotated with “a” degrees. These projected
images are input to a standard 2D U-Net. After that, the segmentation volume is reconstructed
from the decoded U-Net output. After that, the segmentation volume is passed through refinement
and normalization operations before producing the final pixel-wise segmentation.

In this paper, we investigate the use of multiple MRI modalities for the automatic
segmentation process, and examine the trade-off between computational cost and seg-
mentation quality for differentMRImodalities. To fuseMRImodalities, we encode each
modality on a color channel and use encoded images as input for the automatic segmen-
tation. We study the effect of using 2D projected images of the MRI volume instead of
using the whole volume to minimize computational cost while preserving performance.
We investigate an alternative approach for overcoming the limitations of 2D approaches
by using Maximum Intensity projection of MRI volumes while exploiting information
presence in different modalities by fusing them in color spaces.

2 Fusion of MRI Modalities

Different MRI modalities are employed for clinical diagnosis. These modalities include
T1-weightedMRI (T1), T1with contrast enhancement such asGadolinium ions (T1GD),
T2-weighted MRI (T2) and FLuid-Attenuated Inversion Recovery (FLAIR). Different
MRImodalities showdifferent information about the pathology.T1 showshealthy tissues
with high intensity and the pathology with low intensity, T2 images represent pathology
with high intensity. In T1GD images, the tumor border can be easily distinguished
by the bright signal of the accumulated contrast agent in the active cell region of the
tumor tissue. In FLAIR images, signal of water molecules is suppressed which helps in
distinguishing edema region [10].

To exploit the knowledge that exists in different MRI modalities, we study the fusion
ofMRImodalities using a color space for brain tumor segmentation.We comparemodal-
ity fusion using different color-space. These include RGB, XYZ, HSV and LAB. For
the XYZ space; Y is the luminance, Z is quasi-equal to blue in RGB and X is the mix
of three colors RGB, HSV is a color space that combines Hue, Saturation, and Values
from different modalities and LAB is composed of L the luminance, A is a color value
between green and red and B is a color value between blue and yellow. Of these spaces,
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RGB offers a linear fusion of the different modalities. The fusion with the other modal-
ities is computed using color-space transformation formulas that transforms the fused
image from the corresponding color space to RGB.

Model Structure. Our model architecture is shown in Fig. 2. The base model is a stan-
dard U-Net model randomly initialized. The model receives fused 2D projected images
extracted from MRI volumes of different modalities. The output of U-Net is used for
3D reconstruction of the images followed with a denoising layer. For training, we use a
joint loss function of Dice loss and Cross-Entropy Loss, each contribute equally to the
final loss. The implementation code of our method is available.1

Preprocessing. We extract multiple Maximum Intensity Images (MIP) from the 3D
volume of MRI by rotating the volume from 0º to 180º around the axial plane with
a steps and then project the resulting volume on the axial plane. We fuse MIPs from
different modalities using a specific color-space. The resulted set of 2D images are used
for training. We take color-fused MIPs of each angle and pass it to our model.

Linear Reconstruction. We use linear reconstruction to form a 3D tensor from 2D acti-
vation maps. Starting from an empty 3D tensor that matches the size of the 3D output
mask, we add the first activation map to all the slices of the tensor. Then, we rotate the
reconstruction tensor to match the angle of the new projection image, and we add the
values of that projection to the resulted tensor from the previous computation. A voxel
value in the result tensor is defined as the sum over the corresponding 2D projected
values. This is repeated until all projections are added to the reconstruction tensor. Then
the tensor is rotated one last time so that it goes to its original state.

Denoising. The linear reconstruction process produces artifacts and thus, the recon-
structed volume needs denoising. The denoising process involves an average pooling
layer with a kernel of (2 × 2 × 2). This is followed by an instance normalization layer
and activated by a Sigmoid function to output the final predicted mask of the pathology.

3 Experimental Evaluation

For our experiments we used the BRATS 2017 dataset from theMICCAIMedical Imag-
ing Decathlon [17, 19]. This dataset set provides Magnetic resonance images for the
segmentation of brain tumor. The dataset contains four MRI modalities: Flair, T1, T1
with Gadolinium (T1GD), and T2. During our experiments, we use a fusion of Flair,
T1GD and T2. The tumor/pathology has the highest intensity in T2 and Flair. In T1GD,
the active part of the tumor has the highest intensity. We exclude T1 from our exper-
iments since the pathology response to T1 modality has the lowest intensity which is
incompatible with Maximum intensity projection.

The dataset provides labels for Edema, enhanced tumor, Non-enhanced tumor and
Background. We consider for our experiments two classes only: The pathology which
includes enhanced and non-enhanced tumor, and the background class which includes
edema and background labels. For the evaluation of our experiments,we use fourmetrics:
Dice score, Intersection over Union (IoU), Precision and Recall.

1 https://github.com/Nachwa/Color-MRI-Seg.

https://github.com/Nachwa/Color-MRI-Seg
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3.1 Comparison with 2D/3D U-Nets

We compared our model with three already established models that can give us a good
idea how well fusion and projections work in comparison with standard slice based or
3D image techniques. We compared with 3D U-Net with instance normalization and
leaky ReLU which segments the whole 3D image [11]. Another method that we use
for comparison is 2D U-Net [16] which segments each slice from the volume separately
without taking into account the relationship between the slices. The third method that we
used for comparison is 2.5D U-Net which takes a group of slices together for segmen-
tation. When considering our method and these methods, we wanted to find a network
that provided good quality of segmentation and does not need too many resources so
that it can be used in real situation.

From Table 1, we found that 3D U-Net is performing the best for segmenting brain
tumor inMRI.Our networkplaced second in termsof the quality of the segmentation after
3D U-Net. Our model outperforms, 2D U-Net which operates on slice by slice basis for
the segmentation. Our model also outperforms both Proj U-Net and 2.5D U-Net which
consider relations between slices either by usingmaximum intensity projections or using
skip connections respectively. These results show that our model take advantage of the
multi-modality fusion in addition of the intensity projection. Note that we report results
of Proj U-Net using other modalities in Table 3 (top).

Table 1. Segmentation results of our model compared to other competitive techniques. 3D U-Net
and 2.5D U-Net results are reported in [11] and [12] respectively while the results of the other
models are implemented. The best result in bold and the second best is underlined.

Model Dice Precision Recall # Param

2D U-Net [16] 61.63 59.39 65.91 17M

Proj U-Net [1] 64.22 72.79 59.64 17M

2.5D U-Net [12] 64.98 62.86 67.26 –

3D U-Net [11] 85.81 91.00 83.12 51M

Ours 79.20 79.06 80.94 17M

In terms of parameters 3D U-Net requires a high number of parameters to tune with
51 million. On the other hand, both our method and 2D U-Net require only 17 million
parameters to tune. Following these experiments, we found that our proposed network
provides a good balance between quality of segmentation and the training parameters
needed.

3.2 Comparison with a Single Modality

In order to compare the differences in the quality of segmentation using a singlemodality
and fusion of modalities, we compared the fusion of T1 with Gadolinium (T1GD), T2,
Flair using RGB, XYZ, HSV and LAB color spaces. During these experiments, we have
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chosen against using T1 modality, because we use Maximum Intensity Projections and
the pathology there has the lowest intensity while the healthy tissue has the highest
intensity, so in that projection nothing significant can be observed in T1.

Comparing only the results for single modality, we can note that segmenting T1GD
as input achieved the best results. This is likely the consequence of using the contrasting
agent which highlights the active part of the tumor and could be used in finding easily the
boundary between the healthy tissue and the pathology which is a very important part in
projection-based segmentation. On the other hand, the results for T2 and Flair alone are
not as good, because on those images in addition to the pathology, the edema (swelling
caused by the pathology) can also be seen with higher intensity than the healthy tissue
and finding the boundary there would be more difficult.

From Table 2, we found that fusing the modalities in a color space makes a great
difference in the quality of the segmentation. The use modalities fusion shows more
details about different parts of the pathology. From our sample fusion images in Fig. 1,
we can see that the fusion in the HSV color space is visually more apparent than the
other examples; in particular, we can notice that blood vessels in T1 with Gadolinium
do not show in the image and the difference between the active tumor and the tumor
core can be spotted easily.

Table 2. Tumor segmentation results of our model on different modalities. First rows are the
results of eachmodality alone. Last rows are the results of fusing thesemodalities in corresponding
color spaces.

Modality Dice IoU Precision Recall

T1GD 72.50 60.56 77.78 72.08

T2 63.80 51.81 70.59 63.68

FLAIR 66.07 50.97 64.77 70.58

RGB 76.46 65.17 79.39 78.34

XYZ 76.00 62.92 81.41 73.36

HSV 79.20 67.04 79.06 80.94

LAB 78.10 65.59 77.51 80.38

From the Table 2, we can see similar conclusion, fusion with HSV color-space
outperforms the other color-spaces. RGB has an advantage over the other color spaces
as it does not need any additional computation, so we can directly stack the projections
of different modalities after normalization. For simplicity, we use RGB fusion for the
rest of our experiments.
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Table 3. Ablation study shows the effect of our model structure choices. Method A (Proj U-Net)
is implemented as described in [1]. Method D is our proposed model.

Method Dice IoU Precision Recall

A With T2 52.15 40.81 57.68 56.59

A With T1GD 52.92 39.86 64.68 48.52

A With FLAIR 64.22 49.73 72.79 59.64

B A + RGB
color fusion

72.23 58.32 74.93 72.20

C B + Leaky
ReLU

72.43 58.79 77.04 71.25

D C + Instance
norm

76.46 65.17 79.39 78.34

E 2D-UNet +
RGB fusion

67.09 55.69 64.83 70.35

3.3 Ablation Study

In this section, we discuss our choice of the activation function and the normaliza-
tion layer. In the related works [1, 2] they used ReLU as activation function and for
normalization they choose Batch normalization.

When the activation function is ReLU, all negative values are reassigned to 0 while
all positive values stay the same. The assigned of all negative values to 0 can lead to
the vanishing gradient problem which can subsequently stop the network from training.
One solution for this problem is to use leaky ReLU. For all negative values, leaky ReLU
assigns them to the result of the multiplication of the value with 0.1 which removes the
problem of neuron reaching 0 and dying. Thus, we wanted to experiment if changing
the activation function would improve the segmentation. The results from this exper-
iment can be found in Table 3 (Row C) and we found that leaky ReLU improves the
segmentation.

When working with medical dataset, we can expect that the pathology class would
have less samples than the background, because the background contains the background
of themedical image and thehealthy tissue. In batchnormalization, all images in the batch
would be normalized together and, in our network, that would mean that all images from
one patient are normalized together. Instance normalization normalizes each projection
on its own. FromTable 3 (RowD),we found that Instance normalization can significantly
improve the segmentation of the pathology in all reported metrics.

We also compared the use of projected images against using the MRI all slices
directly. Using maximum intensity projected images, the preprocessing time is 0.2 s
for one patient, and additional half a second for the inference segmentation of the 3D
image. On the other hand, segmentation using slice-by-sliceMRI is 15 timesmore costly.
Although, training slice by slice uses more data and takes more processing time, it does
not improve the quality of the segmentation. From the results in Table 3 (Row E), we
can notice that Modality fusion can improve the performance of standard slice-by-slice
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2D-UNet with about 6 points. However, the use maximum intensity projection with
the linear reconstruction improves the quality of the segmentation by about 10% over
2D-UNets.

4 Conclusion

In this paper, we investigate the fusion of Maximum intensity projected (MIP) images of
MRI modalities using color spaces. We use MIP images of the MRI volume at different
angles to minimize the processing time. We then color-fuse these projected on the RGB
color space. In addition, we compare the performance of our model to 3D, 2.5D, and 2D
U-Nets and show that our pipeline architecture provides a trade-off between performance
and computational cost. We found that the use of modality fusion in a color space can
improve the segmentation quality and the training time while preserving similar number
of training parameters as 2D U-Net.
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Abstract. The total volume of Epicardial Adipose Tissue (EAT) is a
well-known independent early marker of coronary heart disease. Though
several deep learning methods were proposed for CT-based EAT volume
estimation with promising results recently, automatic EAT quantifica-
tion on screening Low-Dose CT (LDCT) has not been studied. We first
systematically investigate a deep-learning-based approach for EAT quan-
tification on challenging noisy LDCT images using a large dataset con-
sisting of 493 LDCT and 154 CT studies from 569 subjects. Our results
demonstrate that (1) 3D U-net precisely segment the pericardium inte-
rior region (Dice score 0.95 ± 0.00); (2) postprocessing based on narrow
1-mm Gaussian filter does not require adjustments of EAT Hounsfield
interval and leads to accurate estimation of EAT volume (Pearson’s R
0.96± 0.01) comparing to CT-based manual EAT assessment for the
same subjects.

Keywords: Epicardial fat · Low-dose CT · Deep learning

1 Introduction

Coronary heart disease (CHD) remains the leading cause of death and disability
worldwide [8]. The primary pathological process leading to the development
of CHD is coronary artery atherosclerosis, an inflammatory disease associated
with lipid deposits in the vascular walls [1]. According to the results of the
Multi-Ethnic Study of Atherosclerosis (MESA), the amount of adipose tissue
surrounding the heart - pericardial adipose tissue - is an independent predictor
of CHD [4]. Pericardial adipose tissue includes epicardial adipose tissue (EAT)
located inside the pericardial contour and paracardial adipose tissue located
outside and adjacent to the pericardium.

For a long time, CHD is asymptomatic and manifests at late stages with
myocardial infarction or sudden death, so it is crucial to determine disease pre-
dictors even before the symptoms appear. The primary approach to addressing
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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this issue is the organization of mass preventive examinations. Since “large-scale
screening” excludes the use of invasive diagnostic methods due to labor intensity,
high cost, and risks of complications, the possibilities of noninvasive diagnostic
techniques have attracted wide attention from the scientific community. EAT
can be assessed by echocardiography (EchoCG), computed tomography (CT),
and magnetic resonance imaging (MRI). EchoCG is not an optimal method to
quantify EAT because of low reproducibility [9]. Cardiac MRI is an expensive
and time-consuming procedure [5]. Traditionally, EAT is assessed by CT scan
triggered by an electrocardiogram (ECG) with or without intravenous contrast
agent [15]; non-ECG CT scan can also be used for EAT quantification as a
reliable and reproducible predictor for CHD [17].

Recently, several deep-learning-based methods were proposed for EAT quan-
tification for non-ECG-triggered CT scans. The majority of works consist of
two steps: (1) pericardium delineation or segmentation of Pericardium Interior
Region (PIR) segmentation followed by (2) estimation of EAT mask by simple
thresholding of Hounsfield Units (HU). Also, a simple median filter is used for CT
to suppress noise before thresholding in many works. A comprehensive approach
with two convolutional neural networks was proposed in [2] and later replaced by
a single multitask network in [3], subsequent work of the same authors. In both
works, EAT quantification perfectly correlated with manual estimation (Pear-
son’s R was 0.97). At the same time, a simpler 3D U-Net with attention was
successfully used in [7] where authors reported Dice score 0.85± 0.05 for a small
training sample of 40 subjects.

However, standard CT is associated with high radiation exposure and can
not be used for screening. At the same time, as EAT reflects early signs of the
disease, an automatic tool for a screening examination such as low-dose chest CT
(LDCT) is required. To date, there have been only a few studies demonstrating
the possibility of using non-ECG-gated low-dose chest CT for EAT volumetry
[11,19]. However, these studies use labor- and time-consuming semi-automatic
techniques, which complicates their implementation within clinical settings. The
previously described automatic technique had been validated only for standard
ECG-gated CT, not used for screening [2]. Finally, despite substantial progress
in researching CT-oriented methods, automatic LDCT-based EAT volumetry in
screening patients remains highly relevant.

From the technical point of view, LDCT is much noisier than CT, and this
difference may affect both abovementioned steps of the pipeline

1. Worse quality of images may result in deterioration of pericardium detection
or PIR segmentation quality.

2. Presence of noise may make EAT mask estimation via thresholding more
challenging. Besides, the difference in scanning protocol may result in a sys-
tematic shift of HU intensities, as was shown for EAT quantification in [12]
where a modified upper HU threshold showed the best match with CT-based
estimations.

We aim to study both effects systematically to validate the deep learning-based
method’s applicability for automatic estimation of EAT volume on LDCT.
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Our contributions are as follows. (1) We first developed and tested a pipeline
for EAT quantification in LDCT. (2) We show that a simple 3D Unet achieves
the excellent quality of PIR segmentation approaching expert’s variability. (3)
We studied several post-processing approaches and identified that (a) popular
median filtering results in a systematic shift of intensities and (b) a Gaussian
filter with the standard EAT HU-range provides an excellent EAT estimation
with Pearson’s R 0.96 ± 0.01 comparing to CT-based manual EAT assessment
for the same subjects.

2 Data

Our data includes standard-dose chest CT and LDCT; the latter images were
collected within a lung cancer screening pilot [16]; the radiation dose for all cases
is less than one mSv. Scanning with both CT types was performed on Toshiba
Aquilion 64 (Canon medical systems, Japan), with a rotation time of 0.5 sec,
slice thickness 1 mm, and convolution kernel (FC07, FC51). The main differences
between CT and LDCT protocols were (1) voltage: 120 kV vs. 135 kV, (2) X-ray
tube current: automatic tube modulation vs. up to 25 mA, and (3) radiation
dose: 7–8 mSv vs. less than 1 mSv.

Some CT and LDCT images (see details below) were annotated in an in-house
tool conceptually close to the methodology described in [13]. Ten radiologists
annotated CT and LDCT images by drawing pericardium contours on axial
slices with the help of inter-slice interpolation. At least two readers annotated
every study.

We use four datasets to conduct computational experiments; see more details
of its usage in Sect. 3.

– Labeled-LDCT. 415 annotated LDCT studies. The main training dataset.
– Labeled-CT. 76 annotated chest CT studies. An auxiliary dataset to compare

pericardium interior segmentation quality for CT and LDCT images.
– Unlabeled-Paired. 57 non annotated pairs CT-LDCT; each pair consists of

CT study and LDCT study collected from the same subject with no more
than 60 days between studies. The primary dataset for experimenting with
the second pipeline step - different postprocessing approaches.

– Labeled-Paired. 21 annotated pairs CT-LDCT prepared using the same app-
roach as Unlabeled-Paired. Hold-out dataset designated exclusively for testing
of final models.

Patients cohorts were selected carefully to guarantee zero intersections
between datasets and avoid possible data leaks.

3 Experimental Setup

As discussed in Sect. 1, the authors of [2,3] split their method for estimating
EAT volume in thoracic CT images into two following consecutive steps.
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1. Segmentation of the interior region of the pericardium via CNN.
2. Postprocessing, which includes applying median filter with a 3 × 3 kernel

size to each axial slice of the CT image and calculating the volume of the
EAT thresholded as voxels inside pericardium with intensity in range [l, u] =
[−190,−30]HU. We refer to this postprocessing step as Median-Thresholding
(l, u).

We aim to adapt and validate this two-step approach in LDCT images. There-
fore, we design our experiments as follows.

– First, we train and validate a CNN for PIR segmentation in both low-dose and
full-dose CT images. As we show in Sect. 4, this network followed by Median-
Thresholding (−190,−30) successfully quantifies EAT volume in full-dose CT
images. We describe details in Sect. 3.1.

– Then, we use the trained CNN to delineate pericardiums in both low-dose and
full-dose CT images from the Unlabeled-Paired dataset. For each patient, we
quantify EAT inside the predicted pericardium in the full-dose CT image
using Median-Thresholding (−190,−30). Taking these volumes as ground
truth, we calibrate postprocessing step for estimating EAT volumes in the
low-dose CT images. See details in Sect. 3.2.

– Finally, we test the CNN followed by the calibrated postprocessing in low-
dose CT images from the Labeled-Paired dataset. As a ground truth we take
EAT volumes calculated in full-dose CT images using manually annotated
pericardiums and Median-Thresholding (−190,−30).

3.1 Pericardium Interior Region Segmentation

Our network for segmentation of PIR has a 3D U-Net [18] architecture which
is a de facto standard for medical image segmentation. We replace plain convo-
lutional layers with residual blocks [6]. In upsampling branch of U-Net, we also
replace transposed convolutions with simple trilinear interpolation.

We split all the images from Labeled-CT and Labeled-LDCT using 5-fold
cross-validation in a stratified by dose (low or full) manner. For each split we
train a single network on both low-dose and full-dose images. As mentioned
in Sect. 2, patients in Labeled-CT and Labeled-LDCT datasets are unique and
do not intersect with each other and with patients from Unlabeled-Paired and
Labeled-Paired datasets. Therefore, training setup excludes overfitting to the
validation and test sets.

Before feeding thoracic CT images to the network, we preprocess them in
the following steps. First, we crop each axial CT slice to the bounding box of
the pixels with intensities greater than −500 HU, which is in fact the body
bounding box. Then, we trilinearly interpolate the cropped 3D image, such that
resulting image has a 2× 2× 3 mm3 voxel spacing. Finally, we clip intensities to
a [−200, 200] HU window and scale them to the [0, 1] range.

We train the network for 15k batches of size 3 using Adam optimizer [10]
with default parameters and a learning rate of 3 · 10−4. As a loss function we
use a sum of binary cross entropy and dice loss [14] weighted by 0.1.
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To assess the quality of pericardium prediction we calculate the average Dice
scores between the network’s predictions and the ground truth PIR masks, sep-
arately for low-dose and full-dose images, in each validation fold. In Sect. 4.1
we report the mean value and standard deviation of these Dice scores along 5
folds. Also, for each image, we calculate the average Dice score between multiple
ground truth masks annotated by different radiologists. In Sect. 4.1 we report
the mean values of these inter-rater Dice scores on the Labeled-CT and Labeled-
LDCT datasets as a strong baseline for predictions’ Dice scores.

Also, we assess the quality of EAT volume estimation in full-dose CT images
using network’s pericardium predictions and Median-Thresholding (−190,−30).
As a ground truth we use EAT volumes calculated using annotated ground
truth pericardiums and Median-Thresholding (−190,−30). As quality metrics
we calculate mean absolute errors, and Pearson’s correlation between predicted
and ground truth volumes in each validation fold. In Sect. 4.1 we report the
mean values and the standard deviations of these metrics along 5 folds. Also,
we report the inter-rater mean absolute errors for the ground truth volumes in
Labeled-CT dataset.

3.2 Postprocessing Calibration for LDCT

A postprocessing step takes a CT image and the PIR mask as inputs and aims
to assign 1 to fat voxels inside pericardium, and 0 to other voxels. After that,
EAT volume is calculated as a sum of positive voxels’ volumes.

Fig. 1. From left to right: (A) - a patch of an axial low-dose CT slice containing the
heart; (B) - the PIR mask predicted via 3D U-Net; (C), (D), and (E) - the fat voxels
inside pericardium obtained via Näıve-Thresholding (−190,−30), Median-Thresholding
(−190,−30), and Gaussian-Thresholding (−190,−30, σ = 1 mm), correspondingly.

The most straightforward approach for postprocessing is to exclude voxels
with the original CT intensity beyond range [l, u] from the PIR. We refer to
this approach as Näıve-Thresholding (l, u). However, it results in errors due to
noise in CT images, especially low-dose CT images (see Fig. 1(C)). Therefore, in
[2,3] authors apply Median-Thresholding (−190,−30) as an attempt to eliminate
noise effect. We take this approach as a gold standard for full-dose CT images,
however, in Sect. 4 we show that it yields poor quality in low-dose CT images.
Therefore, we need to adjust the postprocessing step for LDCT. In addition to
Näıve-Thresholding (l, u) and Median-Thresholding (l, u) we also validate the
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Gaussian-Thresholding (l, u, σ), which is applying the gaussian filtering with
scale σ to the CT image, followed by thresholding voxels inside pericardium to
[l, u] range. The simple way to adjust all three aforementioned approaches is to
calibrate the parameters (l, u).

To compare different approaches for postprocessing in LDCT, we use the
Unlabeled-Paired dataset. We predict the PIR masks in both full-dose and low-
dose image for each patient using the network described in Sect. 3.1. Then
we apply Median-Thresholding (−190,−30) to the PIR predictions in full-
dose CT images and take the resulting volumes as a ground truth for each
patient. After that, we apply Näıve-Thresholding (l, u), Median-Thresholding
(l, u), and Gaussian-Thresholding (l, u, σ) for σ ∈ {1, 3} mm, for (l, u) ∈
{−300,−290, . . . ,−110,−100} × {−70,−65, . . . ,−15,−10}HU to the PIR pre-
dictions in LDCT images. For each postprocessing setup we calculate the mean
absolute errors between the resulting volumes and the ground truth volumes.
Thus, we choose the best setup for postprocessing in LDCT images to fit the
ground truth volumes predicted in the corresponding CT images. The results of
this calibration are described in Sect. 4.

3.3 EAT Quantification in LDCT

The proposed method for EAT volume estimation in LDCT images consists of
PIR segmentation using the network described in Sect. 3.1 and the calibrated
postprocessing described in Sect. 3.2.

To finally assess the quality of this method we use the Labeled-Paired dataset.
For each patient we predict the EAT volume in LDCT image and calculate
the ground truth EAT folume in full-dose CT image using the ground truth
pericardium annotation and Median-Thresholding (−190,−30), following [2,3].
In Sect. 4 we report the mean absolute error and Pearson’s correlation between
the predicted and ground truth volumes. Also, we report the inter-rater mean
absolute errors for the ground truth volumes, as a strong baseline for the quality
of EAT volume estimation in the Labeled-Paired dataset.

4 Results

4.1 Pericardium Interior Region Segmentation

In Table 1, we report the quality metrics for PIR segmentation in low-dose and
full-dose CT images via the network described in Sect. 3.1. As seen, the quality
in low-dose CT is as good as quality in full-dose CT. Also we show that the
network’s error achieves the inter-rater variability.

Also, in the first row of Table 2, we report the quality metrics for the EAT
volume estimation in full-dose CT images via the network followed by Median-
Thresholding (−190,−30). Despite that volume prediction error substantially
exceeds the inter-rater volume estimation, we obtained the same mean Pearson’s
R of 0.97 as authors of [3], and conclude that estimation of EAT volume in full-
dose CT images is reliable.
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Table 1. Pericardium interior region segmentation Dice scores. We used 5-fold cross-
validation for the proposed approach; the numbers are presented as mean (std). Inter-
rater variability estimation is based on multiple annotations per image.

Dataset Proposed Inter-rater

Labeled-ULDCT 0.95(0.00) 0.95

Labeled-CT 0.95(0.00) 0.96

4.2 Postprocessing Calibration for LDCT

The mean absolute errors between predicted EAT volumes in low-dose and full-
dose CT images for the same patients from Unlabeled-Paired dataset, for different
LDCT-postprocessing setups, are shown in Fig. 2.

Fig. 2. The mean absolute errors maps on the grid of (l, v) values for the different
postprocessing setups. Mean absolute errors are shown by color; colorbar values are
given in milliliters.

Gaussian-Thresholding (l, u, σ = 1 mm) allows to achieve an optimal mean
absolute error of 14.54 ml, when setting (l, u) = (−170,−29), while setting the
standard fat attenuation range (l, u) = (−190,−30) yields mean absolute error
of 14.58 ml. Median-Thresholding (l, u) yields the optimal mean absolute error
of 15.54 ml, when setting (l, u) = (−160,−39), which significantly differs from
the standard range.

Both these optimums are comparable with the error between the unknown
true and the predicted, taken as ground truth, EAT volumes in the CT image.
Therefore, we cannot conclude that gaussian filtering allows to estimate the
EAT volume in LDCT more accurately then median filtering. However, we give
preference to the Gaussian-Thresholding (−190,−30, σ = 1 mm) postprocessing,
because it achieves the optimal error, while keeping the standard thresholds for
the fat voxels.

4.3 EAT Quantification in LDCT

In the second row of the Table 2 we report the quality metrics for the EAT
volume estimation via the network, described in Sect. 3.1, followed by Gaussian-
Thresholding (−190,−30, σ = 1 mm) postprocessing, chosen as a result of the
calibration, described in Sect. 3.2 and Sect. 4.2. As seen, the proposed method
achieves the same quality in low-dose CT and full-dose CT images.
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Table 2. Epicardial Adipose Tissue quantification metrics. We report Mean Absolute
Error (MAE) in milliliters, Pearson’s R, and mean Bias between the predicted and
the average manually estimated EAT volumes, as well as mean absolute error between
multiple manually estimated volumes. The numbers are presented as mean (std). The
first row contains the metrics calculated using the 5-fold cross-validation on Labeled-
CT dataset. The second row compares the network followed by Gaussian-Thresholding
(−190,−30, σ =1 mm) as a model for EAT quantification in LDCTs versus manual
estimations in corresponding CTs from the Labeled-Paired dataset.

Dataset EAT volume MAE, ml Pearson’s R Bias, ml

Proposed Inter-rater

Labeled-CT 14.45(3.14) 9.84 0.97(0.02) −0.12(6.0)

Labeled-Paired 13.73(0.96) 7.6 0.96(0.01) 2.26(2.46)

5 Discussion

We studied automatic EAT quantification on LDCT images using a large
database with more than 500 subjects. Despite poor image quality due to ultra-
low dose (less than 1 ms), the proposed combination of classical 3D U-net and
postprocessing achieves excellent results. The quality of automatic EAT quan-
tification is almost equal to that for CTs images (Pearson’s R 0.96 ± 0.01 and
0.97 ± 0.02 correspondingly). A slightly higher std for CTs can be explained
by a much smaller number of full dose studies in the training set (415 vs 76).
The obtained scores are aligned with findings in other studeis, e.g. see a large
multicenter study [3] where Pearson’s R 0.974 was reported.

Another interesting finding shows that a popular postprocessing approach
based on the median filter may lead to a systematic shift in HU range of EAT
voxels, whereas a Gaussian filter yields better results even within the standard
[−190,−30] range. It is important to note that this outcome depends on a partic-
ular LDCT protocol and may not be generalized to other protocols (for example,
with voltage reduced to 100 kV).

Despite the high quality of the solution, the mean absolute error of our
LDCT-based estimation is higher than inter-rater variability on CTs collected
from the same subjects (14.45 ± 3.14 and 7.6, correspondingly). Due to several
limitations of our study, we can not identify the key contributing factors. Among
these limitations, we highlight the interval up to 60 days between the collection
of CT and LDCT images for subjects from Labeled Paired which could result in
systematic differences not related to change in CT dose.
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Abstract. We propose a new microscopic imaging technique in which the polar-
ization angles of illumination light and a polarizer in front of the imaging sensor
oriented orthogonally to the illumination polarization are rotated synchronously. A
series of images of cervical cells was recorded under different illumination polar-
ization angles and an algorithm was used to fit the pixel intensity variations of the
images. A reconstruction method was employed to map the anisotropic properties
of cervical cells in the form of a set of polarization parameters. Analysis of the
images of the cervical cells and comparison with traditional methods indicate that
this technique provides higher contrast and sensitivity.

Keywords: Orthogonal polarization · Polarization parameter · Cervical cell

1 Introduction

Orthogonal polarization imaging is a useful method for imaging superficial tissues such
as microcirculation [1, 2]. Orthogonal polarization imaging uses linearly polarized light
to illuminate the tissue and captures images through a linear polarizer that is oriented
in the orthogonal polarization state. It prevents surface-reflected light and polarization-
maintaining light from contributing to the recorded image [1–4]. This method can create
high-contrast microvascular images and can be implemented in a small optical probe
for clinical diagnosis. An improved technique called rotating orthogonal polarization
difference imaging was subsequently introduced [5]. In this technique an orthogonal
polarization image is captured and then the angles of the two polarizers are exchanged
to obtain a second image. The images are processed to give a normalized orthogonal
polarization difference image [(first − second)/(first + second)] that is free from sur-
face reflection and sensitive to the polarization properties of the underlying tissue. This
technique has been applied to image the tendon and results indicate that it has potential
for analyzing the alignment of collagen. However, this approach does not provide direct
quantification of the polarization properties. It has been found that modulating the polar-
ization in the imaging system is usually beneficial in extracting quantitative parameters
[6–9].
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In this paper, we present a new technique, namely modulated rotating orthogonal
polarization parametric imaging, which utilizes the advantages of orthogonal polariza-
tion imaging and polarizationmodulation to generate higher contrast and signal-to-noise
ratio images that can be used to quantify the polarization properties of a sample. The
technique is based on a conventional orthogonal polarization imaging system but the illu-
mination and detection polarization angles are rotated synchronously in defined steps
over a range of 180°. Each corresponding pixel of the images recorded under different
angles is fitted to an analytical function based on the Jones matrix to reconstruct a set
of polarization parametric images. Experiments on cervical cells have been conducted
and the results show that this technique can improve the contrast and resolution. This
suggests that it is useful for characterizing superficial tissues in clinical diagnosis.

2 Experiment Setup and Data Processing

The system uses a conventional microscopic light path (Olympus BX51) with additional
motorized rotating polarizers. The polarization of the incident light is modulated accu-
rately with a rotating polarizer and reflected light from the sample is filtered through
another synchronously rotating polarizer which is oriented orthogonally to the illu-
mination polarizer. The motors and CCD camera are controlled by a computer, so the
polarizers are rotated and images are recorded automatically during the process of image
acquisition.

Fig. 1. Schematic of the experimental setup

As shown in Fig. 1, illumination light with a central wavelength of 532 nm is propa-
gated through a linear polarizer P1, reflected by a beam-splitter and used to illuminate the
sample. Surface reflected or polarization-maintaining light is rejected while multiple-
scattered light passes through the linear polarizer that is always oriented in the orthogonal
polarization state. Two orthogonally oriented linear polarizers P1 and P2 are driven by
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motors to rotate synchronously in angular steps of (π/N) and then the CCD camera
(Basler acA2040-35gm) records an image for each step. The image size is 2448 × 2050
pixels and each pixel represents an area of 3.45 μm × 3.45 μm. The process is repeated
n times over a range of π radians and N images are recorded.

First, consider the linear birefringence. When the two polarizers are rotated contin-
uously, the intensity of the output light changes periodically. The Jones matrix of the
elements in the optical path can be written as,

Eout = GP2GSGP1Ein (1)
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where θ is the angle of the polarizer P1. The sample is treated as a waveplate with δ as
the phase retardance between the x and y components and ϕ as the rotation angle of the
polarization ellipse.GP1,GP2, andGsample are the Jones matrices of the polarizer P1, P2
and the sample respectively. Ein and Eout are the electric fields of light from the source
and that incident on the CCD.

The intensity of the light incident on the CCD can be expressed as

I = EoutE
∗
out = 1

2
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δ

2

)
(1 − cos 4ϕ cos 4θ − sin 4ϕ sin 4θ) (5)

For the recorded images at certain limited number of angles θi in the experiment, the
intensity also follows the expression in Eq. 6, only the variation is discrete,

Ii = k0 + k1 cos 4θi + k2 sin 4θi (6)
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Second, consider the dichroism. The difference of absorptivity in different polarization
directions introduces a component,

IDi = D cos(2(θi − ϕD)) = k3 cos 2θi + k4 sin 2θi (8)

Here, ϕD represents the orientation of the dichroism, which means that the absorptivity
is the lowest in this direction.

Finally, the intensity should follow the expression in Eq. 9,

Ii = k0 + k1 cos 4θi + k2 sin 4θi + k3 cos 2θi + k4 sin 2θi (9)
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The coefficients ki are calculated from

k0 =
N∑
1

Ii
1

N
, k1 =

N∑
1

Ii
2

N
cos 4θi, k2 =

N∑
1

Ii
2

N
sin 4θi,

k3 =
N∑
1

Ii
2

N
cos 2θi, k4 =

N∑
1

Ii
2

N
sin 2θi

(10)

then the polarization parameters of the sample are calculated from

cos δ = 1 − 4k0, ϕ = 1
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2
tan−1

(
k4
k3

)
(11)

Expressions for calculating these parameters are retained in each of the corresponding
pixels of the CCD and a series of parametric images can be formed with them, enables
the polarization properties of the sample to be quantified.

During the measurement, the recorded images were first normalized before recon-
struction. A new image I

′
i (x, y) was calculated for each recorded raw image Ii(x, y),

I ′i (x, y) = Ii(x, y)

2
N

N∑
1
Ii(x, y)

(12)

This technique is compatible with the conventional orthogonal polarization imaging
methodbecause the recorded images at each rotation angle of the polarizers are equivalent
to those of orthogonal polarization images, while any two pairs of images at different
rotation angles θ and θ + 90° taken by this method can be used to create results of
orthogonal polarization difference imaging.

3 Results and Discussion

As shown in Fig. 2, in reflection images using a conventional microscope, we can only
observe the surface shape of the cervical cell because of the cell membrane. The inner
structures, such as the endoplasmic reticulum composed of cytoplasm distributed outside
the nucleus, canonly observed in transmission imaging results as stripe net patterns.Also,
it is difficult to observe the structure of the nucleus in either transmission or reflection.

The polarization parameter images cos δ, ϕ and ϕD of the same cervical cell were
taken using the system described in Fig. 1. In this experiment, a 100× objective was used
and 12 images were recorded (N = 12, �θ = 15◦). The polarization parameter images
cos δ, ϕ are shown in Fig. 3. For comparison, the polarization parameter images ϕD and
orthogonal polarization difference image processed from the same set of raw data are
shown in Fig. 4. They are all significantly different from reflection imaging results by
conventional microscope.

Figures 3(a) and (b) are the polarization parameter images cos δ and ϕ, which are
free from surface reflections and sensitive to the polarization properties of the sample.
The cos δ parametric image provides more detail of the anisotropic optical property
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Fig. 2. (a) Reflection imaging results and (b) transmission imaging results by conventional
microscope. Scale bar, 10 μm.

Fig. 3. (a) The polarization parameter image of cos δ; (b) the polarization parameter image of ϕ.
Color bar, the range of value of different polarization parameters.

inside the cell with patterns corresponding to details of the endoplasmic reticulum in
the transmission imaging result, which can help in determining the distribution of the
cytoplasm in the cell. The edges of the nucleus in the cos δ parametric images are sharper
than in other images, i.e. ϕ in Fig. 3(b) and conventional microscope images in Fig. 2,
because the cos δ parameter image is not affected by initial polarization direction of
the polarizers; photons back-scattered by nucleolemma are mainly collected and lead to
different optical phase retardance from nearby areas.

Figure 4(a) is the orthogonal polarization difference image, which was calculated
from the first and seventh images (�θ = 90◦), i.e. [(I1−I7)/(I1 + I7)]. Figure 4(b) is the
ϕD parametric image, which is similar to Fig. 4(a), demonstrating that the ϕD parametric
images also correspond to dichroism [5]. However, the initial polarization state of the
polarizers will affect the orthogonal polarization difference image greatly, as the results
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Fig. 4. (a) The orthogonal polarization difference image; (b) the polarization parameter images
of ϕD. Color bar, the range of value of different polarization parameters.

Fig. 5. The curves of normalized mean pixel value of raw images, and separated compo-
nents caused by birefringence and dichroism which are used to calculate different polarization
parameters

for different initial states are quite different. In our method, all the recorded images are
used in the calculation; as is shown in Fig. 5, the phase of the component in the light
intensity curve caused by dichroism of the sample is used to determine the orientation
of the dichroism. Compared with the orthogonal polarization difference image which
only uses two images with random initial states, the influence of the initial polarization
direction of polarizer on theϕD parameter image is far smaller. Besides, theϕD parameter
image has higher contrast and lower noise. The ϕD parameter image is believed to be
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related to the alignment of the fibrous structure, which can be used to map endoplasmic
reticulum composed of cytoplasm inside the cell [5, 10].

The nucleus areas of the cells are compared in Fig. 6, using different imaging meth-
ods. In general, modulated rotating orthogonal polarization parametric imaging has sig-
nificant advantages over traditional methods. This is due to the elimination of surface-
reflections by the orthogonal polarizers and the polarization properties that are recovered
as a result of rotating the modulation of the illumination polarization states.

Fig. 6. (a) Orthogonal polarization difference image (b) cos δ parametric image and (c) ϕD
parametric image of the nucleus, respectively.

4 Conclusion

We have developed a modulated orthogonal polarization parametric imaging technique.
A function was derived to describe the variation in pixel intensity when synchronously
rotating two orthogonal polarizers in the illumination and imaging optical path. By fit-
ting each corresponding pixel of the images, a set of polarization parametric images
of cervical cells was obtained. The polarization properties of the cervical cell can be
retrieved from the cos δ, ϕ and ϕD parametric images, which quantify the phase retar-
dance, rotation of polarization ellipse and the orientation of dichroism by the sample.
The results show that the proposed method achieves higher contrast and sensitivity than
conventional orthogonal polarization imaging. In future work, the performance of this
method will be investigated comprehensively and utilized for imaging other cells and
tissues.
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Abstract. The accurate detection of lung lesions as well as the precise measure-
ment of their sizes on Computed Tomography (CT) images is known to be crucial
for the response to therapy assessment of cancer patients. The goal of this study is
to investigate the feasibility of using mobile tele-radiology for this task in order to
improve efficiency in radiology. Lung CT Images were obtained from The Can-
cer Imaging Archive (TCIA). The Bland-Altman analysis method was used to
compare and assess conventional radiology and mobile radiology based lesion
size measurements. Percentage of correctly detected lesions at the right image
locations was also recorded. Sizes of 183 lung lesions between 5 and 52 mm in
CT images were measured by two experienced radiologists. Bland-Altman plots
were drawn, and limits of agreements (LOA) were determined as 0.025 and 0.975
percentiles (−1.00, 0.00), (−1.39, 0.00). For lesions of 10 mm and higher, these
intervals were found to be much smaller than the decision interval (−30% and +
20%) recommended by the RECIST 1.1 criteria. In average, observers accurately
detected 98.2%of the total 271 lesions on themedical monitor, while they detected
92.8% of the nodules on the iPhone.

In conclusion, mobile tele-radiology can be a feasible alternative for the accu-
rate measurement of lung lesions on CT images. A higher resolution display
technology such as iPad may be preferred in order to detect new small <5 mm
lesions more accurately. Further studies are needed to confirm these results with
more mobile technologies and types of lesions.

Keywords: Lung CT · Lung lesions · Lesion size measurement · Tumor burden
measurement ·Measurement uncertainties · Tele-radiology · Bland-Altman
method · Non-parametric method
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1 Introduction

The accurate and precise measurement of lung lesions on Computed Tomography (CT)
images is a challenging issue in cancer management [1]. Measurement guidelines have
been developed for interpreting lung CT images used in cancer screening studies [2].
Lung lesion size measurement at the baseline CT image is necessary in assessing the
likelihood of malignancy and in determining the algorithms to be used for follow-up.
Changes in consecutive scans may indicate malignancy.

Lesion size determination on CT images is also required for assessing response to
therapy [3]. Guidelines are in constant revision as new knowledge and needs emerge
[4]. Lesion size is most commonly measured manually using electronic calipers, with
the long and perpendicular short-axis being measured on two-dimensional images.

The different causes of uncertainties in lesion size measurement have been investi-
gated and discussed in the literature [5, 6].Uncertainties in technical factors are discussed
and it is suggested that different image reconstructions may be necessary for visual and
automated analysis. In [6], it was found that inter-observer variability can be substantial.
The reproducibility with different observers has been found to be very low and therefore
one recommendation has been for the consecutive measurements to be conducted by the
same radiologist. Other uncertainties are related to imaging parameters such as imaging
system hardware, software and image acquisition parameters, image display monitors
and ambient light conditions. Patient motion has also been mentioned in the literature.
However, to our knowledge, the effect of mobile tele-radiology on measurement uncer-
tainty has not been addressed before. This may have a significant impact on decisions
made in clinical practice.

The use of portable displays in tele-medicine practices is becoming increasingly
important [7, 8]. Tele-radiology in particular has been shown to be feasible and is being
used to increase healthcare efficiency. Recently a number of portable technologies such
as laptops, tablets and smart phones have been evaluated for their suitability for tele-
radiology [9]. It has also been pointed out that these technologies started to make amajor
impact in global health where cooperation between distant medical centers may become
possible due to these advances in communication and portable technologies [10].

Motivated by these developments and the emerging needs of efficiency, our objective
was to investigate the achievable performance in mobile tele-radiology using an iPhone
in comparison with traditional radiology. The problem was considered primarily in the
context of assessing the response to therapy using lungCT images. Thefindingsmayhave
important consequences in decision making when the initial radiologist is not available
at the imaging site.

2 Materials and Methods

2.1 Patient Image Data

Data were imported from The Cancer Imaging Archive TCIA [11]. Details on CT scans
can be found on theweb site. TCIA is a service which anonymizes and stores a repository
of acquired images of cancer patients available for research. Supporting data related to
images such as patient outcomes, treatment details, TCIA collections are managed by
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Washington University in St. Louis. Within TCIA, the LIDC-IDRI database contains
diagnostic and lung cancer screening thoracic computed tomography (CT) scans with
marked-up annotated lesions. 271 lesions between 3 and 51 mm were assembled. Of
those, lesions less than 5 mm are often ill-defined on CT scans and have not been
considered for measurement experiments. Overall 183 lesions were considered for the
measurement studies. Images were obtained using different CT scanners, technique
factors and slice thicknesses as described in [12, 13].

2.2 Experimental Design

The experiment was designed following the conditions established in [9]. The reading
environment outside the reading room (<50 lx) was not uniform so that real-world con-
ditions could be simulated. The measurements have been conducted by two radiologists
from Ceyhan State Hospital, Adana and Biruni University Hospital, Istanbul. Radiant
Digital Imaging and Communications inMedicine (DICOM)Viewer Version 4.1.16 was
utilized to examine lung CT images on the Viewsonic VA2410-mh model DICOM cal-
ibrated PACS monitor. The monitor was of 1559 cm2 size, made with LCD technology
and had 1920 × 1080 image resolution.

A mobile DICOM viewer named Medfilm was used on the iPhone 6S model smart-
phone. The phone screen was of 60.9 cm2 size, made with LCD technology, had 750 ×
1334 image resolution and 16:9 aspect ratio (~326 ppi density). The iPhone was not
DICOM calibrated. The technical specifications of the displays are summarized in Table
1. The images were shown in random order to two radiologists with at least seven years
of experience. Data were produced by the radiologists who evaluated the images on
each display with a time interval of three weeks. No time restriction was specified. The
radiologists marked the detected lesions and their coordinates and measured their size.

Table 1. Technical specifications of displays

Specification Viewsonic
VA2410-mh

iPhone 6S

Monitor size 23.8 in. 4.7 in.

Technology IPS technology TFT
LCD

IPS technology LCD

Resolution 1920 × 1080 1334 × 750

Aspect ratio 16:9 16:9

Brightness 250 cd/m2 500 cd/m2

Contrast ratio 1000:1 (Typ) 1400:1 (Typ)

2.3 Statistical Analysis

The Bland-Altmanmethod was used to analyze the results [14, 15]. An example analysis
can be found in [15], where lung lesion size measurements in ultra-low-dose CT were
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compared to low dose CT by using two observers. Normality of data was assessed
by using the Shapiro Wilk test as well as visually by inspecting the histograms. The
limits of agreements (LOA) were defined as 0.025 and 0.975 percentiles. Variances were
compared using the non-parametric squared ranks test. Excel 2013/16 and StatsDirect
(version 16) were used for the statistical analysis.

3 Results

Measurement results are tabulated in Table 2. Shapiro Wilk normality test yielded p <

0.0001 for all four difference data for 183 lesions. Percentiles were therefore used for
computing LOA’s. The Bland-Altman plots can be seen in Fig. 2 (Fig. 1).

Fig. 1. Examples of lung CT scans and lesions11.

Table 2. Statistics obtained from measurements (mm).

Differences Mean Standard
Deviation
(SD)

Median Lower
LOAa

Upper
LOA

Length of
Interval

Variance tests
(p)b

PMM-O1 0.68 0.41 1.00 0.00 1.00 1.00 1–2 0.65
1–3 < 0.0001
1–4 < 0.0001

PMM-O2 0.67 0.39 0.70 0.00 1.39 1.39 2–3 < 0.0001
2–4 < 0.0001

O1O2-MM −0.16 0.59 −0.10 −1.00 1.00 2.00 3–4 0.03

O1O2-P −0.17 0.70 0.00 −1.50 1.00 2.50 -

LOA, Limits of Agreement; SD, Standard Deviation.
aUsing 0.025 and 0.975 percentiles.
bp values based on the non-parametric squared ranks test. The unit is mm N = 183.
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Fig. 2. Bland-Altman plots for the four measurement differences. a) Difference of observer read-
ings for the iPhone b) Difference of observer readings for the medical monitor c) Difference of
readings between displays for observer 1 d) Difference of readings between displays for observer
2. All values are in mm.

Observers accurately detected 98.2% of the 271 lesions on the medical monitor,
while they detected 92.8% of the nodules on the iPhone. The undetected lesions were
all under 5 mm.

4 Discussion

In this study, the performance of mobile tele-radiology using an iPhone for measuring
lung lesion sizes has been investigated. Bland-Altman plots have been used to assess
the agreement between measurements obtained in a radiology reading room and in a
tele-radiology setting. Table 2 demonstrates that there is a small offset in the difference
between the types of measurements. The bias between the two observer readings was
found negligible for both displays. Standard deviations of differences between tech-
nologies and between observers can also be found in the same table. LOA’s were cal-
culated using percentiles. Nonparametric statistical tests were conducted for comparing
variances. Several observations can be made based on these results:

1. The uncertainties and the bias do not seem to change significantly with tumor size
within the chosen range.

2. For a lesion of 10 mm and higher, these uncertainty intervals for two readers (1,
1.39 mm) are quite smaller than the (−30%, 20%) or 5 mm interval for deciding
stable disease (SD by the RECIST criteria for both readers [3, 16].When considering
typically larger lesions or the sum of several lesions, the decision interval becomes
even higher such as 25 mm for a sum of 50 mm.
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3. The standard deviations of errors and LOA intervals due to the difference between
observers are higher than the standard deviations of errors and LOA intervals pro-
duced due to the difference in technologies for single observers (0.59 and 0.70
versus 0.41 and 0.39, p < 0.001 using the non-parametric squared ranks test) or
LOA of 2–2.5 mm versus LOA of 1 and 1.39 mm extent). This implies that with
each one observer, the use of iPhone (versus the use of the medical monitor) was
found to produce less uncertainty than the one produced by two observers using a
standard medical monitor. These results extend previous findings [5] that uncertain-
ties produced by multiple observers can be larger compared to other measurement
uncertainties.

4. The standard deviation of errors due to the difference between observers is somehow
lower (by about 15%) for the medical monitor.

5. The bias due to change in technologies should be corrected when making measure-
ments in order to obtain more accurate results.

6. Results show that in average, observers accurately detected 98.2% of the 271 lesions
on the medical monitor, while they detected 92.8% of the nodules on the iPhone.
This implies that the iPhonemay present difficulties in detecting new small (<5mm)
lesions. A previous study on iPad in [17] had shown that lesion detectability can be
satisfactory for these small lesions. Therefore, this study may prompt the use of
larger and higher-resolution technologies such as an iPad for detecting these lesions.

7. The results obtained using two observers on the same technology show that for a
minimally acceptable lesion of 10 mm and higher, LOA’s (2, 2.50) mm are slightly
closer to the (−30%, 20%) decision interval of 5 mm recommended by the RECIST
criteria [3, 16]. This confirms the previously stated conclusion that readings by
multiple observers consecutively are not recommended in assessing lung lesions
[5].

To the best of our knowledge, this study is the first one to assessmobile tele-radiology
for lesion measurement purposes using lung CT images. The previous study mentioned
above [17] had shown that iPad is adequate for detecting these lesions. The two studies
can indicate that mobile tele-radiology may be feasible.

The findings presented in this study may be important for consecutive readings of
the same patient’s images when the initial radiologist is not available. Tele-radiology can
be seen as a practical solution to the shortage of radiologists in hospitals. Based on the
above given findings, in these cases, it may be preferable to have the same radiologist
perform the reading using a portable display outside the hospital rather than to have
another radiologist perform that reading using a medical monitor.

This work provides a suspicion and early evidence that an even a non-DICOM
portable display may produce a smaller uncertainty than the one potentially caused by
multi-observer reading. DICOMcalibration and the use of better/larger portable displays
such as tablets can be expected to further reinforce these conclusions. In particular, tablets
may enhance the detectability of small lesions.

Further studies, therefore can be beneficial with a higher number of radiologists and
different types of medical displays, DICOM viewer software programs and types of
portable displays which may greatly change from hospital to hospital.
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5 Conclusions

In conclusion, mobile tele-radiology can be a potentially feasible alternative for the
accuratemeasurement of lung lesions onCT imageswhen needed.However, due to lower
lesion detectability on the iPhone, a higher resolution display technology than iPhone
such as an iPad may be necessary in order to detect new small<5mm lesions accurately.
Initial results also suggest that subsequent readings by the same radiologist with mobile
tele-radiology may produce less uncertainty than readings by different observers on a
medical monitor. These findings may have an important impact on decisions related to
the use of mobile tele-radiology that aim to improve departmental efficiency. Further
studies are needed to extend these results to other mobile technologies.

Acknowledgements. The authors acknowledge the National Cancer Institute and the Foundation
for the National Institutes of Health, and their critical role in the creation of the free publicly
available LIDC/IDRI Database used in this study.

References

1. Bankier,A.A.,MacMahon,H.,Goo, J.M.,Rubin,G.D., Schaefer-Prokop,C.M.,Naidich,D.P.:
Recommendations for measuring pulmonary nodules at CT: a statement from the Fleischner
Society. Radiology 285(2), 584–600 (2017)

2. American College of Radiology. Lung CT Screening Reporting and Data System (Lung-
RADS) (2014). http://www.acr.org/Quality-Safety/Resources/LungRADS. Accessed 20May
2020

3. Lathrop, K., Kaklamani, V.: The response evaluation criteria in solid tumors (RECIST). In:
Badve, S., Kumar, G.L. (eds.) Predictive Biomarkers in Oncology, pp. 501–511. Springer,
Cham (2019). https://doi.org/10.1007/978-3-319-95228-4_46

4. Kuhl, C.K.: RECIST needs revision: a wake-up call for radiologists. Radiology 292(1) (2019)
5. Yoon, S.H., Kim, K.W., Goo, J.M., Kim, D.W., Hahn, S.: Observer variability in RECIST-

based tumor burden measurements: a meta-analysis. Eur. J. Cancer 53, 5–15 (2016)
6. Dinkel, J., Khalilzadeh, O., Hintze, C., Fabel, M., Puderbach, M., Eichinger, M., et al.:

Inter-observer reproducibility of semi-automatic tumor diametermeasurement and volumetric
analysis in patients with lung cancer. Lung Cancer 82(1), 76–82 (2013)

7. Mendel, J., Lee, J.T., Dhiman, N., Swanson, J.A.: Humanitarian teleradiology. Curr. Radiol.
Rep. 7(6), 17 (2019)

8. Nicholas, J.L.: Technology-mediated education in global radiology: opportunities and
challenges. Curr. Radiol. Rep. 7(5), 1–6 (2019). https://doi.org/10.1007/s40134-019-0323-y

9. John, S., Poh, A.C., Lim, T.C., Chan, E.H.: The iPad tablet computer for mobile on-call
radiology diagnosis? Auditing discrepancy in CT andMRI reporting. J. Digit. Imaging 25(5),
628–634 (2012)

10. Krupinski, E.: Tele-radiology: current perspectives. Rep. Med. Imaging 7(1), 5–14 (2014)
11. Armato, S.G., III: Data from LIDC-IDRI. The Cancer Imaging Archive (2015). https://doi.

org/10.7937/K9/TCIA.2015.LO9QL9SX
12. Armato, S.G., 3rd., et al.: The lung image database consortium (LIDC) and image database

resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med.
Phys. 38, 915–931 (2011). https://doi.org/10.1118/1.3528204

http://www.acr.org/Quality-Safety/Resources/LungRADS
https://doi.org/10.1007/978-3-319-95228-4_46
https://doi.org/10.1007/s40134-019-0323-y
https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX
https://doi.org/10.1118/1.3528204


Evaluating Mobile Tele-radiology Performance 123

13. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public
information repository. J. Digit. Imaging 26(6), 1045–1057 (2013). https://doi.org/10.1007/
s10278-013-9622-7

14. Bland, J.M., Altman, D.G.: Statistical methods for assessing agreement between twomethods
of clinical measurement. Int. J. Nurs. Stud. 47(8), 931–936 (2010)

15. Sui, X., Meinel, F.G., Song, W., Xu, X., Wang, Z., Wang, Y., et al.: Detection and size mea-
surements of pulmonary nodules in ultra-low-dose CTwith iterative reconstruction compared
to low dose CT. Eur. J. Radiol. 85(3), 564–570 (2016)

16. Nishino, M.: New response evaluation criteria in solid tumors (RECIST) guidelines for
advanced non–small cell lung cancer: comparison with original RECIST and impact on
assessment of tumor response to targeted therapy. Am. J. Roentgenol. 195(3), W221-8 (2010)

17. Faggioni, L., Neri, E., Sbragia, P., Angeli, S., Angeli, S., Bartolozzi, C.: Chest CT and the
iPad2®: preliminary 2D assessment of pulmonary nodules. Presented at RSNA, 29November
2011

https://doi.org/10.1007/s10278-013-9622-7


Learning Transferable Features for
Diagnosis of Breast Cancer from

Histopathological Images

Maisun Mohamed Al Zorgani(B), Irfan Mehmood, and Hassan Ugail

Faculty of Engineering Informatics, School of Media, Design and Technology,
University of Bradford, Bradford, UK
M.M.S.AlZoragani@bradford.ac.uk

Abstract. Nowadays, there is no argument that deep learning algo-
rithms provide impressive results in many applications of medical image
analysis. However, data scarcity problem and its consequences are chal-
lenges in implementation of deep learning for the digital histopathol-
ogy domain. Deep transfer learning is one of the possible solutions for
these challenges. The method of off-the-shelf features extraction from
pre-trained convolutional neural networks (CNNs) is one of the common
deep transfer learning approaches. The architecture of deep CNNs has
a significant role in the choice of the optimal learning transferable fea-
tures to adopt for classifying the cancerous histopathological image. In
this study, we have investigated three pre-trained CNNs on ImageNet
dataset; ResNet-50, DenseNet-201 and ShuffleNet models for classify-
ing the Breast Cancer Histopathology (BACH) Challenge 2018 dataset.
The extracted deep features from these three models were utilised to
train two machine learning classifiers; namely, the K-Nearest Neighbour
(KNN) and Support Vector Machine (SVM) to classify the breast cancer
grades. Four grades of breast cancer were presented in the BACH chal-
lenge dataset; these grades namely normal tissue, benign tumour, in-situ
carcinoma and invasive carcinoma. The performance of the target classi-
fiers was evaluated. Our experimental results showed that the extracted
off-the-shelf features from DenseNet-201 model provide the best predic-
tive accuracy using both SVM and KNN classifiers. They yielded the
image-wise classification accuracy of 93.75% and 88.75% for SVM and
KNN classifiers, respectively. These results indicate the high robustness
of our proposed framework.

Keywords: Breast cancer · Deep transfer learning · Machine learning
classifier · Histopathological image classification

1 Introduction

There are evidences that the breast cancer is higher death rates than other can-
cers that affecting women [1–3]. However, the diagnosis of breast cancer in the

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
R. Su et al. (Eds.): MICAD 2021, LNEE 784, pp. 124–133, 2022.
https://doi.org/10.1007/978-981-16-3880-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3880-0_14&domain=pdf
https://doi.org/10.1007/978-981-16-3880-0_14


Breast Cancer Diagnosis 125

early stages can improve the treatment as well increase patient survival rate [4].
Recently, the Hematoxylin and Eosin (H&E) stained samples of the breast tissue
biopsy are inspected by using Whole Slide Imaging (WSI) scanners to determine
any change in tissue. Coincided with the increasing use of WSI scanners for
digitizing the histopathological slides, it becomes necessary to develop the con-
ventional Computer-Aided Diagnosis (CAD) techniques for enhancing diagnostic
efficiency as well as reducing diagnostic time and cost. The CAD techniques are
aimed to assist the histopathologists with some of the tedious and laborious rou-
tine tasks. Hence, utilising CAD technique is reduced their workload and avoided
the inter-observer variation among histopathologists that produces from manual
extraction of specific visual features of tumour. This, in turn, results in better
assessment outcomes and improved patient experience.

In the last few years, deep learning-based CAD systems have achieved
impressive results in the several applications of histopathological image anal-
ysis. Whereas employing of such systems optimizes the diagnostic performance
of cancer. The performance of traditional machine learning methods relies heav-
ily on hand-crafted features, which can be greatly affected by the human bias.
Furthermore, the field in-depth knowledge for the classification is necessary to
select the useful features. In the hand-crafted techniques, the low-level features
are only extracted from images. Whereas in deep learning techniques, the high-
level abstract features are extracted automatically from images in a standard-
ised way [5,6]. Hence, they deliver unbiased outcomes for dataset images [7]. The
CNNs are type of the neural network architectures and the most popular in deep
learning field. The CNNs have the ability to extract the hierarchy features of
the image through their multiple layers [6]. These features can be learned hier-
archically at multiple levels from lower to higher through network architecture.
Multi-level abstraction makes the CNNs well suited for discovering the complex
structures within high-dimensional data, such as WSI [7,8].

Although deep CNNs have achieved successfully performance in the digital
histopathology domain, they have some unique challenges in their employment.
They require the vast amount of labeled training images to learn their deep
features. Currently, these labeled images are not being available; this is because
pathologists consume a long time to collect them as well need the expertise
to label them[7]. In contrast, training the CNNs by small amounts of training
images leads to over-fitting and poorly generation of features [6]. The over-
fitting is considered as a critical case when the training images have the high
appearance variance, which is usually common in the histopathological images
[7,8]. Furthermore, training CNNs from scratch consumes long time as well needs
extensive memory resources and high computational cost.

The rest of paper is organized as; the related works is provided in Sect. 2.
The methodology is explained in Sect. 3. The Experimental results are presented
in Sect. 4. Lastly, Sect. 5 concludes the paper.
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2 Related Works

This section reviews some of the works that participated in contest The Grand
Challenge on Breast Cancer Histology (BACH) images, which is coordinated
with the 15th International Conference on Image Analysis and Recognition
(ICIAR 2018) [9]. There are two main parts were proposed in this challenge.
The first part goal was to classifying H&E stained breast histophathological
images into four classes: Normal tissue, benign tumor, in-situ carcinoma and
invasive carcinoma. On the other hand, the second part goal was to segmenting
the pixel-wise labeling WSIs. More information on the BACH Challenge Dataset
can be found in the paper was published by Aresta et al. [10]. In this paper, we
work on the first part, which composed 400 images with the same size (2048 ×
1536 pixels) as well each of the four classes contains 100 labelled images.

Most of the proposed deep learning-based techniques are divided into two
categories. One is based on deep transfer learning approaches to tackle the anno-
tated training images scarcity challenge more effectively. The researchers in [11–
16], fine-tuned the pre-trained CNNs as classifiers to identify the four grades of
breast cancer histopathological images in the ICIAR 2018 dataset. Golatkar et
al. [11] fed the fine-tuned Inception-V3 model by overlapping patches extracted
from the original images, then got the final classification accuracy using major-
ity voting. Gue et al. [12] fine-tuned two pre-trained GooLeNet models, then
employed bagging technique, patch voting, hierarchy voting and merge mod-
ule to improve the performance. Nawaz et al. [13] fed the fine-tuned AlexNet
model by non-overlapping patches extracted from the original images. In the
same way, Ferreira et al. [14] fine-tuned the Inception ResNet-V2 model, Mah-
bod et al. [15], fine-tuned ResNet architectures and Kwok [16] fine-tuned four
Inception-Resnet-v2 as the classifiers.

The other proposed works [17–21] utilised the pre-trained CNNs as feature
extractors, and then the extracted deep features were used to train the different
classifiers to classify the four grades of breast cancer histopathological images in
the ICIAR 2018 dataset. Cao et al. [17] combined the extracted deep features
from six feature extractors to train the random forest classifier. Awan et al. [18],
used the extracted deep features from ResNet-50 to train SVM classifiers, and
then employed the majority-voting algorithm for final classification. Vang et al.
[19] employed Inception- V3 model to generate the patch predictions which fed
the ensemble classifiers. In recent years, Yan et al. [20] fine-tuned Inception-
V3 model, and then extracted the patch feature vectors to fed Bidirectional
Long Short-Term Memory network. Similarly, Kassani et al. [21] combined the
extracted deep features from five feature extractors into single feature vector,
which were used to trained their target classifier.

In this study, ResNet-50 [22], DenseNet-169 [23] and ShuffleNet [24] networks
are employed as features extractors to tackle the lack of training images issue
in ICIAR 2018 dataset; the SVM and KNN classifiers are utilised to identify
the four classes of breast cancer histopathological images. Both classifiers are
trained on the deep features that have been extracted from feature maps for
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global average pooling layer of three features extractors. Then, the predictive
performance of different classifiers is compared.

3 Methodology

In this section, a brief explanation of the proposed framework is presented. Our
framework architecture is based on off the-shelf feature extractors to extract
the deep features, which then utilise to train the machine learning classifiers for
predicting of breast cancer grades in ICIAR 2018 dataset.

3.1 Stain Normalisation Techniques

The stain normalisation of histopathological images is the first step to reduce
the color variation and standardise the H&E stained images. Therefore, we stain
normalise histopathological images of ICIAR 2018 dataset as described in [25].
Khan et al. [25] introduced the non-linear mapping approach to normalize of
the H&E stain in breast histopathological images by using Image-Specific Color
Deconvolution method. The difficulties we faced in an implementation of this
technique is the choice of reference image. There is a stain normalisation toolbox
[26] for many of the current techniques for histological images in the Warwick
University website.

3.2 Data Augmentation

The optimum performance of CNNs depends on the amount of training images.
As the ICIAR 2018 dataset is a small, hence the image augmentation technique
is essential step to increase the training images number. In this paper, we have
rotated the training images with angle of 180 degree, and then flipped them
horizontally and vertically. As for the patches, we have rotated with angles of
90, 180, 270 degree and flipped in both directions. This is for purpose of enlarge
the training images size without affecting on the quality of input images [27,28]
as well as to avoid over-fitting problems [29] and features poorly generation.

3.3 Choice of Off The-Shelf Feature Extractors

Choice of the appropriate feature extractors for specific application is an essen-
tial step. In this work, we have investigated three pre-trained CNNs trained on
ImageNet dataset [30]; Reset-50, DenseNet-201 and ShuffleNet models. ResNet
(Residual Network) architecture uses skip connections to reduce the effect of
vanishing gradient problem significantly. DenseNet architecture utilise the skip
connections from each layer to the succeeding layers that promote reusing the
features through entirety of the network. Whereas ShuffleNet architecture utilises
the channel shuffle operation to overcome the consequences of using the group
convolutions.
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3.4 Proposed Framework Architecture

The proposed framework comprises of three models as illustrated in the Fig. 1.

– Patch Model: In this model, we divide each original image into twelve non-
overlapping patches, each patch has a size of 512 × 512 pixels. We label these
patches according to the main image label. We chose the patch size based on
the image size (2048 × 1536 pixels), in which the partitions cover the whole
input image to guarantee that the proposed model can learn the different
features of images. Whereas, these features describe the overall tissue archi-
tecture and distinguish between classes. The proposed extractors are fed by
these patches to extract the deep feature vectors from an average global layer.
These vectors represent the local features of images and are utilised to train
the target classifiers, which produce four-dimensional probability vector for
each patch.

– Global Model: In this model, the proposed extractors are fed by the orig-
inal images to extract the deep feature vectors from an average global layer.
Whereas, these vectors represent the global features of images and are used to
train the target classifiers, which produce four-dimensional probability vector
for each image.

– Hierarchy Voting Module: In this module, the patch-level voting are
placed after the patch model to select the specific prediction vector with
highest probability. Whereas the global-level voting are placed at the end in
our framework to get the final classification.

Fig. 1. Proposed framework architecture of image-wise classification. Feature extrac-
tor unit represents one of the three investigated CNNs; Reset-50, DenseNet-201 or
ShuffleNet. Target Classifiers unit represents both KNN and SVM classifiers, which
produces four-element probability vectors and each element represents probability of
each class.

4 The Experiments and Their Results

Three experiments are carried out using ICIAR 2018 dataset images. In each
experiment, one of the three CNN models is employed as feature extractor.
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The deep feature vectors are extracted from the average global layers of ResNet-
50 (1 × 1 × 2048), DenseNet-201(1 × 1 × 192) and shuffleNet(1 × 1 × 544) models.
Subsequently, these vectors are utilised to train both target classifiers to identify
the four classes of breast cancer. The experiments are implemented in MATLAB
R2020a on a desktop computer has a CPU with a 3.60-GHz Intel R©, Core-i7-
7700, 16-GB RAM, and NVIDIA GeForce GTX 1070 GPU.

For patch model, the feature extractors are fed by a total number of 4800
patches, and then resized into (224×224×3) according to the input layer size of
ResNet-50, DenseNet or ShuffleNet model. After that, the patches are divided
into training 80% (3840 patches), and testing 20% (960 patches). Next, training
patches are augmented. Then, they are ready to train the both target classifiers.

Similarly for global model, the feature extractors are fed by the original
images, resized according to the input layer size for the three models. After
that, the images are divided randomly into training set 80% (320 images) and
testing set 20% (80 images). Next, training images are augmented. Then, they
are ready to train both target classifiers.

For SVM classifier, we have employed an Error-Correcting Output Codes
(ECOC) framework to classify four-class model. ECOC is a commonly used func-
tion to model a multi-class classification problem. We have assigned One-versus-
one coding design of ECOC function. Escalera et al. [31] have demonstrated that
ECOC function could improve the classification accuracy, even compared to the
other multi-class models.

The 4×4 confusion matrices are utilised to represent prediction results of the
four breast cancer grades in ICIAR 2018 dataset. The matrices are shown in
Fig. 2, they composed on four rows and four columns representing number of
classes, i.e. Benign, Insitu, Invasive and Normal. The results of target classifiers
performance with different feature extractors are reported in the Table 1. The
standard metrics (accuracy and recall) are used to evaluate the performance of
different deep classifiers. These terms have derived from the confusion matrices
and formulated in Eqs. 1 and 2 for multi-class classification, as in [32]. It can
be seen from Table 1 that SVM classifier with DenseNet extractor is achieved
the highest accuracy rate with 93.75%. In general, the accuracy rates of both
classifiers that trained on the extracted features from DeseNet model are better
than the other models.

Accuracy =
1
4

L∑

i=1

tpi + tni

tpi + fni + fpi + tni
, (1)

Recall =
1
4

L∑

i=1

tpi
tpi + fni

, (2)

where tpi is true positive for ith class (i.e. correctly prediction to the class), fpi
is false positive for ith class (i.e. wrongly prediction to the class), fni is false
negative for ith class (i.e. missed prediction to the class), tni is true negative for
ith class (i.e. correctly prediction not belong to the class).
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Fig. 2. Confusion matrices of the obtained prediction results using SVM and KNN
classifiers.

By comparing the obtained results from our experiments with some of the pre-
vious works is reported in Table 2. It can be observed from Table 2 that the
result of DenseNet architecture with SVM is the highest classification accuracy
of 93.75%. While the result of DenseNet with KNN is an acceptable compared
to the other results. It is 88.75% an accuracy rate. These results confirm that
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our method in term of classification accuracy outperforms the other methods
that used the same dataset images.

Table 1. The standard metrics of target classifiers with different feature extractors

CNNs ResNet50 DenseNet201 ShuffleNet

SVM KNN SVM KNN SVM KNN

Accuracy (%) 68.75 87.50 93.75 88.75 70.00 86.25

Recall 0.7255 0.8932 0.9379 0.8929 0.7524 0.8756

Table 2. Performance comparison of the proposed framework with other methods

Methods Accuracy (%)

[16] 79.00

[13] 81.25

[18] 83.00

[11] 85.00

[17] 87.10

[19] 87.50

[12] 87.50

[15] 88.50

Proposed DenseNet with KNN 88.75

[14] 90.00

[20] 91.30

[21] 92.50

Proposed DenseNet with SVM 93.75

5 Conclusion

In this study, we have investigated three off-the-shelf feature extractors to
overcome the automated multi-classification challenges of breast cancer using
histopathological image analysis. The off-the-shelf feature extractors are ResNet-
50, DenseNet-201 and ShuffleNet models. We leveraged the generalization prop-
erty that makes the extracted deep features have transferable to other applica-
tions [7]. The extracted deep features from the global average layer of feature
extractors have been used to train both target classifiers. Therefore, generaliz-
ability property is especially useful when dataset is small and not enough for
training the CNN from scratch, as in the ICIAR 2018 challenge dataset. From
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comparing the predictive performance of target classifiers, it is observed that the
extracted deep features from DenseNet architecture are learned better than the
other two architectures. Target classifiers that trained on these features outper-
form the other in terms of classification accuracy. Whereas, the SVM and KNN
classifiers yield the classification accuracy of 93.75% and 88.75%, respectively.
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Abstract. Retinal vessel segmentation (RVS) plays a significant role in the diag-
nosis of ocular diseases, like diabetic retinopathy and glaucoma disease. However,
many works have neglected keeping the topology consistency of the vascular seg-
mentation, which ismore crucial for the clinical diagnosis system. In this paper, we
propose a double U-shape network to tackle this problem. The first U-Net archi-
tecture is DAS-UNet. With the help of the dense connectivity and the parallel
atrous convolution (PAC) block, DAS-UNet can exploit various receptive fields to
segment retinal vessel accurately. Through salient computing block (SCB), it can
focus more on responsive regions and suppress uncorrelated regions. In addition,
we add an auxiliary U-Net which adopts asymmetric convolutions to strengthen
the kernel skeleton and correct the connectivity incoherence of retinal vessels. By
exploiting theweighted Binary Cross Entropy loss (BCE loss), the doubleU-shape
network can segment retinal vessels more accurately and improve the topological
consistency of the segmented vessels.We tested the proposed network for accurate
RVS task on DRIVE benchmark, which achieved the SOTA performance with a
better segmentation results in terms of topology.

Keywords: Retinal vessel segmentation · Double U-Net · Asymmetric
convolution · Topology consistency

1 Introduction

Retinal fundus assessment has been widely used in the diagnosis of ocular diseases such
as diabetic retinopathy and glaucoma disease. However, manual segmentation requires
experienced clinicians a large volume of time, bringing about low efficiency and high
subjectivity. Therefore developing an automate diagnosis system based on computer
vision methods can largely improve the efficacy of clinical diagnosis.

Retinal vessel segmentation (RVS) denotes a semantic segmentation task of labeling
each pixelwith its corresponding class, vessel or non-vessel regions. In recent years, deep
neural networks (DNNs) have demonstrated near-radiologist performance in sematic
segmentation tasks. Especially, the encoder-decoder structure, like U-Net [1] and its
variants, provides a widely used framework for optic fundus assessment. Based on
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the U-shape path of U-Net, coarse-to-fine information can be effectively incorporated
to generate accurate segmentation results. In addition, feature propagation also gets
improved via the skip connections of U-Net, which is especially suitable for medical
image tasks with limited training samples.

However, the encoder-decoder structure is far from being flawless. Detailed infor-
mation of retinal vessels has not been fully exploited because of its consecutive down-
sampling operations in the contracting path. As a result, the accuracy of retinal vessel
segmentation is degraded considerably. Several pioneer works tried to tackle this prob-
lem by designing more elaborate architectures. Zhang et al. [2] added a guided filter in
the expanding path to transfer structural information and to reduce the negative influence
of non-vessel regions. Xu et al. [3] used semantic aggregation blocks to extracted multi-
scale features for an accurate retinal vessel segmentation. The above methods focused
more on local information. To take global information into account, Wang et al. [4]
proposed a non-local UNet based on the self-attention mechanism, using global aggre-
gation blocks to capture long term dependencies instead of a very deep network. Zhang
proposed a STD-UNet [5] to learn structural and textural information in a more rational
way, which improved the performance significantly and excluded the human bias as far
as possible. However, all their efforts tended to design more complicated architectures,
by either introducing new sub-modules or by using different kinds of connections, which
limited both the efficiency and effectiveness.

On the other hand, current DNN-based RVS methods are normally trained with
pixel-level loss. For instance, the Binary Cross Entropy loss (BCE loss) is calculated by
comparing the pixels between the predicted segmentation result and the ground truth,
which treats all image pixels with equal importance. However, as the non-vessel region
occupies more pixels than the vessel region, the pixel-level loss inclines to omit capillary
vessel pixels occasionally.

Furthermore, retinal vessel varies largely in size. Capillary vessels may only occupy
several pixels and main vessels may occupy dozens of pixels. The diameter imbalance
increases the difficulty for segmenting retinal vessel accurately.

These studies mentioned above indicate that the whole vessel tree segmentation
still remains a challenging task. Moreover, the segmented vessel tree often contains
topological errors such as broken vessels and under-segmentation vessels. Consequently,
more constraints are added during the training process, such as the local saliency loss
[6], the boundary and entropy driven loss [7] and the topology ranking (TR) loss [8]. For
instance, the topology ranking loss in TR-GAN can improve the topological connectivity
of the segmented vessels by ranking the generated masks. These peer works indicate
that adding more constraints to the loss function can improve the vascular topology
effectively (Fig. 1).



136 X. Li and G. Chen

Fig. 1. Retinal vessel images and the corresponding topological errors.

In this paper, a double U-shape network combining two U-Net architectures is pro-
posed. The first network is an improved U-Net architecture called DAS-UNet for an
accurate retinal vessel segmentation. While using DAS-UNet as the backbone, another
U-Net architecture employing asymmetric convolutions is added to elevate the topology
consistency. This new double U-shape network can strengthen the kernel skeleton while
at the same time helps to correct the connectivity incoherence.

The contributions of this work can be summarized as follows.

1) We design a double U-shape network which is capable of improving the topological
consistency of the retinal vessel. The first DAS-UNet extracts multi-level features
for accurate retinal vessel segmentation. The auxiliary AC-UNet focuses more on
the weights of the kernel skeleton in order to strengthen the connectivity of retinal
vessels.

2) We use the weighted BCE loss in the training process, which can combine the
information extracted by the two architectures effectively to get the segmentation
map with a better topological consistency.

3) We test the double U-shape network for retinal vessel segmentation task on DRIVE
benchmark. The results demonstrated a better vascular continuity than the methods
investigated in peer works.

2 Double U-Net for Retinal Vessel Segmentation

As illustrated in Fig. 2, the proposed Double U-shape network (Double U-Net) is com-
prised of two U-shape architectures. The first network (DAS-UNet) serves as the seg-
mentation backbone. The second network (AC-UNet) is a traditional U-Net replacing
all the convolution operation with asymmetric convolutions.
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Fig. 2. The diagram of the proposed Double U-shape network.

2.1 Dense Atrous U-Net with Salient Computing

The design of DAS-UNet aims to extract multi-scale features of retinal vessels, thus
we can segment main and capillary vessels simultaneously. As illustrated in Fig. 3,
the proposed DAS-UNet uses U-Net as its backbone, improved by adding three major
components: dense connectivity, parallel atrous convolution block and salient computing
block.

Fig. 3. The architecture of the DAS-UNet.
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Dense Connectivity. Dense Convolutional Network (DenseNet) [9] connects the fea-
turemaps of all the preceding layers to their subsequent layers in order to ensure the infor-
mation propagation. Motivated by DenseNet, we utilize dense connections to enhance
feature propagation. The skip connections in DAS-UNet can assist the expanding path
by feature reuse. By utilizing the benefits of both skip connections and dense connec-
tions, DAS-UNet canmaximize the use of extracted features to generate elaborate retinal
vessel tree.

Fig. 4. The diagram of the PAC Block.

Fig. 5. The diagram of the SCB.

Parallel Atrous Convolution (PAC) Block. We introduce a parallel atrous convolu-
tion block to utilize multi-level semantic features. As global features are vital for the
identification of the whole vascular structure and fine-grained features are indispensable
for detailed segmentation. Based on the combination of various receptive fields, we can
extract multi-level features simultaneously. Figure 4 indicates the diagram of our PAC
Block. The PAC block consists four parallel branches, with various dilated rate ranges
from 1 to 3 and 5. The outputs of the extracting path are fed into the PAC block to
incorporate multi-level semantic features. Hence, we can get global and fine-grained
features of retinal vessels by concatenating these branches on channels.
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Salient Computing Block (SCB). In this study, highlighting responsive regions and
suppressing uncorrelated activations are realized by introducing a salient computing
block. The salient computing block is laid before the channel-wise concatenation in the
expanding path. For illustration, the output of SCB can be expressed as follows:

θx = WT
x x

l
i (1)

θg = WT
g g

l
i (2)

f = σ1
(
θx + θg

)
(3)

θf = WT
f f (4)

salient_coefficient = σ2θf (5)

where xli represents feature maps extracted from level l in the contracting path and gli
indicates the information extracted from the expanding path. The focus region f mainly
depends on the contextual information of the two layers mentioned before. After the
sigmoid activation, we can get the salient coefficient of the focus region f . As presented
in Fig. 5, each pixel before concatenation has been weighted by the salient coefficient.
Therefore, the output of SCB contains information from input feature maps and up-
sampling feature maps, and its magnitude indicates the relevant significance of spatial
pixels.

Fig. 6. The diagram of the ACB.

2.2 Asymmetric Convolution Module

The representative power of the convolution filter with a fixed size changes according to
the position, which is observed in ACNet [10]. To be precise, the weights on the central
cross position usually have a larger set of magnitude, which have a greater influence on
the accuracy. The affiliation of 1D convolution kernels onto the central cross position
can make the filter more powerful.
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Hence, we replace all the convolution filters in the auxiliary AC-UNet with the asym-
metric convolution block (ACB). As shown in Fig. 6, ACB comprises three layers with
3x3, 1x3 and 3x1 kernels concretely, and the output of each kernel are summed up. The
advantage of ACB is that it can enrich the feature space and enhance the representa-
tive power of the traditional convolution filter without introducing any hyper-parameters
during the training process.

2.3 Weighted Binary Cross Entropy Loss

We implement a weighted Binary Cross Entropy loss to exploit the information extracted
from the double U-shape network effectively. DAS-UNet is capable of incorporating
multi-level features and producing more accurate segmentation results, whose loss func-
tion is labeled as loss1. AC-UNet works as an auxiliary network to improve the topo-
logical consistency, whose loss function is labeled as loss2. The total loss function is
expressed as:

ltotal = αloss1 + βloss2 (6)

Where α and β represent the weights of the two networks. We have explored various
combinations of weights, and setting [α, β] = [0.8, 0.2] achieves the best segmentation
results.

3 Experiment

3.1 Dataset

We conduct the test of retinal vessel segmentation task on the public DRIVE [11] dataset.
DRIVE dataset contains 40 fundus imageswith a resolution of 565× 584. All the images
are provided with pixel-level annotations from the Dutch diabetic retinopathy program,
where 7 of them contain pathology. The dataset is equally split into 10 training images
and 10 test images. For the training dataset, each image is provided with one manual
annotation. For the test dataset, each image is provided with two annotations. We both
utilize the first expert’s annotation as the ground truth.

3.2 Evaluation Metrics

We evaluate the proposed method by calculating 4 widely used metrics for the perfor-
mance of RVS task, including accuracy (Acc), sensitivity (Sen), specificity (Spe) and
the area under curve (AUC).

True Positive (TP) indicates the annotated vessel regions which are segmented as
vessel pixels and False Negative (FN) denotes those which are mis-classified as non-
vessel pixels. In a similar way, True Negative (TN) means the annotated non-vessel
regions are segmented as non-vessel pixels and False Positive (FP) denotes those which
are mis-classified as vessel pixels. Thus, the evaluation metrics can be calculated as
follows:

Acc = TP + TN

TP + TN + FP + FN
(7)



Improving Topology Consistency of Retinal Vessel Segmentation 141

Sen = TP

TP + FN
(8)

Spe = TN

TN + FP
(9)

In order to evaluate the topology quality of retinal vessels, we use the metrics which
are first used for road extraction [12]. Evaluation metrics are computed in the following
way:

1) Sample two points which lie both on the ground truth and on the retinal vessel
segmentation map randomly.

2) Calculate the length between the two points and check whether the two paths have
the same length.

3) If such path does not exist, the prediction is classified as infeasible (INF). If the two
paths have the same length, the prediction is classified as correct (COR), otherwise
it is classified as a wrong path.

It stands to reason that more correct paths and less infeasible paths indicate a better
topological coherence on the segmented retinal vessels.

3.3 Ablation Study

Compared with the baseline U-Net architecture, DAS-UNet can achieve a better seg-
mentation result. Table 1 illustrates the performance of DAS-UNet, Sen = 0.7899, Spe
= 0.9916, Acc = 0.9563, and AUC = 0.9796 respectively.

It is notable that the segmentation results of DAS-UNet are more similar to the
ground truth, as depicted in Fig. 7. It has a cleaner segmentation map with less fake
vessels in the background. We finally get the vessel tree with both main and capillary
vessels, which is more suitable for accurate retinal vessel segmentation.

Table 1. Ablation study of DAS-UNet.

Architecture Sen Spe Acc AUC

UNet 0.7565 0.9823 0.9517 0.9757

UNet + DC 0.7520 0.9879 0.9536 0.9774

UNet + DC + PAC 0.7549 0.9912 0.9552 0.9785

UNet + DC + PAC + SCB 0.7899 0.9916 0.9563 0.9796

3.4 Comparison Results

We also compare the proposed double U-shape network with other leadingmethods. Ara
et al. [12] improved the encoder-decoder structure by stacking a variational auto-encoder
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(VAE) to improve the topological consistence of retinal vessels. Xu et al. [13] designed a
semantics-guided network in a recursive way, which can enhance the connectivity whit
no extra parameters. To the best of our knowledge, they are the only two works which
study the topological consistency of retinal vessels.

The results are listed in Table 2. We can see that our double U-shape network can
achieve a decrease of INF to 17.6%, and an increases of COR to 68.4%. The results
indicate that the proposed double U-shape network achieves the best performance on
the topological consistency of retinal vessel segmentation, which outperforms the other
2 leading methods by 11.5% and 9.8% respectively. Finally, we demonstrate examples
of our double U-shape network with a better topological structure, as presented in Fig. 7.

Table 2. Comparison with other leading methods.

Methods Year AUC Sen Spe INF COR

Oliveira et al. [14] 2018 0.982 0.804 0.980 0.437 0.489

Ara et al. [12] 2019 0.979 0.897 0.953 0.291 0.612

Xu et al. [3] 2020 0.980 0.795 0.981 0.539 0.387

Xu et al. [13] 2020 0.981 0.912 0.947 0.274 0.633

Proposed 2021 0.979 0.951 0.907 0.176 0.684

Fig. 7. Comparison results on DRIVE dataset.
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4 Conclusion

In this paper, we analyze the limitations of clinical RVS task and propose a double U-
shape network to improve the topology consistence. The first network (DAS-UNet) is a
dense-atrous U-Net with salient computing, which can extract multi-level features for
accurate retinal vessel segmentation. The second network (AC-UNet) is a traditional U-
Net with asymmetric convolutions, which is capable of strengthening the kernel skeleton
and correcting the connectivity incoherence of retinal vessels. Experiment results con-
veys that the proposed double U-shape network can achieve a better topology coherence
by predicting more correct paths and less infeasible paths without degrading the overall
accuracy.

In the future, we will investigate how to accelerate the computing and speed up the
inference time, make it more suitable for clinical diagnosis of ocular disease.
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Abstract. The accurate medical image segmentation can help doctors to improve
disease diagnosis and treatment. How to achieve the accurate segmentation results
depends on the image preprocessing and segmentation algorithm. Traditional fil-
tering methods can erase the noise of the image, but the contrast of the boundaries
between different tissues is also weakened at the same time. While the Relative
Total Variation method can better filter out the noise and keep the contrast of
the boundaries, which plays an important role for improving the accuracy of the
threshold segmentation. The Gaussian mixture model is used to segment the CT
liver images based on the Gaussian filter and the RTV filter, respectively. The
experiment results are compared, and it is verified that the segmentation result
based on Gaussian filter is much better than that based on Relative Total Variation
filter.

Keywords: Image segmentation · Relative total variation · Gaussian mixture
model

1 Introduction

With the explosive growth of the number of medical images, medical image processing
technology plays amore andmore important role in the field ofmedical disease diagnosis
and treatment. As a main branch of medical research, medical image segmentation
has extensive research and application value, such as clinical diagnosis, pathological
analysis, surgical planning, computer-assisted surgery and other medical research.

The research and application fields of medical image segmentation are mainly focus
on the following five aspects: (1) Extracting the interest region for medical image anal-
ysis and recognition. Such as medical image registration and fusion of different forms
or sources, quantitative measurement of anatomical structure, movement tracking and
synchronization of organs, etc. (2) Measuring the size or volume of human organs, tis-
sues or lesions. Quantitative measurement and analysis of relevant imaging before and
after treatment will help doctors to diagnose, follow up or revise the treatment plan
for patients; (3) Three-dimensional reconstruction and visualization of medical images.
This is helpful not only to the formulation and simulation of a surgical plan, but also
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to the reference of anatomical teaching and the three-dimensional positioning in radio-
therapy plan. (4) Data compression and transmission on the premise of keeping the key
information. It is of great value to realize the efficient transmission of medical images in
telemedicine. (5) The research of content-based medical image database retrieval. Med-
ical image data can be accessed and searched in semantic sense by establishing medical
image database.

In fact, the medical image segmentation is the process of dividing a medical image
into several textures, areas, local statistical features or spectral features according to some
similar features of a medical image, such as, brightness, color, texture, area, shape, local
statistical feature or spectral feature.And it is also the process of dividing amedical image
into a number of disjoint “connected” and “connected” regions. The related features
show consistency or similarity in the same region, while the related features will appear
obvious differences in different regions, that is to say, there is some discontinuity in
the pixels on the boundary between different regions. Generally speaking, there exists
at least one region containing the interest object in the meaningful image segmentation
result.

The abdominal organs of patients are always overlap each other, disorderly and vary
from person to person, and the medical CT images usually have these main characteris-
tics: (1) low contrast; (2) the variability of tissue features; (3) the fuzziness of boundaries
between different tissues or between tissues and lesions; (4) the complexity of the distri-
bution of fine structures, such as, blood vessels, nerves, etc. Therefore, it is a difficulty
for researchers to accurately segment the CT liver image due to the complex structure of
organs and tissues in the abdominal cavity. In addition, another factor related to the seg-
mentation accuracy is the noise of the medical CT image, which is caused by operator or
equipment in the process of shooting the image, which always leads to the blurred edge
of the target object in CT image. In order to solve the problem, scholars have made a lot
of efforts to improve the segmentation accuracy, and a variety of algorithms emerged.
According to the segmentation principle, Yu Kong divided these algorithms into three
main categories: the principle based on plane shape (model), t boundary curve and image
pixel (voxel), respectively [1].

Generally, the CT liver image will be preprocessed by removing the noise from the
image before segmenting. The traditional filtering methods not only can erase the noise,
but also weak the contrast of the boundary at the same time. According to the complex
characteristics of abdominal CT liver images, we propose a new filtering method based
on Relative Total Variationmethod, which can better filter out the noise from the CT liver
image and keep the boundary of different tissues at the same time. Then, the threshold
method based on Gaussian mixture finite model is used to segment the denoised image.

2 Threshold Segmentation Method

The threshold segmentation method based on the gray value of image pixels is one kind
of the various methods of image segmentation. The basic principle is to make full use
of the difference of the gray level between the background and the actual object. Firstly,
perform the distribution processing of image pixels according to this difference; then
transform the distribution to gray level and divide it into multiple gray levels; and finally



The CT Liver Image Segmentation Based on RTV and GMM 147

determine a threshold T to distinguish these differences. So, any point (x, y) in the image
is called an object point if f(x, y) > T. Otherwise, this point will be called a back spot.
That is to say, the segmented image can be expressed as the following g(x, y) [2].

g(x, y) =
{
1 f (x, y) > T
0 f (x, y) ≤ T

The key problem of threshold segmentation is how to obtain an optimal threshold
T. At present, the Gaussian mixture model segmentation algorithm is a better way than
other methods to obtain the threshold T. However, the threshold segmentation method is
very sensitive to the noise of image. In addition to the signal noise in liver CT image, the
texture and complexity of the liver will also affect the segmentation result. Therefore,
the common denoising methods can’t obtain good segmentation result. So, the total
variation filter is used for the preprocessing of CT images in this paper.

3 Relative Total Variation for Image Denoising

The Gaussian filter is a commonmethod used to denoise, it is a linear filtering method. It
is relatively simple, but the denoising effect is not satisfactory. In 1992, Rudin proposed
a total variation model [3], which denoises the image by getting the minimum value
of the total variation energy function expressed as Eq. (1). This method can effectively
keep the boundary information of the image while denoising, and the image is clearer
after denoising.

min J (f ) =
∫

p

λ

2
(f − I0)

2

+ |∇f |dp (1)

The corresponding discrete form of Eq. (1) is as follow.

min J (f ) =
∑

p

λ

2
(f − I0)

2

+
∑

p
|∇f |dp (2)

where ∑
p
|∇f |dp =

∑
p
|fx| + ∣∣fy∣∣ (3)

f is the image to be sought, I0 is the original image, and λ > 0 is the control parameter.
The total variation model is an active research topic in the field of image restoration.

Bayram and Kamasak provided a Directional Total Variation (DTV) model for image
denoising in a specified direction [4]. Hua Zhang and Yuanquan Wang proposed the
Edge Adaptive Directional Total Variation (EADTV) method [5], which introduced a
spatially varying parameter to enable total variation to deal with multiple dominant
directions. However, the direction of the texture in the CT liver image is not fixed, and
the meaningful boundaries in the image are fused with the texture units. Belongs to the
“structure + texture” picture. Though without removing the texture, the human visual
system is fully capable of understanding these images. But for image segmentation, the
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whole structure of the image cannot be acquired because of the texture and the noise.
Li Xu put forward the Relative Total Variation (RTV) method [6] by considering two
types of variation, the inherent variation and relative total variation, to extract the main
structures. At the same time, this RTV model can effectively decompose the structure
information and texture in the image, and it does not need to care whether the texture
is regular or symmetrical. Taking into account the obvious difference between the total
variation caused by the noise in image and the variation caused by the boundary in the
image, the RTV model modifies the Eq. (2) to the following Eq. (4).

min J (f ) =
∑

p
(f − I0)

2 + λ ·
(

Dx(p)

Lx(p) + ε
+ Dy(p)

Ly(p) + ε

)
(4)

Where,

Dx(p) =
∑

q∈R(Ω)

gp,q ·
∣∣∣(fx)q∣∣∣

Dy(p) =
∑

q∈R(Ω)

gp,q ·
∣∣∣(fy)q

∣∣∣

Lx(p) =
∣∣∣∣∣∣

∑
q∈R(Ω)

gp,q · (fx)q

∣∣∣∣∣∣
Ly(p) =

∣∣∣∣∣∣
∑

q∈R(Ω)

gp,q · (
fy

)
q

∣∣∣∣∣∣
q is all the pixels in a square region with p as the center, and g is the following Gaussian
kernel function.

gp,q ∝ e− (xp−xq)
2+(yp−yq)

2

2σ2

（a）Original CT image  (b) Gaussian filter CT image (c) RTV filter CT image 

Fig. 1. The original CT image of the liver and filtered images
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Figure 1(a) shows an original CT section of the abdominal cavity. In this image, the
inferior vena cava, the circular organ pointed by the arrow, is closely attached to the liver.
It is difficult to segment accurately. Figure 1(b) gives the results after Gaussian filtering
and Fig. 1(c) shows the result after RTV filtering. According to the filtering effect, the
boundary of the inferior vena cava in Fig. 1(c) seems to be more obvious than that in
Fig. 1(b).

4 Gaussian Mixture Model Segmentation

The image gray histogram reflects the frequency of a certain gray value in the image,
and it can also be regarded as the estimation of the gray probability density of the image.
If the image contains a large difference between the target region and the background
region, and there is a certain difference in gray between the background region and the
target region, then the gray histogram of the image shows a double peak-valley shape,
one of the two peaks corresponds to the target, and the other peak corresponds to the
grayscale of the background. For complex images, especially medical images, it is gen-
erally multi-peak. The image segmentation can be solved by regarding the multi-peak
characteristic of the histogram as the superposition ofmultiple distributions. Themixture
model can just be used to represent the probabilitymodel of the superposition ofmultiple
distributions in the global distribution. In other words, the mixture model represents the
probability distribution of the observed data in the population, which is a mixed distribu-
tion composed of K sub-distributions. The mixture model does not require the observed
data to provide information about the sub-distribution to calculate the probability of the
observed data in the overall distribution. Gaussian Mixture Model (GMM) is a common
and effective mixture model due to the good mathematical properties and the good com-
putational performance of the Gaussian distribution. Gaussian mixture model can be
regarded as a model composed of K single Gaussian models [7]. For the gray histogram,
a single Gaussian distribution obeys the following probability density function.

P(x|θ) = 1√
2πσ 2

e− (x−μ)2

2σ2

The Log-Likelihood function of the Gaussian mixture model is expressed as Eq. (5).

logL(θ) =
∑N

j=1
logP(xj|θ) =

∑N

j=1
log

(∑K

k=1
αkϕ(x|θk)

)
(5)

θ = (μk , σk , αk) is the expectation, variance and probability of each sub-model.
xj represents the observation data, j = 1, 2, · · · ,N .
k is the number of sub-Gaussian model, k = 1, 2, · · · ,K .
αk is the probability belonging to the kth sub-model, αk ≥ 0,

∑K
k=1αk = 1.

ϕ(x|θk) is the Gaussian distribution density function of the kth sub-model, here θk =(
μk , σ

2
k

)
.

The parameters in Eq. (5) can be calculated by applying the following Algorithm 1.



150 Y. Dun and Y. Kong

5 Segmentation Results and Conclusions

The CT slice in Fig. 1 is segmented by GMM. Figure 2 shows the result of GMM
segmentation of Fig. 1(b). Figure 3 shows the result of GMM segmentation of Fig. 1(c).
Compared with Fig. 2(a) and Fig. 3(a), we find that although the shape of the image is
similar, the peak height of histogram statistics has a significant difference. Every peak
in Fig. 3(a) is almost twice as high as that in Fig. 2(a). Figure 3(a) shows that the gray
statistical value of the liver in Fig. 1(c) is more than 5000, while Fig. 2(a) shows that the
gray statistical value of the liver in Fig. 1(b) is less than 3000. This significant difference
makes the threshold of the Fig. 3(a) more accurate than that of the Fig. 2(a) when the
threshold is calculated in following GMM, which is shown as Fig. 3(b) and Fig. 2(b),
respectively. The threshold range shown in Fig. 3(b) is 193–215, while that shown in
Fig. 2(b) is 187–221. The difference between the upper and lower bounds of the two
threshold ranges happens to be the key to accurate segmentation. Figure 3(c) and Fig. 2(c)
are the segmentation results of Fig. 1(a) based on the two segmentation threshold ranges
shown as Fig. 3(b) and Fig. 2(b), respectively. We combine the boundaries of Fig. 3(c)
and Fig. 2(c) with Fig. 1(a) to get Fig. 3(d) and Fig. 2(d), respectively. Figure 2(d) does
not separate inferior vena cava from the liver, and the inferior vena cava is misclassified
into the liver. It is clear that Fig. 3(d) is correct and better than Fig. 2(d).

From Fig. 1(a) we can see that there is no gap between inferior vena cava and liver,
and the difference in gray value is very small, so this kind of segmentation has always
been a difficult point in image segmentation. If Gaussian filtering is used, the sharpness
of the boundary will be weakened and the gray values with smaller differences will
become closer. Therefore, the distribution of grayscale values is more dispersed. After
we use RTVfiltering, the inner of the inferior vena cava gray difference becomes smaller,
but the boundary is not affected in any way. Therefore, the pixel gray distribution of the
whole image is more concentrated.



The CT Liver Image Segmentation Based on RTV and GMM 151

(a)The grayscale histogram of Fig.1.(b) (b)GMM segmentation threshold of Fig.2.(a) 

(c)The segmentation result of Fig.1.(b) ac-
cording to the threshold of Fig.2.(b) 

(d)The combination result of Fig.1.(a) and the 
contour of Fig.2.(c) 

Fig. 2. The segmentation result of Fig. 1 with GMM based on the Gaussian filter

(a)The grayscale histogram of Fig.1.(c) (b)GMM segmentation threshold of Fig.3.(a) 

(c)The segmentation result of Fig.1.(c) ac-
cording to the threshold of Fig.3.(b) 

(d)The combination result of Fig.1.(a) and the 
contour of Fig.3.(c) 

Fig. 3. The segmentation result of Fig. 1 with GMM based on the RTV filter

The above experimental results verify that the segmentation result of the CT liver
image by usingGMMbased onRTVfilter is obviously better than that based onGaussian
filtering. And this method also can be used inMRI andUltrasonic Image post-processing
to improve the accuracy of image segmentation.
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Abstract. Clinical morphological analysis of histopathological speci-
mens is a successful manner for diagnosing benign and malignant dis-
eases. Analysis of glandular architecture is a major challenge for colon
histopathologists as a result of the difficulty of identifying morpholog-
ical structures in glandular malignant tumours due to the distortion
of glands boundaries, furthermore the variation in the appearance of
staining specimens. For reliable analysis of colon specimens, several deep
learning methods have exhibited encouraging performance in the glands
automatic segmentation despite the challenges. In the histopathology
field, the vast number of annotation images for training the deep learn-
ing algorithms is the major challenge. In this work, we propose a train-
able Convolutional Neural Network (CNN) from end to end for detect-
ing the glands automatically. More specifically, the Modified Res-U-Net
is employed for segmenting the colorectal glands in Haematoxylin and
Eosin (H&E) stained images for challenging Gland Segmentation (GlaS)
dataset. The proposed Res-U-Net outperformed the prior methods that
utilise U-Net architecture on the images of the GlaS dataset.

Keywords: Histopathological image analysis · Colorectal
adenocarcinoma · Colon gland semantic segmentation · Deep learning

1 Introduction

In the analysis of histopathological images, the glands segmentation is an essen-
tial process, and is among the major criteria for grading and staging the col-
orectal adenocarcinoma cancer [1]. In clinical practice, pathologists segment the
glands manually, so this routine is tedious, tiresome and time-consuming, fur-
thermore, the inter-observer diagnosis variation among them. As well it depends
heavily on the experience of pathologists [1,2]. To tackle the challenges men-
tioned above, these tasks will be done automatically to help the pathologists on
a precise assessment of the glands morphologies in colon cancer.

The recent developments in digital whole slide imaging (WSI) scanners have
transformed the field of histopathology. Therefore, most of the routines pathol-
ogist tasks are digitized. Thus, the advancing of Computer-Aided Diagnosis
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
R. Su et al. (Eds.): MICAD 2021, LNEE 784, pp. 153–162, 2022.
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(CAD) methods is necessitated. Such methods aim to assist pathologists in some
laborious routine tasks. In traditional CAD methods, most of the researches have
focused on hand-craft features. The problem of such methods is the difficulty of
choosing the optimal features. In the past few years, several deep learning algo-
rithms have emerged and been employed in the field of histopathology analysis.
These algorithms have the ability to automatically extract deep features from
images and are thus more effective than traditional methods [1]. However, the
development of CADs that build on deep learning algorithms (Deep-CAD) is
suffering from the lack of the annotated images amount that is needed for train-
ing such algorithms [1,2]. So in this work, we present a Deep-CAD method to
segment the glands automatically in colorectal histopathological images.

We have organized this paper as; Sect. 2 displayed an overview of the rele-
vant works; Sect. 3 described the proposed data and method briefly in this work;
Sect. 4 presented in detail the experiment and its results. The last section pro-
vided a summary of the paper.

2 Related Works

This section is reviewed some of the proposed models for segmenting the glands
in colorectal histopathological images of the GlaS dataset. Starting from [3,4],
Sirinukunwattana et al. utilised the colour and texture features to classify the
candidate glands into binary classes (gland or non-gland). In [3], the authors
have combined Markov Chain with Monte Carlo in Reversible Jumping for gen-
erating the polygonal contour for candidate glands, while in [4], the authors have
generated the structure maps of candidate glands by computing the scattering
coefficients based on texture features, then utilised these maps to feed CNN
for detecting tumour cells in histopathological images. Subsequently, they have
released the Warwick QU challenge dataset for segmenting of glands automat-
ically, so it is known as Gland Segmentation (GlaS) challenge dataset [5]. The
contest was held in 2015 at the 18th International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI 2015).

Since GlaS challenge contest [5], several models [6–13] have been carried out
by using CNNs for solving the glands segmentation issue in GlaS dataset images
and preventing the merge of neighbouring gland structures. Some researchers
employed handcrafted features for training deep networks [6–8]. The others [9–
13] investigated trainable end-to-end fully convolutional networks (FCNs) [14]
for mapping images directly to their gland segmentation maps. Chen et al. [9]
proposed two frameworks, CUMedVision1 (the 5th model in GlaS contest) is
based on FCN for representing the multi-level features of the gland object masks.
Whereas, CUMedVision2 (the winning model in GlaS contest) is a deep contour-
aware network based on FCN for combining both glands foreground maps and
glands boundary maps to generate glands maps simultaneously. The authors in
[11] utilised a Loss-Function with penalty terms to obtain the smooth gland
boundary with the correct label hierarchy. The authors in [12] proposed FCN
architecture with forked channels for incorporating boundary maps into their
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architecture; the output maps of the different convolutional layers were employed
to feed the side channels for predicting gland boundary maps and finally, these
maps were combined to estimate the gland maps.

While other researchers [13,15,16] leveraging U-Net [17] architecture, which
is a deep learning network based on a modified FCN model and combines the
context information of lower layers and the semantic information of higher layers
through skip connection for improving the performance of image segmentation.
Ronneberger et al. [17] presented trainable end-to-end U-Net for segmenting the
biomedical images semantically. Freiburg team [13] (team participating in the
contest) proposed two deep models based on U-Net for generating the binary
segmentation maps (background and glands). More recently, Graham et al. [15]
have proposed MILD-net model which based on U-Net architecture for incor-
porating the low-level features at each decoder block. Binder et al. [16] have
contributed two Dense-U-Net models; one for segmenting the glands directly
and the other for segmenting the stroma to predict glands. Both models are
U-Net architecture based on the pre-trained DenseNet [18] model as encoder
network.

In this work, we proposed a modified Res-U-Net model based on U-Net archi-
tecture for detecting the glands in GlaS dataset images. The encoder portion of
the proposed model utilise the pre-trained ResNet-50 network [19] on the Image-
Net [20] dataset. So, the ResNet-50 network here acts as the feature extractor.

3 Data and Method

3.1 The Warwick-QU Dataset Image

We have trained and tested our proposed methodology on the images of Warwick-
QU dataset. The dataset was acquired from the University Hospitals Coven-
try and Warwickshire NHS Trust, Coventry, United Kingdom. The dataset
histopathology images were derived from sixteen H&E stained WSIs of stages
T3 or T4 colorectal adenocarcinoma of human clinical samples. In colon cancer,
T3 stage refers to expand the tumour into the bowel wall, whereas T4 through
the bowel wall. WSIs were scanned with a pixel resolution of 0.620µm/pixel
to visualize a complete slide on a screen at 20× objective magnification. The
images together with their ground truth of glands were annotated by the trained
histopathologists. A total of 165 images is divided into 85 images for training
and 80 images for testing. Furthermore, the testing images are split into two sets:
Test-A is sixteen images for off-line evaluation, and Test-B is twenty images for
an on-site evaluation. For more information, Sirinukunwattana et al. [13] have
published a research paper about the GlaS challenge dataset.

3.2 Pre-processing Image Dataset

In this section, we have pre-processed dataset images into three steps as follows:
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– Stain Normalisation, to reduce the variations of H&E stain in the appear-
ance of images, we stained normalise the histopathological images of GlaS
dataset as described in [21]. The stain normalisation toolbox [22] for several
techniques is found on the Warwick University website.

– Image Size Standardization, to standardize the size of images in the GlaS
dataset, we resized the images and their respective ground truth masks into
512 × 512 × 3 pixels.

– Glands Aggregation, we grouped the 30 original gland classes into one class
as well as background, as described in [23]. Figure 1 shows examples of the
GlaS dataset images from different grades with glands annotated and their
ground truth after grouped the classes.

– Data Augmentation, we augmented the training images of GlaS dataset by
rotated them with angles of 90, 180 and 270 degrees and then flipped in the
horizontal and vertical direction. This is to enlarge the training images size
without affecting the quality of input images [24] and avoid the over-fitting
problems [25] and the features poorly generation.

Fig. 1. Example of the GlaS dataset images; upper row: the original images; Bottom
row: corresponding ground truth: (a) shows a healthy tissue, (b) shows a moderately
differentiated tumour and (c) shows a poorly differentiated tumour

3.3 Evaluation Metrics

The performance of our proposed method was evaluated according to four crite-
ria: Accuracy (Acc), F1-Score, Intersection over Union (IoU), and Dice coefficient
(Dice Coef.). These criteria use the following standard metrics; tp (true positive)
is the number of the correctly predicted glands that intersect with their corre-
sponding in ground truth; fn (false negative) is the number of the true glands



Automated Gland Detection 157

in ground truth that is neglected by the proposed method; otherwise is fp (false
positive) which represents the number of the predicted glands that wrongly pre-
dicted as glands by the proposed method.

Performance Accuracy. This criterion is used Accuracy metric to measure a
network’s ability to segment. It is formulated as;

Acc. =
tn + tp

fp + tp + fn + tn
(1)

Detection Accuracy. This criterion is used F1-Score metric for measuring the
detection accuracy of glands individually. It is formulated as;

F1 − Score =
2 × Precision × Recall

Recall + Precision
(2)

where
Precision =

tp

tp + fp
, and Recall =

tp

tp + fn

From the above two equations, Precision ratio indicates the total detected glands
that are really glands; Recall ratio indicates the total reference glands that are
actually detected.

Shape Similarity. This criterion is used Jaccard similarity coefficient and also
known as IoU for comparing the similarities between the glands in the original
images and the predicted images at the pixel level. It is calculated as;

Jaccard(IoU) =
tp

tp + fp + fn
(3)

Segmentation Accuracy. This criterion is also known as Volume-Based Accu-
racy. It is used Dice Coefficient for measuring the similarity between glands in
the original and predicted images at object level. It is calculated as;

DiceCoef. =
2|G ∩ S|
|G| + |S| (4)

Where |.| points out the number of elements in a target set. G is a pixel set that
belonging to the gland of ground truth and S is a pixel set that belonging to the
segmented gland of the predicted image. It is used to measure similarity between
G and S and produces scores between 0 and 1, whereas 0 points out no overlap
between gland sets and 1 point out a perfect match between gland sets.

3.4 Proposed Model

The proposed Res-U-Net model is shown in Fig. 2, which is composed of an
encoder portion and a decoder portion.
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– Encoder Portion: it is employed for down-sampling of the feature maps
and is comprised of an input layer, convolutional layer, a Batch Normaliza-
tion (BN) layer, a Rectified Linear Unit (ReLU) layer, MaxPooling layer and
followed by four residual units. The first residual unit is composed of three
blocks with nine convolutional layers. The second residual unit consists of
four blocks with twelve convolutional layers. The third residual unit includes
six blocks with eighteen convolutional layers. The fourth residual unit con-
tains three blocks with nine convolutional layers. The default parameters were
transferred from the residual units of the pre-trained Res-Net-50 model.

– Decoder Portion: it contains three concatenate blocks, five up-sampling
units, a segmentation unit, and an output unit. Each up-sampling unit con-
tains one 1×1 convolution filter and an up-sampling (2×) block to double the
size of the feature maps as well as halve the number of feature channels. The
segmentation layer comprises a 1 × 1 convolution filter and a sigmoid activa-
tion layer to map results of segmentation for binary classification (Gland or
Non-Gland). The concatenate blocks were implemented between the output
of residual block for encoder portion and the output of up-sampling (2×)
block for decoder portion for the fusion of multi-scale features.

Fig. 2. Shows the proposed Res-U-Net architecture, Whereas the abbreviated terms
“CONV” represents the convolution block; BN represents Batch Normalization layer;
ReLU represents the Rectified Linear Unit layer; “#F” represents the filter number;
“S” represents the stride; “P” represents padding.

4 The Experiment and Its Results

The experiment was carried out by using GlaS dataset images. It was imple-
mented in MATLAB R2020a framework on a desktop computer that has a 3.60-
GHz Intel� Core-i7 CPU, NVIDIA GeForce GTX 1070 GPU and 32 GB RAM.
To set up our model, we fine-tuned the ResNet-50 model as encoder and set
Stochastic Gradient Descent (SGD) with Momentum to 0.90, Max-Epochs is
120. We started running the program with Learning Rate (LR) equal to 0.001
and decreased after each update. For the training procedure, we divide the aug-
mented training images randomly into 80% for training and 20% for validation.
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The weights of the encoder portion were initialised by the weights of the pre-
trained ResNet-50 model. Analysis of the obtained results in Fig. 3 indicates that
our model is gaining convergence during the first 70 epochs in the training stage
and the accuracy rate was approximately steady and the error falls slowly from
the 80th epoch. We represented the obtained prediction results from the experi-
ment by 2×2 normalised confusion matrices. These matrices were constructed on
two rows and two columns: gland and non-gland representing the classes. These
2 × 2 normalized confusion matrices are shown in Fig. 4. The obtained predic-
tion results for our proposed model were summarized in Table 1. Whereas we
calculated the standard metrics of accuracy, precision, recall, F1-Score and IoU
by substituting into the 1, 2, 3 and 4 equations, respectively. Whereas example
of the visual experiment result is shown in Fig. 5.

Fig. 3. Visualization of the progress of training, loss and validation over the training
time for the proposed Res-U-Net model.

Table 1. Standard metrics of our proposed model

GlaS dataset Standard metrics

Accuracy Recall Precision F1-Score IoU

Test A 0.9192 0.9427 0.8993 0.9201 0.8520

Test B 0.8962 0.8697 0.9423 0.9046 0.8258

The comparative analysis of the obtained results from our proposed model
against some other models that used the same dataset images is reported in Table
2. By comparing the results in Table 2, we derive that the proposed Res-U-Net
model outperforms all of them on Test-B test set. Whereas it got a good result
on Test-A test set. At pixel-level, it achieved F-score values; 0.913 and 0.881 on
Test-A and Test-B test sets, respectively. At object detection level, it achieved
Dice index values; 0.911 and 0.871 on Test-A and Test-B test sets, respectively.
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Fig. 4. Normalized confusion matrices for the proposed model.

Fig. 5. Example on the visual results of gland segmentation on the GLaS dataset.

Table 2. Comparative analysis of different models on GlaS challenge dataset.

Deep model F1 score Obj. dice

Test A Test B Test A Test B

MILD-Net 0.914 0.844 0.913 0.836

Xu et al. 0.893 0.843 0.908 0.833

CUMedVision1 0.868 0.769 0.867 0.800

CUMedVision2 0.912 0.716 0.897 0.781

Freiburg1 0.834 0.605 0.875 0.783

Freiburg2 0.870 0.695 0.876 0.786

Proposed Res-U-Net 0.913 0.881 0.911 0.871

5 Conclusion

For this study, We explored Res-U-Net architecture as a model for segmenting
the glands at the semantic level in histopathological colorectal adenocarcinoma
images. We also leveraged of deep transfer learning strategy to tackle the lack
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of GlaS dataset images. More specifically, we transferred the deep ResNet-50
model as the backbone encoder in the proposed Res-U-Net architecture. From
the obtained results in our experiment, it is observed that transferring a deep
pre-trained encoder model can considerably reduce the time consumption and
the resources required for training from scratch. The significance of the proposed
model is based on segmenting the glands at the semantic level in GlaS dataset
images, different from other models that are based on segmenting the glands at
the instance level on the same dataset. Therefore, it helps the pathologists to
distinguish between histological glandular structures whether it is adenocarci-
noma or not, specifically in the case of significant variation in the appearance
of the glandular structures. The proposed approach was compared against the
gland segmentation approaches that were developed using GlaS dataset images.
As a result, the proposed model exhibits significant potential for gland detection
in histopathological images.
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Abstract. The segmentation of ultrasound images of thyroid nodules is a key
technology for computer-aided diagnosis of thyroid. How to achieve precise seg-
mentation of nodules has always been a hot issue in the field of medical image
segmentation. To solve the problem that the traditional models are sensitive to
the background area when segmenting ultrasound images with low contrast, we
propose an ultrasonic image segmentation algorithm for thyroid nodules based
on pulse coupled neural network with direct current component (DPCNN) in this
paper. Firstly, the algorithm performs rough location of suspicious region on the
optimal segmentation image output byDPCNN iteration, and uses the comprehen-
sive judgment criteria of the maximum variance and covariance of the local region
to determine the lesion area. On this basis, the nodule image is segmented based
on DPCNN according to the gray features of the nodule image, so as to realize the
precise segmentation of the thyroid nodule area. The experimental results show
that this algorithm can effectively achieve the accurate segmentation of thyroid
nodule area and has good robustness.

Keywords: Pulse coupled neural network · Rough localization of nodules ·
Method of regional expansion · Maximum covariance · Precise segmentation of
nodules

1 Introduction

Thyroid gland is a very important endocrine gland in the human body, which regulates
human function and metabolism by producing thyroxine. Thyroid nodules are local
masses formed by thyroid lesions and structural abnormalities [1]. According to global
epidemiological statistics, the incidence of thyroid-related diseases is increasing year
by year, and the incidence of thyroid cancer ranks first in endocrine tumors. Ultrasound
examination is the most extensive way to detect and diagnose thyroid diseases. It can
quickly and accurately locate the position of thyroid nodules and find small lesions and
blood flow. Therefore, in order to achieve effective diagnosis and treatment of thyroid
nodules, it is first necessary to accurately segment the thyroid nodules [2]. However, due
to the low resolution of ultrasonic images and the complex surrounding thyroid tissues,
the ultrasound image segmentation of thyroid nodules is extremely challenging.

In order to achieve effective segmentation of thyroid nodules, scholars at home
and abroad continue to innovate and propose many classic segmentation algorithms
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of thyroid images, such as: Gabriel et al. [3] proposes a method for segmentation of
thyroid images based on texture according to the texture characteristics of thyroid nod-
ules; Iakovidis et al. [4] proposed a variable background active contour model based
on the level set method, which uses variable background regions to reduce the influ-
ence of uneven grayscale distribution of ultrasound images of thyroid nodules on the
segmentation results; Chang et al. [5] proposed a decision tree algorithm for adaptive
segmentation of possible lesion areas; Koundal et al. [6] proposed a fully automatic thy-
roid image segmentation method based on intuitionistic fuzzy C-means clustering. This
method combined intuitionistic fuzzy clustering with active contour to eliminate man-
ual intervention and effectively segment multiple nodular nodes in an image. However,
this method did not consider spatial information and was easily affected by noise. Ma
et al. [7] proposed a thyroid nodule segmentation algorithm based on deep convolutional
neural network based on two-dimensional ultrasound images. Prabal et al. [8] uses two-
dimensional active contour models to achieve segmentation of thyroid images; Binny
et al. [9] proposed a mean shift clustering algorithm for ultrasonic image speckle noise
filtering and segmentation, which suppresses speckle noise by enhancing the contrast
and improves the quality and information content of thyroid ultrasonic images. However,
the algorithm has a large number of iterations and time complexity is too high.

2 DPCNN Model and Its Characteristics

Pulse Coupled Neural Network (PCNN) is an artificial neural network based on the
signal conduction characteristics of mammalian visual cortex neurons proposed by Eck-
horn et al. [10]. It has been widely used in image segmentation, edge detection, thinning,
recognition and other processing. For example, Guo et al. [11] proposed an improved
simplified PCNNmodel based on saliency for target segmentation. This model has obvi-
ous advantages in segmentation accuracy and algorithm robustness, and does not require
any training; Zhou et al. [12] aimed at the shortcomings of PCNN network parameters
that need to bemanually adjusted for different images, and proposed amethod to improve
the automatic edge detection of color images of the PCNNmodel, but it takes more time
to process the image, which limits the model’s real-time Application in the environment.
This paper adopts the improved PCNN model proposed in the previous research results
[13], which adds a direct current component D to the modulation subsystem, so the
model is named DPCNN in this paper, and its neuron structure is shown in Fig. 1.

Fig. 1. Pulse coupled neuron mode.
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In the neuron model shown in Fig. 1, each subsystem can be described as a discrete
system, and the basic mathematical model of the neuron can be expressed as Eq. (1) to
Eq. (4).

Fij(n) = Sij (1)

Uij(n) = Fij(n)[D + D
∑

WijklYijkl(n − 1)] (2)

Eij(n) = e−aEEij(n − 1) + VEYij(n − 1) (3)

Yij(n) = ε[Uij(n) − Eij(n)] (4)

Where, Sij is the gray value of the neuron at pixel (i, j); Fij(n) represents the feedback
input item of the neuron; Uij(n) is an internal activity item; k, l represents the 8 neigh-
borhoods corresponding to the center pixel; Wijkl is the connection weight matrix of
center pixel and neighborhood pixel. WhenWijkl is set in a weak coupling mode, Eq. (2)
can be analogized to an amplitude modulation system; Eij(n) is the dynamic threshold
of the neuron; aE and VE respectively represent the iterative decay time constant and the
connection weight amplification coefficient of the dynamic threshold subsystem; Yij(n)
represents the ignition state of the (i, j) pixel in the nth iteration; D is the carrier ampli-
tude, and the value of D has an influence on the pulse transmission speed. The larger D
is, the slower the pulse transmission speed will be, and the smoother the segmentation
process will be when it is used in thyroid nodule images. Therefore, in order to achieve
an ideal segmentation effect for thyroid nodule images, we set the value of D as 25 and
other parameters as

aE = 0.0001,VE = Smax,W =
⎡

⎣
0.5/D 1/D 0.5/D
1/D 1 1/D
0.5/D 1/D 0.5/D

⎤

⎦

3 Coarse Segmentation of Thyroid Nodules Based on DPCNN

Ultrasound images of thyroid nodules often have low contrast and uneven grayscale
distribution. It is difficult to achieve the ideal effect if it is directly segmented. Therefore,
first use DPCNN to coarsely segment the thyroid image. By analyzing the relationship
between the contrast of the thyroid nodule image and the iterative entropy of DPCNN,
the optimal segmentation image that covers the prominent local details in the gland as
much as possible is selected. Part of the iterative output of the thyroid image DPCNN is
shown in Fig. 2.
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Original ultrasound image 26th iteration, entropy = 0.9925 27th iteration, entropy = 0.9866

28th iteration, entropy = 0.9777 29th iteration, entropy = 0.9629 30th iteration, entropy = 
0.9497

Fig. 2. Partial DPCNN iterative output of thyroid ultrasound image.

It can be seen from Fig. 2 that in the 26th iteration, the local area of the nodule is
under-segmented. With the increase of the number of iterations of DPCNN, its detailed
information gradually appeared, but the nodular region and non-nodular region showed
partial adhesion phenomenon. Therefore, the 28th iteration of the thyroid ultrasound
image is selected as the optimal segmentation image for subsequent coarse positioning
of the lesion area.

In order to obtain the contour of the target region, the optimal iterative image is
reversed, and then the connected domain is filtered. Through a large number of experi-
ments, it is found that in the thyroid segmentation image, the row, column and column-
to-row ratio of the connected domain of the nodule area meet certain constraints, as
shown in Eq. (5).

⎧
⎨

⎩

18 < h < 95
38 < l < 210
l
h < 2.5

(5)

Where, h, l, l
h respectively represent the rowwidth, columnwidth and the ratio of column

width to row width of the connected domain. Connected domains satisfying the above
conditions are retained, and the rest are filtered out. According to the above constraints,
the connected domain is filtered out of the coarse segmented image, and the effect is
shown in Fig. 3.
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Fig. 3. The effect of filtering out connected domains. (a) thyroid rough segmentation image; (b)
connected domain filter image.

4 Coarse Localization of Nodules Based on Regional Expansion
Method

As shown in Fig. 3(b), It can be seen that after DPCNN rough segmentation, connected
domain filtering and other operations of thyroid ultrasound images, there may be non-
nodular regions. In order to display the detailed informationmore completely, this article
first corresponds to each connected domain in Fig. 3(b) to the corresponding area of the
original gray-scale image, and then uses the center of the connected domain as the
reference and takes 5 pixels is the length, and 1 pixel is the step length, expand up,
down, left and right respectively, and finally get the complete target area. Where, Eq. (6)
to Eq. (9) are the algorithm of right-expanding.

mr = rmax + rmin

2
(6)

mc = cmax + cmin

2
(7)

h(mr, k) = 1

5

i+4∑

k=i

image(mr,mc + k) (i = 0, 1, . . . , (c − 4)) (8)

P = p(mr, k) − p(mr, k − 1) (i = 0, 1, . . . , (c − 4)) (9)

where, (mr,mc) is the coordinate of the center point of the connected domain, c is the
column width of the original image, rmax, rmin and cmax, cmin respectively represent the
largest row, smallest row, largest column and smallest column of the connected domain,
h(mr, tk+i) represents the average gray value of the 5 pixel area during the expansion
process, every time the average gray value of 5 coordinate points is calculated, the column
coordinates will increase by 1 to the right, and k represents the number of increments of
the ordinate. P represents the difference of the average gray value of the two expansion
regions before and after. Because the tissue density and gray value of different regions are
different, if P > σ , the expansion stops. Similarly, the connected domain is expanded in
the three directions of up, down and left in the sameway, so as to complete the expansion
and location of the suspicious region in the original gray image. Figure 4 is the result of
regional expansion based on the two connected domains in Fig. 3(b).
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Fig. 4. Connected domains and regions expansion effect.

When performing regional expansion, x usually takes an empirical value of 0.2
to get a better expansion effect. In order to exclude the non-nodular area, this paper
combines variance and covariance to construct a comprehensive judgment criterion based
on maximum variance and covariance to determine the lesion area. First of all, the
variance of the standard template and the suspicious area are calculated respectively,
and then calculate the covariance between the standard template and the suspicious area.
If the covariance is positive, and its value is greater, the probability of being a nodular
area is greater. If the covariance is small or negative, it is an irrelevant area. The specific
steps of the comprehensive judgment criterion are as follows:

(1) First, select 50 thyroid images that have been diagnosed andmarked by professional
doctors from the ultrasound image database. In the lesion area manually marked
by the doctor, the neighborhood with pixels of M × N is selected as the calibration
area (in this paper, M = N = 9), and the variance of the pixel gray value in the
calibration area is calculated. Define the average gray value of the corresponding
pixels of all selected images in the calibration area as the standard area, and the
average of all variances as the standard deviation.

(2) After the region expansion method is used to expand each suspect region, the
suspicious area of the same size as the standard area is selected, and the variance of
the suspicious area and the covariance between the suspicious area and the standard
area are calculated. The quantitative calculation formula is shown in Eqs. (10)–(14).

ηR = 1

MN

MN∑

k=1

(Rk − μR)2 (10)

ηX = 1

MN

MN∑

k=1

(Xk − μX )2 (11)

CR,X = 1

MN

MN∑

k=1

(Rk − μR)(Xk − μX ) (12)

g = ηR + 2CR,X (13)

s = log2
Rmax − Rmin

Xmax − Xmin
(14)

Where, R and X are standard regions and suspect regions; μR and μX , ηR and
ηX respectively represent the mean value and variance of the corresponding area,
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Rmax,Rmin and Xmax,Xmin are the maximum and minimum gray values of the
corresponding area. Based on the above quantitative features, we construct an index
that can reflect the similarity of gray features of the two regions: The regional
variance descriptor g and the regional difference descriptor s. According to the
characteristics of thyroid ultrasound images with low contrast and large difference
in gray values, the logarithmic function is used inEq. (14) to enlarge the ratio results,
If g ≥ 1

2ηR and s ≤ 1, it is judged as a thyroid lesion area. The experimental results
are shown in Table 1.

Table 1. Judgment of thyroid lesion area

The suspicious area Regional variance
descriptor G

Regional difference
descriptor S

Whether it is a nodule

Suspicious Zone 1 43.8205 0.52083
√

Suspicious Zone 2 11.7711 1.1375 ×

As can be seen from Table 1, G = 43.8205 and S = 0.52083 of suspicious region 1
are judged as nodular region. G = 11.7711 and S = 1.1375 of suspicious region 2 were
determined to be non-nodular region. The coarse location image of nodules determined
by the above algorithm is shown in Fig. 5.

Fig. 5. Rough localization of thyroid nodule. (a) original ultrasound image; (b) image of nodule
area.

Figure 5(b) shows the nodular region determined by the above algorithm. It can be
seen that the algorithm of maximum variance and covariance of the local region can
accurately screen out the lesion region by relying on the local information of the image,
excluding the irrelevant areas.

5 Accurate Segmentation of Nodule Coarse Positioning Image

The ultrasound image of thyroid nodules processed in this paper is a gray-scaled image.
Due to the low contrast between the nodule and the background area in the gray-scaled
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image, therefore, in this paper, the coarse positioning image of the thyroid nodule
is divided into different sub-blocks, and then each sub-block is iteratively output by
DPCNN. The optimal iteration output of each sub-block is combined to obtain the
precise segmentation map of thyroid nodule.

According to the analysis of themathematical coupling characteristics of theDPCNN
model, combined with the influence of the value of D on the segmentation of thyroid
nodules, the value of D is set to 1. Figure 6 shows the optimal DPCNN segmentation
of the Block image. It can be seen from the DPCNN segmentation results of the block
image that the image after the block segmentation process can effectively reduce the
influence of the background area, avoiding. The problem of large error rate caused by
segmentation of the whole image is solved.

Fig. 6. DPCNN segmentation of block image.

6 Experimental Results and Analysis

In order to further verify the effectiveness and accuracy of the proposed algorithm for
segmentation of ultrasound images of thyroid nodules, this paper randomly selects three
original thyroid ultrasound imageswith different contrast and boundary clarity for exper-
imental explanation, as shown in Fig. 7. Figure 8 is a rough location image corresponding
to the thyroid nodule in Fig. 7. The experimental results obtained by the algorithm in
this paper are compared with the OTSU algorithm, histogram threshold segmentation,
the traditional PCNN algorithm and the segmentation results of the literature [14]. The
segmentation effect is shown in Fig. 9.

As can be seen from Fig. 8(a), the boundary of the lower part of the thyroid nodule
is not clear, and the image has over-segmentation phenomenon when the OTSU algo-
rithm and the PCNN algorithm segment it. When the histogram threshold is used for
segmentation, the local area is adhered to the background area. In literature [14], the
lower part of thyroid nodule was not segmented when it was segmented. In Fig. 8(b),
the contrast between the upper half of the thyroid nodule and the background area is
low, and the local grayscale distribution is uneven. When OTSU algorithm, histogram
threshold algorithm and traditional PCNN algorithm segment the thyroid nodule, the
upper part is not segmented. In literature [14], there is the problem of incomplete edge
in the segmentation of thyroid nodule. In Fig. 8(c), the contrast between the thyroid
nodule area and the background area is relatively high. There is a small area with higher
brightness in the nodule area.When the OTSU algorithm, histogram threshold algorithm
and PCNN algorithm segment the thyroid nodule, there is adhesion between the nodule
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area and the non-nodule area. While ensuring the accuracy of the segmentation results,
the algorithm in this paper can also achieve a good segmentation effect for thyroid nod-
ules with unclear boundaries and low contrast, and the detailed information of the image
is relatively complete.

Fig. 7. Original ultrasound images of thyroid nodule. (a) Original image 1; (b) original image 2;
(c) original image 3.

Fig. 8. Rough localization images of thyroid nodule. (a) Thyroid nodule 1; (b) thyroid nodule 2;
(c) thyroid nodule 3.

In order to make a quantitative analysis of the above experimental results, this paper
took the results of manual segmentation by doctors as the benchmark diagram, as shown
in Fig. 10. The segmentation performance of the five models was quantified by means of
MSE, PSNR and comprehensive evaluation index F1-Measure. The experimental results
were shown in Table 2.

It can be seen from Table 2 that compared with the other four algorithms, the f1 value
of the algorithm in this paper is 0.9469 and the peak signal-to-noise ratio is 38.8719. The
f1 value andpeak signal-to-noise ratio of the algorithm in this paper are the highest among
the five algorithms, and the mean square error is the lowest among the five algorithms.
Each objective evaluation index is optimal, which shows that the algorithm in this paper
has obvious advantages in edge processing and highlighting details of thyroid nodule
images, and its effectiveness and robustness are better than the other four algorithms.
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Fig. 9. Segmentation results of thyroid nodule by different algorithms. (a) OTSU algorithm; (b)
histogram threshold algorithm; (c) traditional PCNN algorithm; (d) literature [19] algorithm; (e)
the proposed algorithm.

Fig. 10. The initial outline of the thyroid nodule. (a) Thyroid nodule image; (b) initial contour.

Table 2. Quantitative evaluation of segmentation results for the five models

Algorithm MSE PSNR F1-Measure

OTSU 11.2416 37.6225 0.8740

Histogram threshold 50.4272 31.1042 0.7713

Traditional PCNN 31.8216 33.1036 0.8487

Ref. 20 27.7305 33.7012 0.8600

Proposed algorithm 8.4312 38.8719 0.9469
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7 Concluding Remarks

In this paper, an ultrasonic image segmentation algorithm for thyroid nodule based on
DPCNN is proposed, which adopts a progressive nodule target extraction method of first
rough segmentation, then rough positioning, and finally fine segmentation, so as to solve
the segmentation difficulties caused by low contrast of ultrasonic images and complex
background region. By comparing with other segmentation algorithms, the experimental
results further demonstrate the feasibility of this algorithm. This algorithm is suitable for
the segmentation of ultrasound images of various thyroid nodules, especially for the edge
is not clear thyroid nodule segmentation has good robustness and high efficiency, and it
has a significant effect in improving the clarity and completeness of image segmentation,
and the detailed information is also relatively rich. However, in the coarse segmentation
of ultrasound images using DPCNN, the automatic selection of optimal segmentation
cannot be achieved yet. In addition, this article does not diagnose and classify the thyroid
nodules after segmentation, which will be the work that needs to be completed in the
next study.

Acknowledgment. National Natural Science Foundation of China (61961037), Postgraduate
Training and Curriculum Reform Project of Northwest Normal University.
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Abstract. The data presented by the Ministry of Public Health of Russia over
the past 10 years show that the incidence of the malignant tumours in the pop-
ulation has been increasing by 1,5% annually. Unfortunately, more than 62% of
oral cavity tumours were only revealed at the III and IV stages of disease. In these
cases, surgical treatment is of critical importance. The operations performed at
these stages result in significant defects of the maxillofacial region, their correc-
tion being an extremely complicated task. The utilization of the microvascular
grafts enables the surgeon to close these defects to a great extent. The growing
requirements to the patient’s life quality in the postoperative period makes the
surgeon search for new instruments to enhance the precision of planning and per-
forming of the operations. The development of informational diagnostic devices
and methods of high-technology cure of patients enhance the potentialities of the
new approaches in processing the patient’s data for planning the treatment with
the use of the modern information systems: computer simulation and additive
technologies. The article describes the use of information technologies for the
preparation and planning of complex maxillofacial reconstructions. The use of
3D medical images (computed tomography and magnetic resonance imaging),
computer-aided design and additive technologies allows you to create detailed
anatomical computer models and their physical prototypes. The surgeon can use
these models to plan treatment, custom design and manufacture implants, and
evaluate outcomes.

Keywords: Computed tomography · Digital model · Computer modeling ·
Additive technologies · Reconstructive surgery

1 Introduction

The growing requirements to the patient’s life quality in the postoperative period makes
the surgeon search for new instruments to enhance the precision of planning and per-
forming of the operations [1, 2]. The development of informational diagnostic devices
and methods of high-technology cure of patients enhance the potentialities of the new
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approaches in processing the patient’s data for planning the treatment with the use of
the modern information systems: computer simulation and additive technologies [3, 4].

The application of the computer-aided design (CAD) and additive technologies allow
for production of patient’s biological models and the intraoperative surgical templates
in the shortest possible time [5, 6]. The creation of new materials and technologies to
produce the articles for the replacement and regeneration of tissues and organs is one of
the priority trends of the up-to-date biomedicine.

The clinical application of biomaterials requires that their shape, structure and
biomechanical characteristics correspond to those of the organs and tissues of a liv-
ing being. Thousands of restorative operations are annually performed which involves
the replacement of the bone tissue with implants and endoprostheses. The main require-
ment imposed upon any implant is its reliability that primarily depends on a possibility
of osteointegration, i.e. the firm union of the implant and the bone with no inflamma-
tory reactions causing the implant rejection. The implant is expected to be made from
a biocompatible material, possess sufficient strength and have large surface provide a
maximally close between the implant and the bony defect in the damaged area. Plastic
biomodels are being increasingly used in the preparation and planning of the operative
intervention in the maxillofacial surgery, in the surgery of spine, thoracic surgery, ortho-
pedics and neurosurgery, as well as in the fast fabrication of implants from biocompatible
materials and their preoperative fitting. The effectiveness of the virtual surgical planning
(VSP) results in the shorter time that is essential for pediatric patients for whom the time
of undergoing general anesthesia is strictly limited; secondly, in the improvement of the
qualitative indices, primarily, the accuracy of restoration of the contours and shapes of
the lost parts of the body, which reduces the postoperative complications and the duration
of the rehabilitation period; thirdly, in the reduction of the treatment cost [7, 8].

The present work illustrates the application of the 3D medical imaging in combina-
tion with the computer and telecommunication technologies in planning the reconstruc-
tive operations in maxillofacial surgery. The designed method permits to not only obtain
fairly objective information on the pathology in the damaged area (even in the cases
of very complex defects), but makes it possible to create the customized implants to
close this defect. A unified approach to performing the operations of this kind involves
obtaining and processing the computer tomography data, making a computer model,
computer simulation, virtual surgical planning, fabrication of individual biomodels and
templates.

2 Computer Simulation and Additive Technologies in Maxillofacial
Surgery

ILIT RAS has developed and is successfully applying laser stereolithography, one of
the first additive technologies based on laser polymerization of liquid photopolymer
compositions [4].

In 1994, laser stereolithography was first used in ILIT RAS for the purpose of
medicine within the framework of the forensic medical examination of the remains of
the Russian tsar’s family found near Ekaterinburg. It was the first time in Russia that a
plastic copyof a human skull had beenmadewith the accuracy feasible for performing the
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forensic medical examination relying on the data obtained from the computer tomograph
by the method of laser stereolithography [9].

The spiral computer tomograph permits scanning of the whole skull within several
minutes. High-precision reconstruction of the complex geometry of skull bone defects
requires that the thickness of a section in scanning should be less than 0.5 mm. The
software realized on the high-speed computer systemsmakes possible prompt processing
of the obtained data and creating the 3D models of any defect and deformation of
the skull, permits modeling of the implants closely fitted to the damaged area before
performing reconstructive operations. The up-to-date methods of additive production of
3D objects, laser stereolithography, in particular, permit making the plastic copies of
any fragment of the human bony skeleton. Fabrication of the medical implants presents
a striking example of single-part production since each of the implants is produced for
the individual patient.

Computer simulation and laser stereolithography have contributed greatly to the
reconstructive maxillofacial surgery offering the improvement of both functional and
cosmetic results of operative intervention [10].

The designed methods of tomography data processing enable the construction of
high-precision computer 3D models to be used in restorative surgery and planning of
most complex operations. In December 2007, jointly with Burdenko Main Military
Clinical Hospital (Moscow, maxillofacial surgeon S.V. Tereshchuk), was carried out
virtual surgical planning resection of the mandible and its primary reconstruction with
fibular free flap. The main goal of this research was designing and fabricating surgical
guides increasing accuracy of the operation. The primary reconstructive procedures
present a priority trend in surgery since they facilitate fast enough the restoration of the
vital functions during the post-operative period and favor the reduction of the patient’s
rehabilitation time [11].

For mandiblular reconstruction they use flaps from different donor places: rib, shoul-
der blade, iliac bone, radial bone, the fibular flap being the «working horse»: rib; shoulder
blade; fibular bone; iliac bone; radial bone; ulnar bone; humeral bone; metatarsus.

Further will be described the algorithm of interaction between the surgeon and
the technical assistant in the process of preparation, planning and performing the
reconstructive operations, which is followed at the present time.

The primary inspection of the patient, diagnosing and planning of cure are carried
out in the hospital. The surgeon makes a decision to perform the reconstruction of the
lower jaw with the fibular free flap; then tomographic examination of the facial skeleton
and both fibulas is made with the spacing no more than 1 mm. Figure 1 illustrates the
patient computer tomography (CT) scans [12–14].

Based on the CT scan data of a patient a 3D composite model is build. The CT scan
data in DICOM format are imported to ILIT RAS via the Internet. The downloaded
tomograms are processed with the 3Dview package developed in ILIT RAS and are
conversed to a 3D computer model in STL format that is used on the additive technolo-
gies. The conversion of the CT data and the construction of 3D models are illustrated
by Fig. 2.
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Fig. 1. CT examination of a) the patient’s facial skeleton; b) the bones of lower extremities (a set
of scans with the spacing of 0.4 and 0.8 mm, respectively)

Fig. 2. Customized 3D models a) the facial skeleton, b) the lower extremities reproduced using
the patient’s tomography data.

The virtual resection of the patient’s lower jawwas performed by a technical assistant
under the direction of a surgeon during the on-line conference between ILIT RAS and
Burdenko Main Military Clinical Hospital. The computer simulation was conducted
by the Magics program of firm Materialise, Belgium. Materialise is a world leader in
creating the software for the additive production. The main tasks at this stage are (see
Fig. 3): defining the size of the bone defect; specifying the correct cutting planes.

Fig. 3. Localization of the malignant region (a); the result of resection (b).

The following stage involves the formation of the fibular graft, its placement in the
defect. The position of the nutrient blood vessels influences these steps (see Fig. 4).

The conditions for correct location of the graft are:

– the blood vessels of the fibula should pass along on the inner side of the graft;
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Fig. 4. Separation of a fragment of the fibular bone (a); spatial orientation and alignment of the
flap graft with the lower jaw (b); formation of the autograft (c).

– when the flap is raised with a skin pad for closing skin or mucosa defects, the posterior
fascial septum with skin perforator arteries should be protected from damage;

– an optimal interrelation between the graft and the upper teeth provides the conditions
for the subsequent orthopedic rehabilitation of the patient;

– the anatomic position of the articular head in the temporomandibular joints is retained;
– the graft length and the position of its parts are chosen to ensure a match of the
resulting occlusion with the initial one;

– the plane of the outside wall of the graft bone and the outer sides of the jaw branches
coincide.

Figure 5 presents the final variant of the occlusion as compared to the resected
fragment of the patient’s lower jaw.

Fig. 5. A variant of the occlusion as compared to the resected fragment of the lower jaw: a) top
view; b) side view.

The positive outcome of the operation depends on exact matching of the site and
direction of resection of both the lower jaw and the fibular bone. To fulfill this condition,
the following physical objects are designed and fabricated: 3D model of the mandible
with the flap in the defect, surgical guides for resection of the mandible and osteotomy
of the fibula. The computer models and plastic prototypes of the simulated objects made
on the laser stereolithograph in ILIT RAS are shown in Fig. 6.

The following stage involves the fabrication of the models of lower jaw fragments
and the templates from the photopolymerizing composition on the laser stereolithograph
of ILIT RAS.
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Fig. 6. Computer models of the templates for resection of a fibular bone (a), a lower jaw bone (b)
and their plastic prototypes (c).

Then, the producedmodels and templates are delivered to the hospital for preparation
and planning of the operation. For precise making and fitting of the fixation plates, a
plastic stereolithography model is used, the time of the operation itself being reduced
(Fig. 7). The number of the fixation plates is defined by the surgeon in accordance with
the plan of operation and subsequent orthopedic rehabilitation.

Fig. 7. Fitting of the fixture element on the plastic model.

Figure 8 demonstrates the course of reconstructive surgery of the lower jaw.

Fig. 8. The course of operation for reconstruction of the lower jaw: a) placing the template on
the fibular bone; b) jointing and fastening of the graft parts on the lower jaw.
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The device for fixation of the fibula during its osteotomy is optional (Fig. 8b). The
application of this device is necessity for the graft gripping with the instruments, which
decreases the possibility of damaging the nutrient vessels in the bone and improves the
stability of the graft in osteotomy. It should be noted here that the position of the pins
of the fixation device in the bone is also planned during the virtual operation, and their
accurate localization is ensured by the guide placed into the holes in the template. (see
Fig. 9).

Fig. 9. The patient’s appearance in 6 months after the operation.

All the stages of operation (resection of the lower jaw, sampling of the fibular bone,
formation and fixation of the graft in the defect) are performed in a single process owing
to the preliminary planning and template preparation, which considerably improves the
operation precision, minimizes trauma and its duration, thus favoring the engraftment
and fast recovery of the patient. High precision of computer simulation permits speeding
up the accretion of the graft bone fragments and improving the cavity functionality. The
described algorithm of planning and performing the operations of this kind has been
successfully tested and is now obligatory for application in the Centre of maxillofacial
surgery and stomatology of N.N. Burdenko Clinical hospital, Moscow.

The following advantages of the application of computer simulation and laser
stereolithography in the reconstructive maxillofacial surgery can be pointed out [12–19]:

– a reduction of the operation performing time at the cost of its planning and fixture
fitting on the plastic model and, hence, a greater chance of successful outcome of the
operation;

– an increase in the accuracy of matching the jointed planes of the graft and the jaw,
and, consequently, the reduction of the recovery period;

– an increase in the accuracy of the graft coincidence with the jaw initial shape and, for
this reason, an improvement of functionality and a possibility of dentition restoration
through implantation;

– the full recovery of the lost vital functions.

3 Conclusion

At present, the additive technologies have found their niche along with the traditional
methods of producing the parts for the high-technology medicine. The additive tech-
nologies application jointly with the CAS systems increases preciseness and accuracy
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of the surgery owing to the science-based account of the patient’s personal features,
optimization of the operational process and minimization of the operative intervention,
and therefore permits enhancing the quality of life of the patient in the post op period
[20, 21].

The developed technique of fabrication of individual implants and templates with
the use of computer simulation and laser stereolithography enables:

– the fabrication of the 3D models of biological objects relying on the tomography data
of the patient;

– designing and fabrication of the individual implants and templates to close the bone
defects;

– the shortening of the operating time, the improvement of the aesthetic outcomes, the
shorter rehabilitation period, which is of great social importance.
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Abstract. Intelligent algorithms greatly influence imaging. Machine learning
techniques find applicability in correcting and highlighting medical images gener-
ated by X-rays, Computed Tomography (CT) scan, Positron Emission Tomogra-
phy (PET) scan, Magnetic Resonance Imaging (MRI). Such techniques increase
the reliability and quality of diagnosis to aid the doctors in devising an effective
treatment. These systems have found wide applicability under clinical settings.
Imaging is also an essential task in autonomous vehicle development and Con-
nected Vehicles. Research on Connected Vehicles is evolving at a staggering rate
with an objective to reduce road accidents significantly and replace drivers with
fully autonomous self-driving vehicles. Driver monitoring system (DMS) is a new
area of research where drivers are monitored using cameras and other medical sen-
sor networks to detect the drivers’ medical state, mental state as well as cognitive
state. Objective biomarkers allow such systems to predict these states. Imaging
plays an essential role in the diagnosis aided by the state of the artmachine learning
algorithms. This paper addresses the challenges posed by imaging under driving
environments for diagnosis of medical and cognition of drivers.

Keywords: Machine learning techniques · Autonomous vehicle · Connected
vehicle · Driver monitoring system · Cognitive state ·Medical sensor networks ·
Biomarkers

1 Introduction

The medical imaging industry has derived immense benefits from fast growing field
of computationally powerful machine learning algorithms. These algorithms have con-
tributed increased reliability in imaging due to the ease of implementation of features
such as image resolution correction, sharpness correction, andmotion correction. Results
of X-rays, MRI, CT scans must produce accurate physical structure of the target organ
for proper diagnosis by the doctors. Erroneous systems produce faulty images that can
lead to fatal suggestions by doctors. The new algorithms carry out filtering in a reliable
manner. The entire development and functioning of such algorithms are usually carried
out in a clinical setting. It means the system has lower tolerance to noise since the source
of noise are generally absent or removed to produce accurate results.
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Connected Vehicles and autonomous vehicles utilize the computer vision for varied
tasks. An onboard mounted camera captures the status of traffic flow, hazardous con-
ditions along the roads, traffic accidents, and many other essential factors that are then
processed to produce appropriate steering and acceleration-braking actions. Researchers
have investigated the development of a system aimed at monitoring drivers to determine
their medical state, mental state and cognitive state in the form of DMS. DMS is the tech-
nology implemented in the vehicles to monitor drivers of their condition using camera as
a primary sensor with a set of other medical wireless sensors network collectively work-
ing to acquire data and predict the driver’s health condition. A camera that is mounted
on the dashboard or in the vicinity of the driver captures the driver’s facial cues. Current
medical research allows early diagnosis of chronic medical conditions, mental state as
well as cognition from the behavioral analysis of human emotions and ocular move-
ments, known as objective biomarkers. Various driving models show the importance
of cognition in driving and statistics of automobile accidents show the importance of
proper health condition to prevent such fatalities. Imaging in clinical setting is difficult
and error prone; real-time imaging for medical diagnosis is a new forte. Proper data
resolution of biomarkers play a key role in the accuracy as well as the reliability of this
system. Several challenges arise due to the dynamic nature of the connected vehicles’
environment.

Medical imaging in open fields and real time basis is a challenge that is coming
up and requires extensive research. These systems are prone to much different types of
noise and hence require development of newML algorithms to eliminate the noise. This
draft addresses the key challenges of image acquisition in this environment which would
predict the health condition of drivers.

The paper has been explored into following sections. Section 2 discusses the history
and current advances in the medical imaging industry. Section 3 highlights the assump-
tions and challenges addressed physically and computationally in the environment of
medical imaging. Section 4 introduces the concept of connected vehicles and its related
research. Section 5 establishes themissing link between the connected vehicles’ research
to the medical imaging industry. Section 6 brings out the challenges in the connected
vehicles environment (CVE) followed by the remedies that can be given by the intelli-
gent ML algorithms in Sect. 7. Finally, the key findings of paper is summarized in the
conclusion.

2 Current Medical Imaging Industry

The medical imaging industry heavily relies on the proper functioning of the algorithms.
Reliability of the algorithm is extremely crucial for the proper diagnosis carried by the
doctors. Thus, accuracy validation is a challenge in this industry for lack of availability
of ground truth.

Imaging in healthcare evolved very rapidly since the discovery of X-rays 120 years
ago [1]. It led the radiologists to image the human body. Currently, the imaging industry
prefers the intricate methods of computed tomography, magnetic resonance imaging,
positron emission tomography, ultrasound and other modalities [2]. The leap in the
technology is huge that led to a very solid foundation of today’s screening, diagnosis and
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monitoring of diseases. On the contrary, there are some risks associated to thesemethods.
These risks include exposure to ionizing radiations, that has capacity to destroy DNA
and ultimately leading to cancer [3, 4]; and plausible allergy reactions to intravenous
contrast agents [5]. Moreover, the healthcare industry charges taxes on imaging which
leads to the triggering of anxiety and depression in patients.

X-rays, which was accidentally discovered by Prof. Roentgen made an industrial
radiograph but later was deemed suitable for evaluating the bone fracture, that become
the underlying basis of today’s mammography, tomography and angiography [6]. Fluo-
roscopy became realizable when the X-rays became powerful and with an oral injection
of barium (radio-opaque in nature), diagnosed cancers, ulcers in vicinity of the stomach.
Modern day image intensifiers omit the use of such contrasting agents.

Nuclear medicine utilizes positrons for imaging modality named, positron emission
tomography (PET). Positron annihilates with an electron releasing photons, that is light
and the emission is localized in space. It is based on positron emitting isotope of fluorine
incorporated in glucose called fluorodeoxyglucose (FGD). PET measures the glucose
intake, which is the mainstream diagnosis technique for cancer [7]. Therefore, a major
leap is seen in this imaging industry from a feeble x-ray to an extremely sophisticated
PET scan.

3 Environment of Clinical Medical Image Acquisition

The study of the environment where these imaging takes place is an essential component
of this paper as it would highlight the assumptions and challenges taken care while
carrying out the image acquisition. It also leads to the introduction of critical decision
making steps at a computational level.

Common types of imaging modalities used in the modern medicine include x-rays,
CT scans, PET scans, angiography, ultrasonography, MRI scans, mammography, etc. X-
rays primarily uses electrically charged cathode tube to generate produce x-ray gamma
photons which are bombarded on the area for imaging.

The rooms where these imaging is carried out must contain a proper shielding to
prohibit the escape of such high energy particles to the environment. But, there must a
place for the radiologist to view the patient undergoing the imaging. Thus, a glass that
is extremely transparent for clear viewing but has the capacity to block the high energy
particles.

4 Introduction to Connected Vehicles

ConnectedVehicles is themodern complex network of automobiles communicatingwith
each other andwith other infrastructures for sharing safety critical informationwhich has
the ultimate goal to reduce traffic accidents, reduce pollution by increasing the efficiency
of the transportation systems and reduce the travel time. An optimized and connected
network of traffic would ensure human safety as it is of highest priority to most global
organizations. Safety regulations, active and passive safety systems in vehicles, road
signs even upon strict enforcement is not enough to stop the fatal accidents. 90% of the
crashes are caused due to human errors [8]. The research on developing safety systems
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for driver led to the establishment of connected vehicles. Communication standards are
being developed for supporting this disruptive and transformative technology on global
level by FCC, 3GPP and ITU-T [9–11].

Safety is the primary concern and thriving force of this research. Special spectrum
bands for communications are being identified and allotted only for vehicular com-
munications. There are multiple challenges in this vehicular networks being addressed
using the intelligent algorithms. Research shows multiple use cases of the immense and
reliable power of these algorithms.

Advanced driver assistance systems (ADAS) is a complex system which is equipped
with every automobile for providing additional information to the driver upon which
the decisions are taken to guide the vehicle through safety. Some recent ADAS has the
capability to avert life threating situations by controlling the vehicles’ lateral and longi-
tudinal motion. Some of these systems are Forward collision warning system, Automatic
Emergency Braking, Electronic Stability Control and many more. The highest level of
decision taking ADAS forms the control center of Automated Vehicles, having the capa-
bility of full automation. The pace of the research in development of fully autonomous
vehicle is at its peak which utilizes these intelligent algorithms for decision taking and
finding the appropriate solution.

Acquiring image from the environment which is then processed by the onboard
computer to generate decisions that are responsible for directing and guiding the vehicle
through the traffic, eventually reaching to the intended destination. There are some
fundamental differences as well as similarities in the imaging under clinical setting and
connected vehicle environment that are addressed later in the paper.

Current research on development ofADAS is shifting fromavehicle centric approach
to driver centric approach where the drivers’ cognitive state, mental state and medical
state is being monitored by non-invasive sensors. Sensors include cameras, lidars, wire-
less wristbands and many such that assess the drivers’ state. The majority of the role
is of the camera which helps in detection and identification of objective biomarkers for
assessing the driver [8].

5 Medical Imaging in Connected Vehicles

Driver monitoring system (DMS) is the new field of research which acquires data from
medical sensors and utilizes the computationally powerful machine learning algorithms
for assessing the condition of the driver and act accordingly. As the connected vehicles
are progressing towards the onset of fully autonomous vehicles, the role of drivers are
becoming less in controlling the vehicles, their staying medically fit for final decision on
extremely complex driving conditions is a critical factor. Thus, image based diagnosis of
drivers’ health using the objective biomarkers such as ocular movements [12], saccadic
changes, blinking [13] and many such, are being implemented and being deployed into
the vehicles [14–16]. Since, a large portion of the detection is done by camera, the
challenges pertaining to imaging needs to be identified as these images are used for
preliminary diagnosis of the drivers’ health. It is the essential joining link between the
connected vehicles to the medical imaging research.
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6 Challenges of Imaging in Connected Vehicles Environment

There are various challenges in imaging associated with the dynamically changing envi-
ronment in the connected vehicle setup. The factors are 1. Luminescence 2. Vibrations
3. Field of View 4. Motion Blur 5. Resolution 6. Sharpness 7. Focusing 8. Pixelation
9. Light exposure on Camera Sensor. These factors have a very negative impact on the
imaging if not tackled properly.

The real time driving environment is extremely dynamic due to change of multiple
parameters in a very short period of time. The luminescence is one of the changing
factors. This has direct correlation with the time of the day, month of the year, weather
and road demography (tunnels, shades from trees). The facial cues of the driver is
the point of interest which is exposed to varying lighting conditions. The changing
lighting conditions create a possibility of false detection of cues that may be absent.
Uniform lighting conditions are practically not feasible specially during night time.
Thus, detection of the facial cues with varying luminescence is a challenging task.

Mechanical vibrations is another challenge that is caused due to uneven road condi-
tions affecting the camera itself. This makes the image acquisition very challenging as
the images would not be clear. Thus, it would reduce the image clarity and chances of
loss of data on facial cues may occur. The loss of micro-expressions may lead to a faulty
diagnosis that needs to be prevented from occurring.

Every camera has its own field of view depending upon the lens configuration. There
is also a very limited availability of space for the placement of the camera in order to
focus on the driver, without affecting the drivers’ field of view or being a distraction.
The objects (switches, gear lever, mirrors) near the vicinity of the drivers are placed
scientifically such that it is easily accessible without the need to move focus from road
and not being a source of visual distraction. Thus, camera’s placement is extremely
crucial such that it captures the drivers’ faces but does not invade the visual attention
zone of the drivers. There must be a computational system that searches for the driver’s
face and alert when the camera is obstructed.

Current on-board systems are much more computationally powerful than that were
a decade ago. There is large volume of real time data processing done by these systems.
Sudden jerks or unwanted movements of these computational systems can make them
unreliable and they enter into phases where these systems behave in unwanted manner.
Thus, image acquisition from the camera might occur but with a factor of motion blur
during extraction of real time video. It generally happens when some computationally
heavy processing goes on in parallel. It leads to unwanted issues that can produce faulty
diagnosis or complete failure of the computational system.

Resolution of the video being captured is solely an intrinsic factor of the camera.
Higher the resolution, more accurate are the details on the facial cues that leads to
proper diagnosis. But, the current onboard systems have a limitation on data process-
ing capabilities. Higher resolution leads to generation of higher volume of data whose
processing takes much more time when compared to small volume. Thus, trade off on
selecting appropriate resolution of camera is a challenge. Moreover, new state of the art
algorithms have the capability to increase the resolution of the images.

Sharpness is the details of the images captured, which is commonly interchanged
with resolution. There is a quite a possibility that higher resolution camera can capture
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lower sharpness image. Since, medical diagnosis based on facial cues requires good
detailed image that have the capability to capture the micro-expressions and minute
changes due to their medical and clinical coherence in them, sharpness is an important
factor.

Focusing is another challenge that is an intrinsic property of the camera. But, there’s a
possibility of computationally handling this by generation of control signal for focusing.
Improper focusing of the drivers face can be lead to faulty diagnosis. Constant movement
of the head due to vehicle motion requires the camera to change the focal length every
instant in order to keep the details of driver as sharp as possible. Such quick change of
focal length in real-time is possible by intelligent algorithms.

Pixelation is another challenge in imaging which is not very frequently encountered
but a probable occurrence may cause wrong diagnosis. Low light imaging, imaging in
lower aperture, improper compression, size of the camera sensor are some of the major
factors that causes pixelation in the images. These environmental factors can be corrected
using current computational algorithms.

Light exposure on the camera sensor can be extremely difficult to handle in the
dynamically changing environment. Thus, this factor can be handled computationally
by altering the white balance of the videos, but there’s a limitation to it. Placement of
the camera also plays an important role. Placement of the camera must be such that the
possibility of falling external light on its sensor is minimum.

Thus, the above factors very explicitly show the negative coherence on the quality
of imaging which are a factor of the dynamically changing environment. These changes
are so subtle and quick that traditional algorithms fail and is only realizable by machine
learning algorithms.

7 Machine Learning for CVE

The factors discussed in the previous section allows researchers to understand the prob-
lems of real time imaging in the connected vehicle environment. Upon identification of
some of the relevant challenges, the machine learning algorithms prove to be extremely
useful and reliable.

The mechanical vibrations lead to a harmonic motion of the camera which leads to
blurring of images captured. Removal of blurriness due tomechanical vibrations requires
the estimation of the motion, followed by the compensation of the motion on the image
composition [17]. These estimation of the motion is very well achieved by the machine
learning algorithms and care is taken that no residual motion is added after stabilization.
Research [18] has shown the video stabilization using convolutional neural network.
Grundman et al. applied L1-Norm optimization for synthesizing a path consisting of
simple cinematographic motions [19].

In the field of view of the camera, detection of drivers’ face is a critical aspect.
Numerous research has been done on face detection. The research has been extended to
camera obstruction detection as well. Support vector machines were the initial machine
learning algorithms that was used [20]. As the new computational power becomes pow-
erful, new use cases of Region based convolutional neural networks (R-CNN) [21, 22],
neural network based face detection [23] has been carried out with the reduction of
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program complexity and memory requirement. This is essential because of the limited
onboard computational capabilities.

Changing luminescence is a challengewhich researchers tackledwithmachine learn-
ing to artificially illuminate the images without the addition of noise [24]. There has been
significant work done for light correction using deep learning [25]. Such correction is
necessary to remove the unwanted noise of facial cues.

Image must carry proper details of the facial cues. Thus, images are needed to be
focused, non-pixelated and as sharp as possible. It is then possible for the machine
learning algorithms to look for the objective cues for diagnosis. Deep learning proves to
be extremely useful here as well as these corrections can be very easily done by the stated
[26]. Google with their TensorFlow is making their neural networks learn to correct the
images [27]. There has been use cases for such focus correction of microscopic images
using CNN based on U-Net architecture [28]. New adversarial neural networks based
EnhancedNet has shown the true potential of machine learning algorithm for correction
of low resolution input to super resolution [29]. Researchers from Duke University
developed a method named PULSE on the basis of self-supervised generative models
[30]. Light Exposure correction have also taken the advantage of such algorithms to
enhance the image as well as capture the person of interest in best possible condition
[31]. There are many more use cases of machine learning for eliminating such factors
as required.

8 Conclusion

The connected vehicle paradigm is experiencing a pragmatic shift by the inclusion of
drivers for critical decision making process as well as automating the driving experience
to a driverless automation. Imaging under such dynamic condition is extremely challeng-
ing in itself, let alone for medical diagnosis. Thus, this paper establishes the challenges
that arise in the area of imaging for the CVE and how current intelligent algorithms may
tackle such challenges and resolve them.Machine learning algorithms have the potential
to provide reliable solutions in comparison to the traditional algorithms.
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Abstract. Several implant materials are used in cranial surgery. Still, each one
has its drawbacks, such as the risk of infections, low mechanical strength, or low
osseointegration. Implants with a porous surface are considered more effective
than a smooth and rough coating. The porosity density and structure also influence
the mechanical properties of the final implant. Moreover, the implant properties
depend on the manufacturing method.

This study aims to present a custom-made cranial scaffold composed of two
distinct layers. A compact inner one guarantees adequate structural properties to
the scaffold. In contrast, a porous outer one lightens the scaffold structure and
assures the correct osseointegration. The customized scaffold has been designed
through a 3D free-form modeling system. It can be manufactured by 3D printing
techniques such as direct metal laser sintering in titanium or via selective laser
sintering usingPEEK.The advantages and limitations of themulti-layered custom-
made scaffold and the related design process are qualitatively described.

Keywords: Customized scaffolds · Craniofacial reconstruction · Additive
manufacturing · Porous scaffolds ·Multi-layered scaffolds

1 Introduction and Literature Review

The defects of the cranial vault derive mainly from tumor forms, trauma, infections,
congenital and developmental deformities, and result in aesthetic and functional defi-
ciencies thatmust be restored [1–6]. The autologous bone is considered the gold standard
cranial implant in osseointegration and full regeneration [1, 7]. Nevertheless, synthetic
materials may overcome its intrinsic drawbacks related to the harvesting site avail-
ability and complications, the size of the defect, the malleability of bone, the high
resorption rate, the additional patient morbidity, and the increased surgical time [4].
Thus, other kinds of implant materials are often used in cranioplasty. Their choice
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depends on the manufacturing technique and the implant properties (i.e., biocompatibil-
ity, osteoinductivity, toxicity, yield strength, flexural modulus, lightweightness, thermal
stability, malleability, infection risk, costs) [7]. The primary implant materials used in
cranial surgery are polymethylmethacrylate (PMMA), titanium, hydroxyapatite (HA),
polyetheretherketone (PEEK), polyethylene (PE), and calcium phosphate [2, 3]. How-
ever, each has its drawbacks, such as the risk of infections, low mechanical strength, or
low osseointegration [1, 7].

In the traditional surgical procedure, the prosthesis is carried out by the surgeon
directly in the operating room. PMMA is currently the most used implant material. It
comes from the polymerization of PMMApowder and liquidMMA,which are combined
to form a malleable paste that can be prefabricated or intra-operatively shaped by hand
or through a mold. In a few minutes, it hardens and creates the prosthesis. At the end
of the hardening process, the implant often presents numerous micro-porosities (air
bubbles) that cause mechanical fragility and bacterial infections that lead to rejection
and, therefore, to the removal and replacement of the prosthesis [7].

Titanium (plate or mesh) is a versatile metal with high biocompatibility and a strong
osseointegration potential, given a proper texture (i.e., mesh). The implant’s rough sur-
face quality promotes osseointegration with human tissues and bones [8]. However, bulk
Titanium implants are responsible for developing stress shielding effects at the implant-
bone interface resulting in bone resorption due to the lack of mechanical stress on the
bone itself. Porous structures have been thought to compensate for large differences in
the stiffness between the implant and the bone. Still, there is no clear evidence on the
behavior of the porous structure, porosity, and its strength [1, 9].Meanwhile, Zanotti et al.
[10], studying porous HA implants, demonstrated that the most common complication
is implant fracture (this is due to the low mechanical properties of porous HA).

A comparison of fabricationmethods results that the implant infection risk decreases
in materials that favor the bone growth into the implant and promote the surface inter-
action [7]. For this reason, implants with a porous surface are considered more effective
than smooth and rough surface treatment. The pores’ properties, especially the total
porosity, the dimensional distribution, the morphology, the orientation, and the degree
of interconnection, strongly influence the implant’s penetration by the bone tissue.

The apparent density and structure also influence the mechanical properties of the
final implant. The amount of porosity and the pore size depend on the manufacturing
method. A high porosity with a pore size of approximately 100 µm (osteoblast cell size)
is required to regenerate bone tissue [7]. Still, a pore size in the range of 500–1500 µm
[11] is generally considered adequate to ensure space for cell adhesion and proliferation
and to guarantee structural strength, avoiding manufacturing defects.

For example, porous PE allows obtaining semi-rigid systems that may not have good
mechanical properties for specific applications (i.e., extensive defect reconstruction)
[7]. For this reason, it is crucial to identify the right proportion between porosity and
mechanical strength.

Conventional techniques of scaffold fabrication for tissue engineering (such as fiber
bonding, solvent casting, and melt molding) generate highly porous scaffold with inter-
connected pores of unpredictable size and irregular shape due to their limitations in
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flexibility and control of porosity and distribution. Moreover, such structures are thin
with low mechanical strength and structural stability [12].

Metallic porous materials can be fabricated through different techniques. In phase
separation techniques (e.g., sintering-dissolution process, thermally stimulated decom-
position and thermally melted elimination) and embedding cenosphere technique, the
porosity, and mechanical properties can be effectively controlled by altering the con-
centration and size of the pore-forming agents. Recent developments on computer-aided
design (CAD) and additive manufacturing (AM) techniques have allowed the possibility
to fabricate reproducible customized porous structures via a layer-by-layer deposition
through high-energy electron beam melting (EBM) and selected laser sintering (SLS)
processes [8, 13].

Shuai et al. [14] fabricated PLGA/nano-HAP composite porous scaffolds through
the SLS process, achieving a well-controlled pore structure. The authors have intro-
duced nano-HAP as a reinforcing phase to improve mechanical properties. An approach
based on fused depositionmodeling (FDM) and rapid prototyping (RP) technologies was
developed by Masood et al. [12] to design and fabricate a complex scaffold structure of
desired porosity. Vlasea et al. [15] proposed a combined AM and microsyringe deposi-
tion approach to fabricate bio-ceramic structures with controlled micro-sized channels.
Armillotta and Pelzer [16] generated an algorithm to create a porous structure of desired
properties to be superimposed to a geometric model in polygon format for RP. Khaja
et al. [1] designed and fabricated a patient-specific cranial implant with a controlled
porous sizing and mechanical properties for aesthetic and functional restoration using
electron beam melting (EBM) to ensure a patient-specific titanium implant with ade-
quatemechanical strength. Although scientific literature highlights the benefits of porous
structures on the osteointegration, insufficient evidence exists about the effects of the
channels’ sizes on the physical and mechanical properties of the implants. Basalah et al.
[17] investigated the impact of macro-scale channels with a diameter of 1 mm on the
physical and mechanical properties of 3D-printed porous titanium implants. The results
demonstrated that the structure’s channels’ horizontal orientation might reduce its ulti-
mate strength and induce an isotropic shrinkage after sintering. Besides, the overall
porosity is affected by the number of channels in the structure [17].

The review of Zhao et al. [13] concerning the manufacturing techniques of metallic
porous materials highlighted that the porosity in metallic porous materials negatively
impacts the implant’s mechanical properties. The papers found in the literature presented
implants composed of different pore sizes and geometries and manufactured through
various techniques. However, all these implants are characterized by a fully porous
structure that shows low mechanical properties.

The present paper describes the design and manufacturing of a custom-made cranial
scaffold composed of two distinct layers: the compact inner one and the porous outer
one. The customized scaffold has been designed to bemanufactured by 3D-printing tech-
niques. The multi-layered structure guarantees the correct osseointegration (through the
spongy outer part in contact with surrounding tissues) and adequate structural properties
(through the compact inner part).



198 A. Mazzoli et al.

2 Materials and Methods

2.1 Multi-layered Porous Scaffold

The present paper aims to present a novel kind of custom-made scaffolds designed
to improve the implant itself’s osseointegration process, assuring adequate structural
properties. We planned a patient-specific implant that contained a porous surface lattice
for better osseointegration of the autogenous bone graft and a compact inner part for
optimal structural support. The permeable grid has been designed to enhance bone-
scaffold integration through a highly porous substrate. The custom-made scaffold can
be subsequently printed using direct metal laser sintering in titanium or selective laser
sintering using PEEK. We treated a patient affected by an osteoma on the right parietal
bone of the skull.

2.2 Design and Manufacture Procedure for Multi-layered Scaffold

The custom-made implant has been designed and manufactured following the workflow
in Fig. 1. The Computed tomography (CT) images of a patient affected by an osteoma
were imported into the commercial software for image processingMIMICS (Materialise
NV, Belgium) and segmented through a proper threshold to extract the bony components.
By stacking the segmented slices, it was possible to reconstruct the 3D anatomical model
through the marching cubes algorithm, a well-known algorithm in 3D reconstruction.
The 3D visual model was then converted in STL (Standard Triangulation Language)
format, the de facto standard interface from CAD to rapid manufacturing. The custom-
made scaffold was virtually designed in a haptic environment, given that a traditional
CAD modeling software would not ensure accurate reconstruction of such a complex
and irregular defect. The STL file of the segmented cranial defect resulting from the
previous phase was imported into the free-form modeling system (3D Systems Haptic
Device) equipped with the PHANToM Omni. Haptic free-form modeling provides the
practitionerwith tools for direct interactionwith the virtualmodel. It gives force feedback
to the operator to render the sense of touch when sculpting the virtual clay representing
the model.

Fig. 1. Modeling and manufacturing chain
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The operator can thus orient the anatomical model to obtain the best view of the
defect and draw the defect site’s contour even for irregularly shaped defect geometry.
The osteoma has been resected freehand using the command ‘construct clay’ combined
with the plane drawings of the part that should have been resected (command ‘sketch’)
as showed in Fig. 2.

Fig. 2. 3D model of the osteoma (left) and after the resection (right)

Using this modeling approach, the osteoma has been extruded from the skull. Here-
after the implant has been designed using the symmetric portion of the patient’s skull.
The plate has been smoothed and adapted to the resection in the head. At this point, the
implant’s external surface has been manipulated to apply a porous texture that can stim-
ulate the growth of the surrounding bone tissue once implanted. In this way, the implant
can be directly 3D-printed, showing a roughened multi-layered structure without recur-
ring to any chemical or physical post-processing and augmenting the osseointegration
possibilities of the implant itself. Using the MIMICS software’s editing and boolean
commands, the implant has been split into two areas, an inner core and an external shell
3 mm thick, as can be seen in Fig. 3.

Fig. 3. 3D model of the external shell (upper) and inner core (lower)
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The obtained STL files have been imported in FreeForm to use the haptic device
to apply the surface porosity. The porous surface has been designed as a texture. A
cubic cell, 0.5 mm x/y/z, chosen in the FreeForm library, has been repeated all over the
implant’s external surface shell to obtain the porous structure. Once the outer shell has
been finished, it has been merged with the inner part to get the cranial plate, showed
in Fig. 4 (left). It can be saved in STL format and 3D-printed using a biocompatible
material such as PEEK.

Fig. 4. Multi-layered designed cranial implant (left) and positioning in the cranial slot (right)

Before the 3D-printing process, the entire implant has been resized to perfectly fit
the implant in the cranial place, as shown in Fig. 4 (right). It was necessary because the
free-form modeling process induced some changes to the whole scaffold. The implant
has been manufactured by Selective Laser Sintering using PEEK. SEM images of the
manufactured implant, external shell (right), and inner core (left) are reported in Fig. 5.

Fig. 5. SEM images of the manufactured implant, external shell (right), and inner core (left).



Preliminary Considerations Printing 201

3 Results and Discussion

The multi-layered custom-made implant and the related design process described in the
previous section present several advantages and limitations comparedwith the respective
ones commented in the proposed literature review.

The main advantages are:

• The freeform modeling software tool allows controlling the implant porosity in terms
of global porosity and local distribution, orientation, and porosity interconnection. All
these factors influence the growth of bone and cartilaginous tissues (pore size more
significant than 100 µm). The pores interconnection, showed in Fig. 5, allows circu-
lation and exchange of body fluid, ion diffusion, nutritional content, penetration of
osteoblasts, and vasculature (pore size smaller than 50µm). According to a study into
porous implants [18], pores sized 75–100µm result in significant bone growth, but the
optimal range is 100–135 µm. Many studies recommended pores exceeding 300 µm
for bone formation and enhanced vascularisation and oxygenation, promoting direct
osteogenesis. Conversely, pores smaller than 300 µm can encourage osteochondral
ossification. However, it is crucial to identify the upper limits in pore size without
compromising the scaffolds’ mechanical properties by increasing void volume [18].

• By adopting different textures, it is possible to create a multi-density surface
designed according to medical requirements. High porosity, where the implant
is connected to the bone to speed up the osseointegration. Low porosity, in the
middle, for fostering the growth of cartilaginous tissues;

• The implant porosity can be created through standard (e.g., cylinder, tetrahedron,
parallelepiped, etc.) or customized shapes. The porosity is realized through a tex-
turing process, where a texture is applied to the surface to treat. Such a solution is
an extremely flexible design process. The textured shape will depend on the bone
conditions where the prosthesis will be implanted;

• The porosity is completely controlled during the design stage. It does not depend
on any parameters of the chemical or physical post-processing typically used for
creating the porosity of the implant surface;

• The external porosity contributes to reducing the weight of the implant.

The main limitation met during the design process is the following:

• The texturing process and the software tool used for this test case lead to a uni-
form porosity in the case of simple surfaces (i.e., developable surfaces). For freeform
shapes, typical of custom-made implants, the dimension of the pores varies through
the surface. Figure 6 shows the porosity deviation in terms of hole dimensions, where
as Fig. 7 shows the variation in hole depth. In conclusion, in the release used for this
case study, such a software tool does not permit to realize a uniform texturized surface.



202 A. Mazzoli et al.

Fig. 6. External implant surface obtained with the texturing process. Values express the
dimensions of the pores (mm)

Fig. 7. Cross-section of the multi-layered custom-made implant is visible in the implant’s inner
core (smooth) and the external shell (speckled).

4 Conclusions

This paper aims to approach the qualitative advantages and limitations of a multi-layered
designed custom-made cranial scaffold concerning the one-layered ones. In literature,
authors have designed and developed one-layered customized implants with traditional
manufacturing techniques. Those allow realizing completely porous and completely
compact implants in a ‘one-step’ production or multi-layered implants with a ‘more-
steps’ production. In this paper, we proposed a preliminary procedure for designing
multi-layered scaffolds via a unique manufacturing step. By combining a free-form
modeling system and 3D-printing, it is possible to overcome the literature by speeding
up the implant development process and assuring the perfect fitting and integration of
the implant to the bone.
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Abstract. Knee osteoarthritis (OA) is a common musculoskeletal ill-
ness. To solve the problem that inaccurate knee joint localization and
inadequate knee OA features extracted from plain radiographs affect
the accuracy of knee OA diagnosis in X-rays, we propose a novel Two-
Stage Convolutional Neural Network (TS-CNN) method, consisting of
the KneeDetnet and the KLnet. The KneeDetnet with two small multi-
task convolutional neural networks is proposed to locate knee joints,
improving the accuracy of knee joint localization. Then KLnet is designed
to assess knee OA, where a shared Siamese network via ResNet is used
to extract more discriminative deep learning features that are fused with
gender information for obtaining richer features. Our method is evalu-
ated on public OAI and MOST datasets. The highest detection accuracy
of knee joints can reach 99.93% and 99.02% on two datasets, respectively.
The KLnet algorithm achieves 78.85% and 68.20% prediction accuracy
on the OAI and MOST datasets, respectively. Experimental results show
that our method outperforms the existing workhorse. The proposed app-
roach may become a potentially useful tool for assisting physicians.

Keywords: Knee osteoarthritis · Two-stage convolutional neural
network · Feature fusion · Gender information · X-rays

1 Introduction

Knee osteoarthritis (OA) [18,31] causes frequent physical, psychological damages
to human health; worse yet, such a common disease may even lead to disability [3,
6]. Nowadays, it is still challenging to cure an OA patient. An ounce of prevention
is worth a pound of cure. The studies on the early prevention of OA are very
necessary and thus have achieved great improvements in past decade. People
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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mainly use the radiography (X-ray)1 [4] to assess knee OA by checking the major
pathological features, aka, knee joint space narrowing, osteophytes formation and
sclerosis [15,20,21]. However, the visual diagnosis of doctors is highly dependent
on personal medical experience and thus very subjective. What worse is that such
a diagnosis is very time-consuming and labor-intensive. A natural idea is why not
use the computer? It can effectively solve the problems just mentioned that may
exhaust a doctor. Existing researches about computer-aided knee OA diagnosis
[20] specifically grade knee OA, which can be regarded as a fine classification
problem [30]. Traditionally, Kellgren-Lawrence (KL)2 [9] is the gold standard for
initial assessment of knee OA.

Previous work about knee OA diagnosis usually consists of two main stages
[1]: the first one is the location and extraction of knee joint areas, and the sec-
ond one is the prediction of knee OA grades. The first stage of current routines
focuses on extracting traditional features with classifiers to locate knee joints.
However, the high missed and false detection rates hurt subsequent identifica-
tion. What follows is that people need to exploit manual intervention to extract
knee joint areas, which are nonautomatic and time-consuming. Although in the
second stage, the current knee OA prediction have used deep learning meth-
ods, extracted knee OA features are still inadequate and the prediction accuracy
needs to be further improved.

1.1 Our Approaches

Thus, we propose a novel Two-Stage Convolutional Neural Network (TS-CNN)
method to assess the severity of knee OA:

– Stage 1 Replacing the traditional machinery with neural networks to detect
knee joints, we then propose a KneeDetnet that consists of two multi-task
convolutional neural networks, and the detection accuracy of knee joints is
improved.

– Stage 2 At first, the knee joint areas are further cropped and repositioned via
key points. The repositioned knee joints as critical knee joints are divided into
two parts with symmetry: the left part and the right part. Then the right part
is flipped horizontally. The two patches are sent to a shared Siamese network
via ResNet [7] to extract local features. And then, the prediction uses local
features from two parts and gender information of patients that concatenated
with fully connected layers. The network of assessing knee OA is called KLnet.

1.2 Contributions

Complementary to previous efforts of two-stage knee OA diagnosis, the main
contributions in this paper can be summarized in threefold.
1 In fact various medical imaging categories [14,17], such as magnetic resonance imag-

ing (MRI) and ultrasound imaging, are used in medicine. However, X-ray is a
favourite one due to its economic aspect.

2 The details of KL are described in the Sect. 3.
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(1) We propose the KneeDetnet method to locate knee joints and key points
simultaneously, which leverages the advantages of deep learning compared
to traditional classifier.

(2) In order reduce redundancy, the detected knee joint regions are further relo-
cated according to key points.

(3) The ResNet-based Siamese network with shared weights is proposed for KL
prediction by fusing knee joint features and gender information.

1.3 More Related Works

Shamir et al. proposed the WND-CHARM [16,22,23] to manually extract
features from original and transformed images with computer-aided analysis.
Recently, convolutional neural networks have achieved successful results in many
computer vision tasks, such as image recognition [10], automatic detection [13]
and segmentation [11], image retrieval [29], video classification [28]. Compared
to manually extracted features, convolutional neural networks can learn more
efficient features to represent images and videos. Convolutional neural networks
have also been applied to the knee OA diagnosis. Antony et al. [2] migrated
pre-trained convolutional neural networks via the ImageNet dataset [19], such
as VGG16 [24], VGG-M-128 [5] and CaffeNet [8], and performed the fine-tuning
on the knee OA classification task. However, their knee joints located method
is based on Sobel horizontal image gradient features and SVM, which has a low
detection accuracy. They need to manually label knee joint regions for subsequent
recognition tasks. Antony et al. [1] later proposed FCN-based method [12] for
knee joint localization, and a six-layer convolutional neural network was cascaded
to assess knee OA with mean square error loss function and the cross-entropy
loss function. However, FCN-based localization method needs to generate binary
images and splits knee joints at the pixel level, which is time-consuming. And
a shadower network is used during knee OA recognition, the recognition rate
can be improved. A 7-layer Siamese convolutional neural network with shared
parameters was introduced by Tiulpin et al. [26] to diagnose knee OA, where
symmetrically relative features are learned. Due to shared network parameters
in Siamese network, the number of learnable parameters are reduced. However,
they use HOG and SVM method proposed by them [27] to detect knee joint
areas. The mislocalised knee joint areas are manually re-annotated and used for
subsequent identification task. The detection accuracy of knee joint areas still
has potential for improvement. In addition, during knee OA diagnosis stage,
image patches are extracted with fixed pixels, which has certain errors. Also, the
deeper shared Siamese convolutional neural network and feature fusion strategy
are unused, and the prediction accuracy can be further improved.

2 Methods

The details of our algorithms are shown as Fig. 1. Firstly, the KneeDetnet is
presented for accurate location of the knee joints and six key points from original



208 K. Wang et al.

knee images. Then six key points are used to further crop detected knee joints for
generating critical knee joints. Finally, critical knee joints are equally divided into
two patches via their symmetry. The two separated parts and gender information
of patients are drained into the KLnet to prediction KL.

KneeDetnet

...

...

...

...

...

KLnet

Knee 
images

Detected knee joints

Critical knee joints

KL KL ...

Gender 
information 

Gender 
information 

Fig. 1. The pipeline for the proposed TS-CNN method.

2.1 Data Preprocessing

Figure 2 illustrates the specific procedure of data preprocessing. The original data
are X-ray medical images including the left and right knees with non-uniform
bright-dark phenomenon. At first, we use a pixel inversion to unify the bright-
dark property of the images. And then, all original X-ray images are transformed
into images with dark background and bright legs. On the other hand, double-
knee images are converted into single-knee images, which are turned into 8-bit
uint images and processed by histogram equalization.

The original images

Turn into the image with dark 
background and bright knees Histogram 

equalization

...

...

Turn into 
the single knee image

...

...

Fig. 2. The pipeline for data preprocessing.
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2.2 KneeDetnet for Knee Joint Localization

This paper improves the algorithm proposed by Zhang et al. [32] and proposes
two small multi-task convolutional neural networks to complete the localization
of knee joints and six key points, which is called KneeDetnet. In our algorithm,
we need to train two cascaded neural networks. The whole learning target can
be described as

min

⎧
⎨

⎩

N∑

i=1

[ ∑

j∈A
αj · Lossji

]
⎫
⎬

⎭
,A := {det, box, key points}

Lossdeti = −
[
ydet
i log(pi) + (1 − ydet

i )(1 − log(pi))
]
,

Lossboxi =
∥
∥
∥ŷbox

i − ybox
i

∥
∥
∥
2

2
,

Losskey points
i =

∥
∥
∥ŷkey points

i − ykey points
i

∥
∥
∥
2

2
,

(1)

where N is the number of training samples and αj represents the task impor-
tance. Lossdeti stands for the cross-entropy loss of knee/non-knee classification
task. ydet

i ∈ {0, 1} represents the true label of the sample xi, pi is the prob-
ability generated by the network that regards xi as the knee. Lossboxi denotes
the Euclidean loss of knee joint detection task. ybox

i is true coordinate for the
i-th sample and ybox

i ∈ R
4. ŷbox

i is the bounding box regression vector predicted
by the network. Losskey points

i is the Euclidean loss for key point localization.
ykey points
i is true coordinate for the i-th sample and ykey points

i ∈ R
12. ŷkey points

i

is the located coordinate of six key points. In the first network, we set αdet = 1,
αbox = 0.5 and αkey points = 0. In the second network, we set αdet = 0.8,
αbox = 0.6 and αkey points = 1.5.
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256
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1

4

Knee/non-knee 
classification

Bounding box 
localization

12 Localization of 
six key points

The second network

The first network

FC

Fig. 3. Training neural network for KneeDetnet.

In the following, we introduce the network proposed by us for training and
test. It is worth mentioning that the training networks are similar to test ones
except for the different inputs3. The specific structure of the training networks
3 The training data needs to be normally sized as 48 × 48 × 3 while test ones need to

generate the pyramid.
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is presented in Fig. 3, in which the shared part stands for that the two networks
has the same structure in the hidden layers. The first network includes six layers
and performs two tasks: knee/non-knee classification and knee joint detection.
The second network also contains six layers and builds three tasks: knee/non-
knee classification, knee joint detection and key point localization. The practical
training highly depends on the generated data, whose details will be reported in
the numerical part. As for the test network in Fig. 4, at first, each knee image is
resized into different scales to generate image pyramid. Then image pyramid of
each knee image is sent to the first network, which is a fully convolutional neural
network, to obtain available candidate knee joints. The sequence procedure is the
use of the non-maximum suppression (NMS) to merge highly overlapped candi-
date regions. In addition, a second network is designed to reject false candidates
and output the desired objects, as a result.

...
pyramid

...

conv(3x3)

MP(3x3)

conv(3x3)

MP(2x2)

conv(3x3) conv(2x2)

conv(3x3)

MP(3x3)

conv(3x3)

MP(2x2)

conv(3x3) FC

The first network

NMS

The second network

The located knee 
joint and key points

conv(3x3)

MP(2x2)

conv(3x3)

MP(2x2)

conv(1x1)

FC

Fig. 4. The KneeDetnet for knee joints localization.

Different from previous work [32], in the first network, we add extra layers
to extract more details about the feature. In the experiments, a very interesting
finding is that two networks can beat the three-network results. Thus, in our
algorithm, two networks rather than three are used.

2.3 User-Friendly Assessment: KLnet for Knee OA

This part provides an easily used assessment method for the doctors’ clinical
diagnosis as shown in Fig. 5. Intuitively, the knee image from the KneeDetnet is
a little bit redundant due to the disease is reflected around the knee joint space.
Thus, the KneeDetnet’s outputs are cropped according to six key points with
critical knee joints obtained adaptively. Existing methods employ fixed scales to
resize. However, such a fixation way may not be appropriate due to the diversity
of knee joint width. Therefore, we carry out a flexible scheme: The first question
is how to describe the knee joint width mathematically. Here, we denote largest
distance of the x-coordinates of the six key points as the width. We observe that
the heights of the knee joint spaces are much smaller than the width. The desired
area is contained in a rectangle, which is chosen as: The maximum ordinate of
six points increases by 0.2 times of knee joint width as the top of relocated knee
joints; The minimum ordinate of six points is reduced by 0.2 times of knee joint
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width as the bottom of relocated knee joints4. The relocated regions keep the
previous widths but with cropped heights.

crop

The right patch (flipped)
(resize 224x224x3)

The left patch
(resize 224x224x3)

FC

KL

connection

ResNet

ResNet

Gender 
information

The located knee joint

The critical knee joint

Fig. 5. The KLnet for knee OA assessment.

After relocating key areas, we equally divide them into left and right parts,
and the right image patches are horizontally flipped. Both two parts are input
into the shared ResNet-based Siamese convolutional neural network to extract
local deep learning features. Considering the difference features caused by the
gender, thus, multi-information features fusion strategy is applied for obtaining
richer features. Here, the extracted local features of two image patches and the
gender information with one dimensional vector of patients are connected in
series to form fused features with better representations, which are fed to FC
layers to evaluate the knee OA severity. Here, we use the deeper ResNet-based
Siamese network architecture to learn features of each image side with shared
weights, which not only reduces the number of learnable parameters, but also
can learn more discriminative relative features between two image sides in one
knee image. This method can extract more detailed features to describe knee
joint images.

3 Results

3.1 Datasets

Experiments are conducted on two widely used public datasets: the OAI dataset
(https://oai.epi-ucsf.org/datarelease/) and the MOST dataset (http://most.
ucsf.edu). The OAI dataset contains the data from 4796 subjects. The MOST
database is similar to the OAI database but excluded in the OAI dataset. The
MOST dataset contains the data from 3026 participants. Both datasets include
follow-up data with different months from men and women aged between 50–79
and 45–79 years old.

KL grades range five different labels: KL0, KL1, KL2, KL3 and KL4. As the
Fig. 6 shown, KL0 means no knee OA symptoms, i.e., the normal knee joint.
KL1 indicates doubtful diseases about knee OA. KL2 represents early knee OA

4 The coefficient 0.2 can be chosen as others.

https://oai.epi-ucsf.org/datarelease/
http://most.ucsf.edu
http://most.ucsf.edu
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troubles. KL3 means moderate accident. The worst is KL4, which has “broke”
your leg.

Here, we select data with KL labels from the part of OAI and MOST
databases. And the experimental platform we used is Ubuntu 16.04, Python
3.6, PyTorch 0.4 and 2080Ti GPU.

KL0 KL1 KL2 KL3 KL4

Fig. 6. Knee images with different grades.

3.2 Experimental Results and Analysis of the Knee Joint
Localization

5448 single-knee images from the OAI 00m dataset are manually marked with
six key points to generate the ground-truth of the knee joint region as shown in
Fig. 7. We calculate the mean of six key points as the center point. The ordinate
of the center point adds 0.65 times of the knee joint width and subtracts 0.65
times of the knee joint width, which is as the height of the ground-truth of
the bounding box. Just like the method ahead, the abscissa of the center point
adds 0.65 times of the knee joint width and subtracts 0.65 times of the knee
joint width, which is regarded as the width of the ground-truth of the bounding
box. In the Fig. 7, red marked bounding box is the ground-truth of the knee
joint area. Then 4086 images are selected from 5448 images to generate the
training data of the KneeDetnet. We randomly select bounding boxes from each
single-knee image, which are compared with its ground-truth via Intersection
Over Union (IOU). Generated training samples include positive samples with
IOU ≥ 0.65, partial samples with 0.4 ≤ IOU < 0.65 and negative samples with
IOU < 0.3, all of which are resized into 48×48. Training samples are augmented
by mirror operations. In the end, the training data for the first network contains
40131 positive samples, 220166 negative samples and 39363 partial samples.
The training data of the second network are based on results obtained from the
first network and re-generated according to the IOU. The training data for the
second network includes 18450 positive samples, 7151 negative samples, 4993
partial samples and 20132 samples for key points localization.

After several explorations, we found that the first network can achieve quite
good performance when the training parameters are set as follows: the epoch is
set as 10, the learning rate (lr) is set as 0.001, and the batch size is set as 500.
The training parameters of the second network are set as follows: the epoch is
set as 10, the learning rate (lr) is set as 0.0001, and the batch size is set as 500.

The remaining 1362 images are used for verifying KneeDetnet method, where
knee joint areas of 1360 images are detected. Thus, the detection accuracy of
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0.65 times 
of the knee 
joint width

Selecting the 
knee joint via 
six keypoints

Marking the 
bounding box 
of knee joint  

The width of 
knee joint

Marking six 
keypoints  

The center of 
six keypoints

Fig. 7. The process of generating the ground-truth of the bounding box for KneeDet-
net.

the knee joint areas on the validation set is 99.85%. Then we test KneeDetnet
method on two datasets. Table 1 show that the OAI dataset has 45110 single knee
images, where only 32 images fail to be identified with our method. The average
detection accuracy is 99.93%, which is 0.48% higher than the MTCNN method,
and 8.2% higher than the HOG+SVM method. As shown in Table 2, although
HOG+SVM shows the better performance on the MOST V0, V1, V2 datasets,
the HOG+SVM method detects the 19034 knee joints among 19383 single knee
images. The KneeDetnet method detects 19194 sheets, and the average detection
accuracy of which is 99.02%. That is 0.82% higher than the detection accuracy
(98.20%) of the HOG+SVM method and 1.4% higher than the MTCNN method.
Therefore, the proposed KneeDetnet algorithm in this paper shows superior
performance in knee joint localization and can be directly used for subsequent
knee OA identification.

Table 1. The number and detection accuracy comparisons of detected knee joints on
the OAI dataset with different months.

Dataset

Method The number (accuracy)

00 m 12 m 24 m 36 m 48 m 72 m 96 m Total (average)

The original number 8626 (–) 8362 (–) 7372 (–) 7050 (–) 6918 (–) 3349 (–) 3433 (–) 45110 (–)

HOG+SVM [27] 7077 (82.04%) 7073 (84.59%) 6895 (93.53%) 6897 (97.83%) 6774 (97.92%) 3294 (98.36%) 3369 (98.14%) 41379 (91.73%)

MTCNN [32] 8570 (99.35%) 8317 (99.46%) 7326 (99.38%) 7010 (99.43%) 6875 (99.38%) 3343 (99.82%) 3421 (99.65%) 44862 (99.45%)

Ours (KneeDetnet) 8621 (99.94%) 8355 (99.91%) 7367 (99.93%) 7045 (99.93%) 6908 (99.86%) 3349 (100.00%) 3433 (100.00%) 45078 (99.93%)

Table 2. The number and detection accuracy comparisons of detected knee joints on
the MOST dataset with different months.

Dataset

Method The number (accuracy)

V0 V1 V2 V3 V5 Total (average)

The original number 6019 (–) 574 (–) 5125 (–) 4039 (–) 3626 (–) 19383 (–)

HOG+SVM [27] 5969 (99.17%) 572 (99.65%) 5059 (98.71%) 3919 (97.03%) 3515 (96.94%) 19034 (98.20%)

MTCNN [32] 5845 (97.11%) 556 (96.86%) 4960 (96.78%) 3982 (98.59%) 3578 (98.68%) 18921 (97.62%)

Ours (KneeDetnet) 5933 (98.57%) 565 (98.43%) 5051 (98.56%) 4027 (99.70%) 3618 (99.78%) 19194 (99.02%)
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3.3 Experimental Results and Analysis of the Knee OA Diagnosis

We divide detected 45078 images from the OAI dataset into 25040 training sets,
5006 validation sets, and 15032 test sets. The detected 19194 knee joints of the
MOST dataset are also the test set. They are input into the shared ResNet-based
Siamese network, such as ResNet18, ResNet34, ResNet50, and ResNet101. To
deal with the illumination and angle changes and over-fitting problems [25], we
use the data augmentation [7,24]: illumination contrast enhancement, gamma
correction, rotation and translation, etc.

In order to verify effectiveness of the knee joint relocation after KneeDetnet’s
detection, the comparison experiments are carried out with repositioning and
non-repositioning methods on the OAI and MOST datasets when the gender
information from patients is absent in ResNet models. As shown in Table 3, the
highest accuracy of 78.59% is obtained on the OAI dataset under knee relocation
method via ResNet 101. The highest accuracy of 67.86% on the MOST dataset
is based on the knee relocation method via ResNet34. We can find that relocated
methods are better than non-relocated methods. Experimental results illustrate
that knee relocation method we proposed is beneficial to KL grades prediction,
reducing redundancy information and highlighting key position information.

Table 3. Performance comparison with and without knee repositioning on the OAI
and MOST datasets.

Method OAI dataset MOST dataset

Learning rate Accuracy Kappa MSE Learning rate Accuracy Kappa MSE

Without knee repositioning via ResNet18 10-6 72.24% 0.8559 0.4317 10-6 67.36% 0.8599 0.5414

via ResNet34 10-6 73.69% 0.8652 0.4057 10-6 67.36% 0.8627 0.5328

via ResNet50 10-6 73.51% 0.8727 0.3808 10-6 66.00% 0.8604 0.5374

via ResNet101 10-6 73.96% 0.8722 0.3867 10-6 67.55% 0.8654 0.5275

With knee repositioning via ResNet18 10-5 74.55% 0.8746 0.3796 10-5 67.40% 0.8737 0.4947

via ResNet34 10-5 76.92% 0.8826 0.3525 10-5 67.86% 0.8744 0.4907

via ResNet50 10-5 77.23% 0.8903 0.3313 10-5 67.31% 0.8717 0.5014

via ResNet101 10-5 78.59% 0.8945 0.3177 10-5 67.14% 0.8693 0.5129

As for KL prediction results shown in Table 4, our method achieves the
highest accuracy (78.85%), the highest kappa coefficient (0.8970) and the lowest
mean square error (MSE) of 0.3074 on the OAI dataset. The accuracy of our
method is 8.19% higher than that of Tiulpin et al. On the MOST dataset,
the proposed TS-CNN (ResNet34+gender) method achieves 68.20% accuracy,
which is 0.27% lower than the method of Tiulpin et al. But its kappa coefficient
is the highest (0.8756) and the MSE is the lowest (0.4855). Table 4 presents
that it is more effective to integrate the gender information of patients than
gender information free cases. The results demonstrate our method has promising
performance in KL prediction of knee OA.
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Table 4. Performance comparison with state-of-the-art methods on the OAI and
MOST datasets.

Method OAI dataset MOST dataset

Learning rate Accuracy Kappa MSE Learning rate Accuracy Kappa MSE

Antony et al., 2017 [1] 10-4 62.65% 0.7612 0.7648 10-4 67.05% 0.8505 0.6126

Tiulpin et al., 2018 [26] 10-3 70.66% 0.8498 0.4579 10-3 68.47% 0.8638 0.5354

TS-CNN (ResNet18+nogender) 10-5 74.55% 0.8746 0.3796 10-5 67.40% 0.8737 0.4947

TS-CNN (ResNet34+nogender) 10-5 76.92% 0.8826 0.3525 10-5 67.86% 0.8744 0.4907

TS-CNN (ResNet50+nogender) 10-5 77.23% 0.8903 0.3313 10-5 67.31% 0.8717 0.5014

TS-CNN (ResNet101+nogender) 10-5 78.59% 0.8945 0.3177 10-5 67.14% 0.8693 0.5129

TS-CNN (ResNet18+gender) 10-5 74.89% 0.8749 0.3741 10-5 68.08% 0.8701 0.5005

TS-CNN (ResNet34+gender) 10-5 77.27% 0.8852 0.3454 10-5 68.20% 0.8756 0.4855

TS-CNN (ResNet50+gender) 10-5 77.34% 0.8910 0.3267 10-5 66.74% 0.8722 0.4962

TS-CNN (ResNet101+gender) 10-5 78.85% 0.8970 0.3074 10-5 66.82% 0.8681 0.5088

4 Conclusions

To improve the accuracy of assessing knee OA, a novel Two-Stage Convolutional
Neural Network (TS-CNN) method is proposed in this paper. Our methods are
based on a two-stage neural network technique together with gender informa-
tion fusion, whose efficiency is strongly demonstrated by the numerical results.
Although the proposed method has achieved non-trivial outperformance in the
knee OA diagnosis, it may be improved in the perspective of the accuracy (the
current accuracy ranges about 66%–79%). We list three possible future works.
The first one is the integration of the knee joint spaces and osteophytes informa-
tion for decision-level fusion. While the second one might use multi-task and even
the multi-network in the diagnosis. The last one may investigate an end-to-end
deep learning system by combining these steps.
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Abstract. The development of cyber-attacks carried out with ransomware has
become increasingly refined in practically all systems. Attacks with pioneering
ransomware have the best complexities, which makes them considerably harder
to identify. The radical ransomware can obfuscate much of these traces through
mechanisms, such as metamorphic engines. Therefore, predictions and detection
of malware have become a substantial test for ransomware analysis. Numerous
Machine Learning (ML) algorithm exists; considering each algorithm’s Hyper-
parameter (HP) just as feature selection strategies, there exist a huge number of
potential options. This way, we deliberate more about the issue of simultaneously
choosing a learning algorithm and setting its HPs, going past work that tends to
address the issues in isolation.We show this issue determinedby a completely auto-
mated approach, utilizing ongoing developments in ML optimizations. We also
show that modifying the information preprocessing brings about more significant
progress towards better classification recalls.

Keywords: HP · Feature Selection · Optimization · Ransomware · ML
classification algorithms · Data imbalance

1 Introduction

The earlier decade has seen a detonation of ML exploration besides applications; partic-
ularly, deep learning strategies have empowered key advances in numerous application
areas, for example, computer vision, speech processing, and game-playing [1]. In any
case, the performance of numerous ML strategies is exceptionally delicate to a plethora
of design decisions, which establishes an extensive obstruction for new users. This is
especially valid in the booming field of deep learning, where designers’ requisite to
choose the right models, formulating approaches in addition to tuning HPs of these seg-
ments with sufficient executions [1, 3]. Although, this procedure only needs to rehash
for individual applications. Even experts are frequently left with monotonous acts of
experimentation until they recognize a decent arrangement of decisions for a specific
dataset. The field of automated ML (AutoML) plans to settle on choices that are based
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on information-driven and objectives in an automated way [3]. AutoML makes state-
of-the-art ML approaches available to domain researchers who are keen on applying
ML yet do not have enough assets to realize the advancements in detail. However, the
best-performing models for some modern applications of ML are getting bigger and
in this way more computationally costly to organize. Therefore, authorities want to set
as many HPs automatically as expected under any circumstances. A vast assortment of
learning strategies exists, extending from artificially invigorated neural systems [1, 3]
over kernel techniques to ensemble models [1, 11]. A typical attribute in these tech-
niques is parameterization by a lot of HPs λ, which is set appropriately by the user to
intensify the usefulness of the learning approaches. HPs are to design different parts of
the ML learning algorithms and can have uncontrollably fluctuating consequences for
the subsequent model and the situation demo levels [4, 5].

HP combs are usually performed manually, through dependable guidelines, or by
testing sets of HPs on a predefined lattice [6]. Automating HP search is accepting total
measures of consideration in machine learning, for example using benchmarking suites
in addition to different activities. Automated methodologies previously appeared to out-
flank manual searches through authorities on a few subjects [5]. The limitations call for
practical answers for the HPOs enhancement that satisfies numerous desiderata. Conse-
quently, choosing the best arrangement of HP values for an ML model yielding directly
with performance level. Although there exist several automatic optimization methods,
yet these usually take significant resources, increasing the dynamic complexity to obtain
a vast level of accuracy rate. HPO finds a tuple of HPs that yields an optimal model
that minimizes a predefined loss function on given independent data [5]. The objective
function takes a tuple of HPs and returns the associated loss. Cross-validation is often
used to estimate this generalization for performances [5].

Our research displays a review of the quick-moving field of AutoML and precision
optimization in theML algorithm through HP tuning. This curiosity will, in the long run,
lead to an ideal isolating hyper-plane realistic in both linear and non-linear classification
problems towards ransomware anomaly detection.

1.1 Hyper-parameter Optimization (HPO)

In machine learning, model parameters are the properties of training information that
will learnwithout a person during training by the classifiers.ModelHPs are valued inML
models that can require various imperatives, loads, or learning rates to produce various
information patterns, for example, the number of neighbors in K-Nearest Neighbors
(KNN). HPs are significant by the fact that they legitimately control the practices of
the training algorithms and influence the presentation of the models prepared. Selecting
appropriate HPs undertakes a basic effort in the performance levels of ML models. HPs
improvement is the way forward for a perfect model recognition [7, 8]. Reasonably, HPs
tuning is only to streamline over model learning to locate the procedure in prompting
the least error on the approval set. Therefore, HPs are the only knobs that can tune when
as-assembling the appropriate ML algorithm model for anomaly detection or to any
application as in Fig. 1.
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Figure 1 Highlights the model logic in any ML tuned environment. It shows the
logical scheme and confirms on the calculation that Model design added with HP of
individual parameters results in enhanced model parameters.

Fig. 1. Momentary portrayal of the HP scheme.

Following [8], HP λp is restrictive on another HP λi, if λp it is dynamic and HP
λj takes in approvals from a given set VP (I) ⊆ ∧i, then we call λi the parent of λp.
However, the restrictive HPs on the other hand can only be guardians of other dependent
HPs, contributing to rising to a tree-organized space otherwise, sometimes, referred
to as a directed acyclic graph (DAG) [2, 9]. The objective of HP improvement is to
decide the HPs λ*optimizing hypothetical execution of Aλ∗ depends on a restricted
measure of training information does= {(x1, y1)… (Xn, yn)}. Hypothetical execution is
approximated by parting into split training, and approval sets (Ds (p) train and (p) valid). The
learning volumes can be applied by Aλ∗ to Ds (p) train and assessing the presentation of
these volumes on Ds (p) valid. This permits the HPs improvement into subject composed
as:

C(λ) = 1

k

∑k

P=1
l
(
Aλ, Ds(p) train, Ds(p) valid

)
(1)

λ ∗ ε
argmin

λε
∧ c(λ) (2)

1.2 Model Selection

In model selection accountabilities, we attempt to locate the correct coherence among
prediction and estimation of errors. If our learning algorithm ignores to discover an
indicator with a little threat, it is imperative to understand over-fitting or under-fitting.

Under-fitting:The classifier learned on the training set is not sensitive enough to account
for the data provided. In this case, both the training error and the test error will be high,
as the classifier does not account for relevant information present in the training set.
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Over-fitting: The classifier learned on the training set is too specific, and cannot be
used to infer anything about unseen data accurately. Although training error continues
to decrease over time, test error will begin to increase again as the classifier begins to
make decisions based on patterns that exist only in the training set and not in the broader
distribution.
The over-fitting and under-fitting will result in poor performance in any given model.
Therefore, to refrain from these problems during an analysis phase of an ML model it
is vital to follow a technique out from the given four techniques as depicted in Fig. 2.

Fig. 2. Model selection approaches.

K-fold Cross-Validation (Selected Method)
In specific applications, information is rare, and we would prefer not to “misuse” infor-
mation on validation. The k-overlap, cross-validation methods intended to give a precise
gauge of the genuine error without squandering an excessive amount of information.
In k-overlap cross-validation, the first training set is parceled into k subsets (folds) of
size m/k (for straightforwardness, expect that m/k is a number). For each fold, the algo-
rithm prepares for a connection with different overlays thus the error is achieved through
overlays. However, K-overlap, cross-validation is often applied for model selection (or
parameter tuning).

1.3 The Common Optimization Strategy

A typical optimization procedure defines the possible set of hyper-parameters and the
metric to be maximized or minimized for a given problem. Hence, in practice, any
optimization procedure follows these classical steps as depicted in Fig. 3.
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Fig. 3. Illustrates an optimization strategy.

2 Result and Discussion

The experiment dataset was downloaded from VirusShare4, a website that keeps up a
continuously updated database of malware for a few [10]. Table 1. Below reports the full
list of ransomware families utilized in our research. To analyze the samples, the initial
researches used Cuckoo Sandbox to automate the analysis.

To achieve the objective of this research, the classification methods on ransomware
detection datasets were applied, through theWEKA environment.WEKA is an informa-
tion mining structure made by the University of Waikato in New Zealand that executes
information mining algorithms working on the JAVA language [12]. WEKA is the best
state-of-the-art facility for making, ML systems, and their application to genuine infor-
mation mining anomalies. It comprises ML algorithms for information mining assign-
ments [12]. WEKA executes algorithms for information preprocessing, classification,
regression, clustering, and association rules. The new plans can similarly be made with
this pack. In particular,WEKA is an open-source application given under General Public
License [12]. The information record usually used by Weka is in the ARFF file-group,
which involves labeling to reveal different attributes in the information file. It has many
areas, all of which can be used to play out a particular work. At the point when a dataset
has been stacked, one of the various panes in the Explorer can be applied to perform
further examination.
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Table 1. Data description for experiment test set.

Data set Selected attributes

Name: Ransomware Missing: 0% Distinct: 12 Unique: 0%

Type: Nominal

Data set Ransomware Anomaly Detection

Features Instances Class

Selected attribute 16382 1524 12

After feature selection 14631 992 Samples used

0 942.0 wt. Goodware

1 50.0 wt. Critroni

2 107.0 wt. CryptLocker

3 46.0 wt. CryptoWall

4 25.0 wt. Kollah

5 64.0 wt. Kovter

6 97.0 wt. Locker

7 59.0 wt. Matsnu

8 4.0 wt. PGPCoder

9 90.0 wt. Reveton

10 6.0 wt. TeslaCrypt

11 34.0 wt. Trojan-Ransom

Most Relevant Features of Each Class Used
We determined the most relevant features through the knowledge based on dataset
observation in comparison with feature evaluator and feature model as below:

Dataset Observations: Percentage of the Most Relevant Features for Each Class.

Fig. 4. Most relevant features of each class
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Feature Evaluator (supervised, Class (nominal): 16382 Class): WEKA Information
Gain Ranking Filter.
Evaluation Mode: Evaluate all training data.
We determined from Fig. 4. Above that Registry Keys and API Stats are the two most
pertinent sets, yet different sets are also useful depending on the areas in need. Among
every one of these features, several features are for ransomware comportment, together
with different features of malware behavior, prompted with an impressive detection rate.

2.1 Finest Features in Descending Approach - Top Twenty

We then again managed to determine our finest features as depicted in Table 2. Table 2
highlights, topfive features ranked in descending order based on the averageweights. The
finest features turn out to be considered essential when the quantity of features is enor-
mous. From this research, it is evident that the finest feature, giving preferable outcomes
over a complete set of features for a similar algorithm. The finest features empower the
machine learning algorithm to prepare quicker as well as lessens the complex nature of
a model and makes it simpler to interpret.

Search Method: WEKA Feature Ranking.
Extracted Features: 14631.

Table 2. Top five ranked attributes (feature selection)

Ranked attribute Abbreviation Set Id Avg. weight

API Stat API 119 0.431262

Directory operation DIR 14265 0.407925

Dropped file extensions DROP 330 0.330449

File extension FILES_EXT 11684 0.327463

API stats API 167 0.275793

2.2 Method Obtained in Tuning ML Algorithms

There are 14631 extracted features with 1524 instances loaded. Hence, in total for each
ML algorithm, six algorithm configurations were each evaluated 50 times, or 5-fold
cross-validation (CD) multiplied by 10 repeats (R). We are going to compare each algo-
rithm configuration based on the percentage accuracy. All of the default configurations
are adjusted as per below control measures.

2.3 Discussion

The results are impressive. TenML algorithms were used for this research. Feature rank-
ing and file transformations in ARFF file were furthermore performed, with the WEKA
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tool. In each model analysis, we set K= 10, whereK encapsulates the number of base
classifiers. Additionally, we took N= 5 for the cross-validation and weight assignments
independently. However,ML algorithms can be intended tomotivate particular behavior.
This is important since it allows the behavior of the model to be acclimated to the main
points of our machine learning problem. In this way, one must tune the setup of each
ML algorithm to a given problem. This is as often called algorithm tuning or algorithm
HPO. For this research, we have chosen the ransomware dataset used to assess the dis-
tinctive algorithm configurations. We have additionally included frequent events of all
ten algorithms (carried out in Weka) and each with an alternate algorithm arrangement
as portrayed in Table 3. To achieve the best outcome. The feature selection method,
along with the tuning methodology, has shown an impact on the performance level of
the learned model as portrayed in Table 3.

Table 3. Tuning test control

ML algorithms Common parameter tuning controls

An Iteration Control Set of 10 Repeats; 5-Fold Cross-Validation

1. IBK
2. J48
3. JRip
4. Naïve Bayes
5. Part
6. Random Tree
7. Random Forest
8. SMO
9. Rep Tree
10. OneR

• Analysis for distance measure: Euclidean or Manhattan
• K-values tested for {1,3,7} for both distance measures
• Iteration control set to 10 repeats
• MinNumObj tested for {2,3,5}
• MinNumObj: 2
• NumFolds tested for {3,5,7}
• Confidence Factor: 0.25
• Optimization 2 and 5
• MinBucketSize = 6
• NumDecimalPlaces = 2

Table 4 Provides a list of WEKA algorithms with the Receiver Operating Character-
istic (ROC) area. Each value on ROC highlights the sensitivity in correspondence with
a particular decision threshold. The ROC curve additionally reveals the correctly classi-
fied instances as positive values and incorrectly classified instances as a negative value.
Whereas, Kappa stats provides the correlation coefficient in our performed experiment.
Though the value of Kappa squared is responsible for the accurate amount of data, due
to the similarity with our data correctors. Moreover, the False Positive (FP) in our case is
in charge of depicting the number of detected ransomware anomaly values and the True
Positive (TP) reveals the instances that are effectively anticipated as normal. Finally,
after several trials and tuning, we managed to achieve the improved percentage model
accuracy performance as in Table 4.
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Table 4. Final results (with and without HPO).

3 Conclusion

The outcomes just indicated that Auto-WEKA is powerful at advancing it’s given objec-
tive. Though, the amount of HPs of an ML algorithm develops and so does its poten-
tial for overfitting. The use of cross-validation significantly increments Auto-WEKA’s
robustness against overfitting. In this work, we have presented the irresistible issue of
simultaneously choosing an algorithm selection in addition to HPOs that can be settled
by a completely automated tool. This is made promising by recent optimization tech-
niques that iteratively assemble models of the algorithm HP landscape and influences
these models to distinguish new focuses on the space that requires investigation. Auto-
WEKA, which draws on the full scope of learning algorithms in WEKA and makes it
simple for non-specialists to assemble great classifiers for giving application situations.
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A broad observational examination of ransomware detection datasets showed that Auto-
WEKA regularly beat standard algorithm selection and HPO techniques, particularly on
substantial data sets.
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Abstract. In medical imaging, a major limitation of supervised Deep
Neural Network is the need of large annotated datasets. Current data
augmentation methods, though quite efficient to enhance the perfor-
mance of deep learning networks, do not include complex transforma-
tions. This paper presents a realistic image transformation model mim-
icking multiple acquisitions obtained from the analysis of a mammogra-
phy database composed of screening acquisitions with priors. Our trans-
formation model results from the combination of a registration algo-
rithm, an invariant meshing strategy and a reduced model describing
motion and local intensity variation in paired images. The extracted data
variability was then transferred trough data augmentation to a small
database for the training of a deep learning-based segmentation algo-
rithm. Significant improvements are observed compared to usual data
augmentation techniques.

Keywords: Breast cancer mass detection · Deep learning · Data
augmentation · Statistical models · Image registration

1 Introduction

Worldwide, breast cancer is the most common type of cancer for women.
Detected at an early stage, the chances of survival are important as it can
be effectively treated [1]. Being able to diagnose breast cancers at the earli-
est stage is thus of upmost importance. The recent development of Computer
Aided Detection (CAD) based on Deep Learning (DL) has been a breakthrough
in medical image classification [2] and in breast cancer detection on screening
mammography [3,4]. However, in order to obtain robust models, the training
through supervised approaches require large datasets including labels assessed
by radiologists [4,5]. The difficult access to annotated data is one of the main
limitations of such approaches in medical image analysis.

Data augmentation is a method commonly used to enrich the dataset and
partially compensate the lack of data. It consists in applying predefined trans-
formations with random amplitudes on the training dataset. Applying trans-
formations on the training set allows creating invariance or equivariance in the
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model. Usual augmentation techniques [6,7] are composed of geometrical trans-
formations (rotation, translation, shear, etc..) and/or intensity transformations
(brightness/contrast, noise, etc..). Though it may not add considerable variabil-
ity it was proven to be efficient in many cases [8] including breast cancer mass
segmentation (e.g., with rigid motions [4] or random deformation fields [9]).
However, such augmentations do not capture the variety of transformations that
could be derived from the analysis of a given dataset.

In those works, the chosen type of transforms and their amplitudes are not
well characterized and rely on manual specification, making data augmentation
an implicit form of feature engineering. In addition, non realistic augmentations
- sometimes called aggressive transformations - may train the model to learn
improbable representations and even wrongly influence the model (e.g., rota-
tional invariance in 6–9 classifications in MNIST [10]). A data augmentation
method based on the analysis of motion has been recently proposed for the heart
segmentation from MRI images [11]. Unlike previous approaches, this augmen-
tation is designed to create realistic images which prevents the neural network
to learn unrealistic patterns. From a small dataset (5 to 100 training subjects)
of beating heart sequences, the measured displacement of the heart was used to
design a motion model allowing the generation of new instances. The gain in
performance using this augmentation was significant when compared to classi-
cal augmentation methods (especially with small training dataset). In [12], the
authors developed a similar method aiming at reproducing the anatomical vari-
ability of brains and knees in MRI sequences (less than 60 training patients). It
consisted in interpolations in a geodesic registration space to generate new geo-
metrical transformations. None of the previous studies leveraged both geometri-
cal and intensity variations and allowed a transfer of the learnt transformation
model in other databases. In addition, the large variability in size and shape of
the breasts imaged in mammography constitutes an additional challenge we had
to face in our study, as it impacts the support where the transformations are
applied.

Fig. 1. Data augmentation procedure.
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This paper investigates the space of realistic transformations in mammogra-
phy imaging aiming at designing a data augmentation method mimicking mul-
tiple image acquisitions of the same breast. The data augmentation, obtained
from a screening dataset with patient history analysis, will be used to increase a
segmentation model trained on another smaller breast imaging dataset (Fig. 1).
The novelty of this work lies in the introduction of geometrical and intensity
transformations extracted from the inherent variability in images of the same
breast imaged under different compressions and at different dates, leveraging a
geometric and intensity registration process.

The paper is organized as follow: in Sect. 2 we describe the proposed proce-
dure for generating realistic image transformations and how they can be used
for data augmentation. Then, Sect. 3 presents the performance in breast cancer
mass segmentation obtained with our data augmentation procedure compared
to usual data augmentation methods.

2 New Data Augmentation Based on Multiple
Acquisition Modeling

In a screening program, the patient undergoes multiple exams at different dates
(spaced by few years). The image variations between acquisitions (Fig. 2) are
hence composed of 1. physical breast texture evolution in time, 2. changes in
breast positioning on the detector and 3. intensity variations due to a change in
acquisition parameters.

Fig. 2. Screening history with geometrical and intensity variations (MLO views of the
right breast).

If a patient were to take multiple exams during the same day, the variations
would correspond to image variations 2. and 3. only and should not lead the
radiologist to a different diagnostic concerning the presence of a lesion. It is
proposed to leverage this transformation invariance to perform anatomically
realistic data augmentation without affecting the radiologist decision.
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2.1 Realistic Transformation Model Based on Image Meshing and
Registration

The transformation fields mapping different acquisitions of the same patient are
modeled and identified with a registration algorithm based on an optical flow
conservation.

Among many registration techniques proposed in the literature, the one used
in this paper is an intensity-based registration method called Digital Image Cor-
relation [13]. The goal of the procedure is the registration of a given pair of
mammography images, I1 ∈ R

N×M acquired at a time t1 and I2 ∈ R
N×M

acquired at a time t2. The Lagrangian displacement field mapping I2 from I1 is
denoted v ∈ R

2×N×M . The acquisition system and parameters evolve between
two different exams and highly affect the measured intensity. As the goal is
to register the two images based on the optical flow conservation, identify-
ing a brightness correction field, written a(x), is essential. The approach aims
to minimize, over the region of interest (ROI) Ω, the residual ρ defined by
ρ(v, a, x) = I1(x) − a(x)I2(x + v(x)), ∀x ∈ Ω.

U, b = Argmin
v∈E,a∈E

∫
Ω

(I1(x) − a(x)I2(x + v(x)))2dx (1)

As the problem is severely ill-posed, it is required to regularize the solution
field in the sense that we assume there is a link between neighboring pixels. For
this reason, we propose to use a finite element framework. The displacement
is written as a mesh kinematics composed of Nu nodes and a basis of shape
functions φ(x) defining the vector space E. The motion can thus be written in
its regularized form u(x) =

∑Nu

l=1 ulφl(x), with ul the nodal displacements. This
regularized approach is called global approach [14]. In the exact same spirit, the
brightness correction field is also regularized on the same subspace E.

The non-linear problem is solved using an alternating multi-scales iterative
Gauss-Newton method, starting with the displacement identification at step k,
with U (k+1) = U (k) + δU (k) and b(k+1) = b(k) + δb(k):

{
δU

(k)
j = 〈Si, Sj〉−1〈Si, ρ(U (k), b(k), x)〉

δb
(k)
m = 〈S̃m, S̃n〉−1〈S̃n, ρ(U (k+1), b(k), x)〉

The notation 〈·, ·〉 denotes the inner product (i.e., contraction over x ∈ Ω)
and the sensitivity fields (image variation with respect to each nodal parame-
ter): Si = φi(x)∇I1(x) and S̃n = φn(x)I1(x). The analysis of the entire patient
database requires to study all transformations on a common support. To express
the transformation fields at the same relative breast position, we used an invari-
ant meshing procedure based on breast tissues nodes. In order to satisfy this
constraint, we propose a simple method based on a solution introduced by Feng
et al. [15] based on a contour discretization of the breast. Few nodes are placed
inside the breast to capture texture motion. This approach was validated by
comparing the mesh of multiple mammography pairs acquired at different times.
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The displacements between the pairs of meshes match the one computed by the
registration method with only small errors (average of 1 pix).

The registration is applied on a full field digital mammography (FFDM)
dataset with priors acquired on a Senographe Pristina system (GE Healthcare,
Chicago, IL, USA). Our dataset contains P = 583 CC and MLO views with pri-
ors. No radiological findings were found by radiologists in this database. Images
are 2294 × 1914 pixels with a detector pitch of 100 µm.

For each image pair, the mesh composed of 24 nodes was positioned on breast
tissues (it was verified that the results were mesh-invariant). The procedure
efficiency can be quantified by comparing the ratio of the standard deviation
in the image over the standard deviation of the residual measured in the ROI
defined by the mesh. Indeed, we observed an increase from 4.4 before to 83.2
after registration. Some errors remain and are due to 3D transformations of the
breast that cannot be registered from 2D images.

The P solution fields are then {Uj , j ∈ [1, P ]} for the motion fields and
{bj , j ∈ [1, P ]} the brightness changes.

2.2 Reduced Model of Realistic Transformations

The generation of a reduced model from all measured fields allows (i) construct-
ing an interpretable model with a controlled complexity, (ii) designing a gener-
ative process to create new realistic transformation fields.

Each Uj is being reshaped as columns in a matrix M ∈ R
2n×P , each column

being the concatenation of horizontal and vertical displacements. A similar data
preparation is applied for the brightness fields. Principal component analysis
(PCA) is then applied to decompose the matrix M

Mij = M̂ +
nc∑

m=1

Γmiβmjλm (2)

with M̂ being the average field. One can see that each of the nc modes is com-
posed of a spatial nodal component Γmi, a patient amplitude component βmj

and an eigenvalue λm. The first spatial components of displacements are shown
in Fig. 3 (ordered by λm). It is interesting to note that components 2 and 4
correspond to an evolved version of respectively a scaling factor and a rotation.
Those two fields are often chosen heuristically in standard data augmentation
methods and are here found as indeed contributive.

The variance analysis of the principal components indicates that 6 com-
ponents (on a 24-dimension space) account for 90% of the variability of the
displacement fields in our dataset. Same results are observed for intensity fields.

While PCA leads to linearly uncorrelated components, non-linear couplings
(that would complicate the design of new realistic instances) where not found
visually from the inspection of the pairwise projections: (βmi, βnj).

Finally, we model the βi distributions by centered normal laws N (0, σi) with
standard deviations σi computed by maximizing the likelihood with normal dis-
tributions (Fig. 3).
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Fig. 3. (Top) The four first principal spatial components in displacement field Γmi

for the CC views. (Bottom) Distributions of the corresponding βi patient components
modeled with a normal distribution.

2.3 Realistic Data Augmentation Model

Synthetic real transformation fields on the nodes can be generated based on
a combination of the eigenvectors modeled by independent random variables
Xi ∼ N (0, σi), i ∈ [1, N ], with N the truncation order. As M̂ is negligible (on
average, 1.6% of the norm of the transformation fields in our application), the
generated centered transformation fields αt can be written as:

αt(x) =
Nt∑

m=1

Xt
mΓ t

m(x)λt
m (3)

where t = [U, b] denotes intensity and displacement indexes. Realistic transfor-
mation fields are generated using this method and applied over FFDM images
(Fig. 4).

In the next section, we leverage our proposed data augmentation model
to transfer the variability of an initial FFDM database to a smaller Con-
trast Enhanced Mammography [16–18] (CESM) database with the objective
to improve the performance of a deep learning based segmentation algorithm.
We used a dataset composed of 204 pathological CESM exams (108 MLO, 96
CC views) including lesion contours drawn by radiologists. CESM exams lead
to two channel images: a low energy (i.e., standard FFDM) and a recombined
image (contrast uptakes) that will be the input of the deep learning model.
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Fig. 4. Multiple transformations of FFDM images: original images (left), transformed
images (right).

3 Contribution of Data Augmentation in Deep Learning
Based Segmentation

In previous sections, a method to build from a FFDM dataset a model of real-
istic displacement/intensity variation fields occurring between mammography
screening exams has been described. We now want to leverage this model to
train a deep neural network that performs lesion segmentation on a small CESM
dataset and compare the gain in performance of our method compared to usual
data augmentation.

Among various architectures used in the medical imaging literature for the
segmentation of breast cancer findings, U-Net is one of the most used algo-
rithms [19]. Therefore, we used U-Net architecture with ResNet blocks to seg-
ment the lesions on CESM images [20–22]. Because of the small available dataset,
we chose a small network (only 8 features on first convolution layers then dou-
bling at each of the four scales) to avoid overfitting. The training was performed
using TensorFlow 2 with a combination of Dice and binary cross-entropy as loss
function and Adam as optimizer. Validation and test sets, fixed for all experi-
ments, were made up of respectively 40/50 {images,labels}. Early stopping based
on validation loss was used to prevent overfitting of the training dataset. As the
network will be used with different augmentation strategies, the results must
be considered in terms of relative performance. We do not state that U-Net is
optimal for the segmentation of lesions in CESM images.

The performance of our segmentation model was evaluated using the pro-
posed data augmentation approach based on realistic transformations compared
to usual data augmentation methods. Classic data augmentation transformations
and manually optimized parameters consisted in centered rotation in the range
[−15◦, 15◦], translation in the range of [−20 pixels, 20 pixels], shear (30 pixels of
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maximal displacement), horizontal flip (50 % probability). The performance of
the trained deep learning models were evaluated using Dice.

Figure 5 illustrates the performance of our segmentation model applied to
CESM images when trained with no data augmentation, with usual data aug-
mentation and with our proposed data augmentation approach. The performance
was quantified for different dataset sizes (32, 45, 60 and 100 images). Figure 5(a)
shows significant gain in performance using realistic data augmentation over no
augmentation or classic data augmentation approaches. This gain over the latter
is especially important when very few data data are available (see Table 1). The
trends in Dice as function of the training dataset size (also observed in [9,12]) is
expected as when the dataset becomes very large (compared to the model size)
the relative effect of data-augmentation becomes smaller. In other contexts, a
data augmentation could still be relevant when confronted to unbalanced or
biased classes. Moreover, the transformation model (build in previous section) is
data-dependent as it “learns” the input distribution (FFDM dataset). Applying
these transformations to the CESM dataset having different properties is a mean
to transfer variability to this dataset.

(a) (b)

Fig. 5. (a) Model performance for different data augmentation strategies. (b) Dice
according to the number of modes used for data augmentation

Table 1. Gain in performance with respect to no augmentation in Dice

Augmentation/dataset size 32 44 60 100

Realistic +9.4% +13.9% +10.2% +5.6%

Classical −1.1% +5.1% +6.0% +2.7%

Each generated realistic transformation field is constructed with a chosen
number of modes. The data augmentation performance with different number of
modes is illustrated in Fig. 5(b) for 0 (no augmentation), 2, 3, 6 and 12 compo-
nents. The evolution of the Dice curve as function of the number of components
matches the cumulative variance evolution of the PCA. This result seems fun-
damental as it confirms the link between the performance gain and the variance
brought to the dataset by the reduced model.
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4 Conclusions

A data augmentation method based on realistic transformations has been pro-
posed. One of our contributions on the design of a data augmentation method is
the introduction of a framework enabling the evaluation of real transformations
from pairs of images acquired at different dates. It leverages a reliable registra-
tion algorithm and an invariant meshing strategy. Another contribution is the
introduction of a reduced model of these realistic transformations in screening
images, enabling a generative process to create new realistic transformation fields
from a limited number of observed transformations. Finally, the assessment of the
relative performance of contrast uptake segmentation in CESM images showed
a significant improvement over Dice metrics when using the proposed realistic
data augmentation. This is a consequence of applying a wide range of realis-
tic transformations whereas classic data augmentation strategies only slightly
increase the variability of the dataset used to train a DL-based segmentation
model. Moreover, as the transformations are realistic, the neural network does
not have to learn unrealistic patterns which may improve the convergence and
enhance the overall segmentation performance.
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Abstract. Deep learning technique has been widely applied in medical image
analysis, whereas no work has been done for recognition or detection for acute
pancreatitis, which is one of themost common digestive disorders.Most of current
detection architectures are not sufficiently robust to deal with scale variation of
all kinds of acute pancreatitis lesions, resulting in inaccurate detection and some-
times false positive small lesions near large lesions. To address this, we proposed a
method that modifies classic detection network by employing the idea of attention
mechanism in backbone and detector neck. Specifically, channel-wise attention
is used to capture the relationship between channels of feature maps to pale the
uninformative andmeaningless channels unrelated toAP lesions, and spatial atten-
tion is applied to prompting the network focus on the area more relevant to AP
lesions. The experiment conducted on a real acute pancreatitis dataset verifies the
performance improvement the proposed method brings to the original detection
model.

Keywords: Lesion detection · Attention mechanism · Acute pancreatitis · CT

1 Introduction

As one of the most common digestive disorders, acute pancreatitis is the main reason for
hospital admissions due to gastrointestinal diseases in many countries, with an annual
incidence density rate varying from 0.13‰ to 0.45‰. Acute pancreatitis is the second
highest cause of hospitalization and the fifth leading cause of hospital death [1]. In a
systematic review, the mortality rate of all acute pancreatitis, interstitial pancreatitis and
necrotizing pancreatitis cases is about 5%, 3%, and 17% [2]. Severe acute pancreatitis
causes persistent (more than 48 h) organ failure and complications, most of which may
progress to pancreatic necrosis, and the mortality rate could even reach 30% [3]. Acute
pancreatitis endangers the lives of patients with high incidence, fast onset, many com-
plications, and high mortality. The key to improving the prognosis of acute pancreatitis
lies in timely detection and intervention. Therefore, it is critical to accurately diagnose
acute pancreatitis and determine its severity.

Most common clinical scoring systems for acute pancreatitis includes the Ranson
score, the BISAP, APACHE [4] series, SOFA, etc. CT scanning is one of the best imaging
methods for detecting pancreatic necrosis and edema, and CECT has been regarded as
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the best standard for diagnosis of acute pancreatitis. CTSI [5] is the most common
imaging scoring system, which combines Balthazar CT grading with grading of the
degree of pancreatic necrosis, and the modified CTSI [6] assigns weights for extra-
pancreatic complications and the presence of pleural effusion or ascites. Clinical data
analysis of acute pancreatitis has been applying machine learning techniques, such as
XGBoost and random forest, on physiological indicators to facilitate diagnosis. In terms
of medical image analysis of acute pancreatitis, the mainstream remains designing or
discovering features manually depending on prior medical knowledge, without going
further to extract higher-level and more discriminant information from images. Doctors
diagnose acute pancreatitis with CT scans by figuring out lesions manually, with low
diagnosis speed and low accuracy. It is of great significance to apply deep learning
technology to processing and analyzing AP’s medical images for doctor’s diagnosis,
whereas nothing related has been done.

Due to the complex pathology, the course, imaging and prognosis of patients with
acute pancreatitis vary greatly from patient to patient. On the one hand, as a small,
soft and flexible organ, pancreas has a high degree of anatomical variability compared
to other organs (like kidney, liver, heart, etc.) and the location, shape, and size of the
pancreas vary from person to person as in Fig. 1. Local complications include pancreatic
pseudocyst, acute peripancreatic fluid collection, and wall-off necrosis as in Fig. 2. And
the lesions of acute pancreatitis are not only limited to the pancreas itself, peripancreatic
tissues may also show fluid accumulation, edema, and hemorrhage due to complications
and the area of lesion varies greatly as in Fig. 3. Thus, the recognition and lesion detection
of acute pancreatitis is not just about identifying or locating pancreas.

Fig. 1. Anatomical variability of pancreas. Left: pancreas head; middle: pancreas tail; right:
pancreas body.

Fig. 2. Local complications of acute pancreatitis. Left: pancreatic pseudocyst, middle: acute
necrotic collection, right: wall-off necrosis.

Nowadays, as an effective tool for data analysis, deep learning has been widely
used in computer-aided diagnosis or detection, but it has not been applied in acute
pancreatitis. Previous studies have achieved organ segmentation of the pancreas with
CNNs on CT images or MR images [7–10]. Hitherto, no work based on deep learning
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has been done for acute pancreatitis lesion detection on CT images. And most of current
detection architectures are not sufficiently robust to deal with scale variation of all
kinds of acute pancreatitis lesions. We proposed an attentional detection network for
acute pancreatitis lesion detection, which modifies classic detection model by applying
attention mechanism in detector backbone and neck. The main contributions of this
paper are listed as below:

Fig. 3. Variation of lesion area of acute pancreatitis.

– We proposed a detection network for lesion detection of acute pancreatitis, which fills
the blank of deep learning methods of medical image analysis for acute pancreatitis.

– We use a dual-attention network as the detector backbone to educe more informative
and more discriminant features of acute pancreatitis.

– We utilize channel-wise attention and spatial attention in the detector neck to help
filter out the less informative channel-wise features and spatial features.

The rest of this paper is organized as follows. The related work including detection
architecture and attention mechanism is reviewed in Sect. 2. The proposed method is
presented in Sect. 3. The experiment is conducted and results are shown in Sect. 4.
Finally, this paper is concluded in Sect. 5.

2 Related Work

2.1 Detection Architecture

Object detection is one of the most significant tasks in imaging analysis. Before deep
learning arose in thefieldof computer vision, traditional hand-crafted features are utilized
in image recognition or object detection, for example, the CTSI for acute pancreatitis
diagnosis, which is inefficient and laborious.

The mainstream detectors include one-stage detectors like YOLO [11], SSD [12],
and two-stage detectors like Faster R-CNN [13]. The former directly predict the location
of the lesion resulting in higher speed, the latter has additional optimization of the
lesion location resulting in higher accuracy. FPN [14] combines deep features with
semantic information and shallow features with sufficient resolution, therefore facilitates
recognition and locating. FPN has become one of the most popular detection modules.
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Following the framework in YOLOv4 [15], as shown in Fig. 4, a detection model,
one-stage or two-stage, is generally composed of a backbone network and a detection
head. The backbone realizes feature extraction of input, and detector neck processes
feature obtained by backbone for enhancement, for instance, features fusion of different
scales or different abstract levels. Detection head learns target’s category and location
with features processed and supervised information.

R-CNN [16] is the pioneering work of the two-stage detection model, as the name
suggests, abstracting the whole process as two stages. The first is to select a number
of regions in the image that may contain the detection target, i.e., region proposals.
The second uses classification branch to obtain the categories of objects in each area,
and regression branch to obtain coordinate positions. On the basis of R-CNN, SPPNet
[17] proposed spatial pyramid pooling to obtain a fixed-length output, thereby avoiding
deformation or cropping of fixed-size input required by R-CNN, which leads to perfor-
mance reducing. Fast RCNN [18] replace the original subsequent SVM classification
and regression stages with a network, and uses ROI polling to convert feature maps
of different size to a same size. Faster RCNN [13] proposed RPN (Region Proposal
Network) to replace the selective search algorithm, and the whole process of generating
region proposal, feature extraction, coordinate regression and classification are jointly
trained, finally the entire detection task become completely end-to-end.

Fig. 4. Detector structure

2.2 Attention Mechanism

At present, there is no unified systematic mathematical definition of attention mech-
anism. The essence of attention mechanism is utilizing the relevance of data to high-
light significant information and suppress the unimportant. Considering the influence
of Transformer [19], here we continue to use its expression of attention mechanism.
Attention can be considered as a mapping between a series of key-value pairs, and each
query has a corresponding value under this mapping, as shown in Fig. 5. The specific cal-
culation process of attention is shown in Fig. 6. Firstly, calculate the similarity between
the query and each key as

ci = Similarity(Query,Keyi) (1)

The method of measuring similarity varies according to the specific problem. Most
common methods include cosine similarity, inner product similarity, splicing similarity,
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etc. Secondly, introduce theSoftmax function to normalize the scores in order to highlight
the important ones, as

Weighti = Softmax(ci) = eci/
∑

j∈�

ecj (2)

Thirdly, perform a weighted summation of the corresponding values to obtain the
attention, calculated as

Attention
(
Query, {Key}i∈�, {Value}i∈�

) = ∑
i∈�Weigthi · Valuei (3)

Fig. 5. Attention mechanism.

Fig. 6. Calculation of attention

Attention has been widely employed in tasks in the field of computer vision, for
instance, image recognition [20–26], object location [27, 28], image generation [29,
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30], image segmentation [31, 32]. The semantic information and context information
extracted by network have a strong connection to the network performance of tasks
including object detection, semantic segmentation and instance segmentation. In CNN,
limited by the receptive field, convolutional layers capture local features. In order to
enrich context information, stack of convolutional layers of small kernel size are often
used to increase the receptive field, but this is adequately efficient. However, attention
mechanism is a simple and efficient way to enrich global context information.

3 Proposed Method

We use a two-stage detection model, DA_Det, for lesion detection of acute pancreatitis.
With DA_ResNet we previously proposed for acute pancreatitis diagnosis the backbone
to educe features to construct a feature pyramidnetwork,weutilize two attentionmodules
in detector neck after FPN. Both channel-wise and spatial attention are used in sequence
for each level of features to facilitate focusing on the more informative features. Finally,
we use a sparse prediction detector head as in Faster-RCNN. The whole model is shown
in Fig. 7.

Fig. 7. Structure of DA_Det. (DAB for dual attention block)
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We highlight all parts of the proposed model in details in following subsections.

3.1 Backbone

The DA_ResNet based on ResNet [33] utilizes spatial attention to focus on the more
informative features and exploits global information of the features to produceweight for
feature of each convolution stage to obtain local attention feature. Channel-wise attention
is used to model channel interdependencies to improve performance. And finally, the
prediction is made with fusion of all local attention features.

Multi-scale Spatial Attention. As seen in Fig. 8, Ls denotes the response after the sth

convolution stage, and Lsi denotes the response of L
s at spatial position i. g denotes the

global feature which is the output before the final layer for classification. Then with a
functionF that evaluates the similarity of two tensors of the same channel, the similarity
of Ls and g is defined as

F
(
L
∧s

, g
)

=
{
F

(
L
∧s
i , g

)}i = {
csi

}i (4)

where L
∧s

is a tensor obtained by a mapping from lsi to g. This mapping converts the
number of tensor’s channels and can be learned. And then the normalized similarity can
be formulated as

asi = exp
(
csi

)
/
∑

j
exp(csj ) (5)

Then the local attention feature can be described as gsa = As
i ⊗ Ls. And the fusion

of all local attention features is written as ga = [gs1a , gs2a , · · · , gsma ].

Local Feature S+1

A�en�on
es�mator

Stage  S

Stage S+1

Fig. 8. Multi-scale spatial attention module
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Here, without loss of generality, the similarity function we choose is, adding the two
tensors element by element, the similarity is obtained through a learned linear mapping,
calculated as csi = 〈u, l

∧s
i + g〉 where u is the learned mapping.

Channel-wise Attention. As shown in Fig. 9, inspired by SENet [34], it empathizes
informative features and suppress useless ones by capturing explicit relationship between
channels of convolution layers. Global average pooling is performed for each channel
to ignore spatial information as

compsc = 1

W × H

∑H

1

∑W

1
Lsc(i, j) (6)

Where Lsc is the c
th channel. Then we learn nonlinear interaction between channels

through two fully connected layers as

sc = σ(W2δ(W1comp
s)) (7)

whereW1 andW2 are the weights of the fully connected layers, respectively. The final
output of each layer of the attention convolution is L̃s = sc�Lswhere� is a channel-wise
multiplication.

GAP
Modeling

Multiplication

Fig. 9. Channel-wise attention module

3.2 Channel-Wise Attention

For a certain type of acute pancreatitis lesion, the corresponding response may only
reside in some certain channels. An intuitive thought is to utilize channel-wise attention
to adjust the weight of the channels. The module utilizes context information of the
features to produce weight for each feature channel. The compression process is also by
global average pooling, written as

Fch
(
Ls

) = Favg
(
LsC

)
(8)

Then feature map is excited by a 1 × 1 convolution layer as

scaler = Fch
(
LsC

) ∗ W1×1 (9)

whereW1×1 is the parameters of convolution layer. Finally, the reweighted feature map
can be described as L̃s = scaler � Ls, where � is a channel-wise multiplication.
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3.3 Spatial Attention

The spatial attention module, as shown in Fig. 10, is after the channel-wise attention
module It increases acute pancreatitis lesion response within features, which prompts
the network to focus on the ROIs related to certain kind of acute pancreatitis lesion and
reduce distraction. The compression process is also by global max pooling as

Fsp
(
Ls

) = Fmax
(
LsC

)
(10)

Then the activation process by a 3 × 3 convolution layer can be described as

scaler = Fsp
(
LsC

) ∗ W3×3 (11)

where W3×3 denotes the parameters of convolution layer. Finally, the re-weighted
feature map can be described as L

s = scaler ⊗ Ls where ⊗ is a position-wise
multiplication.

GMP
3*3 Conv

Multiplication

Fig. 10. Spatial attention module

4 Experiment

4.1 Dataset

The proposed method is evaluated on dataset collected by Affiliated Jinling Hospital,
Medical School of Nanjing University. The dataset consists of 5045 CT slices collected
from 45 patients admitted to the hospital who underwent CT imaging, of which 20 had
infected pancreatic necrosis, 11 had acute necrotic collection (ANC), 10 had wall-off
necrosis (WON) and the rest had pancreatic pseudocysts or hemorrhage. All images
were reviewed by experienced specialists. Each patient was scanned from the top of the
diaphragm to the anterior superior iliac spine. For each patient 25–50 consecutive axial
CT images were selected, with slice thicknesses ranging from 6mm to 10mm and slice
size of 512 pixel * 512 pixel. Number of lesions ranges from 1 to 4 in each slice. We
finetune the network from a pre-trained model which is learnt on COCO dataset with
extra data that is not used in later experiment.
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Table 1. Performance comparison of the proposed network and the original one

Methods AP (%) AP0.5(%) AP0.75(%) APl (%) APm (%)

ResNet + Faster RCNN 62.36 87.46 58.08 64.13 71.28

ResNet + Faster RCNN + DAB 65.31 89.27 61.95 68.08 71.64

DA_ResNet + Faster RCNN 64.03 88.08 64.78 65.23 72.49

DA_ResNet + Faster RCNN + DAB 67.97 88.66 69.16 69.98 73.22

4.2 Experiment Result

Mean average precision have been employed for the experimental comparative. As
shown in Table 1, the backbone with dual attention improves performance, and so do
the attentions utilized in detector neck.

4.3 Ablation Study

The dual attention module (denoted as DAB) utilized in detector neck includes spatial
attention (denoted as SP) and channel-wise attention (denoted as CH). We test the per-
formance improvement of different modules, with DA_ResNet as the backbone. The
result is shown in Table 2. The spatial attention can bring about 0.9% improvement in
mAP, and the channel-wise attention can bring about 2%performance improvement. The
spatial attention is relatively insignificant compared with the channel-wise attention. We
speculated that the FPN integrates features of different scales so that the spatial attention
improvement is less apparent. The predictions of models with different configurations
on the same image are shown in Fig. 11. The ground truth is shown in the first line, and
below is the prediction results of 4 models under different configurations. It can be seen
that the model without attention mechanism is misjudged near the large lesion.

Table 2. Performance comparison of different configurations with backbone DA_ResNet

Methods mAP
(%)

AP0.5(%) AP0.75(%) APl (%) APm (%)

origin 64.03 88.08 64.78 65.23 72.49

SP 64.96 88.96 62.43 65.07 70.73

CH 66.06 88.73 63.27 68.10 72.14

DAB 67.97 88.66 69.16 69.98 73.22



248 J. Zhang and D. Zhang

Fig. 11. Visual effect of attention mechanism in the proposed network. a: origin; b: SP; c: CH; d:
DAB

5 Conclusion

Lesion detection for acute pancreatitis is never done before, and most of current detec-
tion architectures are not sufficiently robust to deal with scale variation of all kinds of
acute pancreatitis lesions, resulting inaccurate results. We proposed DA_Det for acute
pancreatitis lesion detection. It has been shown that attention mechanism in both back-
bone and neck facilitates learning more discriminative information. Compared to the
original Faster RCNN, the proposed network obtains more accurate detection results
and has less false positive result.
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Abstract. Osteoarthritis is one of the common joint arthritis that occurs due to the
inflammation of cushion endings of the bone and cartilage wearing. The condition
affects millions of people each year in India especially among the age groups
above 55. Compared to other curatives, knee braces are mostly preferred as they
have many advantages. Knee braces come with a lot of different designs and
functionality which are discussed in this paper. 2D images of the brace will not be
sufficient for the quantitative analysis. In order to analyze the image in rotational
motion, there is a need for the conversion to 3D models and finite element mesh
(FEM) generation. FEM analysis is one of the most widely used methods for
calculating the load and energy distributions of a knee brace. The proposed paper
compares different braces in terms ofQ factor using ordinary differential equations
and Gaussian curves. The curve gives the details about the suspension levels of the
brace when integrated with the joint and concludes the objective analysis of the
knee brace. TheQFactor jointly determines the loading and unloading distribution
of knee brace without the need for individual analysis which makes the process
simpler and easier.

Keywords: Q factor · Triangulated mesh · Osteoarthritis

1 Introduction

Osteoarthritis (OA) is assessed into four stages depending on the amount of cartilage
wear and the amount of pain caused due to inflammation. Though radiographic images
do not help in visualizing cartilage wear, it helps in determining the joint space width
between the thigh and the shin bone (Fig. 1).

1.1 Types of Braces [3, 4]

Prophylactic braces protect the joint from injury, usually when sports are played. They
are used to reduce the valgus and varus stress in the case of OA. Upon wearing the
brace, they provide moderate subjective movement that flexes up to 35°. Cork screw
knee braces are one of the best examples of prophylactic braces where they provide soft
cushion-based protection when athlete crash happens.
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Stage 0                   Stage 1               Stage 2                 Stage 3                 Stage 4

Fig. 1. Radiographic images indicating different stages of OA

Functional or supportive braces support the joint when there is an injured joint. They
stabilize the knee through rotational and anteroposterior forces. The force distribution
across the joint is balanced by a linkagemechanism at the specific clamping point located
a few inches away from the joint. Functional knee braces resemble cast made of fibers
to avoid joint cracks.

Rehabilitative braces help in limiting the extensor and flexor movements of a joint,
giving significant time for the joint to heal. There are mainly used to keep up the join
to a position post-surgery to avoid external disturbances and stress. Their main function
is to compensate for the original functionality of the knee before the injury. These
braces provide only limited extension movement to avoid frequent knee instabilities.
Rehabilitative braces resemble external splints with linear angle to promote stiffness of
the knee.

Unloader or off loader braces are the recommended knee braces for patients with
osteoarthritis. They help in transferring the stress from the affected area to the healthier
area to reduce pain and inflammation. However, since these braces are custom-designed,
it is important to consider the skin properties and walking habits of the user. Some of
the examples of unloader braces are quantum style (provides friction in four rotational
dimensions), free style (provides friction in positions where maximum stress is applied
by the user), linear style (provides friction in the strap or clamped region) and linkage
style (offloaded the pressure by linkage mechanism).

1.2 Finite Element Method

The Finite element method is the procedure of analyzing the 3D models in the form of
their surface mesh for loading and energy distribution calculation by applying certain
boundary conditions. However, they provide only subjective and Qualitative analysis.
FEM is only possible to calculate:

• Calculate points in the stress-strain curve
• Find out the force constants to know the design’s maximum volatility (Table 1).
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Table 1. FEM vs proposed method [3]

FEM limits Proposed solution

A large amount of data is required as input for
the mesh used in terms of nodal connectivity
and other parameters depending on the
problem

A single mesh as a whole is enough to analyze
the whole design instead of large surface
points

It requires a digital computer and fairly
extensive

A free MATLAB version can be used

It requires a longer execution time compared
with FEM

A single code run can produce results for up to
3000 trials

The output results will vary considerably The result comes with RMSE oriented
constants and hence provides reliable output

Only loading properties are determined,
unloading properties are not considered

Loading and unloading characteristics are
plotted as a hysteresis plot

Subjective factors are only considered Objective factors like suspension and reserve
capacity are considered

2 Proposed Solution

2.1 System Architecture

The proposed solution follows a sequence of operations to be followed to achieve the
given output which are divided into two architectural points as shown in Fig. 2. The
detailed steps that are followed in the prerequisite region starting from Hill’s con-
stants determination to mesh generation are described in analysis 1 and the steps fol-
lowed for conducting the analysis and comparison are described in analysis 2 of system
architecture.

2.2 Equations Involved in Analysis

Hill and Limerick were the firsts to model the design mesh using ordinary differential
equations [2]. By solving these equations, we can calculate the FEM parameters for
a given surface mesh. Limerick’s equations were used for low-level models with few
surface points and Hill’s equations is an advanced version equation whose compatibility
can be extended to all types of braces ranging from about 1900 to 5000 surface points.
The equations supporting this theory are

F = kx + ηv

RMSE =
(∑

|Fi,model − Fi, average|
)1/2
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Fig. 2. System architecture 1

By solving the above equations, we get Hill’s constants. In the below equation, the
RE and WE are complements of A and B (Hill’s constants). The density of the surface
mesh is pre imported using a range of values andMATLAB chooses the right one during
run time [5, 6]

RE = ρ.μ.d/μ

WE = ρ.μ.μ.d/σ

To determine the accuracy of interfaced Hill’s parameters with the brace meshes, a
regression plotwasmadeusing the standard brace loadvalues (Fig. 3). The corresponding
ANOVA table was plotted to find out the number of points not following the fixed-line
[7].

Real-time data can be fed theMATLABGUI and compile-time comparison between
various 3D meshes can be done using this algorithm. The proposed idea uses a one-way
ANOVAmechanism (comparesmeasure with standard). Two-wayANOVAmechanisms
are used when unsupervised learning algorithms are used (Compare and Calibrate).

2.3 Generating Models from 2D Mesh

Android offers mobile version AUTOCAD and other 3d Modeling software where 2D
images can be imported or drawn using sketches and converted into 3D models. The
principle behind the conversion is the use of triangulation which considers each matrix
point in the 2D image and plots them in 3D coordinates [1]. The same can be achieved
throughMATLAB.The triangulatedmodel can also be converted into a four-dimensional
model using tetrahedron features. This feature ismainly usedwhen themodel is analyzed
for any internal cracks or defects. The empty lattices in the 3D plot are zero-padded to
achieve conversion accuracy. These 3D models are later converted into meshes using
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Fig. 3. Regression plot. All the points (indicated by crosses) lie on the fixed-line. This proves that
Hill’s models can be as accurate as FEM analysis. X axis indicates load distribution and Y axis
indicates Centroid

online SimScale Software. This method allows easy modeling of 3D designs and their
conversions. Given below is a sample example. Figure 4 shows the Triangulated 3D plot
where the coordinates of the plot represent the 2Dmatrix points. The surface lattice of the
figure (surface plane) is containedwith lower andupper triangles of the diagonal elements
in the 2D image matrix. The 2D discrete image matrix points and its corresponding 3D
triangulation matrix is displayed in Fig. 4 (Tables 2 and 3).

Fig. 4. Triangulation 3D plot

Table 2. 2D input matrix.

2.5 8

6.5 8

2.5 5

6.5 5

1.0 6.5

8.0 6.6

O = [
1 2.5 5.0 2.5 8

]



256 C. Krishnan et al.

Table 3. Connectivity matrix

5 3 1

3 2 1

3 4 2

4 6 2

This matrix is the output matrix called the triangulated matrix. Figures 5, 6 and 7
show the 2D sketch, 3D model and converted 3D mesh, respectively.

Fig. 5. 2D sketch Fig. 6. Converted 3D model Fig. 7. Converted 3D mesh

The analysis is divided into two steps. In the first step, 10 Different meshes from
different brace types [10] are chosen and are operated on the equations to determine the
parameters and plot the gaussian graphs to determine its loading and unloading features.

Table 4. Suspension and force points value

Blob Fmax
N

Fflex
Deg

Fext
Deg

Centroid Suspension
%

Eff/Aff
No
unit

1 2693 18.6 32.5 0.1 73 235

2 1899 17.4 56.6 0.3 74 243

3 2725 19..2 34.7 0.7 71 90

4 1840 12.8 25.8 0.1 75 105

5 2796 19.1 45.7 0.1 65.8 263

6 2564 18.9 34.6 0.2 69 241

7 2648 17.6 43.5 0.67 74 114

It is clear from Table 4 that sample 4 has lower Fmax values compared to other
samples. The threshold values for a good brace depend on the person’s muscle and joint
properties [8, 9]. For analysis purposes, we have considered the mannequin datasets.
The top 6 samples that show similarity with the threshold values are taken for the next
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step analysis where around 3000 trials are conducted on a single run and the error of the
model is determined. The loading and unloading parameters of the braces are plotted
using Gaussian curves (Fig. 8). The peak value of each curve determines the maximum
load point beyond which any mobility events in the brace will lead to unloading (Table
5).

Fig. 8. Gaussian - loading and unloading parameters [X axis indicates pixel strength; Y axis
indicates peak parameters. The estimated value indicates the combined RMSE value of the entire
sample considered]

Table 5. Command window output

Beginning to run lipo3.m

Sample Suspension Reserve
capacity

Q factor

1 17.0 3.0 13.0

2 24.0 63.0 8.0

3 10.0 75.0 6.0

4 40.0 11.00 81.0

5 26.0 82.0 5.0

6 34.0 92.0 12.0
**Q factor: Q factor is a combined term used for
the properties of brace which includes objective and
subjective properties. Involving the Q factor reduces
execution and analysis time [12]. **

3 Discussion

The FEM method and the proposed idea was compared in terms of execution time and
boundary conditions. 3Dmodels were generated from 2D images using triangulation and
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Fig. 9. Error plot of model

tetrahedron principles followed by 3D mesh generation using Simscale. The proposed
method did not use any boundary conditions to test the samples and the execution
time was around 0.24 s for around 3000 trials. The triangulation method provides easy
generation of meshes. Types of commonly used braces were taken as samples and were
compared objectively in terms of 2 Parameters which are as follows.

Subjective: This includes maximum load/force (Load distribution that the brace pro-
vides around the joint), extension, and flexion angles (Angle improvement in users). In
this case, sample 4 showed the least values. Subjective threshold values depend from
brace to brace. For example, rehabilitation braces require low values as they need low
mobility whereas an unloader brace needs higher extension and flexion values.

Objective: This includes Suspension level (Extend up to which the brace interfaces
with the human body), reserve capacity (Minimum customized load barrier parameter
of brace), Q factor (Combined parameter combination), and centroid (Hysteresis peak
value). In this case, linkage-based braces show poor to medial objective accuracy which
is mainly unloader braces.

An accuracymodelwas plotted for 3000 trials and the number of errorswas negligible
compared to the number of trials conducted. The error plot in Fig. 9 shows sparse error
distributions. This is because the proposed idea considers a differentHill’s constant every
time the code runs. The time taken for the compiler to shift from one constant to another
is plotted as an error. This process is called Multi Phasing [13]. However, the regression
plot adds up additional accuracy data making the proposed idea efficient and reliable.
Since the whole methodology uses online versions of software, they are cost-effective
[11].
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Abstract. Radiomics - high-dimensional features extracted from clinical images
- is the main approach used to develop predictive models based on 3D Positron
Emission Tomography (PET) scans of patients suffering from cancer. Radiomics
extraction relies on an accurate segmentation of the tumoral region, which is a
time consuming task subject to inter-observer variability. On the other hand, data
driven approaches such as deep convolutional neural networks (CNN) struggle to
achieve great performances on PET images due to the absence of available large
PET datasets combined to the size of 3D networks. In this paper, we assemble
several public datasets to create a PET dataset large of 2800 scans and propose a
deep learning architecture named “2Be3-Net” associating a 2D feature extractor
to a 3D CNN predictor. First, we take advantage of a 2D pre-trained model to
extract feature maps out of 2D PET slices. Then we apply a 3D CNN on top of
the concatenation of the previously extracted feature maps to compute patient-
wise predictions. Experiments suggest that 2Be3-Net has an improved ability
to exploit spatial information compared to 2D or 3D-only CNN solutions. We
also evaluate our network on the prediction of clinical outcomes of head-and-
neck cancer. The proposed pipeline outperforms PET radiomics approaches on
the prediction of loco-regional recurrences and overall survival. Innovative deep
learning architectures combining a pre-trained network with a 3D CNN could
therefore be a great alternative to traditional CNN and radiomics approaches while
empowering small and medium sized datasets.

Keywords: Deep learning architecture · 2D and 3D convolutional neural
network · PET

1 Introduction

18 F-fluorodeoxyglucose (FDG) in positron emission tomography (PET) enables to
highlight areas with high glucose metabolism, which is characteristic of tumor cells.
PET is often associated with computerized tomography (CT) in a PET-CT exam, a
hybrid imaging modality that allows to correlate metabolic and anatomic information to
improve lesion localisation and characterisation. PET-CT is a useful tool for diagnosis,
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prognosis, staging or re-staging of patients affected by cancer, and has been widely used
in many studies [1–3].

Two main approaches are generally considered to exploit these 3D images. A first
approach consists in the extraction of radiomics [4], defined as high-dimensional imag-
ing features extracted from a segmented region of interest (ROI): the tumor. Radiomics
features allow to quantitatively describe a tumor and can be divided into 4 groups:
tumor shape, intensity, texture, and statistical features extracted after applying filters
or mathematical transformations to the image. Radiomics can lead to the discovery of
new quantitative bio-markers. Standardized Uptake Value (SUV) is a common metric
describing tumor uptake normalized to the injected dose of FDG and patient’s body
weight. SUV is used in clinical routine and is a precious indicator to differentiate benign
from malignant tumors and provides important prognostic and diagnostic information
[5–8]. Several studies [9–11] illustrate the interest of using radiomics for applications
such as prognosis, non-invasive disease tracking, treatment response or clinical outcome
prediction tasks.Despite their good performances, radiomics robustness and replicability
is questioned [12]. One of the most limiting points is linked to the difficulty of produc-
ing standardised images prior to radiomic extraction. In addition, tumor segmentation,
a requirement for radiomics extraction, remains a complicated task. This step, either
done manually or by a semi-automatic algorithm, introduces biases and raises several
issues related to the experience reproducibility, its consistency and therefore hinders
their deployment in clinical routine.

The second main approach consists in the use of convolutional neural networks that
recently demonstrated great performances on vision tasks such as image classification,
semantic segmentation or object detection. A major contribution to this success relies
on the massive amount of training data with detailed and accurate annotations. Natural
images models often rely on a transfer from large datasets such as the ImageNet dataset
[13]. However, due to data sensitivity, it remains extremely challenging to build large
datasets in the medical imaging domain. As a consequence, no large PET dataset has
been made available so far.

Different CNN methods were applied on PET images. Because of the 3D nature of
PET images, 3D CNN are logic architectures fitting PET scans dimensionality. How-
ever, the use of 3D convolutions implies an increased number of parameters and therefore
requires large sets to be trained, where a training example corresponds to a scan. The
limited size of PET datasets increases 3D CNN tendency to overfitting and degrades
their performances. Studies applying 3D CNN on PET images therefore rely on con-
sequent data augmentation to improve their model robustness [14, 15]. Other solutions
reformulated the problem in 2D enabling the exploitation of pre-trained models or the
use of lighter 2D CNN [16–18]. However, using 2D models also implies losing rich
3D spatial information, which results in sub-optimal performances. Some publications
[19–21] illustrated that pre-training some of the network layers can help to accelerate
training, convergence speed and increase the accuracy of the target model. Zhou [22]
trained a shared 3D encoder associated with 8 decoding branches to segment different
organs. Then they used the encoder as a backbone architecture to the classification of
pulmonary nodules. Clark [23] trained several auto encoders (AE), each specific to an
image modality (MRI, CT, X-ray). Training was done through image restoration which
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allowed the AEs to learn on unlabeled data specific information in the image such as
appearance, texture or context. They transferred the learned AE on several tasks as brain
tumor segmentation or nodule classification and illustrated an improvement in perfor-
mances. They also demonstrated that their 3D models outperform their 2D versions,
confirming the importance of 3D spatial information.

As illustrated by these recent works, traditional CNN approaches either 2D or 3D
have both advantages and inconveniences. We decided to take advantage of their assets
by combining a 2D pre-trained feature extractor with a predictive model such as a 3D
CNN. Such a combination hasn’t been studied much yet and could result in a more
stable network than a complete 3D CNN. Moreover, we justify the use of a 2D pre-
trained network by the information learned on millions of images, where an equivalent
training from scratch on a PET dataset would not have been possible. The contributions
of this work are summarized as follows:

• We introduce an innovative deep neural network entitled “2Be3-Net” combining a 2D
pre-trained model to a 3D CNN

• We illustrated through predicting patient gender that the proposed pipeline integrates
an increased ability to exploit spatial information compared to traditional CNN

• We evaluated the proposed architecture on the prediction of several clinical outcomes
of the head-neck cancer and illustrated that it achieves superior performances on two
out of the three tasks compared to PET radiomics.

2 Method

We propose an architecture entitled “2Be3-Net”, described in Fig. 1, that enables
exploitation of raw 3D PET scans by associating a 2D feature extractor to a 3D CNN
predictor. K randomly (but ordered) slices are sampled out of the 3D PET image to form
a batch of k 2D input images. A 2D feature extractor is applied on each slice indepen-
dently, resulting in k groups of 2D features maps. A concatenation layer is used to create
one group of 3D features maps that are fed to a 3D classifier to get the final prediction.

The feature extractor is a pre-trained 2D model that extracts feature maps out of
2D PET slices. We choose to use a ResNet-50 [24] pre-trained on the ImageNet dataset
[13]. As the network is trained with 3 channels RGB images, we transform each PET
slice into a gray scale image with 3 channels. Deep neural networks are known to learn
hierarchical features, going from textural features in the network first layers to semantic
features in the last layers. We believe that the textural features learned by an ImageNet
pretrained network are useful for PET scan images but that the gap between PET scans
and natural images is too high for the semantic features to be useful. Knowing that, we
decided to keep only the 5 first layers of the pretrained network and, because of our
small amount of data, decided to freeze these layers instead of finetuning them.

We concatenate the feature maps extracted from each slice and apply a predictive
model, whose objective is to correlate the spatial and metabolic available information
to compute patient-wise predictions. The predictive model is a typical framework of a
CNN that applies three 3D convolutional blocks to reduce feature map size, followed by
fully connected (FC) layers to realize the prediction.
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PET scans have variable resolutions and numbers of slices. We considered these
constraints as opportunities to do data augmentation.We randomly select a fixed number
of slices and crop them. Random slice selection ensures that the network can’t rely
on specific slices in the scan, which further increases its robustness, while cropping
decreases the size of the feature maps outputted by the feature extractor.

Fig. 1. 2Be3-Net global pipeline

3 Experiments

3.1 Experimental Setup

Studies applying CNN models on medical images often train and evaluate their models
on small datasets. In this work, we collected and assembled 10 public datasets available
in The Cancer Imaging Archive [25–35]. These datasets contain images from different
modalities, pathologies and centers, which implies a large variety of data characteristics,
spatial resolution, range of pixel intensities and acquisition protocols. We selected PET
with attenuated correction (AC) scans and normalized raw pixel values to SUV scale
using the definition1 provided by theQuantitative ImagingBiomarkers Alliance (QIBA).
Scans containing SUV outliers were dropped before conversion to NIFTI format, result-
ing in a PET dataset containing 2834 scans. We split this dataset in two to create two
sub-datasets for specific tasks: gender and clinical outcomes prediction (loco-regional
recurrences (LR), distant metastases (DM) and overall survival (OS)). The clinical out-
comes dataset is included in the gender dataset, but no overlapping exists between the
validation set of the clinical outcomes dataset and the gender training set.

The number of input slices is set to k = 66 as it corresponds to the number of slices
of the smallest scan. We also chose a resolution of 90 × 90 pixels per slice. To match
this resolution, we crop the slices at their center. Finally, we apply random flip and
rotation (−10°, +10°) as data augmentation. Models were implemented in Python 3.7
and Pytorch 1.6 [36]. Experiments were conducted on a Ubuntu 18.04 system equipped
with a Nvidia GeForce GTX 1070 with 8 Gb GPU memory and CUDA 11.0.

1 https://qibawiki.rsna.org/index.php/Standardized_Uptake_Value_(SUV).

https://qibawiki.rsna.org/index.php/Standardized_Uptake_Value_(SUV
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3.2 Experiment 1: Ability to Exploit Spatial Information

We compare 2Be3-Net capacity to exploit spatial information with a 2D and a 3D CNN.
The 2D model is the 2D version of 2Be3-Net, where we replace the 3D blocks by their
2D alternative. The feature maps outputted by the ResNet-50 are provided as input to the
2D blocks and are flattened before applying FC layers. The full 3D CNN is composed of
four 3D convolutional blocks similar to the ones of 2Be3-Net, followed by 2 FC layers.
Batch size is set to 6, due to limited GPU memory.

In order to evaluate their capacity to exploit spatial information, we predict patient
gender based on transverse slices. As transverse slices don’t provide a whole body
visualization, models should exploit the spatial information contained in the feature
maps to compute predictions. The gender dataset used in this experiment contains 2459
scans in the training set and 377 in the validation set. The dataset is also imbalanced,
as 77.2% of patients are men. We address this issue by using a weighted binary cross-
entropy loss associated with Adam optimizer with an initial learning rate of 1e−5 and a
weight decay of 1e−2. We evaluate models’ performances with the area under the curve
(AUC) of receiver characteristic operator (ROC) associated with sensitivity (SENS),
specificity (SPEC) and accuracy (ACC). Experimental results are displayed in Table
1. The experiment shows that 2Be3-Net achieved a better result than the 2D version,
showing the importance of taking into account the 3D spatial information while the full
3D CNN struggles in this task.

Table 1. Results of experiment 1

Metric AUC ACC Sensitivity Specificity

2Be3-Net 0.94 0.92 0.91 0.97

ResNet +
Conv 2d

0.92 0.91 0.90 0.93

3D CNN 0.7 0.75 0.79 0.61

3.3 Experiment 2: Prediction of Clinical Outcomes

We compare the CNNmodels previously described to the radiomics approach developed
by Vallières [37] on the prediction of clinical outcomes of head-and-neck cancer. To ease
comparisons, we compare our results with 2 of their models. The PET radiomics model
applies a logistic regression on different variables specific to each outcome. The best
radiomics model uses random forests to combine PET and/or CT radiomics to clinical
data. On the other side, we decline the 2Be3-Net in two versions. The first version
entitled 2Be3-Net-[WS] takes as input 66 slices randomly selected in the whole scan.
The second version, named 2Be3-Net-[H&N], takes as input 66 slices extracted from
the head-neck region, following the intuition that this area is more inclined to contain
relevant information for these tasks. As a pre-training, we use the weights of the models
trained on gender prediction to initialize CNN models weights.
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The clinical outcomes dataset used follows the dataset [37], at the difference of 9
patients (5 in the training set and 4 in the validation set), excluded due to image errors,
initial data curation error (detected by TCIA) or missing information to calculate SUV.
The resulting dataset contains 187 scans in the training set and 102 in the validation set.
This dataset presents a pronounced class imbalance (LR: 14.6%, DM: 13.6% and OS:
18.4%). We apply the same strategy as experiment 1 to address this issue. Same data
augmentation as before is applied to improve network robustness. Experiment results
displayed in Table 2 show that both versions of 2Be3-Net outperforms the PET radiomics
for LR and OS predictions, but achieves inferior performances in DM prediction.

Table 2. Clinical outcomes prediction results

Metric ResNet +
Conv2D

3D CNN 2Be3-Net
[WS]

2Be3-Net
[H&N]

PET
radiomics
[41]

Best
radiomics
model [41]

LR ACC 0.58 0.83 0.6 0.73 0.67 0.67

AUC 0.64 0.69 0.68 0.72 0.53 0.69

SENS 0.71 0.5 0.79 0.71 0.38 0.63

SPEC 0.56 0.89 0.57 0.73 0.7 0.68

DM ACC 0.70 0.71 0.68 0.76 0.68 0.77

AUC 0.67 0.71 0.78 0.71 0.8 0.86

SENS 0.64 0.71 0.93 0.64 0.85 0.86

SPEC 0.71 0.71 0.64 0.77 0.66 0.76

OS ACC 0.75 0.68 0.71 0.71 0.64 0.62

AUC 0.72 0.65 0.76 0.74 0.62 0.74

SENS 0.68 0.59 0.86 0.79 0.58 0.79

SPEC 0.76 0.7 0.66 0.69 0.66 0.57

4 Discussion

We first evaluated 2Be3-Net capacity to exploit spatial information through predicting
patient gender based on transverse PET slices. The proposed pipeline achieves a 0.94
AUC, achieving the best score on this task. We attribute this performance to the 3D
convolutional blocks that exploited the spatial information contained in the concatenated
feature maps. In the ResNet + Conv 2D model, the 3D convolutional blocks were
replaced by 2D convolutional blocks, which prevented the exploitation of feature maps
spatial information. By contrast, we attribute the full 3D CNN poor results to it’s deep
architecture and it’s training from scratch, wheremore training samples would have been
required to improve its results.

We studied the gender predictions made by our CNN and found that 70% of mis-
predicted scans in the validation set have less than 180 slices. These scans only cover
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the body upper region and represent 25.2% of the total dataset size. As the whole body
cannot be visualised on these scans, it is difficult for models to identify the gender and
therefore are more prone to mispredictions.

We predicted different clinical outcomes of head-neck cancer (LR, DM, OS), and
compared the deep learning models to a radiomics approach. CNN models took advan-
tageof a pre-trainingongender prediction,which improved their performances compared
to training from scratch. In this experiment, all deep learning models achieved better
results than PET radiomics on LR and OS predictions. We also note that both versions
of 2Be3-Net achieved at least equivalent AUC and improved sensitivity compared to the
best radiomics model. These results seem promising as the best radiomics model com-
bined information from PET-CT scans associated with clinical data while our models
only had access to the PET scan. The improved sensitivity implies that the proposed
2Be3-Net correctly identified more examples of the minority class than the radiomics
models. It is also important to note that specificity wasn’t compromised while sensitivity
increased. We also note that 2Be3-Net-[H&N] presents results more stable compared to
2Be3-Net-[WS] as the gap between sensitivity and specificity decreased. This difference
can be attributed to the slice selection area, where 2Be3-Net-[H&N] used slices selected
in the head-neck region, and was therefore able to focus on tumor related information.
However, CNN models achieved inferior results on DM prediction compared to the
radiomics models. The radiomics models were specific to each outcome, and reached
their best score on DM prediction. Thus, we attribute radiomics superior results on DM
prediction to the specific design of the radiomics DM model. On the other hand, both
2Be3-Net versions were designed to predict all clinical outcomes and achieved stable
results on those.

In the light of these experimental results, alternative deep learning architectures
seem promising alternatives to radiomics and CNN approaches. The proposed 2Be3-
Net accepts as input 3D PET scans with SUV conversion as the only preprocessing step,
and is able to predict clinical outcomes of head-neck cancer from a training done on a
small size dataset.

5 Conclusion

This paper introduces 2Be3-Net, a new architecture allowing direct exploitation of 3D
PET scans through the association of a 2D pre-trained network with a 3D CNN, which
enables exploitation of spatial information between the feature maps extracted.We com-
pared 2Be3-Net to a traditional 2D CNN, a 3D CNN and a radiomics approach on the
prediction of clinical outcomes of head-neck cancer. Experiments illustrated that the pro-
posed architecture is a good alternative to classicCNNmodels and radiomics approaches.
Moreover, it accepts as input entire PET scans requiring few preprocessing steps.

We used a ResNet-50 pre-trained on natural images as a feature extractor. Future
works could focus on using a model pre-trained on PET images. In this matter, auto-
encoder architectures seem promising as they can be trained in an unsupervised manner,
which solves the requirement of large annotated datasets and could further improve the
relevance and quality of the feature maps extracted.
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Abstract. The coronavirus disease 2019 (COVID-19) is a fast trans-
mitting virus spreading throughout the world and causing a pandemic.
Early detection of the disease is crucial in preventing the rapid propa-
gation of the virus. Although Computed Tomography (CT) technology
is not considered to be a reliable first-line diagnostic tool, it does have
the potential to detect the disease. While several high performing deep
learning networks have been proposed for the automated detection of
the virus using CT images, deep networks lack the explainability, clear-
ness, and simplicity of other machine learning methods. Sparse repre-
sentation is an effective tool in image processing tasks with an efficient
algorithm for implementation. In addition, the output sparse domain
can be easily mapped to the original input signal domain, thus the fea-
tures provide information about the signal in the original domain. This
work utilizes two sparse coding algorithms, frozen dictionary learning,
and label-consistent k-means singular value decomposition (LC-KSVD),
to help classify Covid-19 CT lung images. A framework for image sparse
coding, dictionary learning, and classifier learning is proposed and an
accuracy of 89% is achieved on the cleaned CC-CCII CT lung image
dataset.

Keywords: COVID-19 · CT image · Sparse coding · KSVD · Frozen
dictionary · LC-KSVD

1 Introduction

1The coronavirus disease 2019 (COVID-19) is a fast transmitting virus spreading
throughout the world and causing a pandemic [1]. Early detection of the disease
is crucial in preventing the rapid propagation of the virus. As of now, authorized
assays for viral testing include those that detect SARS-CoV-2 nucleic acid or
antigen [2]. However, due to the high demand and lack of onsite testing, the
turnout time for the test results have increased [3].

1 CAUTION: This work should not be used as a diagnostic method for any disease
without the proper approval of a licensed medical practitioner.
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Computed Tomography (CT) technology is not considered to be a reliable
first-line diagnostic or screening tool for COVID-19 due to lack of specificity,
risk of spreading, and resource management [4–6]. However, CT images of the
chest are useful in symptomatic, suspected, or high-risk cases where real-time
reverse transcription-polymerase chain reaction (RT-PCR) testing is unavailable,
delayed, or negative. As such, CT technology has the potential to be used as a
diagnostic tool for the detection of the disease [7–9].

Several deep learning networks have been proposed for the automated detec-
tion of the virus using CT images [10–12]. While deep learning may be success-
ful in classification, deep networks lack the transparency and simplicity of other
machine learning (ML) methods [13]. Recent developments in sparse representa-
tions algorithms in the field of image processing provides the user with efficient
algorithms that easily relate the sparse output to the original input feature space
[14]. Sparse coding has been proposed for the use of CT image de-noising in [15]
where the authors have implemented a patch-based parallel algorithm for fast
execution.

In this article, we are proposing a patch-based sparse coding framework that
uses the statistics of the dictionary atom utilization for classifier learning. The
framework is applied to the cleaned CC-CCII dataset [16,17] for the classification
of lung CT scan images. We employ two sparse coding algorithms—frozen dic-
tionary learning [18] and label-consistent k-means singular value decomposition
(LC-KSVD) [19]—in a complementary manner to learn a more descriptive dictio-
nary. The final dictionary is composed by augmenting two separate dictionaries
learned using the frozen dictionary and LC-KSVD algorithms. Frozen dictionary
learns the expertly identified [16] lung CT image features in a hierarchical order.
These features are ground-glass opacity (GGO) and consolidations (CO) [20].
LC-KSVD learns a discriminative dictionary according to class labels and clas-
sification error. By combining these properties we hope to achieve an effective
representation for classification tasks between the classes common pneumonia
(CP), novel coronavirus pneumonia (NCP), and Normal CT scans.

2 Data Set

The lack of publicly available CT scan data sets and standards are some of
the main obstacles in developing a robust framework [21]. However, CT image
relating to COVID-19 reporting standards are published by [22] and categorical
CT assessment guidelines are published by [23]. Some of the popular publicly
available datasets are Covid-CT dataset [24], China Consortium of Chest CT
Image Investigation (CC-CCII) dataset [16], and COVID-19 Image Data Col-
lection [25,26]. Full comparisons of the datasets can be found in [11,12,27].
Since datasets like Covid-CT dataset and COVID-19 Image Data Collection
have curated the images by collecting data from previously published works,
websites, and papers, the image quality has deteriorated and lacks full metadata
supporting the images [6]. Hence, they hinder the ability of ML algorithms to be
more standardized. However, authors of the COVID-CT dataset argue that even
with low-resolution images, radiologists can distinguish features proficiently [24].
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For this paper we will be using a subset of (CC-CCII) dataset2 [16] as it
contains a large collection of high-quality images with the sources. The dataset
consists of three class labeled CT images belonging to novel coronavirus pneumo-
nia (NCP) due to SARS-CoV-2 virus infection, common pneumonia (CP), and
normal (NORMAL) controls. Additionally, 750 CT image slices were manually
segmented by experts into the background, lung field (LF), ground-glass opacity
(GGO), and consolidations (CO). This manual segmentation information can be
utilized to learn specific features.

We will be utilizing the dataset pre-processing done by [17] with the CC-CCII
dataset. He et al. have manually filtered/cleaned out the dataset to remove the
corrupted, duplicated, out-of-order, and mismatched formats of the images. They
have finally selected a subset of the images according to Table 1.

Table 1. Cleaned CC-CCII dataset [17]

Classes #Patients #Scans

Train Test Train Test

NCP 726 190 1,213 302

CP 778 186 1,210 303

Normal 660 158 772 193

Total 2,164 534 3,195 798

Since the CC-CCII dataset consists of lung segmented and non-segmented
scan images, He et al. have used a K-means-based, openly available3 method
to segment the lung area from the background for all the images to achieve
consistency. In this paper, we will be using this segmented and cleaned CC-CCII
image dataset4. At the moment the He et al. work has not yet been peer-reviewed,
and therefore there are no other independent works on this dataset. However,
we observed that a well formatted publicly available dataset is beneficial in
developing and testing of new frameworks for diagnosis.

He et al. have applied transfer learning with some popular pre-trained net-
works (ResNet, DenseNet, etc.) and also proposed a CNN based mixup data
augmented deep learning model called, MNas3DNet41 which was able to gain
an accuracy of 87.14% [17]. They have carried out slice sampling and slice pro-
cessing to conform to the input standards of pre-trained networks. In the slice
sampling stage, the number of slices per scan was kept consistent. In the slice
sampling stage, the image resolutions were decreased and then cropped to a size
of 128 × 128. Both 2d and 3d pre-trained models were evaluated on the dataset.

Our method does not resize the image as we are considering small size image
patches. Since we are discarding the empty patches from the lung segmented
2 http://ncov-ai.big.ac.cn/download?lang=en.
3 https://github.com/booz-allen-hamilton/DSB3Tutorial.
4 https://github.com/arthursdays/HKBU HPML COVID-19.

http://ncov-ai.big.ac.cn/download?lang=en
https://github.com/booz-allen-hamilton/DSB3Tutorial
https://github.com/arthursdays/HKBU_HPML_COVID-19
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images, the increase in computational requirements is minimal. Also, we are
evaluating the presence of disease slice-by-slice as a 2d greyscale image. Even
though this might not be able to identify 3d lesion features, we are hoping that
2d features will be sufficient for satisfactory results. However, we can expand
the proposed method to cater to 3d image processing also without any major
modifications.

3 Sparse Representation

There has been a growing interest in the search for sparse representations of
signals in recent years. In the field of computer vision it can be reasonably
assumed that image patches do not populate or sample the whole input domain
[28]. Sparse coding is a representation learning method which aims to find a
sparse representation of an n dimensional input signal yi ∈ R

n in the form of
a sparse linear combination, such that the reconstructed data is ỹi = αi,1d1 +
αi,2d2+...+αi,KdK . Where αi ∈ R

K is the the sparse vector and di ∈ R
n are the

dictionary elements (atoms) of a Dictionary D. Sparse representation algorithms
optimize (1) with a l0 regularization term:

argmin
D,α

||Y − Dα||22 s.t. ∀i, ||αi||0 ≤ S, (1)

where Y = [y1, y2, .., yN ] ∈ R
n×N denotes the N number of input signals, D =

[d1, d2, ..., dK ] ∈ R
n×K is the learned dictionary of size K, α = [α1, α2, ..., αN ] ∈

R
K×N is the sparse representation of the input signal, and S is the sparsity

constraint of αi (maximum number of non-zero elements). Usually K > n, in
which case the dictionary is called over-complete. If K = n the dictionary is
called complete and if K < n it is called under-complete.

Equation (1) can be solved by alternating between the following two stages.
First, sparse coding is to calculate α with a fixed over-complete dictionary D.
Second, dictionary learning is performed to update D with a fixed α. K-means
Singular Value Decomposition (K-SVD) [14,29] has emerged as an effective and
popular algorithm for sparse representation tasks. K-SVD first initializes a ran-
dom dictionary. It then alternates between the two stages by utilizing Orthogonal
Matching Pursuit (OMP) [30,31] for the sparse coding and generalized k-means
with Singular Value Decomposition (SVD) for the dictionary update. K-SVD
efficiently learns an over-complete dictionary and has been effectively utilized
for tasks including de-noising, restoration, and classification.

For classification tasks, in order to improve the performance a more discrim-
inatory representation is required. Jiang et al. [19,32] have presented a Label
Consistent K-SVD (LC-KSVD) algorithm as an extension of the K-SVD frame-
work, which is a supervised learning algorithm to learn a compact and discrim-
inative dictionary. In LC-KSVD, class-specific dictionary elements are trained
separately as an initialization and then combined to learn a discriminative dic-
tionary. A label consistent constraint called “discriminative sparse-code error”,
reconstruction error and classification error terms are combined to structure a
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unified objective function to optimize the discriminated dictionary. Due to the
class constraints in the sparse coding and dictionary update stages, the input
data will forced to be mapped to the dedicated dictionary atoms according to
the label information. Consequently in the sparse dictionary domain, a majority
of the input signals will be projected to a subspace belonging to a certain class.
Hence, a lower order classifier can be trained for the classification.

Traditional dictionary learning models do not take into account the class
imbalances of the training data. Hence the dictionary atoms can be biased
towards the larger class. The segmented lung CT scan training images have con-
sisted mainly of lung field (LF) class patches and the rare occurrences abnormali-
ties (GGO and CO) image patches. Therefore to address the class imbalances and
the structure, a separate dictionary learning algorithm is also employed. Frozen
dictionary learning modifies the dictionary learning process as a hierarchical
structure to learn a dictionary that can effectively model imbalanced datasets
[18]. In this algorithm, first, the dictionary learning step is carried out using
the K-SVD algorithm on “normal” (LF) training data. Then the learned dictio-
nary elements are frozen (held constant) and the dictionary is augmented with
additional elements by dictionary elements is trained again on image patches
containing abnormalities (GGO and CO). This process is repeated for all the
remaining classes, by keeping the previously learned dictionaries frozen. The
frozen elements of the dictionary represent the “normal” aspects of the data,
hence the new elements (non-frozen) learn to represent the anomalous aspects
of the data that are not present in the “normal” data. The frozen dictionary
approach could be generally used and applied to the problems including data
with or without abnormalities.

4 Methodology

Figure 1 gives a visual overview of the full framework presented in this paper.
First, 750 images from 150 patients (manually segmented by experts) were
divided into patches of size p × p with an overlap of 0.3p. Then the patches con-
taining lung field (LF), ground-glass opacity (GGO), and consolidations (CO)
are extracted if the patch contains at least 25% of the region of interest. The
patch sizes (p = 24) were chosen such that sufficient spatial features of the GGO
and CO are captured within a patch. Extracting overlapping patches will ensure
that the feature locations are distributed across the patches for more general-
ity. Next, these patches were used to train the frozen dictionary atoms of the
dictionary. In the dictionary training, sparsity shall be kept to a minimum with
low reconstruction error. The dictionary composition for each section is chosen
to roughly represent the distribution of each segment (LF: 250, GGO: 150, CO:
100). The frozen dictionary is trained in the order of LF, GGO and CO while
keeping the previously learned dictionary frozen and then augmenting.

After learning the frozen dictionary, all the lung segmented images are re-
divided into the same sized patches as above. The patches which overwhelmingly
contain only the background are discarded. This drastically reduces the computa-
tional cost. Since GGO and CO are not specific enough for detecting COVID-19,
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Fig. 1. Framework

LC-KSVD is used to automatically learn any underlying features which could
differentiate the class labels. A random portion (∼10%) of the lung-segmented
cleaned CC-CCII train dataset is divided into the same sized (p = 24) patches
as above. These patches are used to learn the LC-KSVD dictionary as the same
size(∼500) as a frozen dictionary. Parameters for the LC-KSVD training are
chosen such that it would have a higher discriminating power even with a high
reconstruction error.

Fig. 2. Dictionary composition. The top row describes the dictionary composition.
The second row shows dictionary elements learned from frozen dictionary learning and
LC-KSVD.
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Then the two sets of dictionary atoms, frozen and LC-KSVD are appended to
construct one discriminative dictionary. In the sparse coding stage, the param-
eters are set such that the reconstruction error will be minimal with sparsity
S = 20. Hence the OMP algorithm will likely find a solution from both sets of
dictionary atoms. The learned dictionary atom samples and the composition is
shown in Fig. 2. The dictionary elements associated with each type of lung tissue
or disease are visually distinct, indicating that dictionary learning produced a
highly discriminative feature space.

The remainder of the training, validation, and testing sets are all subjected
to patch-based sparse coding via the OMP algorithm. Then the dictionary uti-
lization statistics of patches for each slice image is calculated. Statistics calcu-
lated are mean, variance, and non-zero count of the sparse coefficients per each
patient scan. Since our dictionary is divided according to the class labels and
features, these statistics are used to learn the classifier. Furthermore, since we
have an over-representation based sparse coding the resulting statistics will also
be sparse, hence justifying the use of a lower order classifier. The statistics of the
coefficients will be normalized before classifier learning. Normalization is done
by dividing each statistic of each dictionary segment by the segment’s absolute
maximum parameter value to preserve the sparsity of the coefficients. Finally, a
Support Vector Machine (SVM) optimized classifier is trained using MATLAB
classifier learner.

5 Results and Conclusion

When the learned dictionaries are examined, it can be observed that the frozen
dictionary learning has learned distinct dictionaries for each lung feature as seen
in Fig. 2. The LF features are composed of more lung structural elements and
more detailed lesion structures are leaned for GGO and CO respectively. How-
ever, in LC-KSVD, the dictionary does not seem to have a clear distinction
between the CP and NCP classes. This could be explained because, in the train-
ing process, whole image slices were used with labeled as CP or NCP, whereas
very few image patches contain the lung lesion features. Also, sometimes both
CP and NCP exhibit the same features in the CT scans, hence the lack of speci-
ficity. Since the two dictionaries are complimentary, this is somewhat mitigated.
Furthermore, in both cases the dictionary atoms are in the same domain as the
input image patches, so the model performance is much more intuitive than a
deep network. Therefore, with learned dictionary atoms, we can identify promi-
nent features underlying the system.

For the classification results as shown in Fig. 3, considering two classes, NCP
and Non-NCP (CP and Normal), our method yields an accuracy of 89% with
an F1 measure of 0.859, precision of 0.8413, recall of 0.8775 with a cubic SVM
classifier. This compares favorably to Table VII of He et al. [17], where the
highest accuracy is 87.83% with an F1 score of 0.8604 when using ResNet3D34
out of a variety pre-trained Neural networks. In our method, by introducing a
misclassification cost matrix, the F1 score can be slightly improved with the
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expense of accuracy. For three-class classification, we achieved an accuracy of
82.6%. Our model produces results that are on par with deep networks [17]
while also providing an intuitive relationship between classifier and features.

Fig. 3. Confusion matrix for classification results. (a) Two class: NCP and other (CP
and normal) (b) Three class: CP, NCP and normal.

This work does not take into account the patient metadata provided with
the dataset. These data could provide additional information regarding disease
progression and severity. One of the assumptions in our work is that image acqui-
sition is performed uniformly with compatible intensity and resolution. However
this may not be the practical case and further tests should be carried out to
determine the robustness of the learned dictionary elements and the classifiers
during the presence of variations in resolution, noise, and intensities. Further, it
would be beneficial to improve the system to output the results according to the
CO-RADS guidelines [23].

Here we have presented a patch-based end-to-end framework for the uti-
lization of sparse representation for the detection of COVID-19 through lung
CT scans. Although the CT scan should not be used as a diagnostic model at
present, the development of robust frameworks will be beneficial in understand-
ing the disease diagnostics and fast deployment in future pandemics. As per
future work, we plan to develop a 3d sparse representation model to learn 3d
spatial features following the industry standards. Also, a parallel computational
pipeline would improve the computational time. Further, this framework can
be applied to other Covid-19 CT lung image data sets and the effects of other
hyper-parameters should be further investigated.
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Abstract. Classification of brain tumors from Magnetic Resonance Images
(MRIs) using Computer-Aided Diagnosis (CAD) has faced some major chal-
lenges. Diagnosis of brain tumors such as glioma, meningioma, and pituitary
mostly rely on manual evaluation by neuro-radiologists and is prone to human
error and subjectivity. In recent years, Machine Learning (ML) techniques have
been used to improve the accuracy of tumor diagnosiswith the expense of intensive
pre-processing and computational cost. Therefore, this work proposed a hybrid
Convolutional Neural Network (CNN) (i.e., AlexNet followed by SqueezeNet)
to extract quality tumor biomarkers for better performance of the CAD system
using brain tumor MRI’s. The features extracted using AlexNet and SqueezeNet
are fused to preserve the most important biomarkers in a computationally effi-
cient manner. A total of 3064 brain tumors (708 Meningioma, 1426 Glioma, and
930 Pituitaries) MRIs have been experimented. The proposed model is evaluated
using several well-known metrics, i.e., Overall accuracy (94%), Precision (92%),
Recall (95%), and F1 score (93%) and outperformed many state of the art hybrid
methods.

Keywords: Hybrid model · Ensemble learning · Brain tumor · Classification

1 Introduction

Brain tumors are the second most fatal medical emergency after Alzheimer’s and they
are found in every age group [19]. The mass of abnormal cells formed inside the brain
is considered as tumor and generally, there are many types of brain tumors, in which,
Glioma (also known as “Intra-axial”) is the most aggressive one [20]. Glioma is found in
brain cells such as ependymal, glial, and astrocytes and is likely to be spread inside the
brain. Pituitary tumors are adenomas, which usually appear between the hypothalamus
and the pineal gland. Meningioma are benign intracranial tumors that cover the brain
and spinal cord [2].
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Brain tumor patients suffer serious headaches, fits, eye-sight loss, stress, depression,
and death in extreme cases [9]. Classification of the above mentioned tumors mostly
relies on advanced medical imaging such as Computed Tomography (CT) and Magnetic
Resonance (MR) imaging. CT is predominant in dealing with the medical emergency
of bones, and chest based assessments whereas, MR Imaging (MRIs) is to asses’ brain
tumors. Manual identification of tumor through MRIs is highly dependent on the expe-
rience of radiologists and neurologists, which are subject due to manual operation and
limited capacity to use the previous knowledge based on thousands of MRIs [19].

Automated image recognition through computer vision and machine learning tech-
niques have proven the potential in the identification and classification of brain tumors
using T1/MRIs [5]. MR images have also been used by segmentation methods such as
histogram of gradient (HoG), scale-invariant feature (SIFT) and Local binary patterns
(LBP) followed by supervised learning algorithms such as Support Vector Machine
(SVM),K-NearestNeighbour (KNN),LinearRegression (LR), and clustering techniques
[3].

For instance, Cheng et al. [6] proposed a study on brain tumor classification of
glioma, meningioma, and pituitary abnormal cells. In Cheng’s work, a total of 3064 T1-
weighted Contrast-Enhanced MRI (CE-MRI) were used for classification using gray
level co-occurrence matrix (GLCM), histogram intensities, and bag-of-words (BoW) to
extract Region of Interest (RoI) as feature vectors and later fed to SVM,KNN, and, sparse
representation-based classification (SRC). This method achieved an overall accuracy of
82.31% (histogram intensities), 84.75% (GLCM), and 88.19% (BoW). In another work,
Cheng et al. [7] used fisher vector method to achieve higher precision of 94.62% on
the similar data. Amin et al. [1], discussed automatic detection of high grade and low
grade glioma and ischemic stroke lesions through an unsupervised clustering approach
for tumor segmentation. Several conventional feature extraction methods (such as Gabor
wavelet features (GWF), Histograms of Oriented Gradient (HOG), Local Binary Pattern
(LBP), and Segmentation-based Fractal Texture Analysis (SFTA) features) were fused
to perform the classification through RF classifier.

However, traditional machine learning algorithms with T1 images require more
processing (i.e., data augmentation, image segmentation, Region of interest selection),
which decreases the effectiveness of classification and increases the computational cost
[21]. Irrespective of these techniques, deep learning provides more accurate results for
classification of tumor biomarkers [10]. For instance, Paul et al. [17], used Convolution
Neural Network (CNN) to classify Glioma, Meningioma, and Pituitary brain tumors and
achieved an overall accuracy of 91.43%. Pashaei et al. [16] proposed a study of CNN
with Extreme Learning Machines (ELM) by using the same tumor data and achieved an
overall accuracy of 93.68%.

Later in 2019, Deepak et. al., [8] proposed a study to use transfer learning with the
GoogleNet model to classify Glioma, Meningioma, and Pituitary brain tumor with an
overall accuracy of 92.3%. Similarly, Rehman et al. [18] proposed a transfer learning
approach by studying AlexNet, GoogLeNet, and VGGNet architecture that achieved
an overall accuracy of 98.69% through VGGNet-16. Ghosal et al. [11] proposed an
ensemble learning approach by ResNet-101 and SqueezeNet architectures that achieved
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an overall accuracy of 89.93% for real tumors data and increased by 3.9% by using the
augmentation techniques i.e., flipping, rotate and degree transformation.

However, the above-mentioned studies consume a large number of convolution oper-
ations and have high time consumption for an efficient CAD tool. Therefore, this work
proposes a hybrid deep learning model, which automates the classification system for
three types of brain tumors (i.e., Glioma,Meningioma, andPituitary)withminimumcon-
volutional operations in a computationally efficient manner. In a nutshell, the following
contributions are made in this study:

1. Constructing two different networks with minimal operations.
2. Merging and extraction of features to make an efficient hybrid deep network. 3.

evaluating the model through statistical evaluation metrics

The rest of the paper is structured as follows: Sect. 2 explain the proposed methodol-
ogy. Section 3 present the results of our proposed model with discussion on the existing
models. Finally, Sect. 4 concludes the paper with possible future research directions.

2 Methodology

2.1 Deep Networks

In computer vision, deep convolutional neural networks (DCNN) is widely used in
classification related applications of medical imaging (brain tumor) [11]. DCNN has
overcome the limitations of traditional machine learning such as image segmentation
and Region of Interest (RoI’s) extraction by implementing deep learning models such
as AlexNet, ResNet, DesNet, VggNet, and Inception net [18]. Additionally, they have
also been used in hybrid approaches to consume less time, complexity, and normally,
2D-DCNN are learned by using the following (1) [14];

X lm
ab = f

⎛
⎝∑

n=0

Hl−1∑
h=o

Wm−1∑
w=0

Khw
lmnO

(a+h)(b+w)
(l−1)n + Blm

⎞
⎠ (1)

where, Blm represents the bias, O(a+h)(b+w)

(l−1)n gives the feature output learned by the

previous layer through a kernel function Khw
lmn through n

th feature map at the given value
at h and w, with height H and width W of the entire Kernel. Finally, X lm

ab is the final
output learned at the position [a, b], with l layers and m feature maps.

The tumor biomarkers learned by the deep models are usually smaller than the entire
MRIs. The number of convolution operations on eachMRIs extract quality features how-
ever, due to numerous layers the existing model are prone to consume greater epochs
and high computational complexity. The proposed model uses minimal number of con-
volutional operations followed by a kernel moderate function, which help’s in extracting
standard quality features.



A Hybrid Deep Model for Brain Tumor Classification 285

AlexNet. AlexNet (AX) was designed in 2012 and is the most common and widely
used deep model [13]. AX is a fully connected network with five convolution layers
and three dense layers. The model uses numerous training parameters to predict the
outcome. Whereas, in this work, three convolution layers (3 × 3) with 4 kernel filters
at each layer is implemented to extract the minimum features, which followed three
max-pooling layers after every convolution to down sample the feature size. Finally, one
flatten layer to vectorized the feature map. The activation function used in the model for
each layer is the rectified linear unit (Relu).

SqueezeNet. SqueexeNet (SQ) [12] is an optimized version ofAXmodel, with a smaller
fire block of 9 architectures. SQ uses lesser parameters than the AX model to achieve
high precision and test accuracy. Therefore, in this work, a single fire block of SQ
architecture is formulated, which is organized as the traditional 5 convolutional layer
network with the rectified linear unit (Relu) as an activation function. Initially, the 3 ×
3 convolutional layer is implemented with 8 kernel filters as the input layer (256 × 256
× 1). The learned features are fed to the fire block of SQ model by using 3 convolution
layers (1 × 1) and 8, 4, and 4 kernel filters respectively. Finally, the merged fire block is
stride down by using a max-pool layer and flattened to form a feature vector.

2.2 Proposed Classification Framework

The proposed classification framework used in this study consists of two stateof-the-art
deep learning models (AlexNet and SqueezeNet) as shown in Fig. 1, which have been
explored widely in brain tumors classification [18]. The two networks are formulated
by passing an input image separately with the size of (256 × 256 × 1) and vectorized
through flattening feature layer by using the (2) [11];

A : I → O, IξP(h,w),OξP(h,w) (2)

where I is the input feature with the h, w is the height and width of an image. Whereas
O represents the output feature map learned by performing convolutions. Initially, the
input feature (I) is passed to the SQ architecture, and then the same feature map is fed
to the AX model to acquire the final feature vector.

2.3 Train and Validation Model

Theflatten vector features learned from theAXandSQaremerged through concatenation
operation to form a fully connected vector and examined on 3064 labeled samples, which
was further divided into 80: 20 ratio for train and test data. The actual acquire data was
512× 512 in dimensions, which was reduced to the size of 256× 256 for computational
purposes. To compile the proposed model, several optimizers were experimented one
after the other. To reduce the effect of the over-fitting early stopping was implemented to
eliminate the training session if validation loss did not improve after 5 epochs. Finally,
to validate the claims K = 10 fold cross-validation (CV) process is adopted for higher
precision and improved accuracy.
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Fig. 1. The proposed Hybrid model using AlexNet and SqueezeNet architecture. G represents
glioma as green; P represents pitiutary as blue; andM representsmeningioma as sky blue; whereas,
CL is convolution layer; and PL is pooling layer.

3 Result and Discussion

3.1 Dataset Description and Its Pre-processing

The employed dataset for this study is from figshare; openly available storage space and
is commonly used for brain tumor classification. The collected data of brain tumor covers
the duration of 2005 to 2010 from two different hospitals (Nanfang, Tianjin General) in
China [5]. The whole dataset contains 3064 MRIs of 233 brain tumor patients having
glioma, meningioma, and pituitary tumors. The MRIs belonged to the T1-modality and
contrast-enhanced axial, sagittal, and coronal views. A total of 89 patients were used
to gather 1426 MRI of glioma tumor, 82 to capture 708 cases of meningioma and 62
belong to 930 cases of pituitary tumor. MRI of each case covers the dimensions of 512
× 512 for 3049 slices and 15 images were left with the lesser resolution of 256 × 256.

To evaluate the experimental analysis the data is first converted from mat extension
to png for lesser computation. Initially, the given data is normalized to the range of −0.5
to 1.5 to construct a validated model, which is then resized to a static size of 256 × 256
to eliminate the difference of size in the entire dataset and also to limit the computations.
The experimental evaluation is then carried out through several statistical tests such as
recall and F1-score for the classification of brain tumors. In general, the experiment was
carried out on an online platform Google Colab [4]. A total of 12.72 GB RAM with
68.4 GB of storage (cloud) is used with graphical processing unit (GPU) as run-time
processing for data computation.
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3.2 Learning Parameters and Model Structure

Deep models subjugate the use of traditional machine learning by preserving non-linear
features such as shape, edges, corners, and intensities. Therefore, several experiments
were conducted on 2415 train set MRIs and tested on 613 MRIs using seven optimizers.
The detailed analysis and their achieved overall accuracy (OA) can be observed in Table
1, which gives the highest accuracy of 94% with RMSprop optimizer through standard
learning rate (0.001) and lowest with adadelta (0.1) due to its higher step size. Other
parameters for RMSprop includes rho (ρ) = 0.8, momentum = 0.00, and epsilon =
1e−07 and is evaluated with 10 epochs using 10 fold CV as shown in Fig. 2.

Fig. 2. Represents the learning curves with ten number of epochs

Table 1. Achieved accuracy of the proposed model for several different optimizer.

Class Adam Adamax Nadam Adadelta SGD Adagard RMSprop

Glioma 0.93 0.90 0.89 0.77 0.88 0.91 0.91

Meningioma 0.75 0.70 0.71 0.27 0.70 0.68 0.97

Pitutary 0.94 0.98 0.98 0.83 0.96 0.98 0.97

OA 90 88 88 67 86 88 94

Further, during the construction of the merge deep model, fitting (under and over)
issues may occur. To avoid this process a dropout technique along with early stopping is
implemented. The detailed analysis of the model can be seen in Table 2 in which merge
networks are dense with 64, 32, and 24 units at the neuron level with the drop out of 0.1
after each layer.
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Table 2. The summary of the SQ-DCNN and AX-DCNN model.

3.3 Experimental Matrices

The proposed hybrid networks are thoroughly examined using several experimental
evaluations. Therefore, overall accuracy (OA), precision, recall, and F1 − score of the
test set is evaluated by using the following mathematical equations [15];

OA = 1

P

P∑
K=1

TPK (3)

Precision = 1

P

P∑
K=1

TPK

TPK + FPK
(4)

Recall = 1

P

P∑
K=1

TPK

TPK + FNK
(5)

F1 − Score = 2 × (Recall × Precision)

(Recall + Precision)
(6)

where p is the number of test samples, TP and TN is true positives and true negatives.
FP and FN are false positives and false negatives respectively. The entire evaluations are
computed with confusion matrices, which yield 94%OAwith 97% accuracy for pitutary
and meningioma classes and reduce to 91% for the glioma class as shown in Fig. 3. The
statistical test is also presented in Table 3, which gives the validation of the proposed
model through the F1-score of 0.94 and 0.98 for glioma and pitutary MRIs and 0.88 for
meningiomas through poor balance between precision and recall.
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Fig. 3. Confusion matrix of the blind test set using RMSprop optimizer

Table 3. Statistical test of the proposed hybrid deep model.

Class Glioma Meningioma Pitutary

Precision 0.98 0.81 0.98

Recall 0.91 0.97 0.97

F1-score 0.94 0.88 0.98

OA = 0.94

3.4 Comparison With State-of-the-Art Deep Models

In comparison to the proposed hybrid model, the standard classical model such as mini-
VGGNet, AlexNet, SqueezeNet and ResNet-50 consumed more processing time with
0.001 learning rate. The accuracy of mini-VGGNet was 88%, which has unstable valida-
tion loss. The overall accuracy achieved by AlexNet was 85%, squeezeNet was 88% and
ResNet was 91%. The batch size of 32 is implemented for each model with 10 epochs to
converge, whereas, the proposed model outperformed the existing models by achieving
an overall accuracy of 94%. Additionally, the work of Ghosal et al. [11] achieved an
overall accuracy of 89.93% with similar dataset through 29 epochs and needed intense
convolutions to achieve higher precision. Furthermore, the transfer learning techniques
[8]with similar dataset have achieved92%accuracybut are limited to data pre-processing
steps such as data augmentation and ROI selection, whichmake the processing time even
more expensive with 100 epochs. The proposed work outperformed the previous work
by achieving an OA of 94% using only 10 epochs and twelve layers of feature operation.

4 Conclusion

This work investigates the hybrid deep model for the classification of three brain tumors
glioma, meningioma, and pitutary. The proposed method uses two different set of deep
models squeezeNet and AlexNet to extract features from brain MRI’s. The overall
accuracy achieved by the hybrid model is 94% with only 10 epochs and minimal pre-
processing of an accurate CAD tool. However, multiple improvements remain: Firstly,
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the model needs fusion to reduce the redundancies caused by the merging of two net-
works. Secondly, the model need some improvement to reduce the miss-classification
of meningioma class. Finally, the data needs to be enriched with more tumor types. In
coming future, the research will address the issues to overcome the above mentioned
limitations by feeding the hybrid model to autoencoders.

References

1. Amin, J., Sharif, M., Raza, M., Yasmin, M.: Detection of brain tumor based on features fusion
and machine learning. J. Ambient Intell. Hum. Comput. 1–17 (2018)

2. Arnold, D.L., Emrich, J.F., Shoubridge, E.A., Villemure, J.G., Feindel, W.: Characterization
of astrocytomas, meningiomas, and pituitary adenomas by phosphorus magnetic resonance
spectroscopy. J. Neurosurg. 74(3), 447–453 (1991)

3. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmen-
tation, progression assessment, and overall survival prediction in the brats challenge. arXiv
preprint arXiv:1811.02629 (2018)

4. Bisong, E.: Google colaboratory. In: Building Machine Learning and Deep Learning Models
on Google Cloud Platform, pp. 59–64. Springer, Heidelberg (2019)

5. Cheng, J.: Brain tumor dataset. figshare. dataset (2018)
6. Cheng, J., et al.: Enhanced performance of brain tumor classification via tumor region

augmentation and partition. PloS One 10(10), e0140381 (2015)
7. Cheng, J., et al.: Retrieval of brain tumors by adaptive spatial pooling and fisher vector

representation. PloS One 11(6), e0157112 (2016)
8. Deepak, S., Ameer, P.: Brain tumor classification using deep CNN features via transfer

learning. Comput. Biol. Med. 111, 103345 (2019)
9. Forsyth, P.A., Posner, J.B.: Headaches in patients with brain tumors: a study of 111 patients.

Neurology 43(9), 1678 (1993)
10. Ghassemi, N., Shoeibi, A., Rouhani, M.: Deep neural network with generative adversarial

networks pre-training for brain tumor classification based on MR images. Biomed. Signal
Process. Control 57, 101678 (2020)

11. Ghosal, P., Nandanwar, L., Kanchan, S., Bhadra, A., Chakraborty, J., Nandi, D.: Brain
tumor classification using resnet-101 based squeeze and excitation deep neural network.
In: 2019 Second International Conference on Advanced Computational and Communication
Paradigms (ICACCP), pp. 1–6. IEEE (2019)

12. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <0.5 mb model size. arXiv preprint
arXiv:1602.07360 (2016)

13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. Commun. ACM 60(6), 84–90 (2017)

14. Li, Y., Zhang, H., Shen, Q.: Spectral–spatial classification of hyperspectral imagery with 3D
convolutional neural network. Remote Sens. 9(1), 67 (2017)

15. Narmatha, C., Eljack, S.M., Tuka, A.A.R.M., Manimurugan, S., Mustafa, M.: A hybrid fuzzy
brain-storm optimization algorithm for the classification of brain tumor MRI images. J.
Ambient Intell. Hum. Comput. 1–9 (2020)

16. Pashaei, A., Sajedi, H., Jazayeri, N.: Brain tumor classification via convolutional neural
network and extreme learning machines. In: 2018 8th International Conference on Computer
and Knowledge Engineering (ICCKE), pp. 314–319. IEEE (2018)

http://arxiv.org/abs/1811.02629
http://arxiv.org/abs/1602.07360


A Hybrid Deep Model for Brain Tumor Classification 291

17. Paul, J.S., Plassard, A.J., Landman, B.A., Fabbri, D.: Deep learning for brain tumor classi-
fication. In: Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and
Functional Imaging, vol. 10137, p. 1013710. International Society for Optics and Photonics
(2017)

18. Rehman, A., Naz, S., Razzak, M.I., Akram, F., Imran, M.: A deep learning-based framework
for automatic brain tumors classification using transfer learning. Circ. Syst. Signal Process.
39(2), 757–775 (2020)
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Abstract. Community acquired pneumonia (CAP) is an acute respira-
tory disease with a high mortality rate. CAP management follows clinical
and radiological diagnosis, severity evaluation and standardised treat-
ment protocols. Although established in practice, protocols are labour
intensive, time-critical and can be error prone, as their effectiveness
depends on clinical expertise. Thus, an approach for capturing clinical
expertise in a more analytical way is desirable both in terms of cost,
expediency, and patient outcome. This paper presents a systematic lit-
erature review of Machine Learning (ML) applied to CAP. A search of
three scholarly international databases revealed 23 relevant peer reviewed
studies, that were categorised and evaluated relative to clinical output.
Results show interest in the application of ML to CAP, particularly in
image processing for diagnosis, and an opportunity for further investiga-
tion in the application of ML; both for patient outcome prediction and
treatment allocation. We conclude our review by identifying potential
areas for future research in applying ML to improve CAP management.
This research was co-funded by the NIHR Leicester Biomedical Research
Centre and the University of Leicester.

Keywords: Community acquired pneumonia · Machine Learning ·
CAP prediction · CAP outcome prediction · CAP treatment

1 Introduction

Pneumonia is a respiratory condition that represents a worldwide public health
concern, since it involves high mortality, affects Intensive Care Unit (ICU) capac-
ity, and results in high costs for health systems [1]; with annual costs for care
and management of e2.5 billion in Europe and $9.5 billion in the United States
[2,3].
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Community acquired pneumonia (CAP) occurs when infection is transmitted
outside hospitals and in people over the age of 16. CAP management comprises
diagnosis, severity prediction, and treatment with or without hospital and/or
ICU admission. Individuals are diagnosed using X-rays to identify “shadowing
clusters” in the lungs. If admitted, Hospital-based severity assessment gener-
ally employs standardized scoring systems evaluating severity based on patient’s
symptoms and signs - for instance CURB65, PSI, ADROP. Assessments include
baseline physiological observations as well as biochemical and haematological
tests. CAP treatment may be delivered on general respiratory wards or involve
ICU care, and most importantly involves pathogen directed antibiotic therapies
and also other measures [1].

Machine Learning (ML) and Artificial Intelligence (AI) have been success-
fully applied to respiratory medicine conditions. For instance, Angelini et al.
discussed the detection of pulmonary tuberculosis from radiographs, and identi-
fication of pathologically enlarged intrathoracic nodes from computed tomogra-
phies (CTs) [4]. Complementary, Chumbita et al. briefly discussed whether ML
can be employed to improve CAP management [5].

This paper presents a structured review of peer-reviewed literature of ML
applied to CAP management, classifying studies and results with the aim of
identifying areas that may benefit from further research. The paper is structured
as follows: in Sect. 2, we set out the approach used to carry out our review; Sect. 3
presents the papers that meet the review criteria and their clinical classifications;
and in Sect. 4, findings of our review are discussed along with our conclusions
and potential further study.

2 Methodology

The review was carried out using the methodology of Petersen et al. [6], and
following the PRISMA statement checklist for systematic reviews in health-
care science [7]. The steps taken included: i) define the research questions (RQ)
(Sect. 2.1); ii) define search terms and screen results (Sect. 2.2); and iii) classifi-
cation and extraction of information (Sect. 2.3).

2.1 Research Questions

A total of five research questions were proposed:

1. What ML and data-based approaches have been employed to support CAP
management? Identifies main clinical outputs where ML has contributed to
CAP management.

2. What kind of data and features have been used and which sources studied?
Evaluates relevance of data used in studies and consequently the generalisa-
tion and validation of those studies.

3. What statistical and AI approaches have been tested? Maps the extent, and
complexity of ML techniques applied to CAP.
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4. How have the AI models been assessed and compared? Enables performance
assessment of algorithms and models used in literature, thus enabling defini-
tion of state-of-the-art in the domain.

5. What is the level of interpretability that models have reached? Lack of inter-
pretability is regarded as a limitation for use of models in clinical settings.

2.2 Searching and Screening

A comprehensive search was performed using three major scholarly international
libraries—PubMed, ScienceDirect, and Web of Science. The search term is given
in Fig. 1, and only articles published in peer reviewed conferences or journals
between January 1990 and June 2020 were considered. This period gathers the
main articles in the field.

(“artificial intelligence” OR“data science” OR “machine learning” OR“adaptive
models”) AND (“severity” OR “outcome” OR “mortality” OR “prediction” OR

“diagnosis”) AND (“pneumonia”)

Fig. 1. Searched terms in scholarly international libraries

Articles were screened for inclusion or exclusion in two stages. In the first stage
they were considered based on title, keywords, and abstract. Then, Articles were
screened based on full content. Those that addressed any phase of CAP man-
agement using ML or adaptive models (not necessarily AI) were included. Those
where content is not novel research (reviews, case reports, opinions etc.), or
relate to respiratory disease that is not pneumonia, or do not present adap-
tive/AI models were excluded. Articles primarily relating to COVID-19 were
also excluded.

2.3 Classification and Data Extraction

Included articles were subjected to classification considering both clinical utility
and ML output. Four categories were considered: diagnosis (presence of the dis-
ease in patients), outcome prediction (severity, course of disease, and mortality),
ICU admission prediction (ICU outcomes), and treatment (predicted treatment
for specific patients). For each study we extracted the following information:

Data: Our study considered the analysis of types of data (such as images, text,
time series, tabular); the size of data sets (number of records); and the data
source. These considerations are necessary as ML models use data to calculate
hyper parameters that determine patterns between features and target values
that are then used to classify new data.
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Fig. 2. Year and clinical contribution Fig. 3. CAP scoring and features

Algorithms: The study considered different classifications of algorithms includ-
ing relational models: Causal Probabilistic Networks, Markov Chains, Bayesian
networks, logistic regression (LR), Decision Trees, Random Forest (RF), Sup-
port Vector Machines (SVM), rule based heuristics. And non relational models:
Boosting methods, Neural Networks (NN), Convolutional NN (CNN), Gener-
alised Additive Models (GAM).

Performance: The study considered different performance measurements
including precision, sensitivity, specificity, F1 and mainly AUROC curves that
present variation of trade-off between sensitivity and specificity depending on
decision threshold.

3 Results

Initial searching found 578 articles—201 in PubMed, 239 in Science Direct, and
138 in Web of Science. First stage screening reduced this to 94, and second stage,
to 23 articles that were deemed relevant. Classification is shown in Fig. 2: 10 on
diagnosis, 7 on outcome prediction, 3 on ICU admission prediction, and 3 on
treatment. CAP specific data was used in 15, the other 8 were not specific about
the type of data although their approach suggested it may be CAP specific.

The majority of studies were published from 2017 onwards with the earli-
est in 1997 (Fig. 2)—indicating significant previous and recent interest in the
area. In terms of the types of data (Fig. 4), hospital admissions data was the
most frequent (12), followed by chest X-ray images (6), time series of electronic
health records (EHR) (2), text medical reports (2), and statistical meta-data
(1). In terms of size, four studies used data sets with fewer than 1000 samples,
four greater than 20000, and the rest an intermediate size. Moreover, features
employed were mostly associated to data relevant to CAP severity scores such
as oxygen saturation, respiratory rate and those presented in Fig. 3.

In terms of techniques, the most common were relational algorithms. CNN
and DL algorithms were mainly used for classification of image diagnosis. Studies
involving NN presented before 2012 (5) were simpler than those after (2)—fewer
hidden layers and without regularisation methods. Most of the studies (13) use
AUROC for performance and accuracy measurement.
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3.1 Diagnosis

Diagnosis is the primary topic of ten articles, seven of which focus on image
classification [8–14], and three apply the model to clinical data [15–17].

Two established datasets were identified as primary sources for these studies.
These consist of ChestX-Ray14 from Kaggle (112,120 frontal chest X-ray images
from 30,085 patients [10]) and CheXpert (a set of chest X-rays for automated
interpretation of different chest conditions, labelled by radiologists [18]).

Models were mainly directed to identify shadowing clusters in lungs, with
results defined as a diagnosis classification. These image processing studies are
the most recent corresponding to those published between 2018 and 2020 in
Fig. 2.

Knok et al. implemented a VGG16 CNN with 94% accuracy using ChestX-
Ray14, also fine-tuned the network using a drop-outs technique in the final three
dense layers [9], although this model would benefit from further evaluation as
the validation set was small and unbalanced (532 images and 73% as health
lungs). Varshni et al. used different CNN architectures (XCeption, VGG16-19,
ResNet50, DenseNet121-169) as feature extractors, with classification performed
using relation methods (SVM, Näıve Bayes, KNN and RF) resulting in a total
of 24 models tested [10]. In this work, the best AUROC reported was 0.8 using
a DenseNet169 ensemble with a SVM classifier. Vijendran et al. reported a
NN employing online sequential learning with an accuracy of 92% for the same
dataset [13].

CheXpert was used to interpret real-time chest images for different lung
conditions reporting an AUROC of 0.9 for pneumonia diagnosis, 0.88 for pleural
effusion and 0.79 for multilobar anomaly [12].

Alternative models have exhibited less accuracy. O’Quinn et al. pre-process
data to balance the number of positive and negative samples, resulting in an
accuracy of 72% [11]. A comparison of CNN and classic classifiers reports CNN
with the best performance at 84% [14]. While an accuracy of 83% was obtained
by identifying affected regions of the lungs on the image [8].
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DeLisle et al. describe studies that evaluate text data and assess their models
with recall, precision, and specificity using a heuristic incorporating EHR reports
to diagnose acute respiratory disease [15]. Additionally, Chapman et al. present
statistical frameworks that analyse X-ray reports to predict CAP, the best of
which is a Bayesian Network [17].

3.2 Outcome Prediction

CAP scoring systems and features are depicted in Fig. 3 and are used as a bench-
mark for ML models to predict mortality or severity. Studies of clinical outcome
prediction have utilised relational algorithms [19–21]. LR and single layer net-
works have been used to greater effect, showing the promise that ML, and more
complex models, may deliver [21].

In more recent articles, rules-based models were proposed to predict 90-day
mortality, with a highest AUROC reported of 0.78 [24]. In another study, the
SepsisFinder model was developed in and predicted 30-day mortality and bac-
teraemia [22]. At 0.811, the AUROC reported for this model is higher than that
reported for PSI (0.799) and CURB65 (0.75), although a comparison with other
ML models is not presented. Shimzizu et al. developed three models to assess
the risk of in-hospital mortality: XGBoost, LR, and RF with AUROCs of 0.88,
0.84 and 0.83, respectively [23].

Use of Markov Chains based on qSOFA scores for time series analysis pro-
duces an outcome prediction matrix [25]. Although the authors note that it is
limited as it does not consider systematic implications of the disease. Never-
theless, this study is the most advanced in terms of predicting evolution of the
disease over time.

3.3 ICU Admission Prediction

Hospital admissions have been studied based on the likelihood of readmission
to ICU. In one study, decision trees based on Bayesian models complementing
CURB65 were used to determine whether a patient should be treated as an out-
patient or ICU patient [28]. Unfortunately the use of metadata from another
study meant that direct comparisons could not be drawn, since results were
the variance analysis of the model (ANOVA) rather than the validation of it.
Possible re-admissions to hospitals have been considered using LR, RF, Boosting,
and GAM reporting an AUROC of 0.78 [26,27]. The benefit of the GAM model
is that it can also evaluate interactions between features.

3.4 CAP Treatment

Treatment is a relevant area with few reported studies. Konig et al. created
decision trees determining best use of antibiotic combination therapy involving
macrolides. It is important to note that although macrolides therapy can be
beneficial for CAP management, it is also associated with cardiovascular toxicity.
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However, results of this study suggest significantly reduced mortality (27%) when
utilised based on their model [29].

Khajehali et al. considered clinical factors affecting admission state and pre-
diction of length of stay. Their model involved imputation of missing values.
Bayesian boosting produced the best result in this study with an accuracy of
95.17%—they also reported use of Meropenem as antibiotic to reduce length of
stay in patients admitted with CAP [30].

Aetiology (whether the disease is viral or bacterial) was studied using 43
clinical and 17 biological features [31]. Relevance of the features was assessed
using LR and predictions were made using an RF classifier on a dataset of 93
samples. This work did not include validation using larger datasets, or evaluation
relative to other models.

4 Discussion and Conclusion

This section considers the results of our review relative to the questions presented
in Sect. 2.

RQ 1: The main classification or prediction approaches of ML for CAP are: diag-
nosis, mortality prediction, hospital admission status, and treatment. Diagnosis
is the area that has received most attention from an ML perspective particularly
analysis of X-ray imaging. There has been limited focus on treatment prediction,
lack of studies offering support for intervention and antibiotic selection repre-
sents a gap in the field and could prove to be a rewarding area for the application
of deep ML models to stratified treatment.

RQ 2: A number of the studies used relatively small datasets (12 with fewer
than 3000 samples), mostly from hospital admissions. Non-image based studies
included from 7 to 160 data features, with the most relevant presented in (Fig. 3).
There is a lack of time-series data, and few studies reported management of
missing values or dirty data. Another common issue uncovered in our study
concerns the size, reproducibility and scalability of data sets used for evaluation
including distribution and characteristics of data, which vary widely. A clear
state-of-the-art approach appears not to have emerged yet.

RQ 3: Most studies employed relational algorithms—LR, RF, Bayesian
Networks—as shown in Fig. 5. Bayesian networks were mostly naive, implying
independence of features, which is unlikely to have clinical utility. Poor LR per-
formance has shown many non-linear dependencies, and unbalanced data in CAP
data.

For outcome prediction and ICU admission prediction, NNs have been used,
although architectures do not go over three hidden layers. There is certainly
scope for further study in this area as Deep Learning and ensemble models have
previously been shown to offer benefits in other clinical applications [1,4,5].
There may also be opportunities to exploit transfer learning in this area, or
other emerging models such as recurrent NN. At this stage the most promising
technique would depend on the research question and data available.
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Only one study suggested a fine-tuning process [9]. This group presented the
evolution of training and validation sets to identify when the model identified
general patterns of data, rather than specifics of training set (overfitting).

RQ 4: AUROC curves are the generally accepted method of reporting and com-
paring performance of binary classification models, although in some cases accu-
racy, sensitivity, and specificity are used. This can create issues when drawing
comparisons.

RQ 5: Interpretability is as important as performance in clinical settings. Most
studies reported typically consider performance without considering this or clin-
ical availability. Typically, due to their nature relational and statistical models
exhibit more interpretability than non-relational and DL models.

In summary, this is the first systematic review studying ML applied to CAP.
It followed guidelines in both the engineering and clinical domains enabling it
to take an interdisciplinary view. There is also an overlap between CAP and
other acute respiratory and non-respiratory diseases that may provide further
insights. Although the article search was wide and structured, it is possible that
other studies—such as those published in libraries that were not included—have
been missed.

There are still a lack of key criteria to enable proper assessment, suggesting
the field is still in an exploratory stage and further research is required. Classi-
fication employed in our study have enabled us to identify some areas that will
benefit from further research in terms of clinical processes. Firstly, validation of
models for interpretation of diagnostic images. Secondly, the use of time-series
and the application of DL to hospital admissions data for mortality and disease
progression prediction. Thirdly, research into the application of DL on the pre-
dicted effectiveness of interventions and treatment—an area in which there is
still paucity of published work, but evidence of clinical demand.

Finally, an increasingly helpful trend in the literature is the reporting of
results that follow the TRIPOD checklist [32]—a method of reporting multi
variable prediction models that is commonly adopted in medical sciences but
less so in DL/ML communities. Although this checklist still presents gaps—for
instance standardised metrics, greater adoption of this checklist would facilitate
a like-for-like comparison and evaluation of models from different studies.
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Abstract. We present preliminary results of an off-the-shelf approach for the
translation of a photographic mouse image to an X-ray scan for anatomical mouse
mapping, but not for diagnosis, in functional 2D molecular imaging techniques,
such radionuclide and optical imaging. It is well known that preclinical molecular
imaging accelerates the drug development process. However, commercial imaging
systems have high purchase cost, require high service contracts, special facilities
and trained staff. As an alternative, planar molecular imaging systems provide
several advantages including lower complexity and decreased cost among others,
making them affordable to small and medium sized groups which work in the
field, bridging the gap between biodistributions studies and 3D imaging systems.
A pix2pix network was trained to predict a realistic X-ray mouse image from a
photographic one (simplifying the hardware and cost requirement compared to
standard X-rays), giving the potential to have an anatomical map of the mouse,
along with the functional information of a molecular planar imaging modality.

Keywords: Image-to-image translation · Molecular nuclear imaging · Artificial
X-ray · PET · SPECT · Deep learning · pix2pix

1 Introduction

Molecular imaging techniques play an important role in the drug development process
by allowing the non-invasive study of several biological and biochemical phenomena
during preclinical and clinical studies. It is well known that the time from synthesis to
market of a new pharmaceutical compound is between 12 and 15 years. [1]. This is the
daily mission of thousands research teams worldwide. It is well proven that small animal
imaging speeds up this work, increases accuracy and decreases cost [2–4]. Radionuclide
molecular imaging techniques, such as Positron emission tomography (PET) and single
photon emission computed tomography (SPECT) have their merit throughout the drug
discovery process and can be used as decision-makings tools at the early stages of testing
a new compound [1–4].
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The last decade, the combined use of conventional anatomic imaging (i.e. X-ray
computed tomography (CT) or magnetic resonance imaging (MRI)) with functional
imaging (i.e. PET or SPECT) has led to the development of multimodality systems
(PET/CT, SPECT/CT, PET/MRI etc.) increasing the reliability of the diagnostic data
by using both imaging techniques simultaneously [5, 6]. On the other hand, several
limitations arise due to increased complexity and purchase and maintenance costs [7,
8]. Thus, the majority of research groups, that work in the field, rely on biodistribution
studies and do not use imaging in their research [9–11].

Bridging the gap between biodistributions and 3D imaging systems, planar imaging
may prove to be a good alternative, since it can be effectively be used to track a new
tracer from zero point in time post-injection and over a long period. Optical imaging
is a well-established method for this purpose [12], offering high sensitivity, simplic-
ity and decreased cost, while not quantitative with low depth penetration and limited
clinical translation [2]. On the other hand, radioisotope planar imaging provides semi-
quantitative images of high spatial resolution and clinical translation retaining also sim-
plicity, low cost and high throughput properties at the expense of access to radioactivity
[13, 14]. Both techniques have been used, either in commercial systems (In-Vivo MS
FX PRO, Bruker) or prototypes [15], along with X-ray imaging, which provide useful
anatomic information, at the expense of increased complexity and cost.

In this work, we present preliminary results of an off-the-shelf approach for the
translation of a photographic mouse image to an X-ray scan for anatomical mouse
mapping in functional 2D molecular imaging techniques. A wide variety of problems
have been previously be expressed as translation of an input image to an output image
including enhancement tasks (i.e. in terms of sharpening, color balance, contrast etc.)
or mapping to a different scene (i.e. aerial photo to map, sketch to photo etc.) [16].
During the last five years, image-to-image translation techniques have also been used in
medical imaging for several tasks, including segmentation, denoising, super-resolution,
modality conversion, and reconstruction [17]. The motivation, of the current study, is
to produce artificially X-ray images for animal mapping and not for diagnosis, using
simple hardware, such as a conventional image sensor and deep learning techniques.
Thus, enhancing 2D functional imaging signals from radionuclide or optical imaging
systems, with useful localization information without adding complexity and increase
the cost of manufacture.

2 Methodology

We chose to treat the problem of X-ray prediction from a photographic image, as an
image-to-image translation task, using a well-known pix2pix network [18]. In that work,
instead of tackling the task of translating an input image to an output image with sepa-
rate, special-purpose machinery related to specific datasets, authors propose a common
framework, based on conditional Generative Adversarial Networks (cGANs), in order
to predict pixels from pixels in any dataset, in which the aligned image pairs vary in the
visual representation, but the renderings, for e.g. edges stay the same. The methodology
of current work consists of 2 stages: (a) Data collection and preprocessing; (b)Modelling
and performance evaluation.
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Fig. 1. γ-eye scintigraphic system used to acquire optical images (left); X-ray system used to
acquire the corresponding X-ray images (right).

2.1 Data Collection and Preprocessing

We have acquired, up to now, a set of 380 input/output images, in order to train and
test the pix2pix network [18]. Input image refer to a photographic mouse image, while
output image to the corresponding X-ray image of the same animal. In order to acquire
the input images, we use a commercial planar scintigraphic imager, which contains
a simple photographic sensor to provide a static optical image of the animal, giving
the outline of the mouse as an anatomical mapping solution (“γ-eye”, BIOEMTECH,
Greece) (Fig. 1 - left). The corresponding X-ray images were acquired using an X-ray
tube (Source-Ray Inc., US) and a CMOS detector (C10900D, Hamamatsu, Japan), both
mounted on a rotating Gantry (Fig. 1 - right). Both systems are optimized for small mice
imaging providing a field of view of 50 mm × 100 mm.

All animal procedures were approved by the General Directorate of Veterinary Ser-
vices (Athens, Attica Prefecture, Greece) and the Bioethical Committee of the Institution
(Permit number: EL 25 BIO 022). In order to reduce the number of animals used in the
current study, we acquire 5 paired images for each animal by placing it in 5 different
poses upon the hosting bed. We assumed that this procedure will not affect the results as
the small mice used in molecular imaging studies have similar dimensions and weight.
Animals were anesthetizedwith isoflurane in all cases and kept warmed during the scans.
The study involved, up to now, 62 white and 14 black swiss albino mice, leading to a
total number of 380 input/output images. The dataset is currently unbalanced as far as
concern the mouse color, due to the limited access to black mice. On the other hand, the
number of black mice is enough in order to give us a feedback regarding the balance
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Fig. 2. Aligned image pairs used for training and testing. The pix2pix network was evaluated
against the following parameters: mouse color; different background due to different material and
color of the animal hosting bed and the presence or absence of acrylic cover.

that the training dataset should have, highlighting potential limitations of the method
in the current problem. Except mouse color the method was evaluated against different
animal hosting beds (plastic bed with white color and black mice; plastic bed with black
color and white mice; acrylic transparent bed and white mice) with or without acrylic
cover, usually used in small animal imaging applications to avoid potential escape of the
animal due to anesthesia malfunctioning during the experiment.

These parameters lead to different background in both input and output images. The
potential pairs used for training and testing are illustrated in Fig. 2. Finally, the pair
images have been processed in terms of alignment (Fig. 1-down middle). The size of
each input/output image, used to train and test the pix2pix network, was 512 × 1024
pixels corresponding to the 50 mm × 100 mm field of view. Table 1 summarizes the
different categories along with the number of paired images used for training and testing
from each category. We tried to keep a ratio higher than 10% between the test images
and the total dataset in each occasion. The unbalanced nature of the dataset leads to
different ratios in each category, however as the dataset grow, we aim to achieve a 10%
ratio between test images and total dataset in each category.
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Table 1. Train and test dataset detailed characteristics.

Mouse color Bed color Cover Train Test

White Black
plastic

No 175 20

White Black
plastic

Yes 8 2

White Acrylic
transparent

No 90 15

Black White
plastic

No 44 5

Black White
plastic

Yes 17 4

Total 334 46

Fig. 3. Training procedure of the conditional GAN used in the present study. The discriminator,
D, learns to classify between fake (synthesized by the generator X-ray images) and real {optical,
X-ray} tuples. The generator, G, learns to fool the discriminator.

2.2 Modelling and Performance Evaluation

A cGAN learns a mapping from an input image x and random noise vector z to output
image y,G : {x, z} → y . The random noise vector z is required to prevent the generator
from producing deterministic outputs and hence fail to match new distributions. The
generator G was trained to produce realistic X-ray images that cannot be distinguished
from real X-ray images (used as ground truth), by an adversarially trained discriminator,
D, which is trained to do as well as possible at detecting the generator’s “fakes”. The
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procedure is illustrated in Fig. 3. For generator the model uses a “U-Net”-based archi-
tecture [18, 19] and for the discriminator a convolutional “PatchGAN” classifier is used
[18]. The pix2pix network was trained with 200 epochs.

Fig. 4. Test results for trained pix2pix network. Indicative “fake” produced X-ray, along with the
input optical image and ground truth for all five different occasions studied.

After the training process, the generator, G, was used to produced realistic X-ray
images from given input optical images in the test dataset (refer to Table 1). Finally,
we evaluated the performance of the pix2pix network, to the above described dataset
using two metrics: (a) peak signal-to-noise ratio (PSNR) and (b) structural similarity
index measure (SSIM). These metrics have been used previously to assess the quality
of cGAN results quantitatively in comparison to other metrics such as mean absolute
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error (MAE) and mean square error (MSE), which in some cases are not appropriate for
evaluating the results of the GAN approach [20–22].

3 Results

Figure 4 presents indicative test results of the five different occasions studied in the
current work. “Fake” produced images from the trained generator of the pix2pix network
are presented along with the corresponding input/optical image and the ground truth.
These preliminary results show the ability of the pix2pix network to solve the problem
of the translation of a photographic mouse image to a pseudo-Xray one that can be used
for anatomical mapping, but not for diagnosis, along with molecular functional imaging
techniques. The SSIM and PSNR mean values on the test dataset were calculated equal
to 0.69 and 16.95. Values are comparable with those presented in [22], in which 4
approaches (including pix2pix network, which was used as a baseline) were evaluated
on a well-known dataset primarily presented in [23]. The SSIM and PSNR values of the
pix2pix model on that dataset was calculated equal to 0.2863 and 12.8684 respectively.
Although a different problem is presented in that study the close correlation of themetrics
shows the success of our approach.

Fig. 5. 99mTc-MDP nuclear image of a healthy mouse fused with the optical image provided in
the γ-eye scintigraphic system (left) and the X-ray produced from the pix2pix trained network.
The color bar indicates the difference in accumulated activity.

In order to further evaluate the proposed method, a healthy mouse was administered
through lung installation with 50 uCi/50 uL of 99mTc-MDP, to study the kinetics of the
tracer through this administration route and imaged in the γ-eye scintigraphic system.
Figure 5 shows the nuclear image fusedwith the optical one provided in the γ-eye system
and with the predicted X-ray image produced from the pix2pix network. The nuclear
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image shows the clear targeting of the compound and the biodistribution in kidneys and
tumor, as main organs of accumulation. The produced X-ray provides the anatomical
map of the small animal enhancing the overall image information.

4 Conclusion and Future Work

Preliminary results of an off-the-shelf approach for the translation of a photographic
mouse image to an X-ray scan for anatomical mouse mapping have been presented.
We trained a well-established image to image translation network with aligned pairs of
optical/X-ray images. The results show that the network predicts an X-ray image with
sufficient accuracy for mouse anatomical mapping but not for diagnosis. The calculated
metrics are comparable with those achieved in the evaluation of other networks, includ-
ing also pix2pix, on several datasets [22]. The proposed method can be used in order to
enhance planar radionuclide or optical preclinical systems by providing anatomic infor-
mation along with the functional one, without increasing the manufacture cost and the
complexity of the design.

Future work contains the balancing of the dataset in terms of mouse color and dif-
ferent background, in order to optimize the prediction in many potential realistic inputs.
Train and test in paired images of lower resolution (128 × 256, 256 × 512 pixels) will
be performed and metrics will be compared with the presented results. The output image
is intended to be used for animal mapping and thus lower resolution may be acceptable
if provide better estimation. Finally, a preprocessing step will be developed, in order
to extract the background in the X-ray images that are used as the ground truth, as is
useless. Image segmentation approaches will be considered as a preprocess step before
pix2pix network training.
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Abstract. Coupling augmented reality datawith data frompreviousmedical stud-
ies is most useful for surgeries on organs with little movement and deformation
(e.g., skull, brain, and pancreas), as there is an opportunity to more clearly define
the edges of the organ. The proposed coupling methods can be used in other oper-
ations. Besides, organ imaging techniques can compensate for the lack of tactile
feedback during laparoscopic surgery by providing the surgeon with visual cues,
improving hand-eye coordination, including robotic surgery. Using the combined
image of MRI, CT-angiography, and ultrasound, individual adjustment of inci-
sions and cutting planes, optimal positioning of paracentesis needles, and position
display of the organ’s main components are realized.

Keywords: Knowledge bases · Surgeon assistance · Hybrid reality · Augmented
reality · Pattern recognition · Active strain-statistical models

1 Introduction

Blood vessel structure data can be superimposed on the surgical cavity using ves-
sel contour recognition. For this purpose, a model for identifying vessel contours in
the video stream was developed using active strain-statistical models for recreating
multidimensional images.

The training procedure for active appearance models begins with normalizing all
shapes’ position to compensate for differences in scale, tilt, and offset. For this purpose,
the so-called generalized Procrustean analysis is used.

The learning process here consists of the following steps: extraction from the training
images of the textures that best match the basic shape; region mapping is carried out
using piecewise interpolation of the training image resulting from triangulation to the
corresponding regions of the texture to be formed; a matrix is formed from the textures,
each column containing the pixel values of the corresponding texture (similar to the S
matrix). The textures used for trainingwere single-channel (grayscale) andmulti-channel
(RGB color space).
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2 Computer Model of Contour Selection

To date, empirical methods are fast, reasonably easy to implement and configure but
usually show a high percentage of false contour detection in large image sets. Methods
based on constructing a model of the lungs’ affected area and deformable models give
relatively high recognition rates on extensive collections of images with a potentially
large number of lung images [1–3].

The mathematical apparatus of active appearance models has been actively devel-
oped. At the moment, two approaches to the construction of such models can be distin-
guished: the classical one (initially proposed by Coutes) and inverse composition based
(proposed by Matthews and Baker in 2003 [4]).

First, consider the common parts of the two approaches. Two parameters aremodeled
in active appearance models: shape-related parameters (shape parameters) and parame-
ters related to a statistical image model or texture (appearance parameters). Before use,
the model must be trained on a set of pre-marked images. Markup of images is done
manually or in semi-automatic mode when using an algorithm to find approximate mark
locations, and then they are clarified by an expert. Each mark has its number and defines
a characteristic point that the model will have to find during adaptation to the new image.
Example of a markup (lung base) (see Fig. 1).

Fig. 1. Active strain-statistical models superimposed on the texture.

The training procedure for active appearance models begins with normalizing all
shapes’ position to compensate for differences in scale, tilt, and offset. For this purpose,
the so-called generalized Procrustean analysis is used [8].

In a model of this type, the authors also need to calculate the vector of combined
parameters, which is given by the following formula:

b =
[
Wsbs
bt

]
=

[
Ws�

T
s (s− s0)

�T
t (t − t0)

]
, (1)
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whereWs is a diagonal matrix of weight values that allows balancing the contribution
of pixel distances and pixel intensities. For each element of the training sample (the
texture-shape pair), its vector b is calculated. Then the resulting set of vectors is combined
into a matrix, and its main components are found. In this case, the synthesized vector of
combined shape and texture parameters is defined by the following expression: b = �cc.

Here�c is the matrix of principal components of the combined parameters, and C is
the vector of combined appearance parameters [6]. From here, obtained new expressions
for the synthesized shape and texture:

s = s0 + �sW−1
s �c,sc, t = t0 + �t�c,tc, �c =

[
�c,s

�c,s

]
(2)

In practice, the matrix �c is also subjected to removing noise components to reduce
the effect of overfitting and reduce the number of calculations performed.

After calculating the shape, appearance, and combined parameters, the so-called
prediction matrix R is required, which in the sense of the minimum root-mean-square
error would satisfy the following linear equation:

δp = Rδt (3)

where δt = timage − tmodel , and δp is the perturbation of the position vector and the
combined appearance parameters.

Various methods have been developed to solve the above equation. Their detailed
consideration is carried out in the works [4–6].

3 Analysis of the Active Form Model

Experimental procedures were carried out on computed tomography images of the lungs
with the affected part.

For the experimental procedure, the selection of volunteers (researchers) – 15 people
was carried out [9–11].

The model of active deformable forms was trained and verified to identify contours.
Preliminary training gave a confidence score of 0.75 – the result is unsatisfactory. The
training samplewas expanded, and the number of reference pointswas changed to 128per
closed contour.As a result of training, confidence increased to 0.937.The implementation
of contour detection was performed with a confidence of at least 0.88, in contrast to the
level of 0.73 for the gradient method [12, 14, 15]. The level of confidence enhancement
achieved in the model for detecting closed loops exceeded the directive level. The model
training accuracy is 0.1 mm.

4 Conclusion

Amethod for constructing a model of the contours of lung segments to identify affected
tissues is shown. Strain-statistical models are used to reconstruct multidimensional
images to build contours. The model showed an accuracy of detecting contours equal
to 0.1 mm, which meets the requirements for detecting affected lung tissue and can be
used in medical systems for early diagnosis.
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Abstract. Medical images are an essential input for the timely diagnosis of
pathologies. Despite its wide use in the area, searching for images that can reveal
valuable information to support decision-making is difficult and expensive. How-
ever, the possibilities that open when making large repositories of images avail-
able for search by content are unsuspected. We designed a content-based image
retrieval system for medical imaging, which reduces the gap between access to
information and the availability of useful repositories to meet these needs. The
system operates on the principle of query-by-example, in which users provide
medical images, and the system displays a set of related images. Unlike metadata
match-driven searches, our system drives content-based search. This allows the
system to conduct searches on repositories of medical images that do not neces-
sarily have complete and curated metadata. We explore our system’s feasibility in
computational tomography (CT) slices for SARS-CoV-2 infection (COVID-19),
showing that our proposal obtains promising results, advantageously comparing
it with other search methods.

Keywords: Deep learning · Content-based image search · SARS-CoV-2

1 Introduction

The use of automatic data processing techniques based on deep learning has gained
attention from themedical imaging community in the last years [18]. Inductive learning’s
relevance to support decision-making and computer aided diagnosis has pushed the
community to havemore and better methods that can help in these initiatives. In addition,
the rapid advance of deep learning techniques, which introduce representation learning
within artificial neural network architectures, has allowed advances in the area [1].
Their results address various problems related to image processing, improving these
techniques’ skills in many tasks.

Medical imaging and computer-aided diagnosis have a long history of development.
Manyof the assisted support strategies formedical imaging-baseddiagnoses use classical
image processing techniques to construct representations of images based on visual
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descriptors, such as SIFT descriptors [16]. Classic automatic classification techniques
are often used on these representations to train diagnostic classifiers. These techniques
have been predominant in computer-aided diagnosis [11].

A complementary approach to image classification is to search for related images
[13]. In a search system, the user provides an example image, often without meta-
data, from which the system must identify related images based on their content. In
content-based search systems, the image’s characteristics, such as color, morphology,
and intensity, are essential. However, image search is difficult. Searching for an image
in a repository based on its content often returns false positives. One of the problem’s
difficulties is that the images can be similar according to their content but correspond to
different diagnoses. The challenge is to encode the image’s content so that the system
can distinguish non-evident differences. Search systems can be much more informative
than classifiers. They provide many related results, helping users and patterns between
results, facilitating identifying relevant cases, or suggesting alternative diagnoses. The
interest in developing effective systems of this type is important, but it runs into the
difficulty that their development has important technical challenges.

We propose a new content-based medical image search system. Our system uses
deep learning architectures to generate representations of the images indexed by a near-
est neighbor query engine. Deep learning is used for two purposes. First, it allows us
to build representations of the images in a low dimensional space. Low-dimensional
representations are useful since they favor the use of functions such as the Euclidean
distance, which deteriorates its performance in high-dimensional spaces due to the curse
of dimensionality. The second purpose is to incorporate latent information that deep
learning uses to build high-performance classifiers. In this way, the representations of
the images encode their content and encode latent features used by these architectures
to solve diagnostic classification tasks.

We combine two deep learning architectures to facilitate searches over an image
repository. First, we use an image segmentation architecture called Ce-Net (Context
Encoder Network) [6], allowing 2D medical images to be processed. This architecture
allows obtaining image embeddings by training the Ce-Net to solve a segmentation prob-
lem. Then, the embeddings are used as the encoding of the images to train a diagnostic-
based classifier. For this purpose, we use an Xception architecture [5], which builds
a new representation of the images to solve a classification task. Both embeddings are
concatenated and indexed in a nearest neighbor query engine.When the user provides an
example image, the system uses the Ce-Net and Xception models to obtain the example
image encoding, projecting it into the same space in which the repository images were
encoded. Next, the example image’s encoding is processed in the query engine, which
returns its nearest neighbors.

The main contributions of this paper are:

– We combine two deep learning architectures supporting medical imaging near-
est neighbor searches, providing valuable information to computer-aided diagnosis
systems.

– We systematically validate our system’s precision, comparing our system’s perfor-
mance favorably with its most direct competitors.
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– We use open datasets to conduct our experiments for SARS-CoV-2 diagnosis, favoring
reproducible research in this relevant topic.

The rest of the paper is organized in the following way. In Sect. 2, we review related
work. Our proposal is introduced in Sect. 3. In Sect. 4, we report experimental results.
Finally, we conclude in Sect. 5, providing concluding remarks and commenting on future
work.

2 Related Work

Content-based retrieval of image search is a difficult task because there is a semantic
gap between the low-level visual information captured by algorithms and the high-level
information perceived by the human evaluators. Deep learning reduces this gap without
using handcrafted features by encoding/combining low-level and high-level features
[11]. This is the reason why current content-based medical image search techniques use
deep learning architectures to extract image descriptors [1].

Anavi et al. [2] uses trained convolution networks (CNNs) to classify X-ray images,
extracting the network’s weights to represent the images in a low dimensional space.
A similar approach was examined by Liu et al. [12], who uses the weights of a fully
connected layer connected to a CNNs output to construct a representation of the images.
Prostate MR image searching was studied by Shah et al. [15], who also used CNNs
to extract characteristics from images, combining them with hashing forests. Hashing
allowed them toworkwith low dimensional representations, which is a key aspect to pro-
cess this type of images. Deep convolutional neural networks as the VGG-19 have been
used to extract representations from contrast-enhanced magnetic resonance images (CE-
MRI) to support brain tumor imaging [16]. Deep learning has shown great advantages in
this task compared to classical methods of extraction of characteristics, motivating the
exploration of these techniques in other tasks. For example, Hamidinekoo et al. [7] used
CNNs to retrieve hematoxylin and eosin breast histology images in mammograms, with
promising results. Camalan et al. [4] explored the use of image retrieval for the early
detection of eardrum. Recently, Haq et al. [8] have applied deep learning to develop a
search system for X-ray images, with promising results in a large-scale repository.

Although most medical image retrieval systems use CNNs, deep learning shows
that other novel architectures are more efficient in image processing. Baur et al. [3]
explored the use of Fully Convolutional Networks (FCNs) for MRI segmentation for
multiple sclerosis lesions detection. The proposal based on the U-Net architecture [14],
outperforms CNNs and also can be trained with partially labeled data. As the proposal
combines diagnostic data with a segmentation task, can be very competitive, which is the
reason why we will use it to compare the performance of our method in image search.
Currently, FCNs are widely used in medical imaging, becoming the new state of the art
for complex segmentation tasks such as head and neck cancer radiotherapy [17].

Despite the growing interest in the development of medical image retrieval systems,
these efforts are expected to increase exponentially in the comingyears [18]. It is expected
that the greater availability of medical image datasets could push this area with a specific
focus on multi-modal image retrieval tasks [13].
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3 Proposal

3.1 Motivation

We combine two image processing architectures based on deep learning to facilitate
searches over an image repository. First, we use an image segmentation architecture
called Ce-Net (Context Encoder Network) [6], allowing 2D medical images to be pro-
cessed (seeFig. 1). TheCe-Net architecture is an extension of theU-Net architecture [14],
which is based on the encoder-decoder architecture. Encoder-decoder architectures work
with a tandem of layers, building a representation of the input in a lower-dimensional
space known as latent space. Another sequence of layers transforms the encoding from
the latent space to the original space, retrieving the image’s original dimensionality. This
architecture module is called a decoder. The encoder-decoder architectures are intended
to encode images in latent space, with low loss of information. For this, the architecture
parameters are adjusted in such a way as to minimize the reconstruction error defined
from the difference between the original image and the reconstructed image in L2 norm.

The Ce-Net architecture extends the U-Net architecture by incorporating two pro-
cessing modules. The Dense Atrous Convolution (DAC) and the Residual Multi-kernel
Pooling (RMP) module. Both modules were designed to capture high-level characteris-
tics and also preserve more spatial information throughout the encoder-decoder archi-
tecture. We use the encoding of the image generated by the RMP block to build its
representation. It is the highest-level encoding generated by the network before enter-
ing the decoder. The Ce-Net can be trained for medical image segmentation tasks by
showing original-segmented image pairs at the network’s input and output. This requires
having a set of medical images, together with their segmentation masks generated by
specialists.

A second building block of our search system is the Xception architecture [5]. The
Xception is based on the Inception architecture used in image classification [10]. The
Inception architecture uses modules based on convolutional operators, which manage to
capture short-range dependencies in the input image. These characteristics allow learning
a new representation of the input image, identifying patterns between the original image’s
that are useful for a better representation. The Xception architecture extends the Incep-
tion architecture, incorporating convolutional layers that allow capturing long-range
dependencies.

We combine both architectures trained in different tasks to address the medical
image search problem, as we show in Fig. 1. We use the Ce-Net architecture to seg-
ment the repository images. The latent representations of the Ce-Net are used as pre-
trained vectors to adjust the Xception according to diagnosis. This proposal’s rationale
is that by segmenting the images and working with their latent representations, we
reduce these images’ variability by placing them in a common space. This common
representation space, the segmenter’s latent space, should provide better generalization
abilities to the Xception. Instead of working with the original images, it would work
with the pre-training carried out in segmentation. The Xception network could work
with fewer parameters when solving the diagnostic classification task by reducing the
images’ dimensionality. This would avoid the risk of overfitting. As we show in Fig. 1,
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Fig. 1. The Ce-Net is trained to solve a segmentation task. The RMP block is used to get a first
image embedding (in purple). This representation is fed in the Xception to solve a SARS-CoV-2
classification diagnosis task. Theweights of the last layer are used to get a second image embedding
(in green). Finally, both representations are concatenated to feed the query engine.

we use the weights of the last layer of the Xception the generate an image representa-
tion. This layer encodes the information required to classify the image according to the
diagnostic. Finally, both encodings are concatenated and sent to the query engine.

3.2 System Architecture

We train the Ce-Net segmentation network using CT slices of SARS-CoV-2 patients.
Then, the Xception network fits the problem classes using a labeled image dataset. For
this purpose, we work with CT datasets with labels available in SARS-CoV-2. Once the
Xception network is validated, we retrieve its latent vectors from the last layer of the
model. These vectors are concatenated with the RMP Ce-Net embeddings, which are
ingested in the query engine.

Once the Ce-Net andXceptionmodels are obtained, and the query engine indexes the
repository images’ embeddings, a new image can be used to query the system, as shown
in Fig. 2. The query engine is implemented using Multiple Random Projection Trees
(MRPT) [9], which is considered the state-of-the-art data structure in approximate search
for nearest neighbors. MRPT allows building indexes in L2 standard search space. Once
the index has been built, the nearest neighbor queries can be run. The queries specify
the number of neighbors searched for and return the identifiers of the corresponding
images. To specify a query, a new image goes through both models, which provide
their embeddings and project the image to the same space in which the images are. The
query image is used to retrieve its k-nearest neighbors using the Euclidean distance. The
system’s final phase allows ordering these results according to proximity.
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Fig. 2. A new image is processed using the Ce-Net and Xception architectures to obtain its
vectorized representation. The query engine accesses the repository indexes, retrieving the nearest
neighbors of the image.

The latent representations constructed using the Ce-Net+ Xception networks allow
obtaining continuous and dense vectors of the same dimensionality for all the repository
images.Wecan also observe thatwhenusing the representation obtained by theXception,
the images are expected to be separated by types of images (we owe this to the Ce-Net
segmenter) and by diagnosis (we owe this to the Xception). According to image type and
diagnosis, the clustering hypothesis is supported by the combination of both architectures
in tandem.

4 Experiments

4.1 Datasets

We used the Covid-19 CT segmentation dataset to train the Ce-Net network. The dataset
contains 100 axial CTs of more than 40 patients with Covid-19. The images were seg-
mented by a radiologist using 3 labels: ground-glass, consolidation, and pleural effusion.
We used 100 CT slices along with their masks for Ce-Net training.

We used the SARS-CoV-2CT-scan dataset to train theXception network. The dataset
contains 1252 CT slices that are positive for SARS-CoV-2 infection (COVID-19) and
1230 CT slices for patients non-infected by SARS-CoV-2.

We used the Covid-CT dataset as a testing set. The dataset contains 349 CT slices
from 216 Covid-19 patients and 463 non-Covid CT slices. The dataset contains images
acquired with different media, for example, CT slices post-processed by cell phone cam-
eras and some images with very low resolution. For these reasons, the dataset represents
the real conditions of image acquisition for a system of this kind.

To generate a balanced set of queries, the Clinical Hospital of the University of Chile
supported uswith eight CT scanswhere half of them suffered fromCovid-19. From these
CTs, 25 slices with Covid-19 and 25 slices without Covid-19 were extracted. Each of
these queries was used to query our system.
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4.2 Experimental Design

We evaluate the performance of our search system using precision and recall measures.
To compute these metrics, we consider the CT slices’ ground labels according to SARS-
CoV-2 diagnosis, counting matches between image examples labels and their list results.
We validate our proposal considering four alternative methods:

– Ce-Net [6]: It corresponds to a search system based on the encoding of the testing
images obtained from the Ce-Net using the RMP block.

– Xception [5]: It corresponds to a search system based on the encoding of the testing
images obtained from the Xception using its last layer.

– U-Net-ML [3]: It corresponds to a search system based on the encoding of
– the testing images obtained from the modified architecture of Baur et al., trained for
5 epochs for segmentation, then 5 more epochs for classification. We did tests with
several layers of the encoding but the ones that obtained the best results were the
embeddings obtained using the last layer of the architecture.

– U-Net-ME [3]: It corresponds to a search system based on the encoding of the testing
images obtained from the modified architecture of Baur et al., trained for 5 epochs for
segmentation and then 5 epochs with the manifold embedding loss. The embeddings
were obtained using the last layer of the architecture.

4.3 Results

We show the results of the experiments in Fig. 3. The performance plots on the whole
set of testing queries (at the top of Fig. 3) show that our proposal outperforms the other
methods in precision. As we might expect, the precision drops slightly as the list of
results grows. The variance around the mean precision also decreases gradually. The
recall of all the methods is quite similar, reaching around 20% in lists of length 50.

By separating the testing set betweenCovid-19 andNon-Covid-19 queries, the results
in Fig. 3 show that our method obtains advantages over the rest when using queries of
patients with Covid-19, surpassing by a significant margin its most direct competitor,
the Xception network. The other methods have lower performances. UNet-ME performs
well in the healthy patient class. However, this model exhibits overfitting to this class as
its performance in the Covid-19 class is very low. Our proposal surpasses the rest of the
methods in Covid-19 images regarding recall rates, while UNet-ME generates a better
recall in images of healthy patients. The results confirm that our proposal is suitable for
searching for images of Covid-19 patients, surpassing all its competitors in precision
and without generating overfitting to any of the classes.
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Fig. 3. Precision and recall scores of the methods evaluated in this paper. The plots at the top
show the whole set of test images’ performance, while the plots at the bottom show the results
disaggregated by class.

5 Conclusion

This paper has shown that combining the Ce-Net and Xception architectures, used for
segmentation and classification tasks, respectively, is useful in image search. Our experi-
ments conducted on images of patients with Covid-19 show that ourmethod outperforms
its most direct competitors in terms of precision, without overfitting to either class of
interest.

We are currently expanding our proposal to be able to work with images of different
types. This paper has shown results based on CT, but it is interesting to incorporate X-
ray images into our search system. We believe that the enabling of precise multi-modal
search systems will push the development of these methods in the coming years.
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Abstract. Colorectal cancer is a leading cause of cancer death for both
men and women. For this reason, histo-pathological characterization of
colorectal polyps is the major instrument for the pathologist in order to
infer the actual risk for cancer and to guide further follow-up. Colorectal
polyps diagnosis includes the evaluation of the polyp type, and more
importantly, the grade of dysplasia. This latter evaluation represents
a critical step for the clinical follow-up. The proposed deep learning-
based classification pipeline is based on state-of-the-art convolutional
neural network, trained using proper countermeasures to tackle WSI high
resolution and very imbalanced dataset. The experimental results show
that one can successfully classify adenomas dysplasia grade with 70%
accuracy, which is in line with the pathologists’ concordance.

Keywords: Deep learning · Multi resolution · Colorectal polyps ·
Colorectal adenomas · Digital pathology

1 Introduction

The cornerstone of conventional histo-pathological examination is the evaluation
of hematoxylin & eosin slides by trained pathologists to detect and/or quantify
specific features or patterns and provide a diagnostic evaluation. Based on this
premise, whole slide image (WSI) analysis approaches based on Deep Learning
(DL) are well suited to address the tasks posed by the histo-pathological evalua-
tion [14]. During the last few years, many specific challenges have been tackled:
from lymph node metastasis detection [2] to mitotic count [1]. The main aims
of these approaches are multiple: i) improve pathologists’ accuracy and thus
diagnostic sensitivity; ii) speed-up the diagnostic workflow by addressing more
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innovation programme under grant agreement No 825111, DeepHealth Project.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
R. Su et al. (Eds.): MICAD 2021, LNEE 784, pp. 325–334, 2022.
https://doi.org/10.1007/978-981-16-3880-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3880-0_34&domain=pdf
https://doi.org/10.1007/978-981-16-3880-0_34


326 D. Perlo et al.

menial, but time-consuming tasks; iii) improve diagnostic agreement by adopting
standardized criteria.

Among the multiple fields of surgical pathology, gastrointestinal pathology
is one of the most represented [10], thus addressing this specific topic has the
potential of significantly affecting the overall workflow of a pathology service.
Colorectal polyps, pre-malignant lesions arising from the intestinal epithelium,
are one of the most common gastrointestinal specimens submitted to histologi-
cal examination. These lesions are usually collected during a colonoscopy, which
represents the mainstay of colorectal cancer screening programs in many coun-
tries [4]. The development of these programs leads to a significant increase in this
specific caseload of surgical pathology laboratories: the correct diagnostic assess-
ment has far-reached consequences both for the patient and the public health
systems. Indeed, a correct diagnosis is obviously important for the management
of the patient, but it is now well acknowledged that different types of polyps are
associated with different risks of developing metachronous invasive carcinomas
during the following years [13]. For this reason, specific algorithms have been
established for tailoring patients’ follow-up. Despite such clinical relevance, the
concordance rates even among expert pathologists, in the diagnostic assessment
of colorectal polyps, is far from optimal [8,9,19,23]. Although the distinction
between non-adenomatous and adenomatous tissue is usually reliable, the inter-
observer agreement between different histological types and dysplasia grades are
sub-optimal. For instance, the concordance in assessing a tubulo-villous polyp
or low grade dysplasia ranged around 70%.

In this work the main contributions are: i) the design of a deep learning
pipeline to tackle the high dimensionality of WSI, working at single patches
level; ii) the study on the physical resolutions suitable to deal automatically
with the problem of classification of different colorectal polyps; iii) the study of
different patch pre-processing approaches, where we find that, for the considered
problem, the intensity of the dye present in the scans is the most informative
feature of the tissue images.

2 Related Work

Only a limited number of works explored histo-pathological examination through
deep learning-based analysis of digital whole slide images [15,22,24]. Among
these works, Korbar et al. [12] present a crop-based framework, developed using
a ResNet architecture to classify different types of colorectal polyps from whole-
slide images. This work provides empirical suggestions the residual network
architecture achieves better performance than other models. Following their
previous work, Korbar et al. introduce a revised version of Grad-CAM (gra-
dient driven class activation mapping) [21] to visualize the attention map of the
network for the annotated whole-slide [15]. Bychkov et al. [5] apply different
architectures (convolutional and recurrent neural networks) in order to predict
five-years disease survival probabilities for colorectal cancer and estimate the
individual risk. This work explores the idea of using spatial information by feed-
ing an LSTM network with the features extracted from image crops by a CNN.
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Table 1. Dataset composition.

HP NORM TA.HG TA.LG TVA.HG TVA.LG Total

Slides 62 30 34 232 44 55 457

Rt 158 112 145 777 264 245 1701

At

[
cm2

]
9.91 18.38 7.94 71.74 60.45 41.86 210.29

Recently, Wei et al. [24] propose an analysis model for annotated tissue and
perform a study on the generalization of neural models with external medical
institutions. In such work, a hierarchical evaluation mechanism is proposed to
extend the classification of tissue fragments to the entire slide.

These efforts show promising results, but the testing data size is small and,
most importantly, they do not provide diagnosis based on both histological type
and dysplasia grade. Our aim is thus to evaluate the efficacy of a deep neural
network for the automatic histo-pathological classification of colorectal polyps
employing a large training cohort and assessing both polyp histological type and
dysplasia grade.

3 Dataset

In this work we use a collection of 457 WSI biopsies collected within the EU
project DeepHealth [7], from patients undergoing colorectal cancer screening.
Slide scanning is obtained through a Hamamatsu Nanozoomer S210 scanner
configured at ×20 magnification (0.4415µm/px) and stored as .ndpi file. Each
WSI has been annotated by expert pathologists according to six classes cho-
sen for our study: hyperplastic polyp (HP); normal tissue (NORM); tubular
adenoma, high-grade dysplasia (TA.HG); tubular adenoma, low-grade dysplasia
(TA.LG); tubulo-villous adenoma, high-grade dysplasia (TVA.HG) and tubulo-
villous adenoma, low-grade dysplasia (TVA.LG).

Each slide is associated with some metadata (stored in NanoZoomer Digital
Pathology Annotations .ndpa file format), including a collection of Region of
Interests (RoIs) associated with the corresponding class. Each RoI is determined
by the pathologist and is defined by a free-hand contour, identifying the tissue
area exhibiting histological findings. The number and the size of RoIs is highly
variable and depends on both the tissue availability and the histological analysis.
Such heterogeneity unfortunately, leads to dataset unbalancing: the distribution
of the data from T tissue classes in our dataset is shown in Table 1. In the table
we read the number of WSIs, the number of ROIs Rt and total tissue area At

for each class t. A subset of the dataset is publicly available [3].

4 Method

In this section we are going to describe and motivate the proposed method. In
particular, the use of deep learning for classification already proved, in similar
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RoI Slicing in patches Neural networkWSI Patches pre-processing
Prediction on
single patches RoI WSI

Prediction on

Fig. 1. The neural network is trained on RoI images (gears symbol) and tested on WSI
(lock symbol).

Table 2. Dataset composition. Test RoIs are taken from a disjoint set of slides.

HP NORM TA.HG TA.LG TVA.HG TVA.LG Total

Train slides 50 25 26 203 36 45 385

Test slides 12 5 8 29 8 10 72

Train RoIs 133 98 113 695 240 208 1487

Validation RoIs 5 5 5 5 5 5 30

Test RoIs 20 9 27 77 19 32 184

learning tasks, to be extremely effective and robust [15,24]. Direct classification
on the (high resolution) whole slide, in our context, is unfeasible: the relevant
features are local and can be detected at very low image scale. For this reason, the
deep learning model is not trained on the full slides, but on some crops we refer
to as patches. An high-level representation of our approach is depicted in Fig. 1.
Once the model is trained on patches’ classification, in order to get the whole slide
classification (at validation/test time), all the scores from the single patches are
averaged on the whole slide. WSIs have large resolution and need to be cropped
into patches. The first operation we perform on RoIs (even before slicing them
into patches) is re-scaling them to some target resolution ϕ. using the Lancos-3
filter. Then, we slice the RoIs/WSIs into patches (224 × 224 pixels large) using
sliding windows. These patches can be immediately normalized, using approaches
like [17], or simply converting in gray-scale to reduce the expected color shift
caused by hematoxylin and eosin.

During training we augment data: we include vertical/horizontal flips and a
random operation chosen between rotation, equalization, solarization, inversion
and contrast enhancing, as proposed in [6].

In order to perform classification on the patches, we have used ResNet-18: it
represents a good trade-off between complexity and performance and is one of
the broadly-used to solve similar tasks [15,24]. Pre-trained deep neural networks
(on the ImageNet classification task) can be effectively used as initialization for
medical classification tasks, showing good performance [15].1

1 The pre-trained model used in all the experiments is available at https://pytorch.
org/docs/stable/torchvision/models.html.

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
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5 Results

In this section we show and discuss the classification results obtained on the WSI
biopsies dataset described in Sect. 3 with the method proposed in Sect. 4. We
can easily expect high error rates, considering that the information about the
adenoma type is a visually global information and requires features extracted at
different scale than those for the dysplasia grade, which is a more local informa-
tion. Here we are not interested in distinguishing different adenoma types, but
their dysplasia grade. Towards this end, we will follow a hierarchical-like clas-
sification approach [25,26], grouping the adenoma classes into high grade (HG)
and low grade (LG) dysplasia.

For all the experiments, we split the data at the whole slide level, in order
to maintain the separation of tissues from different patients. For each class,
10% of total patients are considered as test set. We summarise the data split in
Table 2. The validation set size is fixed to 5 RoIs for each class from the training
set (likewise [24]). We train our model for 250 training epochs, and we choose
the best one in terms of balanced accuracy (computed on the validation set).
Adam has been used as optimizer, and all the hyper-parameters are tuned via
grid-search: weight decay is set to 10−4, learning rate η = 10−4, exponential
learning rate decay 0.99 per epoch, and minibatch size 16. Our algorithms are
implemented in Python, using PyTorch 1.5, and training/inference runs over an
NVIDIA GeForce GTX 1080 GPU.

5.1 Patches Normalization

Fig. 2. Patches classification performance.

As a first step, we perform a study at different RoI resolutions: the goal here is
to identify the best scale the deep model is able to extract the features. Towards
this end, we consider 8 possible patches resolutions ϕ ∈ [300; 1000] µm, and
3 possible input preprocessing strategies: use of the original patches (RGB),
conversion to gray-scale (gray) and the use of a standard slide normalization
strategy (Macenko et al. [17]), resulting in 24 training possibilities, which are
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reported in Fig. 2. For our classification task, the use of gray-scale images does
not remove useful information (which might be embedded in the color) and, on
the contrary, helps in removing the expected color bias [18,20]. From our results
we learn that, for the particular classification task we aim at solving, the relevant
features are embed in the image texture and the signal strength, while the direct
use of the RGB image does not compensate the color bias, or even standard slide
normalization strategies like [17] destroy some useful information which is not
embed in the color feature. For these reasons, we will focus our analysis using
gray-scale patch images as input for our model.

5.2 Study on Patches Resolution for WSI Classification

(a) (b)

(c) (d)

Fig. 3. WSI inference performance comparison between different tissue categories at
different patches resolutions: sensitivity (a), specificity (b), F1-score (c) and balanced
accuracy (d). Red dashed line is the average performance (avg).

Here we will inspect more in depth the study on WSI classification performance
using gray-scaled input. Figure 3 provides a general overview of some metrics
evaluated. There is not a clear choice regarding the optimal scale features have
to be extracted. If our goal is to maximize the sensitivity for the HG class, we
should choose 400µm: inspecting the HP’s specificity for the same scale, we
observe a drop which, however, is overall tolerable. F1-score gives us a more
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Table 3. Human dysplasia diagnostic performance comparison

Accuracy Sensitivity Specificity

Hyperplastic Our (400µm) 0.90 0.80 0.99

Our (600µm) 0.92 0.85 0.99

Pathologist [8] 0.79 0.30 0.97

Low grade Our (400µm) 0.76 0.73 0.78

Our (600µm) 0.71 0.83 0.59

Pathologist [8] 0.66 0.57 0.69

High grade Our (400µm) 0.83 0.78 0.88

Our (600µm) 0.70 0.46 0.93

Pathologist [8] 0.83 0.81 0.84

global information: indeed, for the HG class, 400µm is the best one. However,
if we look at average performance on all classes (avg), focusing on F1-score and
balanced accuracy, we can observe similar performance for 400µm and 600–
800µm.

It is important to compare the model performance with the results obtained
by human pathologists. Table 3 reports performance comparison for HP, LG
and HG in terms of balanced accuracy, sensitivity and specificity. Here, human
pathologist’s average performance is taken from Denis et al.’s work [8], evaluated
on qualitatively similar data. As we observe, our performance is very close to
the pathologists’. In particular, HP classification increases of more than 10% in
accuracy, showing a quite significant improvement in terms of sensitivity. LG
classification improves as well up to 10% in balanced accuracy, yielding a signif-
icant improvement both in terms of sensitivity and specificity. HG classification
score is in the same order than human pathologists (this finding is likely to be
due to HG features that are known to be visually easier to detect).

(a) NORM (b) HP (c) LG (d) HG

Fig. 4. Patch classification: each box is located at the center of the corresponding patch
with a color representing the predicted class: HP (red), NORM (white), LG (green),
HG (blue). The black dashed square visually represents the patch scale (ϕ = 600µm).
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Table 4. WSI inferences: confusion matrices.

5.3 WSI Classification with 600µm Patches

Considering that the overall performance shown by 400, 600, 700 and 800µm
is similar, we decided here on to focus on ϕ = 600µm. Such a scale is a fair
compromise, considering that other works in the literature focus on similar
scales [15,24]. Figure 4 reports a patch-level classification result for the four
possible WSI classes. In particular, we observe that the model finds some HG
patches within the LG WSI (Fig. 4c), and viceversa (Fig. 4d). This is an expected
behavior, given that the dysplasia grade is provided by the pathologists accord-
ing to the quantity of tissue (in our case, the number of patches) with high-grade
dysplasia. At ϕ = 600µm, the classification between TA and TVA classes in gen-
eral is poor: this is due to the larger scale required to extract proper features for
adenoma classification. This, however, is not our goal, since we are here inter-
ested in classifying the dysplasia grade. Hence, we group HG and LG and we
obtain the confusion matrix shown in Table 4 on WSI: the score is competitive
to the human classification, as described in Sect. 5.2. We also report the con-
fusion matrix for the equivalent model, using RGB images: as also observed in

(a) NORM (b) HP

(c) LG (d) HG

Fig. 5. Regions where the trained neural network model focuses on 600µm patches.
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Sect. 5.1, the use of gray-scale images positively impacts on the WSI inference
task. Additionally, we inspect the areas our deep model focuses in order to per-
form classification by using Grad-CAM. Figure 5 shows that areas of focus are
consistent with the most relevant features of each histo-pathological category.
For example, the hot spot of the HP sample is on a serrated gland which is a
characteristic finding of this entity.

6 Conclusion

In this work we have designed a neural network-based pipeline for the classi-
fication of colorectal polyps in histopathological slides. We found performance
benefits by applying grayscale Luma transformation [16] to input tissue patches.
We focused on four tissue classes: normal, hyperplastic, high-dysplasia and
low-dysplasia adenoma. The dysplasia degree of adenomas is a very impor-
tant evaluation element for the histopathologist because it leads to different
post-polypectomy surveillance protocols [11]. The collected data enable a clas-
sification on the dysplasia degree in adenomas. The classification is performed
by ResNet-18, inspecting WSI in single patches, and then classified averaging
scores on all the patches. Our experiments show a performance which is very
close to human pathologists [8]. Future work includes the design of a neural net-
work model able to learn to extract relevant tissue RoIs from the whole slide,
evaluated by pathologists’ agreement, and the deployment of a multi-scale deep
learning pipeline.
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Abstract. Coinciding with advances in whole-slide imaging scanners, it
is become essential to automate the conventional image-processing tech-
niques to assist pathologists with some tasks such as mitotic-cells detec-
tion. In histopathological images analysing, the mitotic-cells counting is
a significant biomarker in the prognosis of the breast cancer grade and
its aggressiveness. However, counting task of mitotic-cells is tiresome,
tedious and time-consuming due to difficulty distinguishing between
mitotic cells and normal cells. To tackle this challenge, several deep
learning-based approaches of Computer-Aided Diagnosis (CAD) have
been lately advanced to perform counting task of mitotic-cells in the
histopathological images. Such CAD systems achieve outstanding per-
formance, hence histopathologists can utilise them as a second-opinion
system. However, improvement of CAD systems is an important with
the progress of deep learning networks architectures. In this work, we
investigate deep YOLO (You Only Look Once) v2 network for mitotic-
cells detection on ICPR (International Conference on Pattern Recogni-
tion) 2012 dataset of breast cancer histopathology. The obtained results
showed that proposed architecture achieves good result of 0.839 F1-
measure.

Keywords: Breast cancer histopathological images · Mitotic cell
counting · Deep learning techniques · YOLO-v2 network

1 Introduction

In the World Health Organization, Nottingham Grading System is recommended
to use for tumour grading [1]. This system has been widely used to estimate the
breast cancer grades based on three morphological features in histopathological
images. One of them refers to the deformation occurring in the cell nucleus
and it is known as nuclear atypia. The second refers to the cancer cells rate
in regular tubule formation and it is known as tubule formation. The third is
known as mitotic-cells count and it is used to estimate of mitosis cells from the
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division process. Therefore it is the most significant biomarkers among the three
morphological features [2].

Recently, Deep learning techniques have proven their ability to achieve a
great success in histopathological image analysis tasks. Therefore substituting
the visual inspection detection by automated deep learning-based detection for
breast cancer prognosis is becoming important. Whereas automated detection
techniques could help the pathologists in some tiresome, tedious and time con-
suming tasks. Moreover, avoiding pathologist inaccurate prognosis, which could
have serious consequences. Additionally it can be used in breast cancer prognosis
as a second-opinion system. Which in turn improve diagnosis accuracy and treat-
ment plan. Despite this, there are several challenges in automating mitotic-cells
detection methods; as in the histopathological images with the high appearance
variance, it is rough distinguishing the mitotic cells from normal cells. Therefore
the environment of data-preparation must be standard to avoid the issues in
slides preparation and their scanning [3].

The traditional methods of mitotic-cells detection depended on the extracted
hand-crafted features from the region proposals. These methods require a trained
pathologist to identify the features that characterise various cancer severity lev-
els. Whereas deep learning methods can extract the hierarchical features from
image without the need of trained pathologist, which avoid us the challenges
of manual feature extraction from the images. In analysis of the breast cancer
histopathological images for ICPR2012 dataset, the mitotic-cells detection tech-
niques are categorised according into the extracted features from Regions Of
Interest (ROIs). In one of the approaches, conventional image-processing tech-
niques [4–7] are utilised to extract the handcrafted features, which after that
are employed to train the machine-learning classifiers. In the other approach,
convolutional neural networks (CNNs) [8–11] are utilised to extract the deep
features from ROIs. These features are capable of self-learning for the different
image features.

In the mitotic-cells detection task, some researchers deal with it as a classi-
fication task [12,13], while others deal with it as a semantic segmentation [2,14]
or object-detection task according to the problem formulation. In classification
task, the cells are identified as mitosis or normal cells. In semantic segmenta-
tion, the mitotic cells are segmented according in the pixels-based annotations.
Whereas in object-detection, the cells are detected and counted. In this work,
we deal with the detection of mitotic-cells as an object-detection task.

Up to now, several CNNs [2,15–17] have emerged and proven their ability for
mitotic-cells detection in ICPR 2012 dataset. These CNNs composed two stages
and depend on generating region proposals, such as Faster Region-based CNN
(Faster R-CNN) [18]. In addition to that, there is another methodology composed
one stage and based on the regression methods. It integrates components of
object classification and object detection together in the same deep learning
architecture, such as the YOLO [19] and YOLOv2 [20] models. Such models are
characterised by speed and accuracy. In this paper, we leverage the speed and
precision of YOLO architecture and propose mitotic-cells detection architecture
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based on the modified YOLO v2 model. The backbone of proposed architecture
is ResNet50 model [21] as feature extractor, then follows by YOLO detector to
predict the mitotic-cells of breast cancer in ICPR2012 dataset.

This paper is organized as follows. In Sect. 2, the proposed methodology
in this work is briefly described. In Sect. 3, the experiment and its results are
presented in detail. Section 4 provides a brief summary of the paper.

2 Methodology for the Proposed Work

In this section, we present a brief explanation of target dataset, data prepro-
cessing, data preparation, anchor boxes choice, detection accuracy metric and
finally the proposed architecture that are used in this work.

2.1 Target DataSet

The Hematoxylin and Eosin (H&E) stained images of ICPR 2012 dataset contest
[22,23] were acquired by both Aperio XT scanner and Hamamatsu NanoZoomer
Scanner. In this paper, we work on the Aperio XT scanner images, which com-
posed 35 training images and 15 testing images. These images were possessed
from 10 high-energy fields (HPFs) for five breast cancer biopsies. The HPFs have
size of 512 × 512µm2/pixel at 40× magnification and the dataset images have
size of 2084 × 2084 pixels. The training set images hold 226 mitotic-cells while
the testing set images hold 101 mitotic-cells. The annotations were performed
by histopathologists in mutual consent.

2.2 Data Pre-processing

In this section, we pre-process dataset images into two steps as follows:

– In the first step, we stain normalise histopathological images of ICPR 2018
dataset as described in [24] to reduce the color variation and standardise
the H&E stained images. The stain normalisation toolbox [25] for several
techniques of histological images are found the Warwick University website.

– In the second step, we augment training data to enlarge ICPR 2012 MITOSIS
dataset. In this paper, we have rotated the training images with angles of 180
degrees, and then flipped them in horizontal and vertical direction to generate
an extra augmented image without affecting on the input images quality [8,26]
as well as to avoid over-fitting problems [27] and features poorly generation.

2.3 Data Preparation

Data preparation is essential step in our proposed architecture. In this step,
we create two tables, one for storing training data information and the other for
storing test data information. Each table composed from two columns, where the
first column holds the image file storage paths and the other holds dimensions
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of the mitosis bounding boxes. After that, we store the tables as MATLAB files.
Whereas, we prepared the bounding boxes for mitotic-cells manually according
to the ground-truth label of images in ICPR2012 dataset. Each bounding box
is a vector with four elements in the formula [x y width height]. Whereas, the
coordinate (x, y) represents the upper left corner value for bounding box. The
other variables represent height of bounding box and its width (pixels).

2.4 Anchor Boxes Choice

Anchor box is essential parameter that has an impact on the deep detectors per-
formance. In this paper, we use Intersection-Over-Union (IoU) distance metric to
estimate anchor boxes from training data. IoU distance metric has the ability to
clustering similar boxes together, which results in anchor box estimates that fit
the data. The ICPR 2012 dataset is annotated by the pixel-level ground truth
type which provides us with enough information to estimate bounding boxes
for mitotic-cells. From empirical analysis, we determine thirty two anchor boxes
with 64 and 128 scale to satisfy YOLO v2 performance requirements.

2.5 Accuracy Metric of Detector

One of the common metrics for evaluating a trained detector on testing images
is F1-Score, and it is defined by:

F1Score =
2 × Precision×Recall

Precision + Recall
(1)

From the above equation, precision refers to detector’s ability to make correct
detections, while recall refers to detector’s ability to detect relevant objects.

Precision =
tp

tp + fp
(2)

Recall =
tp

tp + fn
(3)

The above two equations use the following metrics; tp (true positive) is number
of the predicted mitotic-cells that intersect with their corresponding mitotic-
cells in ground truth, while fn (false negative) is number of the mitotic-cells
in ground truth that have not been predicted. Otherwise is fp (false positive)
which represents number of the predicted mitotic-cells that wrongly predicted
as mitotic-cells.

2.6 Proposed Architecture

The proposed architecture is inspired by YOLO v2 architecture. It is composed
from ResNet-50 feature extractor followed by YOLO v2 detector layers as illus-
trated in the Fig. 1.
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Fig. 1. The proposed detector architecture, where “Conv” represents the convolution
block which followed by two layers; Rectified Linear Unit (ReLU) and Batch layers; “f”
represents the output number of filters; “s” represents the stride of all convolutions; p
is padding.

3 The Experiment and Its Results

The experiment was carried out by using ICPR 2012 dataset. It was imple-
mented in MATLAB R2020a on a desktop computer has a CPU with a 3.60-
GHz Intel�Core-i7-7700, GPU wirh NVIDIA GeForce GTX 1070 and RAM
with 32 GB.

– For pre-processing steps, we stained normalise dataset images, and then
divided them into sixteen non-overlapping patches, each patch has a size of
521 × 521 pixels to cover the whole image. Next, we augmented the patches
of training set. After that, we drew out the bounding boxes for mitotic-cells
manually according to their ground-truth label to fill in MATLAB tables by
dimensions of bounding boxes. Now the data is ready to train our proposed
method.

– For feature extractor model, the feature extractor was fed by the aug-
mented training patches. So, we change input layer size of ResNet-50 model
to (521×521×3). After that, the images were divided into training 80%, and
validation 20%.

– For training deep YOLO detector, we set Stochastic Gradient Descent
with Momentum (SGDM) to 0.90 with mini-batch size of 128, weight learn
rate to 20, bias learn rate to 20, and initial learning rate to 0.0001. We
validated our model every three iterations, and selected 120 iterations as
the maximum number.

The performance results of the modified YOLO v2 decoder were reported
in the Table 1. We utilised the standard metrics; precision, recall and F1-score



340 M. M. Al Zorgani et al.

to evaluate the efficiency of our deep decoder for mitotic-cells prediction on the
ICPR 2012 dataset. These results have obtained from the three Eqs. 1, 2, 3.

Table 1. The standard evaluation metrics of our model

Metrics Our detector

Recall 0.7765

Precision 0.8049

F1 Score 0.7903

Table 2 illustrate the comparative analysis of our detector results with some
of the works results, which were previously published on the same ICPR 2012
dataset. It can be observed from Table 2 that obtained result of F1-score is
0.7903%. This result confirms that our proposed detector in terms of detection
accuracy outweighs the other methods that used the same image dataset.

Table 2. Comparison of the performance of modified YOLO v2 detector with other
methods

Methods F1-Score

[11] Albarqouni and others 0.4330

[9] Wang and others 0.7350

[8] Cireşan and others 0.7820

[17] Li and others 0.7840

[10] Chen and others 0.7880

Our Detector 0.7903

In time analysis, the detector velocity to quantify mitotic-cells is an impor-
tant factor in clinical applications. Our method takes 6 s per image, whereas the
proposed methods by Cireşan et al. [8] and Li et al. [2] take 31 and 7 sec/HPF,
respectively. So, our detector outperforms some other methods in term of speed.

4 Conclusions

In this study, we have investigated the YOLO architecture to tackle the detec-
tion problem of mitotic-cells in breast cancer histopathological images. Therefore
we presented a simple detector based on YOLO architecture to leverage of its
speed. The proposed detector is the modified YOLO v2 with ResNet-50 back-
bone network as feature extractor. The results evaluated on ICPR 2012 dataset
demonstrated that our detector is robust. It is fast and thus reduces the time that
pathologists take for mitotic-cells detection. In future, we will plan to improve
the proposed detector to include ICPR 2014 dataset.
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Abstract. Lifestyle habits have a direct influence on people’s health. Regular
physical activity, combined with good nutrition, helps to prevent the early onset
of diseases such as cardiovascular disease. In fact, a significant number of patients
diagnosedwith cardiovascular disease is associatedwith apoor diet and a sedentary
routine. However, in today’s busy life, it is not always easy to find the motivation
for adopting healthy lifestyle habits. Therefore, the existence of a system for rec-
ommending healthy meals and workouts can provide the necessary incentive for a
healthier life. In this paper, we describe the implementation of a recommendation
system following a case-based reasoning approach supported by specific rela-
tional databases and ontologies in the field of nutrition and physical activity. The
system creates a plan for daily recommendations adapted to the preferences and
restrictions of its users, and evaluates the outcome of the recommendations using
indexes that quantify cardiovascular health. The success of the recommendations
thus depends on a positive evolution of the index after the end of the proposed
plan. This system thus presents a new perspective using case-based reasoning
and ontologies to propose a diet and exercise plan, evaluating the success of the
recommendations objectively through cardiac indexes.

Keywords: Case-based reasoning · Cardiovascular diseases · Ontologies ·
Recommender systems ·Well-being indexes

1 Introduction

Lifestyle habits and daily routine tasks have a direct impact on well-being and Cardio-
vascular Health. Due to lack of time and motivation, many of the actions people take
in their daily lives, especially those related to diet and exercise, are not the result of
thoughtful actions and do not reflect healthy choices. At this level, the existence of a rec-
ommendation system for diet and physical activity can guide its users towards healthier
lifestyle habits. However, conceiving recommendation systems for these areas presents
several difficulties due to the complexity of the problems, resulting from the preferences
and restrictions of each individual, as well as the high uncertainty associated with the
success of the recommendations.

In this domain, the Case-Based Reasoning (CBR) approach, which consists in
proposing similar solutions to the previous successful cases, presents itself as a technique
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R. Su et al. (Eds.): MICAD 2021, LNEE 784, pp. 345–353, 2022.
https://doi.org/10.1007/978-981-16-3880-0_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3880-0_36&domain=pdf
http://orcid.org/0000-0001-6505-9888
http://orcid.org/0000-0003-2157-8891
https://doi.org/10.1007/978-981-16-3880-0_36


346 A. Duarte and O. Belo

with identical characteristics to the human reasoning. The study of cognitive science has
demonstrated that humans do not only learn concepts and tasks, but they also learn to
generalize and easily adapt to novel situations. Based on their past experiences, even
with few examples, they have the ability to infer new knowledge and newways of solving
problems. The human capacity for generalizing is supported, therefore, in the knowledge
of similar cases that have occurred in the past. Human reasoning uses memory and by
analogy or association with previous similar successful solutions, it is able to propose
solutions to new problems [1]. Due to its ability to propose solutions in areas where the
knowledge domain is limited and uncertain, to solve complex problems and to improve
the performance of the system with experience, CBR becomes an oriented approach to
artificial intelligent systems in the real world [2, 3].

The aim of the present work is to implement a recommendation system based on a
CBR approach that helps its users to adopt a healthier lifestyle. The system proposes
a 30-day diet and exercise recommendation plan. The paper is divided into five main
sections. This first part briefly introduces the case under study and the next chapter
gives an overview about different applications of CBR. In its turn, Sect. 3 describes
the considered methodology for the implementation of the proposed system, whereas
Sect. 4 demonstrates some functionalities of the developed system. Finally, the last
section presents the main conclusions and some possible future work.

2 The Evolution of Case-Based Reasoning

The first CBR system mentioned in the literature is the program Cyrus, developed by
Janet Kolodner, in 1983 [4]. Cyrus is a software that enables to retrieve events related to
the former Secretary of the USA, Cyrus Vance. It acts as a program to answer questions
about this political dignitary [5]. In the late 1980s, the first CBR systems for the medical
field appeared, such as CASEY, which was introduced by Phyllis Koton in 1988. Casey
is a CBR software that uses the United States Heart Failure Program as a model to
diagnose heart problems and, as a result, to propose appropriate treatments [6]. In the
field of food recommendation systems, [7] proposes Chef, a recipe recommendation
system for Szechwan cuisine, based on users requests. In 2003, [8] created Mikas, a
menu recommendation system, based on CBR, that takes into account the needs and
preferences of the users.

An important evolution in the food recommendation systems occurred with the inte-
gration of ontologies. One of the examples of this inclusionwas proposed by [9], in 2008,
as part of the first Computer Cooking Contest. The authors presented ColibriCook, a
CBR system that uses an ontology to adapt culinary recipes according to the requests of
the users. In general, the vast amount of the developed CBR systems do not analyse the
evaluation of the success of the recommendations based on quantifiable metrics. Instead,
these systems typically use the feedback given by the users or experts to classify the
results. In addition, there are few examples in previous research integrating ontologies
with CBR presenting a comprehensive view of health and well-being, such as proposing
joint recommendations of nutrition and physical exercise.
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3 Methodology

3.1 The Proposed System

The developed system consists in a CBR approach that is supported by cardiovascular
well-being indexes. These indexes are calculated based on a set of personal and clinical
data, using an adapted methodology from QRisk2 [10], and support the evaluation of
the success of the recommendations. For the implementation of the system, each case
is represented by a description, containing a set of relevant attributes, a justification, a
solution and a result, as listed in Table 1.

Table 1. Case representation structure.
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Regarding the data, we considered a mixed persistence with two MySQL databases
[11], to store and retrieve the data (a case base and a general archive), an ontology cre-
ated with Protégé 5.5 [12], for adapting the solutions of the cases, and a set of Semantic
Web Rule Language (SWRL) rules, for inferring knowledge based on the individual
restrictions of each user. The ontology represents the available knowledge about nutri-
tion, physical exercises, and restrictions. Since it stores the most important properties
and values in these domains, the ontology serves as a basis for recommending the best
options regarding diet and exercise. Considering the specificities of each user, it enables
to calculate the similarity between menus and between exercises and to recommend
the most similar ones. The option for a single ontology encompassing these knowledge
domains allows to separate the different concepts, on the one hand, and to integrate all
the knowledge required for the implementation of the system in the same structure, on
the other hand.

In the food domain, the ontology is organised according to the classes Dish, Type of
Dish, Type of Meal, Season, Ingredients and Nutrients. On the other hand, in the field
of physical exercise, the ontology is divided considering the main types of exercises:
Flexibility, Resistance, Strength and Balance [13]. Moreover, the ontology also contains
the “UserRestriction” class, which is divided into two subclasses related to the dietary
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and physical restrictions of the users. In addition to these aspects, the ontology has a set
of object and data properties that, together with SWRL rules, allow inferring knowledge.
For example, in the case of a user who is lactose intolerant, it is necessary to ensure that
none of the proposed menus contains any type of dairy ingredients. To address this
limitation, the following rule was defined:

hasIngredient(?m,?d)^Dairy(?d)->cannotEat(intolerantLactose,?m) 

To infer knowledge from the ontology, axioms and rules, Pellet was the chosen
reasoner.

3.2 Case-Based Reasoning Steps

Retrieve. The process of retrieving the most similar cases starts by applying the k-
Nearest Neighbors (k-NN) algorithm and selecting the k cases from the case base that
are most similar to the query (new case). For this purpose, the local similarities between
the attributes of the query and the attributes of the cases from the case base are calculated
and the global similarity for each case with respect to the query is returned. With the
goal of eliminating cases that have a low global similarity with the query, we de-fined
a minimum threshold and only considered the cases with a similarity above this value.
Consequently, there may be Cold Start (CS) situations, in which no case is re-turned. In
these cases, it is necessary to consider fixed rules to do the recommendations. Therefore,
depending onwhether any cases are returned, there are two different methods to consider
in the process: the CS problem and the determination of the most similar case. Figure 1
schematically illustrates the main steps to retrieve the cases.

Fig. 1. Considered methodology for case retrieval.

The rules to be applied in CS situations have been defined based on the recommended
dietary intakes indicated in [14], and vary according to the characteristics of the users.
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Regarding the determination of the best case, we established Eq. 1, considering that
the index variation corresponds to the average variation of the cardiovascular well-being
index, and that the degree of success reflects the confidence in a successful result. Using
this equation these values can be converted into a score and the best case corresponds to
the returned case with the highest value.

Score = Similarity × Index Variation × Degree of Success (1)

Reuse. The solution obtained in the previous step must be adapted to the new case, con-
sidering the restrictions, preferences and specificities of the newuser.More concretely, to
adapt the diet plan, the dietary restrictions, food preferences and recommended caloric
intake of the new user must be taken into account. In this case, the methodology for
adapting the solution begins with the execution of the following steps:

1. Retrieving the available menus: all the menus that satisfy the recommended calories
intake for that user, according to the type ofmeal (breakfast, lunch, snack and dinner).

2. Retrieving the restricted menus: i.e. menus that contain at least one ingredient to
which the user has an intolerance or is allergic.

3. Identifying the possible menus: i.e. menus that the user can eat (menus retrieved in
step 1. but not indicated in step 2.).

After these steps, the methodology varies depending on the type of retrieval. Thus,
towards a CS situation, the methodology is completed by the following procedures:

4. a) Retrieving the menus that comply with the CS rules: i.e. menus that respect the
CS applicable rules.

5. a) Proposing menus: first, the similarity between the menus from 4.a. and the pref-
erences of the user is calculated. Then, the results are sorted in descending order
according to the similarity values obtained. Finally, the three most similar menus are
selected and proposed.

6. a) Selecting the recommended menu: the recommended menu corresponds to the
menu selected by the user among the three suggestions and becomes part of the meal
plan.

Conversely, when a similar case (best case) is retrieved, the first three steps are followed
by:

4. b) Retrieving the equivalent menus: the nutrients of each possible menu from 3.
are compared to the nutrients of the reference menu (best case) using similarity
measures. Only the menus with a similarity higher than a predefined threshold are
returned.

5. b) Proposing menus: first, the similarity between the menus from 4.b. and the prefer-
ences of the user is calculated. Then, the values of similarity in terms of nutritional
values and similarity in terms of preferences are weighted and the results are ranked
in descending order. Finally, the top three menus are selected and presented to the
user.
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6. Selecting the recommendedmenu: the user selects a menu from the available options
and that menu is included in the meal plan.

For the execution of these steps, we developed code in Java and constructed SPARQL
statements in order to execute the connection to the ontology and to return the menus to
recommend.

The adaptation process of physical activities involves a similar methodology. The
first step consists in retrieving the available exercises for the user, considering his/her
restrictions. These restrictions are related to injuries or physical limitations in specific
parts of the body, equipment availability, and the time and intensity that the user is willing
to dedicate to the exercise.

In a next step, to define the methodology for the CS problems, we followed the
recommendations of [15, 16] and converted them into rules. Thus, we created SPARQL
statements in order to filter only the exercises that comply with the CS rules. After, for
each returned exercise, the similarity with the user’s preferences is calculated, and the
exercises with the higher values are proposed for selection. On the contrary, when the
best case is returned, the similarity is determined considering the proximity between
the types of exercises and the user’s preferences. Again, the exercises with the highest
similarities are proposed for selection.

Revise. Since in CBR approaches the correspondences between cases are not com-
pletely equal, and there is no guarantee that all cases behave the same towards the same
solutions, the system requires a later validation of the proposed solutions. First, the result
of the case must be classified as a success or a failure, depending on the variation of the
index calculated by Eq. 2, where Vfinal is the value of the index after the end of the plan
and Vinitial is the value at the beginning of the plan.

Index variation = Vfinal − Vinitial

100
(2)

As there is no linear correspondence between a solution and the result of each user,
it is possible that successful and unsuccessful results regarding the same case exist
simultaneously in the case base. Therefore, an important metric to take into account is
the degree of success of the cases in the case base. This metric reflects the probability
of the solution to produce a successful result, considering the ratio between the number
of successes and the total number of cases, as given in Eq. 3.

If the result is successful, 1 unit is added to the number of successful cases and the
degree of success is updated according to the equation. On the other hand, if the outcome
is not successful, 1 unit is added to the number of unsuccessful cases. In this case, if the
degree of success is high, the next step is performed and, if it is low, the case is removed
from the case base. This occurs because the case already contains a significant number of
unsuccessful cases and, for this reason, it must not support the recommendation system.

DS = numSuccess

numSuccess+ numUnsuccess
(3)

Retain. At the end of the review phase, the new successful cases are stored in the case
base and/or in the archive, as summarized in Fig. 2. In these situations, it is necessary to
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verify whether the 30-day plan is similar or significantly different from the plan of the
best-case solution. If it is similar, the attributes of the new case are added to the best-case
attributes. If not, the case is only inserted into the archive and when that case represents
a considerable number of records it is inserted into the case base as a new case. The
same methodology is followed when the retrieval is done using CS rules.

Fig. 2. Considered methodology for retaining cases.

The inclusion of a new record into one of the existing cases in the case base is done
in a weighted way, taking into account the number of cases that are represented by the
existing record in the case base. Considering that the case record represents n cases,
then, each of its parameters will assume new values, according to the Eq. 4, where NVi
represents the new value of parameter i, NCi is the value of parameter i of the new record,
and IVi is the initial value of parameter i in the case base.

NVi = NCi + n× IVi

n+ 1
(4)

4 The Developed System

To implement the proposed system, we developed an application using Java and JavaFX
in order to enable the interaction with the users. For evaluating the created program, we
performed some tests inserting new queries. Each time a new case is introduced, the
program asks for some personal and clinical attributes of the user, which are required
for the CBR steps. In the next phase, the application performs the retrieval and the
reuse stages. At the end of this step, the window depicted in Fig. 3 appears to the user
indicating three alternative dishes for each meal. At this point, the user must specify
his/her preferences by selecting a single option for each meal.

After choosing the preferredmenus, three types of exercises are presented. Similarly,
the user should select one of the available options. Once confirmed this second choice,
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Fig. 3. Graphical interface displayed after inserting the values of the query.

the system stores these data in the archive. This recommendation procedure is repeated
daily until the plan is completed. At the end of the 30-day plan, the user is asked to
update his/her clinical values in order to determine the success/failure of the proposed
solution.

5 Conclusions and Future Work

This paper describes the development of a recommendation system in the field of nutri-
tion and physical activity, following a CBR approach supported by databases and an
ontology to adapt the cases. This work leads to the conclusion that it is possible to imple-
ment a recommendation system in the domain of Health, without requiring human inter-
vention to verify the success/failure of the recommendation. Furthermore, the present
work has highlighted that the knowledge integrated in an ontology permit an efficient
adaptation of cases.

In summary, since it is not always possible to dedicate much attention to our daily
choices, the proposed system can promote the adoption of healthier lifestyle habits,
by proposing personalized recommendations for food and exercise. However, there are
some important issues that need to be examined in future research. The most obvious is
data limitation. Since no real datawere used, the effectiveness of the system in promoting
cardiovascular health could not be tested. Moreover, further studies in this area should
consider additional aspects that were not contemplated in the present work, such as
remote communication and security issues. Another opportunity for improvement in
future work would be to consider the quantities of the ingredients and propose different
portions of each menu according to the nutritional needs of the users. It would also
be interesting to explore the combination of different workouts in the same exercise
recommendation.
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Unsharp Masking with Local Adaptive Contrast
Enhancement of Medical Images
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Abstract. In this paper we present a generalized algorithm for unsharp mask-
ing of medical images which takes as one of its inputs a high contrast image
underwent local adaptive contrast enhancement. Selection of optimal values of
the number of histogram bins, processing window size and intensity lower and
upper limits in iterative manner is part of applying Contrast Limited Adaptive His-
togram Equalization (CLAHE). Experimental results reveal higher quality of the
output images both in terms of root mean square contrast and sharpness. Achieved
quality, both visually and quantitatively, is compared to that from theAdaptiveHis-
togram Equalization (AHE) algorithm, limited histogram stretching and ordinary
histogram equalization which proves its applicability. The algorithm is considered
appropriate for processing a number of types of images, such as CT, X-ray, etc.

Keywords: Unsharp masking · Contrast enhancement · CLAHE · CT · X-ray

1 Introduction

Medical images contrast plays extremely important role during visual inspection of the
internal structure of the human body for issuing correct diagnosis and further treatment
of patients. Over the years there are many proposed techniques for contrast enhancement
[1–3].

One of the more recent studies related to the CT image analysis, using deep learning,
also include an aspect of predicting the contrast enhancement [4]. A number of maps,
such as class activation, its gradient-weighted variant, saliency and backpropagation
modifications are combined in a new type of a map which further eases the prediction
process. As a result voxel visualization is reported to be more clear and allows for more
precise feature selection to improve overall accuracy. Prediction probability for some of
the modifications tried goes over 90%with registering higher specificity for the saliency
map in particular.

Kallel and Hamida [5] rely on more direct approach, that is the discrete wavelet
transform with singular value decomposition in order to implement adaptive gamma
correction. Singular values are found from the low-low frequency sub-band and then
modified by a factor, followed by classification of the whole sub-band into low and
average contrast types. Adaptive gamma correction is applied over the low contrast
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areas. All these steps take place in wavelet domain prior restoring the final enhanced
image. Increased efficiency is reported over other well-known methods.

Another recent approach for CT contrast enhancement [6] employs clustering-based
algorithmwhere the input image is at first converted through one-dimensional separation
on a column basis. Then, data sorting of the elements follows prior the clustering of
subsequent elements, ending with a labeling in order to get the output image. As main
benefit of the approach, it is pointed out its lower processing time with regards to 5 other
algorithms.

Enhancement of X-ray images also has its own development in the recent years.
Irrera et al. [7] apply multiscale contrast enhancement after patch-based filtering of
X-ray images. Noise presence is estimated in a parametric fashion in order to opti-
mize the level of contrast increase without corrupting intolerably the quality of output
images. Visual evaluation, as well as the signal and contrast to noise ratios, prove the
proposed approach applicable. Kushol et al. [8] achieve contrast enhancement of X-ray
images by morphological operators. They apply the top-hat and bottom-hat operations
and the parameters of the structuring element are autonomously estimated from the
intensity gradient over processed area. Visual comparison of resulting images with the
contrast-limited adaptive histogram equalization (CLAHE) proves the applicability of
this technique. Another autonomous algorithm [9] making use of CLAHE at the addi-
tion of noise and high-pass filters aims to adapt its performance based on few tunable
parameters to the modality being registered. Around 48% of the test database involved
in the study got highest evaluation score of 5 as a subjective measure, given by medical
personnel and other experts.

The aim of the study presented in this paper is to evaluate the performance of the three
of the most popular image contrast enhancement algorithms – histogram equalization,
image adjustment and CLAHE when applied on CT and X-ray images for unsharp
masking. Based on experimental results, simple general purpose algorithms for selecting
the optimal parameters of all input arguments for these algorithms are proposed in Sect. 2.
Their efficiency is presented in Sect. 3 where the experimental results are reported. In
Sect. 4 a conclusion is made.

2 Algorithms Description

The well-known unsharp masking algorithm for general purpose images [3], especially
in photography, is given in Fig. 1. In its form here, it takes a grayscale input image I(i,j),
where i and j are the spatial coordinates of the pixels. In order to get a better contrast
and details, a Gaussian kernel [10] blurs it to G(i,j) and by subtracting with the original
a contour mask C(i,j) is found. After applying any contrast enhancement algorithm the
resulting image E(i,j) is combined with I(i,j) and C(i,j) to get the final result O(i,j).

According to the purpose of the current study, three of the most popular contrast
enhancement algorithms are tried within the unsharp masking scheme – the histogram
equalization (histeq) [1], image intensity adjustment (imadjust) [2] and the contrast-
limited adaptive histogram equalization (CLAHE, adapthisteq) [11].

Since histeq has the number of histogram bins (2n, n= 1, 2, 3,…) as input argument,
the imadjust – the clipping limit cl of the intensity level in the range of low intensities
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Fig. 1. General unsharp masking scheme

and (1 − cl) – in the high, and the CLAHE – the tile size over one dimension m, again
the clipping limit cl, and the number of histogram bins 2n, there is a need to select those
based on certain criteria. A simple way of doing so, is to seek for the highest possible
root mean square contrast RMSC [12]:

RMSC =
√

1

MN

∑M−1

i=0

∑N−1

j=0

(
O(i, j) − O

)2
, (1)

whereM andN are the number of rows and columns of the resulting imageOwith its
mean intensityO. In addition to that one would expect also as high as possible sharpness
(Shrp) [13] of the image which could be found over particular direction (d), according
to:

Shrpd = 1

P
(T1 − T2)

∑P

p=1
S2p , (2)

where T1 and T2 are the maximum and minimum densities of an area of the image over
which the Shrpd is sought; P – the number of points through which the change of the
intensity profile Sp (slope) is traced. More generally, the sharpness as a vector filed could
be found from the gradient of the intensity in all image points. The norm of that vector
is what is used as a scalar in this study.

It may turn out that both the RMSC and Shrp could rise or fall monotonically without
any expressedmaximumand in the same time the quality of the processed image decrease
significantly, rendering it unusable. In order to avoid that, the peak signal-to-noise ratio
(PSNR) [3] and the structural similarity index (SSIM) [3] are used as limiting factors into
the selection of appropriate input arguments for the contrast enhancement algorithms.
Optimal selection for histeq and imadjust is given in Fig. 2.

The three input arguments for the CLAHE algorithm could be found, following the
iterative approach, presented in Fig. 3.
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Fig. 2. Finding optimal parameters for histogram equalization (a) and image adjusting (b)
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Fig. 3. Finding optimal parameters for contrast-limited adaptive histogram equalization

3 Experimental Results

The test database consists of 103 CT images with dimensions 512 × 512 pixels each,
16 bpp, part of theDeepLesion gathering [14] and 105X-ray images, 1024× 1024 pixels
in size, with 8 bpp representation, which come from the ChestX-ray8 [15] collection. All
experiments are implemented on a desktop computer with Intel Core i5 x64 processor,
having 4 cores and operating at 3.1 GHz, 12 GB of RAM under the control of Linux
Ubuntu LTS 14.04. The simulation environment is Matlab R2016a.
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The only adjustable parameter for the histeq algorithm, being the number of bins
to process from the histogram of the input image 2n, is found to be 64, that is n = 6.
While the average RMSC and Shrp from all CT images are high for n = 1, around 0.5
and 0.028, respectively (Fig. 4), the PSNR and SSIM for the processed images are too
low, below 10 dB and 0.3 in the same time. A saturation for the similarity from above
between the original image and enhanced one is observed for n = 6 and higher, where
SSIM reaches around 0.6. That bound is thought to define the optimal n. Similar results
are obtained for the X-ray images.

a              b 

c              d 

Fig. 4. Finding the optimal number of bins for the histogram processed by histeq

Analogous approach is undertaken when estimating the optimal clip limit for the
imadjust algorithm. Both the RMSC and Shrp parameters rise monotonically but SSIM
starts to fall from almost 1 after cl = 0.01 and PSNR drops significantly below 50 dB
after that value which means significant deterioration of the image structure. Hence,
clopt is selected to be 0.01. This result is true for both CT and X-ray images.
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CLAHE supports high RMSC and Shrp for 2 histogram bins (n = 1) – around 0.18
and 0.016, respectively, which decrease gradually to 0.02 and 0.002 for n= 8 in the case
of CT enhancement. PSNR and SSIM however constantly rise close to 35 dB and 0.99,
respectively. The observed change of RMSC for X-ray images is from around 0.195 up
to 0.245, and Shrp changes from 0.01 up to 0.022 in the interval [1, 8] for n. SSIM is
above 0.8 when n n = 8. That’s why all subsequent experiments use n n = 8. In Fig. 5
the mutual influence of the clip limit (cl – from 0 to 0.3) and tile size (m – from 2× 2 to
64 × 64 pixels) reveals significant change in RMSC and Shrp of enhanced CT images.

a                b 

c                 d 

Fig. 5. Finding the optimal clip limit and tile size for the adapthisteq

The highest RMSC is obtained for cl = 0.3 (Fig. 5a) but PSNR drops below 20 dB
(Fig. 5c) and SSIM is around 0.7 (Fig. 5d). There is almost none dependency on the tile
size for all four parameters at fixed cl. In order to get most of the details in the image
preserved the following selection is made – clopt = 0.01 and m = 1 (2 × 2 tile).
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The averageRMSC, Shrp and processing time for each of the tested contrast enhance-
ment algorithms, when applied separately outside the complete unsharp masking proce-
dure, are presented in Table 1. It seems that histeq and adapthisteq are close one to each
other and better than imadjust with regards to all 3 registered parameters. The adapthis-
teq leads to higher sharpness in X-ray images but is slower than histeq for both types of
images. The fastest algorithm is imadjust.

Table 1. Average performance for histeq, imadjust and adapthisteq alone.

Algorithm CT images X-ray images

RMSC Shrp Time, s RMSC Shrp Time, s

Input images 0.0084 0.0005 N/A 0.2320 0.0099 N/A

histeq 0.2656 0.0185 0.0026 0.2926 0.0142 0.0071

imadjust 0.0210 0.0012 0.0012 0.2363 0.0101 0.0029

adapthisteq 0.1850 0.0108 0.0159 0.2832 0.0156 0.0183

Table 2 contains the final averageRMSC, Shrp and processing time,which represents
the period needed for the Gaussian blurring, finding the contour mask and the fusion of
it with the original and the contrast enhanced image (Fig. 1). The optimal parameters of
the Gaussian kernel, found empirically based on highest RMSC and Shrp in a separate
experiment carrying out test unsharp masking, are σ = 10 for the CT and σ = 0.8
for the X-ray images. Naturally, the Time is higher for the X-ray images due to their
higher resolution. The histeq algorithm has the peak values of RMSC but comparable to
those for adapthiseq and for the X-ray photos Shrp is higher for the adapthisteq. Both
parameters are considerably lower for the imadjust algorithm.

Table 2. Unsharp masking average evaluating parameters.

Algorithm CT images X-ray images

RMSC Shrp Time, s RMSC Shrp Time, s

Input images 0.0084 0.0005 N/A 0.2320 0.0099 N/A

histeq 0.1220 0.0086 0.0087 0.2232 0.0118 0.0207

imadjust 0.0155 0.0011 0.0076 0.1992 0.0102 0.0196

adapthisteq 0.0851 0.0051 0.0076 0.2162 0.0125 0.0191

The visual comparison between input and processed images (Fig. 6) show more
details in the range of the low and high intensities from the human body when employ-
ing adapthisteq algorithm in the unsharp masking. Slightly lower contrast and some
more difficult to distinguish areas appear in images, obtained with the histeq algorithm.
The overall contrast and some of the details’ visibility are lower for the imadjust with
comparison to the other two algorithms.
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a       b       c       d 

e       f       g       h 

Fig. 6. Original – a (CT), e (X-ray), and processed by histeq – b, f, imadjust – c, g, and adapthisteq
– d, h images

4 Conclusion

In this paper simple optimization procedures are presented for the histogram equaliza-
tion, intensity adjusting and the contrast-limited adaptive histogram equalization algo-
rithms in order to find optimal parameters for them. The root mean square contrast, the
sharpness and structural similarity between the contrast enhanced and original image
play the role of target parameters. Tests with CT and X-ray images confirm the plau-
sibility of the undertaken approach and the applicability of resulting images for the
unsharp masking algorithm to use them as input. The contrast-limited adaptive his-
togram equalization yields more detailed and contrast enhanced final images, followed
by the histogram equalization and the image adjusting algorithms at the price of more
computational time. The unsharp masking in this general and easy to implement form
is thought to be an useful tool for medical imaging purposes.
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Abstract. COVID-19, the most destructive global event in 2020, poses gigan-
tic challenges to global medical systems. Meanwhile, the useful concepts and
newly-emerging technical terms in medical field generate ambiguity and bring
difficulties in extraction, which would set immense obstacles to anti-epidemic
actions. To solve this problem, we built a knowledge graph by extracting six kinds
of medical entities from titles and abstracts related to COVID-19 in PubMed.
Then, we eliminated author name ambiguity and integrated articles’ publication
information as well as authors’ affiliation information into the graph. By this way,
connections are established between authors, articles, entities and affiliations. Our
model which aims at named entity recognition achieved an F1 score of 92.57%
on average. This graph not only allows us to seek out hotspots, utilize specific
knowledge and transfer research results quickly, but also helps us understand the
research development process. It can also aid scholars to focus on specific authors
and entities. This method of a knowledge graph is extensible and transplantable,
which means it will not be limited to COVID-19 research in the future.

Keywords: COVID-19 · Knowledge graph · PubMed

1 Introduction

At the beginning of 2020, COVID-19 has swept the world as a sudden epidemic, disrupt-
ing the peace of every family in every country in the world. The spread of COVID-19
is so fast and infectious that it is beyond everyone’s imagination. As a result, it has had
a catastrophic impact on the world’s population, economy, environment, and education.
The severity of the epidemic problem quickly drew a response from scientific researchers
in most countries, and academic research on vaccine development, drug research, and
disease transmission trend prediction on COVID-19 was quickly launched. Papers from
various fields and angles have been included on PubMed.

PubMed is an abstract database developed by the National Center for Biotechnology
Information (NCBI) under the National Library of Medicine (NLM). As one of the
most influential databases in the biomedical field, PubMed has the advantages of timely
update, free access, and high coverage rate. Therefore, we choose PubMed and LitCovid
(dataset in PubMed [1, 2]) as our data source.
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In this context, a complete and efficient retrieval approach is particularly important.
It must meet two requirements: on the one hand, it can enable researchers to quickly
obtain research progress in a specific research field, and on the other hand, it also needs
to provide a way for researchers to find research partners in the same direction. The
powerful information extraction capabilities and intuitive visualization functions of the
knowledge graph perfectly meet our needs, so we chose to construct the COVID-19
literature knowledge graph to summarize existing research.

In the research field of bio-entity recognition and knowledge graph, lots of schol-
ars has been fruitful. Song HJ used Word2Vec to complete Bio-NER, and got F1
score of 72.82% [3]. Ling, Luo added attention mechanism on BiLSTM-CRF model
to enforce tagging consistency and recognize CHEMDNER corpus and CDR task cor-
pus [4]. Roderic mapped local identifiers to shared global identifiers. He constructed
a knowledge graph based on this [5]. Xu trained Bio-BERT model to build a PubMed
knowledge graph, and achieved an F1 score of 86.04% [6]. The goal of our study is
building a knowledge graph about COVID-19 by extracting valuable information from
literatures and integrating multi-source data.

2 Building Methods

2.1 Named Entity Recognition

NER is an important issue in natural language processing and it also plays an important
basic role in building a knowledge graph. It can be said that if the problem ofNER cannot
be resolved reasonably, our follow-up works won’t be possible. Our article uses the
BERT-BiLSTM-CRF model to complete the extraction of biological entities in COVID-
19 related literature, our process of the model can be shown as Fig. 1.

Fig. 1. BERT-BiLSTM-CRF model

Bidirectional Encoder Representation from Transformers (BERT) is an Encoder
which is based on Bidirectional-Transformer. The Transformer model can be seen as a
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text sequence architecture depended on the self-attention mechanism. With this trans-
former, not only could we consider the contextual relationship more clearly and make
parallel calculations, but also allow the prediction sequence with no length limit which
means we can better capture the semantic features of the context. So, the multi-layer
Bidirectional-Transformer in BERT makes the sequence be constrained by the left and
right context at the same time. Compared with the ELMo model which was proposed
by Matthew E. Peters and others in 2018 [7], Bert can obtain contextual semantic
information better.

So, our first step is using the BERT pre-training language model to get the semantic
representation of each token. However, the basic BERT is based on common corpus
training and cannot be directly applied to our target medical field. It is necessary to fine-
tune the existing parameters of the model. We use WordPiece embedding to supplement
the missing words, which is an algorithm that decomposes a word into several different
units and expresses each unit. The results prove that this method can improve the effect
of extracting semantic features of uncommon words.

After getting the vector representation of each token, we input the vector into the
BiLSTM model. The structure of basic LSTM can be formalized as follows:

it = σ
(
xtW

i
x + ht−1W

i
h + bi

)
(1)

ft = σ
(
xtW

f
x + ht−1W

f
h + bf

)
(2)

ot = σ
(
xtW

o
x + ht−1W

o
h + bo

)
(3)

c̃t = tanh
(
xtW

c
x + ht−1W

c
h + bc

)
(4)

ht = ot ∗ tanh(ft ∗ ct−1 + it ∗ c̃t) (5)

In the formula, σ is the sigmoid activation function, xt is the input word at the
current moment, ht−1 is the hidden layer state at the previous moment,it, ft, ot represent
the values of the input gate, forget gate, and output gate at time t respectively. W , b
represent the weight matrix and bias vector, c̃t is an intermediate state, and ht is the
output at time t.

BiLSTM uses forward and backward calculations on the basis of LSTM to obtain
two different sets of hidden representations and then stitch the vectors to obtain the
final hidden representation. The improvement of LSTM allows us to better capture the
two-way semantic dependency and master the semantic co-occurrence information of
the context more effectively, thereby improving the performance of named entities.

We also set up different tags to predict the type of token, they are BIO (Beginning,
inside, out-side), X (subtoken of WordPiece), [CLS] (leading token of sequence), [SEP]
(delimiter of a sentence), PAD (padding in sequence). What’s more, the BIO annotation
is subdivided into six categories: Gene, Disease, Chemical, Mutation, Species, CellLine.
Input the word vector obtained by BERT into BiLSTM and pass through the softmax
classification, we can get the probability distribution of each token belonging to different
labels.
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In order to solve the problem thatBiLSTMdoes not consider the relationship between
labeled entity sequences, we introduce Conditional Random Field (CRF) to obtain the
globally optimal labeled sequence.

We define matrix P as the output of the BiLSTM layer, and the size of P is n × m,
n is the number of words, m is the label category. Pi,j represents the probability of the
word i in the sentence belonging to the label j. The probability of the entire prediction
sequence y = {y1, y2, · · · , yn} can be expressed as follows:

K(X , y) =
∑n

i=0
Ayi,yi+1 +

∑n

i=1
Pi,yi (6)

Matrix A is the transition matrix, Aij represents the probability of transferring from
tag i to tag j.

y∗ = argmax
ỹ∈YX

K(X , ỹ) (7)

ỹ represents the true value of tag, andYX represents all possible tag sets. The sequence
y∗ with the largest overall probability which is output by formula (7), is also the best
labeling result obtained after our model training.

2.2 Validation of BERT-BiLSTM-CRF

For the NER model, we need to perform a validity test. All of our data in this article
come from PubMed, a website which contains almost all papers in the medical field. The
data published on this website has been physically labeled, but the latest published and
included articles have not yet labeled information. Therefore, we set 70% of the labeled
articles in PubMed as the training data set, 20% as the test set, and 10% as the verification
set. The quality of our model is evaluated by the indicators of recall, accuracy and F1
score. In order to verify the effect of the model, we used the unfine-tuned Bert model,
Word2Vec, and Att-BiLSTM-CRF to compare and verify the data set. The results are
shown in Table 1.

Table 1. Performance of different models

Model name Precision% Recall% F1%

BERT 82.61 84.00 83.25

Word2Vec 72.82

Att-BiLSTM-CRF 91.65 90.04 90.84

BERT- BiLSTM-CRF 91.78 93.35 92.57

2.3 Author Name Disambiguation

It is common for researchers having the same name or surname, while the names and
affiliations of an individual changes over time. Therefore, when constructing a knowl-
edge graph, it is important to disambiguate different authors. So far, the commonly used
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methods are mainly divided into three categories. The first one is manual disambigua-
tion, searching for the author’s information and comparing the author’s message to make
judgments. The advantage of this method is its high accuracy, but it is time-consuming
and labor-intensive, which makes it impossible to be applied in huge data sets. The sec-
ond method is accessing public scholar registration platforms such as ORCID, Google
Scholar, and Semantic Scholar to get author’s information. This method can quickly and
easily obtain high-precision author identity information, but sometimes the coverage of
the research field is limited. The third method is to evaluate the similarity of two same-
name authors through algorithms to determine whether they belong to the same author.
The acquisition of author’s feature usually depends on the authors’ affiliation informa-
tion, titles and keywords of the published article, the information of the collaborators,
the type of journal, etc. In recent years, with the rapid development of machine learning,
the accuracy of such methods has reached a high level.

In our research, we integrate the data and information in Semantic Scholar and
Google Scholar to complete the disambiguation and mark the authors. First, we use a
two-classifier trained by the Semantic Scholar database to disambiguate each group of
authors with the same name, and add the processed authors as increments to the created
author dataset. Then use the corresponding author’s information obtained in Google
Scholar as a supplementary information source. Finally, we correct false disambiguation
results manually, while supply the affiliation information of authors not covered.

3 CLKG Construction Process

CLKG is built based on python3.7 and networkx. The output is stored as gpickle. Any-
one can get CLKG in https://github.com/spicycock/CLKG. The construction process of
CLKG is shown as Fig. 2. Up to the date of writing, we obtained 82365 articles related
to COVID-19 on PubMed. First, we use BERT-BiLSTM-CRF model to solve the NER
problem and get the entity and its corresponding type from the abstract of each article.
In this step, we extract 26,458 entities in total (including 15,437 Disease tags, 3783
Gene tags, 4832 Chemical tags, 316 Mutation tags, 1975 Species tags, and 115 CellLine
tags). Then use the method mentioned in 2.3 to extract and disambiguate scholar names,
and finally obtain 294655 disambiguated author names. In the third step, construct a
knowledge graph based on three types of relationships: entity-entity, author-author, and
entity-author. Make a further explanation, we use entity or author as a node. If there is
an association between the two nodes, add an undirected edge to connect. In this way,
the basic architecture of CLKG can be constructed.

After establishing the basic graph, we integrate the author’s affiliation information
from Google Scholar into the node information of the graph. At the same time, for
each entity-author connection, we added the publication information of the related arti-
cles obtained from PubMed, Including journal name, issue time and issue number. By
this way, we can expand the information of the knowledge graph to construct CLKG
completely.

https://github.com/spicycock/CLKG
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Fig. 2. Construction process of CLKG

4 CLKG Visualization

Since CLKG is constructed based on all 82365 documents related to COVID-19, it
contains a huge amount of information and the relationship between nodes is also com-
plicated, which means it is difficult to visualize it with general methods. CLKG provides
a convenient search interface, allowing us to extract only the relevant fields of interest

Fig. 3. Select some nodes in the overall graph for visual expression, the pink node is entity, and
the blue node represents author.
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and reduce the amount of information to the extent that the two-dimensional image can
carry. An example of the visualization result is shown in Fig. 3, where the size of the
author node is determined by the number of articles published by the author, and the
size of the entity node is determined by the number of times mentioned.

Not only could we focus on the overall research status in a certain academical area,
but also can conduct more refined searches. On one hand, we can locate a specific well-
known scholar to find out what he has said about COVID-19. On the other hand, we can
also focus on a specific research entity, listen to other people’s opinions on this issue
or look for the future potential partners. We have made two examples to show how it
works, Anthony S. Fauci is a well-known infectious disease expert in the United States,
who has made great contributions to the control, treatment, and research of the epidemic.
We can quickly extract the relevant research content, co-collaborators and other related
information from CLKG, and the sub-graph constructed is shown in Fig. 4.

Sinefungin is a medicinal ingredient that is often mentioned in the research on the
treatment of COVID-19. As a professional scholar in the medical field, you may be
concerned about whether it is proven to be effective. Figure 5 takes sinefungin as an
example, and extracts relevant information from CLKG. With Fig. 5, we can clearly see
the current status of published research and the clustering relationship among various
nodes.

Fig. 4. The subgraph extracted with Dr. Fauci as the center, the pink nodes are related entities,
and the blue nodes are the collaborators of Dr. Fauci
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Fig. 5. The subgraph extractedwith sinefungin as the center, the pink nodes are the entities related
to it, and the blue nodes are the authors who studied sinefungin in the paper

5 Conclusion

As stated at the beginning of this article, COVID-19 is a severe test for each family in
every country in the world. We should be one mind to overcome this disaster together.
Our article uses all COVID-19 related papers in PubMed as the basis, applies the BERT-
BiLSTM-CRF model to solve the key NER problem, disambiguates the researcher with
the same name, and finally establishes a comprehensive and complete CLKG based
on the relationship across authors and entities. As a knowledge map, CLKG collects
and summarizes the research results of the world’s top scientists, pharmacists and other
experts on COVID-19 from all over the world and then visualizes the output. Through
CLKG, we can not only quickly query the research status, frontier hotspots and research
process of COVID-19, but also allows researchers find their academical partners in
specific subject areas more quickly and efficiently. This timely and accurate information
sharing and sincere cooperation among top scholars will undoubtedly play a key role in
overcoming the epidemic, reducing unemployment, restarting the economy and restoring
education.

At the same time, CLKG has excellent scalability in both vertical and horizontal
directions. Vertically, CLKG can quickly extract the biological entities and add new
information to the knowledge map when new literature appears, without complex and
time-consuming reconstruction. Horizontally, the CLKG construction method in this
article can be easily applied to any field of the same type (such as cancer, heart disease,
etc.). Even not only limited to the medical field, global issues such as global warming
and environmental pollution can also be extended well.
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Moving Target Tracking Algorithm Based
on Color Space Distribution Information

Na Wang(B)

LiaoNing Construction Vocational College, LiaoYang 111000, China

Abstract. A new method for target tracking in video images is proposed. The
method firstly detects and extracts the target to be tracked based on the motion
information, and then obtains the color area object characteristics according to the
color space distribution information of the target to be tracked. Then the current
frame image and background are detected by difference to extract the candidate
target. Finally, the candidate target is matched with the target to be tracked to get
the correct target. Experimental results show that the algorithm can track the target
effectively and accurately in multi-object scene.

Keywords: Target tracking · Color space distribution model · Color area object

The performance of extracting moving objects from video sequences is a basic and
important problem in many computer vision systems. These visual systems include
video surveillance, traffic monitoring, teleconferencing or moving target tracking, face
recognition, iris recognition, and so on [1]. The main task of moving target detection is
to detect moving target from video image. After detecting the target, it is often necessary
to trace one or more targets of interest. This is especially important in video surveillance
system and military target tracking system [2].

This paper mainly discusses an algorithm for detecting and tracking moving objects
in the surveillance video shot by a static camera. The algorithm is to exercise more
color and their combination structure for the description of the main features of the
search target, to color quantitative statistical analysis technology and high-speed image
processing algorithm for the implementation of technology, which can realize real-time
monitoring of suspected targets in video streams of search, greatly improve the search
efficiency, bring new applications for traditional video monitoring system.

1 Moving Target Extraction

In video sequences, motion makes the target different from the background, and motion
information becomes an important basis to extract the target from the background. Com-
mon moving object detection algorithms mainly include the algorithm based on the dif-
ference between adjacent frames and the algorithm based on the difference between the
background image and the current frame [3, 4]. In this paper, the background image and
the current frame difference algorithm are used to detect and extract the moving target
when the camera is still.
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(1) Construct the background frame. This paper adopts the threshold segmentation
method based on image chromaticity deviation under THE RGB color model to
process the three CHANNELS of RGB respectively. For A pixel point in the video
stream, the pixel value (R,G,B) of the point will change greatly only when the
foregroundmoving target passes through the point. Use Pixel(x, y, c, n) to represent
a pixel. Where, (x, y) represents the position of pixels in the image, c represents the
three channels (c = 1, 2, 3) of RGB in the color image, and n represents the frame
number of the image. For each pixel point, the Pixel pixel value of the continuous
k frame image is sorted. The middle value is taken as the background pixel value,
and the size of the k value is determined by factors such as the passing speed of the
moving target and the sampling rate when the camera is shooting. Use the middle
value instead of the average value as the background value, because the value of a
pixel may change greatly when the foreground operational target passes through it.
If the average value is used as the background value, the value of the pixels through
which the foreground target passes will be distorted.

Let λ(x) and σ(x) be the median value and mean square deviation of pixels in
a continuous N frame image. The background is constructed by taking λ(x) as the
pixel value of the background image, that is, in the initialization background, the initial
background pixel point B(x) = λ(x).

However, due to the influence of unmeasurable factors such as illumination change
and camera shake, the background will change and error will occur in the detection of
operational targets. Therefore, the background model must be updated to make it robust
and adaptive.

The first-order Kalman filtering model is used to update the background, as shown
below:

Bt+1(x) = (1 − α)Bt(x) + αFt(x)

σ 2
t+1(x) = (1 − α)σ 2

t (x) + α(Ft(x) − Bt(x))
2 (1)

Where, Bt(x) is the background pixel value at point x at time t, Ft(x) is the current
pixel value at point x at time t, σt(x) is the mean square error value at point x on the
background image at time t, and α is the update factor.

(2) After obtaining the background image of the video image sequence and knowing
the pixel value of a point on the current frame image, the differential image value
can be calculated. The binary mask of the difference image is determined by the
following formula:

M(x) =
{
1 abs(Ft(x) − Bt(x)) > Th

0 other
(2)

Where, Th = 2.5σt(x).
However, as pixels with similar colors may exist between the target and the back-

ground area, the extracted foreground area may be cracked or empty, and isolated noise
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will also occur in the background area. To filter the obtained binomial mask image, mor-
phological operator is applied to treat the fracture or cavity. Meanwhile, morphological
filtering can also make the boundary of the moving target area more smooth. In addi-
tion, the pixels that make up the independent moving parts are interconnected, while the
independent pixels are isolated strings. Based on this feature, the area threshold method
based on the foreground region is adopted to remove the noise, that is, if the total number
of pixels of the interconnected parts exceeds the set threshold, the part is an independent
moving part, and the rest is random noise.

(3) After obtaining the accurate object binary template, according to the object template,
the segmentation result of moving object can be obtained by clearing the pixel
points that are not in the template in the current frame. For a multi-target scene,
multiple targets can be divided into a single moving target area and the targets can
be extracted.

2 Target Tracking

2.1 Establishment of Target Color Space Distribution Model

Theobjects (people, vehicles, etc.) contained in the image sequence obtained by the video
surveillance system often have a certain obvious color distribution [5, 6]. It is easy for
the human eye to give one or several main tones of the moving object and distinguish the
position of the object of interest. In fact, the target color can be represented by a limited
number of primary colors. The target is usually composed of these main color regions,
which constitute a fixed distribution relationship at the same time. For example, taking a
person in a video image as a moving target, the main color can be distinguished as black
hair, yellow coat on the upper body and black trousers on the lower body. Therefore, the
target can be represented by one or more color region objects RO, and the regions can
be numbered in relative position. RO includes the representative color of the region, the
ratio of the region area (the ratio of the number of pixels in the region to the total pixels
of the target) and the numbering of the region, that is, RO = (color, ratio, number).

In this experiment, a single target is tracked. Before tracking, the initial target is
obtained by difference between the initial frame and the background, and the target of
interest, that is, the target to be tracked, is selected by human-computer interaction. At
this point, the color distribution model of the target to be tracked can be obtained by the
region growth method. In the case of multi-target tracking, the color space distribution
model can be established for each target in the initial state.

This paper defines the distance threshold between colors as T1. If the color distance of
two pixels adjacent to each other in space (using eight-connected mode) is lower than the
threshold T1, then these two pixels can be combined into a region, which grows until no
adjacent pixels can be combined. In order to avoid pixels with too big color difference in
the same area, another threshold T2 is set. In the process of region growth, if the distance
between the color of a pixel and all the pixels in the region is greater than the thresholdT2,
the pixel is not merged. If the target still has unmerged pixels, the new region continues
to grow until all pixels belong to a region for comparison and are grouped into the
region with the smallest color distance. Calculate the average color of each area and the
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ratio of the number of pixels contained in the area to the total number of target pixels,
so as to obtain the final several color area object RO. According to the experimental
requirements, we extracted two color area objects and numbered them according to
the relative positions of the areas, RO1 = (avc1, r1, 1) and RO2 = (avc2, r2, 2). The
color region feature vector VOP of theof the Svop = (RO1,RO2) target of interest
is established. Calculate the central coordinate (x, y) of the target. Where Avop is the
number of pixels contained in the target r1 = ni/Avop, i = 1, 2.

x = 1

Avop

∑
x∈vop

x, y = 1

Avop

∑
y∈vop

y (3)

3 Target Tracking

In this experiment, people in the video scene were tracked. Before tracking, the target
interested in the first few frames of the video was extracted, and the color space distribu-
tion model of the target was established by using the regional growth method. Starting
from the initial pixel point of the target, all pixels are merged into two large areas to
obtain two color area object RO, and the color area feature vector is established to enter
the tracking state. It is assumed that the target tracked in frame i − 1 is represented as
vopGi−1, and the feature vector Svopi−1 = (ROG

1 ,ROG
2 ) in the color area and the center

coordinate (
−G
x ,

−G
y ) of the target are obtained. The image of the current frame i is differ-

enced from the background, n candidate targets are extracted and the central coordinate

(
−k
xi ,

−k
yi ) of each candidate target k is calculated. Calculate the central coordinate distance

d =
√

(
−k
xi − −G

x )2 + (
−k
yi − −G

y )2, k = 1, . . . , n between the target to be tracked and all
the candidate targets, and select the candidate target vopDi with the minimum distance.

According to the average color (avcG1 , avcG2 ) of object (ROG
i−1,RO

G
i−1) in the color

area of target vopGi−1 tracked by frame i− 1, all pixels of target vopDi with the minimum
distance between the current frame and target vopGi−1 are traversed. Combine all points
similar to color avcG1 and adjacent points in space into a large area, record the number
of pixels n1 in the area, calculate the average color value avcD1 of the area, and number
it as 1. Combine all points similar to color avcG2 and adjacent in space into a large area,
record the number of pixels n2 in the area, calculate the average color value avcD2 of the
area, and number it as 2. In this way, the two color area objects ROD

1 = (avcD1 , r1, 1)
and ROD

2 = (avcD2 , r2, 2) of candidate target vopDi are obtained, and the eigenvector
SD
vop

= (ROD
1 ,ROD

2 ) is obtained.
For two targets i and j, define the color area object distance between them as

dm(i, j) =
{

(rm(i) − rm(j))2 s(avcm(i), avcm(j)) > Th
+∞ other

(4)

Where, m is the region number, s(avcm(i), avc(j)) is the similarity measure of color
avcm(i) and color avcm(j), and Th is the threshold of color similarity. For a target with
two color region objects, define the union distance as djoint(i, j) = d1(i, j) × d2(i, j).
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In the current frame i, if djoint(vopGi−1, vop
D
i ) is less than the corresponding distance

threshold ηd , the two are considered to match, and this candidate target is the target
tracked. Otherwise, it is considered mismatched, and the next candidate target with a
smaller distance from target vopGi−1 is selected to make the same match. This continues
until the target is matched or the trace fails.

vop tracking of two adjacent frames has the following three results:

(1) For the vop obtained from the previous frame tracking, if there is only one vop in
the current frame vop candidate set, it is directly matched; if successful, it is the
target tracked.

(2) For the vop obtained from the previous frame tracking, the most matching vop is
found in the current frame vop candidate set, and the tracking is successful.

(3) If the current frame vop candidate set does not match the appropriate target, it may
be because the target has disappeared. Continue to process the next few frames; if
the successive frames (usually five) do not match the appropriate target, the target
is considered to have disappeared. If the target can be found, the normal target
tracking stage will be re-entered.

3.1 Update of Color Area Objects

Once the tracked target is found in the current frame, the target color space distribution
model is updated. As time goes by, the tracked target color model may change due
to the influence of external factors. If the target color model is not updated, the target
may be lost soon. For the principal color component color of the color region object
RO = (color, ratio, number), this paper uses an adaptive color update model: ci =
(1− α)c + αci−1. Where, ci is the area color value of the i frame, ci−1 is the area color
value of the i − 1 frame, and c is the area color mean value of the previous i frame.
This adaptive region represents the color update model formula. By adjusting the ratio
of the previous Frame i − 1 to the color, the representative color of the target of frame
i is updated, where α is the weight factor. For the ratio component, the corresponding
ratio component of the target color area object correctly tracked by the current frame
is used as the new value. And the corresponding number number stays the same. The
color area object is updated with each new frame.

4 Conclusion

In this paper, a moving target detection and tracking scheme based on motion and
color information with fixed background in surveillance video scenes is proposed, and
experiments are carried out in a large number of video sequences shot indoors and
outdoors respectively. The experimental results are satisfactory. From the experimental
results, it can be seen that the proposed scheme can effectively detect and track moving
targets in video scenes when moving targets have significant color characteristics.
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Abstract. Transcranial direct current stimulation (tDCS) shows great promise in
enhancing neurocognitive abilities. However, the neurostimulation responsiveness
varied hugely. Our previous work demonstrates that people receiving tDCS stim-
ulation over Temporoparietal Junction (TPJ) fall into two heterogeneous groups:
the positive responders who benefit and the negative responders who hurt from
tDCS. The present study investigated whether dynamic brain network properties
of resting-state fMRI could predict the pattern. We calculated each subsystem of
the default mode network’s dynamic attributes using the multilayer community
detection algorithm. Results indicated that the recruitment indexes were signifi-
cantly different in bilateral aMPFC, PCC, Rsp, and PHC regions between positive
responders and negative responders. Our results also confirm the advantages of the
dynamic network measures over the static network measures. The study provides
a feasible protocol in establishing the pre-stimulation screening procedure using
resting-state fMRI.

Keywords: tDCS · Temporoparietal junction · Neurostimulation
responsiveness · Dynamic functional connectivity · Default mode network ·
Community detection

1 Introduction

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation tech-
nique in which a specific low-intensity current is applied to a specific brain region to
modulate neural activity. Recent years have witnessed growing research evidences on
the promises of tDCS in enhancing neurocognitive abilities in healthy, neurological, and
psychiatric populations [1, 2]. However, it is also notorious that the neurostimulation
responsiveness from tDCS varied enormously among participants. Our previous work
demonstrates the necessity of pre-stimulation screening by showing that people receiving
stimulation could be classified into two heterogeneous groups: the positive responders

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
R. Su et al. (Eds.): MICAD 2021, LNEE 784, pp. 380–389, 2022.
https://doi.org/10.1007/978-981-16-3880-0_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3880-0_40&domain=pdf
https://doi.org/10.1007/978-981-16-3880-0_40


Predicting Neurostimulation Responsiveness 381

whose performance was improved by tDCS, and the negative responders whose perfor-
mance was impaired by tDCS [3]. Besides, our study also demonstrates the feasibility
of pre-stimulation screening based on simple and interpretable brain measures, such
as functional lateralization index [3]. However, the functional lateralization index was
calculated with task-based fMRI, which might not be suitable for patient populations.

Resting-state fMRI (RS-fMRI) is a quick and convenient neuroimaging protocol that
records brain activations for severalminutes duringwhich participants ‘do nothing’ in the
scanner. It has been shown that RS-fMRI contains rich patterns of brain activity, which
can be quantified with graph theory and network science, such as static and dynamic
functional networkmeasures. Comparedwith staticmeasures, Dynamic Functional Con-
nectivity (DFC) can indicate the flexible reorganization of brain networks, which might
be useful measures to predict brain plasticity. Recent studies supported DFC measures
as powerful neuroimaging markers of neurological and psychiatric disorders [4–9].

Using structural imaging scans and a non-linear brain dynamic model, one recent
study verified the relationship between regional controllability and the stimulation effect
[10]. However, whether DFC calculated from RS-fMRI could predict neurostimulation
responsiveness from tDCS is not directly tested yet. Moreover, static functional network
measures have been used successfully in predicting the non-invasive brain stimulation
effect [11]. It is still ambiguous whether DFC has some advantages over static functional
connectivity measures.

The present study investigated whether DFC measures calculated from RS-fMRI
were effective predictors of neurostimulation responsiveness and directly compared
the usefulness of DFC and traditional static network measures. Specifically, we tested
whether DFC could successfully classified positive responders versus negative respon-
ders using our neurostimulation responsiveness dataset [4]. The default mode network
because it was selected is theoretically related to the TPJ stimulation effect [12,13].
We adopted a dynamic community algorithm to quantify the flexible reorganization
within the DMN (see Fig. 1 for an illustration). The recruitment, integration, flexibility,
and promiscuity indexes were calculated for each node of DMN. The results show that
DFC measures could successfully predict neurostimulation responsiveness and indicate
DFC’s unique value over static brain network measures.

2 Methodology

2.1 DataSet

The dataset included 45 young adults [24 females, mean age (SD) = 22.44 (2.24)], who
were recruited from the USTC campus by advertisement. All participants attended one
MRI scan session and three tDCS sessions [3]. The MRI session included functional
images of the false-belief task, resting state, and anatomical T1 images. In this study,
only RS-fMRI images were used to construct dynamic functional networks to predict
the effectiveness of tDCS. The preprocessing of RS-fMRI data was same as our previous
study [3].
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Fig. 1. Schematic overview of the analysis.

2.2 Region of Interest

The region of interest (ROI) was constructed using Andrews-Hanna’s DMN template
[13, 14]. The DMN was fractionated into three networks: (i) The core hubs (include
the bilateral aMPFC and PCC), which are closely related to the processing of self-
referential information; (ii) The dMPFC subsystem (include the midline dMPFC and
bilateral TPJ, LTC, and TempP), which contribute to memory-based scene construction;
(iii) TheMTL subsystem (include themidline vMPFC and bilateral pIPL, Rsp, PHC, and
HF +), which supports social cognition. We created sphere ROIs (diameter = 10 mm)
using the Montreal Neurological Institute coordinates listed in Table 1. Then the time
series of ROI was extracted using AFNI’s 3dNetCorr command (see Fig. 1(A)).

2.3 Multilayer Community Detection

First, an overlapping sliding window strategy was used to construct the DFC matrix for
each participant based on the fMRI time series (see Fig. 1(B)). Here we used the time
window length of 40, 50, and 60 TRs, respectively, and the sliding step length was set
as half of the time window length (namely 20, 25, and 30 TRs). Then, the Pearson’s
correlation between regions was calculated, and the Fisher’s z-transform was performed
to obtain the static functional connection strength of each window. Finally, for the func-
tional connectivity matrix of all time windows for each subject, the generalized Louvain
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Table 1. Coordinates of DMN ROIs used in this study.

Region Abbreviation x y z

dMPFC subsystem

Dorsal medial
prefrontal cortex

dMPFC 0 52 26

Temporal parietal
junction

TPJ −/+54 −54 28

Lateral temporal
cortex

LTC −/+60 −24 −18

Temporal pole TempP −/+50 14 −40

MTL subsystem

Ventral medial
prefrontal cortex

vMPFC 0 26 −18

Posterior inferior
parietal lobule

pIPL −/+44 −74 32

Retrosplenial cortex Rsp −/+14 −52 8

Parahippocampal
cortex

PHC −/+28 −40 −12

Hippocampal
formation

HF+ −/+22 −20 −26

Core hubs

Anterior medial
prefrontal cortex

aMPFC −/+6 52 −2

Posterior cingulate
cortex

PCC −/+8 −56 26

algorithm is used to obtain the maximum modular multilayer community network (see
Fig. 1(C)). The algorithm is defined as follows[15]:

Q = 1

2μ

∑

ijlr

{(
Aijl − γlNijl

)
δlr + δijωjlr

}
δ
(
Gil,Gjr

)
(1)

Where Q is the multilayer modularity index; Aijl is the edge weight between region
i and j in layer l; Nijl is the corresponding edge weight in a null model matrix; Gil
is the community assignment of region i in layer l; Gjr is the community assignment
of region j in layer r; δ

(
Gil,Gjr

) = 1 if Gil = Gjr ; otherwise, it equals 0. γl is the
structural resolution parameter of layer l, which determines the number of modules
within a given layer; ωjlr is the temporal resolution parameter between region j in layer l
and region j in layer r, which controls the consistency of modules detected across layers.
Respectively, these two constant parameters ω and γ control the size of communities
with a given layer and the number of communities detected across layers. We tested a
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serial of combinations of ω and γ . Finally, we chose γ = 1 and ω = 0.4 for balance
between community number and nodal flexibility [16].

2.4 Dynamic Network Statistics

The following four dynamic network statistics of each ROI was calculated: (i) recruit-
ment, which provides the probability of ROIs assigned to the same community with
its peers [17], (ii) integration, which provides the probability of ROIs assigned to the
same community with regions other than its peers [17], (iii) flexibility, which provides
the frequency of an ROI change its assigned community [18], (iv) promiscuity, which
provides the frequency of one ROI participates in different communities [19]. See more
information about the mathematical details below:

Recruitment and Integration. To quantify the dynamic role of regions in each sub-
system, we calculate two coefficients: recruitment and integration. For system S, the
recruitment coefficient of region i is defined as:

Rs
i = 1

ns

∑

j∈S
Pij (2)

Where ns is the size of system S, calculated as the number of regions is S. Pij represents
the probability that region i and j were assigned to the same functional community. Rs

i
corresponds to the average probability that the ith brain region is located in the same
community as the rest of the system. The high areas of system S are typically the regions
found in S across many time windows. The integration coefficient of region i is defined
as:

ISi = 1

N − ns

∑

j/∈S
Pij (3)

Where N is the total number of brain regions. Accordingly, ISi corresponds to the
average probability that the ith brain region is the same community as any other region
in the system except S. Regions with high integration in system S tend to interact with
regions in another system rather than its own.

Flexibility and Promiscuity. A node’s flexibility fi is defined as the probability that
changes its community allocation within the continuous-time window. Flexibility is the
number of times each node changes module loyalty divided by the total number (i.e.,
one less than the number of time windows) of possible changes. Then, the flexibility F
of the entire network is defined as the average of all nodes:

F = 1

N

N∑

i=1

fi (4)

Promiscuity ψi is defined as the probability that a node i traverses all communities
in the network layer at least once. The promiscuity clarifies whether a particle is simply
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switching between a few communities (high f but low ψ) or truly participating in many
different communities (both high ξ and high ψ) throughout compression. As with the
flexibility, we define the network promiscuity ψ to be the average overall particles.

ψ = 1

N

∑
i
ψi (5)

2.5 Dynamic and Static Predictive Parameters

To construct the prediction model of neurostimulation responsiveness, the dynamic net-
work parameters adopted include four dynamic statistical parameters for every subsys-
tem of the DMN, a total of 12 dynamic network statistics (see Fig. 1(D)). For compari-
son, the introduced static network parameters include graph theory and static functional
connectivity characteristics of the DMN subsystem. FC within the entire DMN and
the subsystem is obtained by directly calculating the Pearson correlation, such as the
strength of FC between the subsystem. The network’s graph theory parameters include
the global network metrics and the nodal or modular network metrics. For the global
metrics, we calculated the small-word property and global efficiency. We calculated
the clustering coefficient, shortest path length, nodal efficiency, nodal degree centrality,
and betweenness centrality for the modular network metrics. Above all, we have 37
parameters to construct the predictor, 12 for dynamic and 25 for static. We selected five
machine learning models (random forest, decision tree, KNN, neural network, SVM) to
predict the neurostimulation responsiveness. And experiments were carried out in static,
dynamic, and combined, respectively (see Fig. 1(E)). Three-time window schemes, 40,
50, and 60, were tested for each group of experiments, and the top five prediction factors
were selected in these models.

3 Results

3.1 Statistical Differences of DFC Characteristics

The participants in our study can be classified into positive responders (n = 17) and
negative responders (n = 28) according to their neurostimulation responsiveness profile
[3]. The group difference on the DFC measures was tested using two-sample t-test for
each network node. Themultiple comparisonswere performed using the FalseDiscovery
Rate (FDR) method. See Table 2 for a summary of significant results.

3.2 Prediction of Neurostimulation Responsiveness

We compared the effectiveness of DFC and static network measures in identifying posi-
tive responders from negative responders. Five different machine learning algorithmwas
selected, as shown in Table 3. For each algorithm, we compared the prediction accuracy
for the model using static measures alone, using DFC alone, and using a combination
of static and dynamic measures. The leave-one-out cross-validation method was used
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Table 2. Significant differences in brain regions between positive and negative responders

Window/step length (TRs) Dynamic features

Integration Recruitment Flexibility Promiscuity

40/20 – aMPFC,PCC,Rsp,PHC – –

50/25 – aMPFC,PCC,Rsp,PHC – –

60/30 – aMPFC,PCC,Rsp,PHC – –

to balance the robustness of the prediction and the small sample size. The analysis was
performed using the Caret package in the R environment [20].

The results were shown in Table 3. The effectiveness of static measures was not
related to window length selection but only varies under different machine learning
models. The advantage of DFC over static network measures was manifested by all five
modeling approaches.

Table 3. Prediction accuracy of neurostimulation responsiveness

Method Window/Step Static Dynamic Static & dynamic

Random forest 40/20 64.44% 68.89% 62.22%

50/25 68.89% 62.22%

60/30 73.33% 60.00%

Decision tree 40/20 71.11% 77.78% 88.89%

50/25 71.11% 73.33%

60/30 77.78% 80.00%

KNN 40/20 62.22% 77.78% 64.44%

50/25 66.67% 62.22%

60/30 66.67% 62.22%

Neural network 40/20 62.22% 75.56% 68.89%

50/25 77.78% 73.33%

60/30 77.78% 64.44%

SVM 40/20 62.22% 80.00% 62.22%

50/25 68.89% 62.22%

60/30 71.11% 62.22%

The artificial neural network, random forest, and support vector machine models
showed a good performance among five machine learning models. The best choice of
window width step size was the 40/20 group. Moreover, we calculated the ranking of
feature importance in all mixed features and found that dynamic features accounted for
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Fig. 2. Rank the importance of static and dynamic features

four among the top five features when applied neural network model (see Fig. 2). Other
machine learning models have produced similar results.

4 Discussion and Conclusions

The brain plasticity originates from flexible and dynamic network reorganization. The
present study investigated whether dynamic functional connectivity measures could pre-
dict neurostimulation responsiveness. To characterize dynamic reorganization within
DMN, four DFCmeasures, including recruitment, integration, flexibility, and promiscu-
ity of each node, were used. Our results suggested that positive responders differed from
negative responders in the core subsystems (bilateral aMPFC, PCC) and MTL subsys-
tems (bilateral Rsp and PHC) on the dimension of recruitment. Moreover, the DFC alone
shows advantage over static network measures in identifying positive responders from
negative responders, which was verified by a cross-validation model comparison app-
roach using several state-of-art statistical learning algorithms. A combination of static
and dynamic measures did not outperform the models with DFC alone, except for the
decision tree model.

The dynamic community detection algorithm, a methodology borrowed from social
network analysis, is more suitable for brain network analysis than traditional static func-
tional brain connectivity analysis. The static brain network measures neglect that the
brain was not organized as stationary network components. In fact, the network nodes
in the brain reallocate themselves regarding the task demand. The dynamic community
analysis can comprehensively consider the rapid interactions among nodes and subsys-
tems, which might help explain the advantage of DFC measures over static measures in
predicting the neurostimulation responsiveness in the present study.

Althoughmodels withDFCmeasures alone outperformmodels combining static and
dynamic measures in general, the model based on the decision tree algorithm yielded
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inconsistent findings. The decision tree model only used a small number of trees in the
classification task. When the sample size is small, it might be vulnerable to over-fitting.

In general, our study supports the feasibility of pre-stimulation screening program
using DFC measures from RS-fMRI. Future studies may optimize the community
detection algorithm to best characterize the network reorganization during RS-fMRI.
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Abstract. Imaging the distribution and propagation of sound fields in water is
important for applications of ultrasound in water. In this paper, a stroboscopic
polarization parameter imagingmethodwas implemented to visualize andquantify
ultrasonic wave propagation in water. A k-space numerical method was used to
simulate the propagation of the ultrasonicwave and verify the relationship between
the pressure distributions of ultrasonic wave and the optical parametric images.
Ultrasonic wavefield generated by continuous sinusoidal and pulsed signals were
visualized experimentally. The results demonstrated high sensitivity and spatial
resolution for visualization of the ultrasound field distribution in water.

Keywords: Ultrasonic · Visualization · Polarization imaging · Liquid

1 Introduction

An ultrasonic wave is a kind of soundwavewith a frequency higher than 20000Hz. It has
the advantages of good directivity, strong permeability and easy to obtain concentrated
sound energy. Therefore, it was widely used in applications for solid medium, such as
metal cutting and welding in the industry [1], non-destructive testing (NDT) [2], etc. In
medium like water or biomedical tissues, the utilization of ultrasonic waves is also well
developed, such as medical diagnosis and treatment [3], photoacoustic imaging (PAI)
[4], ultrasonic cleaning [5], etc. Among these applications in liquid, ultrasonic cavitation
[6] is an important group.

Ultrasonic cavitation is that the propagation of the ultrasonic wave in the liquid
will cause the local increase or decrease of the internal pressure of the liquid, small
bubbles begin to form and grow in the low-pressure region, and break in the high-
pressure region, accompanied by high temperature and high pressure to form a strong
impact force. It is usually used as the driving force in the liquid related ultrasonic
processing technology, such as preparation of metal oxide nanoparticles by ultrasonic-
assisted plasma discharge [7], ultrasonic-assisted electrocoagulation to remove organic
matter in water [8], ultrasonic-assisted water confinement laser micromachining [9], etc.
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In the ultrasonic cavitation process, not all the cavities in liquid can go through
the whole process of rapid growth, enlargement and collapse. The frequency, intensity
and field distribution of ultrasonic waves play an important role in the cavitation effect
of ultrasonic waves [10], which will affect the efficiency of ultrasonic applications in
water. The frequency and intensity of the ultrasonic wave can be controlled accurately
by the generation source, typically an ultrasonic transducer, while the distribution and
propagation of the ultrasonic wave are influenced by many other parameters. A better
understanding of the ultrasonic wave generation and propagation in liquids is fundamen-
tal formany applications of ultrasound inwater, including the ultrasonic cavitation-based
techniques. Visualizing the distribution and propagation of sound fields in water is a nec-
essary for this purpose. To address this issue, imaging methods based on diffraction and
interferometry polarimetry have been developed to visualize the propagation of acoustic
waves [11–21].

In previous work of the group, a parametric indirect microscopic imaging method
(PIMI) was developed, with the capability of measuring the phase retardation and polar-
ization orientation angle induced by stress in medium [22, 23]. Later, we adapted it to
a stroboscopic polarization imaging method to visualize the ultrasonic wave and has
detected the ultrasonic wave in quartz glass, with high spatial and temporal resolution
[24]. In this paper, we mainly utilize this stroboscopic polarization imaging technology
to image ultrasound distribution and propagation in water. The distribution and propa-
gation properties of continuous and pulsed ultrasonic wave in water were investigated
both numerically and experimentally.

2 System and Theory

The sound field visualization system consists of two parts: the polarization imaging
optical path and the stroboscopic controlling system, as shown in Fig. 1.

Fig. 1. The visualization system of ultrasonic propagation in water.
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2.1 Polarization Imaging Optical Path

The polarization imaging optical path is very sensitive to small changes caused by
ultrasound, and can visualize the ultrasound with optical polarization parameters. The
propagation of ultrasonic wave will affect the polarization state and phase of the detec-
tion light, through the stress-induced refractivity change of the medium. The result-
ing changes in optical parameters can be converted into changes in light intensity by
polarization detection and recorded by a charge-coupled device (CCD).

The polarization imaging optical path includes a pulsed laser, a beam expander, a
polarizer, a quarter-wave plate, a plano-convex lens and a polarization camera (PCCD),
as shown in Fig. 1. The wavelength of the pulsed laser is 532 nm, with a pulse duration
of 10 ns, and triggered by an external signal from the delay generator. Through the beam
expander, the polarizer and quarter-wave plate form an angle of 45 degrees to form a
circularly polarized light incident on the sample. The sample is a quartz glass tank filled
with water. Two faces of the quartz glass tank are pasted with piezoelectric ceramics,
one of the piezoelectric ceramics is used as the ultrasonic excitation source, and the
other piezoelectric ceramics is used to detect the ultrasonic signal after propagating in
water. The 4F system consists of two planoconvex lenses with a focal length of 75 mm.
A 1:1 image of a plane located in the water tank was projected on a PCCD by the 4F
system. PCCD is a polarized charge-coupled element device, which can take images at
four different polarization angles (0°, 45°, 90° and 135°) in one snapshot.

2.2 Stroboscopic System

The propagation speed of the ultrasonic wave in the medium is fast compare to the
exposure time of an ordinary camera, which makes it difficult to image the propagation
of ultrasonic wave instantaneously. The purpose of the stroboscopic imaging system is
to make the time of the image taken by the camera is at the nanosecond level, to ensure
that the ultrasonic wave propagation in the medium can be captured.

Fig. 2. The timing diagram of the stroboscopic system.

The stroboscopic system consists of a pulsed laser, a function generator, signal delay
generator and a PCCD. The pulsewidth of the pulsed laser is 10 ns, and the exposure time
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of the PCCD is 30 μs. The purpose of the stroboscopic system is to control the relative
delay time of the pulsed laser and the exposure of PCCD so that each laser pulse emission
is included in the camera exposure time. The timing diagram of the stroboscopic system
is shown in Fig. 2.

The CLK signal in Fig. 2 is the trigger signal of the xenon pumping lamp in the
laser, with a repetition frequency of 10 Hz. The laser pulses were generated when the
Q-switch in the cavity was triggered, with a delay of 220 μs relative to the CLK signal.
The triggering frequency of the PCCD is the same as that of the CLK signal, and the
delay is 200 μs relative to the CLK signal so that the emission time of each laser
pulse is included in the exposure time of the camera. Two kinds of ultrasonic waves
were generated, i.e. continuous sinusoidal and pulsed waves. The continuous sinusoidal
ultrasonic waves are generated continuously at the pizeo transducer attached to the face
of water tank and can always be captured in the medium during the exposure time of the
camera. The pulsed signal, with a period of 200 μs, emits an ultrasonic excitation wave
repetitively. By controlling the function generator and the delay generator, the ultrasonic
excitation signal can be synchronized with the laser pulse, and the relative delay time
can be controlled to allow the camera to take pictures of ultrasonic at different positions
in the medium.

2.3 Theory of Sound Field Visualization

Under the effect of pressure or tension, the dielectric constant or refractive index of the
transparent isotropic medium will change due to the photoelastic effect, thus affecting
the propagation characteristics of light in the medium. Using the polarization imaging
system, the stress distribution can be analyzed.

When circularly polarized light passes through an isotropic transparent material with
stress and strain, the stress-induced birefringence leads to different phase retardation of
the two orthogonal polarization components decompose along with the two principal
stress directions. When the light propagates through the sample, the polarization state
of the output light can be expressed as:

E2
x

E2
ox

+ E2
y

E2
oy

− 2ExEy

EoxEoy
cosδ = sin2δ (1)

Among them, Ex and Ey are electric vectors in two orthogonal directions, and Eox

and Eoy are the amplitudes of the electric vectors, and δ is the phase delay.
According to the above polarization imaging system, the formula for determining

Stokes parameters is as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S0 = E2
ox + E2

oy = I0 + I90
S1 = E2

ox − E2
oy = I0 − I90

S2 = 2EoxEoycosδ = I45 − I135
S3 = 2EoxEoysinδ = IRCP − ILCP

(2)

The phase delay is equal to the sum of the initial phase of the incident polarized
light and the phase difference caused by the change of the acoustic-induced refractive
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index. The Stokes parameter and the polarized light intensity of the output beam can be
expressed as follows:

δ = arccos

(
S2

(2I0I90)
1
2

)

(3)

According to Eq. (1) and Eq. (2), the azimuth of polarized light can be expressed as
follows:

ϕ = 1

2
tan−1

(
2EoxEoy

E2
ox − E2

oy
cosδ

)

= 1

2
tan−1

(
S2
S1

)

(4)

Assuming the ultrasonic wavefield propagating in the sample (transmission imaging
mode) is u(x, y, z, t) expressed with displacement, the strain tensor is:

εij = 1

2

(
∂ui
∂xj

+ ∂uj
∂xi

)

i, j = x, y, z (5)

The anisotropic photoelastic relationship between the strain and the refractive index
of the detection light is [25]:

Δ
(

1
n2

)

ij
= ∑

kl
Pijklεkl (6)

Where Pijkl is the photoelastic tensor and Δ
(
1/n2

)

ij is the tensor describing the
change of refractive index.

In isotropic medium, there are only two independent constants P11 and P12 in Pijkl
tensor. The relationship between the change of refractive index and the change of stress
can be simplified as follows:

Δni = n30
2

(P11 − P12)Δεi i = x, y, z (7)

where n0 is the initial refractive index.
In this optical path, the beam is propagating in the z-axis. The phase retardation δ

can thus be expressed as:

δ = 2π
λ

∫ d
0 Δndz (8)

Where Δn is the change of refractive index; λ is the wavelength of the detection
light wave; d is the thickness of the sample. If the refractive index changes uniformly
along the Z-axis and Eq. (8) is substituted by Eq. (7), the phase delay can be simplified
as:

δ = πdn30
λ

(P11 − P12)

(
∂u

∂y
− ∂u

∂x

)

(9)

The above equation gives the relationship between the ultrasonic pressure field and
the optical phase delay.



Visualization of Continuous and Pulsed Ultrasonic Propagation 395

2.4 Simulation of Sound Field Propagation

The k-wave toolbox [26] ofMATLAB software is used to simulate the stress distribution
of ultrasonic propagation in the medium. The grid points in X, Y and Z directions are
64, 64 and 64 respectively, and the grid interval is 0.1 mm. A 3-D simulation model
of 6.4 mm × 6.4 mm × 6.4 mm is established. A square ultrasonic signal source with
the size of 0.5 mm × 0.5 mm is set at the Y-Z plane (x = 0.5 mm). A continuous
sinusoidal signal with the frequency of 5 MHz is used as the ultrasonic signal, and a
group of Cartesian points are set to collect data. The medium parameters of the model
mainly include sound velocity and density. The k-space pseudospectral method is used to
simulate the time-varying pressure source in three-dimensional homogeneous medium.
The pressure distribution of the soundfield on theX-Yplane is observed. The relationship
between pressure distribution and optical phase delay is discussed, and the propagation
of ultrasonic wave in water is simulated.

3 Results and Discussion

3.1 Sound Field Simulation

The relationship between acoustic pressure distribution and optical phase delay is sim-
ulated in quartz glass at first. The final pressure distribution of acoustic field is shown in
Fig. 3(a). Through Eq. (9), the pressure distribution of the sound field can be converted
into an optical phase delay diagram, as shown in Fig. 3(b). As can be seen from the two
curves in Fig. 3(c), there is a displacement along the propagation direction between the
ultrasonic field pressure distribution diagram and the optical phase delay diagram, but
the general trend does not change. Therefore, there is a certain equivalent relationship
between the ultrasonic field pressure distribution diagram and the optical phase delay
diagram.

Fig. 3. Relationship between pressure distribution of ultrasonic field and optical phase delay
diagram. (a) The figure shows the final pressure distribution of 5 MHz ultrasonic wave in quartz
glass, (b) the phase delay figure corresponding to figure (a), (c) the two lines are the intensity
distribution curves along the arrow (x = −2.2 mm ∼ 3.2 mm, y = 0 mm) in figure (a) and (b).
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Then, based on the same three-dimensional model and the same ultrasonic signal, the
ultrasonic wave in water is simulated. As shown in Fig. 4, ultrasound energy is mainly
concentrated in the main lobe, but there are also side lobes. As shown in Fig. 4(b), the
wavelength of sound waves in water is very small, which is 0.3 mm, and the attenuation
of the ultrasonic wave in water is also weak. Therefore, in the next experiment, a large
enough ultrasonic transducer was set to observe the propagation of the main lobe of
ultrasonic waves in water.

Fig. 4. Pressure distribution of continuous ultrasonic signal with a frequency of 5 MHz in water.
(a) Final pressure distribution of continuous ultrasonic wave in water, (b) the phase delay figure
corresponding to figure (a), (c) The intensity distribution curves along the arrow (x = −1.2 mm
∼ 3.2 mm, y = 0 mm) in figure (a) and (b).

3.2 Visualization of Continuous Ultrasound

In the experiment, the piezoelectric ceramic excitation signal is a continuous sinusoidal
signal with an amplitude of 4 V and frequency of 5 MHz, as shown in Fig. 5(a). The
ultrasonic signal received on the other side of the sample is shown in Fig. 5(b). From
the above system in Fig. 1, we can get a picture of the sound field in water by PCCD, as
shown in Fig. 5(c). In this picture, we can find that the reflection and scattering of some
light caused by the tiny suspended particles in the water lead to strong background noise
in the image. After removing the background of this image, we can get the pictures with
four polarization angles. Then we can calculate the polarization parameters to get the
results of S0, S1, S2, S3, δ and φ, as shown in Fig. 6.

It can be seen in Fig. 6 that the parameters S0, S3, δ and φ are sensitive to ultrasound.
Vertical projection curves for S0, δ and φ diagrams are shown in Fig. 7. The ultrasonic
source is a continuous sinusoidal signal with a frequency of 5 MHz. According to the
sound velocity in water of 1500 m/s, the wavelength should be s = v / 2f = 0.15 mm
in theory. From the vertical projection curve of S0, the wavelength is about 0.1508 mm,
and the error between the two values is 0.533%. This proved that the imaging result is
the propagation of the ultrasonic wave. It can be seen from the vertical projection curve
of S0 that the distribution of the ultrasonic wave can be clearly visualized, while it is
influenced by nonuniformity of light distribution. The curves of δ and φ are rough, which
shows that the noise of δ and φ is larger than that of S0, but the influence of nonuniform
light spot on δ and φ is smaller.
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Fig. 5. Ultrasonic signal. (a) Signal of exciting piezoelectric ceramics to produce ultrasonic wave,
(b) Ultrasonic signals received by piezoelectric ceramics after propagation in water, (c) Original
image.

Fig. 6. The results of Stokes parameters image. (a) - (f) Stokes parameters, respectively S0, S1,
S2, S3, δ, φ.

Fig. 7. Vertical projection curves. (a) Vertical projection curves of Stokes parameters S0, (b) Ver-
tical projection curves of Stokes parameters δ, (c) Vertical projection curves of Stokes parameters
φ. (Vertical projection curves: The abscissa is the pixel in the X direction, and the ordinate is the
sum of all the pixel values in the Y direction).
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3.3 Visualization of Pulsed Ultrasound

The pulse signal is a trapezoidal pulse with a duration of 170 ns, as shown in Fig. 8. By
changing the relative delay time of ultrasonic wave and laser pulse, the ultrasonic wave
propagation diagram in water at different delay time can be visualized. A group of S0
graphs with a time interval of 0.5 μs are shown in Fig. 9. And vertical projection curves
of S0 were shown in Fig. 10.

Fig. 8. Ultrasonic signal. (a) Signal of exciting piezoelectric ceramics to produce ultrasonic
wave, (b) Ultrasonic signals received by piezoelectric ceramics after propagation in water, (c)
The enlarged part in the red box of figure (b).

Fig. 9. Stokes parameter S0 diagram with different delay times. (a)–(f) The time interval between
the two graphs is 0.5 μs.
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The wavelength of the pulsed ultrasonic wave was found to be 0.3 mm, which is
twice that of a 5 MHz continuous ultrasonic wave. In Fig. 9, ultrasonic waves propagate
from left to right, and the boundary of ultrasonic wave field is obvious. In Fig. 10(f),
there is a fuzzy boundary between peaks in the red frame. This is due to the reflection
of ultrasonic wave pulses at the wall of water tank.

Fig. 10. The vertical projection curve of the S0 diagram in respective Fig. 9. (a)–(f) The time
interval between the two graphs is 0.5 μs.

4 Conclusion

In this paper, a stroboscopic polarization parameter imaging method is used to visualize
the propagation of ultrasound in water. Based on the theoretical model, images with
different polarization parameters are obtained by image processing. These images prove
that polarization parameter images are sensitive to ultrasound and can detect the propa-
gation of ultrasound in the water at a certain depth. Moreover, the propagation of pulsed
ultrasound in water is clearer than that of continuous ultrasound, and the propagation
distance can be controlled. However, the impurities in the sample will cause the reflec-
tion and scattering of ultrasound and light in the transmission process, which will affect
the contrast and imaging depth of the visualization results of ultrasonic propagation in
water.
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Abstract. In infrared imaging techniques, overcoming the interference of com-
plex background reflections is a challenge for obtaining sub-surface information
of samples. The polarization indirect parameter imaging (PIMI) method can char-
acterize the polarization property of samples by modulating the polarization states
of the illumination light and highlight the anisotropic details of the sample through
parametric images. In this paper, a far-infrared PIMI imaging system and the inver-
sionmodel of the properties of the sample were established. A composite structure
plate made of carbon fiber plate and aluminum alloy with internal defects was
measured. The experimental results demonstrated that the polarization parameter
images can sense the structures of the sample beneath the surface and improve the
contrast between the target area and the background area, which implies that the
system has the potential for non-destructive evaluation applications.

Keywords: Infrared imaging · PIMI imaging · Polarization parameter images ·
Image contrast evaluation

1 Introduction

Infrared imaging technology is based on the temperature difference between the tar-
get and the background radiation power to achieve the target detection [1]. With its
advantages of strong penetration capability, it has been widely used in industrial, mil-
itary, aviation, remote sensing, medicine [2], etc. In practical applications, due to the
background reflections from the sample and random noise introduced in the image pro-
cessing, the signal-to-noise ratio and contrast of infrared images could be degraded [3].
Thus, suppressing background noise is of great significance for improvement of the
infrared imaging techniques. There are generally two ways to improve the quality of
infrared imaging. One is to develop high-resolution and high-precision infrared detec-
tors, which is difficult and the cost is high. Another method is to develop advanced image
enhancement algorithm.
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Jaspreet [4] proposed a non-training contrast enhancement algorithm for infrared
image improvement. Cao Mei [5] developed an infrared image enhancement method
based on the improved histogram equalization and non-sub sampled contourlet transform
(NSCT) to enhance the global contrast. Chen Chaoqi [6] proposed a fusion method of
infrared image and visible image based on multi-scale low-rank decomposition and it
is proved to be able to improve the resolution of infrared image and enhance the target
area. These works can supress the imaging noise and improve the contrast of the infrared
images. However, limitations still exist, including the lack of universality of particular
algorithms, and the complexity and computation costs.

Therefore, it is of great practical significance to find amethod that can suppress back-
ground noise, improve global contrast of images and simplify the processing complexity.
In this paper, we proposed a parametric imaging method of far-infrared radiation, which
can obtain high contrast and resolution images of sub-surface information of the sample
with minimum post-processing of images.

The method is based on the utilization of polarization indirect parameter imaging
(PIMI) in the far-infrared range. It mainly depends on the inversion of near-field infor-
mation based on the coupling of electromagnetic waves with the sample and variation
of reflection light in the far-field [7, 8]. When interacting with the target, the electro-
magnetic wave will couple the near-field information into the polarization parameters
of the scattered light, including phase retardation, polarization orientation angle, and
Stokes parameters. The precisely controlled modulation leads to predictable change of
the far-field optical wave parameters, in addition to the variation caused by the sam-
ple properties. This far-field variation can be utilized to inversely calculate the optical
properties of the sample and high contrast images can be obtained.

Theoretically, objects with a temperature above 0 K will emit infrared radiation
and the asymmetry of radiation results in the polarization characteristics of the object’s
thermal radiation [9, 10]. In this paper, the advantages of thismethodwere fully exploited
by employing the far-infrared detection. The sub-surface information can be carried by
the far-infrared light to the far-field through the PIMI imaging process. Results shows
that this imaging method achieved the enhancement of the contrast between the target
and the background, highlight the details of sub-surface structure of the sample.

2 Acquisition of Polarization Parameter Images

2.1 Infrared Polarization Parameter Imaging System

The infrared polarization parameter imaging system for internal defect detection of
carbon fiber-aluminum alloy composite plate is shown in Fig. 1. The light source in the
system is a continuous laser with a wavelength of 532 nm and the maximum power of
1 W (LWGL532 series), which is used to heat the sample. The laser is collimated and
the beam diameter is expanded by a continuous zoom beam expander (GCO-25 series).
After the illumination of the 532 nm laser, the sample emits far-infrared radiation and the
radiation was collected and passed through a silicon substrate infrared grating polarizer
working in the 7–15 micron spectrum range (WP25M-IRC). Then it is received by the
infrared camera with a detection range of 8–14 microns (PLUG617R). The resolution
of the imaging sensor is 640 × 512 and the pixel size is 17 microns. In the experiment, a
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motor is used to rotate the polarizer, and the infrared camera is controlled for synchronous
acquisition of images at different rotation angles of the polarizer.

Fig. 1. The schematic of the infrared polarization parameter imaging system.

2.2 Sample Preparation

To simulate the defects beneath the sample surface, a four-layer PTFE film was used
to mimic the defects buried between the carbon fiberboard and the aluminum plate. A
X-shaped defect was composed of two rectangular thin films with lengths, widths and
thickness of 20 mm, 4 mm and 0.18 mm, respectively. The aluminum plate, PTFE film
and carbon fiberboard were bonded together with the mixed epoxy resin adhesive. And
the samples were pressed uniformly to avoid the generation of bubbles at the bonding
place, as shown in Fig. 2.

Fig. 2. Sample schematic. (a) Top view of sample, (b) cross-section diagram of the sample (1.
Carbon fiberboard, 2. Teflon, 3. Aluminum alloy).
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2.3 Measurement Procedure of the Experiment

As shown in Fig. 1, a laser in the visible spectrum (532 nm) was used for thermal exci-
tation of the sample and the far-infrared radiation in the far-field was imaged with an
infrared camera. The polarization angle of the polarizer was rotated and the infrared
emission from the sample was fitted and filtered to a theoretical model. The polarization
direction of the incident laser is ensured to be perpendicular to the fiber axis of carbon
fiber to maximize the optical absorption [11]. It has been proved that the infrared radia-
tion of the target has polarization characteristics, and the polarizability is related to the
emission angle (the angle between the detector and the normal line of the sample) [12].
The smaller the emission angle is, the lower the polarization degree of the sample is.
The laser illumination direction is parallel to the horizontal plane to irradiate the sample
surface at a certain angle to improve the polarization characteristics of the sample. The
polarizer is rotated from 0º to 360º with a step length of 20º to obtain 19 images of
different polarization states.

2.4 Theoretical Model of the Imaging System

The infrared images of multiple polarization angles are collected, fitted and filtered to
the theoretical model. Polarization parametric images including the phase retardation
between orthogonal components, polarization ellipticity orientation angle and Stokes
parameters were calculated with the model.

a) Calculation of theoretical model.

The principle of the whole system is that the incident polarized light acts on the
Mueller matrix of the sample and the polarizer, and its output light can be expressed as
[13]:

Sout= Mpol Msample Sin (1)

Msample =

⎛
⎜⎜⎝

1 0 0 0
0 cos2ϕ sin2ϕ 0
0 0 −cosδsin2ϕ −sinδcos2ϕ
0 −sinδsin2ϕ sinδcos2ϕ cosδ

⎞
⎟⎟⎠ (2)

Where Mpol , Msample, Sin represent the Mueller matrix of the polarizer, the sample
and the Stokes vector of the linearly polarized input beam, respectively. In the sample
Muller matrix, δ represents the phase difference between two orthogonal polarization
components, and ϕ is the polarization ellipticity orientation angle.

The calculated intensity of each pixel detected on the detector is:

I = 1
4S0[1 + (−cosδsin2ϕsin2α)sin2θ + cos2(α − ϕ)cos2θ ]

Where S0 is Stokes vector, and α and θ are the polarization angles of the incident
light and the polarizer respectively.
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a0, a1 and a2 are respectively represented as:

a0 = 1

4
S0, a1 = −1

4
cosδsin2ϕsin2αS0, a2 = 1

4
cos2(α − ϕ)S0 (4)

If the polarizer obtains a picture at each rotation angle, the image intensity collected
at the nth time is:

In = a0 + a1sin2θn + a2cos2θn (5)

The corresponding parameters can be obtained by Fourier series analysis:

a0 = 1

N

N∑
n=1

In, a1 = 2

N

N∑
n=1

Insin2θn, a2 = 2

N

N∑
n=1

Incos2θn (6)

Where N is the total number of rotations, and θn represents the angle of rotation.
Combining Eq. (4) and Eq. (6), the final equation can be deduced as:

Idp = a0, ϕ = α − 1
2arccos

a2
a0

,

cosδ = −a1
(
a0sin2αsin

(
2α − arccos a2a0

))−1 (7)

Where Idp is the average light intensity of all polarization intensity images.
The Stokes parameters can be denoted by the Muller matrix as:

S0 = Idp(1 + sinδ), S1 = Idp(1 + sinδ)cos2ϕ,

S2 = √
2Idp(1 + sinδ)

√
sin2ϕ cosδ, S3 = √

2Idp(1 + sinδ)
√
sin2ϕ sinδ

(8)

b) Modification of theoretical model.

The polarization characteristics of the sample, such as carbon fiber microstructure
materials, are ignored in the above calculation, which are anisotropic and have a certain
regularity in this experimental arrangement. The strong polarization properties have an
impact on absorption of the illumination light and the emission of far-infrared radiation.
Therefore, a method of introducing the polarization into the Muller matrix of the sample
is proposed, to adapt the above theoretical model and the optimization of the polarization
parameter image of the far-infrared radiation.

The modified sample Muller matrix can be described as:

M
′
sample

⎛
⎜⎜⎝=

1 0 0 0
0 cos2ϕ sin2ϕ 0
0 0 −cosδsin2ϕ −sinδcos2ϕ
0 −sinδsin2ϕ sinδcos2ϕ cosδ

⎞
⎟⎟⎠ × Mpol1 (9)

The detected light intensity of each pixel is:

I = S0
8
[1 + cos(2α − 2β)]
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× [1 + (−cosδsin2ϕsin2β)sin2θ + cos(2β − 2ϕ)cos2θ ] (10)

Whereβ represents the polarization anglewhen the sample is in a certain polarization
state and the corresponding expressions for a0, a1 and a2 are:

a0 = S0
8 [1 + cos(2α − 2β)], a1 = S0

8 [1 + cos(2α − 2β)](−cosδsin2ϕsin2β),

a2 = S0
8 [1 + cos(2α − 2β)] cos(2β − 2ϕ)

(11)

The polarization parameters are obtained:

Idp = a0, tanϕ = tan

(
β − 1

2
arccos

a2
a0

)
,

cosδ = −a1

(
a0sin2βsin

(
2β − arccos

a2
a0

))−1

(12)

Then the corresponding Stokes parameters can be calculated according to Eq. (8).

3 Experimental Results and Analysis

3.1 Comparison of the Two Processing Models

A series of polarization parameter images are obtained by theoretical calculation of
the raw images with different polarization states. Comparison of the original image I0,
depolarization intensity figure Idp, Stokes parameter S0, S1, S2, S3, δ before and after
modification of the theoretical model are shown in Fig. 3, 4.

Fig. 3. Polarization parameter image before algorithm correction.

It can be seen intuitively that the image contrast and clarity of the polarization
parametric images of the two algorithms are improved compared with the conventional
intensity image. And contour of internal defects buried in the sample is also shown
clearly, indicating that two algorithms for the systemare both feasible. It is also found that
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Fig. 4. Polarization parameter image after algorithm modification.

the image results with the modified algorithm is much better than that of the one before
the correction. The defects in the δ and S2 image with the model before modification was
almost invisible. Generally, the modified model introducing polarization parameters not
only complements the information of Stokes S2 image but also improves the contrast of
other Stokes parameter image and the δ image of the sample.

3.2 Polarization Parametric Imaging of Subsurface Structure

The contours of the “X” defects can be seen in S0 and S1 Stokes parameter images,
as shown in Fig. 4. A low-temperature region was shown due to fast heat transferring
speed in aluminum and large thermal resistance (poor thermal conductivity) of PTFE. In
the defect-free part, this indicates that the emissivity of different regions on the carbon
fiber surface is different, and the morphology of internal defects can be characterized by
polarization parameters. The results suggested that in a certain polarization parameter
image, such as S0, S1, the polarization parameter can enhance the difference of radiation
in each area of the surface, which allows us to distinguish the defected part and the
defect-free part. Therefore, it is demonstrated that this method can improve the contrast
between the defect area and the non-defect area through the Stokes parameter image.
And the internal defect morphology can be visualized.

To make a more accurate comparison, the same area from the direct image I0 and
the S0 image were selected for analysis, as the marked by the red straight line in Fig. 5.
Intensity profiles along the line for I0, S0, S1, S2, S3, sin δ, cos δ images are shown
in Fig. 6. It can be found that the intensity contrast of all parametric images are much
greater than that of the I0 image. It is evident that polarization parameter images can
increase the contrast between the defect and its background.
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Fig. 5. Comparison of original image and polarization parameter image. (a) Original image I0,
(b) Polarization parameter image S0.

Fig. 6. Comparison of intensity distribution perpendicular to defect in I0, S0, S1, S2, S3, sin δ,
cos δ images

4 Conclusion

In this paper, the infrared polarization indirect parameter imaging method is used to
characterize the sub-surface structure of the sample. The carbon fiber-aluminum com-
posite plate with internal defects was thermally excited by a laser in the visible spectrum,
and the infrared emission from the sample was recorded when rotating the polarizer in
the infrared radiation path. The images were fitted and filtered to the theoretical model
to obtain the polarization parameter images. The experimental results manifest that the
method can detect structures beneath the sample surface, suggesting capability of the
detection of near-surface defects of composite materials. It is further confirmed that the
imaging method can suppress background noise and improve the contrast of target area
and background area. The far-infrared imagingmethod based on polarization parameters
is not only a supplement to improve the quality of infrared imaging, but also has great
potential for non-destructive evaluation of samples.
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The Overview of Medical Image Processing
Based on Deep Learning
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Abstract. With the rapid development of artificial intelligence technology, deep
learning is being applied to the field of medical image analysis. This paper sum-
marizes the deep learning models related to medical image analysis, and the appli-
cation results of these models in medical image classification, detection, segmen-
tation and registration. It specifically involves the image analysis tasks of nerve,
retina, lung, digital pathology, breast, musculoskeletal and other aspects. Finally,
it summarizes the current research status of deep learning related tomedical image
analysis, and discusses the challenges and direction of future research.

Keywords: Deep learning · Clinical application · Image detection · Image
segmentation · Image registration

1 Introduction

Deep learning is a hot research field and a branch of machine learning. Compared with
traditional artificial neural network, the depth and the number of parameters of themodel
have increased significantly. Convolutional neural network (CNN) and recurrent neural
network (RNN) are the twomost importantmodels in deep learning. The former ismainly
used in image recognition, object detection, speech recognition and other tasks, while the
latter is mainly used in sequence data. Convolutional neural network was first proposed
to recognize handwritten numbers, and achieved high accuracy. In the 2012, large-
scale visual recognition challenge finally won the first place by using GPU acceleration
training. A variety of CNN models have been proposed and applied in a variety of
tasks, which promote the development of convolutional neural network to a deeper and
broader level. Direct connection is added between layers to simulate identity mapping.
The application of deep learning to medical field is a hot topic recently, especially in
the recognition of some medical detection images. For example, in the machine learning
competition platform, the application of deep learning in medical image recognition has
a wide range of application prospects. The theme of this year’s annual competition is to
detect lung cancer based on the chest CT scan data of patients diagnosed with cancer
within one year. Because some patients diagnosed with lung cancer may not be ill in fact,
and the size of nodules is different on the CT images of patients’ lungs. The larger the
nodules, the higher the probability of lung cancer. Therefore, the use of deep learning to
assist doctors in noninvasive detection can avoid many unnecessary surgical detection.
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At present, artificial intelligence technology based on machine learning algorithms
such as deep learninghas beendeeply integrated into all aspects of themedical field. From
the development of new drugs to auxiliary clinical diagnosis and treatment, medical big
data analysis is gradually becoming an important factor affecting the development of the
medical industry. The market scale of artificial intelligence in medical industry in China
was 13.65 billion yuan in 2017 and 21 billion yuan in 2018, with a year-on-year growth
of 54%. It is estimated that the contribution rate of artificial intelligence application to
the annual compound growth rate of the medical industry will reach 40% from 2017
to 2024. By the end of 2019, the annual compound growth rate of the medical industry
will reach 40%. There are more than 80 AI medical enterprises in China. AI analysis of
medical images is a research hotspot of digital medical industry, involving more than 40
enterprises, including Alibaba, Tencent, Baidu, iFLYTEK and other famous companies.
AI technology has gradually become an important factor affecting the development of
medical industry, especially in the field of medical image analysis.

2 Analysis of Medical Image Research

Artificial analysis of medical images not only takes a long time, but also is limited by the
experience of analysts. It takes a lot of time and cost to cultivate a qualified professional
of medical image analysis. Therefore, artificial intelligence has entered people’s vision.
In 1963, American radiologist Lodwick proposed the digitization method of X-ray film.
In 1966, themethod of X-ray film digitizationwas put forward. American scholar Ledley
formally put forward the concept of “computer-aided diagnosis”, hoping to reduce the
workload of doctors through computer. In 1972, CT was applied in clinical practice,
creating a precedent of digital medical imaging. In 1982, the American College of Radi-
ology decided to jointly establish a committee called ACR-NEMA, which is dedicated
to developing communication specifications between medical imaging devices. In 1985
and 1988,ACR-NEMA issued a set of specifications (ACR-NEMA1.0 andACR-NEMA
2.0). In 1993, ACR-NEMA issued a new set of specifications named DICOM 3.0, which
specifies the transmission standard of medical images and related information.

Althoughmedical image storage and transmission standards have developed, it is still
difficult for artificial intelligence to be used in medical image analysis. The main reasons
include blurred image of visual system, complexity of human tissue, structure, function,
and limitations of traditional machine learning algorithm. In 2006, depth algorithm
appeared, which made a breakthrough in image recognition research. Some researchers
use the structure of multi-layer convolutional neural networks (CNN) to reduce the error
rate of image recognition from 26.2% to 3%, and the deep machine learning algorithm
has entered the application stage in medical industry.

Supervised deep learning models commonly used in medical image analysis include
CNN,CNNbased transfer learning and recurrent neural networks (RNN),while unsuper-
vised deep learning models include automatic encoder, restricted Boltzmann machines
(RBM) and general adaptive networks (GaN) [1]. CNN is the most commonly used
machine learning algorithm in medical image analysis at present. Its advantage is that it
can save the spatial relationship features of the image, and this feature is very important
for medical image analysis. For example, in histological examination, the proportion
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of DNA and cytoplasm of cancer cells on the slide is higher than that of normal cells.
Therefore, if strong DNA features are detected in the first few layers of CNN, CNN can
predict the existence of cancer cells. Through medical image analysis, transfer learning
is often used to transfer the weights learned by CNN during the training of one dataset to
another CNN, and then use these weights to receive the training of the marked medical
dataset. RNN is often used to analyze sequence data, and image segmentation in medical
image analysis. The main difference between RNN and CNN is that the output of one
layer of RNN will not only become the input of the next layer, but also feedback to this
layer. That is to say, RNN can learn to use the past information. Automatic encoder is
mainly used for data dimension reduction or feature extraction, which does not need
labeled data sets. In deep learning, the automatic encoder can transform the input data
into another form, and then carry out a series of learning on this basis. The generative
model continuously learns the real probability distribution in the training set, and con-
verts the input random noise into the true image. In addition to the models introduced
above, there are many variant models based on these models.

3 Application of Deep Learning in Medical Image Analysis

There are four main application ways of deep learning in medical image analysis, which
are image classification, detection, segmentation and registration. Among them, clas-
sification is to distinguish different types of objects according to the different features
reflected in the image information; detection is to determine the boundary box around
each object, and these objects may come from different classifications; Segmentation is
to determine the contour of the object at the edge and mark it semantically; Matching
criterion is to fit one image to another one.

In fact, in clinical practice, it is not very necessary to distinguish these tasks accu-
rately. In fact, in some of the studies described below, these tasks are more or less
confused or mixed. The most ideal machine learning system is to unify these tasks,
such as detecting lung tumor from CT image, and then to locate and segment it. From
the perspective of big data, training a robust deep learning model needs to use a lot of
high-quality medical data.

3.1 Medical Image Classification

From 2015 to 2017, a total of 47 papers on medical image analysis based on multi
classification tasks were published, including 36 papers using CNN model, 6 papers
using RBM model, and 5 papers using automatic encoder model. In general, CNN is
still the standard model for multi classification tasks.

As early as 1995, Lo et al. [2] tried to use CNNmodel to detect pulmonary nodules on
chest X-ray images. They used 55 chest X-ray images and established a CNN with two
hidden layers to detect the presence of pulmonary nodules in the image area. Rajkomar
[3] enhanced the data set with 1850 chest X-ray images. The image is divided into front
image and side image by using a pre-trained CNN googlenet. The results show that
the classification accuracy is nearly 100%. Rajpurkar [4] used an improved densenet to
classify 14 diseases (including pneumonia) of 112000 chest X-ray images from chest
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x-ray dataset. The improved densenet has 121 convolution layers. The area under curve
of receiver operating characteristics (AUC) is 0.763. The researchers also use the test
set to compare the receiver operating characteristics of the diagnosis results. Radiologist
Shen used CNN combined with support vector machine and random forest to classify
1010 labeled lungCT images from data set for benign andmalignant pulmonary nodules.
They used three parallel running CNN, and each CNN was used for classification. CNN
has two layers of convolution layer. Different CNN uses different scale image blocks
to extract features, and then combines the learned features to construct a feature vector.
Finally, support vector machine or random forest with radial basis function as kernel
function is used as classifier for classification. The classification accuracy of their model
reaches 86%, and the model shows strong robustness. Kallenberg [5] combined the
unsupervised convolution layer as the training of automatic encoder with the supervised
layer to classify mammogram images according to different textures and densities. It
was found that the AUC of the convolution stack self encoder model was 0.57. Van
Tulder used convolution RBM to classify lung tissue according to normal, emphysema,
fibrosis, micronodule and ground glass tissue. The data set is composed of 128 CT
images of patients with interstitial lung disease in ILD database. Convolution RBM
generates filters through pure discrimination, pure generation, mixed discrimination and
target generation. Then these filters are used to extract features. Finally, random forest
is used for classification. The classification accuracy of their model is 41%–68%. In
addition, Khatami used depth belief network to classify X-ray images into five categories
according to anatomical region and direction.

Li [6] proposed a three-dimensional CNNmodel to complete multimodal data. Hos-
seini used deep 3DCNN to learn and capture the common features ofAlzheimer’s disease
and adapt to different data set domains. 3D CNN is based on 3D convolution automatic
encoder, which can capture the anatomical shape changes in structural brain MRI after
pre training. Then for each task specific classification of Alzheimer’s disease, fine tune
the fully connected upper layer of 3D CNN. Korolev proposed a residual neural network
architecture based on vggnet. This architecture can make the neural network model with
100–1000 layers and also get good training. They use the data from ADNI database,
and use voxnet and RESNET to classify the brain MRI images of healthy people and
patients with Alzheimer’s disease. The results show that the classification accuracy of
the model is 79% and 80% respectively. But their modeling process is simpler.

Pratt trained a CNN with 10 convolution layers and three full connectivity layers
to process 90000 fundus images. They divided diabetic retinopathy into five categories
according to the severity, and the classification accuracy of the model was 75%. Deep
belief network is used to extract features from fMRI images.

3.2 Medical Image Detection

It is an important step in medical image analysis to detect and locate the lesion site of
anatomical objects. The task of 2017 kaggle “data science bowl” competition includes
the detection of cancerous pulmonary nodules in lung CT images, and the data set used
2000 CT images. The 3D CNN model used by the winner of the competition is inspired
by the u-net architecture. First, the sub image block of the image is used to detect the
pulmonary nodules, and then the output is used as the input of the second stage. The
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second stage is composed of two fully connected layers, which are used to output the
probability of cancer. Shin et al. used five famous CNN models to detect the thoracic
and abdominal lymph nodes and pulmonary interstitial lesions on CT images. They used
googlenet to detect mediastinal lymph nodes, and the AUC of the model was as high as
0.95, which was a very good result. In addition, they also summarized the benefits of
transfer learning, Ciompi combined simple support vector machine with random forest
classifier, and used two-dimensional slices of coronal plane, axial plane and sagittal
plane of lung CT image for training to detect whether there were pulmonary nodules in
and around the lung space. In addition to lung disease detection, it is also used for other
disease detection, such as malignant skin cell detection.

At present, the images of histopathological examination are more and more digital,
and there aremore andmore related researches. A piece of histopathological sectionmay
contain hundreds or even thousands of cells. Ciresan used CNNwith 11–13 convolution
layers to identify mitotic images in 50 breast tissue images from the MITOS data set.
Yang [7] used CNN with 5–7 layers of convolution layer to classify the pathological
examination images of renal cell carcinoma into tumor and non tumor. The accuracy rate
was 97%. Sirinukunwattana [8] used CNN to detect the nuclei of colon adenocarcinoma
in 100 staining histopathological images of colon adenocarcinoma. Xu [9] used stacked
sparse self encoder to detect breast cancer cell nucleus in breast cancer tissue section
image, and the results showed that the accuracy of the model was 89%, which also
proved that unsupervised learning can be used in this aspect of detection.

3.3 Medical Image Segmentation

CT and MRI image segmentation research covers liver, prostate, knee joint cartilage
and other organs and tissues, but a large number of studies focus on brain, including
brain tumor image segmentation. Therefore, it is very important to determine the exact
boundary of brain tumor for guiding the implementation of resection surgery. In the
traditional treatment process, this boundary is drawn layer by layer by brain surgeons
through CT or MRI images. Akkus summarized various CNN architectures and their
performance used in brain MRI image segmentation.

Moeskops used three parallel running CNN to classify brain MRI images of 22
children and 35 adults according to different tissues, such aswhitematter, graymatter and
cerebrospinal fluid. The smallest sub image block focuses on the local texture features
of the captured image, while the larger sub image block focuses on the spatial features
of the captured image. The results show that the Dice coefficient of the model is between
0.82 and 0.87. Tajbakhsh analyzed four different types of medical images using transfer
learning. It includes polyp detection on colonoscopy images, frame classification of
colonoscopy images, pulmonary embolism detection on pulmonary angiography CT
images and intima-media interface segmentation of ultrasound scanning carotid artery
wall images. Their research also found that compared with CNN trained from scratch,
transfer learning can better improve the performance ofCNN.Chen et al. combinedCNN
with RNN, and the structure of neuron and fungus was segmented from the microscope
image.

Most of the research on medical image segmentation is carried out on two-
dimensional images, but milletari used three-dimensional CNN to segment prostateMRI
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images from promise 2012 dataset. Their v-net has u-net architecture, and the Dice coef-
ficient of themodel is 0.869. Pereira [10] used a 3× 3matrix filter, and aCNNmodelwith
11 convolution layers was designed and trained with 274 brainMRI images with glioma.
He won the first prize in the “multimodal brain tumor segmentation” challenge held by
the International Association formedical image computing and computer aided interven-
tion in 2013. Havaei also studied the image segmentation of glioma. Their CNN model
uses a cascade architecture, that is, the output of the first CNN is used as the input of the
second CNN. The running time of the algorithm is reduced from 100 min to 3 min. Chen
[11] proposed a deep lab architecture, which performs well in Pascal voc-2012 image
segmentation. Casamitjana compared the performance of various 3D CNN architectures
in image segmentation tasks. It is found that the model modified by deepmediccnn [12]
performs best in image segmentation of brats 2015 brain tumor dataset. They advocate
using smaller receptive field and multi-scale architecture. Stollenga uses long-term and
short-term memory network to segment three-dimensional electron microscope images.
There are various methods for medical image segmentation. For the purpose of subdivi-
sion, RNN is also commonly used. Xie [13] used clockwork RNNmodel to segment the
sarcolemma in the histopathological examination image stained by hematoxylin eosin.

3.4 Medical Image Registration

Medical image registration is a common image analysis task, which is usually carried
out in a specific (non) parameter conversion type of iterative framework. At present,
there are two main strategies for image registration: the first is to use deep learning
network to estimate the similarity of two images, and then drive the iterative optimization
strategy; the second is to use deep learning network to calculate the similarity of two
images; Neurosurgeons or spinal surgeons use image registration to locate tumor or
spinal bone “landmarks” for surgical resection of tumor or implantation of spinal screw.
Image registration involves two images, namely reference image and perceptual image,
in which the reference image is preoperative brain magnetic resonance imaging image.
The perceptual image can be the brain MRI image after the first tumor resection. The
perceptual image is used to determine whether there is residual tumor and whether
secondary resection is needed. Yang used the brain MRI image in oasis data set to
stack convolution layers in the way of encoding and decoding. They used LDDMM
registration model, which greatly reduced the calculation time. Miao used CNN model
with five layers of convolution layer to register the three-dimensional models of knee
joint implant, hand implant and esophageal probe on the two-dimensional X-ray images,
so as to evaluate their posture. Compared with the traditional registration method, it has
significant progress.

4 Conclusion

Deep learning is one of the hotspots in the field of artificial intelligence. In machine
learning, a key problem is the data problem. High quality data can effectively improve
the performance of the algorithm. But in fact, especially in medical images, there is
a serious lack of high-quality labeled data. Therefore, researchers hope to avoid the
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limitation of limited data through better model architecture. Some generating models
in deep learning, such as Gan and variational self encoder, can also avoid the problem
of data shortage by synthesizing medical data. This paper introduces some traditional
applications of deep learning in medical image analysis. But now deep learning also has
many new applications, such as using Gan to generate CT images with higher resolution
from the original image. This method can also be used to generate high-quality MRI
images to reduce medical costs.

Machine learning is developing rapidly in medical image analysis. In general,
although there are some important problems to be solved in the application of artifi-
cial intelligence in medical image analysis, such as interpretability, robustness and so
on. The existing artificial intelligence has surpassed human beings. I believe that in the
future, artificial intelligence system will be able to assist or even replace doctors in film
reading and diagnosis to a great extent, and intelligent medical image analysis products
will be used widely in clinical practice.
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Abstract. In order to solve the problems of high cost and low efficiency of man-
ual fault detection of photovoltaic modules in real life, a typical fault classification
and recognition system for photovoltaic modules based on thermal imaging pho-
tography and machine processing was proposed. Feature extraction network is
used to extract features from thermal imaging images. Classify different types of
faults andmake training sets; TheYOLOV5 target detection algorithmwas used to
train the model through subset pre-training, weight allocation, multi-group multi-
number training and other methods, and the test set was used for multiple tests.
The test results show that the system has a strong ability to identify faults, and the
average accuracy of network detection in the task of fault classification reaches
84.2%. In the complex area images including the target photovoltaic modules, the
accuracy of the result reached 79.1% after the test set tested the training model.
It is judged that the system can replace manual work to complete the typical fault
classification and identification of photovoltaic modules.

Keywords: Deep learning · Image processing · PV module failure · YOLOv5 ·
Target classification

1 Introduction

Today, with the development of scientific and technological civilization, the global
energy crisis has become increasingly serious, and environmental pollution has become
one of the fundamental problems threatening the survival and development of human
society. Correspondingly, countries around theworld are payingmore andmore attention
to the problem of energy crisis, and more and more material resources and manpower
have been invested in the research and development of new energy. In this regard, many
countries in the world have introduced many corresponding policies and issued many
official documents. Such problems have attracted people’s attention to environmental
pollution and energy crisis, and the search for new energy with sustainable develop-
ment and strong alternative has become an important research topic in the scientific
community.
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At the end of the 20th century, with the idea of taking the sun as the core of energy
in the world’s strong support and positive development, many new energy technologies
were developed, such as solar thermal energy, wind energy, water conservancy, geother-
mal energy and so on. It is worth mentioning that the photovoltaic power generation
technology has been widely used in the world because of its wide illumination area and
low energy consumption and high efficiency. Many world-class large-scale solar power
stations have been set up. However, due to time, environment, force and other factors,
many faults will occur in the use of this technology, including strip battery faults, hot
spots, junction box damage, whole component faults, etc., which will reduce power gen-
eration efficiency, affect capacity, and cause great losses to economic benefits. How to
quickly and accurately identify these faults has become the key to efficiently and rapidly
repair the photovoltaic power generation system to ensure its normal power generation.
This key point has also constantly attracted the attention of scholars at home and abroad.

Thermal imaging is a non-contact infrared energy detection to display thermal images
and temperature values. Under normal circumstances, different faults show different
abnormal conditions in the thermal imaging images, so the type of faults can be inferred
backwards. This detection method is easy to use and avoids the risk of disassembly
inspection. Therefore, the working mode of carrying the camera system by UAV and
checking it manually has been used in many places now. However, compared with
the convenience and quickness of photovoltaic fault shooting by thermal imaging, the
method to complete the identification of photovoltaic system fault by manpower shows
the problem of huge cost and low efficiency. Compared with the ability of a large number
of mechanical calculations, the artificial backward method will obviously be eliminated
by the rapid development of society. Therefore, a set of machine can replace the human
and practical system has a very important significance.

Based on the above situation, this paper proposes a typical fault classification
and recognition algorithm of photovoltaic modules based on YOLO neural network.
The algorithm classifies different fault types by labeling the images in the train-
ing set, and gives four values of each image, which are X_center/image_width,
Y_center/image_height, width/image_width, and height/image_height, and integrates
them into a data set. The model is obtained by training the data set through YOLOV5
neural network. This method has the advantages of high precision, low error detection
rate and strong anti-interference, and can complete the task of fault classification and
recognition well.

2 Typical Fault Classification and Analysis of Photovoltaic Modules

2.1 Heat Spot

Cause of failure: battery damage in the module, or dirt and dust accumulated on the
surface of the photovoltaic module causing a shadow, resulting in heat spots.

Judgment method: If a single or multiple heating battery pieces present patchy and
scattered distribution, they are judged as hot spots.
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Fig. 1. Thermal imaging display diagram of PV module faults

2.2 Whole Component Failure

Cause of fault: all the diodes are on, the component process is not up to standard or the
bus bar is falsified, resulting in heating of the whole component.

Determination method: If all the batteries of a component are abnormally hot and
the temperature is obviously higher than that of other components in the same group,
the whole component is judged to be faulty.

2.3 Strip Battery Malfunction

Fault cause: junction box exists welding phenomenon or diode fault causes strip
distributed heating phenomenon.

Judgment method: If the two ends of the abnormal components are distributed in
strip shape and several batteries are heated at the same time, it is judged as strip battery
fault.

2.4 Junction Box Damaged

Cause of the fault: the installation of the junction box is not up to standard or the internal
contact of the junction box is not good.
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Judgment method: If the two ends of the abnormal components are distributed in
strip shape and several batteries are heated at the same time, it is judged as strip battery
fault. If the temperature at the junction box of the component is significantly higher than
that of other components in the same group, the junction box is judged to be damaged.

3 Inspection System Framework

3.1 The Structures

The typical fault classification and recognition algorithm framework of photovoltaic
modules designed in this paper consist of two parts. The first part is image feature
extraction based on OpenCV, which is used to label the RGB original image selected
by the box and give coordinate data, to generate an appropriate training set and use it
in the subsequent YOLOV5 network training model. The second part is the operation
processing based on the YOLOV5 Network structure (as shown in Fig. 1). The Focus
structure andCSP structure of theNetwork ensure a large number of convolutional kernel
operations and reduce the operation cost. When sampling, FPN (Feature Pyramid Net-
work) and PAN (Pyramid Attention Network) are adopted, and YOLOV5 uses the CSP2
structure designed by CSPnet (Cross Stage Partical Network) for example. Enhance the
ability of network feature fusion. Therefore, this system adopts this network structure,
whose function is to consider the different fault characteristics of different types of
photovoltaic modules for regression classification, and at the same time to improve the
computing capacity of the system.

Fig. 2. YOLOV5 network structure

Figure 2 describes the network structure of YOLOv5. The recognition model of
the system uses this structure to train the model. For different models of YOLOv5, the
system uses YOLOv5X model to replace YOLOv5S model to build.
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3.2 YOLOv5 Principle

YOLOv5 YOLOv3 Darkent based network migrated to Pytorch development environ-
ment, the framework of the overall network structure is still the old version of the one -
stage structure, compared with YOLOv4 of promotion in the COCO dataset, YOLOv5
compared to ascend is not big, but the accuracy is higher, and the reasoning speed has
reached 140 FPS, its weight (weight) file size, however, is only 1/9 of the four genera-
tions. The same with Yolov4, the network structure of Yolov5 still uses four parts: Input,
Backbone, Neck and Prediction. The difference between Yolov5 and Yolov4, however,
is the addition of adaptive anchor box and adaptive image scaling code at the input
end. Meanwhile, Focus structure and CSP structure are adopted in the Backbone, and
the SSP of YOLOV4 is moved to the Backbone. Compared with the CIOU_LOSS and
DIOU_NMS operations of YOLOV4 at the output end, the GIOU_LOSS algorithm is
added.

4 Environment and Models

4.1 Environment Setting

For the convenience of development, the system is built on Linux computer system.After
installing the Ubuntu system (version 18.04 is installed in this experiment), download
and install the RUN file from the official website of NVIDIA. The system selects the
latest version RUN file, and the resolution of the monitor is normal after installing
the RUN file. Then install CUDA to the environment, this system uses CUDA version
11.0, after the installation of ‘ ~ /.bashrc’ command, through this command can set the
environment variable of the computer; Then download Cudnn from the website; Finally,
the test environment can run normally.

Then you can use the software tool Anaconda to build the development environment
PyTorch. First, add the running environment of Python programming language. The
Python version added in this experiment is version 3.9.1, and check the environment
after installation. Then, PyTorch was installed on the official PyTorch website. In this
experiment, the 1.71GPUversionwas selected, and the selected environmentwas Linux,
Conda, and Cuda 11.0. After the installation, the environment was detected to be correct
by Anaconda.

4.2 Model Training

The training set model is divided into two corresponding folders, images and labels
respectively. The former is the set of thermal imaging pictures, and the latter is the
label file corresponding to each image. Since the algorithm of YOLO series supports
the label of Text file TXT (Text), the labels and the corresponding four informa-
tion of images, x_center/image_width, y_center/image_height, width/image_width, and
height/image_height, are stored in Text files, and images and labels are stored in trains
folder, which is called training set. After the installation of YOLOV5 program, trains
of the training set will be stored in the statistics folder of YOLOV5 project. Modify the
data.yaml file under trains file to “nc:2”, and then modify the nc value of yolov5x.yaml
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file under “yolov5/models/” to “nc = 2”. Since there are four training algorithms with
different specifications and different performances given by the authorities, the X algo-
rithm with the highest performance is selected for this system. The PT file generated
after training is the typical fault classification and identification model of photovoltaic
modules to be detected.

5 Experimental Analysis

5.1 Experimental Data

Figure 3 describes the effect display of classification and labeling of different ther-
mal imaging problems, including thermal imaging extraction of four kinds of problems
including Heat spot, Whole component failure, Strip battery malfunction and Junction
box damaged. After extracting the coordinates of the corresponding features, as shown
in Fig. 4, the similarity percentages of each feature are marked, and the photovoltaic
module faults corresponding to these features are classified. Based on the above process,
the detection results of single thermal imaging can be obtained finally.

Fig. 3. Visual effect display of training results

Through the study, it is found that the training times of an image set as 300, the step
size of training as 1, and the effect of training with the same training set for 3 times is
better than that of other training models, and the curve of its fitting parameters is also
more regular. Finally, the detection result of simple image test set is 84.2%, while the
detection result of complex image test set is 79.1%. (to one decimal point).
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Fig. 4. Testing effect diagram of test set

5.2 Experimental Environment

The hardware environment built in this experiment is as follows: CPUmodel of Intelcore
i7-9700K, thememory capacity of 8GX2,GPUmodel ofNVIDIAGeForceRTX-2080TI
11G video memory. The algorithm program of the experimental system is trained based
on the PyTorch framework YOLOV5 training model.

5.3 Evaluation Criterion

In this paper, T (true) is set for correctly classified cases, F (false) is set for wrongly
classified cases, and PR (precision rate) is set for classification accuracy. The value of PR
is taken as the standard for evaluating themodel. The calculation formula of classification
accuracy PR is as follows:

PR = T

T+ F
(1)

The accuracy rate reflects the quality of the correct classification of themodel, that is,
the higher the accuracy, the more powerful the performance of the model can be proved.
Generally speaking, it is difficult to train the model to the level of high accuracy, which
requires a lot of practice. Different training times, training amount, and training set will
affect the direction of the final effect. If only certain samples are trained, the actual
performance of the model will fluctuate. At the same time, there may be a variety of
faults on a photovoltaic panel.Whether themodel can be fully judged also needs repeated
debugging.Asmentioned earlier, a goodmodel should have the following characteristics:
the PR value should be as high as possible while ensuring the identification of multiple
faults in complex scenarios. MAP (Mean Average Precision) used in the target detection
experiment has the same meaning as PR in this paper and is a conventional index. It
is the average value of various categories. There are multiple detection targets in this
paper, so PR can be used to replace the MAP index.
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6 Conclusion

This paper proposes a typical fault classification and recognition system for photovoltaic
modules based on deep learning and thermal imaging image processing. The whole sys-
tem is built based on YOLOV5 algorithm for model training. By using different quality
training sets, the fault categories of different photovoltaic modules can be identified
effectively and accurately. The experimental results show that the system proposed in
this paper can accurately classify and identify different faults of photovoltaic modules
based on YOLOV5 algorithm, and has achieved excellent detection results.
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An Obstacle Avoidance Method for Agricultural
Plant Protection UAV Based on the Fusion

of Ultrasonic and Monocular Vision
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Aeronautical Vocational and Technical College, Changsha 410124, China

Abstract. Monocular vision obstacle avoidance technology has some defects,
such as low accuracy of obstacle detection, difficult to directly detect the distance
and position information of obstacles, In this paper, an obstacle detection method
of agricultural plant protection UAV Based on ultrasonic and monocular vision is
proposed. Firstly, the obstacles in the flight direction of UAV are detected quickly
by ultrasonic sensor, When the dangerous distance between the obstacle and UAV
is detected, The monocular vision sensor is triggered to collect the obstacle image,
and the collected obstacle image is transmitted to the image processing module
for image processing. Through the simulation experiment and effect comparison
of six automatic threshold edge detection algorithms, a better algorithm is found
to detect the edge of the image. The contour information of the image is detected,
and the flight path of the UAV is planned according to the obstacle avoidance
strategy and algorithm, so as to realize the autonomous obstacle avoidance of the
agricultural plant protection UAV.

Keywords: Fusion of ultrasound and monocular vision · Agricultural plant
protection UAV · Obstacle avoidance methods

1 Introduction

At present, The plant protection UAV has the advantages of uniform application, high
efficiency and lowcost.However, inChina’s farmland, there aremany complex obstacles,
such as houses, power poles, trees and so on, which seriously threaten the flight safety of
UAV.Therefore, it is necessary to realize the autonomous control of plant protectionUAV
Obstacle avoidance can significantly improve the safety of operation.Automatic obstacle
avoidance technology is of great significance to ensure the flight safety and automatic
flight of plant protection UAV, and obstacle detection is one of the key problems in the
use of plant protection UAV.

2 Common UAV Obstacle Avoidance Methods

2.1 Ultrasonic Obstacle Avoidance Method

Ultrasonic obstacle avoidance is to measure the distance of the surrounding obstacles
with the help of ultrasonic sensors. Ultrasonic sensor can measure the distance of the
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surrounding obstacles, but it can not measure the azimuth angle of the surrounding
obstacles.

2.2 Obstacle Avoidance Method of Lidar

The principle of laser radar obstacle avoidance is that the transmitter and the receiver
transmit and receive specific light pulses respectively, and use the ranging method to
calculate the distance information. Lidar has the advantages of long measurement range,
high precision, lightweight and small volume, but it is expensive and vulnerable to strong
light interference.

2.3 Millimeter Wave Radar Obstacle Avoidance Method

There is a time delay between the radar echo signal and the transmitted signal. The beat
signal is obtained by mixing the echo signal with the mixer local oscillator signal. The
frequency of the beat signal is proportional to the distance between the obstacle and
the radar. The distance between the obstacle and the radar can be calculated from the
frequency of the beat signal. Millimeter wave radar has high ranging accuracy, but it
can’t get the angle information of obstacles in space.

2.4 Obstacle Avoidance Method of Machine Vision

Machine vision obstacle avoidancemethoduses camera to capture the imageof obstacles,
and gets the position and contour information of the surrounding obstacles through image
processing [1]. Vision sensor passively receives the information of light source, which
is rich in information. However, machine vision obstacle avoidance requires camera
calibration, image processing, geometric operation and other operations, which requires
a large amount of calculation and high performance of hardware processing.

3 UAV Obstacle Avoidance Algorithm Flow Based on the Fusion
of Ultrasonic and Monocular Vision

The ultrasonic sensor can measure the distance of the surrounding obstacles, and has
the advantages of high precision, small volume, simple method, cheap price, not easily
affected by light wave, but it can not measure the azimuth of the surrounding obstacles.
Although the monocular vision sensor has low accuracy in measuring the distance of
obstacles, it can measure the orientation and position of the surrounding obstacles, At
the same time, compared with the multi vision sensor, it has the advantages of small
amount of calculation and low requirement of hardware processing capacity. Therefore,
the combination of ultrasonic sensor and monocular vision sensor installed on the plant
protection UAV can not only obtain high-precision distance information of obstacles, but
also obtain the orientation and position information of obstacles, The advantages of the
two sensors complement each other, and the scheme involves less computation, requires
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less processing power of embeddedmicroprocessor, and can realize the automatic obsta-
cle avoidance function of UAVwith lower cost and computational cost, which is suitable
for installation and use on plant protection UAV.

At present, there are mainly two types of vision image sensors in the market: CCD
and CMOS. Considering that the imaging quality of CCD is better than that of CMOS,
and the anti noise ability of CCD is better than that of CMOS, the monocular vision
sensor here is CCD image sensor.

The obstacle detection method of agricultural plant protection UAV Based on ultra-
sonic and monocular vision firstly uses ultrasonic sensor module to measure the distance
of obstacles around the flying UAV, When the distance between the UAV and the sur-
rounding obstacles is 5 m, the visual sensor is activated to collect the image of the
obstacles, and then the distorted image is preprocessed by correction, histogram equal-
ization, image filtering, and then the edge of the preprocessed image is detected. Finally,
the orientation of the obstacles is recognized according to the edge information and
recognition algorithm of the obstacles, The whole obstacle detection flow is shown in
Fig. 1.

UAV obstacle 
avoidance

histogram 
equalization

image
filtering

edge 
detection

Object contour 
detection

Monocular
Vision image
acquisitionion

Ultrasonic 
ranging

Fig. 1. Obstacle detection flow

4 UAV Obstacle Avoidance Algorithm Based on Ultrasonic
and Monocular Vision Fusion

4.1 Ultrasonic Ranging

The principle of ultrasonic distance measurement is to send ultrasonic wave to a certain
range of measuring beam angle through ultrasonic transmitter, and calculate the distance
according to the time difference of ultrasonic round trip [2]. In general, the ranging
formula is adopted when the application requirements are not high.

s = c× t

2

Where, “c”is the propagation velocity of sound wave in the air, generally 340 m/s, and
“t” is the propagation time.
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4.2 Histogram Equalization

Because the gray distribution of the original image is concentrated in a narrow range,
the contrast is very small when calculating the contrast, which leads to the details of
the image is not clear enough. In order to make the details of the image more clear, it is
necessary tomake the gray distribution of the imagewider and the gray value distribution
more uniform.Histogram equalization is to stretch the image to be processed nonlinearly,
so that the histogram distribution of the transformed image is uniform [3]. Because there
are many obstacles in our country’s farmland, such as houses, poles, trees and so on, so
we select houses as obstacles for image processing. The image histogram equalization
experiment is shown in Fig. 2.

                         (a) original image                (b) Histogram equalization image

(c) original image histogram                 (d) Histogram after equalization

Fig. 2. Histogram equalization experiment

It can be seen from the experiment that the gray range occupied by the original image
histogram is relatively narrow. After histogram equalization of the original image, the
histogram occupies the allowable gray range of thewhole image. Histogram equalization
increases the dynamic gray range and the contrast of the image, so many details of the
image are clearer.

4.3 Image Filtering

Because the obstacle image contains a lot of noise, if the noise in the image is not
removed, it is easy to misjudge the noise points with large gray value of the image
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as false edges, resulting in inaccurate edge detection, so the noise must be eliminated
before edge detection. Image filtering is to eliminate the noise in the original image.
There are many methods of image smoothing filtering, among which the commonly
used methods are mean filtering and median filtering. Mean filtering is a typical linear
filtering algorithm. It refers to giving a template to the target pixel on the image, which
includes the adjacent pixels around it, and then replacing it with the average value of all
the pixels in the template Replace the original pixel value. Mean filtering is also called
linear filtering, and its mainmethod is domain averaging.Median filtering is a non-linear
smoothing technique, which sets the gray value of each pixel to the median value of all
pixels in a neighborhood window [4].

The experiment of using mean filter and median filter to filter the obstacle image of
plant protection UAV in flight is shown in Fig. 3.

(a) original image                         (b) Image after adding noise

(c)3X3 Window mean filtering                  (d) 3X3 Window median filter

Fig. 3. Obstacle image filtering experiment

From the experiment, it can be seen that the mean filtering method can effectively
suppress the noise of the image, but the edge of the filtered image becomes more fuzzy,
while the median filtering method is obviously less fuzzy, which is very effective in
dealing with salt and pepper noise, and the filtering effect is better.
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4.4 Edge Detection

4.4.1 Common Edge Detection Methods

Image edge is often caused by the change of the physical characteristics of the scene
in the image. There is a direct relationship between the image edge and the physical
characteristics of the image content. The image edge contains most of the information
of the image. Traditional image edge detection methods mostly extract edge information
from high-frequency components of the image, and differential operation is the main
means of edge detection and extraction.

Edge detection methods usually use edge detection operators to detect. The com-
monly used first-order differential edge detection operators include Roberts operator,
Sobel operator, Prewitt operator, Canny operator and so on [5]. The commonly used
second-order differential edge detection operators include Laplacian operator, LOG
operator and so on.

4.4.2 Canny Operator Edge Detection Algorithm

Canny operator uses templates in different directions to convolute the given image and
obtain the optimal edge. Canny operator has the advantages of high detection accuracy,
high signal-to-noise ratio and poor real-time performance.

The steps of Canny operator edge detection are as follows:

(1) Gaussian filtering
Gaussian function is used to denoise the source image which needs edge detection,
The Gauss function is

G(x, y) = 1

2πδ2
exp

[
−x2 + y2

2δ2

]
(1)

(2) The gradient amplitude and direction of the filtered image are calculated

M (x, y) =
√
Gx(x, y)2 + Gy(x, y)2 (2)

θ(x, y) = arctan
Gy(x, y)

Gx(x, y)
(3)

GX (x, y) = G(x, y + 1) − G(x, y − 1) (4)

GY (x, y) = G(x + 1, y) − G(x − 1, y) (5)

The gradient and direction of the image are obtained by using the first-order partial
derivative in the neighborhood of 2 × 2.

(3) The gradient amplitude is not maximally suppressed, The non maximum points in
the gradient are set to zero to get the thinning edge.

(4) Edge detection and connection with double threshold method.
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High and low thresholds are used to detect the results after non maximum suppres-
sion, and two threshold edge images, T h and T l, are obtained. The points whose gradient
amplitude is greater than T h are regarded as edge points, and the points whose gradient
amplitude is less than T l are regarded as non edge points, and T l is used to connect the
edges [6].

4.4.3 Edge Detection Simulation Experiment

In order to improve the accuracy of obstacle edge detection, adaptive threshold is set
for six kinds of edge detection operators, and the edge detection operator with adaptive
threshold is used for image edge detection. The contrast experiment is shown in Fig. 4.

In the above experiments, six kinds of automatic threshold edge detection operators
are used to detect the edge of the obstacle image. Through the experimental comparison,
it can be seen that the obstacle edge detection accuracy in figure (f) is the highest, and the
edge detection effect is the best. In figure (f), canny operator with automatic threshold
is used for edge detection. Canny edge detection operator is an optimal edge detection
operator, and its edge detection effect is the best Edge detection image contains rich
image edge details. Canny edge detection operator in order to avoid the detection of
false edges, it uses the non maximum suppression method. In order to avoid false edge
points in the detection process, and also in order to avoid missing edge detection, Canny
edge detection algorithm uses the double threshold technology. The key of using Canny
operator to detect image edge is to select the appropriate threshold, so it is used here
Canny operator of automatic threshold is used for edge detection. The double thresholds
of Canny operator edge detection calculated by the program are 0.0188 and 0.0469
respectively.

4.5 Obstacle Contour Detection

After completing the edge detection of the obstacles in the monocular camera image,
the edge information of the obstacles has been obtained. After the implementation of
the edge detection step, the edge detection results are searched by the contour matching
algorithm, and the position coordinates of the obstacle target contour and the number of
extracted contours are searched in the binary image.

5 Obstacle Avoidance Strategy

In this paper, the plant protection UAV adopts two kinds of obstacle avoidance strate-
gies: vertical obstacle avoidance and left and right obstacle avoidance. When the plant
protection UAV detects obstacles in the front during flight operation, it is necessary
to calculate the height of the obstacles in front, and then judge whether the maximum
flight height of the plant protection UAV is greater than the height of the obstacles. If
the maximum flight height of the plant protection UAV is greater than the height of the
obstacle, the vertical obstacle avoidance mode of the UAV will be started to avoid the
obstacle. If the maximum flight height of the plant protection UAV is less than the height
of the obstacle, the left and right obstacle avoidance mode will be started. This is the first
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(a) original image       

 (b)Sobel edge detection with threshold of 0.0738

(c) Prewitt edge detection with threshold of 0.0722

Fig. 4. Edge detection experiment of obstacle image
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(f) Canny edge detection with threshold [0.01880.0469]

(d) LOG edge detection with threshold of 0.002 

(e)Zero cross detection with threshold of 0.0109

Fig. 4. (continued)

step to calculate the distance between the plant protection UAV and the left and right
boundary of the obstacle. When the plant protection UAV is close to the left boundary
of the obstacle, it will fly around the obstacle from the left side of the obstacle. When
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the UAV is close to the right boundary of the obstacle, it will fly around the obstacle
from the right side of the obstacle [7].

6 Conclusion

In this paper, the obstacle detection algorithm based on ultrasonic and monocular vision
is analyzed in detail and simulated. The experimental results show that the method
greatly improves the detection accuracy of obstacle image edge. The algorithm provides
a newmethod for obstacle detection of agricultural plant protection UAV, and provides a
technical basis for UAV automatic obstacle avoidance technology, which has very high
application value.
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