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Abstract Energy plays a pivotal role in the socio-economic development of every
country and serves as the backbone of any nation. However, a continuous increase in
energy demand due to the ever-growing population and industrial globalization leads
to a rapid depletion in sources of fossil fuels. In addition, the burning of fossil fuels
has led to the emission of greenhouse gases which raised many environmental
challenges such as climate change and global warming. All these concerns have
pressed toward exploring sustainable and renewable energy sources in the form of
bioenergies. Bioenergies mainly include the biofuels (bioethanol, biodiesel, bio-oils,
bio hydrogens, methane, butanol, etc.) obtained from a variety of biological mate-
rials like biomass, algae, etc. Different conventional methods have been developed
and routinely used for the production of second-generation biofuels. However, all
such methods have certain limitations such as high energy demand and specialized
processing equipment which ultimately escalate the associated cost. In this context,
considering the widespread applications of nanotechnology in various fields includ-
ing biofuel production, it is believed that the utilization of nanotechnology-based
solutions would be promising alternatives. Application of different nanomaterials,
particularly magnetic nanomaterials, in the development of nanocatalysts for biofuel
production facilitates the easy recovery and reuse of the same nanocatalyst for
multiple cycles which help to reduce the cost and make the process ecofriendly
and economically viable. The present chapter mainly focuses on an overview of
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biofuels and different conventional methods available for the production of
nanomaterials. Apart from these, a special focus has been given on interventions
of nanotechnology in the sustainable production of biofuels. Moreover, other aspects
such as challenges in the application of nanotechnology in biofuels production are
also discussed briefly.

Keywords Bioenergy · Biomass · Nanotechnology · Nanomaterials · Sustainable ·
Renewable · Global warming

8.1 Introduction

Environmental pollution is one of the most serious global challenges that humanity
faces, attempting to preserve biodiversity, ecosystems, and human health worldwide
(Xu et al. 2018). This problem has intensified over the last few years, with an
increase of industrial and transport activities,that uses fossil fuels (Covert et al.
2016). Burning fossil fuels (e.g., diesel, gasoline, or coal) emits air pollutants,
such as nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon dioxide (CO2),
which are released into the atmosphere (Mitchell et al. 2018). According to the
NASA-Global Climate Change website (2020), the emission of these pollutant gases
was strongly decreased, and the air quality was improved due to the recent lock-
downs as a result of the spread of COVID-19. However, in a normal situation
(Fig. 8.1), the accumulation of pollutant gases is worrying. One alternative to reduce
the consumption of fossil fuels and, at the same time, mitigate the greenhouse effects
is the use of alternative green fuels, such as hydrogen, biofuels (ethanol, biodiesel),

Fig. 8.1 Tropospheric NO2 Column. (a) March 15–April 15, 2015–2019 Average and (b) March
15–April 15, 2020 Average, Southeast USA, With Cities. Pictures were obtained from the NASA-
Global Climate Change website ( 2020)
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fuel cells, etc. which have been extensively studied aiming to optimize their pro-
duction in the pilot- or large-scale and their techno-economic viability.

Biofuels are classified as first- (ethanol, biodiesel, biogas, etc.), second- (bio-oil,
lignocellulosic ethanol, butanol, etc.), third- (ethanol and biodiesel obtained from
microorganism), and fourth-generation biofuels (biohydrogen, biomethane, and
synthetic biofuels) (Itskos et al. 2016). Second-generation ethanol produced from
lignocellulosic biomass has been extensively studied over the last few decades.
According to the SCOPUS database, more than 500 articles on this topic have
been published only in 2019 (SCOPUS 2020). Most of these studies have focused
on the development of suitable and more efficient technologies for the deconstruc-
tion of recalcitrant biomass, the optimization of cellulose hydrolysis, and the opti-
mization of the fermentation process. Recently, innovative technologies have
attracted the interest of researchers. One of those is the promising use of
nanoparticles in biofuel industries mainly due to their high surface area, reactivity,
and functional properties, which promote the better performance of the process
(Khan et al. 2019). In this context, to date various kinds of nanomaterials have
successfully been used in different processes involved in biofuel production. For
example, Ingle et al. (2020a, b) demonstrated the use of acid-functionalized mag-
netic nanoparticles (MNPs) for the pretreatment of lignocellulosic biomass. In
another study, MNPs were used as support for immobilizing cellulase enzymes
aiming at enzymatic hydrolysis of biomass (Gaikwad et al. 2018).

Nanotechnology has been applied in biodiesel and biohydrogen production
processes, improving the recyclability of the catalyst and the performance of the
process by increasing the activity and stability of immobilized enzymes such as
lipases (Sarno and Iuliano 2019; Teo et al. 2019) or improving the stabilization of
oil-in-methanol Pickering emulsions which can be used as interfacial catalysts in the
transesterification reaction for biodiesel production (Peng et al. 2020). As already
discussed in this section, the development of innovative technologies for biofuels
production is a current challenge. Considering these facts, in the present chapter, we
have discussed the concepts and applications of nanotechnology in biofuels
production.

8.2 Biofuels: Green Alternative Fuels

A fuel produced using renewable biomass-based resources (plant biomass, microor-
ganisms, or animal by-products) is referred to as a biofuel. Global biofuel production
is mainly directed to the transportation sector and it is believed that an increase in the
supply of these fuels is essential to assure both energy security and the reduction of
greenhouse gas emissions (OECD/FAO 2019). According to Kamani et al. (2019),
biofuels have the following benefits over fossil fuels:

• Biodegradability, renewability, and contribution towards a sustainable economy;
• Availability limited only by the amount of biomasses resources;
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• Reduction of the environmental impacts related to agriculture wastes disposal;
• Lower impact on the environment as compared to fossil fuels.
• Achievement of energy security;
• Fortification of the economy by creating more opportunities related to agriculture

and raising of agricultural incomes;
• Intensification of industrial investments;

Biomass is the important feedstock used for the production of the majority of
biofuels (or biomass-based fuels) and is usually obtained through thermal, physical,
or biological processes (Kamani et al. 2019). Despite a variety of definitions of
biofuels found in literature, biofuels are generally classified by their chemical nature
or are based on the feedstock source. Regarding their chemical nature, biofuels can
be derived from alcoholic fermentation, from the esterification of vegetable oils or
animal fat, or even from anaerobic digestion (Kamani et al. 2019; Roberts and
Patterson 2014). Fig. 8.2 shows three generations of evolution of the feedstocks
utilized for biofuel production.

Fig. 8.2 General classification of biofuels (Source: Fatma et al. (2018), Kamani et al. (2018), Paul
et al. (2019))
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8.3 Global Production of the Major Biofuels

Nowadays, approximately 10% of the world’s total primary energy supply is
represented by bioenergy, with a global production of 154 billion liters in 2018.
Biofuels production is led by United States, Brazil, European Union, ASEAN,
China, and India; it is mainly represented by bioethanol, biodiesel, and biogas,
although other fuels exist in the state of solid (biochar), liquid (biobutanol,
biomethanol, bio-oil, 2,5-dimethylfuran) or gas (biohydrogen) (Sindhu et al. 2019).

Bioethanol production relies on the alcoholic fermentation of plant biomass
performed by yeasts. Globally, the most used crops for bioethanol production are
corn, sugarcane, cassava, sugar beets, wheat, and other grains. Since bioethanol is
mainly used for transportation, this biofuel offers an excellent opportunity to reduce
the utilization of crude oil and to scale down CO2 atmospheric accumulation, an
imperative maneuver to mitigate the negative effects of the climatic crisis upon the
environment and our society and economy (Kamani et al. 2019).

Biodiesel has originated from the transesterification of natural lipids present in
plants such as soybean, rapeseed, canola, palm and corn, waste oils, or animal fat
(Carvalheiro et al. 2008). Algae are especially suitable for biodiesel production due
to their ability to consume atmospheric CO2 to produce large amounts of oil: on a dry
basis, the lipid content of microalgae biomass is between 20 and 50%, but under
certain conditions, it can reach nearly 80% (Kamani et al. 2019; Nobre et al. 2013).

In the case of biodiesel, emissions of non-combusted hydrocarbons or CO are
lower than conventional diesel as well as there is no sulfur or aromatic compounds in
its composition. Furthermore, this biofuel outstands regarding its potential for
industrial scale-up and has been broadly marketed in numerous countries such as
the United States, European countries, Brazil, and Australia (Beschkov 2012;
Kamani et al. 2019).

Biogas, on the other hand, is produced by the anaerobic digestion of biological
wastes using microbes. Its main component is methane (50–80%) and minor con-
stituents are CO2 (30–50%), CO, H2S, nitrogen, oxygen, hydrogen and ammonia
(Chen et al. 2015). Agricultural waste treatment generates expressive volumes of
biogas, which has a great heating power and can be used for heat or electricity
generation and, in specific cases, for internal combusting engines (Beschkov 2012;
Kamani et al. 2019). Besides biogas, biohydrogen is another important biofuel
generated from gasification of biomass. Several studies have been done toward the
sustainability of biohydrogen production. It is considered that the generation of a
coproduct simultaneously with biohydrogen from biomass is a path to ensure the
economic viability of the process (Sindhu et al. 2019). The production of important
biofuels using conventional approaches has been discussed in the following section.
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8.3.1 Bioethanol

Through the expansion of modern biorefineries concept and the exploitation of
renewable bio-based fuels, the world’s demand for more environmentally friendly,
less hazardous, and sustainable sources of energy has become one of the major
targets for a prosperous and ecological future (Boboescu et al. 2019). In accordance
with this fact, bioethanol has been a long-studied biofuel worldwide and a variety of
carbon sources have been utilized for its production. For instance, several countries
such as India, Brazil, the USA, and many others have been applying crops for
ethanol generation although from different raw materials comprising mainly sugar-
cane molasses, sugarcane stalk juice, and corn, respectively (Soam et al. 2018; Costa
et al. 2015; Cheng and Timilsina 2011). On the other hand, using food crops as a
source for biofuel production is considered first generation (1G) and competition
may intensify between food and energy supply, thereby increasing the prices in the
food market which can become a global issue (Lazar et al. 2018).

A solution to this problem is the substitution of the direct use of crops for
agricultural wastes and food wastes such as lignocellulosic materials (e.g., sugarcane
bagasse, wheat straw, corncob, rice straw, etc.) (Banerjee et al. 2010). For several
years, these materials were considered as wastes but due to extensive efforts of
scientists and researchers, now these materials can be utilized for the production of
high-value products. Therefore, lignocellulosic biomasses represent one of the
possible substrates for second-generation (2G) ethanol and biofuels in general. To
summarize the key role of agro-wastes implementation, Table 8.1 briefly displays a
variety of industrial bioproducts which have an overwhelmingly positive impact on
realistic environmental problems.

Keeping this in mind, it is of great importance to comprehend how the substrate
may influence the overall process of bioethanol synthesis. In the case of lignocellu-
losic materials, it is well known that its compact structure is a rigid and complex
mixture of polysaccharides and a macromolecule is composed of cellulose
(30–50%), hemicellulose (25–30%), and lignin (10–35%), respectively (Spyridon
and Willem Euverink 2016). In brief, cellulose is a linear glucose polymer-bonded
within ß-1,4-glycosidic linkages that provides a high degree of crystallinity due to
the extensive hydrogen bonds among the hydroxyl groups, whereas hemicellulose is
a heteropolymer of a short and highly branched chain of pentoses, hexoses sugars,
with some traits of organic acids (Limayem and Ricke 2012). Furthermore, the
macromolecule lignin is composed of 4-hydroxyphenylpropanoid units which are
considered its precursors. These units are linked throughout the chain via ether (C-O-
C) and carbon (C-C) bonds. Furthermore, its arrangement acts as a protection
structure and ensures entrapment of the restrained molecules in accordance with
the degree of entanglement among the polysaccharides and lignin (de Gonzalo et al.
2016).

These components are linked tightly together to form a recalcitrant structure to
hydrolytic attack and non-readily bio-digestible biomass (Bugg et al. 2011). To
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enhance microbial digestibility, a wise step pretreatment is required to depolymerize,
reduce the degree of crystallinity of cellulose and hemicellulose as well as remove
the lignin fraction. Moreover, the disruption of the fibers also reduces its compact-
ness which, in turn, facilitates microbial accessibility to the fermentable sugars
(Rastogi and Shrivastava 2017; Hendriks and Zeeman 2009). The bottleneck of
2G bioethanol relies significantly on the pretreatment features and progress. Thus, to
analyze whether the overall process is having a negative impact and to quantify
energy requirements and greenhouse gases emission, currently, there are practical
tools such as life cycle assessment (LCA) that evaluates environmental issues in any
step of biofuel production, including measurement of downstream processing and
waste materials generation (Cherubini et al. 2009; Dadak et al. 2016).

In alignment with the strategy of minimizing the deleterious effects of rendering
the pretreatments of lignocellulosic biomass, several methods have been developed
from the necessity to mitigate the excessive use of chemicals and energy. In this
respect, pretreatment assays may be carried out by a variety of approaches, including
chemical, physical, physicochemical, and biological. Each technique aims to exert
distinct effects on the biomass having inherent advantages and disadvantages. The
most common ones are mechanical comminution, irradiation, acid (sulphuric or
hydrochloric acid), alkali (such as calcium hydroxide), steam explosion, or

Table 8.1 Bioproducts synthesized using different lignocellulosic carbon sources

Biomass Microorganism
Process
technique Product Reference

Corncob
hydrolysate

S. bombicola NBRC 10243 Submerged
fermentation

Biosurfactant Konishi et al.
(2015)

Opuntia ficus-
indica cladode

Kluyveromyces marxianus Submerged
fermentation

Ethanol López-
Domínguez
et al. (2019)

Digestate
(bio-waste)

Bacillus thuringiensis Solid-stated
fermentation

Biopesticide Cerda et al.
(2019)

Agave bagasse
hydrolysate

Yarrowia Lipolytica Submerged
fermentation

Lipids Niehus et al.
(2018)

Sugarcane
bagasse
hydrolysate

C. guilliermondii FTI 20037 Submerged
fermentation

Xylitol Sarrouh and da
Silva (2010)

Elephant grass S. cerevisiae CAT-1 Submerged
fermentation

Ethanol Scholl et al.
(2015)

Apple pomace A. niger NRRL-567 Solid-state
fermentation

Cellulase Dhillon et al.
(2012)

Pulp and paper
solid waste

Rhizopus oryzae 1526 Solid-state
fermentation

Fumaric acid Das et al.
(2016)

Olive pomace Xantophylomyces
dendrorhous/Sporidiobolus
salmonicolor

Solid-state
fermentation

Pigment
(astaxanthin)

Eryılmaz et al.
(2016)

Wheat straw Bacillus sp. BBXS-2 Solid-state
fermentation

Amylase Qureshi et al.
(2016)
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combined processes that demand large energy input and high-cost equipment utili-
zation (Kumari and Singh 2018; Ruane et al. 2010). Likewise, biological
pretreatment is based on the natural ability of microorganisms to degrade lignin
via enzymatic performance in a step termed delignification. The cultivation and
growth of the targeted cells may be performed under submerged or solid-state
fermentation (Zabed et al. 2017; Yahmed et al. 2017; Mishra et al. 2017).

The aforementioned techniques are prerequisites to increase the availability of
cellulose and hemicellulose for enzymatic hydrolysis necessary to the conversion of
those into their respective fermentable sugars (Lamb et al. 2018). Specific enzymes
can hydrolyze cellulose and hemicellulose to selectively release their monomeric
sugars in relatively low temperatures ranging from 45 to 50 �C by the active sites of
cellulases and hemicellulases (xylanases), respectively (Duff and Murray 1996). In
summary, cellulase is a cocktail of enzymes that exert desirable effects onto cellulose
molecules and typically involves the synergistic action of endoglucanase,
exoglucanase, and ß-glucosidase (Sun and Cheng 2002). Endoglucanase is respon-
sible to hydrolyze internal (ß-1,4) glycosidic bonds throughout the D-glucan polymer
chain, producing cellodextrins out of the amorphous regions of cellulose, thereby
releasing free chain ends, whereas exoglucanase cleaves cellobiose and cellotriose
units from the non-reducing terminal. The response to this system generates dimers
termed cellobiose as an output which is a disaccharide of glucose that is consecu-
tively converted into glucose by the selective action of ß-glucosidase (Dotaniya et al.
2019; Zabed et al. 2017). To give a more illustrative representation of the cellulase
mechanism, Fig. 8.3 displays the summarized dynamics of cellulose degradation
according to the selectivity of each enzyme required.

Fig. 8.3 Schematic representation of cellulose hydrolysis by cellulase catalysts
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The enzymatic machinery to break down the heteropolymer hemicellulose is
quite more complex due to its branched-chain and the specificity of the internal
bonds. Therefore, the xylanase (hemicellulase) system contains usually
endoxylanase, exoxylanase, ß-xylosidase, α-arabinofuranosidase,
α-glucoronisidase, etc. Similarly, endo- and exo-xylanases catalyze selectively the
breakdown of the main chain of xylans resulting in reduced size chains. Furtherly,
ß-xylosidase cleaves xylo-oligosaccharides into xylose. The other enzymes rather
act on the backbone of the xylan polymer and are responsible for the release of
arabinose and 4-o-methyl glucuronic acid (Saha 2003).

The resulting concentration of pentoses and hexoses may vary according to the
preceding pretreatment and the type of enzymes implied along with the hydrolysis.
Therefore, the fermenting microorganism must be suitably selected in order to obtain
maximum yield and productivity as well as avoid unwanted catabolic repression by
the substrates and inhibitory compounds (Banerjee et al. 2010). The ability to
co-assimilate C5 and C6 sugars is crucial for any bioethanol facility plant. For
instance, the utilization of Saccharomyces cerevisiae and Zymomonas mobilis is
frequently common to produce ethanol from hexoses; however, their inability to
concomitantly consume pentoses delays the development of more robust processes.
On the other hand, organisms that can ferment pentoses (e.g., Pichiastipitis,
Pachysolenthannopilus, Candida shehatae) offer very low efficiency in the conver-
sion factor (Hahn-Hägerdal et al. 2007). Yet, within the advances in metabolic
engineering tools, pertinent efforts toward genetically modified microorganisms
attempt to address this issue and to enhance co-assimilation of C5 and C6 sugars
(Wackett 2011).

Contemporarily, fermentation processes may be carried out by several
approaches including Separate Hydrolysis and Fermentation (SHF), Simultaneous
Saccharification and Fermentation (SSF), Simultaneous Saccharification and
Co-Fermentation (SSCF), and finally, a Consolidated Bioprocess (CBP) (Rastogi
and Shrivastava 2017). SHF consists of rendering a two-stage process, wherein
enzymatic hydrolysis is operated separately from fermentation. Albeit sugar accu-
mulation throughout hydrolysis inhibits enzyme activity, positive aspects are
encountered in this strategy, involving the implementation of optimal operation
conditions of each stage (Vohra et al. 2014). SSF offers advantageous features
such as reduction of inhibitors, less energy demand, and is economically attractive.
It is performed simultaneously with the hydrolysis step at the same unit which in turn
prevents undesired effects of sugar accumulation, thereby obtaining a higher ethanol
yield conversion if compared to SHF (Foust et al. 2009; Brethauer and Wyman
2010).

Moreover, SSCF integrates C5 and C6 sugar assimilation into only one stage. By
that, different methods may be reliable to concretize this operation which involves
the use of a consortium of organisms having distinct metabolic pathways consuming
synergistically both carbon sources. However, hexoses consumers grow faster, and it
may lead to growth inhibition of pentose-utilizing microorganisms. Furthermore,
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one single bacteria or yeast may be genetically modified to efficiently incorporate C5
and C6 substrates rather than the use of capable natural-born wild strains that
frequently lead to lower ethanol productivity (Sanchez and Cardona 2008).

Nevertheless, CBP is a robust attempt to integrate cellulolytic enzymes excretion,
saccharification, and fermentation at the same operation step mediated uniquely by a
microorganism community. The advantages rely strongly upon the fact that expen-
ditures associated exclusively with enzyme production are avoided by combining
those steps mentioned above. Aside from that, saccharification and fermentation are
entirely compatible regarding operational parameters (Vohra et al. 2014). To gain
insight, López-Domínguez and collaborators (2019), investigated the capability of
Acinetobacter pittii and Kluyveromyces marxianus isolated from Opuntia ficus-
indica toward decay of cladode to produce cellulase and simultaneously saccharify
the targeted biomass and synthesize ethanol. The novelty of this study was the
utilization of wild strains which possess naturally metabolic machinery that can
achieve significant and promising yields of bioethanol in the near future.

To summarize, there is a broad scientific avenue favorable to the development
and implementation of diverse techniques in the enzymatic and bioprocessing fields.
The substitution of regular fossil fuels for biofuels still to some extent lacks
optimization and cost-effectiveness. Therefore, further discussion in this chapter
attempts to introduce the role of nanotechnology in enzymatic hydrolysis enhance-
ment and bioconversion of ethanol.

8.3.2 Biodiesel and Biohydrogen

Nowadays, alternative energy resources such as wind, solar, and biofuel have
grabbed the attention of scientists, researchers, and governments due to the rapid
consumption of fossil resources, global climatic change, and the interest in more
secure fuel supplies (Semwal et al. 2011; Chozhavendhan et al. 2020). Among
renewable sources of energy, biodiesel has been considered a notable candidate to
reduce environmental pollution and achieve sustainable development (Mahlia et al.
2020).

Biodiesel is typically produced through the transesterification process, in which
triglycerides react with an alcohol in the presence of a catalyst to obtain mono-alkyl
esters. These triglycerides may be obtained from micro-and macro-algae, fungi,
animal fat, and vegetable oil, lignocellulose material, etc. (Sharma et al. 2008;
Mahmudul et al. 2017). Since methanol is the most frequently used alcohol due to
its low cost, other common names for biodiesel are fatty acid methyl esters (FAME)
or B100, which means 100% FAME (Singh et al. 2020).

Biodiesel has many advantages such as it is eco-friendly, non-toxic, biodegrad-
able; has a low emission profile, and is a renewable energy resource (Avhad and
Marchetti 2015). In this sense, biodiesel is usually classified as first-, second-, and
third-generation based on the raw materials used in its production. First-generation
biodiesel is derived from edible feedstocks such as soybean oil, coconut oil, rapeseed
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oil, palm oil, sunflower oil, etc. (Mahdavi et al. 2015), while second-generation
biodiesel is obtained from agricultural wastes and non-edible feedstocks such as
neem oil, jatropha oil, nagchampa oil, karanja oil, etc. (Atabani et al. 2013).
However, these categories generate conflict between land use and food supply
(Mahlia et al. 2020). The case of third-generation biodiesel involves the use of
high oil-content microalgae further alternate sources for biodiesel production (Leong
et al. 2018). Moreover, a fourth classification has emerged from the metabolic
engineering of photosynthetic organisms, which has been transformed through
synthetic biology tools as another sustainable alternative (Chua et al. 2020).

On the other side, the biological production of hydrogen (biohydrogen) is another
alternative that fits well with the renewable energy concept. Among known fuels,
hydrogen has the highest gravimetric energy density and is compatible with elec-
trochemical processes (Mudhoo et al. 2011). The conventional method of hydrogen
generation is based on steam reforming or oxidation of natural gas and coal gasifi-
cation. However, these primary sources for the production of hydrogen are
nonrenewable and release carbon dioxide as a byproduct, which creates an environ-
ment negative effect (Hibino et al. 2018).

Thus, the sustainable production of hydrogen through biological routes such as
photobiological and fermentative processes has been reported as a different approach
(Rupprecht et al. 2006; Srivastava et al. 2020). Moreover, the generation of
biohydrogen has also been reported through the combination of different methods.
The advantages of these alternative processes include the production of hydrogen
from renewable sources and the generation of emissions free of pollution (Singh
et al. 2015; Sampath et al. 2020). The microorganisms involved in biohydrogen
production are classified into two groups: photosynthetic and non-photosynthetic or
fermentative hydrogen producers (Das and Veziroǧlu 2001). Also, metabolic engi-
neering has been an exceptional tool for improving the hydrogen productivity of
available microbial sources rather than discover new strains (Chandrasekhar et al.
2015).

In the case of photobiological hydrogen production which includes bio photoly-
sis, indirect bio photolysis, and photo fermentation, solar radiation is the driving
force for the process. Among the microorganisms that are best suited for this light-
dependent hydrogen production are some species of bacteria (purple-sulfur, and
purple non-sulfur), algae, and cyanobacteria (Barbosa et al. 2001; Kovács et al.
2006). On the other hand, in dark fermentation or fermentative hydrogen production,
the obligate anaerobes and the facultative anaerobes have been explored as pro-
ducers for this purpose. The absence of energy light is the striking feature of this
process. Since agricultural waste and organic waste generated from domestic and
industrial activity can be decomposed through dark fermentation to produce hydro-
gen, this process is a particularly advantageous alternative (Guo et al. 2010; Łukajtis
et al. 2018).

Thus, microbial electrolysis cells (MEC) represent a versatile technology for
waste treatment processes. They were adapted from microbial fuel cells (MFCs)
and the conversion of a wide range of organic substrates into hydrogen occurs under
applied external potential (Cheng and Logan 2007; Chandrasekhar et al. 2015).
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However, the microbial physiology, electrode materials, physicochemical transport
processes, type of membrane used, and composition and concentration of the
substrate are important factors that affect the performance of MEC and limit its
commercial distribution (Hallenbeck 2011).

8.4 Limitations of Existing Conventional Methods

Though biofuels comprise a wide variety of energy sources derived from biomasses,
such as bioethanol, biodiesel, biogas, biomethanol, bioethers, biohydrogen, and
vegetable oils, the market seemed to be mainly focused on the first 3 i.e. bioethanol,
biodiesel, biogas (Callegari et al. 2020). Currently, marketable biofuels are mostly
produced from first-generation crops, which have similar drawbacks, related to
limited availability and food competition, and, therefore, make room for second
and third-generation feedstocks (Callegari et al. 2020). Among the second genera-
tion, biofuels derived from lignocellulosic byproducts and residues, driven by
economic, environmental, and even social-political purposes have been widely
explored in the last decades. Feedstocks have been selected based on their sustain-
ability, energy content, local availability and distribution, and environmental and
economic values (Karagiannidis and Perkoulidis 2009). Challenges related specifi-
cally to the feedstock have been addressed since their cost is an important issue in
biofuels production technologies, such as new varieties with desirable characteris-
tics, growing requirements, cultivation yields planting and harvesting techniques,
and logistics, among others (Callegari et al. 2020; Shanmugam et al. 2020).

Extensive research has enabled important advancements in the processes for
biofuels production from biomasses; however, there are still important technological
barriers to overcome and to make them mature for commercial scale and competitive
with fossil fuels (Khoo et al. 2020a, b). In this sense, the cost-effective release of
fermentable carbohydrates from biomasses is one of the biggest challenges on
biofuels production, with a high impact on the total process cost (Ingle et al.
2019a, b; Khoo et al. 2020a, b). The upstream steps include mainly biomass
pretreatment and further hydrolysis of polymeric carbohydrates to release ferment-
able sugars, for which several methods, involving chemical, physical, biological
methods and mixtures of them have been extensively studied. Despite the promising
results obtained at laboratory and pilot scales with the conventional methods, the
high cost jeopardizes their potential utilization at larger scales (Ingle et al. 2019a, b;
Shanmugam et al. 2020). Most of the conventional methods are performed in
intensive operation conditions, with high consumption of materials that are not
recycled or are difficult to be reused, and generation of contaminating by-products
and wastes, resulting in processes that are not economic and environmentally
sustainable (Ingle et al. 2019a, b).

Particularly, in the polysaccharide (cellulose) hydrolysis after pretreatment, enzy-
matic technologies have been extensively studied, in order to increase hydrolysis
efficiency and reduce enzyme-associated costs. In the technologies that have been
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mostly studied, enzymes cannot be reused or recycled, which increases the cost of
this step and consequently of the process. Therefore, several studies have been
focused on enzyme immobilization, in order to facilitate the separation of the
enzymes and/or their reutilization in various sequential reactions, which, in turn,
can reduce the overall process cost (Shanmugam et al. 2020).

In the particular case of biodiesel production, enzymatic transesterification is a
remarkable alternative, since it is a less energy-intensive strategy, with higher
selectivity, easier separation, less residual contamination when compared to chem-
ically catalyzed processes. However, it has a main drawback also about the high cost
associated with enzymes, which reduces its attractiveness to industrial applications
(Callegari et al. 2020). Regarding biohydrogen production, which has been consid-
ered as the most efficient and cleanest form of energy, it still has important draw-
backs to be addressed to achieve higher levels of readiness, such as low yield and
high production cost (Shanmugam et al. 2020). According to these authors, several
strategies for process intensification have been studied, including parameter optimi-
zation to improve the production rate, utilization of synthetic biology, and metabolic
engineering.

Nanotechnology has the potential to increase the overall efficiency, feasibility,
and sustainability of the biofuels production technologies, not only limited to the
upstream steps but also the conversion processes and downstream (Ingle et al., 2019;
Xu et al. 2019; Khoo et al. 2020a, b). Research and development on nanotechnology
have grown expressively in the last years in different areas and with the participation
of interdisciplinary and integrated science (Khoo et al. 2020a, b). For biofuels
technology and regarding first the upstream steps, nanomaterials can be used for
enzyme immobilization, named nano supports, which have advantages like large
surface area, biocompatibility, non-toxic effects, a variety of physical and chemical
properties that can enhance the activity of the enzyme, and the possibility of
improving the recuperation and reuse of the enzymes (Rai et al. 2019; Khoo et al.
2020a, b; Shanmugam et al. 2020).

Nanomaterials can contribute not only as immobilization or encapsulation matrix
for enzymes, promoting their reuse (Ingle et al. 2019a, b; Shanmugam et al. 2020)
but also as nanocatalysts, which have been highlighted not only based on environ-
mental and ecological issues compared to synthetic catalysts but also because, small
particle size (related to their cell wall penetrating advantages), biodegradability,
reusability and easy recuperation based on magnetic properties, functionalization
possibilities, low price, and high availability (Ingle et al. 2019a, b; Xu et al. 2019;
Shanmugam et al. 2020). However, some issues should be addressed regarding the
safety and toxicity of various nanomaterials, nanoparticles aggregation problems,
and synthesis costs (Ingle et al. 2019a, b; Khoo et al. 2020a, b).

Furthermore, in the case of biohydrogen production, nanotechnology strategies
have also been studied as potentially cost-effective alternatives to improve the
bioconversion step, since they can have a positive impact on the growth of the
microorganism, the intracellular electron transfer, and the efficiency and protection
of enzymes (oxygen-sensitive) involved in biohydrogen production (Yang and
Wang 2018; Shanmugam et al. 2020). Moreover, nanotechnology strategies can
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improve the control of the operation conditions, such as illumination, temperature,
and heat transfer, and even influence the bioreactor design (Shanmugam et al. 2020).

8.4.1 Socioeconomic and Environmental Considerations

It is an undeniable fact that an economy based on fossil fuels is no longer viable and
a substantial amount of data, research studies, and public policies and future
projected scenarios indicate that the shift to bioeconomy is a promising way to
ensure welfare, economic, and food security to the human population. Regarding this
conjecture, Johnson (2017) states that “A thriving bioeconomy that includes increas-
ing reliance on biological processes and biobased products is a key element of the
overall global sustainability transition.”

“Implement green chemistry and sustainability principles” is not only enough to
assure the success of a bioeconomy, but it is also necessary to establish coordinates
and steps to make the transition from our present models to a sustainable economy. It
is not only essential to develop a circular economy system, where waste generation is
reduced to its minimum and all the possible uses of biomass are considered, but also
to articulate social and economic sustainability in accordance with environmental
health. Moreover, an integration between national and global policies is vital, along
with the cooperation and comprehensive view between sectors that deal with
different biomass uses (e.g., energy, transportation, agriculture, forestry)
(Johnson 2017).

The production of first-generation biofuels is based on crops that are likewise
used for human and animal feeding. Therefore, a concern has arisen that an increase
in the production of these fuels can compromise food security (food versus fuel
debate). According to Sindhu et al. (2019) life-cycle assessment (LCA) of first-
generation biofuels indicates that, in most circumstances, there is a negative energy
gain; however, second-generation fuel models suggest an increase in energy gain,
while third-generation biofuels excel the previous categories in many aspects, such
as CO2 sequestration, expressive accumulation of neutral lipids, high biomass, and
soil productivity (Sindhu et al. 2019).

Land use by biofuel crops is still a field of uncertainties, forasmuch as it is
connected to a huge number of variables, for instance, demand for other applications,
agriculture productivity, future demand for animal products, and the pressure upon
natural environments that can be seen as idle lands (such as grasslands), which can
result in biodiversity loss (OECD/FAO 2019; Sindhu et al. 2019). In this sense, it is
crucial to develop public policies to regulate land use and assure the sustainability of
biofuels; moreover, studies that aim at the production of biofuels with nonfood crops
or lignocellulosic biomass must be supported and promoted.
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8.5 Nanotechnology in Biofuels Production

Nanotechnology has emerged as a promising technology as far as biofuel industries
are concerned. It is reported to have applications in the production of different
biofuels like bioethanol, biodiesel, biohydrogen, etc.

8.5.1 Nanotechnology in Bioethanol Production

The use of nanotechnology in bioethanol production can improve the plant biomass
pretreatment and its conversion into fermentable sugars as well as the fermentative
process (Kushwaha et al. 2018). The recalcitrance properties in most agro-industrial
wastes, especially in the lignocellulosic biomass, is still a bottleneck for its conver-
sion into second-generation biofuels (Zuccaro et al. 2020) and the pretreatment plays
an important role in the manufacturing process and product value. Nanomaterials
can improve pretreatment efficiency and assists in bioethanol fermentation and
recovery. The major applications of nanoparticles in bioethanol production are
given in Fig. 8.4. Moreover, the reusability of nano compounds is an important
advantage for the biofuels’ economic viability (Beniwal et al. 2018).

Several types of nanoparticles have been studied for bioethanol production and
are applied in biomass pretreatment for the recovery of the sugars in different
lignocellulosic materials as feedstock. Pena et al. (2012 & 2014) studied the effects
of different acid-functionalized nanoparticles for the pretreatment of wheat straw and
corncob. Ingle et al. (2019a, b, 2020a, b) evaluated the pretreatment of sugarcane
bagasse and sugarcane straw using two different acid-functionalized magnetic
nanoparticles (alkyl sulfonic acid—Fe3O4�MNPs@Si@AS, and butylcarboxylic
acid—Fe3O4�MNPs@Si@BCOOH), that presented maximum xylose recovery for

Fig. 8.4 Major applications of nanoparticles in bioethanol production
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sugarcane bagasse (18.83 g/L and 18.67 g/L), and sugarcane straw (17.06 and 15.40)
using the 500 mg/g of biomass.

Another utilization for nanoparticles in bioethanol production is for the immobi-
lization of the enzymes. Enzymes are biological catalysts produced by bacteria and
fungi and are a key factor for environment-friendly production biofuels because
enzyme such as cellulases and hemicellulases play importanat role in the breakdown
of cellulose and hemicellulose present in the lignocellulosic biomass (Mood et al.
2013). However, the utilization in the industrial scenario presents some obstacles to
become economically viable, such as costly production and reuse of enzymes as they
can contribute up to 30% of total processing cost in 2G sugars production (Sánchez-
Ramírez et al. 2016; Chandel et al. 2018).

The immobilization of enzymes is an alternative for reducing costs with enzymes
in an industrial scenario. Several supports can be used, such as inorganic materials,
hybrid materials, polymers, and metal-organic frameworks (Suo et al. 2020). Immo-
bilization methods vary in categories where the enzymes can be (1) bonded to
support, which acts as a carrier or matrix, (2) entrapped in an encapsulation structure,
or (3) cross-linked (Vaghari et al. 2015). The utilization of nanoparticles as an
immobilizing agent presents several benefits to the enzymatic process. The immo-
bilization of enzymes not only promotes increased yields and multiple cycles but is
also presented as an environment-friendly alternative for enzyme application, also
protecting them from inhibitory effects of alcohol and organic acids formed during
fermentation (Sekoai et al. 2019). Cherian et al. (2015) studied the immobilization of
cellulases using manganese dioxide (MnO2) nanoparticles for the hydrolysis of
sugarcane leaves to bioethanol (21.96 g/L), presenting 75% binding efficiency and
60% of catalytic activity, after five cycles. The biocompatibility, high specific
surface area, stability and low toxicity, and resistance to mass transfer are
highlighted, although the most prominent advantage is that immobilized enzymes
can be recovered for repetitive applications in catalytic reactions, which can con-
tribute to the overall reduction of costs in a biorefinery (Chandel et al. 2018; Suo
et al. 2020).

The utilization of magnetic nanoparticles (MNPs) can be advantageous after the
pretreatment of biomass as the catalysts can be recovered by the application of an
external magnetic field and reused in subsequent pretreatment cycles (Ingle et al.
2020a). The utilization of magnetic fields in iron oxide (Fe3O4) nanoparticles for
β-glucosidase immobilization in bioethanol production, studied by Verma et al.
(2013), resulted in 93% binding efficiency and 50% catalytic activity after 16 cycles.
Fe3O4 NPs and Fe3O4/Alginate nanocomposites were used for the immobilization of
cellulases produced by Aspergillus fumigatus and evidenced an increased enzyme
activity, resulting in a high sugar release during the rice straw pretreatment
(Srivastava et al. 2015). The improvement in the activity and the thermal stability
was also observed by Poorakbar et al. (2008), where cellulases from Penicillium
funiculosum were employed with magnetic gold silica and showed a binding effi-
ciency of 76% to the support matrix, and recycled for five cycles. Still, nickel oxide
(NiO) nanoparticles were also used as bio-nanocatalysts in simultaneous saccharifi-
cation and fermentation of potato peel waste was studied by Sanusi et al. (2020), and
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showed an increased bioethanol yield (19%). Even though nanoparticle utilization
may be advantageous to bioethanol production, its use must be limited to its
optimum values as it can inhibit the growth of microorganisms in higher concentra-
tions (Sekoai et al. 2019).

Cells are microbial factories capable to synthesize enzymes for several industrial
purposes. Though the nanomaterials use in enzyme immobilization, these com-
pounds also act as supports to immobilize microorganisms (Rai et al. 2016a, b).
Calcium alginate is commonly used as a matrix for cell immobilization, but the
combination method with nano-structure materials has been demonstrated as prom-
ising alternatives for enhancing bioethanol production. Beniwal et al. (2018)
achieved up to 0.42 g/g ethanol yield in 36 h with Saccharomyces cerevisiae and
Kluyveromyces marxianus yeasts co-immobilized in calcium alginate using cheese
whey as substrate. The authors immobilized β-galactosidase in a silicon dioxide
nanoparticles matrix in a bioreactor for the same vessel hydrolysis and fermentation,
demonstrating the nanoparticle reusability of 5 cycles. Besides increasing bioethanol
yield in fermentation, nanoparticles could enhance the production of bioethanol in
the syngas platform, as demonstrated by Kim et al. (2014) by using methyl-
functionalized silica nanoparticles (0.3 wt %) during Clostridium ljungdahlii
fermentation.

Another important use of nanomaterials is for bioethanol recovery from the broth.
The presence of the bioethanol produced during the fermentation presents a negative
effect on cell growth and viability, consequently decreasing the product yield (Xue
et al. 2016). Pervaporation is considered a promising method for bioethanol recovery
since it allows the integration of fermentation and biofuel recovery in situ (Fan et al.
2019). However, yeast cells can contaminate these membranes, fouling during the
pervaporation, but the use of carbon nanotubes coupled in membrane filters assists
the bioethanol recovery and enhances the antifouling performance (Xue et al. 2016).
Besides, a nanofiltration membrane combined with a forward osmosis system was
demonstrated to be effective for the removal of fermentation inhibitors and the
concentration of fermentable sugars in rice straw hydrolysate (Shibuya et al.
2017). Nanotechnology enhances bioethanol production, especially assisting in
enzyme immobilization (Rai et al. 2016a, b), helping to overcome bottlenecks and
reducing costs in the manufacturing process.

Several factors such as the synthesis approach (co-precipitation method, thermal
decomposition, microemulsion, hydrothermal synthesis, synthesis using biological
organisms (fungi and algae), synthesis using plant materials, temperature range
(100–700 �C), pressure, pH, and size may influence the performance of
nanoparticles in fuels. These factors affect the morphology, size, and stability of
nanoparticles as they have their advantages and disadvantages (Sekoai et al. 2019).
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8.5.2 Nanotechnology in Biodiesel Production

The use of biofuels has been increasing over the last century; the ever-growing
energetic demand, alongside environmental issues, has stimulated the search for
alternative renewable fuel sources (Gardy et al. 2019). Biodiesel is a biodegradable,
non-toxic, and environment-friendly alternative to petrol diesel. It consists of a
mixture of monoalkyl esters derived from the esterification or transesterification of
vegetable oils and animal fats with an excess of acyl acceptors, mostly short-chain
alcohols, such as methanol or ethanol, with alkaline or acid catalysts. The fatty acid
methyl or ethyl esters have properties similar to those of petrol diesel.

The biodiesel quality depends on several physicochemical properties, such as
viscosity, specific mass, cetane number, cold flow plugging point, flash point, etc.
The physicochemical properties and specifications limits are regulated by the
National Agency of Petroleum, Natural Gas and Biofuels (ANP) in Brazil,
European Standards (ES) in Europe, and the American Society for Testing and
Materials (ASTM) in the USA. Biodiesel can be used directly in diesel engines or
a mixture with petrol diesel. Several countries across the world have legally included
biodiesel in the energetic matrix. In Brazil, biodiesel is obligatory mixed with diesel
oil since 2008 and its use has increased currently to 12% v/v (B12), with a prediction
of 20% (B20) in 2022 (Flumignan et al. 2012; ANP 2020).

The most common, though not exclusive, path for biodiesel synthesis is the
reaction of feedstocks (in special, vegetable oils) with methanol and homogenous
alkaline catalysts. Recent research shows emerging alternative methods to obtain
biodiesel from sources like animal fats, residual oils, and other non-food feedstocks.
The use of other synthesis routes, such as interesterification (with methyl acetate and
dimethyl carbonate) and hydro-esterification (chemistry, enzymatic or supercritical)
is also reported (Flumignan et al. 2012).

8.5.2.1 Biodiesel Feedstocks

Oils and fats are composed of triacylglycerides, which consist of three fatty acid
chains esterified to a glycerol backbone. Generally, oils consist mostly of the
unsaturated fatty acid chains and are in the liquid state, while fats have a majority
of saturated fatty acid components and are solid at room temperature.

The use of crude vegetable oils in diesel engines is possible, but their high
viscosity and cold flow behavior cause overall damage to the engines. Thus, it is
more interesting to apply vegetable oils as a source to obtain biodiesel. Nowadays,
biodiesel derives majorly from refined vegetable oils (soy, corn, rapeseed, sunflower,
etc.), but the use of other feedstocks, such as residual oils and fats (waste cooking oil,
fish oil, beef tallow, chicken fat, etc.) and non-food crude oils (jatropha, macaw,
crambe, etc.) has been growing. Residual and non-food feedstocks are an appealing
alternative for environmental and economic reasons. Nevertheless, there are limita-
tions to the use of such feedstocks in the transesterification process employing the
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usual conditions. In the presence of homogeneous alkaline catalysts, high free fatty
acid and water contents can shift the reactants towards the saponification side
reaction (Gardy et al. 2019).

Moreover, heterotrophic microalgae can be considered a neutral source of
bioenergy; hence, the fact that they consume CO2 from the environment around
them. In comparison to vegetable sources, microalgae growth is faster and cheaper,
and its use as a source of bioenergy does not compete well with other industrial
sectors (Zhang et al. 2013). Microalgae can accumulate up to 60% (w/w) of lipids,
which can be extracted and converted into biodiesel. Also, recent studies show that
microalgae biomass can be used in direct transesterification without the need for
lipid extraction (Pandit and Fulekar 2017, 2019). In this context, microalgae are
presented as an economic and environmentally interesting source for biodiesel
production.

8.5.2.2 Catalysts for Biodiesel Production

Catalysts are applied in chemical reactions to conduct the synthesis of the products
through a path that requires lower activation energy when compared to catalyst-free
reaction, without being consumed. The occurrence of esterification and
transesterification of oils and fats to obtain biodiesel requires the use of catalysts.
More commonly, alkaline catalysts provide highly efficient ester conversion in
relatively short reaction times, when compared to acid catalysts (Gardy et al. 2019).

Homogenous catalysts are in the same phase as reactants in the reaction medium,
whereas heterogeneous catalysts are in different phases. The use of homogeneous
catalysts is widely known, but can also cause corrosion of systems, soap formation
and require tedious purification steps to achieve recovery of products, which
increases both process cost and waste production. In this context, heterogeneous
catalysts can also provide efficient conversions and are easily removed from the
reaction medium with simple purification steps such as decantation, filtration, and
centrifugation. Furthermore, recyclable heterogeneous catalysts may be presented as
a more efficient, alternative industrial application (Gardy et al. 2019; Jain et al. 2014;
De and Boxi 2020; Zhong et al. 2020).

8.5.2.3 Nanocatalysts for Biodiesel Production

The use of nanosized particles as catalysts instead of other heterogeneous catalysts is
advantageous considering the high surface/volume ratio of nano-compounds as well
as high selectivity, easier recovery, and overall stability of catalytic activity when
applied in successive reactions. The nanocatalyst quality depends on the physical
properties of the materials used, such as size, shape, active sites distribution, thermal
stability, chemical stability, and spatial and electronic properties (Gardy et al. 2019;
Jain et al. 2014).
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The reaction will occur in the active sites distributed throughout the surface of the
material. Thus, the smaller the size of the particle, the greater the surface area and the
greater the catalytic activity achievable. Also, nanosized particles can be dissolved,
precipitated, and crystallized successively, depending on the conditions of the
medium, which makes recyclability easier. Nanocatalysts can be obtained through
chemical, physical, and biological processes (Jain et al. 2014). Different types of
nanotechnology-based heterogeneous catalysts for biodiesel synthesis through
transesterification are explored hereafter. Table 8.2 summarizes results from
transesterification of vegetable and waste cooking oil (WCO) as well as algal
biomass and crude oil by applying different nanosized metal oxide particles and
geopolymers.

Calcium oxide (CaO) based catalysts are derived from waste produced in agri-
cultural and industrial activities, such as animal bones, egg and animal shells, paper

Table 8.2 Metal oxide nanocatalysts for biodiesel production via transesterification process

Reference Feedstock Catalyst
Transesterification
conditions

Biodiesel
Production

Pandit and
Fulekar
(2017)

A. obliquus
biomass

CaO eggshell waste
(1.7% w/w)

Algae:MeOH 1:10
(w/v)/70 �C/3.6 h

91.86% conver-
sion; 86.41%
yield

Pandit and
Fulekar
(2019)

S. armatus
biomass

CaO eggshell waste
(1.61% w/w)

Algae:MeOH 1:10
(w/v)/70 �C/3.6 h

90.44% yield

De and Boxi
(2020)

Palm oil Cu impregnated TiO2

(3% w/w)
Oil:MeOH 1:20/
45 �C/45 min

90.93% yield

Tan et al.
(2017)

WCO CaO ostrich shell
waste (1.50% w/v)

Oil:MeOH 1:10/
65 �C/2 h

98.97% yield

Abdelhady
et al. (2020)

Sunflower oil CaO eggshell waste
(1.50% w/v)

Oil:MeOH 1:4.5/
75 �C/1 h

94.70% yield

CaO beet sugar waste
(1%)

93% conversion

Borah et al.
(2018)

M. ferrea oil Co doped ZnO (2.5%
w/w)

Oil:MeOH 1:9/
60 �C/3 h

98.03%
conversion

Borah et al.
(2019)

WCO Zn doped CaO from
waste eggshell (5%
w/w)

Oil:MeOH 1:20/
65 �C/4 h

96.74%
conversion

Baskar et al.
(2018)

Castor oil Ni doped ZnO (11%
w/w)

Oil:MeOH 1:8/
55 �C/1 h

95.20% yield

Feyzi and
Shahbazi
(2015)

Refined veg-
etable oil
blend

Cs-Ca/TiO2-SiO2 Oil:MeOH 1:12/
60 �C/2 h

98% yield

Raj et al.
(2019)

N. oculata
lipid extract

PEG capped Mn-ZnO
(3.5% w/w)

Oil:MeOH 1:15/
60 �C/4 h

87.5% yield

Justine et al.
(2020)

WCO ZnO Oil:MeOH 1:6/2 h 81.6%

ZnO-SiO2 54.6%

Botti et al.
(2020)

Soybean oil Na-geopolymer (3%
w/w)

150% MeOH/70–
75 �C

85.1–89.9%
yield
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industry, etc. Such catalysts are highly alkaline, relatively economical, and require
mild reaction conditions to obtain efficient ester conversions. They are obtained
through the calcination of materials, which convert CaCO3 into CaO (Pandit and
Fulekar 2017, 2019; Tan et al. 2017; Abdelhady et al. 2020).

Zinc oxide (ZnO) can be obtained through precipitation in an aqueous solution
and annealing in a heated oven. Also, doping of CaO and ZnO with metals such as
cobalt and nickel shows interesting results in biodiesel conversion from vegetable
oils (Borah et al. 2018, 2019; Baskar et al. 2018). Titanium dioxide (TiO2)
nanoparticles are also widely used for catalysis in different industrial sectors,
including biodiesel production (De and Boxi 2020; Feyzi and Shahbazi 2015).
Nanocomposites and geopolymers (alkaline aluminosilicate powders) can also be
applied to oil and fat conversion into methyl esters (Raj et al. 2019; Justine et al.
2020; Botti et al. 2020; Bai and Colombo 2018). MNPs are composed of elements
with magnetic properties, most commonly of iron, nickel, and cobalt. They can be
obtained through combustion, co-precipitation, and thermal decomposition, amongst
others methods (Liu et al. 2016; Mapossa et al. 2020; Feyzi and Norouzi 2016;
Baskar and Soumiya 2016; Alaei et al. 2018; Amani et al. 2019; Banerjee et al.
2019). The magnetic properties are interesting to reduce the cost and labor of
purification processes; MNPs can be easily removed from the reaction medium by
using a magnet to apply an external magnetic field. Table 8.3 summarizes the results
of the transesterification catalyzed by MNPs.

The use of MNPs as catalysts for biodiesel production and also the use of
biocatalysts is interesting considering chemical catalysis. The use of enzymes
(lipases) as catalysts for transesterification of oils and fats, when compared to
chemical alkaline or acid catalysts, provides higher product selectivity and is
advantageous for avoiding soap formation and other contaminations. However,
enzyme cost still limits the application in industrial scales. In this context, enzyme

Table 8.3 Magnetic nanocatalysts for biodiesel production via transesterification process

Reference Feedstock Catalyst
Transesterification
conditions

Biodiesel
production

Liu et al. (2016) Soybean oil MgFe2O4@CaO
(1% w/w)

Oil:MeOH 1:12/
70 �C/3 h

98.3%
yield

Mapossa et al.
(2020)

Soybean oil Ni0.3Zn0.7Fe3O4

(2% w/w)
Oil:MeOH 1:12/
180 �C/1 h

94% yield

Feyzi and
Norouzi (2016)

Sunflower oil Ca/Fe3O4@SiO2 Oil:MeOH 1:15/
65 �C/5 h

97% yield

Baskar and
Soumiya (2016)

Castor oil Fe (II) doped
ZnO (14% w/w)

Oil:MeOH 1:12/
50 �C/55 min

91% yield

Alaei et al.
(2018)

Sunflower oil MgO/MgFe2O4

(4% w/w)
Oil:MeOH 1:12/
110 �C/4 h

91.2%
conversion

Amani et al.
(2019)

Sunflower oil MgO/MgFe2O4

(3% w/w)
Oil:MeOH 1:12/
110 �C/3 h

92.5%
conversion

Banerjee et al.
(2019)

N. oleoabundans
lipid extract

Fe2O3 (1% w/w) Biomass:MeOH 1:5
(w/v)/65 �C/6 h

86% yield
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immobilization is an alternative to reduce overall cost, for it makes it possible to
recycle and reuse the biocatalysts. Immobilization consists of attaching the enzymes
to the pores and/or surface of a chosen support material and can also enhance
enzyme stability and improve kinetics (Zhong et al. 2020; Nematian et al. 2020).

Table 8.4 summarizes the results of the transesterification catalyzed by enzymatic
MNPs. It is worth mentioning that there are specific (i.e. C. rugosa and
T. languginosus) and 1,3-specific (R. miehei and R. oryzae) lipases; specific lipases
can achieve a full ester conversion, whereas 1,3-specific lipases can only convert 2/3
of the fatty acids from the triacylglyceride. Also, lipases are inactivated by high
concentrations of methanol. Thus, the three-step addition of the solvent to the
medium is important to achieve high yields. Also, the immobilization of lipases in
MNPs makes it possible to recycle the biocatalysts for an average of 3–5 cycles
without significant activity loss (Xie and Huang 2018, 2020; Nematian et al. 2020;
Badoei-dalfard et al. 2019; Ashjari et al. 2020).

The immobilization of lipases for biodiesel production is a promising field. Other
recent researchers are focusing on the development of nanoparticles as support for
lipase immobilization, though still without application in the transesterification
reaction for biodiesel production (Atiroglu 2020; Asmat and Husain 2019).

Table 8.4 Enzymatic magnetic nanocatalysts for biodiesel production via transesterification
process

Reference Feedstock Catalyst
Transesterification
conditions

Biodiesel
production

Nematian
et al.
(2020)

C. vulgaris
lipid extract

R. oryzae lipase immobilized in
Fe3O4 nanoparticles

Three-step addi-
tion MeOH/45 �C/
24 h

69.8%
conversion

Xie and
Huang
(2018)

Soybean oil C. rugosa lipase immobilized in
grapheme oxide/Fe3O4

nanocomposite

Three-step addi-
tion of MeOH/
40 �C

92.8%
yield

Xie and
Huang
(2020)

Soybean oil C. rugosa lipase immobilized in
poly(glycidyl methacrylate-co—
methacrylic acid)/Fe3O4

nanocomposite

Three-step addi-
tion of MeOH/
40 �C

92.8%
yield

Badoei-
dalfard
et al.
(2019)

WCO Cross-linked lipase aggregates
with Fe3O4 (0.3% w/w)

Oil:MeOH 1:3/
35 �C/36 h

71%
conversion

Ashjari
et al.
(2020)

WCO R. mieheilipase immobilized in
Fe3O4@SiO2 nanoparticles
(15.2% w/w)

Three-step addi-
tion of MeOH/
40 �C/48 h

55.3%
yield

T. languginosuslipase
immobilized in Fe3O4@SiO2

nanoparticles (18.6% w/w)

81% yield
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8.5.2.4 Nanotechnology in Biohydrogen Production

Fossil fuels lead to serious environmental problems, which are responsible to worsen
the greenhouse effect; however, the continuous growth of the world population and
industrialized economy made them indispensables (Gaurav et al. 2017; Moreira et al.
2017). Thus, fossil fuels such as oil, coal, and natural gas have been known as the
main source of energy over the last century so that they have contributed to 80% of
the total energy produced, and dependence on them is expected to decrease to 78%
by 2040 (Höök and Tang 2013). Therefore, the establishment of alternative energies
(biofuels) is a top priority in developments sectors and is a target of big research
efforts directed through process intensification to enhance the efficiency of biomass
conversion in biorefineries (Gaurav et al. 2017).

Biohydrogen is the most efficient and cleanest carbon-free energy, and it is
considered a valuable and alternative fuels carrier to fossil ones (Kumar et al.
2019b; Sindhu et al. 2019). It also has the potential to reduce greenhouse gases
emissions, especially from the energy and transportation sectors. Biohydrogen
production has been attracting global attention due to its social, economic, and
environmental merits, and due to its high content of energy with an approximate
value of 122–141 kJ/g, which is higher than that of other fuels, such as methane
(55.65 kJ/g) and ethanol (29.7 kJ/g).

Hydrogen has been produced from fossil fuels, biomass, water, and the reform
of natural gas; besides, hydrocarbon oxidation, coal gasification, electrolysis of
water, and finally dark fermentation of organic substrates (Kumar and Himabindu
2019; Sindhu et al. 2019). Biohydrogen production by dark fermentation to
generate hydrogen energy is a friendly environmental alternative to fossil
fuels to help meet the needs of carbon emission reduction (Ren et al. 2011).
Nevertheless, the quantity of biohydrogen produced via dark fermentation is low
(Kumar et al. 2019b).

Nowadays, several advances and tools have been developed to increase the
chance of enhancing dark fermentation for biohydrogen production. Recently, an
application of nanoparticles (NPs) to enhance bioactivity and metabolite recovery
during dark fermentation has gained enormous attention due to the unique surface
and quantum size effect. Some examples of inorganic NPs that were used for
enhancing biohydrogen production are silver, cobalt, titanium, nickel, and iron;
the last one is one of the most promisors because of its versatility and compatibility
with other additives (Kumar et al. 2019a). The effect of those nanomaterials could
show a positive impact on metabolic key processes.

Yang and Wang (2018) described two mechanisms that enhance hydrogen
production during fermentation and were related to a decline in the oxidation-
reduction potential in the system, providing a better environment for fermentative
bacteria, assisting in the removal of undesired oxygen, thereby contributing to a
higher activity of the oxygen-sensitive hydrogenase. Both these mechanisms were
studied in zero-valent iron nanoparticles (FeO NPs) supplementation. In this study, it
was also proposed that Fe0 NPs could accelerate electron transfer between
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ferredoxin and hydrogenase and promote the activity of key enzymes by the released
Fe2+. The hydrogen yield obtained with Fe0 supplementation (400 mg/L) in this
research was 73.1% higher than that of the control group. In 2016, Taherdanak and
collaborators, also reported the use of Fe and Ni nanoparticles on dark hydrogen
fermentation, specifically Fe0 and Ni0, and they compared them with their equiva-
lents in ion form. Results showed that the order of the hydrogen yield effects was as
follows: Ni2+ ion (55%) > FeO NPs (37%) > Fe2+ ion (15%) > NiO NPs (0.9%)
compared with the control without supplementation.

In 2014, Mohanraj and collaborators also reported that an enhancement of
ferredoxin oxidoreductase activity in response to NPs addition has been considered
to be important to increase the hydrogen production yield during dark fermentation.
Thereafter, in 2015, Gadhe and collaborators, showed that an improvement of
biohydrogen production with a co-addiction of hematite (Fe2O3) plus nickel oxide
(NiO) NPs at optimum concentration can be attributed to a higher activity of the
ferredoxin oxidoreductase, ferredoxin, and hydrogenase enzymes by surface and
quantum size effects of NPs. The hydrogen yield obtained by the co-addiction of
Fe2O3 and NiO (50 mg/L and 10 mg/L respectively) was 1.2-fold higher than that of
the addition of individual nanoparticles. Also, Zhang and collaborators (2018)
studied other configurations of iron nanoparticles (ferric oxide/carbon
nanoparticles—FOCNPs) for hydrogen production enhancement. Fe2O3/C NPs
also showed good performance when added to a dark fermentative process based
on glucose, reaching 33.7% improvement when FOCNPs were added in a concen-
tration of 200 mg/L.

In 2015, Seelert and collaborators, used magnetite (Fe3O4) nanoparticles
functionalized with chitosan and alginic acid polyelectrolytes, to promote bacterial
attachment (immobilization). They used Clostridium beijerinckii with these
nanoparticles, and its kinetics resulted in a shorter lag growth phase effect. The
greatest hydrogen yield was 2.1 � 0.7 mol H2/mol glucose, corresponding to
substrate conversion and energy conversion efficiencies of 52 � 18 and 10 � 3%,
respectively. According to Zhong and collaborators (2020), the addition of magne-
tite nanoparticles resulted in the formation of electronic conductor chains that
enhance the electron transport efficiency and enhance key coenzymes activity in a
complex consortium (anaerobic sludge), promoting a relative abundance of ethanol-
hydrogen-producing bacteria. Results showed that an addition of 50 mg/L magnetite
NPs improved H2 production by 53.7%.

All these research advances show biohydrogen as one of the most promisor
biofuels in the near future. However, there are many bottlenecks in this interesting
bioprocess, such as sustainable pretreatments for substrates availability, enhance-
ment stability of key enzymes and coenzymes, better performance in fermentation
modes, etc. Thus, the inorganic nanoparticles could be a promising additive in
practical application to achieve high hydrogen production, enhancing some of the
main challenges that could currently appear in the main steps in bioprocesses.
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8.6 Challenges in the Application of Nanotechnology
in Biofuels Production

Apart from the advantages of the utilization of nanomaterials in the production of
biofuel, several concerns and risks have arisen from the application of nanotechnol-
ogy. In this regard, the challenges of the use of nanoparticles in biofuel production
can be categorized into the following issues.

8.6.1 General Challenges

The nanoparticles could be applied successfully for the development of biofuel
production. However, the characterization of many nano-additives studied for bio-
fuel production has not been recognized well. In this regard, physical properties such
as particle size, shape, and clustering have been paid less attention (Hossain et al.
2019). More studies should be carried out to solve the problems related to the use of
nanomaterials which are accompanied by agglomeration, settling, and erosion.
Moreover, little is known about the mechanisms of heat transfer where
nanomaterials are applied (Khoo et al. 2020a, b).

On the other hand, enough availability of nanomaterials should be provided for
industrial applications since a low quantity of nano-additives is used for laboratory
scale. Furthermore, the choice of a proper nanomaterial, scientific approach used for
the preparation of nanoparticles for biofuel production should be taken into account
to attain the highest production of biofuels (Hossain et al. 2019).

8.6.2 Deleterious Effect of Nanoparticles on the Biofuel
Producing Microorganisms

Biofuels are mainly produced by microorganisms. In this context, different yeast,
bacteria, and microalgae are exploited for the production of liquid biofuels such as
bioethanol, biobutanol, and biodiesel. Furthermore, gaseous biofuels such as
biohydrogen as transportation biofuel are produced by microorganisms particularly
bacteria (Abdeshahian et al. 2014; Shukor et al. 2014). There is a controversy about
the deleterious effect of nanomaterials on microorganisms. It has been reported that
carbon nanotubes such as Al2O3, CuO, ZnO, and TiO2 cause toxic effects on the
microalgae with oxidative stress, agglomeration, and inappropriate supply of nutri-
ents to algal cells (Khoo et al. 2020a, b). The utilization of nanoparticles in
electrodes made for microbial fuel cells (MFC) may cause toxic effects on electro-
genic microorganisms including bacteria and fungi, which in turn decreases elec-
tricity generation.
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8.6.3 The Cost-Effectiveness of Nanomaterials for Biofuel
Production

One of the main limitations of the use of nanomaterials is the production costs of
biofuel using nanoparticles. In this regard, many nano-materials are relatively
expensive which affects their industrial utilization for the economical production
of biofuel (Khoo et al. 2020a, b). The exploitation of nanomaterials in the chain of
biofuel production consisting of the raw materials to end-product utilization could be
analyzed in the aspect of the economic viability of the process. Hence, techno-
economical assessment is necessary to evaluate whether the use of nanomaterials for
biofuel production is economically variable as the commercialization of biofuel
production using nanoparticles is drastically targeted in transportation sectors
(Hossain et al. 2019).

8.6.4 Environmental Effect of Nanomaterials

The environmental toxicity of the nanoparticles has been poorly studied. It has been
found that nanoparticles have toxic effects on the environment (Khoo et al.
2020a, b). Several nanoparticles are not degradable and can enter the environment
and remain for a long time. The nanoparticles settled in the soil can penetrate the
deeper layer of the ground and enter the groundwater sources (Engelmann and
Hohendorff 2019).

The major concerns are related to the adsorption of the nanoparticles to living
organisms which could be accumulated in the cells. In this line, it has been found that
due to the low size of nanoparticles, biomolecules such as protein, lipid, and DNA
could react with nanoparticles, thereby causing toxic effects on the organism cells.
The toxicity of nanomaterials should be studied further in animal models to deter-
mine the possible damages to the human cells in the environment (Rai et al.
2016a, b).

8.6.5 Deleterious Effect of Nanomaterials
on the Human Body

The nanoparticles could enter the human body through the respiratory system,
alimentary canal, and skin injuries. Owing to the small size of the nanoparticles,
there is a danger of entering the bloodstream (Engelmann and Hohendorff 2019).
Nanoparticles can go to different organs via bloodstreams and enter human cells.
They make oxidative reactions in the cells which, in turn, lead to cytotoxic reactions
in many tissues. The organs with high metabolism such as the kidney, lung, heart,
and liver are at a higher risk of the toxic effects obtained from nanomaterials. Hence,

216 A. P. Ingle et al.



it is necessary to conduct more scientific research to find out the toxicity of the
nanomaterials on the human body (Rai et al. 2016a, b).

8.7 Conclusions

It is a well-known fact that the continuous increase in global population and
industrialization considerably increases the demand for fossil fuels and looking at
limited resources of these fuels, these fuels may be depleted soon. However,
environmental concerns like climate change and global warming are the other issues
raised due to the burning of fossil fuels. In this context, biofuels are the only
alternatives that are reported to mitigate these problems at a significant level.
Considering the limitations of conventional approaches commonly used for biofuel
production, nanotechnology has come up with the most promising solutions which
can make biofuels production easy and economically viable. The direct or indirect
use of nanotechnology in general and nanomaterials in particular in the production of
various biofuels has been found to be the most effective move which can boost the
conventional biorefining industries. Although primary studies conducted so far
presented the positive side of nanotechnology in this aspect, there is a constant
debate on the use of nanomaterials due to their toxicological concerns. There has
been always a difference of opinions from the scientific community about the
toxicity of nanomaterials, but we strongly think that further extensive studies are
essentially required so that concrete evidence can come out about the toxicity of
nanomaterials to the environment and associated living beings.
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