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Abstract The atmospheric methane concentration is increasing rapidly at the rate of
around 10 ppb/year. A concerted effort is required to reduce methane emission.
Methanotrophs possess methane monooxygenase enzyme system and can consume a
major portion of the methane produced in the environment. These microbes play a
major role in the single-carbon-driven microbial food web. Microbial interaction is
an important component of microbial ecology studies, and its role in community
functioning and various biogeochemical cycles still remains unclear. A synergistic
interaction occurs between the methanotrophs and non-methane-utilizing
methylotrophs (NUM) in the natural ecosystem. The intermediates produced by
the methanotrophs can be used as a carbon source by the NUM and support its
existence. On the other hand, NUM consumes toxic intermediates like methanol and
formaldehyde of the methanotrophs and prolongs their growth. The consumption of
the intermediates (methanol, formaldehyde and formate) of the methane utilization
pathway by methylotrophs as a result of cross-feeding enhances the methane utili-
zation rate of that ecosystem. Co-inoculation of methanotrophs and NUM in the
natural habitat particularly paddy ecosystem can aid in the reduction of net methane
emission. This chapter highlights the role of microbial interactions, particularly
between methanotrophs and methylotrophs, that can be harnessed to mitigate meth-
ane emission from the methane-rich environment.
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22.1 Introduction

Methane, the principal component of natural gas, is a colourless, odourless greenhouse
gas (GHG) and contributes around 14% to the total greenhouse gas emission.
Methane-rich environments like paddy fields, wetlands, sewage, landfills and digestive
system of ruminants and termites possess huge diversity of methanogen,
methanotrophs and other methylotrophs (Kirschke et al. 2013; Lee et al. 2014).
Methanotrophs are those bacteria that can consume methane to meet their carbon
and energy requirements before it gets released into the atmosphere and plays a major
role in reducing net methane emission, thereby maintaining global carbon balance. On
the other hand, methylotrophs are a diverse group of bacteria, yeast, fungi and archaea
that can utilize C1 compounds like methanol, monomethylamine, dimethylamine,
trimethylamine, methanesulfonate and dimethylsulfonate including methane as the
sole source of carbon and energy. Traditional methanotrophs of the group Alpha- and
Gammaproteobacteria widespread in Types I, II and X of methanotrophs with the
prefix ‘methylo’ are well studied and investigated. Members of Betaproteobacteria of
the genera Methylophilus (Madhaiyan et al. 2009), Methylovorus (Govorukhina and
Trotsenko 1991) and Methylibium (Nakatsu et al. 2006) are recently recognized as
methane oxidizers. Besides Proteobacteria, few members of the phylum
Verrucomicrobia belonging to genera Methylacidimicrobium and Methylacidiphilum
can also utilize methane (Op den Camp et al. 2009; Sharp et al. 2013; van Teeseling
et al. 2014). Methylotrophs, on the other hand, cover all the three domains of
microorganisms, viz. Bacteria, Archaea and Eukarya. Methylotrophs are microorgan-
isms with a diverse group that besides utilizing methane (methanotrophs) also include
those that can utilize other carbon substrates with no C–C bonds like methanol and
other methylated compounds like methylamine (Chistoserdova et al. 2009). Since all
methylotrophs cannot utilize methane, it can be said that all methanotrophs are
methylotrophs but all methylotrophs are not methanotrophs. The ability to oxidize
methanol has been reported in both prokaryotes and eukaryotes. Eukaryotic yeast
belonging to genera Candida, Pichia, Hansenula and Torulopsis can utilize methanol
as the sole carbon source (Negruţa et al. 2010). The prokaryotic members capable of
oxidizing methanol are spread across Alphaproteobacteria (Methylobacteria,
Hyphomicrobium), Betaproteobacteria (Burkholderia, Methylibium,
Methyloversatilis) and Gammaproteobacteria (Clonothrix fusca, Beggiatoa, Pseudo-
monas), Verrucomicrobia, Cytophagales, Bacteroidetes (Flavobacterium), Firmicutes
(Bacillus methanolicus, Paenibacillus) and Actinobacteria (Microbacterium,
Gordonia, Arthrobacter and Mycobacterium) (Rani et al. 2021b; Kolb 2009;
Madhaiyan et al. 2010; Waturangi et al. 2011; Jhala et al. 2014; McTaggart et al.
2015; Macey et al. 2020).

Non-methane-utilizing methylotrophs (NUM) are known to co-occur with
methanotrophs in the natural ecosystem and affect methane utilization rate.
Modern-day techniques like stable-isotope probing have indicated that a synergistic
interaction occurs between the methanotrophic and non-methane-utilizing
methylotrophic community (Shiau et al. 2020; van Grinsven et al. 2020). NUM is
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known to survive on methane-derived carbon particularly methanol and enhance the
methane oxidation rate (Krause et al. 2017). Moreover, emergent properties like
interaction-induced production of metabolites may arise when microorganisms
interact leading to altered community functions otherwise not possible in the indi-
vidual cells (Watrous et al. 2012; Abrudan et al. 2015). The transfer of metabolites
from methanotrophs is not only restricted to NUM but to a wide range of microbial
taxa as evident from the DNA-SIP study (Beck et al. 2013). These findings suggest
that the assimilation of methane by methanotrophs in the methane-rich environment
provides carbon to a diverse group of microbes (NUM and other heterotrophs) and
sometimes to other life forms as well (Sanseverino et al. 2012; Oshkin et al. 2015;
Yu et al. 2017).

22.2 Pathway for Methane Utilization

The unique ability of the methanotrophs to metabolize methane comes from the
presence of methane monooxygenase (MMO) enzyme system. It’s the first enzyme
in the metabolic pathway of methanotrophs. MMO enzyme can be either housed in
an intracytoplasmic membrane known as particulate MMO (pMMO) or suspended
freely in the cytoplasm known as soluble MMO (sMMO). pMMO, a copper-
containing, membrane-associated enzyme, is found in all the methanotrophs except
for the genera Methylocella and Methyloferula (Theisen et al. 2005) but is less
studied as it is membrane-associated when compared to sMMO. Both sMMO and
pMMO enzyme can act on a wide range of substrates ranging from single carbon
substrate, methane to as long as eight carbon compounds. They can act on alkane,
alkenes, cycloalkanes and even halogenated derivatives (McDonald et al. 2006).
Alkanes can be oxidized by a group of enzymes like cytochrome P450, alkane
hydroxylases, sMMO and pMMO (Beilen and Funhoff 2005). However, among
these, only sMMO and pMMO can act on methane. Some methanotrophs can
produce both pMMO and sMMO, and their expression is regulated by copper
concentration in the environment. pMMO is expressed under high copper-to-bio-
mass ratios, whereas sMMO is expressed when the copper-to-biomass ratio is low
(Murrell et al. 2000).

Methanol produced by the action of MMO is further acted upon by methanol
dehydrogenase to produce formaldehyde. Methanol dehydrogenase (Mdh) is
pyrroloquinoline quinone (PQQ)-containing NAD+-dependent oxidoreductase
enzyme (Anthony and Williams 2003). Formaldehyde produced by methylotrophs
can be assimilated either by RuMP pathway (Type I) or by serine pathway (Type II).
RuMP (ribulose monophosphate pathway) was earlier thought to be restricted to
methylotrophic bacteria. However, they are now reported in various prokaryotic
microorganisms and their role in formaldehyde fixation and detoxification has been
established (Nobuo et al. 2006). Anaerobic methane oxidation by archaea differs in
their mechanism to utilize methane. They utilize methane via reverse and modified
methanogenesis pathway. Various intermediates of the methane oxidation pathway,
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viz. methanol, formaldehyde, formate, acetate and other organic acids when secreted
by the methanotrophs, can be used as a growth substrate by both non-methane-
utilizing methylotrophs and other heterotrophs as shown in Fig. 22.1. Methane-fed
microbial microcosm study showed the abundance of methanotrophs of the family
Methylococcaceae particularly Methylobacter along with other methylotrophs
(Methylotenera) and heterotrophs, suggesting that there is a distribution of carbon
from methane among diverse bacterial populations rather than a single type of
microbe and thus methanotrophs play an important role in methane cycling (Oswald
et al. 2016).

22.3 Cross-Feeding of Methane by NUM

Non-methanotrophs, particularly methylotrophs, play a major role in combating
climate change in a methane-rich environment. Other heterotrophic forms may affect
the growth of methanotrophic bacteria as a result of its various metabolic activities
(secretion of growth factors or removal of toxic intermediates) (Hrsak and Begonja

Fig. 22.1 Cross-feeding of metabolites produced by methanotrophs. sMMO soluble methane
monooxygenases, pMMO particulate methane monooxygenases, Mdh methanol dehydrogenases,
RuMP ribulose monophosphate pathway
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2000). NUM is often known to coexist with methane-utilizing bacteria by cross-
feeding on methane-derived carbon, particularly methanol (Takeuchi et al. 2019).
Methane-oxidizing microorganisms possess monooxygenases that catalyze the con-
version of methane to methanol. Methanol produced in the periplasmic space by the
action of MMO enzyme system can easily diffuse out and serve as an alternative
carbon source for other groups of microorganisms (Corder et al. 1986). Methanol-
dependent cross-feeding between methanotrophs and other methylotrophs is largely
dependent upon methanol excreted by the methanotrophic bacteria. Microflora
residing in the rhizosphere, phyllosphere and non-rhizosphere or as endophytes of
plants can utilize methanol and consume a major proportion of it (Kolb 2009; Iguchi
et al. 2015; Chistoserdova and Kalyuzhnaya 2018). Methane-derived carbons (meth-
anol, formaldehyde and formate) particularly methanol from methanotrophs can be
utilized by NUM and enhance methane utilization rate by cross-feeding (Hanson and
Hanson 1996; Qiu et al. 2008).

The findings of various researchers confirm the abundance of NUM along with
methanogens and methanotrophs in the environment as shown in Table 22.1. Syn-
ergistic associations of methane and methanol oxidizers have been reported that
favours the utilization of methane due to the removal of its intermediate methanol by
the other partner (Krause et al. 2017; Jeong and Kim 2019). The coordinated
response of Methylococcaceae (methanotroph) and Methylophilaceae (NUM) to
changing methane and nitrate levels suggests that the two different functional groups
of microbes may be involved in some type of cooperative behaviour (Beck et al.
2013). Similarly, methane oxidation by Methylocystis was found to increase in the
presence of helper organism Hyphomicrobium according to the experiments carried
out by (Jeong and Kim 2019). The transfer of methanol from the methanotrophic
partnerMethylobacter tundripaludum to the non-methanotroph methylotrophic part-
ner Methylotenera mobilis has been confirmed in a microcosm model by (Krause
et al. 2017). Their findings indicate that the non- methanotrophic partner induces a
change in the gene expression of the methanotrophic partner causing the synthesis of
less efficient methanol dehydrogenase enzyme (MxaF-type catalysing the conver-
sion of methanol to formaldehyde) resulting in methanol excretion.

In the natural ecosystem, a complex interaction occurs between methanotroph,
NUM and other heterotrophs. The success of single carbon-based microbial food
web is determined by the effective transfer of intermediates from one microbial
group to the other, allowing them to survive in methane-rich environments. A
successful example of cross-feeding is the experiment carried out by Yu et al.
(2017). They made a synthetic community of 50 bacterial cultures comprising of
10 methanotrophs (Methylomonas, Methylobacter, Methylosarcina and
Methylosinus), 28 methanol-utilizing methylotrophs (Methylotenera, Methylovorus,
Methylophilus, Ancylobacter, Hyphomicrobium, Labrys, Methylobacteria,
Methylopila, Paracoccus, Xanthobacter and Methyloversatilis), 8 non-methanol-
utilizing methylotrophs (Aminobacter, Arthrobacter, Mycobacterium and Bacillus)
and 4 heterotrophs (Pseudomonas, Janthinobacterium and Flavobacterium) to study
syntrophy in the aerobic methane-oxidizing environment (Yu et al. 2017). The
metatranscriptomics analysis showed that across all the treatment with varying
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Table 22.1 Studies showing cross-feeding of metabolites from methanotrophic to non-methane-
utilizing methylotrophic partner

Methanotroph Non-methanotroph
Substrate
transferred Salient findings References

Methylobacter
tundripaludum

Methylotenera
mobilis

Methanol Transcriptome analysis
showed high expres-
sion of genes involved
in methanol oxidation
in the methylotrophic
partner
Methylotenera mobilis
causes a change in the
expression of
methanotrophic partner
causing it to secrete
methanol

Krause
et al.
(2017)

Methylocaldum
marinum

Methyloceanibacter
caenitepidi (faculta-
tive methylotroph)

Acetate Observed syntrophic
association between
M. caenitepidi and
M. marinum
Under co-culture con-
dition, genes involved
in serine pathway were
downregulated in
M. caenitepidi
Organic compound
probably acetate might
be the major carbon
source for the
methylotrophic partner
M. caenitepidi

Takeuchi
et al.
(2019)

Members of
Methylococcaceae
and others

Methylophaga Not stud-
ied (may
be
methanol)

DNA-SIP experiment
identified members of
Methylococcaceae as
major 13CH4 con-
sumers
Microbial mats showed
diverse assemblage of
bacteria, protozoa with
Methylophaga as key
consumers of methane-
derived organic matter

Paul et al.
(2017)

Methylomicrobium Methylophaga,
Hyphomicrobium
and other
unrecognized
methylotrophs

Not stud-
ied (may
be
methanol)

DNA-SIP study indi-
cates that methane-
derived carbon particu-
larly methanol pro-
duced by
methanotrophs may be
consumed by
Methylophaga and
other related

Jensen
et al.
(2008)

(continued)
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Table 22.1 (continued)

Methanotroph Non-methanotroph
Substrate
transferred Salient findings References

uncultivated
Gammaproteobacteria

Methylococcaceae,
particularly
Methylobacter

Methylophilaceae,
particularly
Methylotenera

Not stud-
ied (may
be
methanol)

Observed coordinated
response of both
methanotroph and
methylotroph to chang-
ing methane and nitrate
levels, suggesting
cooperative behaviour

Beck et al.
(2013)

Methylobacter sp. Methylotenera Not stud-
ied (may
be
methanol)

No physical contact
was required between
the partners for the
transfer of carbon as
was confirmed by
stable-isotope probing
(SIP) and nanoscale
secondary ion mass
spectrometry
(NanoSIMS)
Requires nitrate for
carbon transfer as it is
potentially used by
Methylotenera sp. and
its deficiency may
affect the methane oxi-
dation rate of
Methylobacter sp.

van
Grinsven
et al.
(2020)

Methylococcaceae Methylophilaceae Methanol Made synthetic bacte-
rial communities of
50 isolates including
methanotrophs,
methylotrophs and het-
erotrophs with varying
oxygen and methane
levels
Observed predomi-
nance of the
methanotrophs of the
family
Methylococcaceae and
non-methanotrophic
methylotrophs of the
family
Methylophilaceae
across all the treat-
ments
Vitamin B12 produced
by Methyloversatilis

Yu et al.
(2017)

(continued)
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nitrogen, oxygen and methane concentration, methanotroph of the family
Methylococcaceae and methylotroph of the family Methylophilaceae did
outcompete other species. Heterotrophs of the genera Janthinobacterium and Pseu-
domonaswere detected in only a few treatments. Their research shows that methane-
utilizing bacteria support the growth of other NUM and heterotrophs through the
transfer of metabolites.

The bacterial community structure in a methane-rich environment is influenced
by various factors like the existing concentration of methane, oxygen, nitrogen and
other nutrients. The eutrophic lakes have high nitrate concentration and are one of
the major sources of aquatic methane production. The nitrate in the aquatic ecosys-
tem does influence the growth of microbial species and affect the cross-feeding of
metabolites. The transfer of methane-derived carbon between Methylobacter
(methanotroph) and Methylotenera (NUM) is based on the nitrate levels as it is
required by the methylotrophic partner (van Grinsven et al. 2020). It has been
observed that nitrate can cause stimulation in methane oxidation resulting in
increased transfer of associated carbon compounds. Similarly, oxygen level selects
the population of methanotrophs and methylotrophs, thereby determining their
microbial diversity in a particular niche. The effect of oxygen on the conversion of
methane-derived carbon has been studied (Wei et al. 2016). They observed greater
transfer of methane-derived carbon at high O2 concentration (21%) as compared to
that observed at 2.5 and 5% O2 concentration. They even reported higher microbial
diversity index at 2.5% O2 concentration and concluded that more methane-derived
carbon was exuded into the environment and available for the growth of
non-methanotrophs in O2-limiting environments. Similar findings were reported
where speciation withinMethylococcaceae andMethylophilaceae family at different
oxygen gradient with an abundance of Methylosarcina (methanotroph) and
Methylophilus (NUM) at high O2 tension (150–225 μM) and Methylobacter
(methanotroph) and Methylotenera (NUM) at low initial O2 tension (15–75 μM)
was observed (Hernandez et al. 2015). The specific species differentiation observed
within the methanotrophic and methylotrophic members of the Methylococcaceae
and Methylophilaceae family is driven towards niche adaptation to specific oxygen
gradient. The change in the population of methanotrophs and NUM to varying
oxygen and methane concentration has been observed, suggesting that the relative
concentration of methane and oxygen selects microbial community that can thrive
under such situations. A synthetic community model comprising 50 bacterial species
(methanotrophs, methylotrophs and heterotrophs) showed a change in the species
composition with the abundance of methanotrophs of the family Methylococcaceae

Table 22.1 (continued)

Methanotroph Non-methanotroph
Substrate
transferred Salient findings References

may be shared among
other community
members
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and methylotrophs of the family Methylophilaceae at varying methane and oxygen
concentration (Yu et al. 2017). Lanthanum (Ln), a rare earth metal, also affects the
transfer of methane-derived carbon as it is an important co-factor of XoxF-type
methanol dehydrogenases (MDHs) present in Gram-negative methylotrophs
(Vu et al. 2016; Yanpirat et al. 2020). A shift in the expression of methanol
dehydrogenases from lanthanide-dependent MDH (XoxF) type to the more efficient
calcium-dependent MDH (MxaF) type occurs when non-methanotrophs are cultured
along with methanotrophs, allowing an excess of methanol production that can be
used by the methylotrophic partner (Krause et al. 2017). The presence of lanthanides
allows a partner-induced change in gene expression and influences microbial inter-
actions in the environment. The above finding suggests that the existing concentra-
tion of methane, oxygen, nitrate and other nutrients in the natural ecosystem plays a
major role in determining the community composition of methanotrophs and
methylotrophs, thereby influencing the transfer of methane-derived carbon and
methane oxidation capacity of that particular ecosystem.

22.4 Approaches Used to Study the Interaction
of Methanotrophs and NUM

Techniques involving the cultivation of different microbial groups cannot be very
useful for interaction studies as it is difficult to simulate natural conditions under
laboratory and most of the microorganisms still remain un-culturable due to their
specific growth requirement. A useful approach is to simulate the natural environ-
ment under controlled condition through a microcosm or mesocosm experiment
depending upon the scale of the model ecosystem and use molecular tools to
determine community composition. Microcosms are artificial, controlled, simplified
ecosystem used to simulate natural ecosystems mostly done under laboratory con-
ditions, whereas mesocosms are bounded and partially enclosed outdoor experiment
used to bridge the gap between the laboratory and the real world in environmental
science (Bruckner et al. 1995). Microcosm and mesocosm experiment reduces the
credibility gap and helps us to provide a solution to large-scale environmental
problems. They provide a better understanding of the ecological problems by
bringing them to spatial and temporal scale convenient enough to carry out the
study (Benton et al. 2007). Microcosm experiments have widely been designed to
study the diversity and dynamics of both methanotrophs and methylotrophs in soil
and sediment samples collected from the natural environment (Shiau et al. 2020;
Oshkin et al. 2015; Morris et al. 2002). Research shows that the activity pattern of
methane-oxidizing bacteria and the population structure of methylotrophs follow the
same pattern under field and microcosm condition (Eller et al. 2005). It can be
concluded that the findings of the microcosm study can be extrapolated to field scale
keeping in mind the concerned quantitative changes. Various molecular tools and
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techniques are commonly being used to study the interaction of methanotrophs with
NUM. Some of them are mentioned below.

DNA-Based Stable Isotope Probing (DNA-SIP): It is a powerful means to study
the flow of intermediates from microbes with one functional group to the other. In
DNA-SIP study, environmental samples are fed with substrate labelled with a heavy
isotope (13C). The labelled isotope then gets incorporated into the cell biomass
including DNA, which can be processed and analysed to determine phylogenetic
affiliations of species with labelled DNA. Isotope labelled 13CH4 is used to study the
cross-feeding of intermediates produced by methanotrophs determining the associ-
ation of methanotrophs with methylotrophs and other heterotrophs in the natural
environment. DNA-SIP helps us to establish a direct link between CH4 oxidation
and taxonomic identity for active methanotrophs and methylotrophs in complex
environments (Shiau et al. 2020). It has been widely used to study metabolic
interactions in methane-fed communities (van Grinsven et al. 2020; Paul et al.
2017; Jensen et al. 2008). DNA-SIP experiments are widely used to uncover the
participants involved in the C1 cycle and give a clear picture of the transfer of
metabolites from one microbe to the other. It provides confirmatory evidence of the
associations of actively interacting microorganisms, sharing carbon derived from a
single-key biogeochemical process.

PCR-Based Method: Functional marker genes unique to the physiology and
metabolism of methanotrophs and methylotrophs can be targeted to study the
diversity of microbes involved in the metabolism of single carbon compound.
Functional genes commonly targeted to study the diversity of methanotrophs and
methylotrophs are those of methane monooxygenases (pmoA and mmoX), methanol
dehydrogenase (mxaF), 16S rRNA region targeting serine pathway and RuMP,
dinitrogen reductase (nifH) and formyltransferase/hydrolase complex ( fhcD)
(McDonald et al. 2008). PCR product can be run on denaturing gradient gel to
separate amplicons even with a single-nucleotide difference. PCR followed by
denaturing gradient gel electrophoresis (PCR-DGGE) will help us to determine the
degree of genetic polymorphism in the target regions within the community
(Bodelier et al. 2005; Piterina and Pembroke 2013). One major limitation of
DGGE methodology is that the size of the amplicon should be between 100 and
500 bp, and therefore, primer set should be carefully designed (Marzorati et al.
2008). Eller et al. (2005) used three universal eubacterial primers set targeting
methylotrophs with RuMP (533F/907R and 197F/533R) and serine pathway
(142F/533R) followed by DGGE to study the community composition of
methylotrophic bacteria in soil samples collected from the paddy field. The advan-
tage of PCR-DGGE over DNA-SIP technique is that it does not require a closed
controlled environment and can be used to determine community composition of
samples directly collected from the natural environment.

Next-Generation Sequencing (NGS): Metagenomic and transcriptomic approach
to study microbial diversity requires sequencing of a large amount of DNA and
transcripts. Next-generation sequencing methods are more sensitive and can detect
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low-frequency variants. It is a high-throughput process that handles hundreds and
thousands of genes simultaneously and provides a comprehensive gene coverage
(Krishna et al. 2019). Storage, analysis and interpretation of NGS data are the major
rate-limiting steps of NGS technology. A large number of online bioinformatics
tools are available that can process original raw sequencing data to functional
biology (Kulski 2016). Techniques involving the use of NGS technology are widely
used to study the interaction between methanotrophs and NUM (Krause et al. 2017;
Beck et al. 2013; Takeuchi et al. 2019). Whole-genome sequencing and
transcriptomic approach were used to study the interaction between the
Methylocaldum marinum (methanotroph) and Methyloceanibacter caenitepidi
(NUM) and observed that there is non-methanol-based cross-feeding (particularly
acetate) of metabolites between the partners (Takeuchi et al. 2019). Pyrosequencing
of 16S rRNA gene (27F/519R) was done to study the community dynamics in
methane-fed microbial microcosms (Oshkin et al. 2015). The result showed low
species diversity with the predominance of Methylococcaceae species, closely
related to Methylobacter tundripaludum with few members of Methylotenera,
Flavobacterium, Pseudomonas, Janthinobacterium, Achromobacter and
Methylophilus. They also studied the community dynamics through Illumina
sequencing of prepared DNA libraries and observed the predominance of
methanotroph (Methylobacter) followed by NUM of the family Methylophilaceae
(Methylobacter tundripaludum, Methylophilus methylotrophus, Methylotenera
versatilis and Methylotenera mobilis). Both these techniques confirmed the strong
correlation of the population of methanotrophs to that of NUM, suggesting that there
may be the flow of intermediates between the two partners.

22.5 Interaction of Methanotrophs with Microbes
of Different Functional Group

Besides methylotrophs, intermediates of the methanotrophic bacteria also support
the growth of few heterotrophic bacteria. Synergistic interactions occur between the
methanotrophs and heterotrophs where one provides the other with carbon source
and the other produces growth factor or remove toxic intermediates from the
environment (Stock et al. 2013; Ho et al. 2014; Veraart et al. 2018; Singh et al.
2019). Growth stimulation of methane-utilizing Methylovulum miyakonense in the
presence of Rhizobium has been documented (Iguchi et al. 2011). They identified
cobalamin secreted by Rhizobium as the key factor responsible for stimulating the
growth of the methanotroph. Removal of toxic intermediates like organic acids can
also support the growth and proliferation of methanotrophic partners (Singh et al.
2019). The effect of the interaction of methanotrophs with non-methanotrophs
(heterotrophs/ autotrophs) has been summarized in Table 22.2.

Methanotrophic bacteria can grow with other organisms and aid in the removal of
other greenhouse gas (Singh et al. 2019). Co-culture of alkaliphilic methanotrophic
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bacteria with microalga Scenedesmus obtusiusculus in the ratio 3:1, 4:1 and 5:1 can
lead to complete CH4 and CO2 uptake and thus is a promising strategy for green-
house gas mitigation in a single step (Ruiz-Ruiz et al. 2020). Methanol-independent
cross-feeding occurs in the natural ecosystem and supports the existence of
non-methylotrophic heterotrophic bacteria. A recent study shows that methane-
oxidizing bacteria can undergo mixed acid fermentation under the anoxic condition
and release other products like acetate, succinate and H2 (Kalyuzhnaya et al. 2013;
Xin et al. 2004). These fermentation products can be used as a substrate by a diverse
group of heterotrophic bacteria. The complex interaction of methanotrophs with
other microbes occurs in the natural environment and thus can greatly influence net
methane emission from these areas.

Table 22.2 Beneficial effect of the interaction of methanotrophs with non-methanotrophs

Methanotroph Non-methanotroph Effect of interaction References

Gammaproteobacteria
(Methylosarcina and
Methylocaldum)

Algae (autotroph) Autotrophs provide O2 to the
methanotrophs and increase
methane oxidation rate,
whereas methanotrophs pro-
vide them CO2 for
photosynthesis

Yoshida
et al.
(2014)

Methylocystis Sphagnum mosses
(autotroph)

The autotrophs provide O2 to
the methanotrophs and
increase methane oxidation
rate, whereas methanotrophs
provide them CO2 for
photosynthesis

Kip et al.
(2011)

Methylobacter luteus Pseudomonas
mandelii (heterotroph)

Growth stimulation and
increased methane oxidation

Veraart
et al.
(2018)

Methylovulum,
Methyloparacoccus,
Methylomonas

Rhizobium sp.,
Mesorhizobium
sp. and Sinorhizobium
sp. (heterotroph)

Heterotrophs produce vitamin
B12 and support the growth of
methanotrophs

Hoefman
et al.
(2014)

Methylomonas
methanica

Rhizobium/
Ochrobactrum/Pseu-
domonas/Escherichia
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22.6 Importance of Interaction of Methane Utilizers
with Non-methanotrophs in the Natural Ecosystem

Methanotrophs allow microbial food web to work at locations where it is difficult for
other microbes to survive and consume methane which is the most reduced form of
carbon. At the oxic-anoxic interface, aerobic methanotrophs survive that consume
methane produced by methanogenic archaea and support the growth of other
methylotrophs as well as heterotrophs. The type of interaction between these micro-
bial functional groups in a methane-rich environment has been shown in Fig. 22.2.

Methylotrophic partner removes toxic intermediates of the methane utilizers like
methanol and formaldehyde and allows sustained growth of the methanotrophs.
Reports on excretion of methanol (up to 100 μM) in the culture medium are available
that suggests a mismatch between the methanol produced and methanol that can be
further assimilated into the cell biomass (Xin et al. 2004; Tavormina et al. 2017). The
release of methanol will decrease the methane oxidation rate and inhibit methanol
production by the methanotrophic culture. The presence of methanol-utilizing
methylotrophs will allow removal of the released methanol and allow the sustained
activity of methane monooxygenase enzyme system. Low methanol concentration in
the environment is associated with low ozone concentration in the atmosphere and
thus plays an important role in atmospheric chemistry (Warneke et al. 1999; Galbally
and Kirstine 2002). Methanol-utilizing methylotrophs thereby play a key role and
consume both plant-derived methanol and those obtained from methanotrophs

Fig. 22.2 The effect of the interaction of methanotrophs with non-methanotrophs (methylotrophs/
heterotroph/autotroph) in a methane-rich environment
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before it gets released into the atmosphere. Isolation of proteobacterial methanotroph
requiring lanthanides by enrichment culture technique led to co-isolation of
non-methanotrophic community, belonging to the genera Methylophilus,
Methyloversatilis, Hyphomicrobium, Methylobacteria, Pseudomonas and
Thiobacillus, as they can utilize intermediate compounds of the methane oxidation
like methanol, acetate, and formate (Kato et al. 2020). Mesocosm experiments
showed that there is a relative abundance of methanotrophs and NUM, indicating
that a large part of methane-derived product (methanol, acetate and others) was
being transferred from methanotrophs to non-methane-utilizing methylotrophs
(Kuloyo et al. 2020).

In a natural environment, methanotrophs are found along with other
methylotrophs, heterotrophs and autotrophs. Metabolites produced by each one of
them may support or suppress the growth of other bacteria. Besides methylotrophs,
heterotrophs and autotrophs also affect the activity of methane-utilizing bacteria.
Growth factors (quinone, pyridoxine and vitamin B12) produced by these organisms
may support the activity of methanotrophs (Stock et al. 2013; Ho et al. 2014;
Hoefman et al. 2014). Research shows that synergistic interaction exists between
methanotrophs, methylotrophs and heterotrophs. A methane-utilizing mixed culture
composed of a methanotroph, methanol-utilizing methylotroph (Methyloceanibacter
caenitepidi) and a heterotroph was successfully established from the sample col-
lected from marine sediments in Japan (Takeuchi et al. 2014). The stable association
of these three functional groups on a medium with methane as carbon source shows
that the methanotrophs via providing its metabolic intermediates (methanol, form-
aldehyde, acetate and formate) support the growth of methylotrophs as well as other
heterotrophs in the environment. The close association of methane-oxidizing bacte-
ria with autotrophs (macrophytic algae/Sphagnum mosses) suggests that their pho-
tosynthetic activity may provide O2 to the methanotrophs and support its growth and
proliferation (Yoshida et al. 2014; Kip et al. 2011). In turn, the methanotrophs may
provide fixed nitrogen (NH4

+) to the Sphagnum mosses by its N2 fixation activity
and exert beneficial effect (Larmola et al. 2014). Research suggests that the flow of
methane-derived carbon does not stop at the microbial level but sometimes extend to
the whole aquatic food web, up to the fish level (Sanseverino et al. 2012). Their
findings indicate the importance of methanotrophs in the C1 cycle (particularly
methane) and the role it plays in the food web of aquatic systems. Natural
methane-rich environments possess a diverse group of microflora right from
methanogens to methylotrophs, heterotrophs and autotrophs in close association,
thereby allowing the microbial community to thrive.

22.7 Conclusion and Future Prospects

Studies have emphasized the importance of biotic interactions, particularly microbial
interactions, as key modulators of biogeochemical processes. Methanotrophs along
with other microbes allow methane-based food web to function in various anaerobic
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ecosystems. Mitigation of methane emission through the use of methane-utilizing
bacteria from various anthropogenic sources (paddy fields, wastewater treatment and
landfills) has gained impetus in recent years (Oswald et al. 2016; Strong et al. 2017;
Davamani et al. 2020). With the increase in anthropogenic methane emissions, the
importance of these bacteria is set to increase as they play an important role in
reducing global methane sink. Artificial inoculation of methanotrophs with plant
growth-promoting traits in paddy field can cause a substantial reduction in methane
emission and an increase in grain yield (Rani et al. 2021a; Davamani et al. 2020).
Removal of methane from anoxic lake waters upon inoculation with
γ-proteobacterial methanotrophs has been reported (Oswald et al. 2016). However,
efforts to harness the synergistic interaction of methanotrophs with other microbial
groups have not been undertaken. We propose that co-inoculation of NUM with
methanotrophs may expedite the methane removal process due to their synergistic
interaction. Studies in this area have still not gained impetus, and the effect of
microbial co-inoculation on the removal of methane has still not been explored
much. This chapter provides enough evidence and confirms the transfer of metab-
olites from methanotrophs to the other microbial groups. This microbial synergistic
interaction can be tapped for reducing methane emission from various anoxic
habitats.
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