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Solubilization of Micronutrients Using
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Abstract Out of the 17 elements essential for plant growth and reproduction, 8 are
micronutrients. The soil supplies relatively large amounts of nitrogen, phosphorus,
potassium, calcium, magnesium, and sulfur as macronutrients and relatively small
amounts of iron, manganese, boron, molybdenum, copper, zinc, chlorine, and cobalt,
as micronutrients. Both deficiency and excess of micronutrients negatively impact
the growth and productivity of plants and therefore should be supplied in sufficient
amounts in appropriate ratios. A number of biotic and abiotic factors and their
relationships affect the appropriate balance of macro- and micronutrient pool in
the soil. The focus on addressing micronutrient deficiencies in soil in relation to
agriculture has not been adequate in comparison to that for macronutrients. How-
ever, with the recent recognition on their impact on crop productivity and the
efficiency of NPK uptake by plants, much attention was drawn to regulating
micronutrient content in soil with chemical supplements. Environmental concerns
encountered with the use of chemical supplements have directed the world into
eco-friendly and sustainable approaches in addressing issues in many fields includ-
ing agriculture. The use of naturally inhabiting microorganisms, “indigenous micro-
organisms,” has been one of such eco-friendly approaches in agriculture. This
review discusses the approaches that have been researched and used with indigenous
microorganisms having micronutrient solubilization ability to regulate micronutrient
availability in soil and the potential of developing them to optimize the crop
productivity while maintaining a sustainable environment.
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21.1 Introduction

The nutrients which are required by organisms in comparatively small quantities are
called micronutrients. They are required in plant tissues at concentrations of less than
100μ g�1 dry weight (Welch and Shuman 1995). The attention to micronutrients has
increased in the recent past with the understanding of their important role in disease
resistance in plants and stress resistance in roots especially in crop plants (Welch and
Shuman 1995; Graham and Webb 1991; Miller et al. 1991; Van Campen 1991;
Nielsen 1992). Micronutrients are as equally important as macronutrients for plant
growth, yield, and quality (Maurya et al. 2018; Yadav et al. 2018). There are eight
micronutrients which have currently been recognized to be essential for higher
plants, namely, boron (B), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn),
chlorine (Cl), molybdenum (Mo), and nickel (Ni) (Welch and Shuman 1995).
However, an exact number of the micronutrients vital for higher plants cannot be
strictly proposed since intense molecular and physiological studies are required for
each and every nutrient before such conclusions and for elimination of controversies.
One such example is Si where there are arguments whether it is to be categorized as
an essential or a beneficial element (Maathuis 2013; Mengel et al. 2001; Barker and
Pilbeam 2015). Micronutrients play a role in primary as well as in secondary
metabolism, energy metabolism, cell defense, signal transduction, hormone percep-
tion, and gene regulation (Maathuis 2013; Barker and Pilbeam 2015; Maathuis and
Diatloff 2013; Vatansever et al. 2017). They also enhance the chemical composition
and the quality of plants including crops and are known to act as catalyst in various
organic reactions in plants (Karthick et al. 2018). Since these play an important role
in plant growth and development, the deficiencies result in several physiological
disorders and diseases in plants that reduce the yield and quality of plant produce
(Sharma 2006). It should be taken into account that a number of physiological events
in relation to plant metabolism are directly or somewhat related to the mineral
elements. Deficiencies of mineral elements or toxicities intensely affect the life
cycle of plants, and their availability to plants especially crops should be closely
looked at in order to address the food safety and food security issues that would
upswing in the near future. With the United Nations sustainability goals to be met by
2030 with the already identified and not yet identified ecological, environmental, and
health problems associated with chemical fertilization, eco-friendly alternatives for
soil augmentation are being investigated from which mineral-solubilizing microor-
ganism is one. Deficiencies in micronutrients in soil will ultimately be related to
human and animal health risks by crops not having the required amount of
micronutrients present in crop produce. This chapter will be focused on different
mechanisms and methods by which soil indigenous microflora increases the micro-
nutrient availability in soil, enhancing the soil fertility and crop production and
thereby human health through a sustainable approach. When considering a sustain-
able environment, the role of microbes in other processes such as bioremediation and
bioleaching in addition to biofortification and biofertilization should also be
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discussed. Therefore, the chapter will also discuss situations where indigenous
microbes have been used in the above processes in relation to eight micronutrients.

21.2 Micronutrient Deficiencies

Deficiency of micronutrients in soil is a global issue with slight variations in
particular to different micronutrients (Monreal et al. 2015; Voortman and Bindraban
2015; Dimkpa and Bindraban 2016). In addition, their low crop use efficiency (i.e.,
low crop response per unit of micronutrient, relative to no micronutrient applica-
tion), typically <10% in comparison to 20% and 80% for N, P, and K (Baligar et al.
2001), has also contributed to their deficiency in global agro-ecosystems. Many
arable lands are affected by deficiencies of more than one micronutrient (Monreal
et al. 2015; Voortman and Bindraban 2015; Oliver and Gregory 2015). This issue
has further been made complicated with extensive extraction by high yielded crops
supplemented with NPK fertilizers in addition to inadequate micronutrient fertiliza-
tion. Yield increments reported with the addition of micronutrient supplements in
different crops both with and without NPK fertilizers (Dimkpa and Bindraban 2016;
Katyal and Ponamperuma 1974; Kanwar and Youngdahl 1985; Rietra et al. 2015)
suggest the importance of micronutrients in crop productivity and for effectiveness
of NPK fertilization (Dimkpa and Bindraban 2016). An amount ranging from 0.01 to
4.9 kg ha�1 of micronutrients has been estimated to be collectively removed from the
soil annually by different crops (Rietra et al. 2015) and the type of micronutrient
(Mallarino et al. 2011; Marschner 2012). A normal growth of a plant requires an
amount of each micronutrient ranging between 0.1 and 100 mg kg�1 with mean
levels of 90 mg kg�1 present in DTPA-extractible form (Samourgiannidis and Matsi
2013; Sobral et al. 2013). Therefore, soils do not fulfill the micronutrient require-
ment of a normal healthy plant. These deficiencies in soil result in low crop
productivity and nutritional quality which will ultimately affect human health
(Marschner 2012; Alloway 2009; Itelima et al. 2018; Dhaliwal et al. 2019; Kaura
et al. 2020).

Since human nutrition is directly or indirectly based on plants, any micronutrient
deficiency in food crops could cause micronutrient deficiency in humans, referred to
as “hidden hunger” (Oliver and Gregory 2015; Kaura et al. 2020; White and
Broadley 2009; Joy et al. 2015; Riaz et al. 2020). For example, Zn deficiency in
soil has been shown to cause Zn-deficient symptoms in humans, such as stunting and
child death (Monreal et al. 2015; Cakmak 2008).
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21.3 Micronutrients in Plants

The ability of a plant to obtain sufficient levels of vital minerals is also a function of
specific characteristics in the plasma membranes of root cells such as the presence of
relevant transport proteins and related acquisition mechanisms of ions (Vatansever
et al. 2017; Dimkpa and Bindraban 2016; Kochian 1991). Modification of the
rhizosphere by plant roots can also affect nutrient availability, through the release
of protons, chelators, phytosiderophores, and/or chemical reductants and also by
elaboration of extensive root systems (Dimkpa and Bindraban 2016; White et al.
2013; Keuskamp et al. 2015). Micronutrient availability for plants is not entirely
dependent on the amount of mineral present in the soil matrix but also depends on
the molar fraction existing in soil solution and on the variation of the ions of a
particular mineral (Vatansever et al. 2017; Lindsay 1991). Speciation and solubility
of a particular mineral are influenced by abiotic factors such as redox state, pH, and
temperature as well as by biotic factors such as phenolic compounds and organic
acids which are metabolically generated or released through degradation of soil
organic matter by indigenous microorganisms. In the soil, some micronutrients react
with compounds such as phosphates and carbonates, to form chemical precipitates or
interact with clay particles and other mineral complexes, making them unavailable
(Dimkpa and Bindraban 2016; Marschner 2012; Allen 2002).

Factors such as plant species, genotype, growth conditions, and different organs
and tissues of the same plant species affect the micronutrient content of a plant.
Genetic makeup together with physiological and environmental factors changes the
concentrations of micronutrients inside the plants, deficiencies, or toxicities
(Table 21.1). Environmental variables and differences between plant species, as
well as genetic variation within a plant species, can affect micronutrient concentra-
tions in higher plants (Luber and Taureau 1990; Benton-Jones 1991; Benton-Jones
et al. 1992). Micronutrients play a significant role in both general and specific
physiological processes in plants. Fe, Cu, Mn, and Cl are involved in different
metabolic processes like photosynthesis acting as cofactors. Fe, Mn, Zn, Cu, Ni,
Mo, and Cl contribute to the activity of different enzymes such as DNA/RNA
polymerases, N-metabolizing enzymes, dismutases, catalases, superoxide, dehydro-
genases, oxidases, ATPases, and enzymes involved in redox processes (Broadley
et al. 2012). Zn specifically plays a role in the enzymatic biosynthesis of auxin
(Hossain et al. 1997; Fageria 2002) which enhances root growth. Ni is involved in N
metabolism of plants by transforming urea to ammonia (Polaccao et al. 1999; Sirko
and Brodzik 2000). Mo is used by both symbiotic and free-living N-fixing bacteria
for N fixation since it is a component of the nitrogenase enzyme system (Barron et al.
2009). The role of micronutrients as cofactors is crucial for enzyme and nonenzyme
activities in plant metabolism depending on the environment especially in abiotic
and biotic stress mitigation by plants. Zn is shown to modulate the activity of
membrane-bound NADPH oxidase (Cakmak 2008) in homeostasis of reactive
oxygen species which regulates defense and signaling by the host during drought
or other abiotic stresses (Bagci et al. 2007; Golldack et al. 2014). Cu is an essential
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element for lignin synthesis needed for cell wall strengthening (Yruela 2009; Ryan
et al. 2013) which facilitates withstanding abiotic stresses such as wilting, wind, and
rain. B facilitates cross-linking of pectic polysaccharides serving cell wall function-
ing and maintaining the structural support of the cytoskeleton (Miwa et al. 2008).
Chloride plays a role in stomatal regulation and protects plants from wilting and
death (Broadley et al. 2012).

When considering crop plants, the role of micronutrients in combating abiotic and
biotic stresses, improving nutritional quality, increasing yield, and enhancing uptake
of essential macronutrients, NPK, is substantial in addition to their physiological
role. Micronutrients assist plants to mitigate biotic stresses by means of developing
resistance to plant diseases either directly affecting the pathogens in the rhizosphere
or inducing different types of physiological responses in the plant during pathogen
attack through mechanisms such as siderophore production (Kloepper et al. 1980;
Lim and Kim 1997; Fernandez et al. 2005; Vansuyt et al. 2007; Dimkpa et al. 2009,
2015a; Radzki et al. 2013), inducing cellular activity, disease resistance (Shirasu
et al. 1999; Datnoff et al. 2007) and microbial biocontrol agents to produce antimi-
crobials (Dimkpa et al. 2012, 2015a; Duffy and Defago 1999) and acidification of
soil (Dimkpa et al. 2013a, b). Zn and Mn were reported to suppress diseases (Huber
and Wilhelm 1988), and Cu, Ni, Mn, Mo, and B have been reported through
mechanisms such as inducing the production of antioxidants, strengthening cell
walls through the production of lignin and suberin, and controlling N metabolism
in the plant (Huber and Wilhelm 1988; Römheld and Marschner 1991; Boyd et al.
1994; Bai et al. 2006; Evans et al. 2007; Stangoulis and Graham 2007; Taran et al.
2014; Servin et al. 2015) which make the crop more resistant to diseases and drought
conditions.

Even though there should be a remarkable contribution of micronutrients for the
nutritional value of crop produce with a number of physiological roles governed by
them in plants, their relationship has been inconsistent (Dimkpa and Bindraban
2016). Some studies demonstrated a positive outcome with the addition of
micronutrients (Rietra et al. 2015; Dimkpa et al. 2015a, b; Kumar et al. 2009),
especially through positively modulating the uptake of other micronutrients. Some
studies reported that the levels of other micronutrients can be reduced by the addition
of a specific micronutrient perhaps because of the competition for uptake among
micronutrients (Dimkpa and Bindraban 2016). The positive effects of micronutrients
in the yield, quality, earliness, fruit setting, postharvest life, and biotic and abiotic
stresses in vegetable crops have been documented by Sidhu et al. (2019). In addition
to crop nutritional quality, they have been reported to enhance seed vitality and
thereby good seed emergence and vigorous seedling growth (Brodrick et al. 1995;
Nestel et al. 2006; Eggert and von Wirén 2013; Velu et al. 2014). The role of
micronutrients in improving the agronomic quality including yield has been
overserved with the supplement of individual element (Dimkpa and Bindraban
2016) as well as in combined applications (Yaseen et al. 2013; Vanlauwe et al.
2014). The significance of fortification of micronutrients into the soil through
different means in order to improve the quality and quantity of food crops, has
been discussed only recently and its real value will be persuaded in the future.
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21.4 Micronutrients, Ecosystems, and Environment

The major ecological role micronutrients play in soils is increasing the NPK fertilizer
efficiency use by plants that would otherwise be lost via leaching, fixation, and/or
volatilization. Additionally micronutrients in soils may improve water use efficiency
of crops under water-deficient conditions (Movahhedy-Dehnavy et al. 2009; Molden
et al. 2010; Ashraf et al. 2014), and when coupled with organic matter in soils, they
have been observed to enhance the ion exchange capacity, soil structure, and water
storage capacity, improve drainage and aeration, and decrease soil salinity (Dhaliwal
et al. 2019). These benefits together with the suppression of plant diseases will
enhance the sustainable agricultural production systems. However, most of the
micronutrients are heavy metals; therefore, nonstrategic applications would exert
ecological and environmental challenges. Further, contaminations with high levels
of micronutrients can also occur through water irrigation, carrying pesticides and
heavy metal-containing wastewaters, as biosolid accumulates in soil (Alloway and
Jackson 1991; Wuana and Okieimen 2011) which ultimately can cause micronutri-
ent toxicity to soil flora and fauna. Despite both beneficial and detrimental
agronomical, environmental, ecological, and health effects of micronutrients to
living beings, increasing their availability in soil strategically will offer great poten-
tial in mitigating some challenges related to food security and “hidden hunger”
through enhancing the quality and quantity of food produce.

21.5 Addressing Micronutrient Deficiencies

Since micronutrient fertilization is not a prevailing cultural farming practice, miti-
gating their deficiencies in soil would require vigilant fortification intervened after
prior evaluations of crop and soil conditions (Joy et al. 2014; Kumssa et al. 2015)
with systematically determined nutrient ratios and antagonistic interactions among
the micronutrients, as well as between micronutrients and macronutrients. This will
lead to the need of vigorous experimentation on the micronutrient applications in
combination with fertilizer regimes to ensure more plant-specific and balanced ratios
of micronutrient in fertilizer formulations (Dimkpa and Bindraban 2016; Rietra et al.
2015; Kaura et al. 2020). Micronutrient can be fortified through a number of
methods which have their own limitations. The most common and direct method
is the agronomic fortification through soil applications (Cakmak 2008; Velu et al.
2014; Duffner et al. 2014), as foliar sprays or as seed treatments (Farooq et al. 2012;
Mondal and Bose 2019) in which foliar sprays have been more effective in yield
improvement and grain enrichment, but are restricted by high cost (Johnson et al.
2005). Soil application would require higher doses due to low nutrient-use efficiency
since 60–90% of the total applied fertilizer is lost and only the remaining 10–40% is
taken up by plants. Seed treatment with its easiness to apply would be a better option
both economically and environmentally as less micronutrient is needed while
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improving seedling growth (Farooq et al. 2012; Mondal and Bose 2019; Singh et al.
2003). However, this is under thorough investigation in terms of optimization of
formulation, application protocols, and storage methods (Farooq et al. 2012). As
alternatives to agronomic fortification, methods such as plant breeding, genetic
engineering (biofortification), and postharvest biofortification of food are used in
different countries. These methods are usually time consuming, and several tedious
optimization trials such as screening of germplasm, crossing between varieties,
molecular marker-assisted selection, and new crop breed phenotyping and high
technical skills are needed (Velu et al. 2014; Waters and Sankaran 2011). In
addition, transformation of micronutrients to available forms through building up
of soil organic matter content has gained attention recently (Dhaliwal et al. 2019);
however, it is yet to be further investigated with field trials done in large scale and
stimulation models to better understand the relationship and to formulate manage-
ment strategies (Dhaliwal et al. 2019). With these practical issues encountered with
other alternatives, soil applications as chemical fertilizers have been the most
common method of micronutrient fortification; however, they would result in chem-
ical residues in soil due to their low use efficiency which will lead to severe
environmental problems and toxicities to plants if not duly addressed. Further,
imbalanced application can enhance the micronutrient deficiency levels in soils
(Dhaliwal et al. 2019). The use of chemical fertilizers causes soil acidification
(Chun-Li et al. 2014) and groundwater and air pollution (Youssef and Eissa 2014).
More importantly, concerns over the contribution of chemical fertilizer for global
warming and climate change have led the world toward sustainable fortification
strategies in the recent past. Using indigenous microorganisms which are capable of
promoting growth (plant growth-promoting rhizosphere microorganisms, PGPMs)
and disease resistance (biocontrol agents) in crops through different mechanisms
including converting nutritionally significant elements from unavailable to available
form (mineralization/solubilization) has gained attention in the recent past as a
substitute to chemical fertilizer in sustainable farming (Kaura et al. 2020; White
and Broadley 2009; Bhardwaj et al. 2014; Fomina et al. 2005b). It has also been
identified as an eco-friendly and cheaper approach in maintaining a sustainable
environment with their potential to conserve and increase the soil biodiversity
(Vessey 2003; Raja 2013) and to reduce environmental pollution including heavy
metal contamination. When considering a sustainable environment and increasing
bioavailability of micronutrients, the role of indigenous microbes in bioleaching and
bioremediation process should also be considered since they exist as ores mainly in
insoluble forms, while some (Fe, Cu, Zn, Ni) are categorized as heavy metals.
Therefore, there is a recent advancement of research on micronutrient-solubilizing
indigenous microorganisms toward developing sustainable environments (Cai et al.
2013; Kumar and Gopal 2015).
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21.6 Indigenous Microorganisms (IMOs)

Indigenous microorganisms refer to a group of beneficial microorganisms that are
native to a given area which are different from effective microorganisms that are
laboratory-cultured mixture of microorganisms (Kumar and Gopal 2015). Ideally
indigenous microorganisms are a mixture of a variety of beneficial microorganisms
yet can also be considered as organized microbial communities. Their ability of
microbial biofilm formation and their microbiome networks in various activities in
the soil have been discussed for the last few years (Mandakovic et al. 2018; Horton
et al. 2019; Akkaya et al. 2020). Their potentiality in plant growth promotion
through processes such as biodegradation, nitrogen fixation, soil fertility improve-
ment, and mineral solubilization has been observed for decades (Umi and Sariah
2006). In addition, their role in bio-composting, biodegradation, bioremediation,
bioleaching, and natural farming has gained attention in the recent past and has been
the focus of many researchers (Dhaliwal et al. 2019; Kumar and Gopal 2015; Gadd
2010; Sangeetha et al. 2020; Saravanabhavan et al. 2020; Sarker and Rahman 2020;
Sharma et al. 2020). These have made them potential tools in developing sustainable
approaches in agriculture, environmental restoration, and safeguarding targets since
they are composed of a natural microbiome (Kumar and Gopal 2015). Depending on
the purpose, a variety of terms are being used to refer to indigenous microorganisms.
In agriculture, they are mostly being termed as “biofertilizers” referring to the
products containing a combination of different types of microorganisms which are
applied to crops in order to increase their quality and quantity. In some other context,
they are named as “plant growth-promoting microorganisms (PGPMs)” which
inhabit in root rhizosphere and considered as bioprotectants of plants (Akkaya
et al. 2020; Yang et al. 2009; Ahmad et al. 2018; Pitiwittayakul and Tanasupawat
2020). As biofertilizers and PGPMs, they lead to crop productivity through decom-
position of organic matter, nutrient acquisition, absorption of water, nutrient
recycling, weed control and bio-control of plant pathogens (Bhardwaj et al. 2014;
Vessey 2003; Sangeetha et al. 2020; Ahmad et al. 2018; Berg et al. 2013) improving
the soil structure and function. Mineralization and solubilization have been identified
as two main methods by which IMOs increase the bioavailability of nutrients by
increasing solubilization which ultimately promote growth and yield of plants
(Vessey 2003). Further, the role of IMOs in bioremediation and bioleaching of
metals has also been investigated and might have an impact on regulating nutrient
contents in soil. Solubilization of nutrients, mainly NPK and to some extent other
macro- and micronutrients, by solubilizing IMOs has widely been researched and
reviewed recently (Djajadi and Hidayati 2020).
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21.7 Nutrient-Solubilizing IMOs

Both macro- and micronutrients are originated from minerals deposited under the
Earth’s crust as ores. Many nutrients are metals from which some are considered as
potentially hazardous metals or heavy metals when in high concentrations in soil,
water, and biological tissues. The majority of metals exist as minerals in soil with a
number of mineral forms for each metal element having varying distribution in the
environment with different physicochemical properties (Gadd 2010; Ehrlich and
Newman 2009). The minerals in soil are subjected to various geological processes
such as chemical cycling of elements including mineral formation (mineralization),
mineral deterioration, and chemical transformations of metals, metalloids, and
radionuclides (solubilization/mobilization). Solubilization refers to “the preparation
of a thermodynamically stable isotropic solution of a substance normally insoluble
or very slightly soluble in a given solvent by the introduction of an additional
amphiphilic component or components” (Yadav et al. 2018) so that its availability
is increased. Mineralization refers to the conversion of organic compounds (metals)
into inorganic compounds through various decomposition procedures. Microorgan-
isms significantly contribute to all of these geological processes. Microbes are in
continuous interaction with metals and minerals under natural and artificial environ-
ments. Their interactions alter the physical and chemical state of metals and min-
erals, while microbial growth, activity, and survival are in return affected by the
characteristics of metals and minerals (Gadd 2010). As a result many minerals are
biogenic in origin (biomineralization) and some make structural components for
many organisms such as diatoms (Ehrlich 1996; Gadd and Raven 2010). Most
biominerals are in the form of silicates, calcium carbonates, and iron oxides or
sulfides (Baeuerlein 2000; Bazylinski 2001). All kinds of microbes (bacterial,
fungi, protists) and their symbiotic associations such as lichens and mycorrhizae
contribute actively to the above geological processes (Macalady and Banfield 2003;
Bottjer 2005; Chorover et al. 2007; Konhauser 2007; Gleeson et al. 2007; Gadd
2008), especially metal and mineral transformations (Ehrlich 1996). Specific groups
of microbes that are directly involved in geochemical transformations include both
pro- and eukaryotes such as manganese-oxidizing and manganese-reducing bacteria,
iron-oxidizing and iron-reducing bacteria, sulfate-reducing bacteria, and sulfur-
oxidizing and sulfur-reducing bacteria that can form or degrade silicates, carbonates,
phosphates, and other minerals (Gadd 2007, 2010; Ehrlich 1996; Kim and Gadd
2008). In addition, soil microorganisms, especially mycorrhizal fungi (Tao et al.
2008), are solely responsible for nutrient cycling through decomposition of soil
organic matter and also by making chemically fixed nutrients such as phosphorus
(P), zinc (Zn), potassium (K), and iron (Fe) available (Ahmad et al. 2018). In
addition, early stages of soil formation are supported by the activity of microbes
such as lichens through weathering process (Purvis and Pawlik-Skowronska 2008;
Gilmour and Riedel 2009; Uroz et al. 2009). General metabolic activities of all
microbes affect metal distribution and bioavailability through cellular accumulation,
decomposition, or biodeterioration of organic and inorganic substrates (Gadd 2007;
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Warren and Haack 2001; Huang et al. 2004). However, mineral and metal solubi-
lization in other terms may have negative contribution when they are potentially
hazardous/heavy metals in certain context such as contaminated soil including solid
wastes (Sayer et al. 1999; Fomina et al. 2004, 2005a, b).

21.8 Role of Nutrients in Microorganisms

Microbial growth, metabolism and differentiation require nutrients (Gadd 1992).
Microbes interact with minerals containing nutrients in several ways depending on
the type of nutrient, organism, and environment. All microbes use nutrients for
structural functions and/or catalytic functions (Ehrlich 1997). The structure and the
function of microbes also affect metal speciation and thereby solubility, mobility,
bioavailability, and toxicity of nutrients (Gadd 2010). When these elements are
metals, they particularly interact with microbes in different ways. Firstly, microbes
incorporate trace metals into metalloenzymes or utilize enzyme activation (Wackett
et al. 1989) such as nitrogenase (Mo/Fe or sometimes V/Fe or Fe only), cytochromes
(Fe) and cytochrome oxidase aa3 (Fe, Cu), superoxide dismutases (Fe, Mn, Cu, or
Zn), bacteriochlorophyll (Mg), iron-sulfur proteins, CO dehydrogenase with Ni in
anaerobic bacteria and Mo in aerobic bacteria, NADP-dependent formate dehydro-
genase (W/Se/Fe), and formate dehydrogenase H (Mo/Se/Fe) (Wackett et al. 1989;
Fridovich 1978; Yamamoto et al. 1983; Robson et al. 1986; Scheer 1991; Orme-
Johnson 1992; Boyington et al. 1997). Some, especially by eubacteria and archaea,
use certain metals/metalloids as electron donors or acceptors in energy metabolism
(Ehrlich 1996). The entire energy demand of chemolithotrophs like eubacteria
Thiobacillus ferrooxidans and Leptospirillum ferrooxidans and the archaea
Acidianus brierleyi and Sulfolobus acidocaldarius can be satisfied by oxidizable
metals or metalloids, particularly through oxidation (FeII) to Fe(III) (Ehrlich 1996,
1997). Thirdly, microbes can enzymatically detoxify harmful metals or metalloids
by oxidation or reduction or, when cannot be detoxified, removed from cell interior
using efflux systems (molecular pumps) (Gadd 2010). Anaerobes such as sulfate-
reducing bacteria enzymatically catalyze biocorrosion through cathodic depolariza-
tion. Anaerobic biocorrosion is thought to be regulated by biofilms consisting of a
consortium of a variety of bacteria, often including aerobic, facultative, and anaer-
obic bacteria, each with specific locations in the biofilm (Ehrlich 1997).
Non-enzymatic usage of metals by microbes occurs with accumulating and even
with dead cells, binding them as cations to the cell surface with a passive process
(Gadd 1993).

Despite the positive interactions of microbes and nutrients, their toxicities for
microorganisms can occur through natural geochemical events and anthropogenic
contamination in aquatic and terrestrial ecosystems by domestic, agricultural, and
industrial activities. However, many microbes grow and survive in locations pol-
luted with metals by different mechanisms which contribute to resistance (Avery
2001; Holden and Adams 2003; Verma and Kuila 2019; Tarekegn et al. 2020).
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Changes in metal speciation affect the survival of microbes. These changes can be
redox transformations, efflux and intracellular compartmentalization with cell walls,
production of metal-binding peptides and proteins (e.g., metallothioneins,
phytochelatins), active transport, organic inorganic precipitation, and other constit-
uents with metal-binding abilities (Gadd 2010). They also can convert the pollutants
into metabolic intermediates and be utilized as primary substrates for cell growth
(Verma and Kuila 2019). In addition, the presence of plasmids containing resistance
genes (Rosen et al. 2005; Silver and Phung 1996) also affects the activity of bacteria
and fungi toward certain nutrients (Van Ho et al. 2002). Many microbial processes
such as energy generation, cell adhesion, biofilm formation, and nutrient acquisition
(Hochella 2002; Brown et al. 2008) are influenced by minerals and nutrients.
Further, some mineral surface properties such as surface composition,
microtopography, surface charge, and hydrophobicity affect thigmotropism, micro-
bial attachment and detachment, and thereby colonization and biofilm formation
(Brown et al. 2008; Vaughan et al. 2002; Bowen et al. 2007; Gleeson et al. 2010).
Oxides of some micronutrients such as Fe significantly influence microbial activity
by altering soil behavior through soil physical, chemical, and biological processes
(Huang et al. 2005).

21.9 Mechanisms of Solubilization/Mobilization Nutrients

Nutrient solubilization/mobilization from different substrates such as rocks, min-
erals, soil, and others can occur by different processes and can result in volatilization
through protonolysis, complexation by excreted metabolites and Fe(III)-binding
siderophores, chemical oxidation or reduction, indirect Fe(III) attack, and methyla-
tion (Gadd 2010). Other metabolites that are excreted with metal-complexing prop-
erties such as amino acids, phenolic compounds, and organic acids may also play a
role. For example, oxalic acid can form soluble oxalate complexes with nutrients
such as Al and Fe (Strasser et al. 1994). Microbes play a major role in all of these
mechanisms which affect their bioavailability and toxicity. Extracellular compounds
such as enzymes and other metabolic products such as gluconic acid and its
derivatives (Gadd and Sayer 2000; Saravanan et al. 2007; Khan et al. 2013), H2S,
formate, or other secondary metabolites produced by microbes regulate redox
processes (Fe) (Ehrlich and Newman 2009). Metal chelators of microbial origin
related to Fe(III) solubilization include oxalate, citrate, humic acids, and tannins.
Methylation is another mechanism by which some microbes such as methanogens,
clostridia, and sulfate-reducing bacteria under anaerobic conditions and fungi (Pen-
icillium and Alternaria), under aerobic conditions, solubilize nutrients (Gadd 2010).
For example, the production of siderophores is the key mechanism by which Fe
assimilation occurs in fungi and bacteria (Kalinowski et al. 2000; Glasauer et al.
2004). Since this chapter is focused on micronutrients, a detailed review of their
importance to plants, deficiency and toxicity symptoms, availability, experimental
records on solubilizing microorganisms, their role in microbial growth and function,
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and mechanisms of solubilization is presented in the following section and summa-
rized in Tables 21.1 and 21.2.

21.10 Iron-Solubilizing IMOs

With a significant role in some life-sustaining processes of microbes and plants, iron
is considered to be an essential, multifunctional micronutrient. It is required for the
different physiochemical processes in plants and plays a vital role in the activation of
chlorophyll, photosynthesis, structural component of the chloroplast membrane,
respiration, and synthesis of many iron-sulfur (Fe-S) clusters and heme proteins as
cofactors of proteins that function in the life of plants.

Iron mostly occurs in two oxidation states (+2 and +3) in nature. Plants absorb
iron as Fe2+ and must be in the general range of >7.7-10 mol L-1 to avoid any
deficiency (Lindsay and Schwab 1982). The functions of iron are mainly based on
the reversible redox reaction of Fe2+ (ferrous) and Fe3+ (ferric) ions. The biosynthe-
sis ALA, which is a precursor in the formation of chlorophyll, might need an
intermediate that contains iron in the electron transfer chain, ferredoxin. This
could control the reduction and activation of one or more enzymes responsible for
ALA formation (Miller et al. 1984). Deficiency symptoms in plants include
interveinal chlorosis in young leaves and stunted growth, while toxicity causes
growth inhibition, reduced chlorophyll synthesis, and inhibition of photosynthesis
(Table 21.1).

Iron is the fourth most prevailing element after O, Si, and Al in the crust and soils.
The forms of Fe in the soil can be categorized into four types as FeII in primary
minerals, FeIII in secondary minerals, Fe crystalline minerals and poorly ordered
crystalline (hydro) oxides, soluble and exchangeable Fe, and organic matter-
bounded Fe in soluble or insoluble forms (Colombo et al. 2014).

Iron release by weathering of soil mineral deposits is a very slow process and it is
regulated by pH value, O2 concentration, and the dissolution-precipitation process of
both crystalline and poorly ordered Fe-hydroxide minerals (Lindsay 1988). Once
mobilized in weathering processes, occurrence of redox reaction and pH conditions
of the soil environment affect the destiny of FeII. Although there is a more than
enough iron (Fe) content in soils for plant requirement, especially in calcareous soils,
bioavailability of Fe is often severely limited. Those types of soils are mainly found
in dry areas of the earth. Plants grown in calcareous soils usually show iron
deficiencies. These plant species have evolved various strategies to enhance their
uptake of iron. However, usually these strategies are not sufficient to avoid Fe
deficiency completely. Hence, soil microbial community plays a significant role in
influencing plant Fe uptake.

The close relationship between microbes and oxides of Fe coexists in soils, and
they provide adequate opportunities for mutual interactions. Primary minerals may
provide Fe as well as many other important nutrients such as K, P, and S
while accommodating microbes in mineral cycling (Lowenstam 1981; Lower et al.
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Table 21.2 Summary of micronutrient-solubilizing microorganisms and the mechanisms of
solubilization

Element
Solubilizing
microorganism

Mechanism(s) of
solubilization References

Mo Escherichia coli,
Enterobacter cloacae
strain, Pseudomonas sp.,
Serratia spp.,
Enterobacter sp.,
Acinetobacter
calcoaceticus

Production of
siderosphores

Halmi et al. (2013)

Thiobacillus ferrooxidans
(now Acidithiobacillus
ferrooxidans)

Bioleaching by changing
the soil pH

Frascoli and Hudson-
Edwards (2018)

Klebsiella, Bacillus,
Rhodobacter

Possess NADH-dependent
nitrate reductase caterlizers

Schaechter (2009)

Azotobacter vinelandii Siderophore production,
protochelin and
azotochelin

Hänsch and Mendel
(2009)

Rhizobium bacteria Cofactor for the enzyme
nitrate reductase which is
involved in nitrogen
assimilation

Hänsch and Mendel
(2009)

Rhodobacter capsulatus Possess Mo and Fe nitro-
genases. Mo-nitrogenases
exhibit higher specific
activities than the alterna-
tive nitrogenases

Cu Aspergillus niger Production of organic
acids such as oxalic, citric,
malic, and tartaric acids

Mulligan et al. (2004)

Pseudomonas lurida Promote Cu uptake by
roots and leaves in plants

Kumar et al. (2020)

Bacillus toyonensis Exhibited a considerable
capacity for Cu2(OH)2CO3

solubilization, increased
the soluble Cu concentra-
tion in the soil

Sheng et al. (2012)

Penicillium bilaji Chelating mechanisms by
lowering the solution/soil
pH to 4.0

Asea et al. (1988)

Herbaspirillum sp. By metabolic products of
the strain

Govarthanan et al. (2014)

Phosphorus-solubilizing
bacteria (PSB)

Production of low-
molecular-weight organic
acids

Li and Ramakrishna
(2011)

Mycorrhizal colonization Redoxolysis, acidolysis,
and complexolysis

Nouren et al. (2011)

PGPR (plant growth-
promoting bacteria)

Secreting siderophores and
organic acid and by

Ke et al. (2020)

(continued)

21 Solubilization of Micronutrients Using Indigenous Microorganisms 381

https://www.sciencedirect.com/topics/immunology-and-microbiology/rhodobacter-capsulatus


Table 21.2 (continued)

Element
Solubilizing
microorganism

Mechanism(s) of
solubilization References

increasing soil organic
carbon content

Zn Aspergillus niger,
A. oryzae, A. nomius

Secretion of gluconic acid
and its 2- and 2,5-keto-
derivatives during growth
via decreasing soil pH

White et al. (1997)

Aspergillus niger Production of citric and
oxalic acid

White et al. (1997)

Aspergillus terreus Decrease in pH through the
production of gluconic
acid

Anitha et al. (2015)

Trichoderma harzianum
Rifai

Releasing Zn2+ ion via
oxidative dissolution
process

Altomare et al. (1999)

Beauveria caledonica Process of acidolysis,
complex lysis, and metal
accumulation

Fomina et al. (2004)

Ericoid mycorrhizal fun-
gus Oidiodendron maius
Arbuscular mycorrhizae

Production of organic
acids (solubilize ZnO and
Zn3(PO4)2)

Martino et al. (2003),
Subramanian et al. (2009)

Bacillus sp. alone or in
combination
Bacillus pumilus
Bacillus sp. AZ6

Organic acid production
Production of amino acids,
plant hormones, chelating
ligands, and organic acids
via oxido-reductive sys-
tems and proton extrusion

Yadav et al. (2018),
Monreal et al. (2015),
Mahdi et al. (2010), Jha
(2019), Hussain et al.
(2015), Saravanan et al.
(2004)

Bacillus aryabhattai Production of organic
acids

Vidyashree et al. (2018)

Pseudomonas sp.
Pseudomonas
pseudoalcaligenes
P. putida

Organic compound pro-
duction, keto-D-glutarate,
propionic acid, formic
acid, lactic acid, gluconic
acid acetic acid, glycolic
acid, citric acid, fumaric
acid, succinic acid, malic
acid, and oxalic acid.
Auxin production
Soluble carbohydrate
production

Yadav et al. (2018), Jha
(2019), Patten and Glick
(2002), Vazquez et al.
(2000)

P. fragi Production of siderophores Kamran et al. (2017)

Pseudomonas taiwanensis Production of gluconic and
2-keto-gluconic acid

Fasim et al. (2002)

Gluconacetobacter
diazotrophicus

Solubilize insoluble zinc
source especially ZnO,
ZnCO3, and Zn3(PO4)2

Saravanan et al. (2007)

Azotobacter, Azospirillum Production of chelating
agents

Biari et al. (2008)

(continued)
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Table 21.2 (continued)

Element
Solubilizing
microorganism

Mechanism(s) of
solubilization References

Burkholderia,
Acinetobacter

Production of organic
acids

Vaid et al. (2014)

Consortia of Azospirillum
lipoferum Pseudomonas
sp., Agrobacterium sp.

Production of organic
acids

Mengel et al. (2001)

Pantoea agglomerans Auxin production
Extracellular enzyme
production

Kamran et al. (2017)

Enterobacter cloacae Extracellular enzyme
production

Kamran et al. (2017)

Providencia sp.
Anabaena sp.
Calothrix sp.
Anabaena sp.

Rana et al. (2011)

Ni Sphingomonas
macrogoltabidus
Microbacterium
liquefaciens
Microbacterium
arabinogalactanolyticum

Those rhizobacteria are
shown to play an important
role in increasing the
availability of Ni in soil,
thus enhancing Ni accu-
mulation by Alyssum
murale

Abou-Shanab et al. (2003)

PGPR (Pseudomonas sp.) Siderophore production Tank and Saraf (2009)

Aspergillus niger, Asper-
gillus fumigatus,
Acidithiobacillus
ferrooxidans

Solubilize nickel at room
temperature 30–37 �C,
whereas organism unable
to solubilize nickel at
higher temperatures 45 �C

Mohapatra et al. (2007)

Pseudomonas sp. SRI2,
Psychrobacter sp. SRS8,
Bacillus sp. SN9

Production of indole-3-
acetic acid (IAA),
siderophores, utilization of
1-aminocyclopropane-1-
carboxylic acid (ACC)

Ma et al. (2009)

Azotobacter chroococcum
(N-fixing bacteria), Bacil-
lus megaterium
(P-solubilizer), Bacillus
mucilaginosus
(K-solubilizer), and Bacil-
lus sp. RJ16

pH reduction by producing
acids

Arunakumara et al. (2015)

Cl No available records Most of the micronutrients
are present in the form of
chloride complexes of their
cationic forms. Most of the
soil microorganisms pro-
duce acids and
siderophores and release
into the soil. These

(continued)
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Table 21.2 (continued)

Element
Solubilizing
microorganism

Mechanism(s) of
solubilization References

chemical components
reduce the soil pH and
cause the changes of the
pH which facilitate the
breaking down metal-Cl
complexes and release
of chloride in to the soil

Fe Fe-reducing bacteria
Gallionella spp.
Leptothrix spp.

(microaerophilic bacteria)
Shewanella alga
Shewanella putrefaciens

Release of low-molecular-
weight Fe-binding
molecules – siderophores

Colombo et al. (2014)

Fe-oxidizing bacteria
Acidithiobacillus

ferrooxidans

Fe-oxide formation onto
extracellular polymers in
order to enhance metabolic
energy generation
The oxidation of Fe
(II) increases the pH gra-
dient across the cell mem-
brane, which in return
increases the proton
motive force and the
energy-generating poten-
tial of the cells

Graham and Webb
(1991), Alloway (2009)

Leptospirillum
ferrooxidans

Catalysis of sulfide oxida-
tion by ferric iron at very
low pH (0.7–1.0)

Pseudomonas and
Trichoderma genera

By the synthesis and
release of siderophores

Singh (2020)

Mn Acidophilic Mn
solubilizers
Enterobacter sp.
Bacillus cereus
Bacillus nealsonii
Staphylococcus hominis

Enzymatic conversion,
metal effluxing, and
reduction in sensitivity of
cellular targets, intra- or
extracellular sequestration,
and permeability barrier
exclusion
Direct solubilization by
utilization of MnO2 as a
final electron acceptor in
the bacterial respiratory
chain, instead of oxygen
Indirect solubilization by
the formation of metabolic
reductive compounds
Metal anion protonation,
soluble Mn ligand complex
formation, and production

Samourgiannidis and
Matsi (2013)

(continued)
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Table 21.2 (continued)

Element
Solubilizing
microorganism

Mechanism(s) of
solubilization References

of bio-generated organic
acids

Mn oxidation
Leptothrix sp.
Pedomicrobium sp.
Hyphomicrobium,

Caulobacter, or common
Gram-positive or Gram-
negative bacteria, e.g.,
Arthrobacter, Micrococ-
cus, Bacillus,
Chromobacterium, Pseu-
domonas, Vibrio,
Oceanospirillum

Indirect oxidation by the
production of hydrogen
peroxide, free radical, or
oxidant
Direct oxidation
(an enzymatic reaction)
catalyzed by Mn binding
and oxidizing proteins
found in crude or purified
extracts

Gounot (1994)

Mn reduction
Pseudomonas spp.
Bacillus spp.
Corynebacterium
Acinetobacter johnsonii
Pseudomonas

fluorescens

Mn oxide reduction
through a drop of pH
and/or redox potential due
to bacterial metabolism
Reduction through direct
or indirect processes
Mn (IV) be reduced by
inorganically or organic
reductants produced by
microorganisms
Enzymatic Mn
(IV) reduction (e.g.,
Acinetobacter
calcoaceticus)

Maathuis and Diatloff
(2013)

Bacillus polymyxa By coupling of metal
reduction with oxidation of
a non-fermentative carbon
source like lactate

Marschner (2012)

Geobacter
metallireducens,
Shewanella (formerly
Alteromonas)
putrefaciens, a facultative
anaerobe and obligate
respire Shewanella
putrefaciens

Lovley et al. (1993)

B Boron-tolerant microor-
ganisms
Lysinibacillus

boronitolerans
Chimaereicella

boritolerans
Gracilibacillus

boraciitolerans

High B efflux and exclu-
sions which actively pump
boric acid from the cells
and are thus able to main-
tain a lower B concentra-
tion in the cell than in the
external medium

Ahmed and Fujiwara
(2010)

(continued)
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2001). Microbes especially by bacteria like Thiobacillium and Metallogenium
sp. dissolve primary minerals which contain iron through various processes which
are termed as solubilization or chelation, sorption, accumulation, transformation, and
precipitation (Colombo et al. 2014; Mengel 1994). These mechanisms are even more
complex within the rhizosphere, due to the activity of the plants. The activity of plant
roots can affect the abundance, diversity, and activity of microbes as well as Fe
availability, and the interactions between Fe minerals and microbes (Colombo et al.
2014).

Iron solubilization mediated by PGPR was reported by Kloepper et al. (1980).
Many microbes belonging to bacterial genus Pseudomonas and fungal genus
Trichoderma are found to possess the ability to solubilize iron (Singh 2020). In
line with Jin et al. (2010), an isolated Pseudomonas sp. could grow and produce
siderosphores under Fe-deficient medium (Jin et al. 2010). Their work also showed
that phenolic compounds exuded from plant (red clover) roots under Fe-deficient
conditions favor the rhizosphere microbes to secrete more siderosphores which help
to improve plant iron uptake.

Reduction or oxidation of iron minerals provides energy for anaerobic ferric-
reducing and ferrous-oxidizing bacteria. This apparently plays an important role in
catalyzing iron transformations in anoxic environments. Lithotrophic acidophilic
and neutrophilic bacteria oxidize ferrous iron aerobically (Harrison Jr 1984). The
acidophile, Acidithiobacillus ferrooxidans, is the most widely studied of all iron
oxidizers. Phototrophic purple, non-sulfur bacteria were found capable of anaerobic
ferrous iron oxidation by utilizing ferrous iron as electron donor in the light (Widdel
et al. 1993). Desulfuromusa kysingii, Geospirillum barnesii, Rhodobacter
capsulatus, Desulfofrigus oceanense, Desulfotalea psychrophila, Geobacter
metallireducens, G. sulfurreducens, and Shewanella putrefaciens (now
S. oneidensis) are some of the reported iron-reducing bacteria (Straub et al. 2001).

Table 21.2 (continued)

Element
Solubilizing
microorganism

Mechanism(s) of
solubilization References

Bacillus boroniphilus
Arthrobacter sp.
Rhodococcus sp.
Lysinibacillus sp.
Algoriphagus sp.

Boron accumulators
Variovorax

boronicumulans

Miwa et al. (2008)

Boron uptake promoters
Bacillus pumilus

Masood et al. (2019)
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21.11 Mechanisms of Fe Metabolism

The most accepted mechanism for iron solubilization by microbes is by production
of siderosphores under iron-deficient growth conditions. Siderophores are chelating
agents that are secreted by bacteria and fungi with formation constants for ferric iron
in the range of 1025 to 1035 and in exceptional cases as high as 1051 (Hider 1984).
Iron availability in the surrounding environment highly regulates the siderophore
production of microorganisms (Kalinowski et al. 2000). Siderosphores differ in
structure and are low in molecular mass. The main groups of siderophores are
catecholates, hydroxamates, and carboxylates. The catecholate is a main siderophore
which is produced by bacteria, whereas fungi produce hydroxamate (Miethke and
Marahiel 2007; Hider and Kong 2010). Stable soluble complex, made by iron with
siderophore in soil solution and at the mineral surface, makes them available for
uptake by the cell membrane of plant roots. The siderophore is either destroyed or
recycled during this reduction in some cases.

There are three different mechanisms in transporting siderophore combined with
Fe across the cell membranes in microorganisms. Membrane-spanning proteins may
involve in binding these to the substrate which are transported into the cell after
undergoing a conformational change. The location of Fe release mechanisms differs.
Alternatively, Fe may also be removed by hydrolytic destruction of the chelate. The
second mechanism is termed as the direct shuttle (Crowley et al. 1991). In that
mechanism, ferric siderophore binds to a cell surface receptor where Fe is cleaved
and simultaneously transported without concomitant transport of the desferri
siderophore. In the third mechanism, an indirect shuttle (extracellular dissociation)
acquires Fe in which Fe is removed through reduction at a site some distance to the
carrier protein (Crowley et al. 1991).

21.12 Manganese-Solubilizing IMOs

Manganese is an essential plant trace element that plays a significant role in plant
metabolism and development but could be toxic at high concentrations. Mn occurs in
many oxidation states like II, III, and IV in approximately 35 enzymes of a plant cell
(Hebbern et al. 2009). In plant proteins, manganese acts either as a catalytically
active metal or as an activator of enzymes. Superoxide dismutase which contains
manganese protects the cells from the damaging effect of free radicals, oxalate
oxidase, and manganese-containing water splitting system of photosystem
II. Manganese activates PEP carboxykinase, malic enzyme, isocitrate dehydroge-
nase, and phenylalanine ammonia-lyase enzymes (Hänsch and Mendel 2009). Mn
plays an important role in the synthesis of lignin along with Cu and provides
resistance in root tissues to pathogens. Symptoms of Mn deficiency in plants include
chlorosis, premature leaf fall, and delayed maturity, while toxicity causes reduced
yields and stunted growth (Table 21.1).
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Manganese is the fifth most abundant metal found on the earth’s surface. In the
Earth’s crust, Mn is mainly found as minor components of rock-forming silicate
minerals such as olivine, pyroxenes, and amphiboles along with Fe. Manganese
oxide (pyrolusite) and Mn carbonate (rhodochrosite) minerals are among the most
important Mn ore resources in the world. Mn is extensively available in deposits of
complex ores, nodules on ocean floors (Patrick 2010), wastewater sludge (Wang
et al. 2011), and municipal solid wastes (Abdulsalam et al. 2011). Reduced soluble
or adsorbed Mn (II) and insoluble Mn (III) and Mn (IV) oxides are the naturally
found forms of Mn in soil. Solubility and availability of Mn in soil are increased with
increasing state of reduction. Oxidation of Mn in soil is basically a biological
process, while reduction of Mn may be either chemical or biological. Mn availability
in the rhizosphere soil depends on the redox condition and the pH ranges (Gounot
1994).

Both oxidation and reduction of manganese in natural environments is domi-
nantly promoted by microbial catalysis, but abiotic converters are often important
too and it may compete with the biological processes (Gounot 1994). Oxidation of
Mn has been reported by many types of microorganisms such as fungi, bacteria, and
algae (Ghiorse 1984). Most of them are bacteria that belong to common Gram-
positive or Gram-negative bacteria or group of sheathed bacteria, Leptothrix, and
budding and appendaged bacteria: Pedomicrobium, Hyphomicrobium, and
Caulobacter (Gounot 1994). The demosponge Suberites domuncula was found to
have a Mn-oxidizing bacterium by Wang et al. (2011) which belongs to Bacillus
strain BAC-SubDo-03. Most Mn-oxidizing bacteria are heterotrophic aerobic bac-
teria that use organic substances as the substrate. Some rhizosphere bacteria like
Bacillus, Pseudomonas, and Geobacter can reduce oxidized Mn+4 into Mn+2 which
is the plant metabolite form of Mn.

Effective rhizosphere Mn-reducing bacteria (Pseudomonas sp.) have been
reported by Marschner and Dell (1994). Most of Mn-oxidizing bacteria are hetero-
trophic aerobic bacteria that grow on organic substances. The bacterial isolates
Bacillus anthracis, Acinetobacter sp., Lysinibacillus sp., and Bacillus sp. are capable
of solubilizing Mn in a range of pH (Ghosh et al. 2016). Bacillus thuringiensis has
been found to have the capability to tolerate high concentrations as 4000 mg L�1 of
Mn (II) and the highest removal rate of Mn (II). Hence, Bacillus thuringiensis plays a
significant role in detoxifying and immobilizing excessive Mn in soil (Huang et al.
2020). Many fungi like Acremonium spp. can also take part in manganese oxidation
(Miyata et al. 2004). The white rot fungusGanoderma lucidum has possessed a good
potential in solubilizing Mn under shaking and non-shaking conditions (Nouren
et al. 2011). The soil fungi Aspergillus niger and Serpula himantioides have shown
the ability to tolerate and solubilize manganese oxides (Wei et al. 2012).
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21.13 Mechanisms of Mn Solubilization

The possible mechanisms of Mn oxidation by microorganisms can be described as
direct or indirect. Production of hydrogen peroxide, free radical, or oxidant indicates
the indirect oxidation of Mn which is due to the change of the surrounding environ-
ment. Arthrobacter and Leptothrix like bacterial groups are found to oxidize Mn by
producing hydrogen peroxide as a mechanism of protecting the cells from the
harmful effects of hydrogen. Direct oxidation is an enzymatic reaction which is
facilitated through Mn binding and oxidizing enzymes which are found in crude or
purified extracts. Examples can be found as a spore protein of Bacillus SG-1
(de Vrind et al. 1986) and an intracellular protein of a Pseudomonas sp. (Jung
et al. 1998). G. lucidum was able to solubilize Mn by production of organic acids
such as citric acid, tartaric acid, and oxalic acid (Nouren et al. 2011). In addition,
roots and rhizosphere bacteria produce chelating agents like phenolic compounds
and organic acids and other elements and hence avoid precipitation of Mn
(Marschner and Dell 1994).

21.14 Zinc-Solubilizing IMOs

Zinc is another vital micronutrient for normal growth and development of plants.
The normal concentration range for zinc in plant tissue is 15–60 ppm. Zinc require-
ment in plants is 30–100 mg kg�1, below which would result in its deficiency. Plants
require Zn for optimum fruit size, crop production, and yield. It is also used in the
carbonic anhydrase activity involved in photosynthetic tissues for biosynthesis of
chlorophyll (Xi-Wen et al. 2013). Further, Zn plays a key role in the synthesis of
protein, activation of enzymes, RNA and DNA synthesis and regulations, and
oxidation and metabolism of carbohydrates and prevents the peroxidation of lipids
and proteins due to reactive oxygen species. Zinc is important for auxin production
and for normal fruit and flower development. In plants, genes responsible for
environmental stress tolerance are Zn dependent (Hafeez et al. 2013). Several studies
reported that the use of zinc-containing fertilizers and micronutrients improves crop
quality (Hussain et al. 2018).

Soil contains considerable amounts of Zn but in insoluble forms. Zinc is easily
mobile in oxidizing acid soils, whereas it is immobile in poorly reducing neutral or
alkaline soils. In the soil solution, Zn is a divalent cation or complexes with ligand
via different transporter systems which is carried by mass flow, diffusion, and root
extension in the direction of roots. A majority of the Zn absorption happens via
active transport system, and it is transported from the root to the shoots via both
xylem and phloem tissues. A little amount of Zn is retained at the basal node which
governs the distribution of Zn in plants (White et al. 1997). The deficiency symp-
toms appear in the new leaves due to its immobility. Symptoms depend on the crop.
Deficiency symptoms are expressed as preliminary in young leaves and could be
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visualized as patterns of chlorosis of the new leaves (often interveinal) and necrotic
spots on the margins or leaf tips (Table 21.1). These affected leaves are smaller in
size and form leaf rosette. The shortened internodes give the plant a rosette appear-
ance and poor bud development which result in reduced branching and flowering.
Crops with Zn deficiency may have susceptibility to injury or infection (Ghosh et al.
2014; Gandhi and Muralidharan 2016).

Several studies have found that inoculations of potent strain of Zn mobilizer
rhizobacteria have been found to increase the yield of field crop such as rice wheat
barley and maize (Hussain et al. 2018; Kutman et al. 2010; Tariq and Ashraf 2016).
For example, Zn-mobilizing PGPR inoculation had a significant impact on root
weight (74%), root length (54%), root area (75%), root volume (62%), shoot weight
(23%), and panicle emergence index (96%) (Kutman et al. 2010) which exhibits
potential in mitigating Zn deficiency in soils and crops.

The composition of Zn in polluted soils is dependent on both soil location and
sources of pollution (Kabata-Pendias and Pendias 2001). Zinc distribution in agri-
cultural soils ranges from 10 to 300 mg kg�2. Under anaerobic conditions, higher
concentration of iron reduces the zinc bioavailability in soil (Hussain et al. 2018).
Geochemical composition and weathering of the parent rock will determine the Zn
content in the developing soil. Environmental pollution or Zn-rich products can add
up and alter the parent rock composition. Zn composition in the Earth’s crust is
78 mg kg�1 which varies in different parent rocks. In soil, active Zn occurs either in
the divalent form (Zn2+) or in complex form like ZnOH+, ZnHCO3

+, Zn(OH)3
�, and

ZnO2
�. Zinc exists in five different pools within the soil, namely, water-soluble,

organically bound, exchangeable, chelated, and adsorbed. The strength of these
forms will determine their ability to plant uptake and leaching.

The bioavailability of Zn to plants is influenced by total Zn contents in the soil,
soil pH, elevated concentration of cations (Na, Ca, and Mg), phosphate soluble
forms, anion bicarbonate, soil organic matter, and CaCO3 content. Zn is strongly
adsorbed on calcium carbonate (CaCO3), magnesium carbonates (MgCO3), iron
oxide (FeO), or manganese oxide (MnO) (Alloway 2009). Chemical fertilizers
indirectly affect the conversion of soluble Zn into different insoluble Zn fractions.
Therefore, several studies have suggested the use of biofertilizers containing Zn-
solubilizing microbes to increase the soluble Zn concentration in the soil (Kamran
et al. 2017).

Several microorganisms play a significant role in solubilization and mobilization
Zn (Kamran et al. 2017; Fasim et al. 2002; Javed et al. 2018). Several studies have
reported the effectiveness of rhizospheric fungi in solubilizing insoluble Zn com-
pounds both in vitro and in vivo. The production of organic acids by microorganisms
has been found to increase solubilization and release of Zn compounds (Agusto da
Costa and Duta 2001). Some filamentous non-mycorrhizal fungi, namely, Aspergil-
lus niger, A. oryzae, and A. nomius isolated from a Zn mining site at Tak Province,
Thailand, showed that the solubilization of insoluble Zn compounds ZnO,
Zn3(PO4)2, and ZnCO3 occurs through the secretion of gluconic acid and its 2-
and 2,5-keto-derivatives during growth (White et al. 1997). Release of Zn from
organic complexes and calcium carbonate is facilitated by microbes through
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mineralization and solubilization, respectively. It has been reported that Aspergillus
niger solubilizes insoluble ZnO, Zn3(PO4)2, and Ca3(PO4)2 to soluble form through
the production of citric and oxalic acid (White et al. 1997). Aspergillus terreus
(ZSF-9) isolated from Tiruppur District, India, was found to solubilize ZnO, ZnCO3,
and Zn3(PO4)2 through the production of gluconic acid (Anitha et al. 2015).
Trichoderma harzianum Rifai 1295-22 (T-22) converts insoluble Zn present in the
soil into soluble form by releasing Zn2+ ion via oxidative dissolution process. During
the process, fungus releases a complex compound which segregates Zn2+, resulting
in the enhancement of dissolution of metallic Zn in the soil. Fungus Beauveria
caledonica converts insoluble Zn3(PO4)2 into soluble Zn through the process of
acidolysis, complex lysis, and metal accumulation (Fomina et al. 2004). Similarly,
ZnO and Zn3(PO4)2 can be solubilized by the ericoid mycorrhizal fungus
Oidiodendron maius (Martino et al. 2003).

Bacterial species such as Pseudomonas striata, Gluconacetobacter
diazotrophicus, Thiobacillus thiooxidans, Burkholderia cenocepacia, Pseudomonas
pseudoalcaligenes, P. fluorescens, P. japonica, P. fragi, Acinetobacter, Serratia
marcescens, S. liquefaciens, Enterobacter cloacae, and Pantoea agglomerans and
several cyanobacterial species have been reported to solubilize insoluble Zn
(Kamran et al. 2017; Zaheer et al. 2019; Altomare et al. 1999; Bapiri et al. 2012;
Abaid-Ullah et al. 2015; Hussain et al. 2015). However, some Bacillus sp. (Bacillus
subtilis, Bacillus pumilus, Bacillus thuringiensis, Bacillus aryabhattai) alone or in
combination with cheaper insoluble Zn such as ZnO, ZnCO3, and ZnS has been
suggested as an effective alternative to costly ZnSO4 and found to be more effective
than other Zn solubilizers (Mahdi et al. 2010; Pawar et al. 2015; Mumtaz et al. 2017;
Jha 2019; Zaheer et al. 2019).

21.15 Mechanisms of Zn Solubilization

Microorganisms can solubilize Zn by either a single mechanism or multiple mech-
anisms. As for other micronutrients, soil pH affects the availability of Zn where a
100 times increase in solubility can be achieved by decreasing one unit in pH
(Mumtaz et al. 2017; Havlin et al. 2005). In addition, Pseudomonas, Bacillus spp.
(Saravanan et al. 2004) and arbuscular mycorrhizae (Subramanian et al. 2009) were
observed to reduce pH in the solubilization of ZnS, ZnO, and ZnCO3. The main
mechanism by which plant growth-promoting bacteria improve the Zn availability is
by releasing organic acids like gluconate (Saravanan et al. 2011) or the derivatives of
gluconic acids, e.g., 2-ketogluconic acid (Fasim et al. 2002), 5-ketogluconic acid
(Saravanan et al. 2007), and various other organic acids (Tariq et al. 2007) and
extrude protons (Fasim et al. 2002; Wu et al. 2006). Bacillus sp. AZ6 was found to
secrete organic acids like cinnamic acid, ferulic acid, caffeic acid, chlorogenic acid,
syringic acid, and gallic acid in a liquid medium (Hussain et al. 2004). Mycorrhizal
fungi were also observed to secrete organic acids (Martino et al. 2003) to solubilize
Zn from insoluble Zn3 (PO4)2 and ZnO. Organic acids produced by some Bacillus
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sp. and Pseudomonas sp. include keto-D-glutarate, propionic acid, formic acid, lactic
acid, gluconic acid acetic acid, glycolic acid, citric acid, fumaric acid, succinic acid,
malic acid, and oxalic acid. Three ZSB isolates were found to produce 11 organic
acids against ZnO, ZnCO3, and Zn3(PO4)2 including lactic acid, malonic acid, malic
acid, citric acid, and succinic acid being the major acids. Bacillus aryabhattai
produced many organic acids during Zn solubilization process as compared to
Pseudomonas taiwanensis and other Bacillus sp. Organic acid secretions by Bacillus
and Pseudomonas were dependent on the substrate of Zn minerals (Vidyashree et al.
2018). Some Bacillus strains were found to produce some other compounds in
relation to Zn solubilization such as amino acids and plant hormones (Saravanan
et al. 2004) and glucose or sucrose (Gluconacetobacter diazotrophicus) (Saravanan
et al. 2007). Enhancement of chlorophyll, carotenoid, and antioxidant enzymes
catalase (CAT)- and peroxidase (PO)-related functions by Bacillus pumilus and
Pseudomonas pseudoalcaligenes had been reported to protect plants from salinity
injuries. Further plants inoculated with the above ZMB also accumulated soluble
carbohydrates in leaves, helping plants to overcome osmotic stress under salinity.
Further, both bacterial isolates were positive for auxin production,
P. pseudoalcaligenes showing more than B. pumilus in the presence of Zn in the
medium compared to the control (Jha 2019). Auxin production in response to Zn has
also been observed by Patten and Glick (2002) in P. putida which increased the
length of canola seedling roots.

Zn-chelating compounds released by plant roots facilitate Zn solubilization by
microbes in the rhizosphere (Obrador et al. 2003; Velazquez et al. 2016). Bacterial
metabolites reduce reaction of Zn in the soil by forming complexes with Zn2+

(Tarkalson et al. 1998). At the root surface, Zn chelates the ligand (Zn2+). Pseudo-
monas monteilii, Microbacterium saperdae, and Enterobacter cancerogenesis are
thought to manufacture Zn-chelating metallophores (Whiting et al. 2001). A
biofertilizer containing Pseudomonas sp. (96-51), Azospirillum lipoferum
(JCM-1270, ER-20), and Agrobacterium sp. (Ca-18) produces chelating agent
ethylenediaminetetraacetic acid (Tariq et al. 2007), and Penicillium bilaji was
reported to increase Zn bioavailability to plants through chelating mechanism
(Kucey 1988).

Zinc bioavailability can also be increased by facilitating nutrient uptake from long
distance through improving root growth and surface area. Mycorrhizal fungi can
change the root architecture which enables plant to obtain Zn from a distance of
40 mm from the root surface (Burkert and Robson 1994). An increase in Zn
concentration up to 4% in cereal grains and increased root length by mycorrhizal
fungus were reported (Subramanian et al. 2009). Tariq et al. (2007) reported
significant increase in weight, length, and volume of root with biofortification of
rice with Zn-solubilizing bacteria.
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21.16 Copper-Solubilizing IMOs

Copper is another micronutrient needed for the growth of plants. Among many roles,
it involves several enzyme processes and is the key to the formation of chlorophyll.
Its normal range in most tissues is between 3 and 10 ppm. Cu requirement in plants is
3–20 mg kg�1 and below this range would result in deficiency. Although copper
deficiencies or toxicities rarely occur, deficiencies have been reported in several
parts of the world and need to be addressed since either extremes can have a negative
influence on crop growth and quality. Cu ions act as a cofactor in enzymes such as
Cu/Zn-superoxide dismutase (Cu/ZnSOD), cytochrome oxidase, ascorbate oxidase,
amino oxidase, laccase, plastocyanin, biogenesis of molybdenum cofactor, and
polyphenol oxidase (Krämer and Clemens 2006). Cu plays a vital role in the
signaling of the transcription protein trafficking machinery, cell wall metabolism,
iron mobilization, and oxidative phosphorylation and oxidative stress protection at
cellular level (Yruela 2009; Puig et al. 2007). Cu is also required in photosynthesis
and plant respiration electron transport chains and plant metabolism of carbohy-
drates and proteins. Its ethylene-sensing ability supports to intensify flavor and color
of vegetables and flowers. Copper also acts as a structural element in certain
metalloproteins (Pilon et al. 2006).

The deficiency symptoms of copper occur in the newer leaves. Symptoms vary
depending on the crop. The symptoms are slight chlorosis of either in the whole leaf
or between the veins of the new leaves. Small necrotic spots may form within the
chlorotic areas on the leaf margins. The newest leaves are smaller in size, lose their
sheen, and ultimately may wilt. Necrosis occurs on the apical meristems, which leads
to death, inhibiting the growth of lateral branches. Lighter colored flowers than
normal are produced by the plant (Welch and Shuman 1995; Tripathi et al. 2015).

Copper stress condition of the plant can cause burning of the root tips and thereby
causes excess lateral root growth (Franco et al. 2011). When the copper concentra-
tion is higher in the soil, iron and sometimes molybdenum or zinc nutrients have to
compete with copper for micronutrient availability in the soil and plant uptake (Tyler
and Olsson 2001). Affected plants can exhibit symptoms of iron deficiency or other
micronutrient deficiencies. Copper toxicity ultimately can reduce branching.
Legumes have a tendency to be the most sensitive plants to copper toxicity
(Carruthers 2016a, b).

The composition of Cu in polluted soils is dependent on both sources of pollution
and soil location. Cu level in the environment has been increased by the mining of
Cu-containing ores and industrial activities (Engelhardt et al. 2020). In soil, active
Cu occurs mostly in the divalent form (Cu2+) or in complex form with soil organic
matter. The largest portion of Cu is usually present in the crystal lattices of primary
and secondary minerals. The Cu ion is adsorbed to organic and inorganic negatively
charged groups and is dissolved as Cu2+ and organic Cu complexes in the soil
solution. Also it is specifically adsorbed to soil organic matter, carbonates,
phyllosilicates, and hydrous oxides of Fe, Mn, and Al. The strength of these forms
will determine their ability to plant uptake and leaching (Engelhardt et al. 2020).
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The bioavailability of Cu in soil is influenced by physical, chemical, and biolog-
ical properties at soil-root interface in rhizosphere. It is affected by different prop-
erties such as organic matter, soil type, pH, soil moisture, clay particles, temperature,
retention, permeability, and different metal ions and their oxides (Hinsinger et al.
2009). In general, the bioavailable form of Cu2+ in the soil solution is decreased
dramatically with an increasing soil pH. However, organic Cu complexes may
dissolve at higher pH (Kumar et al. 2020). Calcareous or alkaline soils can limit
the phytoavailability of Cu. Hence, the ability of plants to efficiently uptake Cu from
soil solution, and distribution of this among different organs and tissues can strongly
affect the crop growth and yield under Cu-limiting conditions (Migocka and Malas
2018).

Some micronutrients including Cu have limited mobility in soils which are
transported to roots by slow diffusion. Even though Cu is usually present in large
quantities in the bulk soil, the plant-available fraction in the rhizopheric soil solution
can be insufficient to satisfy plant requirements. Copper allocation in the soils was
found to be in the order of strong organic > residual > water soluble > ion
exchangeable > carbonate > reducible > weak organic fractions, indicating that
Cu is more distributed in organic fraction (84.67%). High affinity of Cu to organic
matters make organic bound Cu distributed in the soil in large quantities. Cu in the
crystalline lattice of the residual fraction cannot be easily released (Govarthanan
et al. 2014). As one of the strategies to overcome this problem, microorganisms have
been investigated in many studies.

Both bacterial and fungi have shown Cu-solubilizing ability (Table 21.2). Some
filamentous non-mycorrhizal fungi, namely, Penicillium and Aspergillus, have been
the most active metal-leaching fungi (Burgstaller and Schinner 1993). Several
studies have shown the potential of Aspergillus niger to generate organic acids
such as oxalic, citric, malic, and tartaric acids which resulted in maximum solubi-
lization of Cu, Zn, and Ni (Mulligan et al. 2004). Bioleaching of Cu from ores has
been done with Penicillium simplicissimum (Sukla and Panchanadikar 1993).

Several studies have reported the effectiveness of rhizosphere microorganisms in
solubilizing insoluble Cu compounds both in vitro and in vivo. They mobilize and
degrade organic pollutants. Cu-resistant bacterium, Pseudomonas sp. DGS6 isolated
from a natural Cu-contaminated soil, stimulated root elongation of maize and
sunflower (Yang et al. 2013). Pseudomonas lurida strain EOO26 was found to
increase Cu uptake by 8.6-fold by roots and 1.9-fold by leaves in inoculated plants
(Kumar et al. 2020). The bacteria isolated from the rhizosphere, Elsholtzia
splendens, significantly increased the bioavailability of Cu while stimulating the
other heavy metals like Zn in the soil (Chen et al. 2005). Increasing Cu bioavail-
ability and bioaccumulation with inoculations was observed to be species-specific in
certain cases. The influence of Bacillus spp. on Cu bioavailability and the
bioaccumulation for ryegrass and fescue were different to each other (Ke et al.
2020). Similarly, Liu et al. (2014) found that inoculations of 11 PGPR strains
increased the Cu concentration in Oenothera erythrosepala and Medicago sativa,
but decreased that in Pennisetum purpureum, which suggests the complex interac-
tions between plants, microbes, and the soil (Liu et al. 2014). The addition of
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Bacillus toyonensis alone had the maximum effect on Cu2(OH)2CO3 solubilization
(Sheng et al. 2012). Penicillium bilaji was able to solubilize cuprous and cupric
oxide, cupric carbonate. This is mainly by chelating mechanisms under a low pH
value as 4.0 (Asea et al. 1988). This mechanism involves the use of organic acids
which have been reported to have phosphorus-solubilizing abilities (Khan and
Bhatnagar 1977). Another study reported Cu leaching ability of Herbaspirillum
sp. from ion-exchangeable, reducible, strong organic, and residual fractions
(Govarthanan et al. 2014). The maximum solubilization (40%) in strong organic
fractions was suggested to be resulted by the metabolic products of the microbe
(Deng et al. 2012). The metabolites of microorganisms can act as indirect reactive
species and solubilize metal sulfides and oxides during the bioleaching process
(Mishra et al. 2008).

21.17 Mechanisms of Cu Solubilization

There are no clear mechanisms defined for Cu solubilization by microbes. Most of
the literature suggest that microorganisms release chemical compound siderosphores
that have ability to oxidize Cu ore, making them available to plants. However, the
principal mechanisms of bioleaching of metal by fungi are documented to be
redoxolysis, acidolysis, and complexolysis. The fungi are also found to produce
organic acids such as citric, oxalic, malic, and gluconic acids during bioleaching
which might contribute to solubilization (Mulligan et al. 2004; Johnson 2006). In
addition, siderophores, organic acids and soil organic carbon content increased by
the activity of PGPR improve soil Cu bioavailability (Ke et al. 2020). Phosphorus-
solubilizing bacteria (PSB) also enhance Cu availability (Li and Ramakrishna 2011)
by secreting low-molecular-weight organic acids. Many organic acids such as malic,
lactic, 2-ketogluconic, citric, oxalic, glycolic, malonic, valeric, piscidic, tartaric,
formic, and succinic have been identified as chemical compounds secreted by
PSB, which have chelating properties.

21.18 Nickel-Solubilizing IMOs

Nickel is considered as an essential micro-element for plant growth since the late
1980s (Brown et al. 1987). The usual range for nickel in most plant tissue is between
0.05 and 5 ppm (Chen et al. 2009). Nickel is required to the plant as a component of
certain plant enzymes like urease, superoxide dismutase, and hydrogenase. Legume
plants use nickel as a catalyst in nitrogen fixation enzymes (Ahmad et al. 2012). It is
required for urease enzyme which metabolizes urea nitrogen into usable ammonia in
the plant. It prevents the accumulation of toxic levels of urea in plant tissues forming
necrotic legions on the leaf tips. Therefore, the deficiency of nickel in plant can cause
urea toxicity (Krämer 2005), reduced leaf size, disruption of amino acid metabolism,
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and urea accumulation in leaf (Bai et al. 2006). Nickel provides tolerance to plant
diseases; however, the mechanism is unclear.

Nickel deficiency is unusual and minor and is often difficult to identify due to less
symptom development. In certain cases, it can reduce yield and growth of plants. As
nickel is a mobile element, its deficiency symptoms first appear typically in the
mature leaves of the plants (Chen et al. 2009). In legume plants, deficiency causes
whole leaf chlorosis along with necrotic leaf tips due to the increased levels of urea.
In woody ornamentals, deficiency causes shortened internodes and it gives a rosette
appearance to the plant, weak shoot growth, death of terminal buds, and eventual
death of shoots and branches. The symptoms in pecans include decreased expansion
of the leaf blade and necrosis of the leaf tips (Bai et al. 2006). Nickel turns out to be
less available for plant uptake at higher pH of the soil or in growing media. Some
other micronutrients like magnesium, zinc, iron, copper, cobalt, or cadmium in high
amounts in the growth medium can result in nickel deficiency to the plant. Legumes
(beans and alfalfa), barley, pecans, peach, plum, wheat, citrus, and certain wetland
plants are some plants which are most sensitive to nickel deficiency (Merlot 2020).

The Earth’s crust composition is comprised of approximately 3% of Ni and it is
the 24th most abundant element. Its concentration in plant leaves ranges from 0.05 to
5 mg kg�1, which is equal to 0.05–5 ppm on a dry weight basis. The required content
of Ni in vegetative tissues of plants is between 2 and 4 ng g�1 dry biomass (Dalton
et al. 1988) and up to 90 ng g�1 dry biomass in barley. Nickel concentrations
�10 ppm are generally considered to be toxic to sensitive species. Ni2+ is the
available form of Ni for plant. Rapid oxidation of Ni ion (Ni2+) to unavailable
forms in the soil makes total Ni concentration not a useful measure for Ni bioavail-
ability. Thus, plants grown in high pH soils are vulnerable to Ni deficiency (Brown
et al. 1987). In soil, active Ni occurs almost exclusively in divalent form (Ni2+) or in
complex form with soil organic matter. High pH soils can cause Ni deficiency. Other
than that, excessive use of Cu and Zn can result in Ni deficiency in soil because Ni,
Cu, and Zn share a common nutrient uptake system in the plant.

Rhizosphere microorganisms play a major role in Ni solubilization. Three bacte-
ria, Sphingomonas macrogoltabidus, Microbacterium liquefaciens, and
Microbacterium arabinogalactanolyticum, isolated from the rhizosphere of Alyssum
murale, were observed to increase Ni uptake into the shoot by 17%, 24%, and
32.4%, respectively, compared to the non-inoculated control (Abou-Shanab et al.
2003). Tank and Saraf (2009) suggested that PGPR (Pseudomonas sp.) positively
influence the growth of plants and also facilitate plant growth in Ni-contaminated
soils. Mohapatra et al. (2007) reported that Aspergillus niger, Aspergillus fumigatus,
and Acidithiobacillus ferroxidans solubilized nickel at room temperature, 30–37 �C,
whereas organisms were unable to solubilize nickel at higher temperatures as 45 �C.
In a pot experiment, inoculation of plants (Brassica juncea and B. oxyrrhina) with
Ni-mobilizing strains of Pseudomonas sp. SRI2, Psychrobacter sp. SRS8, and
Bacillus sp. SN9 maximized the biomass of the plants. In addition, strain SN9 was
observed to increase Ni concentration in the root and shoot tissues of B. juncea and
B. oxyrrhina (Ma et al. 2009).
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21.19 Mechanisms of Ni Solubilization

The possible mechanisms of Ni solubilization by microbes include pH changes in the
soil, siderophore production, and phosphate solubilization (Burd et al. 2000).
Siderophore production in relation to Ni has significantly increased the size and
chlorophyll content of leaf (Tank and Saraf 2009). Bacteria such as Azotobacter
chroococcum (N-fixing bacteria), Bacillus megaterium (P-solubilizer) and Bacillus
mucilaginosus (K-solubilizer), and Bacillus sp. RJ16 were reported to decrease the
pH by producing acids which enhance the bioavailability of Ni in the soil
(Arunakumara et al. 2015). Zaidi et al. (2006) reported a reduction in pH from 7.5
to 4.8 with the solubilizing Bacillus subtilis SJ-101, resulting in increased Ni
availability. In addition, acidic soil conditions created by phosphate solubilization
have shown to increase Ni accumulation in the presence of some bacteria (Rajkumar
et al. 2008). Ma et al. (2009) reported the production of indole-3-acetic acid (IAA)
and siderophores and utilization of 1-aminocyclopropane-1-carboxylic acid (ACC)
by Ni-mobilizing bacterial strains.

21.20 Chlorine-Solubilizing IMOs

Chlorine is another micronutrient which is needed for the proper growth and
processes in plants including osmotic and stomatal regulation, evolution of oxygen
in photosynthesis, and disease resistance. Plant uses the ion (Cl�) rather than the gas
(Cl2). In chloroplast, chloride is a structural constitute of photosystem II in the
oxygen-evolving complex which is one of the three important cofactors (Kusunoki
2007). Chloride stimulates the ATPase at the tonoplast. However, excess chloride is
accumulated in certain tissues such as guard cells, and their opening and closing is
regulated by the flux of potassium and anions such as malate and chloride and
therefore important for plant photosynthesis. It also maintains the rigidity of leaves
(Chen et al. 2010).

Reports of Cl deficiency are rare in agriculture (Dordas 2008). Fairly a larger
amount of Cl application was reported to enhance disease resistance in plants. These
amounts are much higher than those required as a micronutrient but far less than
those required to induce toxicity (Mann et al. 2004). Cl has been shown to be
effective on a number of diseases such as stalk rot in corn, stripe rust in wheat,
take-all in wheat, northern corn leaf blight and downy mildew of millet, and septoria
in wheat (Graham and Webb 1991; Mann et al. 2004). The mechanism by which Cl
increases resistance is not well understood. However, it appears to be nontoxic
in vitro and does not stimulate lignin synthesis in wounded wheat leaves. It was
suggested that Cl can compete with NO�3 absorption and influences the rhizosphere
pH by suppressing nitrification and increasing the availability of Mn mediating
reduction of MnIII,IV oxides which increases tolerance to pathogens.
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As a beneficial micronutrient, Cl� regulates increased fresh and dry biomass,
greater leaf expansion, elongation of leaf and root cells, improved water relations,
higher mesophyll diffusion to CO2, and better water- and nitrogen-use efficiency
(Colmenero-Flores et al. 2019). In most cases, deficient leaves exhibit distinct
characteristic and continuous boundaries between the affected and healthy tissue
and appear as blotchy leaf chlorosis and necrosis. In such cases, Cl deficiency may
result in wilting and bronzing of leaves. Chlorine toxicity can occur naturally in
plants grown in coastal soils due to the excess Cl. Chlorine toxicity usually results in
necrosis along the leaf margins. Leaves are smaller than usual. They may be yellow
and drop early. The symptoms first appear on mature leaves. In some species,
chlorosis may also occur. Chlorine toxicity can result from air pollution, in the
form of chlorine gas, or from excess chloride in the soil (Table 21.1).

Generally, soil contains sufficient amount of chloride in the soil. The plant
available form of chlorine is an anionic form which is chloride (Cl�). Anionic
form is the dominant form of chlorine in soils. Chloride is thought to pass through
the root by a symplastic pathway and is mobile within the plant (White and Broadley
2001). The content of Cl� fluctuates greatly in soils. Most soils contain sufficient
levels of chlorine. However, Cl may become deficient in inland soil under frequent
high rainfall and irrigation. Plants may be able to absorb some metal-Cl complex
such as CdCl+, but with a minimal percentage (Weggler et al. 2004). Negatively
charged chloride ion tends to be repelled from the surfaces of soil particles, making it
difficult to form complexes readily with negatively charged mineral soils. Therefore,
chloride in the bulk solution contains a higher concentration than in the diffuse layers
surrounding soil particles. Water fluxes, relationship between precipitation, and
evapotranspiration determine the movement of chloride ion within the soil (Chen
et al. 2010).

There is no available literature on Cl-solubilizing microorganisms in the soil.
However, the soil microbes make changes in soil pHs which will ultimately release
chloride into the soils in plant available forms.

21.21 Mechanisms of Cl Solubilization

Most of the micronutrients are present as forms of chloride complexes in their
cationic forms. Soil microorganisms produce acids which reduce the soil
pH. Reduced pHs facilitate breaking down of metal-Cl complexes making them
available for plants.
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21.22 Boron-Solubilizing IMOs

Boron is a non-metal micronutrient which essentially optimizes plant growth and
development. The critical concentration of B in plant tissues is 20–25 mg kg�1

(usually 35 mg kg�1) on a dry mass basis (Ahmad et al. 2012). It plays an important
role in cell wall synthesis and structural integration as well as in protein and
enzymatic functioning of the cell membrane, providing improved membrane integ-
rity (Brown et al. 2002). B is cross-linked with pectin assembly, glycosylinositol
phosphorylceramides (GIPCs), and rhamnogalacturonan-II (RG-II) that control the
tensile strength and porosity of the cell wall (Shireen et al. 2018). Optimum B
concentration in cells enhances the plasma membrane hyperpolarization, while its
deficiency alters the membrane potential and reduces H+-ATPase activity. In young
growing tissues, B acts primarily in cell division and elongation, and starvation leads
to the inhibition in root elongation with deformed flower and fruit formation. Boron
is also involved in phenolic metabolism and nitrogen metabolism in plants. The role
of B in rhizobial N fixation, actinomycete symbiosis, and cyanophyceae heterocyst
formation in leguminous crops has been highlighted in previous studies. B defi-
ciency is thought to affect photosynthesis indirectly by weakening the vascular
tissues responsible for ion transport (Rasheed 2009).

Boron affects the availability and uptake of other plant nutrients from the soil. B
application increased the uptake and translocation of P, N, K, Zn, Fe, and Cu in
leaves, buds, and seeds of cotton (Ahmed and Fujiwara 2010). Boron deficiency has
occurred in over 132 crops and 80 countries during last 60 years. After Zn, B is the
second most deficient micronutrient severely affecting the growth of crops on global
scale (Alloway 2008). Deficiency symptoms depend on the age of the plant and
include stunted root growth, restricted apical meristem growth, stunted root growth,
reduced chlorophyll content, brittle leaves, and photosynthetic activity, disruption in
ion transport, increased phenolic and lignin contents, and reduced crop yield
(Shireen et al. 2018).

In the soil, the presence of boron is common as boric acid or borate. Boron is
percolated in the form of uncharged molecules rather than as ions. It is extremely
deficient in soils which are developed from calcareous, loessial, or alluvial deposits
and also in highly leached soils (Borkakati and Takkar 2000). There are various
other factors, including sandy/coarse texture, drought, alkalinity, liming, and inten-
sive cultivation with more nutrient uptake and less fertilizer application, which affect
the availability of B to plants (Ahmad et al. 2012). In many regions of the world such
as Brazil, the USA, China, Japan, and Korea, B availability is limited which is
resulted by its high solubility and leaching off by irrigation water or rainfall in
shallow or coarse-textured soils. In drought conditions and in soils with less organic
matter, the availability of B is low due to alkalization and breakdown of organic
matter (Shireen et al. 2018). Optimal B availability in soils can be achieved by using
several beneficial and eco-friendly techniques.

Boric acid uptake is affected by the transpiration stream. Enhancement of
transpiration-driven water flow can be affected by plant growth-promoting bacteria
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which can increase B accumulation in plant. This may also cause B toxicity.
Inoculation of these bacteria under low pH into soil increased the growth of
rapeseed. Further, addition of P enhanced the uptake of B by rapeseed, while
B. pumilus inoculation inhibited the growth of rapeseed under B supply (Masood
et al. 2019). There have not been many studies done on increasing the bioavailability
of B especially with indigenous microorganisms despite it being the second most
deficient micronutrient affecting crops worldwide, therefore warranting
investigations.

21.23 Molybdenum-Solubilizing IMOs

Molybdenum is most common in agricultural soils which can exist in several
oxidation states ranging from zero to VI (Kaiser et al. 2005). In a plant, Mo performs
various physiological and metabolic functions. Despite its requirement in small
amounts for normal plant development, it plays a critical role in the regulation of
various plant functions. The required concentration range in plant tissue for its
normal function is between 0.3 and 1.5 ppm. Mo has been utilized by specific
plant enzymes to participate in reduction and oxidative reactions (Thomas et al.
2017).

Molybdenum is an essential component in nitrogenase enzyme used by symbiotic
nitrogen-fixing bacteria in legumes to fix atmospheric nitrogen. Plants also use Mo
to convert inorganic phosphorus into organic forms in the plant (Beevers and
Hageman 1969). Molybdenum deficiency can affect nitrogen deficiency in plant,
since it is closely linked to nitrogen fixation process. Molybdenum is the only mobile
micronutrient in the plants. Therefore, older and middle leaves show Mo deficiency
symptoms early, but it spreads up to the stem and affects the new leaves (Table 21.1).
Some plants such as poinsettias show thin chlorotic, leaf margins around the leaf
perimeter followed by necrosis (Carruthers 2016a), which restricts plant growth and
flower formation. Molybdenum deficiency or toxicity is uncommon in many plants.
However, crops that are most sensitive to molybdenum deficiency are crucifers
(broccoli, cauliflower, cabbage), legumes (beans, peas, clovers), poinsettias, and
primula (Carruthers 2016a). Research has shown that high sulfates can reduce plant
uptake of molybdenum (Kaiser et al. 2005).

The average concentration of Mo in the lithosphere is 2–3 mg kg�1 but can
increase to a concentration like 300 mg kg�1 with significant content of organic
matter (Kaiser et al. 2005; Reddy et al. 1997; Fortescue 1992). Different environ-
mental factors such as soil pH, extent of water drainage, concentration of adsorbing
oxides (e.g., Fe oxides), and organic compounds found in the soil influence the
availability of molybdenum for plant growth. Molybdenum becomes more soluble
and is accessible to plants mainly in its anion form MoO4

� in alkaline soils, while it
decreases in acidic soils (pH < 5.5) (Reddy et al. 1997). In agricultural soils, the
complex that molybdenum is present depends on the chemical speciation of the soil
zone. Molybdenite (MoS2), wulfenite (PbMoO4), and ferrimolybdenite [Fe2(MoO4)]
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are the mineral forms of molybdenum found in rocks (Kaiser et al. 2005).
Weathering releases Mo from solid mineral forms (Kaiser et al. 2005). Molybdenum
is typically added to the soil by fertilization or by the addition of other chemicals
such as sodium or ammonium molybdate.

Molybdate reduction by microbes has been reported from 100 years ago and
includes mainly bacteria (Table 21.2). Potential mechanisms of reduction of molyb-
denum were first reported in Escherichia coli, Thiobacillus ferrooxidans (now
Acidithiobacillus ferrooxidans), Enterobacter cloacae strain, Pseudomonas sp.,
Serratia spp., Enterobacter sp., Acinetobacter calcoaceticus, and Klebsiella
sp. (Halmi et al. 2013). Mo-reducing soil bacteria are reported from Pakistan,
Sudan (Enterobacter sp. strain Zeid-6), Indonesia, and Antarctica (Pseudomonas
sp. strain DRY1). Except Bacillus sp., molybdenum-reducing bacteria are gram
negative (Frascoli and Hudson-Edwards 2018). Many Mo-reducing bacteria isolated
from Pakistani soils were resistant to high Mo concentrations (up to 50 mM) (Khan
et al. 2014). Some plants eliminate Mo from their roots and shoots (e.g., Cistus,
Quercus species), while some take up Mo without any harmful effects (e.g.,
Baccharis species) (Frascoli and Hudson-Edwards 2018). Autotrophic bacteria
Acidithiobacillus ferrooxidans and Thiobacillus thiooxidans isolated from drainage
from Kennecott’s open-pit mine in Bingham Canyon, Utah, USA, were capable of
bioleaching molybdenite (Frascoli and Hudson-Edwards 2018; Bryner and Ander-
son 1957).

Molybdenum is an essential component in nitrogenase enzyme and thereby in
nitrogen fixation process (Hänsch and Mendel 2009). Molybdenum is the cofactor
for the enzyme nitrate reductase during nitrogen assimilation (Hänsch and Mendel
2009). Also Mo is the key regulatory component for nodule initialization and
maintenance of nitrogen fixation in legumes (Franco and Munns 1981), and the
enzyme activity was elevated with a high Mo content. Several microorganisms are
associated with the biofertilization process and they enhanced the activity of the Mo
in plant growth and development. Bradyrhizobium inoculation and Mo fertilization
with at least 50 g ha�1 increased the yield of peanut pods and kernels (Crusciol et al.
2019). Chatterjee and Bandyopadhyay (2017) found that the application of
biofertilizers together with boron and molybdenum enhanced the growth, nodula-
tion, and pod yield of vegetable cowpea in acid soil of eastern Himalayan region.

21.24 Mechanisms of Mo Solubilization

Molybdenum seems to induce the production of iron-chelating compounds such as
dihydroxybenzoic acid (DHBA) and tris(catechol) protochelin and bis(catechol)
azotochelin. Protochelin and azotochelin production also increases at lower concen-
trations of Mo and vanadium (V). Protochelin and azotochelin act as strong
complexing agents for Fe(III), molybdate, and vanadate. Azotochelin (LH5) reacts
with molybdate to form a 1:1 complex with Mo
(VI) (LH4

� + MoO4
2�!MoO2L

3� + 2H2O). Essential metals (Fe, Mo, and V) are
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acquired by these compounds while excluding toxic ones (such as W). At low
concentrations, these catechol compounds form siderophore complexes with essen-
tial metals (Fe, Mo, V) and are taken up by the bacteria through specialized transport
systems (McRose et al. 2017).

Microorganisms, those who have a capability of fixing atmospheric nitrogen and
form ammonia, have Mo-nitrogenase or three forms of nitrogenase enzymes.
Diazotrophic organisms such as Klebsiella and Rhizobium have Mo-nitrogenase.
Mo in nitrogenase enzyme can also be combined with other metals depending on the
microbial species. For example, Azotobacter chroococcum possesses Mo and V
nitrogenases, Rhodobacter capsulatus has Mo and Fe nitrogenases, and Azotobacter
vinelandii contains the three enzymes. The most commonly occurring nitrogenases
have Mo in their active center to form the iron-molybdenum cofactor.
Mo-nitrogenases exhibit higher efficacy than the alternative nitrogenases with
respect to N2 reduction rates. The metal cluster called FeMoco, an abbreviation for
the iron-molybdenum cofactor, is the site of conversion of N2 into ammonia (Hänsch
and Mendel 2009).

Assimilatory nitrate reductases (Nas) that catalyze the first reaction in nitrate
assimilation are molybdoenzymes. Molybdenum acts as the cofactor in nitrate
reductase. Nitrate reductase in higher plants is proposed to be a homodimer, with
two identical subunits joined and held together by the Mo cofactor. In bacteria, there
are two types of nitrate reductases, first the ferredoxin- or flavodoxin-dependent
enzyme found in cyanobacteria, Azotobacter, and the archaeon Haloferax
mediterranei, and second, the NADH-dependent enzyme present in heterotrophic
bacteria and R. capsulatus. The cyanobacterial nitrate reductase enzyme is an 80 kDa
monomer, encoded by narB. Electrons from ferredoxin or flavodoxin are transferred
to the cluster and the Mo-bis-molybdopterin guanine dinucleotide (Mo-bis-MGD)
cofactor, the nitrate reduction site. NADH-dependent nitrate reductase catalizers are
present in Klebsiella, Bacillus, and Rhodobacter. In Klebsiella, a catalytic subunit
and a small electron transfer subunit are present in the enzyme, while the large
subunit (nasA gene product) binds to Mo-bis-MGD (Schaechter 2009).

21.25 Conclusions and Future Prospects

This review discusses the significance of micronutrients for plants with special focus
on increasing the productivity of crop plants and the role of microorganisms in
sustainable agriculture while maintaining a sustainable environment. Furthermore, it
presents developments in research and their applications in agriculture and environ-
mental management and highlights their potential applications in achieving sustain-
able environments by taking into account their dimensions mainly in processes such
as bio-composting, biodegradation, and other processes such as bioremediation and
bioleaching. This review also highlights the fact that research has not given enough
attention to microbes in terms of micronutrient solubilization and when did, the
focuse has mainly been on bacteria with fungi to some extent. Other groups of
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microorganisms such as cyanobacteria and algae have not been investigated much
for micronutrient solubility. Research especially on field trials/application of
micronutrient-solubilizing microbes are currently being restricted to certain regions
of the world mainly to India, Pakistan, and Africa and therefore should be expanded.
With already successful stories and extensive future research, biofortification/
biofertilization of crops with micronutrient-solubilizing microorganisms will open
up new avenues in addressing the “hidden hunger” in a sustainable environment in
years to come while creating a clean and efficient environment for sustainable
developmental goals to be achieved.
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