
Chapter 18
Methods of Strain Improvement for Crop
Improvement

Jyoti Rawat and Veena Pande

Abstract Biofertilizers are suitable substitutes to chemical-based fertilizers and
pesticides, which cause serious environmental problems around the world. There-
fore, there is an important requirement to implement ecological regulation using
native microorganisms. These beneficial microorganisms are inexpensive, consis-
tent, and more effective than synthetic fertilizers in terms of plant protection against
pathogens. These beneficial microorganisms protect plants against pathogens and
enhance nutrient availability. Hence, to achieve this goal, better quality strains are
needed. Crop improvement relies on the modulation of genes and genomic regions
that underlie crucial characteristics, either directly or indirectly. Recombinant bio-
technology intends to benefit in reducing the use of synthetic fertilizers; for this
function genetically improved microbes could be used. By using recombinant DNA
technology, genes of microbes are improved via several genetic modifications
depending on the recognition and selection of the desirable characteristics or genes
of interest. The current investigation is focused on different strategies used to
improve beneficial strain for crop productivity.

Keywords Agriculture · Crop improvement · Gene information · Molecular
approaches

18.1 Introduction

Agriculture relies heavily on the use of chemical or synthetic fertilizers and insec-
ticides to achieve higher yields. Issues such as environmental pollution, health
threats, disruption of the natural cycle of ecological inputs, and the destruction of
biological ecosystems that otherwise support agricultural production are correlated
with this reliance. There is a growing use of biological resources to replace chemical
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fertilizers and pesticides. Agricultural development and pest and disease manage-
ment must therefore be carried out with fewer harmful inputs at shorter periods. In
this sense, plant growth-promoting rhizobacteria (PGPR) are potential resources to
bring significant benefits to agriculture. Studies have shown that PGPR have great
potential to improve crop growth and yield. Cereals are the primary source of food
for human nutrition and constitute more than two-fifths of the world population’s
staple diet. Environmental and genetic factors influence crop productivity
(Radhakrishnan et al. 2017). The usage of beneficial microbes alone or as microbial
consortia to selected plants with multifunctional properties is a good method to
stimulate strength and crop productivity (Ahmad et al. 2018; Maron et al. 2018).
Investigation on isolation and characterization of advantageous microbes to plants
has been extensively cited, but some of them have been commercialized. It has been
demonstrated that many commercial bioinoculants were not effective in the agricul-
ture field but they were effective in laboratory or greenhouse experiments (Vassilev
et al. 2015; Arora and Mishra 2016; Sulbhi et al. 2021; Bhandari et al. 2021) due to
their low stability and quality of formulation (Bhatt et al. 2021a, b, c). Newly,
selective use of beneficial microbiome plants and their combinations to combat
biotic and abiotic stress is gaining traction and becoming a stimulating research
frontier (Malusá et al. 2016; Bashan et al. 2016; Baez-Rogelio et al. 2017;
Stamenkovic et al. 2018). Biofertilizers are formulated from nitrogen-fixing
rhizobacteria naturally present in the legume nodules or microbes that are responsi-
ble for plant growth promotion. However, these bio-formulations would not be
proficient enough for supplying nitrogen to non-leguminous plants. In that circum-
stances, the practice of genetic engineering is of particular significance, for devel-
oping efficient management systems is needed. Consequently, the non-leguminous
plants could be cultivated with symbiotic rhizobia root nodules without applying
external nitrogen fertilizers (Santi et al. 2013). Foreign genes used to transform
microorganisms could be integrated into the genome of the host. For that, the
regulatory region of the gene is altered at the promoter or the terminator sites to
augment the inserted gene function in the host. The addition of a particular gene that
can confer biological control capacity could improve the biological control capacity
of microbes that lack these genes (Dash et al. 2016). Various rhizobacteria possess
biological control activity that simultaneously produces chitinases. However, few
rhizobacteria such as P. putida and R. meliloti are root colonizer but devoid of
chitinase synthesis (Bagwan et al. 2010). Hence, the chitinase gene assimilation into
their genome made them competent in the defense of the plants against fungi (Huang
et al. 2001). Biofertilizers, when formulated using molecular tools, can enhance
cellular pathways for phytohormone production, such as cytokinin, auxin, etc. as
well as help in plant growth and development (Fuentes-Ramirez and Caballero-
Mellado 2005). Most breeding approaches for biotic and abiotic stress resistance are
based on the insertion of a single resistant gene into plants, and therefore crop
resistance only lasts for a short duration (Kottapalli et al. 2010; Bhatt et al.
2020a, b, 2021d, e, f). Therefore, the development of multi-stress resistant genotypes
is now demonstrated by combining multiple genes from different sources in a
single plant (Bhatt et al. 2019a, 2020c, d, e, f). The process of manipulating and
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improving microbial strains to enhance their metabolic capabilities is called strain
improvement.

Protoplast fusion is an important tool in the selection of strains to provide genetic
recombination and develop hybrid strains in filamentous fungi (Steiner et al. 2019).
It is used to produce interspecific or even intergeneric hybrids. It has become an
important tool for genetic manipulation, as it breaks down obstacles to the genetic
exchange performed by conventional mating systems. This technique has great
potential for genetic analysis and strain improvement. The stress tolerance
capacity in crops has been explained in many studies using the pyramid of various
resistance genes (Suresh and Malathi 2013; Muthurajan and Balasubramanian
2010). Abiotic stress also affects the growth and yield of the crop (Pancaldi and
Trindade 2020) and can even disturb the survival of plants (Rana et al. 2019; Verma
et al. 2008). Salinity is one of the major problems for crop productivity, and
maximum crops are subtle to salt during their lifespan and particularly at the seedling
period (Bai et al. 2018). Certain varieties of crops that are salt resistant express salt-
sensitive genes to tolerate excess salts, and the quantitative trait locus (QTL) linked
to these genes can be mapped by microsatellite markers for the selection of salt-
tolerant lines (Ruengphayak et al. 2015; Llorens et al. 2020). Numerous drought-
tolerant genes have been well discovered and modified in various crops to develop
drought resistance (Yu and Yang 2016; Waqas et al. 2020). In many plants, cold
resistance genes (OsRAN1 and QTL) have also been acknowledged which is further
used in developing cold tolerance in plant varieties using molecular marker enhance-
ment tools (Thitisaksakul et al. 2015; Tiwari et al. 2016; Bimpong et al. 2016). Plant
tissue cultures (PTC) also have an important part in modern biotechnology. They are
widely used in studies of plant development processes (Sandhu et al. 2019), genetic
function (Rai et al. 2018), micropropagation (Zhang et al. 2014), and generation of
transgenic plants with specific industrial and agronomic characteristics (Shinada
et al. 2014). In this chapter, various techniques involved in beneficial microbes/
strain improvement, for the production of biotic and abiotic stress resistivity in
different plant varieties, are described. Molecular biological applications for crop
improvement like genetic engineering (GE)/recombinant DNA technology (RDT) to
adopt better traits of agronomic importance are too elaborated (Almeida et al. 2016;
Firn et al. 1994; Bhatt et al. 2015a, b, 2016a, b, 2019b, c; Deng et al. 2010; Kumar
2011; Loyola-Vargas and Ochoa-Alejo 2018).

18.2 Crop Improvement by Genetic Engineering

For many decades, gene transfer among distinct species of plants has played a
fundamental role in crop improvement. By transforming genes, many useful traits,
such as insect, stress, and disease resistance, have been shifted to many varieties of
non-cultivated plant crops (Akhtar et al. 2014; Amin et al. 2014; Dar et al. 2014;
Tariq et al. 2014). Recombinant DNA methods and many other methods are used for
the transformation of genetic information. Genetic engineering is a technique that
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has made possible the transfer of genes between different genera or species using
recombinant DNA. This method is an exceptional selection method of expanding the
genetic base as compared to conventional breeding. Additionally, because it avoids
the skidding problem associated with conventional farming, it is more efficient and
takes less time (Khan et al. 2015a). Until now, many genetically modified crops have
been developed and commercialized, resulting in higher production efficiency, a
greater focus on the market, and better conservation of the environment. These crops
include longer postharvest storage tomatoes, insect-resistant cotton and corn, virus-
resistant potatoes, herbicide-resistant soybeans, and canola, and many others
(Puspito et al. 2015). To improve crops through genetic engineering, an efficient
processing system is needed. Different approaches are used to transform different
cultures such as recombinant DNA technology, which is used to manipulate genes of
microbes via various genetic modifications (Tabashnik et al. 2011). Also, many
Pseudomonas spp. chelate Fe ions by producing siderophores, thus increasing Fe
uptake in plants. S. meliloti (RMBPC-2), a genetically modified strain, was made by
introducing the genes that drive the plant nitrogenase enzyme to the bacteria (Boccia
and Sarnacchiaro 2015). T. harzianum is a very effective colonizer that is widely
present in soil and also can parasitize pathogenic fungi. In fact, many extracellular
enzymes like chitinases, proteases, and glucanases are synthesized by Trichoderma
which are enhanced by adding chitinase genes. Many extracellular enzymes such as
glucanases, chitinases, and proteases synthesized by Trichoderma have been
enhanced by the addition of chitinase genes (Tabashnik et al. 2011; Boccia and
Sarnacchiaro 2015; Awais et al. 2010). Therefore, these genetically altered strains
could effectively act as biofertilizers and improve crop yield and quality.

18.2.1 Genetically Modified Microbes

GMmicrobes provide better access to nutrients for crops and therefore increase plant
development. The most important beneficial microbes that are used as biofertilizers
are nitrogen-fixing bacteria, such as Rhizobium and Azospirillum. Rhizobium and
Sinorhizobium are the symbiotic bacteria that form root nodules in legumes and fix
nitrogen. It has been reported that these bacteria can stay in soil alive for a long time
and in certain cases even without a defined host (Ngwako 2008). These microbes
have been widely used as bioinoculants to enhance the growth and yield of crops.
However, the improvement in yield is variable and the success of the inoculants
appears to depend on the competition with the native strains which are generally the
least effective (Qaim 2009). Mycorrhizal fungi signify the group of fungi that form a
symbiotic association with plants. An investigation has been carried out to identify if
transgenic Rhizobium strains enhance nodulation or interfere with a symbiotic
association in plants. It was noticed that the strain GM S. meliloti does not interfere
with the formation of mycorrhizae but improves nodulation. GM sweet clover
increased colonization units of arbuscular mycorrhiza and increased the nutrient
acquisition capability of mycorrhizal plants (Papagianni 2004; Van Loon 2007).
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Azospirillum is recognized for its capability of plant growth promotion by
augmenting nitrogen uptake, through phytohormone production (Gonzalez et al.
2015). Sinorhizobium meliloti has been genetically modified to promote nodulation
in alfalfa roots. This genetic modification includes modification of the expression of
nifA gene which is responsible for the management of all other nitrogen fixation (nif)
genes (Bakshi 2003). It is assumed that nifA regulates the gene expression other than
nif cluster that aids in nodule development (Beyer et al. 2002). In the rhizosphere
region of Pisum sativum, GM Rhizobium leguminosarum strains, labeled with HgCb
resistance genes (mer genes) and lacZ genes, were inoculated. In order to observe its
impact on crop productivity, Alcaligenes faecalis, a non-nodule-forming bacterium,
has been genetically engineered and introduced into rice fields in China. By intro-
ducing a constitutively expressed nifA regulatory gene, A. faecalis was genetically
modified and nitrogen fixation got increased as compared to treated fields (Gray and
Smith 2004; Huang et al. 2021).

18.3 Intraspecific and Interspecific Gene Transfer

In the nineteenth century, plant breeding began with discoveries about how plant
traits are inherited. Plant breeding could be achieved by selecting plants with
interesting attributes and manipulation in cross-fertilization. An improved variety
with the desired characteristics is formed when a cultivated variety is backcrossed
with a wild variety (Goodman et al. 1987; Khan et al. 2015b). In the twentieth
century, plant breeders used interspecies hybridization to transfer genes from a
non-cultivated plant species to other convertible crop species. For example, Avena
sativa (oats) and Beta vulgaris (sugar beet) were processed and resulted in increased
yields of 25–30% and resistance to sugar beet nematodes, respectively (Sharma and
Gill 1983). In the 1940s, methods for transferring DNA directly from one organism
to another organism were developed as DNA was established as a chemical base of
genetic inheritance. Genes can be obtained from plant, animal, bacterial, and viral
sources and injected into crops. Tissue specificity, timing, and expression level of
genes are under control and they can be modified by gene modification into a fresh
host. These methods provide the basis of diversity and permit the regulation of
expression of genes (Qamar et al. 2015). In recent times, the expansion of molecular
methods has generated different options for the assortment and genetic improvement
of livestock (Godrat et al. 2005).
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18.4 Genetic Modification Through Somatic Hybridization

18.4.1 Protoplast Fusion

Somatic hybridization is the best technique aimed at the production of interspecific
and intergeneric hybrids for plant breeding and crop improvement. In this technique
fusion of protoplasts from two different genomes followed by the selection of the
desired somatic hybrid cells is carried out for regeneration of hybrid plants (Evans
and Bravo 1988). Therefore, it is accepted as an effective approach to generate
hybrids by joining two different protoplasts from different plant species or varieties,
and hybrids produced via this method are called somatic hybrids. Protoplast fusion is
a commonly used method for introducing a group of biosynthetic genes or entire
chromosomes into a recipient cell for subsequent genetic manipulation or directed
evolutionary approaches. It facilitates the transmission of mitochondrial genomes
among taxonomically associated species (Vincelli 2016). This is one of the impor-
tant or widely studied approaches as a technique to improve fungal strains (Assefa
2018; Nagoshi et al. 2018). In physiology, genetic study and genetic manipulation
fungal protoplast are important tools that can be successfully carried by fusing
protoplasts into filamentous fungi that lack sexual reproductive ability (Kage et al.
2016; Sharifzadeh et al. 2018). It is admitted as one of the recombinant DNA
technologies that provide the tools to increase gene dosage and gene expression
from strong promoters, remove unwanted genes from the fungal genome, manipulate
the metabolic pathways, and develop fungal strains for the production of heterolo-
gous proteins. Several reports have confirmed the isolation and regeneration of
protoplasts in different fungi. Protoplast fusion is found to be good for improvement
of Trichoderma spp. and development of hybrid strains in other filamentous fungi
(Atique et al. 2018; Mwobobia et al. 2020). The isolation, fusion, and regeneration
of protoplasts were carried out in the genus Trichoderma primarily to improve its
cellulolytic activity (Federico et al. 2019; Pandeya et al. 2018) and chitinase
production (Bowman and Zilberman 2013). However, partial attempts have been
done to improve Trichoderma species and increase enzyme production (Pandeya
et al. 2018; Waddington et al. 2010). Ogawa and his team (Ogawa et al. 1989)
revealed an increased cellulase production in Trichoderma reesei through interspe-
cific protoplast fusion, while Prabavathy et al. reported an increase in chitinase and
biological control activity in Trichoderma harzianum through protoplast auto-
fusion; nevertheless, little research has been done on the application of chitinase in
the degradation of shellfish waste applying this method (Prabavathy et al. 2006).

18.4.2 Agrobacterium-Mediated Gene Transfer

Agrobacterium tumefaciens is a phytopathogenic bacterium capable of transferring
part of its genetic material to other plant species through a simple process called
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transformation. The genes are encoded in a region of the Ti plasmid called T-DNA.
This causes the growth of a tumor termed “crown gall” disease in plants (Gordon and
Christie 2015). This bacterium is altered in the laboratory and transfers the gene of
interest to plants without causing disease symptoms. The Agrobacterium system is
quite attractive due to the easy protocol that is associated with minimal cost in terms
of equipment and also the resulting transgenic plants have single-copy insertion
(Gordon and Christie 2015; Hansen and Wright 1999). With this method, genes for
resistance to insects and diseases were transferred. Using recombinant DNA tech-
nology, many plant and bacterial genes encoding enzymes have been engineered to
make crop plants tolerant of broad-spectrum herbicides and safer for the environ-
ment. Because this bacterial gene is designed in such a way that its enzyme is
insensitive to the herbicide and then transfers it to the plant, it can also be done by
having plants express genes that detoxify the herbicide. The genes obtained from
Bacillus thuringiensis have been modified and transferred to plants that act as
insecticides (Shahid et al. 2016).

18.4.3 Non-Agrobacterium-Based Gene Transfer

Four decades before it was identified, some members of the Rhizobiaceae family
also can transfer the gene to the host. Ensifer adhaerens, Ochrobactrum
haywardense, and Rhizobium etli are some of the Agrobacterium-related species
that have been used in gene transfer but have the disadvantage of a limited host range
(Mullins et al. 2006).

18.4.4 Viral-Mediated Gene Transfer

Viruses carry complex arrangements and life cycles; many are pathogenic but act as
very efficient vehicles in gene delivery (Patel and Misra 2011). RNA and DNA
viruses that infect plants can be used as a vector to transfer genes to the target. The
gene to be transferred is integrated into the viral genome, and at this instant, the virus
acts as a vector to transfer the gene. The virus with the transferred gene infects the
target cell and results in a successful transformation. The main disadvantage is the
high number of copies per cell, and virus-mediated gene transfer can only produce
transient transfer and not stable transformation—that means they cannot be trans-
ferred to the offspring. Some of the viral vectors used are a retrovirus, an adenovirus
(Chailertvanitkul and Pouton 2010), adeno-associated virus, herpes virus, smallpox
virus, human moss virus (HFV), and lentivirus (Patel and Misra 2011; Fiandaca and
Federoff 2014).
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18.5 Mutagenesis and Crop Improvement

18.5.1 Site-Directed Mutagenesis

In a study, chemical mutagenesis was used to attain fungicide benomyl-resistant
strains of Trichoderma harzianum (Ahmad and Baker 1987). Remarkably, the
mutant strains were better colonizers of the rhizosphere than wild-type strains. The
mutation technique will undoubtedly contribute to the upgradation of biological
control agents. Genetic engineering proposes stimulating possibilities for the genetic
manipulation of fungi both to improve biological control strains and to understand
how biological control works. Transformation of filamentous fungi was first reported
in the laboratories of Tatum (Mishra and Tatum 1973) and Case (Case et al. 1979).
Since then, molecular techniques have become more accessible for use by possible
biological control fungi (Fincham 1989; Bhatt et al. 2019d; Sharma and Bhatt 2016;
Sharma et al. 2016; Bhatt and Nailwal 2018). There is no doubt that the expansion
and use of molecular practices will persist to advance rapidly (Khati et al. 2018a;
Gangola et al. 2018a; Bhatt 2018; Bhatt and Barh 2018; Bhatt et al. 2019e; Bhandari
and Bhatt 2020; Bhatt and Bhatt 2021).

18.6 Bioinformatics Tools in Crop Improvement

Bioinformatics resources, in addition to various web databases, provide extensive
information on genomic data that is widely needed for research purposes. Improving
crops using bioinformatics tools is more promising these days (Singh et al. 2021;
Zhang et al. 2020a, b; Mishra et al. 2020; Feng et al. 2020; Lin et al. 2020; Zhan et al.
2020; Ye et al. 2019; Huang et al. 2019, 2020). Over time, technology has improved
to a surprising level, bioinformatics provides crucial information about crop geno-
mic data, and this technology explores the sequence of many genes. This could help
us to sequence the economically important crop and the more beneficial traits.
Whole-genome comparisons are accelerating the pace of competent research (Fan
et al. 2020; Pang et al. 2020; Gangola et al. 2018b; Gupta et al. 2018; Khati et al.
2017a, 2018b; Kumar et al. 2017). Projects of genome sequencing of economically
important crops have been accomplished and are seen as the access to new research.
Database of specific data sets in a compiled form with enriched annotations helps to
study gene families with greater precision. Genomic comparisons of different crops
help pinpoint the conserved regions between crops, providing common adaptation
strategies for plants (Nagoshi et al. 2018). After completing the sequencing of the
cultures, the data generated was used to create modeled proteomic data that helped to
understand the content of certain gene families. Major events, such as gene dupli-
cation, as well as other abnormalities, are manipulated using bioinformatics tools
(Khati et al. 2017a, b, 2018b; Kumar et al. 2017). Additionally, access to critical data
to improve crop traits is positively simplified at a great end by using advances in
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technology and data acquisition sites. Therefore, efficient use of genetic data sup-
ports sustainable crop improvement. Different techniques, such as high-throughput
sequencing, generate a stack of crop data. Omics research works on the prediction of
candidate genes and, therefore, on the predicted functions (Mochida and Shinozaki
2010; Lockhart and Winzeler 2000). Data on transcriptomics and metabolomics
have also elucidated the regulatory networks that are crucial against plant stressors.
As a result, several crops were protected from biotic and abiotic stressors and yield
was restored.

18.7 Plant Tissue Culture in Crop Improvement

Advancements in tissue culture methods have very important part in breeding
various crops. These in vitro tissue culture techniques offer cloning, screening,
micropropagation, micrografting, organogenesis, etc. to assist plant breeders in
several ways. In tissue culture practices, the phenomenon of totipotency capacity
of the plants (explants) is exploited to introduce variance in genetic organization of
plants (Brown and Thorpe 1995). Explants or plants are treated with appropriate
treatments such as thermotherapy to eradicate viruses and diseases and allowed to
divide to forms a colorless undifferentiated mass of cells (callus) (Jain 2001). The
epigenetic alterations induced during tissue culture processes are known as
somaclonal variations. Together with molecular and biotechnological interventions,
several techniques have been developed to transfer necessary genetic traits that are
commercially favored. Clonal multiplication ornamental crop industries operate
massively and thus greatly increase cultivars. Plant traits are thus evaluated against
different plants in plant breeding (Tazeb 2017). Several genetically modified plants
have been established during the last 20 years utilizing technological advancements
in genetic engineering (Bawa and Anilakumar 2013). These plants have been
developed such that often use either a transforming vector or other techniques that
require chemical and enzyme action coupled to favor transformation such as use of
liposomes, biolistic particle gun, microinjection, and electroporation techniques
(Bhalla 2006). Transformation vector such as Agrobacterium tumefaciens induces
tumors with its Ti plasmid and subsequently transfers T-DNA (transfer DNA) into
host plant parts (typically leaves). The DNA segment of interest was inserted into the
T-DNA (transfer DNA), eliminating the nonessential part (the portion of the plasmid
that is not required for the act of transfer) (Gheysen et al. 1998; Gelvin 2003).
Transformation success modifies the cells, followed by cell harvesting and finally
regenerated in vitro into complete plantlets. However, assembly of necessary and
advantageous crop traits for any crop enhancement program is certainly most critical
and is usually performed by genetic transformation or hybridization program. Single
genes are favored for transfer by most molecular and genetic methods. Hybridization
is preferred for the successful transfer of more genes in a single reaction time. Tissue
culture techniques facilitate the hybridization process when the embryo is aborted
and therefore does not favor plant establishment. Tissue culture embryo rescue has
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been used successfully to overcome the problem of embryo abortion or the inability
of seeds to develop (Tazeb 2017).

There are so many important advantages of plant tissue culture over crops. A
wide variety of cultures have been recovered by IVF using pistil pollination and self-
pollination and cross-pollination of ovules. A wide series of plants have been
recovered by IVF using pistil pollination and self-pollination and cross-pollination
of ovules, such as tobacco, corn, clover, poppy, canola, cabbage, cotton, etc.
Another type used to give value to cultures is embryo culture and orchids, roses,
and bananas are formed by embryo culture. Several other varieties are also success-
fully formed, such as stress, drought, and heat-tolerant varieties. In vitro propagation
by meristem, cell organ and tissue culture, organogenesis, and somatic embryogen-
esis are presented. These techniques certainly may make breeding programs simpler
and overcome some important economic and agronomic factors that might have
never occurred with conventional plant breeding and improvement methods (Wang
et al. 2016; De Filippis 2013). The method of plant tissue culture plays a dominant
role in the second green revolution in which plant biotechnology is considered
desirable crops. The yield and quality of the crops are greatly increased through
the extensive use of this technology. Increasing nutrition and food safety are the
basic points to consider before implementing tissue culture techniques.

18.8 Immobilization of Microbes to Improve Soil Health
and Crop Yield

The use of beneficial microbes as bioinoculant increases their number in soil, which
in turn increases the availability of nutrients to the plants. Yet, complications in
technical handling are often observed with fungal cells when employed as
bioinoculants for practical purposes, since satisfactory results are observed during
in vitro conditions, but not typically realized in natural agricultural systems (Jain
et al. 2010). A number of factors attribute to poor survivability and colonizing ability
in rhizosphere, such as competition with native microbiota and abiotic stresses.
Encapsulation of the cells in biodegradable capsules can be useful to overcome
such hindrances.

18.8.1 Encapsulation of Bacterial Cells

Cell encapsulation facilitates sustainability and stability of biological functions;
hence, enhanced cellular activities are realized (Juarez-Jimenez et al. 2012). Besides
stability, encapsulation also aids in protecting the cells against all contrary ecological
factors and facilitates slow release of cells into the soil in a controlled method, thus
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improving the efficiency of microbial fertilizers or biofertilizers (Vassilev and
Vassileva 2003).

18.9 Conclusion

The world population is growing rapidly. Thus, in the next few years, it will be the
biggest challenge to feed a huge population. Global warming, restricted environ-
mental conditions, and biotic factors limit crop yields. The main challenge for
researchers working on different crops is to increase agricultural productivity to
counter the demand for foodstuff supply to a rapidly expanding global population.
Therefore, crop improvement is the main element of agricultural progress, and there
are still a lot of zones left to work on in the field of crop improvement. Applications
of RDT or genetic engineering to crop improvement are well suited to deciphering
the problem of world hunger and depriving sustainable intensification.
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