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Abstract Downstream is a very affluent process for fermentation. It usually
involves complicated equipment and processes to obtain desired chemicals or
materials from intra- and/or extracellular spaces of microorganisms. Recently, it
becomes possible to simplify the microbial cell separation processes by morpholog-
ically engineering the shapes of small microorganisms. Biologically engineered
entities have enabled discoveries in the past decade and a half, spanning from
novel routes for the syntheses of drugs and value-added products to carbon capture.
The precise cellular reprogramming has extended to the production of nanomaterials
owing to their ever-growing demand. Additionally, nutraceuticals are important
natural bioactive compounds that confer health-promoting and medical benefits to
humans. Globally, growing demands for value-added nutraceuticals for prevention
and treatment of human diseases have rendered nutraceuticals a multi-billion dollar
market. However, supply limitations and extraction difficulties from natural sources
such as plants, animals, or fungi restrict the large-scale use of nutraceuticals.
Metabolic engineering via microbial production platforms has been advanced as
an eco-friendly alternative approach for production of value-added nutraceuticals
from simple carbon sources. Microbial platforms like the most widely used
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Escherichia coli and Saccharomyces cerevisiae have been engineered as versatile
cell factories for production of diverse and complex value-added chemicals such as
phytochemicals, prebiotics, polysaccharides, and poly amino acids. This chapter
highlights the recent progresses in biological production of value-added
nutraceuticals via metabolic engineering approaches.
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12.1 Introduction

Microbial engineering involves the use of biological, chemical, and engineering
aspect of biotechnology that results in manipulations and development of microbes
to get the desired products in different fields (Peralta-Yahya et al. 2012). The
technology which is employed in microbiological systems and their derivatives to
transform products used in daily need are highly beneficial for humankind (Okafor
2007). India is a country where more than half of the population is engaged in
agricultural practices. India is also considered the second-largest producer of agri-
cultural products worldwide (Gulati and Juneja 2018). Statics data reported that
India produces approximately 81.285 million metric tonnes of fruits and 162.187
million tonnes of vegetables, respectively, in year 2013 (Negi 2014). Most of the
production is consumed fresh; however, a larger quantity which accounts for
approximately 25–40% gets rotten due to unavailability of proper postharvest
facilities. This wastage causes a huge loss to crop yield and also exhibits great
impact on economy. Henceforth, reducing the postharvest wastages requires utmost
consideration for making a chain among consumption and supply. Microbial bio-
technology has been used in handling food since ancient times such as in making
bread or beverage. Though various metabolites are produced by microbes due to the
introduction of modern biotechnology, microbial molecular structures possess
strong potential that could be used in food industry particularly in fermentation of
foods, enzymes, ingredients of food, testing of food, and postharvest administration
of agricultural yields. However, microbial biotechnology in food processing division
represents collection and advancement of microbes by ideas of refining regulated
production, effectiveness, as well as the quality, safety, and consistency of
bioprocessed foodstuffs. Microbes have a pivotal role in the production of fermented
food. Microbial cultures could be genetically modified by traditional and molecular
tactics.

A deliberate breakdown practice which is induced by microorganisms for the
transformation of carbohydrates to alcohols or organic acids is generally referred to
as fermentation (Battcock and Azam-Ali 1998). Fermentation is worldwide func-
tional in the conservation of various raw agricultural products including vegetables,
fruits, tubers and cereals, fish, milk, meat, etc. Some microorganisms accompanying
the fermented foodstuffs such as Lactobacillus sp. are probiotic used as live micro-
bial food complements or food constituents that help in improvement of the
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metabolic process of gastrointestinal tract’s flora. Therefore, microbes are believed
to be advantageous in maximum fermentations. Nowadays, nanotechnology is
considered as innovative field of science which deals with the synthesis and use of
material with nanoscale size in numerous aspect of life. However, the number of
microbes is naturally proficient in generating nanoparticles either intracellularly or
extracellularly while confronted with various metal salts. Accessibility of many
biotechnological tools including synthetic biology, genetic, and protein engineering
increases usage of microbial systems to up-skill synthesis of nanoparticles.

12.2 Nanoparticles Synthesis by Microbial Engineering

The idea of the natural synthesis of nanoparticles was first started in the 1960s and
recently has seen an evolution in the last one and a half decade. Biological nano-
particle synthesis represents an extensive range of biological methods for generating
nanoparticles through biotic hosts which are not restricted to bacteria, yeast, fungi,
algae, and plants. Efficient synthesis of nanoparticle does require a compatible host
that comprises molecular machinery to convert the raw material into the nanoparticle
and can efficiently accommodate the end product, i.e. synthesized nanoparticle.
Majorly few cellular proteins that have a protective role may interfere in the cellular
metabolism and hinder the uptake of metallic ions and their conversion into
nanoparticles with precise size and morphology. Therefore, the manipulation of
such host and proteins should be achievable. The ultimate benefit of the biological
synthesis of nanoparticles is their synthesis at ambient temperature and pressure, and
no involvement of chemicals are required in the synthesis which could perhaps be
hazardous.

Biosynthesis of nanoparticle through microbes occurs in two ways that further
comprise two sub-modes, i.e. (a) intracellular in non-template or template mode and
(b) extracellular in culture or membrane adherent mode. During intracellular syn-
thesis, the cell culture is incubated with the metal salt solution where metal ions pass
across the cell membrane and synthesis takes place inside the cells. Subsequently,
the cells are lysed and nanoparticles are purified. On the other side, extracellular
synthesis as the name suggests involves the synthesis of nanoparticle on the cell
membrane or in the culture broth. Therefore, extracellularly synthesized
nanoparticles are easier to retrieve and require lesser downstream processing phases.
The very first report on biosynthesis of nanoparticle using genetically engineered
bacteria was documented in 2006–2007 (Sambhy et al. 2006; Vigneshwaran et al.
2007). Later, Kang et al. (2008) genetically modified E. coli strain JM109 to express
phytochelatin synthase of Schizosaccharomyces pombe along with improved
g-glutamyl cysteine synthetase (GSHI) to synthesize cadmium sulfide (CdS)
nanocrystals. The GSHI is responsible for catalysing the glutathione synthesis
which is also a precursor of metal-binding peptide phytochelatin that in turn assists
as capping agent for CdS nanocrystals. Phytochelatin synthesis of S. pombe is the
best characterized natural defence mechanism towards cadmium toxicity. Further
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development in the above-mentioned approach was achieved in another strain,
E. coli R189, where uniform CdS quantum dot (QDs) nanocrystals of 3–4 nm size
were synthesized (Kang et al. 2008). Mi et al. (2011) expressed the transgene
encoding CdS-binding histidine-rich peptide (CDS7) reported to bind with CdS
(Peelle et al. 2005) to induce the formation of CdS QDs. Noble nanoparticles from
silver and gold, alkali-earth (Cs, Sr), magnetic (Fe, Co, Ni, Mn), semiconducting
(Cd, Se, Zn, Te) metals, as well as rare earth fluorides (Pr, Gd) were successfully
synthesized using genetically engineered E. coli-expressing recombinant
metallothionein from Pseudomonas putida and phytochelatin from Arabidopsis
thaliana (Park et al. 2010; Ashraf et al. 2021). Some of the extremophiles including
Antarctic bacteria have also been exploited to synthesize the fluorescent nanoparticle
due to their natural resistant to cadmium and tellurides (Plaza et al. 2016). Several
strains of E. coli have a CusCFBA silver/copper system that promotes the synthesis
of silver nanoparticle in periplasmic space (Lok et al. 2008). Shi et al. (2007) also
used a similar type of strain for the synthesis of silver nanoparticle in periplasmic
space using anaerobic conditions. The procedure generates reduced metal nanopar-
ticle using oxidized metal ions as electron acceptors with the assistance of
cytochrome-c (Shi et al. 2007; Suresh et al. 2010).

12.3 Microbial Enzymes

Enzymes can be defined as the biotic catalyst which is involved in various biosyn-
thetic reactions and metabolic processes (Li et al. 2021; Kumar et al. 2021).
Microbes serve as a major source of enzymes. Microbes can replicate easily and
rapidly and could be genetically engineered as per the desired requirement of the
product (Bhandari et al. 2021; Verma et al. 2021). Microbial enzymes are relatively
more active and stable compared to that of isolated from plants or animal sources
(Gopinath et al. 2013; Anbu et al. 2017; Bhatt et al. 2021). Various extremophilic
bacterial and fungal strains have been isolated from unfavourable pH and tempera-
ture as well as high salt and heavy metal conditions for the synthesis of different
useful enzymes comprising properties of higher yield (Gopinat et al. 2003; Gopinath
et al. 2005).

Microbial enzymes can be isolated from different microorganisms including
thermophilic (requires a higher temperature for growth), acidophilic (optimally
active in acidic pH range), and alkalophilic (activates at higher pH range) bacteria.
The synthesis of these microbial enzymes can be carried out at extreme conditions
that can decrease the possibility of contamination during large-scale production
(Banat et al. 1992; Cadet et al. 2016). Revolution in enzymes acquired from
microorganisms creates a great opportunity for the enhancement of low liveliness
consuming improvements that could be applied for biotransformation of poultry
waste into beneficial harvests. Enzymatic events may be accommodating to recycle
waste rich in protein unconfined by the poultry industry, besides these lines
protecting environment by declining waste (Atuanya and Aigbirior 2002). There
are some enzymes that have various roles in industrial applications (Table 12.1).
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12.4 Nutraceuticals

Nutraceutical, a fusion of nutrition and pharmaceuticals, is defined as ‘a material
which possesses the nutritional value of a diet and delivers pharmaceutical or health
assistances such as preclusion and disease management’ (DeFelice 1995). Further
revision quoted nutraceuticals as ‘a product isolated or purified from foods that are
generally sold in medicinal forms not usually associated with food’ (Pandey et al.
2010). Nutraceuticals have been obtained from various sources ranging from
microbes (e.g. poly amino acids), plants (e.g. phytochemicals, vitamins), and ani-
mals (polysaccharides) as well as marine sources (glucosamine and chitosan) (Ras-
mussen and Morrissey 2007; Lordan et al. 2011; Wang et al. 2016). Nutraceuticals
are potentially helpful in health up-gradation and disease prevention especially in
avoiding age-related disorders such as depression, oxidative damages, inflammation,
diabetes, gastrointestinal diseases, and even cancer (Jain and Ramawat 2013). The
increasing demands and benefits of microbial supplements having health benefits
have significantly stimulated advancement in the market of nutraceuticals. The
global nutraceutical market has rapidly grown, and in 2014, it was valued at
$171.8 billion. The market is expected to reach $722.49 billion in the next 6–7
years with a compound annual progress rate (CAGR) of 8.3% over the forecast
period (NMSS&TA 2020). Though, the growing market of nutraceutical could
barely be contented through the efficiency of straight nutraceutical industries. Direct
extraction approaches are restricted with accessibility and price of raw ingredients,
quality check of goods, and less content and pureness of nutraceuticals. While
synthesis by chemicals could be another method, it is unsuitable to generate ade-
quate quantity and quality of biochemicals and certainly not feasible for composite
biochemicals (De Luca et al. 2012). To overcome the issue, metabolic engineering of
microbes is considered a promising methodology that has recently attained prodi-
gious improvement towards production of value-added nutraceuticals. We have
further discussed the recent advances of microbial-based metabolic engineering
and their role in nutraceutical production including phytochemicals, prebiotics,
polysaccharides, as well as poly amino acids.

Table 12.1 Various enzymes and their role in industries

Sr. no. Enzyme Role(s)

1. Protease Breaks proteins into their simple form

2. Keratinase Decomposes keratin found in hairs, nails, etc.

3. Amylase Breaks starch into sugars

4. Xylanase Converts polysaccharides into xylose

Catalytic breakdown of hemicellulose

5. Ligninase Degrades lignin

6. Cellulase Breakdown of cellulose

7. Lipase Hydrolysis of fats, triglycerides

8. Pectinase Breakdown of pectin
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12.5 Phytochemicals

Phytochemicals are the broad spectrum of secondary bioactive metabolites obtained
from different parts of the plants including stem, leaf, fruits, beans, and grains.
Phytochemicals are often involved in plant defence mechanism against adverse
biotic and abiotic conditions or may exert health-promoting or disease-resistant
properties (Jain and Ramawat 2013). Some of the major types of phytochemicals
are discussed further.

12.5.1 Alkaloids

Alkaloids are amino acid-derived nitrogenous complexes with various beneficial
properties including antimalarial to anticancer effects (Marienhagen and Bott 2013).
Due to long biosynthetic pathways and the complex structure, alkaloid production
was limited to the plants for past few years. The most commonly used alkaloids are
(a) monoterpene indole alkaloids (MIAs) derived from tryptophan and
glucosinolates and (b) benzylisoquinoline alkaloids (BIAs) derived from tyrosine.

Due to the recent advancement and knowledge of the BIA biosynthetic pathway,
the synthesis is now carried out in various microorganisms like E. coli and
S. cerevisiae (Nakagawa et al. 2011, 2014; Fossati et al. 2014). The (S)-reticuline
biologically synthesized from simple carbon sources is an intermediate of BIA
pathway (Nakagawa et al. 2011). Apart from biosynthesis of (S)-reticuline in
E. coli, S. cerevisiae also facilitate to synthesizes of (R, S)-reticuline that in turn
engineered to produce salutaridine from (R)-reticuline and scoulerine,
tetrahydroberberine, and tetrahydrocolumbamine from (S)-reticuline (Hawkins and
Smolke 2008).

Metabolic engineering of MIA alkaloids in microbes is inadequate and not much
diverse like that of BIA alkaloids. Strictosidine, a de novo MIA alkaloid, has been
successfully produced in yeast by the deletion of three genes and the introduction of
21 new genes in yeast genome (Brown et al. 2015). Yeast has also been
bioengineered by introducing eight genes of plants into its genome for the produc-
tion of tryptophan-derived indolylglucosinolate (IG) (Mikkelsen et al. 2012).
Tryptophan-derived IG is a sulphur-rich, amino acid-derived natural composites of
glucosinolates. For metabolic engineering in microbes and large-scale alkaloid
production, genes isolated from plant platforms are most stable and show promising
potential for biosynthesis of plant-derived complexes (Brown et al. 2015; Mora-Pale
et al. 2013).
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12.5.2 Terpenoids

It serves as the largest class of phytonutrients with various beneficial properties like
anti-infectious, anti-inflammatory, and anticancer properties (Jain and Ramawat
2013; Mora-Pale et al. 2013). It is generally present in cereals, soy plants, and
green foods. Terpenoids are dimethylallyl pyrophosphate (DMAPP) or isopentenyl
pyrophosphate (IPP) derived broad carbon skeleton compounds, like monoterpenes
(e.g. menthol), diterpenes (e.g. paclitaxel), triterpenes (e.g. steroid saponins,
oleanane, ursane), tetraterpenes (e.g. carotenoids), sesquiterpenes (e.g. artemisinin),
and polyterpenes (Marienhagen and Bott 2013). Terpenoids production in microbes
illustrates the success and advancement of metabolic engineering for the synthesis of
terpenoid drugs. Most common terpenoids that are used in pharmaceuticals are
(a) artemisinic acid which is a precursor of antimalarial drug known as artemisinin
and (b) taxadiene which is an intermediate of anticancer drug known as paclitaxel
(Besumbes et al. 2004; van Herpen et al. 2010).

In nutraceutical industries, carotenoids (a tetraterpene) including astaxanthin,
α-carotene and β-carotene, and lycopene act as feed supplements and natural food
colourants (Marienhagen and Bott 2013). For a long time, combinatorial carotenoid
biosynthesis has been done in heterologous non-carotenogenic hosts including
E. coli and S. cerevisiae due to large-scale production of carotenoid so the metabol-
ically engineered efforts are generally focused on it only. Strain improvement
through gene knockout technique generally increases the production of lycopene
to a large extent in E.coli (Lin et al. 2014). Metabolic engineered E. coli have high
supply of ATP and NADPH which help in the production of upgraded β-carotene up
to 2.1 g/L β-carotene and increase the harvest up to 60 mg/g DCW (Zhao et al. 2013).
A high amount of astaxanthin has been produced through harvest of 1.4 mg/g DCW
when the biosynthetic genes of xanthophylls are chromosomally integrated with a
plasmid-free E. coli (Lemuth et al. 2011). Lycopene E. coli has generally used for the
production of carotenoids because it not only is involved in the production of novel
carotenoid like 4-ketozeinoxanthin but also produces some rare carotenoids like
decaprenoxanthin, sarcinaxanthin, and sarprenoxanthin (Netzer et al. 2010; Maoka
et al. 2014).

12.6 Prebiotics

Prebiotics are nonviable components in food that encourage the growth or activity of
useful microorganisms in the gastrointestinal (Pineiro et al. 2008). Prebiotics are
polysaccharide with 3–10 monomeric units of sugar which will not further dissociate
in the body; hence, it is nondigestible. Prebiotics show a beneficial effect on the
metabolic activity and diversity of the gut microbiota, and this leads to major effect
on the immune system of host. Prebiotics can also be used in treatment of diverse
inflammation-induced diseases by improving the gut microbiota using probiotics
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such as Bifidobacteria or Lactobacillus sp. (Lin et al. 2014). A general example of
prebiotics is soluble dietary fibres such as inulin, fructooligosaccharides (FOS), and
lactose-based galactooligosaccharides (GOS). Inulin and fructooligosaccharides are
produced by probiotic Lactobacillus gasseri strain (Anwar et al. 2010), whereas
galactooligosaccharides (GOS) are short-chain and lactose-derived galactose poly-
mer synthesized by Kluyveromyces lactis (Rodriguez-Colinas et al. 2011). Conver-
sion of lactose to GOS is done when the codon-optimized β-galactosidase expresses
from hyper-thermophile Sulfolobus solfataricus in Lactococcus lactis. In terms of
infants and toddler, human milk has been accepted as a best nutritive substance due
to the presence of most abundant oligosaccharide present in it, i.e. 20-fucosyl lactose
(20-FL). 20-FL can also be produced from lactose and glycerol with the help of E. coli
by overexpressing the fucosyl transferase or by increasing the availability of GDP-L-
fructose for the high yield (Lee et al. 2012; Baumgartner et al. 2013).

12.7 Polysaccharides

Polysaccharides are sugar polymers composed of the large number of small mono-
meric sugar units with highly versatile structure. Polysaccharides are produced by
most of the microorganism, e.g. bacteria, fungi, and yeast, or may be extracted from
plant and animal tissues. Due to their health beneficial properties, microbial poly-
saccharides including bacterial polysaccharides and fungal polysaccharides are
referred to as the best source for nutraceuticals. Commercialization production of
bacterial polysaccharides like gellan, dextran, xanthan, and alginate can be carried
out through microbial engineering and refinement, respectively (Giavasis 2013). For
dairy product usage, exopolysaccharides are produced through the metabolic engi-
neering of Streptococcus and Lactococcus species (Jolly et al. 2002). Other than
bacterial and fungal polysaccharide shows various extensive properties like
immunostimulatory, antitumor, antimicrobial, antioxidant, hypocholesterolaemic,
and hypoglycaemic benefits (Giavasis 2014).

Due to these properties, fungal polysaccharides show great potential in pharma-
ceutical and nutraceutical applications (Giavasis 2014). Scleroglucan excreted by
mycelia of the fungus Sclerotiumrol fsii is a potent antiviral and antitumor glucan-
based polysaccharide and the yield of the polysaccharide can easily be increased by
the adding of L-lysine and uridine monophosphate (UMP) (Giavasis 2014).
Hyaluronic acid (HA), chondroitin, and heparosan are animal-based polysaccharides
which have been produced by microbial host instead of extracting it from the animal
tissues. E. coli, L. lactis, and Streptomyces albulus are the major microorganisms
used for the production of hyaluronic acid (Yu and Stephanopoulos 2008; Sheng
et al. 2015; Yoshimura et al. 2015). Some therapeutically essential polysaccharides
like heparosan and chondroitin could be synthesized from engineered E. coli at a
relatively high titter (He et al. 2015; Zhang et al. 2012).
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12.8 Poly Amino Acids

Poly amino acids comprising one or two amino acids are produced by microorgan-
ism through a ribosome-independent enzymatic reaction that differentiates them
from polypeptides which are generally synthesized by translation. There are three
poly amino acid found naturally, viz. poly-γ-glutamic acid (γ-PGA), multi-L-arginyl-
poly (L-aspartic acid), and poly-ε-L-lysine (ε-PL). γ-PGA is a biodegradable polymer
that is soluble in aqueous solutions and therefore used as drug carriers or hydrogels
(Khalil et al. 2017). Few genetically engineered Bacillus species produced γ-PGA in
high quantity ranging from 31.7 to 107.7 g/L, when it feeds on L-glutamic acid
(Hsueh et al. 2017). An equimolar amount of arginine and aspartic acid is used to
produce cyanophycin by cyanobacteria or some chemotrophic bacteria like
Acinetobacter calcoaceticus, etc. Cyanophycin is used as a dipeptide precursor for
therapeutic and nutritional applications (Watzer and Forchhammer 2018).
Cyanophycin can be produced in E. coli by overexpressing the cyanophycin syn-
thetase cphA gene isolated from Synechocystis sp. PCC 6803 with productivity of
120 mg/g CDW (Tseng et al. 2012). Streptomyces species like Streptomyces albulus
are exclusively involved in the production of ε-PL and could reach up 35.14 g/L
when glucose and glycerol are used as carbon source (Chen et al. 2012; Dodd et al.
2018). Poly-ε-L-lysine or ε-PL is a homo poly amino acid that is produced by the
polymerization of lysine via ε-PL synthetase (PLS). ε-PL has been approved as food
preservatives or dietary agents due to having antibacterial anticancer activities in
developed countries like the United States and Japan (El-Sersy et al. 2012).

12.9 Conclusion

Nowadays, due to green manufacturing and sustainable development, microbial
production of different substances is widely used, but this development is limited
because of its high cost. For developing countries, it creates an opportunity for using
microbes and their derivatives from small places like household and village-level
production to large-scale industrial productions. These microbial processes need
more exploration to be exploited with full intensity with their beneficiary effects.
The last decades have recorded extraordinary advancements in production of
nutraceuticals by metabolic engineering of microorganisms. Nutraceuticals own
countless application including strengthening of immunity of human beings. Further
studies are recommended for exploration of different microbial explorations in
which microbes are directly involved in enhancing the productivity of processed
food or food products. The use of metabolically engineered microbes opens a
promising door not only in laboratory-based production but also for the industry-
based production of intricate natural compounds from simple carbon sources. The
emerging role of synthetic biology will promote the progression of this field in
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upcoming years, and hopefully, this will deliver requisite tools for tuneable synthesis
and optimization of nutraceutical synthesis in biological hosts.
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