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Abstract

In the last 30 years, quinoa started to be tested and produced in more than
100 countries outside the Andes, its region of origin. Nowadays, quinoa is
found in more than 120 countries around the globe. During this time, biotechnol-
ogy has become an important tool for different areas of research in quinoa,
especially with the use of genetic markers. Biotechnology applications in this
underutilized grain started in the United States, and their use has been more
intensive in countries where quinoa was recently introduced. Biotechnology
benefitted the quinoa sector with numerous studies on the species evolution,
responses to abiotic stress, and assisted methods for faster genetic improvement.
The recent quinoa genome description enables an exponential development with
the complementation from novel areas, techniques, and tools such as omics and
bioinformatics. Despite this, biotechnology applications in the Andean countries
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have been more limited due to economic and politic contexts. Nevertheless,
biotechnology has been used to characterize the rich Andean germplasm, improve
conservation systems, and develop bioinput. In this sense, since biotechnology
should keep providing solutions for food security under healthy, sustainable, and
reasonable principles, its use can be highly recommended. Biotechnology has the
great potential to accelerate conventional breeding processes commonly applied
to this crop, as well as to generate alternative options to enhance the production
system and as model to improve other crops. With an integrative view and
collaboration between different countries, biotechnology can provide tangible
benefits to different stakeholders.

Keywords

Chenopodium · Genetic markers · Genomics · Endophytes · Breeding · Genetic
improvement

5.1 Introduction

For thousands of years, quinoa (Chenopodium quinoa Willd.) has been
domesticated, produced, and concentrated in the Andean region, but it was not
until the twentieth century that the qualities of this grain crop were rediscovered
by the rest of the world. The recent interest for quinoa has triggered a fast dissemi-
nation of this crop around the globe. However, it is still considered an underutilized
crop due to the limited application of technology and research compared to major
crops.

Similarly, it is in the last centuries that modern biotechnology had an exponential
development and expanded to include different new disciplines and novel
technologies. Biotechnology represents an alternative for the improvement of agri-
cultural systems and can enhance quinoa production as well.

In this context, the present chapter describes the advances of biotechnology in
quinoa production. It starts with an overview of the production and presence of
quinoa around the world and summarizes the state of the art of the use of biotech-
nology tools in this crop. The dynamics of quinoa production and the use of
biotechnology differ in countries of traditional production and in countries of recent
introduction. Therefore, the perspectives, challenges, and recommendations for
biotechnology application are described under this consideration.

The description of the global dynamics of quinoa in parallel with the use of
technology for its development is important to realize the achievements, future
perspectives, and threats of biotechnology use in this crop. It also marks a different
expansion path, compared with other NewWorld crops that were disseminated to the
rest of the world.
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5.2 World Quinoa Production and Biotechnology Applications:
State of the Art

5.2.1 Brief Overview of Development

Different authors have described the production and dissemination of quinoa (Rojas
et al. 2011; Bazile and Baudron 2014; Bazile et al. 2016; Alandia et al. 2020).
Therefore, in this section, we provide a brief overview. Figure 5.1 summarizes the
expansion of quinoa by illustrating its presence around the globe along time. A
detailed description with the type of presence and areas of production with quinoa
can be found in Alandia et al. (2020).

For thousands of years, the production remained concentrated in the Andes, its
region of origin. Andean people used this grain as food, in religious contexts, and as
part of its culture. Its production for food was tracked down to 3000 years BC (Bruno
2006; Planella et al. 2014). In the Hispanic period, because of the grain appearance,
it was described by tellers and in communications to the Spanish crown as the millet
or rice of the Incas (De la Vega 1609). In fact, before the twentieth century, quinoa
was part of the cropping systems in only six countries in the world (in green in
Fig. 5.1).

The rest of the world outside the Andean region started to rediscover quinoa
driven by the development of new markets and research. The spread of this grain to
other latitudes of the globe is reported for research back to 1935 (Bazile and Baudron
2014), but in reality, it was in North America where quinoa started to be produced
and introduced to the market in the 1980s.

From there, different germplasm collections and breeding programs started to
develop. In fact, from being only in six countries in the 1900s, quinoa is now present
in more than 120 countries around the globe, both for research and for commercial
production. It is in the last 30 years (from 1990 to 2018) that quinoa was introduced
to 106 countries outside of its region of origin. A significant dissemination of this
Andean grain took place with European research projects starting in the 1990s
(in orange in Fig. 5.1). Thereafter, the second most significant spread of this grain
took place with the International Year of Quinoa in 2013 that promoted this grain
around the world (in red in Fig. 5.1). The main producers are still located in the
Andean region, i.e. Peru, Bolivia, and Ecuador; these are followed now by the
Netherlands, the United States, Canada, and Spain (Alandia et al. 2020).

5.2.2 Chronology in the Use of Biotechnology for Improving
Cultivation

During the pre-Hispanic period, potato, maize, quinoa, and amaranth were important
crops of the Andean civilization. The Spanish colony carried maize and potato
through the Atlantic, and the global expansion of these two crops started. In contrast,
quinoa and amaranth remained as underutilized crops (Butzer 1996). These two are
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now an essential crop in the Andean region and were recently recognized by the rest
of the world (Bazile et al. 2016).

The use and application of biotechnology started after the Green Revolution in
the late 1960s with major crops such as wheat, rice, and maize (Pingali 2012). In
quinoa, it started to be applied in the 1980s with the development of sterile male lines
and the use of isozymes (Wilson 1988; Tamulonis 1989). This early application of
biotechnology did not have a commercial purpose; it was oriented to understand
phylogenetic relations between different Chenopodium and to demonstrate the
potential of biotechnology for quinoa genetic improvement.

During the 1990s, the attention for molecular markers as random amplification of
polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP)
started. At that point, technology was expensive and was applied in the United States
to quinoa originating from Peru, Bolivia, and Chile (Table 5.1). During this period,
molecular markers also helped to screen and characterize quinoa accessions and
material from interspecific and intergeneric crosses (Bonifacio 1995, 2004).

In the following decade, molecular characterization was used to differentiate
domesticated and cultivated quinoa genotypes in the Bolivian Highlands (Rojas-
Beltrán 2007). Andean and coastal quinoa genotypes were then used to elucidate
Chenopodium domestication in North America (Maughan et al. 2006). Andean
genetic resources were also used to develop simple sequence repeat (SSR) markers
for quinoa to support germplasm characterization (Jarvis et al. 2008).

The most significant advances occurred in the twenty-first century where
researchers used specific, more precise, and cost-effective molecular markers also
at the RNA level. These tools were applied to characterize and identify potential
genes for the genetic improvement of quinoa and further to understand abiotic stress
tolerance (cold, salinity, and drought).

In the second decade of the 2000, studies in quinoa shed light on the complete
genome of the plant (Yasui et al. 2016; Jarvis et al. 2017; Zou et al. 2017). This
information can now be integrated with phenotyping, high-throughput sequencing,
and other novel tools such as omics and bioinformatics for the identification of genes
(Schmöckel et al. 2017).

The use of biotechnology tools in quinoa has evolved and generated extensive
knowledge applicable to breeding as well as to the understanding of abiotic stress
processes. This crop had a fast global expansion, and right now, the interest is
concentrated on its genetic improvement. However, there is a difference in the use
of biotechnology in the countries where it was originated compared with the
countries of recent introduction as shown in Table 5.1 and Fig. 5.2.

5.2.3 Quinoa Accessions and Biotechnology Applications

The dissemination of quinoa happened with the transportation of seed to different
parts of the globe. During this process, its accessions started to be conserved at
diverse institutions that are now reported in the Plant Genetic Resources for Food
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Table 5.1 Key examples of biotechnology use in quinoa along time

Approach During the 1980s During the 1990s After the 2000s

Use of
vegetative part
of the plant
increases seed
production

Development of sterile
male lines from in vitro
callus (Tamulonis
1989)

• Peruvian quinoa
lines developed from
in vitro vegetative
(Ruiz 2002)
• In Brazil to increase
stocks of hybrid seeds,
a protocol is developed
(Rocha 2011)

Use of double
haploid
breeding

• In Peru, in vitro
cultivation of anthers is
carried out to obtain
double haploid
in quinoa with Rosada
de Huancayo and
Blanca de Hualhuas
genotypes (Soplín
2009)

Use of
biochemical
and molecular
markers

Use of isozymes to
establish phylogenetic
relationships between
Chenopodium genera
(Wilson 1988)

• Fairbanks et al.
(1993) used RAPD
molecular markers to
detect polymorphisms
in quinoa

• Use of molecular
markers for Andean
germplasm
characterization
(Rojas-Beltrán 2007;
Rodríguez and Isla
2009; Costa-Tártara
et al. 2012; Morillo
Coronado et al. 2017;
Salazar et al. 2019)
• Use of fluorescence
in situ hybridization
(FISH) to quantify the
number of RNA loci in
quinoa (C. berlandieri
var. zschackei and
C. berlandieri spp.
nuttalliae (Maughan
et al. 2006))
• FISH is used to
examine common
ancestors between
C. quinoa,
C. berlandieri, and
C. album (Sederberg
2008; Kolano et al.
2011)
• The evolution of
polyploidy in
quinoa was
demonstrated at the
chromosomal level
using FISH (Kolano
et al. 2012;
Matanguihan et al.
2015)

(continued)
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Table 5.1 (continued)

Approach During the 1980s During the 1990s After the 2000s

• Hong et al. (2017)
obtained complete
chloroplast
(cp) genomes of
C. quinoa and C. album
by next-generation
sequencing

Development
of molecular
markers

• Bonifacio (1995,
2004) developed
RAPD markers for
screening interspecific
and intergeneric
crosses with
C. berlandieri,
C. berlandieri ssp.
nuttalliae, and Atriplex
sp.
• Substantial genetic
similarity was found
between coastal and
Andean ecotypes
(Wilson 1988;
Christensen et al. 2007)

• RAPD was used by
Ruas et al. (1999) and
Del Castillo et al.
(2007) to demonstrate
the relationship
between C. quinoa and
related species of the
Bolivian Highlands
• Polymorphism was
evaluated in six
Peruvian and Bolivian
commercial varieties
with AFLP technology
(Nolasco et al. 2013)
• Mason et al. (2005),
Fuentes et al. (2006),
and Jarvis et al. (2008)
studied Chilean quinoa
diversity with
microsatellite markers
(SSR markers)
• Christensen et al.
(2007) suggested a
potential loss of genetic
diversity of Chile
commercial zones
comparing Highlands
and coastal ecotypes
• Costa-Tártara et al.
(2012), Rada (2015),
and Morillo Coronado
et al. (2017) studied
genetic structure of
cultivated quinoa from
Northwest Argentina,
valley and Altiplano
ecotypes, and
Colombian accessions
using RAM
microsatellite markers

Genome
sequencing and

• Mutagenesis in
quinoa (Gomez-Pando
and Eguiluz-de la Barra

(continued)
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and Agriculture (PGRFA) global information system (FAO 2020). Figure 5.2 shows
the 47 countries with gene banks holding accessions.

According to the official data from the PGRFA system, Bolivia has the biggest
germplasm collection with almost 4000 accessions. Peru reports around 2000
accessions, and it is followed by the United Arab Emirates that hold 1306
accessions. Seven countries conserve from 100 to more than 900 accessions:
Ecuador (910), Germany and Chile (more than 500), the United States (375),
Japan and India (more than 150), and the United Kingdom (136). Moreover, 9
countries conserve up to 83 accessions (Mexico, Australia, Uruguay, Israel,
Ethiopia, Colombia, Hungary, Argentina, and South Africa), and 12 countries
(26% of the 47 countries) hold up to 15 accessions, and 16 countries (34% of the
total) report up to 5 entries.

As previously described, molecular markers have been used since the 1990s.
They were used mainly for breeding and phylogenetic studies and to characterize
genetic resources in 14 countries. In the Andean region, markers were applied in
Bolivia, Peru, Ecuador, Chile, Argentina, and Colombia. In countries of recent
introduction, they were applied in the United States, the Netherlands, Belgium,
Denmark, Italy, Saudi Arabia, China, and Japan (light blue circles in Fig. 5.2
which are covered by the genomics identifier in the last three countries of this list).

Table 5.1 (continued)

Approach During the 1980s During the 1990s After the 2000s

novel
technologies

2013; Mestanza et al.
2018)
• The Japanese team
led by Yasui et al.
(2016) reported an
incomplete genome
sequence in an inbred
line of quinoa (Kd)
• Jarvis et al. (2017)
provided a complete
genome of quinoa from
a coastal Chilean
quinoa accession
• Zou et al. (2017)
provided a complete
genome of quinoa from
a quinoa accession
from the Highlands
• Tolerance to salinity
identified with
genomics, high-
throughput sequencing
and bioinformatics in
different Chenopodium
accessions (Schmöckel
et al. 2017)
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From the countries applying molecular markers, four of them (the Netherlands,
Denmark, China, and Saudi Arabia) do not report local collections to the PGRFA
system. Three countries have succeeded to obtain the genome sequencing, i.e.,
Japan, Saudi Arabia, and China (dark blue with black concentric circles in
Fig. 5.2). Finally, biotechnology has also been used in Ecuador, Peru, Chile, and
Bolivia for the identification of endophytic microorganisms to improve production
(in yellow in Fig. 5.2). Until now, these countries constitute the only references for
quinoa in this field.

5.2.4 Examples of Biotechnology Uses in Underutilized Crops

Even when quinoa is now spread globally, it can be still considered an underutilized
crop. The “underutilized” denomination is given to indigenous plant species grown
locally, generally under low technology, linked to culture and traditions, and with an
understudied potential for food security and new niche market development.
Underutilized crops have been called differently according to the characteristics
that authors want to highlight. Among other names, these species are also called
neglected, orphan, or minor crops (Padulosi and Hoeschle-Zeledon 2004; Mayes
et al. 2012; Tadele 2019).

In this section, we briefly describe some improvement advances in underutilized
crops with successful biotechnology uses and with potential to be applied in quinoa.
In general, the improvement of most underutilized crops has been done through
conventional breeding techniques. These methods targeted traits such as plant
architecture, crop cycle length, and tolerance to biotic and abiotic stressor reduction
of antinutrient levels, among others (Esfeld et al. 2013; Tadele 2019; Gulisano et al.
2019).

The use of modern crop breeding techniques in orphan crops is recent and has
been applied mainly in legumes (chickpea, cowpea, pigeon pea, lupins), grains
(quinoa, amaranth, millet, teff, buckwheat), and few roots and tubers (e.g., manioc).
Molecular-assisted approaches (genetic markers) have been applied in most of the
abovementioned species for diversity characterization, phylogenetic studies, gene
association, and mapping (Tadele 2019). There are reports of high-throughput
techniques like TILLING (Targeting Induced Local Lesions in Genomes) in crops
such as chickpea and teff. Omic tools were recently used for sequencing most of the
species mentioned; in fact, most of their genomes are reported in 2017. Finally,
genome editing (with the bacterial clustered regularly interspaced short palindromic
repeats (CRIPSR)/Cas9 system) was practiced in manioc and ground cherry (Tadele
2019). Examples of advanced techniques used for breeding Andean grains are given
in the table below.

Protocols for advanced breeding methods, such as speed breeding, have been
developed (Ghosh et al. 2018). This method uses prolonged photoperiods under
controlled conditions to accelerate plant growth rate and obtain more generations per
year. Other genetic tools used in the Amaranthaceae have been genotyping by
sequencing (GBS) and genome-wide association studies (GWAS) for phylogenetic

88 G. Alandia et al.



studies, gene association, and mapping (Lightfoot et al. 2017; Stetter and Schmid
2017; Joshi et al. 2018; Rodríguez et al. 2020). High-throughput TILLING was used
in Regalona Baer quinoa cultivar to try to find mutants resistant to herbicides
(Mestanza et al. 2018). Finally, different studies using novel areas such as omics
have been applied in both quinoa and amaranth as described with some examples in
Table 5.2.

Marker-assisted breeding (also known as marker-assisted selection) is a breeding
technique that uses molecular markers (DNA fragments), associated with genes that
are linked to targeted traits. With the use of markers, these genes can be traced,
identified, and assembled for crop improvement. TILLING uses traditional mutation
techniques or naturally occurring mutations (EcoTILLING), followed by high-
throughput mutation detection. It is a reverse genetics method of relatively low
costs. Successful examples have been obtained with teff and chickpea (Esfeld et al.
2013). Among the modern approaches that use biotechnology and molecular trans-
genic and non-transgenic techniques, marker-assisted breeding and TILLING have
less restrictions to be used in underutilized crops and high potential to be applied in
quinoa due to its non-transgenic nature.

5.3 Perspectives in Countries of Traditional Quinoa
Production

5.3.1 Biotechnology Use

Breeding programs in the Andean region were established as early as in the 1960s
starting in Bolivia and Peru. The improvement in the region was primarily done
through conventional breeding and interesting examples of participatory plant
breeding methods. In general, biotechnology tools were used in the region to
characterize the local genetic resources (Gomez-Pando 2015; Gomez-Pando et al.
2019; Danial et al. 2007; Rojas et al. 2015).

As described in previous sections, while numerous genotypes from Andean
collections have been used to generate significant information and for the genetic

Table 5.2 Examples of advanced techniques used for breeding Andean grains

Breeding method/
technology

Andean
grains References

Speed breeding Quinoa Ghosh et al. (2018)

Marker-assisted breeding
(GBS, GWAS)

Amaranth,
quinoa

Lightfoot et al. (2017); Stetter and Schmid (2017);
Joshi et al. (2018); Rodríguez et al. (2020)

High throughput
(TILLING)

Quinoa Mestanza et al. (2018)

Omics (genome,
transcriptome, RNA
sequencing)

Quinoa,
amaranth

Jellen et al. (2013); Ruiz et al. (2019); Clouse et al.
(2016); Lightfoot et al. (2017); Schmöckel et al.
(2017); Zhang et al. (2020a, b)

Note: GBS Genotype By Sequencing, GWAS Genome-Wide Association Study, TILLING
Targeting Induced Local Lesions in Genomes
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improvement of quinoa with modern tools, most of these studies have been
performed outside of the Andean region.

Examples of biotechnology applications can be found in the Andean
countries (though in a smaller scale compared with the northern continents): in
Bolivia for the characterization of germplasm and establishment of core collections
(Rojas-Beltrán 2007; Veramendi et al. 2014); in Peru for phylogenetic studies
(Nolasco et al. 2013) or the first studies with mutagenesis (Gomez-Pando and
Eguiluz-de la Barra 2013); in Chile with AFLP markers to analyze and compare
the genetic diversity of local germplasm and TILLING applied with next generation-
sequencing (Rodríguez and Isla 2009; Mestanza et al. 2018); and in Ecuador,
Argentina, and Colombia with microsatellite markers to analyze the level and
structure of diversity of quinoa (Costa-Tártara et al. 2012; Morillo Coronado et al.
2017; Salazar et al. 2019).

5.3.2 Limitations of Current Technologies

In countries where quinoa is produced traditionally, the main limitations of bio-
technologies to improve production are related to their application. The characteristics
of the economies and policies in the Andean region limit the implementation of these
techniques that require stable specialized staff with constant training, renovation, and
update. In addition, these technologies need steady and well-equipped infrastructure
constantly maintained and upgraded.

Unfortunately, in some countries where it is traditionally produced, research
institutions can be significantly affected by the change of governments and policies.
In addition, the applications of current technologies are mostly constrained by both
insufficient investment and funding. Moreover, bureaucratic systems slow down
innovation processes (Echeverría 1998; Rose Boom et al. 2006).

The reduced number of publications reporting the use of these technologies
directly in the Andean region may reflect the abovementioned limitations. In fact,
Andean countries have addressed the use of molecular tools to characterize the
diversity of their quinoa germplasm, but there seems to be limited use of markers
to assist processes of genetic improvement. So far, the majority of released cultivars
resulted from conventional breeding processes (Apaza Mamani et al. 2013;
Bonifacio et al. 2013, 2015).

Although with limitations, these technologies have been applied as a result of
joined efforts between the governments, international cooperation, and public and
private institutions. Countries with the richest quinoa diversity have been able to
characterize their collections using molecular tools (Rojas-Beltrán 2007; Rojas et al.
2015; Gomez-Pando et al. 2019). Furthermore, other biotechnology uses in the
region have been possible for innovation as described hereafter.
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5.3.3 New Biotechnological Tools

The main focus and application of biotechnology in the countries of traditional
production has been the characterization of the local diversity. There have been
interesting studies such as phylogenesis or the first reference of mutagenesis in
quinoa, but innovative technologies have also been developed to support production.
Bolivia is the second world producer. Production for export is mainly concentrated
in the Southern Highlands, a region with extreme environmental conditions
characterized with low annual temperatures and soils with low fertility (Alandia
2015). Pandey and Yarzábal (2019) have described the potential of plant growth-
promoting microorganisms (PGPM) to improve soil fertility in tropical mountain
regions.

In the 2000s, Bolivian researchers started to explore this area to enhance organic
production concentrated in the Southern Highlands. With biotechnology tools and
bioinformatics, they described diverse native strains of Bacillus, Azotobacter, Pseu-
domonas, Rhizobium, and Flavobacterium collected from farmer plots. The species
found were adapted to extreme environmental conditions and had the capacity to fix
nitrogen and solubilize phosphorus. Entomopathogens were also identified in these
collections, highlighting the potential to develop bioinsecticides for organic produc-
tion. Research continued with the identification of secondary metabolites promoting
growth and increasing yields. Finally, all these efforts resulted in the formulation and
development of bioproducts (Ortuño et al. 2013, 2014, 2017).

These researchers, together with innovative institutions, upscaled this technology
and made different evaluations to validate it in farmer plots (Lino et al. 2019). The
resulting products have been certified and included in a crop management strategy
(Fig. 5.3) and are now commercialized and available to farmers producing under
organic systems (Fundación PROINPA and Biotop SRL 2020).

Similar research was performed in Chile where an important array of fungal
endophytes was found in rooting systems of desert areas (González-Teuber et al.
2017). Moreover, research performed in Peruvian communities by Chumpitaz-
Segovia et al. (2020) characterized 51 strains of plant growth-promoting bacteria
collected from the rhizosphere. From these, 73% had the capacity to grow at low
temperatures and the potential to improve soil fertility for production. Pantoja and
Juana (2015) demonstrated that two strains of bacteria BBAR001 (rhizobial) and
BBAP001 (Pseudomonas) improved soil fertility in plots by solubilizing organic
matter, total nitrogen, and phosphorus. Llanos Machaca (2017) used phosphate-
solubilizing bacteria to promote the availability of phosphorus in the soil and had a
positive effect during the seedling stage. Other bacteria, such as Pseudomonas
(strain PQLMT18) and Rhizobium (strain DZ50), were used to enhance seed germi-
nation in soils with low fertility (Nina-Larico 2019).

Simple methods, such as organic amendments, can improve and promote the
activity of microorganisms. Gomez-Montano et al. (2013) and Paco-Pérez and
Guzmán-Vega (2019) showed that bacteria population and activity increased at the
rhizosphere level in amended soil with lama manure.
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Improving yields is a current challenge for organic production under traditional
production systems and under extreme environmental conditions. Nevertheless,
there is a good potential and interesting initiatives to improve plant responses with
the use of endophytic microorganisms. Through biotechnology, native endophytes
found in traditional farming systems have been isolated and are produced at the
commercial level to improve organic production.

5.3.4 Challenges and Recommendations

Since investment and funding are among the biggest limitations for research and
innovation, the challenge in the Andean region is to build, maintain, and update
capacities constantly and efficiently. To be effective with funding, countries should
consider analysis and learning processes of their own experience as useful tools to
adapt research systems to their context, needs, and also constant changes (Rose
Boom et al. 2006). In this sense, when biotechnology is used to solve each country’s
problems and priorities without affecting biodiversity, governments should include it
in serious plans supported by specialists. The recent COVID-19 pandemic is a clear
example of a rapid change, and it is fundamental for institutions involved in research
to respond and support with fast reactions to these circumstances. Optimist examples
are the efforts in Bolivia with the recent national response plan to reactivate the
agriculture sector to face COVID-19 effects, which suggests projects to develop
bioinputs addressed to small farmers that practice organic agriculture (Gobierno del
Estado Plurinacional de Bolivia 2020). Nevertheless, recent changes of government,
can limit its application.

Having a rich array of genetic resources, the Andean region can use its diversity
to adapt and respond to changes (from climate, market, policies, to mention some).
Biotechnology has been a useful tool for the characterization of different accessions.
The challenge is now to continue using this technology to improve plant productiv-
ity. It is fundamental to strengthen and link capable institutions and their human
resources so they can continue applying novel tools. This will reduce the knowledge
gap between traditional and new countries producing quinoa. In addition, the
collaboration and partnerships between countries and institutions can interlock
efforts to achieve successful products more efficiently. Different strategies adapted
to each specific context can be used to improve the productivity. Good examples
have been the complementation of breeding processes with participatory plant
breeding (Rojas-Beltrán 2007; Danial et al. 2007) and the development of bioinputs
using endophytic organisms as described above.

Results of molecular characterization of Andean germplasm should be used to
achieve and enhance the diversification and quality of products, diets, market,
demand, and certification. The use of the rich array of varieties and species from
megadiverse systems can be positive not only for species such as quinoa but also for
farmers’ resilience and the diversification of their incomes. Moreover, successful
applications of biotechnology should serve as an example for other underutilized
crops in the region. Finally, in countries of traditional production, the integration of
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science and tradition becomes important in order to avoid the underestimation of any
of these elements for agriculture development.

5.4 Perspectives in Countries of Recent Quinoa Production

5.4.1 Biotechnology Use

Experiments with quinoa outside the Andes were initiated in Kenya already in 1935,
but this grain was first grown in the United States and Canada in the 1980s (Bazile
et al. 2016). After the introduction of quinoa in the United Kingdom at the beginning
of the 1980s, European collaborations were established, allowing the introduction of
quinoa in Denmark, the Netherlands, Italy, and, to a minor extent, France. In 2008,
the “Sustainable water use securing food production in dry areas of the Mediterra-
nean region” (SWUP-MED) project brought together a number of partners from
Italy, Portugal, the United Kingdom, the Netherlands, and Denmark, as well as
several countries of the Mediterranean area (Turkey, Morocco, Egypt, the Syrian
Arab Republic), generating a wave of expansion across Europe, the north of Africa,
and the Middle East (Bazile and Baudron 2014).

Only in one year (2015), 20 countries were testing quinoa for the first time
(Bazile et al. 2016; Murphy et al. 2016). Many countries, including China, the
Netherlands, Denmark, and Germany, have now established extensive breeding
programs for the development of varieties adapted to the specific environmental
conditions. As for other crops, many genetic markers have been developed to assist
its breeding efforts, including RAPD (Fairbanks et al. 1993; Ruas et al. 1999; Del
Castillo et al. 2007), AFLP (Maughan et al. 2004; Rodríguez and Isla 2009),
microsatellites or SSRs (Mason et al. 2005; Jarvis et al. 2008; Fuentes et al. 2009;
Costa-Tártara et al. 2012), and single-nucleotide polymorphisms (SNPs) (Maughan
et al. 2012; Jarvis et al. 2017). Chemical or physical mutagenesis and subsequent
marker-assisted selection of desired traits have led to the generation of adapted
varieties in several countries, but the rate of progress has been slow.

5.4.2 Limitations of Current Technologies

Most current breeding programs are based on marker-assisted selection. Compared
to conventional breeding, breeding through marker-assisted selection allows for a
faster generation of the desired variety. For instance, incorporation of one or a few
genes into an adapted or elite variety is done by crossing this variety with another
that contains the desired traits and subsequent backcrossing of the resulting progeny
with the original elite variety. The use of DNA markers in backcrossing greatly
increases the efficiency of selection. It does not rely on a visual phenotype, which
may be particularly useful for traits that have laborious or time-consuming pheno-
typic screening procedures or are caused by gene variants that are inherited in a
recessive manner, i.e., they require homozygosity to become apparent.
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Marker-assisted breeding allows for elimination of most of the unwanted DNA
incorporated in the first crossing line, thus reducing the chances of incorporating
genes from the donor that might be negatively affecting the elite variety (Collard and
Mackill 2008). In addition, marker-assisted breeding simplifies pyramiding pro-
cesses (the combination of several genes into a single genotype). This is usually
done by crossing a production variety with several other varieties with distinct
desired traits in a consecutive manner. Pyramiding has been widely used for
generation of varieties combining multiple disease resistance genes (Pedersen and
Leath 1988; Kloppers and Pretorius 1997; Shanti et al. 2001; Pilet-Nayel et al. 2017;
Mundt 2018). Selection of these varieties by conventional breeding is difficult
because all genes give rise to the same phenotype, but this problem is eliminated
when selection is directly based on genetic markers.

While marker-assisted breeding is much faster than conventional breeding, the
need for crossing and backcrossing varieties still imposes a limitation in the speed of
progress. In addition, the process is resource-demanding and requires qualified
personnel, which precludes its use in developing countries where investments in
research, technology, and training are more limited. Finally, marker-assisted breed-
ing is heavily limited to varieties that can be effectively crossed.

Thanks to the advances in next-generation sequencing (NGS) technologies, the
assembled genomes of two different varieties were recently published (Jarvis et al.
2017; Zou et al. 2017). Access to this information, together with the advances in
bioinformatics and new genome editing technologies, opens up the possibility of
facilitating the current breeding efforts.

5.4.3 New Biotechnological Tools

Awealth of information has been generated in the past decades about the mechanism
that has governed the domestication of our major crop species. For instance, several
genes that are negative regulators of grain size have been identified in rice, including
GRAIN WIDTH AND WEIGHT2 (GW2) (Song et al. 2007), GRAIN INCOMPLETE
FILLING1 (GIF1) (Wang et al. 2008), GRAIN SIZE3 (GS3) (Fan et al. 2006; Gao
et al. 2015), and Protein Phosphatase with Kelch-Like repeat domain1 (OsPPKL1)
(Zhang et al. 2012). Resistance to powdery mildew in barley and wheat is related to
mlo genes (Lyngkjær et al. 2000; Wang et al. 2014; Acevedo-Garcia et al. 2017).
Plant height is usually controlled by genes involved in hormone signaling, such as
REDUCED HEIGHT (Rht)-B1 and Rht-D1 in wheat (Flintham et al. 1997; Peng
et al. 1999), DWARF PLANT8 (Dwarf8) and Dwarf9 in maize (Zea mays) (Lawit
et al. 2010), SEMIDWARF-1(sd-1) in rice (Peng et al. 1999; Spielmeyer et al. 2002;
Monna 2002), or sdw1/denso in barley (Jia et al. 2009).

This information has been used together with bioinformatics tools to identify
suitable targets in the quinoa genome that could potentially allow for marker-assisted
breeding as well as gene editing (López-Marqués et al. 2020). Gene editing allows
for precise creation of new variants of genes without inserting new DNA in the
genome. In a standard gene editing strategy, enzymes that can cleave in any
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sequence within the genomic double-stranded DNA (nucleases) are introduced in
cells (normally callus or protoplasts) of the plant of interest. These nonspecific
nucleases are targeted to concrete positions in the genomic DNA using different
strategies (described later in this section). Once the double-strand break is introduced
at the desired position, the endogenous cellular machinery will try to repair it to
prevent cell death, introducing changes in the genomic sequence. Finally, genetically
modified cells that are devoid of the exogenous nucleases are selected for regenera-
tion of whole plants. Two main reparation mechanisms exist in eukaryotic cells:
non-homologous end joining and homology-directed repair. In non-homologous end
joining, the DNA on each side of the double-strand break will simply be joined
together by ligases. This process is highly error-prone, which results in the introduc-
tion of insertions or deletions (in-dels) in the repaired genomic DNA. By contrast,
homology-directed repair uses a DNA sequence with homology to the edges of the
double-strand break as a template for repair, for instance, another copy of the
disrupted gene present in the genome. This mechanism thus allows for the introduc-
tion of new DNA in the region containing the double-strand break. In most plants,
the most common cellular DNA repair mechanism is non-homologous end joining,
and generation of in-dels in a gene of interest is the most widely used genetic
engineering strategy. Precision breeding in this way has in recent years been carried
out in a number of crops but still not in quinoa (López-Marqués et al. 2020).

The first technology for targeted gene editing in plants used zinc finger nucleases
(ZFNs) and transcription activator-like effector nucleases (TALENs) (Gaj et al.
2013; Čermák et al. 2017). In these two technologies, the nonspecific nucleases
used to generate the double-strand break are fused to sequence-specific
DNA-binding domains (Joung and Sander 2012; Gaj et al. 2013). For TALEN
strategies, the DNA-binding domain is an amino acid sequence designed in analogy
to the TAL effectors of bacterial plant pathogens. A TAL effector contains a repeated
33–34 amino acid-long sequence that is highly conserved, except for 2 residues in
the middle of the sequence that form the so-called repeat-variable diresidue (RVD)
(Joung and Sander 2012). The amino acids in these two positions allow the recogni-
tion and binding of specific nucleotides in a DNA molecule. This way the
DNA-binding modules of TALENs can be programmed to target any sequence of
interest by designing RVDs with the desired amino acid combinations. Zinc fingers
are DNA-binding domains present in a number of proteins in different organisms
(Urnov et al. 2010; Hossain et al. 2015). These domains contain cysteine- and
histidine-rich repeats that fold in a three-dimensional structure that allows binding
to a specific DNA sequence composed of three nucleotides. Variations in the amino
acid sequence of the zinc finger will generate slightly different folds and thus
different DNA recognition sites. ZFNs have been used to modify a number of
agriculturally relevant species, such as maize, soybean, rapeseed, rice, apple, and
fig (reviewed in (Ran et al. 2017; Martínez-Fortún et al. 2017)). As an example,
ZNF-assisted disruption of the IPK1 gene, which encodes an enzyme catalyzing the
final step in phytate biosynthesis, in maize was used to generate plants with herbicide
tolerance and altered levels of the phytate precursor inositol phosphate in developing
seeds (Shukla et al. 2009). TALEN strategies have also been used to disrupt this gene
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(Liang et al. 2014), as well as many others in Arabidopsis, barley, Brachypodium,
maize, tobacco, rice, soybean, tomato, and wheat (reviewed in (Malzahn et al.
2017)). However, both ZNFs and TALENs require the tedious task of designing
protein modules for DNA-binding.

In the past decades, the adaptation of the bacterial clustered regularly interspaced
short palindromic repeats (CRIPSR)/Cas9 system to plants has resulted in targeted
engineering systems that are much easier to design (Chen et al. 2019). When bacteria
are attacked by DNA viruses, a piece of the viral genetic material is introduced at a
specific location in the bacterial genome. This genome location is organized in the
form of regularly interspaced repeats (hence, the name CRIPSR), and its transcrip-
tion is linked to that of nonspecific nucleases (CRISPR-associated nucleases, Cas).
These nucleases form complexes with the RNA transcribed from the CRISPR locus,
which contains a sequence complementary to that of the viral DNA. This way Cas
proteins can recognize and cleave the genetic material of specific viruses based on
sequence complementarity, thus conforming a type of bacterial immune system
(Golubov 2016). In the adaptation of this system for genome editing, a single
guide RNA (sgRNA) of approximately 20 nucleotides is designed to be complemen-
tary to a target genomic DNA sequence. This sgRNA forms a complex with the Cas9
protein, which generates double-stranded breaks that are subsequently repaired by
the cellular machinery (Gaj et al. 2013). Due to the simplicity of designing an RNA
sequence based on a known DNA sequence and the possibility of targeting several
alleles of one home gene at the same time, the CRIPSR/Cas9 method has overtaken
the field of targeted genome editing.

CRISPR/Cas9 has been used for targeting genes in a plethora of plants, including
potato, petunia, wheat, sorghum, rice, barley, alfalfa, cabbage, soybean, cucumber,
and grapevine (reviewed in (Liu et al. 2017)). In addition, several modifications of
the system have been introduced to increase the efficiency of the process or for
multiplex editing where several genes are targeted at the same time (Chen et al.
2019; Zhang et al. 2020a, b). For instance, four homologue MAP kinases were
simultaneously targeted in rice using polycistronic RNA-sgRNA genes, which allow
for expression of multiple sgRNAs from one DNA construct (Xie et al. 2015). In
wheat, three different alleles of the MLO gene were simultaneously targeted to
generate plants resistant to powdery mildew (Wang et al. 2014). Similarly, all alleles
of a starch synthase could be disrupted using an optimized CRISPR system in potato
(Johansen et al. 2019). Different genes can also be targeted at the same time by
introducing multiple sgRNAs in the same transformation event. Such strategy has
been successfully applied in wheat, cotton, tomato, and ground cherry (Xie et al.
2015; Gao et al. 2017; Lemmon et al. 2018; Wang et al. 2018; Zsögön et al. 2018).
Lately, it has become possible not only to generate double-strand breaks but also to
modify individual nucleotides using Cas9-assisted base editors (Zong et al. 2017; Li
et al. 2018; Anzalone et al. 2019; Lin et al. 2020) and to generate plants that have
become engineered without the need for incorporation of transgenes in the genome
(Zhang et al. 2016; Liang et al. 2017; Andersson et al. 2018).

As an alternative to these new technologies, which might encounter legislation
issues and consumer mistrust, due to their inherent genetically modified
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(GM) nature, advanced TILLING approaches could be used (Chen et al. 2014;
Holme et al. 2019). In general, these techniques rely on the generation of random
mutations in a genome by the use of mutagens, such as radiation or ethyl
methanesulfonate (EMS), and the subsequent selection of the desired mutation.
Initially, selection was based on phenotypic characterization. However, for poly-
ploidy plants, the probability of finding a visible phenotype after a single round of
mutagenesis is very low. Therefore, methods for identification of the desired muta-
tion at the genome level were introduced. Such a screening strategy for identifying
desired genetic variants has already been used in quinoa (Gomez-Pando and
Eguiluz-de la Barra 2013; Mestanza et al. 2018). However, the generated mutant
collections were relatively small, and further efforts to increase their size are
required, if they are to be used for selecting specific mutations in selected genes.
A large mutant collection combined with high-throughput PCR-based strategies for
mutant selection will be the key for future improvement of quinoa using TILLING
strategies (López-Marqués et al. 2020).

5.4.4 Challenges and Recommendations

The first complete high-quality genomes were published in 2017 for a coastal
Chilean quinoa accession (PI 614886) (Jarvis et al. 2017) and a Bolivian Real
variety (Zou et al. 2017). This information is available online through public
databases, such as the National Center for Biotechnology Information (NCBI)
genome database (Bio Project no. PRJNA394587) and the Chenopodium DB at
the King Abdullah University of Science and Technology (KAUST) in Saudi
Arabia. In addition, a limited amount of gene expression data at different plant
developmental stages and under salinity stress is available at the Sequence Read
Archive at NCBI (Bio Project No. PRJNA394651 and PRJNA394652). Therefore,
bioinformatics can be used for rational design of genetic engineering strategies
aimed at improving quinoa. In addition, with the increased speed and affordability
of high-throughput sequencing techniques, the amount of genetic resources is
expected to expand exponentially in the coming years. While several South-
American countries have their own biodiversity collections with limited accessibil-
ity, publically funded gene banks, such as IPK Gatersleben (Germany), accumulate
extensive plant material including more than 400 individual quinoa accessions freely
available for research purposes (Fig. 5.2).

While the use of new genome editing technologies in quinoa has not been
reported yet, the fact that complex polyploidy genomes, such as hexaploid wheat,
can be successfully targeted is encouraging. In contrast to wheat or barley, efficient
transformation protocols do not exist for quinoa. However, quinoa can be
transformed using Agrobacterium, and plants can be regenerated from calli (Komari
1990; Eisa et al. 2005; Telahigue and Toumi 2017; Shahin 2019). Increasing the
transformation efficiency to levels adequate for genome editing might involve the
use of boosters, as is the case for other species (Zuo et al. 2002; Deng et al. 2009;
Yong et al. 2010). In addition, new technologies that allow for transformation of
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plant meristems are developing, removing the need to work with calli (Maher et al.
2020).

Optimization of different elements of the CRISPR system might also be required.
Thus, the efficiency of full allelic potato transformation increased substantially when
a potato endogenous promoter was used to drive the expression of the sgRNA(s) of
interest (Johansen et al. 2019), and codon optimization of Cas9 has been successfully
tested in several species (Ma et al. 2015; Cui et al. 2019; Lin et al. 2020).

On the other hand, considering the current legislation, TILLING strategies might
be a convenient tool for optimization of quinoa. The disadvantage of this type of
technique resides in the need to grow quinoa for several generations in order for the
mutation to become homozygous at all existing alleles. Moreover, pyramiding of
desired traits will require extensive crossing and backcrossing of quinoa varieties.

5.5 Biotechnology for Quinoa Production: Benefits
and Disadvantages

5.5.1 Benefits

Biotechnology has a wide range of powerful tools that can be used to improve and
facilitate quinoa breeding processes, as well as for the management, use, and
conservation of quinoa genetic resources. In this section, we describe some of the
benefits in relation to the technology that has been applied in this plant species.

Countries that hold in situ and ex situ quinoa diversity have been using these
technologies to have a precise description of the genetic resources available. Andean
countries have been able to describe their diversity and rationalize their conservation
systems. The molecular characterization of quinoa diversity complements
characterizations that use other quantitative and qualitative description methods
(e.g., agromorphologic, chemical). It offers a genetic fingerprint of conserved
accessions, which can be used to group and differentiate collections with high
precision (e.g., to establish core collections). It is an effective tool which can be
used to analyze an extensive number of individuals. It enables a better management
for genetic resource conservation, also by reducing duplicated accessions and their
related costs of maintenance in germplasm banks. Biotechnology offers a possibility
to produce useful information that boosts quinoa uses and the diversification of
products (e.g., for agroindustry, cosmetology) (Veramendi et al. 2014; Rojas et al.
2015).

Countries from the Andean region hold a high and rich diversity. However, the
policy for conservation and germplasm exchange limit the improvement of quinoa in
other latitudes (Jellen et al. 2013). Biotechnology has become a way to overcome
these constraints for countries where it is recently introduced. The use of biotech-
nology enables the identification and characterization of microorganisms with the
potential to enhance production. In a short period of time, it gives the possibility to
obtain economic and effective bioproducts to enhance yields under challenging
settings (organic, traditional, extreme environmental conditions). Moreover, omics
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open the possibility to elucidate more on secondary metabolites with potential to
improve quinoa production (Sarethy et al. 2019).

Genetic markers have shown to be useful tools to understand the genetics of
complex traits and to develop and assist breeding programs in different parts of the
world. Markers started to be used in the United States in 1993, and ever since, this
country has explored diverse types of markers to accelerate breeding and to select
targeted genotypes. Markers have been used for the detection of DNA
polymorphisms, for the identification of true hybrids, and for studies and maps to
describe the relationship between different Chenopodium spp. and ecotypes. The
level of genetic diversity, evolution and studies of quinoa origin, and domestication
were also facilitated with the use of genetic markers. These have also been used for
gene discovery to understand gene expression as well as for the study of
transcriptome changes, both at specific quinoa growing stages and under abiotic
stress conditions (Jellen et al. 2013).

As previously described in this chapter, genomics have also started to be used in
giving rise to the genome sequencing of an inbred line and quinoas from coastal and
mountain regions. These high-quality sequencing enabled to describe phylogeny and
evolution, as well as to identify genes and their functions. Genes related to saponin
production, protein biosynthesis, and responses to salinity tolerance have been
described. These tools open up the possibility of carrying out targeted breeding
using marker-assisted selection and other strategies for the genetic improvement
(Yasui et al. 2016; Jarvis et al. 2017; Zou et al. 2017). The application of omics in
quinoa may expand the knowledge related to different structures, mechanisms,
functions, pathways, and related genes, while bioinformatics may increase the
precision and velocity of these studies (Muthamilarasan et al. 2019).

5.5.2 Disadvantages

Even though there are positive benefits from the use of biotechnology for quinoa
development, there are also disadvantages from its use that we briefly describe in this
section. In the case of traditional countries, a disadvantage is linked to intellectual
property rights. Intellectual property systems are important because they reward the
intellectual effort to develop new technologies and plant cultivars and protect
breeders’ interests. However, these systems do not protect Andean farmers’ interests
or include recognition for the people cultivating the plant materials used in the
breeding innovation. For example, due to policy ambiguities, Bolivia has not ratified
the Nagoya protocol1 to avoid the appropriation or monopoly of natural processes,
genetic resources, and biopiracy (Convention on Biological Diversity Secretariat
2020). An antecedent exemplifying these risks happened in 1992, when a patent was
requested by the United States to protect the use of an Andean cytoplasmic male

1International agreement for a fair and equitable share of benefits arising from the utilization of
genetic resources.
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sterile genotype (Apelawa) and the resulting hybrids. This case was controversial
and contested by many sectors from the Andean region. The patent was not
renovated due to the international pressure exerted (Risi et al. 2015). These aspects
have been also discussed, and the main conclusions until now are the need to
improve policy gaps (Bazile and Baudron 2014; Bazile et al. 2016; Chevarria-
Lazo et al. 2015) and the close collaboration between breeders and traditional
producing countries that can lead to tangible and agreed distribution of benefits
(Alandia et al. 2020).

The development of new varieties through biotechnology requires high
investments. Infrastructure, operation, research, and development costs are variable
according to the country of implementation, the dimension, and the scope of the
activities and methods used. The application of biotechnology in regions with
development constraints can be limited. However, with time and the fast progress
of biotechnology, useful tools such as genetic markers are getting more accessible
and cost-efficient and are starting to be more used in minor crops (Jellen et al. 2013;
Tadele 2019).

In addition, successful, stable, and homogeneous new cultivars could replace
diverse production systems leading to monocropping or the loss of the rich quinoa
diversity. Already the intensification of its production in the Andean region has
shown to bring negative impacts to the environment that have been widely observed
and discussed (Aroni et al. 2008; Jacobsen 2011, 2012; Reynolds et al. 2008; Winkel
et al. 2012; Bedoya-Perales et al. 2018). In this case, productive cultivars could not
only intensify agriculture but also reduce the existing diversity within the species
and within the production system as it has been observed both in Peru and Bolivia.
On the other hand, the development of new varieties with improved yields and
desired traits for the market can bring positive impacts to farmers’ economy
provided they are addressed to sustainable production systems. Thus, with the
quinoa boom, studies showed that farmers improved their quality of life with
intensification but also increased inequality and reduced the use of their local
agrobiodiversity (Astudillo and Aroni 2012; Avitabile 2015; Bedoya-Perales et al.
2018; Núñez de Arco 2015). The use of high-yielding cultivars could change
farmers’ priorities, increase dependency and vulnerability, and compromise
traditions, sustainability, resilience, and food sovereignty of small-scale farmers.
New high-yielding cultivars may also have the potential to be more competitive and
replace the Andean quinoa products in the global market (Altieri 2009; Ficiciyan
et al. 2018).

The use of biotechnology in agriculture has been controversial when it has been
related to the development and use of GM cultivars. In the case of quinoa, this
technology has not been developed yet, but it is already considered. Genetic
improvement through transgenic methods has to include a comprehensive biosafety
assessment for precautionary risks to the health of humans and the environment in
the resulting varieties, which are then subjected to strict regulations. These processes
take long time and are usually a subject of strong debate. They also imply extra costs:
besides the compliance costs for regulatory approval, extra costs also include the
delaying process between approval and commercialization (Bairagi and Mohanty
2017; Smyth et al. 2017).
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Biotechnology tools have the great advantage of being precise. In breeding, they
offer the possibilities of targeting and using markers to reduce traits such as the
saponin contents of grains. At present, one of the major breeding objectives to
improve quinoa is to obtain saponin-free cultivars (Jarvis et al. 2017). However,
there can be trade-offs since saponins play a role in plant defense systems (Francis
et al. 2002; Troisi et al. 2015), and resulting plants could in return be more
susceptible to disease and pest attacks.

There seems to be an incompatibility between technology and traditions. Unfor-
tunately, this can restrict the genetic improvement (even if it is accomplished with
non-transgenic methods) but also the recognition to the cultures that conserved this
grain. Therefore, alternatives that make possible the co-existence of technology and
tradition may be the way to overcome these constraints. It is fundamental that
technology developers recognize that culture and tradition gave rise to the existing
diversity and that Andean populations realize that rationally used technology can
enhance their resilience. More communication, dialogue, and understanding are
needed in order to solve these gaps.

5.6 Conclusions

Quinoa went through a rapid global dissemination. For thousands of years, this grain
remained traditionally produced and conserved in the Andean region, and in only
30 years, it was introduced to 106 countries. Nowadays (2020), this grain can be
found in more than 120 countries around the world.

The use of technology had different priorities and contexts of application, and this
was also the case for biotechnology. While countries where this plant was recently
introduced used biotechnology intensively to understand the species evolution,
abiotic stress, and strategies for its genetic improvement, traditional countries mainly
addressed it for germplasm characterization and interesting examples of bioinput
development. Most biotechnology applications involved genetic markers. The recent
release of the genome, complemented with different areas and tools in development,
such as omics and bioinformatics, may give rise to a fast and efficient development
of multiple cultivars.

Biotechnology can be used for development in different ways, and it should be
recommended in each country when it proves to bring solutions for the local
agriculture without harming the environment and human health. It has the potential
to improve the productivity of this crop through the development of new cultivars
and bioinputs. With biotechnology, a crop as resilient as quinoa has the potential to
become a model to understand complex processes of tolerance in different crops.
The areas of genomics and related omics are useful to understand and describe
processes and pathways limiting production, which can be improved through
marker-assisted selection or non-transgenic techniques such as TILLING.

With climate change, more attention is given to underutilized crops as a source of
genetic resilience. As such, they are now called crops for the future. From being an
underutilized crop, in a short period of time, quinoa has the potential to become a
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global staple food. Tools and products of biotechnology have to be managed with
responsibility to avoid processes of culture and agrobiodiversity loss.

Biotechnology is relevant for the management and development of new cultivars
to face climate change and to contribute with high-quality products addressed to
different markets. The use of these technologies should support food security more
than the development of patents for seed companies to avoid a monopoly and
appropriation of natural processes and genetic resources.

Higher impact of biotechnology use may be reached when it is integrated and
complemented with other strategies, technologies, and species in order to improve
quinoa production systems and support the diversification of products along the
value chain. Multidisciplinary and multisectoral collaboration may expand
possibilities to provide tangible ways to share the resulting benefits and to achieve
a more sustainable future for all.
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