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Abstract

Quinoa (Chenopodium quinoa Willd.) is a pseudocereal in the genus
Chenopodium and is commonly known as “goosefoot.” C. quinoa has a mono-
phyletic origin from Andean crop/weed system and was first domesticated in the
Altiplano region south of Lake Titicaca. Quinoa is predominantly an inbreeding
species and an allotetraploid having a chromosome number of 2n ¼ 4x ¼ 36;
however, mixoploidy has been reported in C. quinoa with chromosome numbers
of 2n ¼ 18, 2n ¼ 27, 2n ¼ 36, and 2n ¼ 45. Quinoa genome has been identified
and confirmed to be divided into two subgenomes by several authors. Characters
controlled by major genes in quinoa have been reported to exhibit simple
disomic-monogenic inheritance. Few successes have been recorded for attempts
to manually hybridize C. quinoa with either of its related wild or cultivated
tetraploids, and this has hindered the creation of segregating generations large
enough for genetic analysis. Genetic improvement of quinoa has so far received
little attention unlike other major cereal crops which have been fully involved in
modern plant breeding techniques and genetic research. A number of molecular
markers (AFLP, SSR, and SNP) have been developed for quinoa and are being
used today to enhance quinoa improvement programs.
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4.1 Introduction

Quinoa (Chenopodium quinoa Wild.), commonly known as “goosefoot” (Giusti
1970), is a pseudocereal and one of the 250 species included in the genus
Chenopodium (Amaranthaceae). Although most species of the genus are colonizing
annuals, other habits such as herbaceous, suffrutescent, and arborescent perennials
also exist (Wilson 1990; Fuentes et al. 2012). C. quinoa, C. berlandieri subsp.
nuttalliae, and C. album are of economic importance as they are used as a leafy
vegetable, grain, and forage (Risi and Galwey 1989a), while other Chenopodium
species such as C. ambrosioides, C. botrys, and C. murale have been identified with
various medicinal uses (Kirtikar and Basu 2001).

Quinoa has been cultivated for more than 5000 years in the Andes and was
probably domesticated by ancient civilizations at different times and in different
geographic zones (Bhargava and Ohri 2016). Many wild characters such as seed
shattering, seed dormancy, and thick seed coats that were disadvantageous to the
farmers were lost, while useful characters such as larger and starchier seeds, fewer
and larger inflorescences, uniform maturity, and environmental adaptations were
preserved during domestication (Bhargava and Ohri 2016).

Quinoa is a highly nutritious crop with remarkable agronomic adaptations to
different adverse climatic conditions such as drought, high salinity, and frost (Ruiz
et al. 2014, 2016), which makes it suitable for cultivation in countries that are
susceptible to the effects of climate change. Due to its high level of adaptability,
quinoa can survive in diverse environments such as lowlands, deserts, and areas over
4000 m above sea level (Jacobsen and Mujica 2003; Jacobsen et al. 2003, 2009;
Maughan et al. 2009; Hariadi et al. 2010). Quinoa has the potential to become a
sustainable food supply globally under rapidly changing climatic pattern shifts while
at the same time ameliorating pressure on arable land (Ruiz et al. 2016) and is
therefore considered as a climate change-resilient crop. Because of its resilience and
nutritional benefits, quinoa, together with amaranth, has been described as “one of
the grains of the 21st century” (Konishi 2002) that will play a key role in the
provision of sustainable food in adverse environmental conditions resulting from
climate change scenarios. It has exceptional capacity to grow in water-deficient soil
due to its inherent low water requirement and the ability to resume its photosynthetic
rate and maintain its leaf area after a period of drought (Galwey et al. 1989; Jensen
et al. 2000; Jacobsen et al. 2003). Saponins are the main antinutritional compounds
of quinoa, and they confer bitterness when present in the integuments of mature
achenes. The developmental stage of the crop affects saponin content; it is low
during branching and high during flowering (Bhargava et al. 2006a). Seed
components have been reported to exhibit diversity with regard to the environment
as considerable increase of saponins and other seed components has been reported in
an arid location (irrigated) as opposed to a cold temperate climate (rain-fed) site
(Miranda et al. 2012, 2013); this suggests that environment plays a major role in the
expression of genes responsible for seed components. Development of varieties with
little or no saponin is one of the vital breeding objectives (Spehar and Rocha 2010),
and MAS combined with recently available linkage mapping can be valuable for
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advanced genetic analysis of important agronomic traits (Mastebroek et al. 2000;
Maughan et al. 2004, 2012).

Increasing but insufficient knowledge of quinoa genetics and its complex allote-
traploid nature, together with its small flowers and self-pollination nature, makes
emasculation, hybridization, and breeding difficult. The primary breeding objective
is to develop a variety with a dwarf, non-branching, and uniformly early maturing
plant type to aid mechanical harvesting (Jacobsen et al. 1996) and high grain yield
with high protein and low saponin content (Bhargava et al. 2006a). However, for any
breeding program to work, the genetics of the traits of interest should be well
understood.

4.2 Genome Size

Studies on genome size of C. quinoa using Feulgen micro-densitometry found 4C
DNA amounts ranging from 6.34 to 6.47 pg in 21 accessions, which showed a
nonsignificant 1.02-fold (Bhargava et al. 2007a). Likewise, 4C DNA amounts of
5.79 and 5.90 pg were recorded in two accessions of related tetraploid species
C. berlandieri subsp. nuttalliae, and their average is 8.31% less than the mean of
4C DNA values of the studied 21 accessions of C. quinoa (Bhargava et al. 2007a).
Similar results have been obtained using flow cytometry in C. quinoa
cv. Barandales, which showed 2C values of 2.96 pg. Also a range of 2.96–3.04 pg
was obtained for six accessions of C. berlandieri subsp. nuttalliae (Palomino et al.
2008). The findings of Palomino et al. (2008) correspond to that of Kolano et al.
(2012), who showed 2C values ranging from 2.9 to 3.0 pg in 20 C. quinoa
accessions; however, significantly lower 2C values of 2.01 pg using flow cytometry
(Stevens et al. 2006) and 2.66 pg (Bennett and Smith 1991) using micro-
densitometry have been reported.

Kolano et al. (2011) demonstrated the occurrence of two subgenomes in quinoa
by FISH using two repetitive sequences, 12-P and 18-24J. The specificity of 18-24J
to one of the two subgenomes was revealed by strong signals on 18 chromosomes in
the form of bands of differing intensities on chromosome arms, while only minor
signals on the remaining 18 chromosomes occur in terminal and centromeric
positions.

Two genomes involved in the ancestry of C. quinoa have also been recognized by
Storchova et al. (2015) through phylogenetic analysis of two flowering locus T-like
genes CrFTL1 and CrFTL2. One parent was assigned to subgenome “A” and was
shown to be related to North American C. standleyanum, C. incanum, or any other
related diploid, while the other parent belonging to the Eurasian species C. suecicum,
C. ficifolium, or some related diploid species was assigned to subgenome “B.”
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4.3 Cytogenetics

The basic chromosome number in the genus Chenopodium is x ¼ 8 and x ¼ 9
(Kawatani and Ohno 1950, 1956). The number x ¼ 9 is found in section
Chenopodia, which has been further subdivided into three subsections, viz.,
Leiosperma, Cellulata, and Undata (Risi and Galwey 1984). Cytological studies
have established that C. quinoa is a tetraploid having a chromosome number of
2n ¼ 4x ¼ 36 (Palomino et al. 1990; Wang et al. 1993; Bhargava et al. 2006b);
however, mixoploidy has been reported by Gandarillas (1979) in C. quinoa with
chromosome numbers of 2n ¼ 18, 2n ¼ 27, 2n ¼ 36, and 2n ¼ 45. According to
Nelson (1968), the basic chromosome number for the genus Chenopodium is x ¼ 9,
and this is in line with the high degree of self-fertility and low levels of inbreeding
depression seen in the species.

The results of Ward (2000) are consistent with allotetraploidy. This suggests that
functional alleles have been retained at some duplicate loci, and there is some
association occurring between homologous chromosomes. Also, tetrasomic segre-
gation ratios have been observed in a minority of families, which may be due to
reciprocal fragment exchange between homologues (Ward 2000).

Bhargava et al. (2006b) divided the karyotypes of C. quinoa into two groups
based on the ratio between the longest and the shortest chromosomes in the comple-
ment, which was <2.0 in 1a and >2.0 in 1b types of karyotypes. All taxa they
studied were characterized by one satellite pair, the position of which varies
according to its comparative size in the complement. The satellite pair was found
to be morphologically similar in all the accessions, being median (m) or median-
submedian (msm), and has the satellite on the short arm. The symmetry index (TF%)
on the basis of arm ratios varies from 43.9% (most asymmetrical) to 47.4% (most
symmetrical).

They further observed that the longest chromosome in different complements is
either m or msm with arm ratios varying between 1.18 and 1.56, while 4th, 9th, and
18th pairs are the most conserved in being median (M or m) in all the accessions
studied (Figs. 4.1a–e and 4.2a, b). The greatest variability was observed in 10th and
13th pairs with the arm ratio ranging between 1.0–1.86 and 1.0–1.78, respectively
(Figs. 4.1a–e and 4.2a, b).

C. quinoa has a monophyletic origin from Andean crop/weed system (Wilson
1990); this was confirmed by Bhargava et al. (2006b) in the seven accessions of
C. quinoa studied, which show only minor though consistent differences in their
karyotypes. These minor differences in karyotypes due to chromosomal alterations
(mainly pericentric inversions and translocations) are being maintained due to
predominantly self-pollinating behavior (Risi and Galwey 1984), and this is consis-
tent with some degree of variability in morphological characters (Risi and Galwey
1984; Wilson 1988a, b; Bhargava et al. 2007b), protein profiles (Bhargava et al.
2005), and RAPD profiles (Ruas et al. 1999). This implies that variation in morpho-
logical characters, karyotypic alterations, and protein and RAPD profiles is similar
(Bhargava et al. 2006b).
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In an earlier study by Catacora (1977), C. quinoa chromosomes could be arranged
into nine groups of four homologues based on length and ratio between long and
short arm. However, a more detailed analysis by Bhargava et al. (2006b) has resulted
in clearly identifiable 18 pairs, thereby indicating allotetraploidy. This is also
supported by duplication of Lap loci (Wilson 1976), disomic inheritance of some
characters (Simmonds 1971), and allelic segregation ratios of F1 and F2, which
indicated disomic-digenic and tetrasomic inheritance in some traits (Ward 2000).

Fig. 4.1 Karyotypes of (a) C. quinoa PI 587173, (b) C. quinoa PI 584524, (c) C. quinoa PI
596498, (d) C. quinoa PI 510537, (e) C. quinoa CHEN 71/78 (Bhargava et al. 2006b)
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4.4 Pattern of Trait Inheritance in Quinoa

An understanding of how alleles will segregate at loci controlling agronomically
important traits is essential to quinoa breeders. Estimation of the heritability coeffi-
cient in the narrow sense (hr2) is a very useful factor for breeders because one can
predict the possibility of success with selection, as it reflects the proportion of
phenotypic variation that can be inherited; that is to say that heritability coefficient
measures the reliability of the phenotypic value as an pointer of genotypic value
(Vasconcelos et al. 2012).

Characters controlled by major genes have been reported to exhibit simple
disomic-monogenic inheritance (Simmonds 1971; Gandarillas 1979). This type of
segregation has led to suggestions that quinoa possesses genes which suppress

Fig. 4.2 Karyotypes of (a) C. quinoa CHEN 58/77, (b) C. quinoa CHEN 33/84, (c) C. berlandieri
subsp. nuttalliae PI 568156, (d) C. bushianum 22,376 (Bhargava et al. 2006b)
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pairing between homologous chromosomes, which to an extent places species as
functionally diploid (Risi and Galwey 1984; Fleming and Galway 1995). The small
size of the chromosome of quinoa makes study of the meiotic chromosome pairing
difficult (Ward 2000). Meiotic chromosome configurations in both allo- and autotet-
raploid are often erratic, and several authors (Soltis and Reiseberg 1986; Krebs and
Hancock 1989; Beaver and Iezzoni 1993) pointed out that allelic segregation
analysis gives a more precise way of determining polyploidy type and whether
inheritance is disomic or tetrasomic.

Homologous chromosome pairing from the same progenitor species in an allote-
traploid would normally result in independent assortment at the duplicated loci and
disomic inheritance. In autotetraploid, random association of the four homologous
chromosomes and independent assortment at any one locus will result in tetrasomic
inheritance (Ward 2000). However, segregation ratios which do not fit a simple
disomic pattern have been observed in quinoa populations containing a fertility
restoration gene (Ward 1998).

Ward (2000) carried out a research to use allelic segregation analysis of these
traits: restoration of male fertility in CMS quinoa plants due to the presence of the
Frv allele, with male fertile being dominant to male sterile (Ward 1998), red
inflorescence and stem color due to the presence of the R allele with red being
dominant to green (Gandarillas 1979), and pigmented axils due to the presence of the
Ax allele, with pigmented being dominant to non-pigmented (Simmonds 1971) to
determine the type of inheritance occurring in quinoa. The allelic segregation
analysis was performed in a cross using male sterile plants as female parents
produced F1 and F2 generations segregating for different single-gene morphological
traits. The analysis revealed a range of F1 and F2 ratios indicative of both disomic-
digenic and tetrasomic inheritance in two traits observed (Ward 2000). Also,
distorted F2 ratios pointed to erratic multivalent formation at meiosis (Ward
2000). Certainly, tetrasomic segregation of “erratic multivalents” as observed by
Ward (2000) would lead to distorted segregation ratios and may also contribute to
the low levels of segregation distortion seen in the dataset studied by Maughan
et al. (2004).

The level of bitterness of seeds (which is directly associated with saponin content
of the seed) is quantitatively inherited (Risi 1986; Kenwright 1989). This has been
confirmed by an earlier study by Gandarillas (1948), who observed a 3:1 segregation
ratio for bitter versus sweet genotypes, suggesting that bitterness associated by
saponin content is controlled by a single dominant gene.

Ward (2000) carried out an investigation in three cycles of pedigree selection with
ten quinoa accessions and established that the action of a single dominant gene is an
important part of the genetic variation regulating this trait. Due to the allotetraploid
nature of the species, fixed heterozygosity at the locus controlling saponin content
may also occur. Although identification of precise molecular markers of the domi-
nant genetic locus could significantly accelerate breeding programs (Mastebroek
et al. 2000) for selection of sweet genotypes, those efforts may be hindered if
saponin content in leaves of bitter and sweet genotypes and their F2 progeny plants
did not vary during the vegetative phase of plant development, signifying that the
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sweet genotypes cannot be selected before anthesis, hence hampering the speed of a
breeding program for this particular trait (Mastebroek et al. 2000).

In an attempt to reveal the genetic components of saponin biosynthesis, Reynolds
(2009) reported the annotation of a large-scale EST collection from maturing seed
tissues expressing saponins. Moreover, 39,366 unigenes, comprising of 16,728
contigs and 22,638 singletons, were assembled using Sanger and 454 GS-FLX
pyrosequencing technologies. The identification of a set of candidate genes tran-
scriptionally related with saponin biosynthesis included genes having homology to
cytochrome P450s, cytochrome P450 monooxygenases, and glycosyltransferases
was done using microarray analysis.

Plant color in quinoa, as reported by Fleming and Galway (1995), is governed by
a single gene with three major alleles: red (R), dominant to purple (rP), which is
dominant to green (r). Plant color-inflorescence phenotypes (R vs r) were determined
for the parents and F1 and F2 populations.

4.5 Hybridization

Different attempts have been made to hybridize C. quinoa with either related wild or
cultivated tetraploids by several researchers. In a study by Pal and Ohri (unpub-
lished), C. quinoa was found to be inter-crossable with a diploid cytotype of
C. album occurring in North Indian Plains. The resulting triploid shows 18II and
18I, which implies that one of the genomes of C. quinoa is homologous with that of
2x C. album. This close genetic relationship between C. quinoa and 2x C. album has
been confirmed on the basis of RAPD and DAMD studies by Rana et al. (2010).

Nelson (1968) created artificial hybrids between C. quinoa and C. quinoa var.
melanospermum and also confirmed the presence of natural hybrids. In another
study, Heiser and Nelson (1974) produced F1 hybrids between C. quinoa and
C. nuttalliae or “huauzontle,” but these lacked pollen grains as male sterile parent
was involved. The F1 hybrids, however, produced seed when backcrossed with the
parents showing the close relatedness of the two species. Surprisingly, the F1 had
black fruit, while both parents had a light-colored fruit, which was interpreted as a
consequence of genetic complementation, thereby showing that light-colored fruit
arose independently in Mexico and S. America.

C. quinoa cultivated in N. America has been shown to naturally hybridize freely
with related wild species C. berlandieri; 30% of the progeny of C. berlandieri was
found to be F1 crop/weed hybrids; this was confirmed by the presence of polymor-
phic quinoa isozyme alleles and morphologically intermediate leaves (Wilson and
Manhart 1993).

Crosses between C. berlandieri subsp. nuttalliae and C. quinoa/C. hircinum
(Andean complex) resulted in extremely low pollen stainability of 3–4% with no
seed set after selfing, although the pollen stainability increases after backcrossing of
the hybrid with C. berlandieri subsp. nuttalliae (Wilson and Heiser 1979). However,
C. berlandieri subsp. zschackei of North American complex produces fertile hybrids
in crosses with C. quinoa/C. hircinum, therefore showing closest affinity to the
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Andean complex, and this can be a possible link between North and South American
tetraploids (Wilson and Heiser 1979). A study by Bhargava et al. (2006b) seems to
support this view point because of the close overall karyotypic similarity between
C. quinoa and C. berlandieri subsp. nuttalliae. High sterility in F1 hybrids between
these cultigens has been attributed to the accumulation of chromosomal differentia-
tion following their origin and evolution in extensively separated geographical areas
(Wilson 1980).

The karyotype of C. bushianum has marked differences in comparison with
C. quinoa and C. berlandieri subsp. nuttalliae, with reference to number and
morphology of satellite pairs and a very high ratio between longest and shortest
chromosomes in the complement. This is reflected in its crossability relationships
showing very low fertility and complete sterility of F1 hybrids (Bhargava et al.
2006b). The 2x types are cross compatible. However, 4x cytotype, which grows in
Northern India, has an unusually asymmetrical karyotype as compared with those of
diploid and hexaploid cytotypes (Bhargava et al. 2006b). This is reflected in
complete crossing compatibility of 4x cytotype with 2x and 6x cytotypes of
C. Berlandieri sp. nuttalliae and C. quinoa, respectively (Wilson 1980).

Owing to the small flower size and clustering of huge numbers of flowers on an
inflorescence, there is difficulty of manual hybridization in quinoa, which has
hindered the creation of segregating generations large enough for genetic analysis.
Also, the existence of tetraploid segregations at some loci in quinoa makes breeding
and genetic studies in the crop complex (Ward 2000). The occurrence of both
disomic and tetrasomic segregations at the same locus is uncommon but could be
explained by mutual exchange of fragments between homologous chromosomes.
Although quinoa displays disomic inheritance for most qualitative traits (Ward 2000;
Maughan et al. 2004; Fuentes and Bhargava 2011), combined modes of segregation
could make genetic analyses and mapping of the quinoa genome very difficult (Ward
2000).

Despite these difficulties, mass selection and hybridization have been practiced in
quinoa (Risi and Galwey 1984). A practical approach of effective selection can be
the utilization of morphological markers to distinguish the hybrid from the parents
(Bhargava and Ohri 2016).

4.6 Genetic Diversity of Morphological Traits of Quinoa

Genetic analysis studies are designed to determine the degree of heterogeneity
among potential genotypes for selection to guarantee that only the best genotypes
are selected in a breeding program (Silva et al. 2009); this is the same for quinoa
which exhibits a high degree of heterogeneity, both within and among different
geographic locations. The variability among cultivars reflects the heterogeneity of
the genetic material, improves food security which is currently threatened by
fluctuations in climatic conditions, and presents the possibility of identifying
promising material for use in a plant breeding program (Ruiz et al. 2014).
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Quinoa exhibits ample genetic diversity for both qualitative and quantitative
traits, which enables attaining a wide range of adaptability to various agroecological
conditions (Rodriguez and Isla 2009). Gonzalez et al. (2012) showed that variability
in the cultivation area of quinoa caused variation in yield and seed quality. High
coefficients of heritability estimates are associated with a greater genetic variability,
better selective accuracy (Cargnelutti Filho et al. 2009), and greater potential for
success in selecting lineages with higher productivity of grain (Vasconcelos et al.
2016). Quinoa diversity, at a continental scale, has been associated with five main
ecotypes, viz., Highlands (Peru and Bolivia), Inter-Andean valleys (Colombia,
Ecuador, and Peru), Salares (Bolivia, Chile, and Argentina), Yungas (Bolivia), and
Coastal/Lowlands (Chile), each of which is connected to subcenters of diversity that
originated around Lake Titicaca (Risi and Galwey 1984).

Regardless of narrowing of genetic base during domestication, large genetic
diversity still exists for plant color, seed color, and types of branching and panicles
in addition to grain productivity, abiotic stress tolerance, and disease resistance
(Bhargava and Ohri 2016). This diversity, which is also revealed at the molecular
level, is being used by the quinoa breeders all over world to develop improved plant
(Bhargava and Ohri 2016).

Bhargava et al. (2007b) studied the genetic variation of 19 traits among 29 germ-
plasm lines of quinoa; the analysis of variance indicated the presence of high degree
of morphological and qualitative variations among the lines studied, which showed
that a vast amount of genetic variability existed in the quinoa germplasm lines.
Cluster analysis (Fig. 4.1) grouped together lines that had greater genetic similarity
but did not include lines from the same origin, indicating heterogeneity of the lines
within a given geographical region (Fig. 4.3).

Fig. 4.3 Dendrogram of 29 germplasm lines derived from average linkage method (Bhargava et al.
2007b)
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The germplasm lines were grouped into six clusters based on average linkage
method. Cluster I grouped lines that are early maturing and high yielding but had low
carotenoid content together. Cluster II comprised lines with higher leaf quality
components but low seed quality. Cluster III lines had highest seed yield and high
values for protein and carotenoids. The lines in cluster IV are early maturing and had
high seed protein, while cluster V had high seed yield, dry weight/plant, stem
diameter, and maximum number of inflorescences. Lines in cluster VI had low
values for traits related to seed morphology and quality but not for carotenoid
content. Also, the study clustered two lines of C. berlandieri subsp. nuttalliae
separately from the quinoa line that is phylogenetically correct (Bhargava et al.
2007b).

Such genetic diversity of population within the same geographical region might
be due to factors like heterogeneity, genetic architecture of population, history of
selection, and/or developmental traits (Singh 1991), and the same has been reported
by other researchers in different crop species (Ghafoor et al. 2001; Alemayehu and
Becker 2002; Singh et al. 2004).

4.7 Genetic Improvement of Quinoa Using Mutation Induction

Genetic improvement of wild or cultivated plants requires variability, selection, and
conservation of the characteristics of the types that are cultivated. Genetic improve-
ment has, until recently, received limited attention unlike other major cereal crops
which have benefited greatly from the modern plant breeding techniques and genetic
research (Jarvis et al. 2008). However, emphasis has been mainly on its introduction
to newer agroecological zones (Bhargava et al. 2007a), although initial reports on
quinoa trials from Europe and Africa are encouraging (Mujica et al. 2001). There are
several ways of improving crop performance, one of which is genetic improvement
via mutation induction.

There are a lot of reports of improved morphological as well as physiological
characteristics in cereals, grain legumes, fiber crops, oil seeds, vegetables, and
ornamentals after mutation induction, and more than 2500 mutant varieties of
more than 170 different species have been released and are available in the IAEA
database (IAEA 2012). Of the various mutagens available, gamma ray is the
preferred agent, and plant type and yield are the traits most commonly reported
(Ahloowalia et al. 2004; Chopra 2005; Fu et al. 2008). Although the quality of many
crops has been improved through mutation induction, few reports are available for
quinoa.

Gomez-Pando and la Barra (2013) irradiated dry seeds (cv. Pasankalla) with
gamma ray doses of 150 Gy, 250 Gy, and 350 Gy. They reported a delayed
germination process in the M1 generation with increasing radiation dose. Also
seedling height, root length, and leaf development were most reduced at 250 Gy,
and at 350 Gy, no plants survived. In M2, the maximum spectrum of chlorophyll
mutations corresponded to 150 Gy, while the maximum frequency was at 250 Gy.
They also observed chlorophyll mutations with chlorina mutation being
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predominant, followed by xantha. Changes were recorded for branch number,
pedicel length, plant height, lifecycle duration, stem and foliage color, and leaf
morphology at the two doses, with improvements in plant type.

Farmers are still using land races of quinoa with very long maturity period and
very tall plants (Tapia 2000); the identified mutants with reduced life cycle could be
beneficial, considering that some of the actual cultivars have long cycle reaching
over 7 months in the field with the flowering and grain maturity time under adverse
weather conditions (drought and frost), which significantly reduce the performance
(Gomez-Pando and la Barra 2013). The same trend has also been reported for
African yam bean (Ihuoma and Adesoye 2017) and Jatropha curcas
(Dhakshanamoorthy et al. 2011), and suggestions are made on the use of such
early maturing mutants to overcome some adverse field conditions that may arise
during the flowering period such as pest attack. Gomez-Pando and la Barra (2013)
also proposed that the identified mutants with reduced plant height will be very
useful because they will decrease the high tendency of lodging and could improve
the yield in similar way to that achieved in wheat (Rutger 1984; Sasaki et al. 2002;
Zhou et al. 2007).

4.8 Molecular Marker Analyses

Molecular markers offer unique and valuable tools for evaluating and characterizing
plant genetic diversity in a manner that is unaltered by the environment (Gupta and
Varshney 2000). Genetic markers are very vital for germplasm conservation and
core collection development (Diwan et al. 1995; Tanksley and McCouch 1997); it is
also used in enhanced breeding applications such as marker-assisted selection (Staub
et al. 1996).

The foremost molecular studies were focused on establishing genetic variability
undomesticated quinoa and wild species (C. hircinum and wild quinoa ajara) using
allozyme markers (Wilson 1988a, b). The results highlighted two distinctive groups
on the basis of molecular information: a coastal type from southwestern Chile and an
Andean type from northwestern Argentina to southern Colombia, suggesting the
co-evolutionary relationship between domesticated and free-living populations of
the Southern Highlands (Wilson 1988b). Similarly, Fairbanks et al. (1990) used
protein-based approaches to characterize quinoa seed storage proteins as a valuable
tool for cultivar identification and breeding programs for improved protein quantity
and quality.

Fairbanks et al. (1993) were the first to use random amplified polymorphic DNA
(RAPD) markers in quinoa, and they observed that 26 primers produced polymor-
phic markers among 16 randomly selected accessions. The RAPD markers were also
used by Ruas et al. (1999) to identify genetic variation among 19 accessions of
6 species of the genus Chenopodium. The results showed that wild and cultivated
populations of C. quinoa shared a low level of molecular variation, without delinea-
tion between sympatric domesticated and weedy populations. RAPD has also been
used by Del Castillo et al. (2007) to study the hierarchical structure among gecotype
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populations of Highlands and Inter-Andean valleys in Bolivia. The result revealed a
marked geographical effect on the populations’ structure and pointed out climatic
and orographic barriers present in the studied zone contributed to the observed
variations rather than to a distance effect. Hence, the population structure was
associated with the three major biogeographic zones present in Bolivia, viz., North-
ern and Central Highlands, Inter-Andean valley, and southern Salar. The intra-
population genetic diversity was higher than expected, basically due to autogamous
reproduction, in addition to the limited seed exchange among isolated regions
studied (Del Castillo et al. 2007).

Maughan et al. (2004) screened 60 RAPD primers in 4 mapping populations of
quinoa; 6 (10%) created reproducible polymorphic markers and were included in
linkage analysis for quinoa. One polymorphic band was scored from each of the six
polymorphic RAPD primers, with an average of 3.8 prominent bands per RAPD
reaction. One RAPD marker (O-F10), however, was scored in a co-dominant
fashion, while the remaining five RAPD markers were scored as dominant markers.
None of the RAPD markers deviated significantly (P > 0.05) from their expected
segregation ratios.

The first step toward the development of genetic markers for quinoa was the
development of a genetic linkage map by Maughan et al. (2004). The map was based
primarily on amplified fragment length polymorphism (AFLP) and covered an
estimated 60% of the genome. Eighty-eight (88) AFLP primer combinations were
screened for polymorphism among four potential mapping parents (“Ku-2,” “NL-6,”
“0654,” and “Chucapaca”), representing two different ecotypes for quinoa: “Ku-2”
and “NL-6” from the coastal region and “0654” and “Chucapaca” from the Altiplano
region. A total of 597 polymorphic bands across the 4 potential parents were
identified. The average number of bands identified for individual primer pairs ranged
from 19 to 52, with an average of 6.8 polymorphic bands per primer combination.
Moreover, 68 out of the 88 AFLP primer combinations screened for polymorphism
between the mapping parents were polymorphic and highly reproducible based on
duplicated samples. The similarity coefficients of the four potential parents for the
linkage mapping (Table 4.1) ranged from 0.23 to 0.87 and the least genetic similarity
between the Bolivian accession “Chucapaca” and the Chilean accession “Ku-2,”
while the highest similarity was between the two Chilean coastal accessions “NL-6”
and “Ku-2.” These findings supported the previous morphological and isozyme
studies (Wilson 1988a, b; Risi and Galwey 1989a), which separated quinoa

Table 4.1 Similarity
matrix based on simple
matching coefficients of
potential quinoa parents for
genetic linkage mapping

Chucapaca NL6 0654 Ku-2

Chucapaca 1.000

NL6 0.245 1.000

0654 0.576 0.327 1.000

Ku-2 0.229 0.866 0.304 1.000

1 jump threshold ¼ 5 (Kosambi mapping function) for all linkage
groups (Maughan et al. 2004)
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germplasm into two distinct fundamental elements: Chilean coastal types and
Andean Altiplano types.

The difficulties associated with AFLP marker technologies and the related trans-
fer of this technology to developing world countries where quinoa is being cultivated
have limited the use of AFLP markers to enhance quinoa improvement programs
(Jarvis et al. 2008). This led to identification and characterization of more feasible
SSR markers of quinoa which once developed can be used across different
laboratories to determine genetic diversity in quinoa.

Maughan et al. (2004) screened 39 putative simple sequence repeat (SSR) loci
previously identified from an SSR-enriched genomic library for polymorphism in
4 potential mapping population parents; they identified 21 SSR markers as polymor-
phic, while 13 produced simple monogenic banding patterns and were easily scored
in a co-dominant fashion. A good number of the other SSR markers yielded
amplification products with complex banding patterns that made scoring the marker
in a co-dominant fashion difficult; however, a single, unambiguous, and clearly
segregating band was scored in a dominant fashion. These complex banding patterns
could be a result of the occurrence of duplicate chromosome regions (Rae et al.
2000), which may be the remains of quinoa’s probable allotetraploid origin.

Mason et al. (2005) took the next step in quinoa marker development and
characterized 208 SSR markers which were validated and characterized in
31 cultivated quinoa accessions, representing the main growing areas of South
America. These SSR markers have been utilized to assess the genetic diversity
among quinoa accessions within the USDA collection (Christensen et al. 2007).

Unfortunately, less than 10% of the 208 SSR markers identified by Mason et al.
(2005) have been mapped genetically, and only 67 of these were considered highly
polymorphic (H > 0.7), stressing the need for additional SSR marker development
and genetic mapping. To this effect, Jarvis et al. (2008) developed a new set of
polymorphic SSR markers to increase the number of SSR markers already available
in quinoa and constructed a new genetic linkage map of quinoa based primarily on
the SSR markers developed. From their result, out of the 402 SSRs tested, 54% (216)
were polymorphic when tested on the screening panel of 7 quinoa accessions. An
additional 4.7% (19) were polymorphic when the C. berlandieri accession was
included in the analysis (interspecies polymorphism). The remaining 41.05% (165)
primers were monomorphic or amplified poorly. In only 9 (2.2%) cases did a primer
successfully amplify in quinoa but not in C. berlandieri, signifying that these two
Chenopodium species share a high degree of DNA sequence homology.

All the 216 markers identified by Jarvis et al. (2008) were considered polymor-
phic (according to the recommendations of Ott (1992)), and 53 (25%) are considered
highly polymorphic (H � 0.70), and H values ranged from 0.12 to 0.90, with an
average value of 0.57.

Fuentes et al. (2009) genetically characterized Andean and Chilean germplasm to
quantify the genetic diversity within 28 Altiplano and 31 coastal Chilean accessions
of quinoa using microsatellite markers. Results of both cluster (UPGMA) and
principal component analyses generated separated the accessions into two discrete
groups, as was also revealed by isozyme analysis and morphological traits (Wilson
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1988a, b), AFLP analysis (Pratt 2003), and microsatellites (Christensen et al. 2007).
The first group contained quinoa accessions from the north (Andean highlands), and
the second group consisted of accessions from the south (lowland or coastal). The
result obtained in the diversity analyses emphasized the relationships both within
and among northern and southern Chilean quinoa accessions and provides a new set
of simple-to-use and highly informative genetic markers.

Fuentes et al. (2012) characterized 20 microsatellite genetic markers in a multi-
origin set of 34 quinoa accessions to understand the impact of farmers’ seed
exchanges and local production practices on the genetic structure and diversity of
quinoa on a national scale in Chile. The heritability for all quinoa accessions studied
ranged between 0.12 (QGA17) and 0.87 (QAAT76) with a mean value of 0.65,
which indicated the presence of wide genetic diversity in the quinoa samples and
confirmed the highly informative quality of the markers used. The UPGMA analysis
using the Jaccard coefficient identified two major groups which were further
subdivided into five populations (Fig. 4.4). The genetic information obtained per-
mitted the detection of variation among and within the populations identified, which
corresponds to natural geographical-edaphic-climatic constraints to the expansion of
biodiversity. This grouping also links with the social-linguistic context of ancient
people inhabiting the Andes region, where agronomic and cultural traditions that
have thrived until the current time are very different.

4.9 Abiotic Stress Tolerance and Associated Genetic
Mechanisms

Quinoa has been found to tolerate several abiotic stresses such as differing soil pH,
soil salinity, frost, and drought; this could be due extreme climatic conditions where
quinoa evolved. Tolerance to these abiotic stresses is determined by complex
mechanisms and polygenically inherited traits.

4.9.1 Soil pH and Frost

Quinoa can tolerate both highly acidic and basic soils with pH ranging between 4.8
and 9.5 due to its mycorrhizal associations, which also facilitates the acquisition of
scarce nutrients (Urcelay et al. 2010). Since frosts are common in the Andes, the
effects of temperature on germination, phenology, and growth have been the focus of
several studies (Jacobsen et al. 2005, 2007). Several genotypes and cultivars from
the Andean highlands of Bolivia that show varying degrees of responses to low
temperatures have been identified (Bertero et al. 2004; Fuentes 2008). Quinoa can
also tolerate freezing preceding the formation of flower buds (Bhargava et al. 2006a).
It grows properly at temperatures of �5 �C and endures temperatures as low as
�16 �C during the vegetative stage (Bois et al. 2006). During flowering, it tolerates
�8 �C up to a period of 2 h (Jacobsen et al. 2007). However, details of the
physiological and the genetic mechanisms responsible for the observed frost
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resistance remain unknown (Jacobsen et al. 2007), but proline content and levels of
soluble sugars such as sucrose might serve as markers of frost tolerance in quinoa
breeding lines (Jacobsen et al. 2007).

Fig. 4.4 UPGMA cladogram based on Jaccard’s similarity coefficient of 34 quinoa accessions
performed after 500 replicates for bootstrap test (percentage number between each node) (Fuentes
et al. 2012)
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4.9.2 Salinity

About 40% of quinoa genera are facultative halophytes; this advantageously places
quinoa over glycophytes as it is known that it can thrive in saline conditions because
of its capacity to avoid the harsh impacts of high salt accumulation, which will cause
hyperosmotic stress in roots and other structures, thereby decreasing the plant’s
ability to absorb water efficiently (Adolf et al. 2012). Also, it has the ability to
survive at salinity levels higher than that of seawater, and this makes it more suitable
than some other halophytes under similar abiotic stress (Adolf et al. 2012). However,
salinity increases the accumulation of sapogenins (Solíz-Guerrero et al. 2002;
Pulvento et al. 2012); this implies that quinoa cultivated in areas with high soil
salinity may tend to produce seeds that are bitter, a trait that is undesirable to many
farmers.

A lot of the ~6000 global quinoa germplasm accessions have been subjected to
salt treatments both in situ and field experiments, and they exhibited varying levels
of tolerance both at germination and progressive developmental phases (Ruiz et al.
2014; Valencia-Chamorro 2003; Christiansen et al. 1999; Karyotis et al. 2003;
Wilson et al. 2002). The significant characteristic of salinity tolerance has been
thoroughly studied, particularly the physiological and the molecular mechanisms
involved, the mechanisms specifically associated with salt ion accumulation in
specialized tissues, and the adjustment of leaf water potential (Adolf et al. 2013).
Quinoa species accumulate salt ions in its tissues by adjusting the water potential in
its leaves; this allows the plant to sustain cell turgor and limit plant transpiration
under saline conditions (Hariadi et al. 2010; Shabala et al. 2012). Other studies by
Koyro and Eisa (2008) and Burrieza et al. (2012) suggest that dehydrin accumula-
tion, subcellular localization, and phosphorylation state of mature seed embryos are
related to high salt stress.

Genetic constituents related to salt tolerance exhibit additive effects, recessive or
dominant relationships, and heterosis. Less than 25% of the salt-regulated genes that
have been identified by Ma et al. (2006) are salt stress-specific. Adolf et al. (2012) in
a review paper elucidated the mechanisms contributing to salt tolerance in quinoa to
include efficient control of xylem Na+ loading and Na+ compartmentalization in leaf
vacuoles, higher tolerance to reactive oxygen species (ROS), better K+ retention, and
an efficient control over stomatal development and aperture. Shabala and Mackay
(2011) suggested that salinity tolerance may also be improved by pyramiding key
genes regulating salinity tolerance, which is a very essential physiological trait, and
quinoa might serve as a valuable donor of salt-tolerant genes to other crops. The
large genetic variability for salinity tolerance in quinoa is a huge resource for the
selection and breeding for higher tolerance; however, this poses challenges and
opportunities for the future (Maughan et al. 2009; Gomez-Pando et al. 2010; Ruiz-
Carrasco et al. 2011; Adolf et al. 2012).

While studying the molecular basis of salt tolerance in quinoa, Maughan et al.
(2009) described the molecular characterization of Salt Overly Sensitive 1 (SOS1)
gene. They reported a complete genomic sequence of two homologous SOS1 loci,
cqSOS1A and cqSOS1B, which extended from 98,357 to 132,770 bp, respectively.
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Relative gene expression of SOS1 in roots under saline conditions (450 m mol/L)
was consistently three- to fourfold higher than in leaf tissue. A constitutive expres-
sion of SOS1 genes was observed in the roots, while an inducible expression
occurred in leaves under stress; this is probably because the SOS1 expression was
more strongly upregulated by salt stress in leaves as compared to the roots.

Similarly, Ruiz-Carrasco et al. (2011) reported gene expression analyses for two
sodium transporter genes: CqSOS1 and CqNHX genes. Quantitative RT-PCR
analyses of these genes revealed that their expression was differentially induced at
the shoot and root level (as was reported by Maughan et al. (2009)) and between
genotypes by 300 mM NaCl.

4.9.3 Drought

Quinoa has inherently low water requirements and is therefore highly drought-
tolerant and responds to drought stress through drought escape, tolerance, and
avoidance (Jacobsen et al. 1999; Jacobsen and Mujica 2003; Garcia et al. 2007).
Other defensive mechanisms used by quinoa include tissue elasticity, low osmotic
potential, decreased leaf area through dehiscence, and the presence of vesicular
calcium oxalate and structurally with small and think-walled cells (Canahua 1977;
Garcia 2003; Jacobsen et al. 2009; Abugoch et al. 2009). Drought reduces the
accumulation of sapogenins by 45% in quinoa seeds, based on a study of severe
water deficit conducted in Southern Europe (Gomez-Caravaca et al. 2012).

However, lack of understanding of the genetic behavior of such a complicated
trait as well as biochemical constituents and anatomical attributes responsible for
drought tolerance has led to the delay of plant breeders to incorporate drought stress
tolerance into breeding programs (Al-Naggar et al. 2002a, b). Reports on heritability
and genetic advance from selection for leaf anatomical traits of quinoa subjected to
drought stress are scarce; this led to an investigation by Al-Naggar et al. (2017) on
five genotypes of quinoa.

From their result, the effect of soil moisture content on leaf tissues had showed
significant differences among the studied genotypes. The genotype CICA 17 (the
most drought-tolerant) had the thickest leaf under well-watered condition (WW),
moderate water stress condition (WS), severe water stress (SWS), and when all
irrigation regimes were combined, while the thinnest leaf was shown by the geno-
type CO-407 and Ollague (drought-sensitive) under WS and when all irrigation
regime conditions were combined. Heritability estimates in the broad sense for
anatomical traits were very high in magnitude (>87.5%), except for the lower
epidermis (41.18, 59.41, and 33.33) under WW, WS, and SWS, respectively,
indicating that environment had minimal effect on the phenotype of most studied
anatomical traits in the leaves of quinoa (Al-Naggar et al. 2017). The highest
heritability estimate (100%) was shown by upper epidermis under severe water
stress. The genetic advance (GA%) from selection was generally higher under
moderate water stress (WS) for three anatomical traits (leaf thickness, lower epider-
mis, and palisade layer) and under well watering for two traits (upper epidermis and
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spongy layer). GA ranged from 15.40% for the upper epidermis to 72.97% for
palisade layer under SWS, from 52.66% for leaf thickness to 82.72% for palisade
layer under water stress, and from 30.40% for leaf thickness to 87.12% for spongy
layer under well watering (WW). Therefore, palisade and spongy layers under all
environments were characterized by having high heritability accompanied by high
values of expected genetic advance, especially under WS and SWS. Since efficiency
of selection depends on the degree of heritable variability, higher heritability
together with high expected genetic advance for the leaf anatomical traits studied
should be quite valuable in future breeding programs for drought tolerance in quinoa
(Al-Naggar et al. 2017).

Some authors (Blum 1988; Hefny 2007; Al-Naggar and Shehab-El-Deen 2012;
Al-Naggar and Atta 2017; Al-Naggar et al. 2009, 2011, 2016a, b) opined that
heritability and expected genetic advance is higher under stress than non-stress
conditions and that selection should be practiced in the stressed environment to
obtain higher genetic advance. However, another group of researchers found that
heritability and GA from selection for grain yield is higher under non-stress than
those under stress (Shabana et al. 1980; Atlin and Frey 1990; Banziger and Lafitte
1997; Worku 2005).

There is a need for further investigation on the type of gene action controlling the
inheritance of drought tolerance traits to help plant breeders in tackling the physio-
logically and biochemically complex drought tolerance.

4.10 Conclusion

Quinoa cultivation constitutes an important opportunity to diversify low-input
farming of growers in the Andes and elsewhere. Because of its well-documented
tolerance to several abiotic stresses, such as drought, salinity, low soil fertility, and
frost, this ancient crop could make vulnerable cropping systems much less unstable
(McElhinny et al. 2007; Kitz et al. 2009; Razzaghi et al. 2012). Pivotal to achieving
this aim are breeding programs focused on increasing yield potential, pyramiding of
abiotic tolerances, and diminishing seed saponin levels to obtain sweet genotypes.
Conventional as well as molecular tools should be utilized to unlock the rich
biodiversity and potential of quinoa.

The wide range of environments in which quinoa can grow has a direct influence
on its genetic diversity (Matanguihan et al. 2015). The adaptation of quinoa to vastly
different climatic conditions over a long period of time may have contributed to its
broad genetic diversity (Costa Tártara et al. 2012). Genetic variability has a spatial
structure and distribution; this can be seen in quinoa as phenotypic and genetic
diversity studies have shown that quinoa accessions are most often clustered
according to their geographic origin (Risi and Galwey 1989a, b; Ortiz et al. 1998;
Rojas et al. 2000; Del Castillo et al. 2007; Costa Tártara et al. 2012; Curti et al.
2012). Also, regardless of narrowing of genetic base during domestication, wide
genetic diversity still exists for plant color, seed color, types of branching and
panicles, as well as grain productivity, abiotic stress tolerance, and disease resistance
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(Bhargava and Ohri 2016). This diversity, which is also reflected at the molecular
level, is being used by the plant breeders all over world to develop improved plant
(Bhargava and Ohri 2016).

The application of informative molecular markers has made it possible to reveal
the genetic diversity of quinoa accessions. Seed exchanges and germplasm distribu-
tion have considerably affected the genetic diversity as well as genetic structure of
quinoa (Costa Tártara et al. 2012). The results of genetic diversity studies of
important agronomic traits in quinoa and associated genetics of such traits will
greatly aid conservation efforts and, consequently, plant breeding programs.
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