
Chapter 2
Existing Privacy Protection Solutions

In this chapter, we outline the major developments of modern privacy study based
on the survey work we have conducted [1–4]. Mainstream privacy protection tech-
niques including anonymity, clustering-based, differential privacy, cryptography, and
machine learning methods will be presented in the following sections.

2.1 Preliminary of Privacy Study

In this section, we present an overview of privacy systems, including different par-
ticipation roles, anonymization operations, and data status. We also introduce the
terms and definitions of the system.

In terms of participants, we can see four different roles in the privacy protection
domain.

• Data generator: Individuals or organizations who generate the original raw data
(e.g., medical records of patients, bank transactions of customers), and offer the
data to others in a way either actively (e.g. posting photos to social networks to
the public) or passively (leaving records of credit card transactions in commercial
systems).

• Data curator: The people or organizations who collect, store, hold, and release the
data. Of course, the released data sets are usually anonymized before publishing.

• Data user: The people who access the released data sets for various purposes.
• Data attacker: The people who try to gain more information from the released data
sets with a benign or malicious purpose. We can see that a data attacker is a special
kind of data user.

There are three major data operations in privacy-preserving systems.

• Collecting: Data curators collect data from different data sources.
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Table 2.1 A table of patients in a medical database

Name Job Gender Age Disease Other

Linda Singer F 30 FLU NA

Allen Researcher M 25 Fever NA

... ... ... ... ... ...

• Anonymizing: Data curators anonymize the collected data sets in order to release
it to public.

• Communicating: Data users performan information retrieval on the released data
sets.

Furthermore, a data set of the system possesses one of the following three different
statuses.

• Raw: The original format of data.
• Collected: The data has been received and processed (such as de-noising, trans-
forming), and stored in the storage space of the data curators.

• Anonymized. The data has been processed by an anonymization operation.

We can see that an attacker could achieve his goals by attacking any of the roles and
operations. In general, we can divide a given record into four categories according
to its attributes.

• Explicit identifier: A unique attribute that can clearly identify an individual, such
as passport ID and drive licence numbers.

• Quasi-identifier: Attributes that be used to identify individuals with a high proba-
bility by combining other information, such as gender, birthday, age, etc. In fact,
different attackers will have different quasi-identifiers according to their back-
ground knowledge.

• Sensitive attributes: The expected information interested by an adversary. In gen-
eral, it is difficult to predict in advance.

• Non-sensitive attributes: The information not in the previous three categories.

We provide an example as shown in Table 2.1. In the example, name is an explicit
identifier, while work, gender, and age constitute a set of quasi-identifiers, disease
is sensitive information.

2.2 Anonymity Based and Clustering Based Methods

The data clustering direction developed from the initial k-anonymity method, then
the l-diversity method, and then the t-closeness. We use Table 2.1 as an example to
quickly demonstrate the journey of the data clusteringmethods for privacy protection.
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Table 2.2 An illustration of k-anonymity (k = 2)

Job Gender Age Disease Other

Artist M 20–30 FLU NA

Artist M 20–30 HIV NA

Professional F 30–40 FLU NA

Professional F 30–40 Cancer NA

In 2000, the strategy of k-anonymity protection is shown in Table 2.2, with the
strategy that each record in the table is at least as identical to the other k − 1 records
on the quasi-identifier. Thereby reducing the probability of being identifiable. As
shown in the example, dancers, singers, etc. are merged into artists, lawyers, and
engineers are combined into the professional occupation, and the accurate age is
expressed as a range. The k value in this example is 2. In this way, the maximum
probability that a patient can be identified is 1

k . If the k value is large enough, patient
privacy can be effectively protected. It can be mathematically described as follows.

Let T = t1, t2, ..., tn be a table of a data set D, A = A1, A2, ..., Am be all
the attributes of T , and ti [A j ] be the value of attribute A j of tuple ti . If C =
C1,C2, ...,Ck ⊆ A, then we denote T [C] = t[C1], t[C2], ..., t[Ck] as the projection
of t onto the attributes in C .

The quasi-identifier is defined as a set of non-sensitive attributes of a table if
these attributes can be linked with external data sets to uniquely identify at least one
individual in the data set D. We use QI to represent the set of all quasi-identifiers.

A table T satisfies k-anonymity if for every tuple t ∈ T there exist at least k − 1
other tuples ti1 , ti2 , ..., tik−1 ∈ T , such that t[C] = ti1[C] = ti2 [C], ..., tik−1 [C], for all
C ∈ QI .

On the other hand, we can also note that a larger k value will result in more data
loss. At the same time, under the homogenous attack, the k-anonymity model cannot
effectively protect the privacy of users due to the homogeneity of sensitive attributes.
For example, the attacker knew that Linda was in Table 2.2 and she had cancer. Based
on this background knowledge, the attacker knows that Linda is the fourth record in
the table.

To overcome the shortcomings of the k-anonymity model, Machanavajjhala et al.
[48] proposed the l-diversity model in 2006, requiring at least one sensitive attribute
value is different in each anonymous group. In this way, the probability of an attacker
can infer a certain record of private information is up to 1

l . Table 2.3 provides a
concrete example, where k = 2, l = 2.

As aforementioned, l-diversity [23] is an extension of the k-anonymity to “well
represent” the sensitive attributes. In particular, there are four different interpretations
of the term “well represented” as follows.

(1) Distinct l-diversity. Similar to k-anonymity, each sensitive attribute has to
possess at least l distinct values in each qid group.
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Table 2.3 An Illustration of l-anonymity (k = 2, l = 2)

Job Gender Age Disease Other

Artist F 20–30 HIV NA

Artist F 20–30 HIV NA

Artist F 20–30 Cancer NA

Artist F 20–30 Cancer NA

(2) Probabilistic l-diversity. The frequency of a sensitive value in a qid group is

at most
1

l
.

(3) Entropy l-diversity. For every qid group, its entropy is at least log l.
(4) (c, l)-diversity. The frequency of sensitive values of a qid group is confined

in the range defined by c (a real number) and l (in integer).
However, the l-diversity based method cannot prevent the similarity attack, as

the attacker can infer the sensitive information of the user according to the sensitive
familiarity value and the semantic similarity of each QI-group. In some specific sce-
narios, the l-diversity model may provide more background knowledge for attackers.

In order to solve the above problems, Li et al. proposed t-Closeness in 2010. The
specific strategy is: for a given QI-group, ensure that the difference between its dis-
tribution and the corresponding distribution on the original data set does not exceed
a certain threshold. Based on the above three models, researchers further developed
some protection methods, such as (a, k)—anonymous [5], (k, e)—nonymous [6],
and (e,m)—Anonymous [7], etc. However, the anonymity-based protection models
require special attack assumptions, and cannot perform quantitative analysis. There-
fore, it has great limitations in practical applications.

2.3 Differential Privacy Methods

Different from the data clustering strategy, the differential privacy framework [25]
was proposed in 2006, which offers strong privacy protection in sense of information
theory. The basic background is that an attacker may obtain expected information
by multiple queries to a statistical database on top of his background knowledge of
victims. The defense strategy is: for two data sets with a minimum difference, the
difference between the queries on the two data sets is very limited, therefore limiting
the information gain for attackers. One popular method to achieve this is adding
noise to outputs.

Definition 2.1 Differential Privacy: A random function M satisfies ε-differential
privacy if for every D1 ∼ D2, and for all outputs t ∈ P of this randomized function,
the following statement holds:
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Pr [M(D1)] ≤ exp(ε)Pr [M(D2)], (2.1)

in which exp refers to the exponential function. Two data sets D1 and D2 are neigh-
bours with at most one different item. ε is the privacy protection parameter that
controls the degree of difference induced by two neighbouring data sets. A smaller
ε leads to a stronger privacy guarantee.

We can achieve ε−differential privacy by adding random noise whose magnitude
is adjusted according to the global sensitivity.

Definition 2.2 Global Sensitivity: The global sensitivity S( f ) of a function f is the
maximum absolute difference obtained on the output over all neighbouring data sets:

S( f ) = max
D1∼D2

| f (D1 − D2)|. (2.2)

Two mechanisms are always utilized to satisfy the differential privacy definition:
The Laplace mechanism and the Exponential mechanism. Between these two mech-
anisms, the Laplace mechanism achieves ε−differential privacy by adding noise that
following Laplace distribution is more suitable for numeric outputs.

Definition 2.3 Laplace Mechanism: Given a function f : D → P , the mechanism
M :R → �(R)n adds Laplace distributed noise to the output of f :

M(D) = f (D) + V, whereV ∼ Lap
( S( f )

ε

)
, (2.3)

where Lap
(

S( f )
ε

)
has PDF 1

2σ exp(
−ε|x |

σ
), σ = S( f )

ε
is the scale parameter. The novel

algorithm developed in this paper adopts the standard Laplacian mechanism.

Lee andClifton [28] found that differential privacy does notmatch the legal defini-
tion of privacy, which is required to protect individually identifiable data, rather than
the how much one individual can affect an output as differential privacy provides.
As a result, they proposed differential identifiability to provide strong privacy guar-
antees of differential privacy, while letting policy-makers set parameters based on
the established privacy concept of individual identifiability. Following this research
line, Li et al. [29] analyzed the pros and cons of differential privacy and differential
identifiability and proposed a framework called membership privacy. The proposed
framework offers a principled approach to developing new privacy notions under
which better utility can be achieved than what is possible under differential privacy.

As differential privacy is a global concept for all users of a given data set, namely
the privacy protection granularity is the same to all protected users, therefore it is
called uniform privacy or homogenous differential privacy. In order to offer cus-
tomized privacy protection for individuals, personalized differential privacy (also
named as heterogenous differential privacy or non-uniform privacy) was also exten-
sively explored [30, 42].
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2.4 Cryptography Based Methods

Based on the current situations in practice, we can conclude that encryption is still
the dominant methodology for privacy protection.

Cryptography can certainly be used in numerous fashions for privacy protection
in the big data age. For example, a patient can use the public key of her doctor to
encrypt her medical documents and deposits the ciphertext into the doctor’s online
database for her treatment while her privacy is strictly preserved.

With the emergence of big data, clouds are built to serve many applications due
to its economical nature and accessibility feature. For example, many medical data
sets are outsourced to clouds, which triggers privacy concerns from patients. The
medical records of a patient can only be accessed by authorized persons, such as her
doctors, rather than other doctors or people. The public key encryption is obviously
not convenient if the number of authorized people is sufficiently large due to the key
management issue. In this case, Attribute-Based Encryption (ABE) is an appropriate
tool [8, 9], whichwas invented in 2004 by Sahai andWaters [10]. In theABE scheme,
a set of descriptive attributes of the related parties, such as hospital ID and doctor ID
are used to generate a secret key to encrypt messages. The decryption of a ciphertext
is possible only if the set of attributes of the user key matches the attributes of the
ciphertext. The ABE scheme creatively integrates encryption and access control, and
therefore no key exchange problem among the members of the authorized group.

The dilemma of encryption-based privacy protection in big data is: on one hand,
we need to offer sufficient privacy protection for users, at the same time, we have
to make the encrypted data informative and meaningful for big data analysis and
public usage. As a result, we face a number of challenges as follows. One challenge is
information retrieval on encrypted data. This research branch is also called searchable
encryption,which boomed around the year 2000 [11, 12]. The basic idea is as follows.
An user indexes and encrypts her document collection, and sends the secure index
together with the encrypted data to a server that may be malicious. To search for a
given keyword, the user generates and submits a trapdoor for the keyword, which
the server uses to run the search operation and recover pointers to the appropriate
encrypted documents.

Another challenge here is operations on encrypted objects. This research branch is
named as homomorphic encryption started in 1978 [48]. In this kind of encryptions,
we expect to carry out computations on ciphertext, and obtain an encrypted output.
If we decrypt the output it should match the result of operations performed on the
original plaintext. Mathematically, we can describe it as follows: given a messagem,
a key k, and an encryption algorithm E, we can obtain a ciphertext Ek(m). Let f be
a function, and its corresponding function is f ′, Dk be a decryption algorithm under
key k, then an encryption scheme is homomorphic if f (m) = Dk( f ′(Ek(m))).

In 2009, Gentry kicked off a further development in this direction, Fully Homo-
morphic Encryption (FHE), which supports arbitrary computation on ciphertexts
[13]. A survey on this branch can be found in [14]. The problem is that we do
not have a feasible fully homomorphic encryption system in place yet due to the
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extraordinary inefficiency in computing. Compared to FHE, Multi-Party Compu-
tation (MPC), which was initiated by Yao in 1982 [15], has been used in practice
by offering weaker security guarantees but much more efficient. The scenario of
MPC is like this: multiple participants jointly compute a public function based on
their private inputs while reserving their input privacy against the other participants,
respectively.

We have to note that encryption can protect the privacy of an object itself, however,
it is vulnerable against side information attacks, such as traffic analysis attacks against
anonymous communication systems. For example, we can encrypt web pages of a
protected website, however, the encryption cannot change the fingerprints of the web
pages, which are represented by the size of the HTML text, number of webobjects,
and the size of the web objects. An attacker can figure out which web pages or
web sites a victim visited using traffic analysis methodology [16–18]. In terms of
solutions, information theory based packet padding is the main player, including
dummy packet padding [19] and predicted packet padding [20].

2.5 Machine Learning and AI Methods

The flourishing of machine learning (ML) has become one of the drivers of privacy
concerns in modern society. Sensitive information of users may be compromised
during the data collecting and model training process. Fortunately, recent studies
have shown that some ML methods can also act as tools for privacy protection if
employed correctly. Novel decentralized learning framework which can facilitate
distributed learning tasks and enable source data to remain on edge devices has
received widespread attention [21].

Distributed training system contains the following main modules: data and model
partitioning module, stand-alone optimization module, a communication module, as
well as data and model aggregation module. In particular, different machines are
responsible for different parts of the model and assigned with different data. There-
fore, distributed training systems can keep datasets containing privacy at different
locations instead of the cloud, which have been widely applied in recent years.

Edge computing is a widely applied decentralized architecture that performs pro-
cessing tasks in intelligent edge nodes. Similar to distributed training, the architec-
ture of edge computing can mitigate privacy issues [22]. However, other security
techniques are required to combine with. For example, Gai et al. [23] combined
blockchain and edge computing techniques to address the security and privacy issues
in smart grid. Ma et al. [24] proposed a lightweight privacy-preserving classifica-
tion framework for face recognition by employing additive secret sharing and edge
computing. Li et al. [25] proposed a privacy protection data aggregation scheme for
mobile edge computing assisted IoT applications based on the Boneh-Goh-Nissim
cryptosystem. Du et al. [26] handled with privacy problems of training datasets and
proposed a differential privacy based protection method in wireless big data with
edge computing.
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Federated learning (FL), as a novel distributed learning paradigm, becomes promi-
nent recently to address privacy issues. Different from traditional methods which put
all data D1∪D2∪...∪DN to train a model MSUM , a FL system is a learning process in
which the data owners collaboratively train a model MFED , while any data owner Fi
dose not share her data Di to others [27]. In addition, let VFED represent the accuracy
of MFED , it should be very close to VSUM . Specifically, let δ denote a non-negative
real number, if

|MFED − MSUM | < δ, (2.4)

we say that the federated learning algorithm has δ−accuracy loss.
However, recent studies have demonstrated that the framework of FL also has

some privacy issues [28]. One major concern is that adversaries could recover sensi-
tive data by violating the shared parameters. To mitigate this problem, Bonawitz et
al. [29] designed a secure aggregation method to protect the privacy of each user’s
model gradient. Recently, Liu et al. [30] pointed out that user dropout and untrusted
server are two unresolved challenges of original FL schemes. Thus, they proposed
a robust federated extreme gradient boosting framework for mobile crowdsensing
that supports forced aggregation. Hao et al. [31] proposed a privacy-enhanced FL
scheme by employing homomorphic ciphertext and differential privacy. The pro-
posed noninteractive method can achieve both effective protection and efficiency.
From the perspective of verifying whether the cloud server is operating correctly,
Xu et al. [28] proposed a privacy-preserving and verifiable FL framework based on
double-masking protocol.
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