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Preface

Over the past few decades, massive volumes of data in digital form have been
generated, collected, and published with the fast booming of high-performance
computing devices and communicating infrastructures, which brings forward the
prosperity of this big data era. Organizations, institutions, and governments are
playing the key roles for collecting, storing, and sharing data. For example, social
networks indicate interest and social connections of users, smart wearable devices
record health status of individuals, educational institutions analyse learning patterns
of students, and vehicular networks collect the daily routine of drivers. By lever-
aging the massive amounts of data, governments and corporations have the
opportunity to improve the quality of services, bring financial benefits, and
potentially create social values using diverse data processing techniques, such as
machine learning, data mining, artificial intelligence, and so on. A popular
real-world application scenario is that the statistics of a series of medical records is
able to significantly lift the diagnosis accuracy. However, almost all collected
datasets contain sensitive information implicitly or explicitly, although basic
anonymization solutions have been deployed to hide the unique identifiers. Besides,
the linkability of different data sources poses further challenges to privacy pro-
tection. Thus, privacy preservation has become a crucial issue that needs to be
addressed in this big data age.

Personalized privacy protection is a set of emerging technologies that can per-
sonalize the privacy protection based on various indexes, such as social distance in
social networks and the trade-off between privacy protection and data utility. It
attracts extensive interest from both academia and industry. It can be integrated
with almost all the existing mainstream privacy protection frameworks, including
differential privacy, clustering-based methods, and machine learning-based models,
which makes it potentially applicable in many real-world scenarios.

In this book, the target is to systematically review the state-of-the-art research of
personalized privacy protection and showcase the corresponding applications. This
book aims to pave the way for the forthcoming researchers, engineers, and other
readers to explore this under-explored domain.
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This is the first book that specifically focuses on the personalized solutions of
privacy protection in big data scenarios. Most other books either mentioned per-
sonalized privacy as a future work or barely consider it as a key component. In
addition to preliminary theoretical contents and conceptual explanations, this book
also simplifies the interpretative procedure by jointly presenting the several cor-
responding applications, which are readable to both dedicated researchers and
interested readers without research background in this era. The prominent and
exclusive features of this book are as follows:

• Enrich understanding of the foundations and research progress of personalized
privacy protection.

• Summarize the latest studies of personalized privacy protection and cover many
different applications.

• Treat both advantages and disadvantages of existing personalized privacy pro-
tection techniques and share many potential research opportunities.

This monograph aspires to keep readers, including scientists and researchers,
academic libraries, practitioners and professionals, lecturers and tutors, postgrad-
uates, and undergraduates, updated with the latest algorithms, methodologies,
concepts, and analytic methods for establishing future personalized
privacy-preserving models and applications. It not only allows the readers to
familiarize with the theoretical contents but also enables them to make the best use
of the theories and develop new algorithms that could be put into practice.

The book contains roughly two main modules. In the first module, the book
provides an overview of privacy protection and existing solutions, which is fol-
lowed by the summary and comparison of existing leading attacks in privacy
revealing area. In the second module, the book presents a series of novel models
along with the corresponding application scenarios, including personalized privacy
in cyber-physical systems, social networks using differential privacy, social net-
works using anonymity-based methods, smart homes, and location-based services.
Based on the above knowledge, the book presents the identified open issues and
several potentially promising future directions of personalized privacy protection,
followed by a summary and outlook on the promising field. In particular, each
of the chapters is self-contained for the readers’ convenience. Suggestions for
improvement will be gratefully received.

Melbourne, Australia Youyang Qu
Sydney, Australia

March 2021

Mohammad Reza Nosouhi
Melbourne, Australia Lei Cui
Sydney, Australia Shui Yu

vi Preface



Acknowledgments We sincerely appreciate numerous colleagues and postgraduate students at
Deakin University, Melbourne, and University of Technology Sydney, Sydney, who contribute a
lot from various perspectives such that we are inspired to write this monograph. We would like to
acknowledge the support from the research grant we received, namely, ARC Discovery Project
under the file number 200101374. In this book, some interesting research results demonstrated are
extracted from our research publications that indeed (partially) supported through the above
research grants. We are also grateful to the editors of Springer, especially Dr. Nick Zhu, for his
continuous professional support and guidance. Finally, we would like to express our thanks to the
family of each of us for their persistent and selfless support. Without their encouragement, the
book may regrettably become some fragmented research discussions.

Preface vii



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Privacy Research Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Personalized Privacy Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution of This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Book Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Existing Privacy Protection Solutions . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Preliminary of Privacy Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Anonymity Based and Clustering Based Methods . . . . . . . . . . . . . 6
2.3 Differential Privacy Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Cryptography Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Machine Learning and AI Methods . . . . . . . . . . . . . . . . . . . . . . . 11
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Leading Attacks in Privacy Protection Domain . . . . . . . . . . . . . . . . 15
3.1 Major Privacy Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Identity Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Anonymization Versus De-Anonymization . . . . . . . . . . . . 16
3.1.3 Location Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.4 Content Oriented Privacy (CO Privacy) . . . . . . . . . . . . . . . 17
3.1.5 Interest Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.6 Backward Privacy and Forward Privacy

(B&G Privacy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Leading Privacy Breaching Attacks . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Background Knowledge Attack . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Collusion Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Linkage Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.4 Structural Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ix



3.2.5 Forgery Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.6 Eavesdropping Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.7 Sybil Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Personalized Privacy Protection Solutions . . . . . . . . . . . . . . . . . . . . . 23
4.1 Personalized Privacy in Cyber Physical Systems . . . . . . . . . . . . . 23

4.1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Customizable Privacy Protection Modelling . . . . . . . . . . . . 26
4.1.3 Adversaries and Attacks Modelling . . . . . . . . . . . . . . . . . . 34
4.1.4 System Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Personalized Privacy in Social Networks Using Differential
Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.3 The Proposed DBLP2 Mechanism . . . . . . . . . . . . . . . . . . 50
4.2.4 System Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Personalized Privacy in Social Networks Using Anonymity
Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.3 DC-Net Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.4 The Short Stability Issue . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.5 HSDC-Net: Secure Anonymous Messaging in Online

Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.6 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.7 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Personalized Privacy in Smart Homes . . . . . . . . . . . . . . . . . . . . . 79
4.4.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.2 Smart Home Modeling Based on Fog Computing

and Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.3 Personalized Differential Privacy Scheme . . . . . . . . . . . . . 83
4.4.4 Collusion Attack Under Differential Privacy . . . . . . . . . . . 88
4.4.5 APDP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Personalized Privacy in Location-Based Services . . . . . . . . . . . . . 97
4.5.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5.3 PASPORT: The Proposed Scheme . . . . . . . . . . . . . . . . . . 105

x Contents



4.5.4 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.5.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 118

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.1 Personalized Privacy-Preserving Attribute-based Encryption . . . . . 131
5.2 Personalized Privacy-Preserving Federated Learning Using

Generative Adversarial Network . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3 Personalized Privacy-Preserving Blockchain-Enabled

Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4 Collusion Attack Resistance in Personalized Privacy

Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.5 Trade-Off Optimization between Personalized Privacy

Protection and Data Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Contents xi



Chapter 1
Introduction

1.1 Privacy Research Landscape

Privacy protection has been and will continue to be a long-lasting issue with the
persistent data collection from various resources, such as medical institutions, social
networks, government sectors, etc. The fast proliferation of smart mobile devices
accelerates the data collection speed and provides sufficient storage to preserve the
datasets, and thereby flourish this big data era, which poses further challenges to
privacy protection.

To address the privacy issues, plenty of research has been conducted from vari-
ous aspects. In classic security scenarios, there are usually three parties, including
data sender, data receiver, and adversaries. Different from it, the traditional privacy
protection domain assumes there are only two parties, which are data curator and
data requesters, as shown in Fig. 1.1. The data curator equally treats the trustful
data requesters and the adversaries. The data are transmitted to any requesters with
some extent of distortion and cannot be reversed. However, the distortion should be
minimized to maintain a certain level of data utility, such as statistic features.

The privacy protection methods are fast emerging in volume and dimensional-
ity. Traditional privacy protection methods include clustering-based methods and
differential privacy. The representative clustering-based methods are K-anonymity,
L-diversity, and T-closeness, which focus on the volume, diversity, and distribution
of each cluster, respectively. Differential privacy provides a strict definition and the-
oretical foundation for privacy protection. Its variants are widely deployed in various
scenarios, such as the Internet of Things (IoT), social networks, machine learning,
etc.

In different scenarios, new privacy-preserving techniques are experiencing a fast
boom. For example, game theory based solutions are popular in the scenario where
the confrontation of the data curator and the adversaries can be modeled. Federated
learning, as a novel distributed learning paradigm, provides privacy-preservingmodel
training against data island issues. Besides, to preserve the privacy of multimedia
data, generative adversarial networking based solutions have proved their feasibility

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
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2 1 Introduction

Fig. 1.1 Privacy-preserving data publishing

by several killer applications such as ZAO. There are more new techniques emerging
due to the increasing demand for privacy protection in this big data era. No matter
what kinds of techniques are implemented, the essential of privacyprotection is tofind
a trade-off between privacy protection and data utility, especially for personalized
privacy protection.

1.2 Personalized Privacy Overview

Traditional privacy protection usually assumes all involved parties share the same
privacy protection level, which is not realistic. In real-world scenarios, the privacy
protection levels should vary according to the actual demand. For example, in a social
network, a piece of published data should be shown in different and personalized
forms according to the intimacy of two users.Motivated by this, personalized privacy
protection methods are proposed and playing an increasingly important role in the
field of big data sharing.

There are two main branches for personalized privacy protection, which are static
methods and dynamic methods. The static methods use one or multiple variables
of the system as the index and personalize the privacy protection level based on it.
These methods do not consider the interaction between the data curator (e.g., users of
social networks) and the adversary. While in the dynamic methods, the data curator
can adjust the privacy protection levels based on certain feedback from the adversary
(e.g., attack results). This is especially important when the data is in a streaming
form.

For the static methods, the general process starts from identifying a proper index,
for example, the social distance in social networks. Then, a mapping function is
required to map the index to a privacy protection level. At last, the design should
consider the trade-off between personalized privacy protection and data utility. Opti-
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mization may be conducted in each of the processes, such as optimized indexes,
constrained mapping functions, or optimal trade-offs.

Regarding the dynamic methods, the confrontation should be properly modeled.
One of the most popular ways is to use game theory. For instance, by modeling the
actions of the data curators and adversaries, system states, and pay-off functions, the
Markov decision process can be deployed to derive the optimal privacy protection
level considering the highest data utility from an overall perspective to reach the
expected trade-off.

Currently, new personalized privacy protection methods are rapidly growing in
volume. New theories, new techniques, and new platforms are designed to achieve
a higher level of personalized privacy protection while guaranteeing optimal data
utility.

1.3 Contribution of This Book

In this book, we are going to comprehensively and systematically introduce person-
alized privacy preserving data sharing. In this big data era, an increasingly massive
volume of data is generated and transmitted, which poses great threats to privacy
protection. Motivated by this, an emerging research topic, personalized privacy pro-
tection, is fast booming to serve various and diverse demands. However, there is no
existing literature discussing personalized privacy protection in a systematic manner
such that the knowledge in this domain is fragmentary. With this book, the authors
aim to sort out the clear logic of the development of personalized privacy protection,
the advantages, disadvantages, as well as the future directions of this under-explored
domain.

The logic of this book follows the sequence of introduction, existing privacy
protection methods, leading and emerging attacks, personalized privacy protection
countermeasures, future directions. The issues of existing privacy protectionmethods
(differential privacy, clustering, anonymity, etc.), such as low data utility and unbal-
anced trade-off, are identified to the necessity of personalized privacy protection.
Besides, the leading and emerging attacks pose further threats to privacy protec-
tion. To mitigate the negative impact, personalized privacy protection methods are
discussed in detail on both the advantages and flaws. Traditional methods, such as
differential privacy, cryptography, and clustering-based methods are discussed in a
comparative and intersectional way versus emerging methods like federated learning
and generative adversarial nets.

To better clarify, both quantitative and qualitative results are present in figures,
tables, or other suitable formats to give the readers the big picture of this topic along
with unique insights of common sense and technical details.With a progressive man-
ner, the readers will gain exclusive knowledge in personalized privacy protection and
be inspired to further investigate this under-explored domain. Several prerequisites,
such as differential privacy and game theory, are required to make the best use of this
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book, which will be explained in a simplified and concise way to help the readers to
adapt in.

This book could be used as a reference for forthcoming scientists, researchers,
and postgraduates to have a quick idea of the foundations and research progress of
personalized privacy protection as well as being a potential textbook for lecturers,
tutors, and undergraduates.

1.4 Book Overview

The remainder and book overview is as follows.
In Chap.2, we present existing privacy protection research, including clustering-

and anonymity-based methods, differential privacy and its variants, cryptography
methods, and machine learning driven methods.

In Chap.3, we summarize several mainstream privacy attacks and show their
workflow. The attacks are background knowledge attacks, collusion attacks, linkage
attacks, structural attacks, forgery attacks, eavesdropping attacks, and Sybil attacks.

In Chap.4, we show our representative personalized privacy research in various
scenarios, which are personalized privacy in cyber-physical systems, personalized
privacy in social networks using differential privacy, personalized privacy in social
networks using anonymity-based methods, personalized privacy in smart homes, and
personalized privacy in location-based services.

In Chap.5, we illustrate several potentially promising future directions for the
readers. The future directions are personalized privacy-preserving attribute-based
encryption, personalized privacy-preserving federated learning using generative
adversarial network, personalized privacy-preserving blockchain-enabled federated
learning, collusion attack resistance in personalized privacy protection, and trade-off
optimization between personalized privacy protection and data utility.

In Chap.6, we summarize and conclude this book.



Chapter 2
Existing Privacy Protection Solutions

In this chapter, we outline the major developments of modern privacy study based
on the survey work we have conducted [1–4]. Mainstream privacy protection tech-
niques including anonymity, clustering-based, differential privacy, cryptography, and
machine learning methods will be presented in the following sections.

2.1 Preliminary of Privacy Study

In this section, we present an overview of privacy systems, including different par-
ticipation roles, anonymization operations, and data status. We also introduce the
terms and definitions of the system.

In terms of participants, we can see four different roles in the privacy protection
domain.

• Data generator: Individuals or organizations who generate the original raw data
(e.g., medical records of patients, bank transactions of customers), and offer the
data to others in a way either actively (e.g. posting photos to social networks to
the public) or passively (leaving records of credit card transactions in commercial
systems).

• Data curator: The people or organizations who collect, store, hold, and release the
data. Of course, the released data sets are usually anonymized before publishing.

• Data user: The people who access the released data sets for various purposes.
• Data attacker: The people who try to gain more information from the released data
sets with a benign or malicious purpose. We can see that a data attacker is a special
kind of data user.

There are three major data operations in privacy-preserving systems.

• Collecting: Data curators collect data from different data sources.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
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6 2 Existing Privacy Protection Solutions

Table 2.1 A table of patients in a medical database

Name Job Gender Age Disease Other

Linda Singer F 30 FLU NA

Allen Researcher M 25 Fever NA

... ... ... ... ... ...

• Anonymizing: Data curators anonymize the collected data sets in order to release
it to public.

• Communicating: Data users performan information retrieval on the released data
sets.

Furthermore, a data set of the system possesses one of the following three different
statuses.

• Raw: The original format of data.
• Collected: The data has been received and processed (such as de-noising, trans-
forming), and stored in the storage space of the data curators.

• Anonymized. The data has been processed by an anonymization operation.

We can see that an attacker could achieve his goals by attacking any of the roles and
operations. In general, we can divide a given record into four categories according
to its attributes.

• Explicit identifier: A unique attribute that can clearly identify an individual, such
as passport ID and drive licence numbers.

• Quasi-identifier: Attributes that be used to identify individuals with a high proba-
bility by combining other information, such as gender, birthday, age, etc. In fact,
different attackers will have different quasi-identifiers according to their back-
ground knowledge.

• Sensitive attributes: The expected information interested by an adversary. In gen-
eral, it is difficult to predict in advance.

• Non-sensitive attributes: The information not in the previous three categories.

We provide an example as shown in Table 2.1. In the example, name is an explicit
identifier, while work, gender, and age constitute a set of quasi-identifiers, disease
is sensitive information.

2.2 Anonymity Based and Clustering Based Methods

The data clustering direction developed from the initial k-anonymity method, then
the l-diversity method, and then the t-closeness. We use Table 2.1 as an example to
quickly demonstrate the journey of the data clusteringmethods for privacy protection.
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Table 2.2 An illustration of k-anonymity (k = 2)

Job Gender Age Disease Other

Artist M 20–30 FLU NA

Artist M 20–30 HIV NA

Professional F 30–40 FLU NA

Professional F 30–40 Cancer NA

In 2000, the strategy of k-anonymity protection is shown in Table 2.2, with the
strategy that each record in the table is at least as identical to the other k − 1 records
on the quasi-identifier. Thereby reducing the probability of being identifiable. As
shown in the example, dancers, singers, etc. are merged into artists, lawyers, and
engineers are combined into the professional occupation, and the accurate age is
expressed as a range. The k value in this example is 2. In this way, the maximum
probability that a patient can be identified is 1

k . If the k value is large enough, patient
privacy can be effectively protected. It can be mathematically described as follows.

Let T = t1, t2, ..., tn be a table of a data set D, A = A1, A2, ..., Am be all
the attributes of T , and ti [A j ] be the value of attribute A j of tuple ti . If C =
C1,C2, ...,Ck ⊆ A, then we denote T [C] = t[C1], t[C2], ..., t[Ck] as the projection
of t onto the attributes in C .

The quasi-identifier is defined as a set of non-sensitive attributes of a table if
these attributes can be linked with external data sets to uniquely identify at least one
individual in the data set D. We use QI to represent the set of all quasi-identifiers.

A table T satisfies k-anonymity if for every tuple t ∈ T there exist at least k − 1
other tuples ti1 , ti2 , ..., tik−1 ∈ T , such that t[C] = ti1[C] = ti2 [C], ..., tik−1 [C], for all
C ∈ QI .

On the other hand, we can also note that a larger k value will result in more data
loss. At the same time, under the homogenous attack, the k-anonymity model cannot
effectively protect the privacy of users due to the homogeneity of sensitive attributes.
For example, the attacker knew that Linda was in Table 2.2 and she had cancer. Based
on this background knowledge, the attacker knows that Linda is the fourth record in
the table.

To overcome the shortcomings of the k-anonymity model, Machanavajjhala et al.
[48] proposed the l-diversity model in 2006, requiring at least one sensitive attribute
value is different in each anonymous group. In this way, the probability of an attacker
can infer a certain record of private information is up to 1

l . Table 2.3 provides a
concrete example, where k = 2, l = 2.

As aforementioned, l-diversity [23] is an extension of the k-anonymity to “well
represent” the sensitive attributes. In particular, there are four different interpretations
of the term “well represented” as follows.

(1) Distinct l-diversity. Similar to k-anonymity, each sensitive attribute has to
possess at least l distinct values in each qid group.
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Table 2.3 An Illustration of l-anonymity (k = 2, l = 2)

Job Gender Age Disease Other

Artist F 20–30 HIV NA

Artist F 20–30 HIV NA

Artist F 20–30 Cancer NA

Artist F 20–30 Cancer NA

(2) Probabilistic l-diversity. The frequency of a sensitive value in a qid group is

at most
1

l
.

(3) Entropy l-diversity. For every qid group, its entropy is at least log l.
(4) (c, l)-diversity. The frequency of sensitive values of a qid group is confined

in the range defined by c (a real number) and l (in integer).
However, the l-diversity based method cannot prevent the similarity attack, as

the attacker can infer the sensitive information of the user according to the sensitive
familiarity value and the semantic similarity of each QI-group. In some specific sce-
narios, the l-diversity model may provide more background knowledge for attackers.

In order to solve the above problems, Li et al. proposed t-Closeness in 2010. The
specific strategy is: for a given QI-group, ensure that the difference between its dis-
tribution and the corresponding distribution on the original data set does not exceed
a certain threshold. Based on the above three models, researchers further developed
some protection methods, such as (a, k)—anonymous [5], (k, e)—nonymous [6],
and (e,m)—Anonymous [7], etc. However, the anonymity-based protection models
require special attack assumptions, and cannot perform quantitative analysis. There-
fore, it has great limitations in practical applications.

2.3 Differential Privacy Methods

Different from the data clustering strategy, the differential privacy framework [25]
was proposed in 2006, which offers strong privacy protection in sense of information
theory. The basic background is that an attacker may obtain expected information
by multiple queries to a statistical database on top of his background knowledge of
victims. The defense strategy is: for two data sets with a minimum difference, the
difference between the queries on the two data sets is very limited, therefore limiting
the information gain for attackers. One popular method to achieve this is adding
noise to outputs.

Definition 2.1 Differential Privacy: A random function M satisfies ε-differential
privacy if for every D1 ∼ D2, and for all outputs t ∈ P of this randomized function,
the following statement holds:
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Pr [M(D1)] ≤ exp(ε)Pr [M(D2)], (2.1)

in which exp refers to the exponential function. Two data sets D1 and D2 are neigh-
bours with at most one different item. ε is the privacy protection parameter that
controls the degree of difference induced by two neighbouring data sets. A smaller
ε leads to a stronger privacy guarantee.

We can achieve ε−differential privacy by adding random noise whose magnitude
is adjusted according to the global sensitivity.

Definition 2.2 Global Sensitivity: The global sensitivity S( f ) of a function f is the
maximum absolute difference obtained on the output over all neighbouring data sets:

S( f ) = max
D1∼D2

| f (D1 − D2)|. (2.2)

Two mechanisms are always utilized to satisfy the differential privacy definition:
The Laplace mechanism and the Exponential mechanism. Between these two mech-
anisms, the Laplace mechanism achieves ε−differential privacy by adding noise that
following Laplace distribution is more suitable for numeric outputs.

Definition 2.3 Laplace Mechanism: Given a function f : D → P , the mechanism
M :R → �(R)n adds Laplace distributed noise to the output of f :

M(D) = f (D) + V, whereV ∼ Lap
( S( f )

ε

)
, (2.3)

where Lap
(

S( f )
ε

)
has PDF 1

2σ exp(
−ε|x |

σ
), σ = S( f )

ε
is the scale parameter. The novel

algorithm developed in this paper adopts the standard Laplacian mechanism.

Lee andClifton [28] found that differential privacy does notmatch the legal defini-
tion of privacy, which is required to protect individually identifiable data, rather than
the how much one individual can affect an output as differential privacy provides.
As a result, they proposed differential identifiability to provide strong privacy guar-
antees of differential privacy, while letting policy-makers set parameters based on
the established privacy concept of individual identifiability. Following this research
line, Li et al. [29] analyzed the pros and cons of differential privacy and differential
identifiability and proposed a framework called membership privacy. The proposed
framework offers a principled approach to developing new privacy notions under
which better utility can be achieved than what is possible under differential privacy.

As differential privacy is a global concept for all users of a given data set, namely
the privacy protection granularity is the same to all protected users, therefore it is
called uniform privacy or homogenous differential privacy. In order to offer cus-
tomized privacy protection for individuals, personalized differential privacy (also
named as heterogenous differential privacy or non-uniform privacy) was also exten-
sively explored [30, 42].
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2.4 Cryptography Based Methods

Based on the current situations in practice, we can conclude that encryption is still
the dominant methodology for privacy protection.

Cryptography can certainly be used in numerous fashions for privacy protection
in the big data age. For example, a patient can use the public key of her doctor to
encrypt her medical documents and deposits the ciphertext into the doctor’s online
database for her treatment while her privacy is strictly preserved.

With the emergence of big data, clouds are built to serve many applications due
to its economical nature and accessibility feature. For example, many medical data
sets are outsourced to clouds, which triggers privacy concerns from patients. The
medical records of a patient can only be accessed by authorized persons, such as her
doctors, rather than other doctors or people. The public key encryption is obviously
not convenient if the number of authorized people is sufficiently large due to the key
management issue. In this case, Attribute-Based Encryption (ABE) is an appropriate
tool [8, 9], whichwas invented in 2004 by Sahai andWaters [10]. In theABE scheme,
a set of descriptive attributes of the related parties, such as hospital ID and doctor ID
are used to generate a secret key to encrypt messages. The decryption of a ciphertext
is possible only if the set of attributes of the user key matches the attributes of the
ciphertext. The ABE scheme creatively integrates encryption and access control, and
therefore no key exchange problem among the members of the authorized group.

The dilemma of encryption-based privacy protection in big data is: on one hand,
we need to offer sufficient privacy protection for users, at the same time, we have
to make the encrypted data informative and meaningful for big data analysis and
public usage. As a result, we face a number of challenges as follows. One challenge is
information retrieval on encrypted data. This research branch is also called searchable
encryption,which boomed around the year 2000 [11, 12]. The basic idea is as follows.
An user indexes and encrypts her document collection, and sends the secure index
together with the encrypted data to a server that may be malicious. To search for a
given keyword, the user generates and submits a trapdoor for the keyword, which
the server uses to run the search operation and recover pointers to the appropriate
encrypted documents.

Another challenge here is operations on encrypted objects. This research branch is
named as homomorphic encryption started in 1978 [48]. In this kind of encryptions,
we expect to carry out computations on ciphertext, and obtain an encrypted output.
If we decrypt the output it should match the result of operations performed on the
original plaintext. Mathematically, we can describe it as follows: given a messagem,
a key k, and an encryption algorithm E, we can obtain a ciphertext Ek(m). Let f be
a function, and its corresponding function is f ′, Dk be a decryption algorithm under
key k, then an encryption scheme is homomorphic if f (m) = Dk( f ′(Ek(m))).

In 2009, Gentry kicked off a further development in this direction, Fully Homo-
morphic Encryption (FHE), which supports arbitrary computation on ciphertexts
[13]. A survey on this branch can be found in [14]. The problem is that we do
not have a feasible fully homomorphic encryption system in place yet due to the
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extraordinary inefficiency in computing. Compared to FHE, Multi-Party Compu-
tation (MPC), which was initiated by Yao in 1982 [15], has been used in practice
by offering weaker security guarantees but much more efficient. The scenario of
MPC is like this: multiple participants jointly compute a public function based on
their private inputs while reserving their input privacy against the other participants,
respectively.

We have to note that encryption can protect the privacy of an object itself, however,
it is vulnerable against side information attacks, such as traffic analysis attacks against
anonymous communication systems. For example, we can encrypt web pages of a
protected website, however, the encryption cannot change the fingerprints of the web
pages, which are represented by the size of the HTML text, number of webobjects,
and the size of the web objects. An attacker can figure out which web pages or
web sites a victim visited using traffic analysis methodology [16–18]. In terms of
solutions, information theory based packet padding is the main player, including
dummy packet padding [19] and predicted packet padding [20].

2.5 Machine Learning and AI Methods

The flourishing of machine learning (ML) has become one of the drivers of privacy
concerns in modern society. Sensitive information of users may be compromised
during the data collecting and model training process. Fortunately, recent studies
have shown that some ML methods can also act as tools for privacy protection if
employed correctly. Novel decentralized learning framework which can facilitate
distributed learning tasks and enable source data to remain on edge devices has
received widespread attention [21].

Distributed training system contains the following main modules: data and model
partitioning module, stand-alone optimization module, a communication module, as
well as data and model aggregation module. In particular, different machines are
responsible for different parts of the model and assigned with different data. There-
fore, distributed training systems can keep datasets containing privacy at different
locations instead of the cloud, which have been widely applied in recent years.

Edge computing is a widely applied decentralized architecture that performs pro-
cessing tasks in intelligent edge nodes. Similar to distributed training, the architec-
ture of edge computing can mitigate privacy issues [22]. However, other security
techniques are required to combine with. For example, Gai et al. [23] combined
blockchain and edge computing techniques to address the security and privacy issues
in smart grid. Ma et al. [24] proposed a lightweight privacy-preserving classifica-
tion framework for face recognition by employing additive secret sharing and edge
computing. Li et al. [25] proposed a privacy protection data aggregation scheme for
mobile edge computing assisted IoT applications based on the Boneh-Goh-Nissim
cryptosystem. Du et al. [26] handled with privacy problems of training datasets and
proposed a differential privacy based protection method in wireless big data with
edge computing.
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Federated learning (FL), as a novel distributed learning paradigm, becomes promi-
nent recently to address privacy issues. Different from traditional methods which put
all data D1∪D2∪...∪DN to train a model MSUM , a FL system is a learning process in
which the data owners collaboratively train a model MFED , while any data owner Fi
dose not share her data Di to others [27]. In addition, let VFED represent the accuracy
of MFED , it should be very close to VSUM . Specifically, let δ denote a non-negative
real number, if

|MFED − MSUM | < δ, (2.4)

we say that the federated learning algorithm has δ−accuracy loss.
However, recent studies have demonstrated that the framework of FL also has

some privacy issues [28]. One major concern is that adversaries could recover sensi-
tive data by violating the shared parameters. To mitigate this problem, Bonawitz et
al. [29] designed a secure aggregation method to protect the privacy of each user’s
model gradient. Recently, Liu et al. [30] pointed out that user dropout and untrusted
server are two unresolved challenges of original FL schemes. Thus, they proposed
a robust federated extreme gradient boosting framework for mobile crowdsensing
that supports forced aggregation. Hao et al. [31] proposed a privacy-enhanced FL
scheme by employing homomorphic ciphertext and differential privacy. The pro-
posed noninteractive method can achieve both effective protection and efficiency.
From the perspective of verifying whether the cloud server is operating correctly,
Xu et al. [28] proposed a privacy-preserving and verifiable FL framework based on
double-masking protocol.
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Chapter 3
Leading Attacks in Privacy Protection
Domain

In this chapter, we discuss seven leading attacks in privacy domain built upon the
major privacy concerns in general cases. There are backgroundknowledge attack, col-
lusion attack, linkage attack, structural attack, forgery attack, eavesdropping attack,
and Sybil attack. There are also some other forms of attacks such as tracking attacks
[1] and inference attacks [2, 3], but these attacks fall in the range of the seven illus-
trated attacks. Beyond the traditional privacy protection scenarios, these attacks still
reveal the privacy and may result in further privacy leakage when personalized pri-
vacy protection solutions are deployed, which will be detailedly discussed in the
following chapters.

3.1 Major Privacy Concerns

With the widespread of mobile devices, massive data is being generated at every
moment. The privacy protection under big data scenario has new features and devel-
opment [4]. Usually, the released data contains sensitive identity information, loca-
tion information, other profile information, etc [5]. Although a single piece of data
usually does not cause privacy leakage, multiple pieces of data can be regarded as
a combination of quasi-identifiers and may lead to intractable privacy loss. In Table
3.1, we further illustrate the correlation between privacy issues and attacks. We sum-
marize all the privacy issues and attacks in mobile social networks as follows.

3.1.1 Identity Privacy

Protecting identity privacy [6] is the most fundamental target in privacy protection
in social networks. If identity privacy is breached, most of the following sensitive
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information will leak accordingly. This can be achieved in several ways, for exam-
ple, anonymity, pseudonym generation [7], and so on. The final target is to prevent
adversaries from re-identifying specific users, which is essential especially in social
network data sharing. In [8], Wang et al. investigated crowd-sourced data publish-
ing in social networks using differential privacy. The investigated data is real-time
as well as spatiotemporal. This work takes the continuous publication of statistics
and demonstrates the “RescueDP”, which is an online aggregate supervisory control
framework with w-event privacy preservation. The core elements include adaptive
sampling, dynamic clustering, adaptive budget allocation, filters, and perturbation.
In addition, the authors developed a reinforced RescueDP based on neural networks
to calculate the statistics and thereby improve data utility. Xing et al. [9] proposed
a k-means-based community establishment scheme in social networks with privacy
protection. This scheme maintains the privacy of both sensitive information of indi-
vidual and statistics features of the community. In each iteration of k-means algo-
rithm, the scheme processes two privacy-preserving operations. The first one is that
users try to find nearest clusters without knowing the cluster centers. The second one
is that the cluster centers are calculated without information leakage and users inside
a specific cluster cannot infer the identity of each other.

3.1.2 Anonymization Versus De-Anonymization

Anonymization is another big issue which is closely related to identity privacy. Usu-
ally, anonymization is used for publishing the big social data sets for research or
commercial purposeS [10]. The most economical way of data release is anonymiza-
tion. Modern anonymization methods are far beyond simply eliminating the identi-
fiers, for example, adding nodes or modifying edges to introduce random noise [11].
However, fast development of de-anonymization techniques [12] puts anonymization
under great threats.

3.1.3 Location Privacy

Beyond identity privacy, location privacy [13] has attracted plentiful attention from
researchers. As social network users spendmore andmore time and energy onmobile
devices, mobile social applications may cause location privacy leakage by accessing
the users’GPSdata [14].Adversaries can easily obtained either from the released data
or from crawling it from the system background [15]. For example, a specific user
may publish the location information when enjoying a fancy dinner at a restaurant or
adversaries can hack the application directly. Therefore, improper release of location
sensitive data can even cause physical loss.
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3.1.4 Content Oriented Privacy (CO Privacy)

Mobile social networks can be regarded as a specific type of content-oriented net-
works while privacy protection in content-oriented networks has always been consid-
ered [16]. As discussed in [17], content-oriented privacy consists of three properties,
which are immutability, transparency, and accountability.

3.1.5 Interest Privacy

In social networks, users are usually categorized by interest communities. Adver-
saries can launch collusion attack, background knowledge attack, or inference attack
to gain interest privacy information by breaching the privacy of anyone in the commu-
nity [18]. Moreover, built upon the location privacy, adversaries can obtain sensitive
information, for example, favourite restaurant, preferred cinema, best-loved book-
shop, and so on [19]. Based on the interest-based sensitive information, adversaries
can spam users or commit other malicious attacks with potential profitable targets.

3.1.6 Backward Privacy and Forward Privacy (B&G Privacy)

Backward privacy denotes that an adversary cannot track the previous actions of users
when the adversary has the sensitive information stored in it, while forward privacy
is that an adversary cannot predict the previous actions of users when the adversary
has the sensitive information stored in it [20]. These two features are quite important
as privacy protection in social networks should always be long-term protection [15].
Thus, the sensitive information should be context-aware and the privacy protection
must take the forward and backward status into consideration.

3.2 Leading Privacy Breaching Attacks

3.2.1 Background Knowledge Attack

Background knowledge attack is one of the most popular attacks under privacy
scenarios. The rationale behind its proliferation is that it can be combined with other
types of attacks. Background knowledge of a specific entry is easy to obtain inmobile
social networks [21]. Moreover, the background knowledge of adversaries is hard to
model, measure, and predict, which makes it more difficult to be defeated.
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Table 3.1 Privacy issues and corresponding attacks

Identity
privacy

Anonymization Location
privacy

CO
privacy

Interest
privacy

B&F
privacy

Background
knowledge attack

√ √ √ √ √ √

Collusion attack
√ √ √ √ √

O

Linkage attack
√ √ √ √ √ √

Structural attack
√ √

O × × O

Forgery attack O O
√ × × O

Eavesdropping
attack

√ √ √ √ √
O

Sybil attack
√ √

O × × O√
denotes fully supported; × denotes not supported; O denotes partially supported

3.2.2 Collusion Attack

Collusion attack is another wide-spread attack method. Collusion attack is especially
mortal in mobile social network circumstances. The reason is that a specific user can
havemultiple contacts in social networks and therefore theremight bemultiple adver-
saries hiding in the contact list. As different adversary holds different background
knowledge of this user, they can share the information with each other to launch a
collusion attack [22]. In addition, collusion attack can also be combined with other
forms of attacks.

3.2.3 Linkage Attack

Linkage attack is experiencing rapid expansion with rapidly increasing data volume
and data sources. For example, adversaries can make an attack based on multiple
social networks. Linkage attack has a good attack performance as adversaries can
collect different category of data of the same user from multiple data sources [23].
Furthermore, machine learning-based methods provide linkage attack better tools
which help adversaries bypass the protection. Song et al. [24] developed a new type
of inference attack. This type of attack targets on the browsing history of Twitter users
leveraging twitter metadata and public click analytics. This attack only needs Twitter
profile information andURLshortening services,which are public and easy-to-access
information. This can further reduce the attack overhead and upgrade accuracy by
taking time-varying models of users into consideration.



3.2 Leading Privacy Breaching Attacks 19

3.2.4 Structural Attack

Adversaries are proceeding to structural attacks because social networks are usu-
ally modelled as a graph based on graph theory. In one hand, graph theory helps
to better understand and establishes social networks structure. On the other hand,
adversaries can take advantage of the structural information to mount an attack.
The most outstanding merit of structural attack is that adversaries can re-identify
a specific user even without background knowledge. The structural attack is also
widely-deployed in de-anonymization. In [25], Chen et al. proposed two types of
practical attacks to steal sensitive information from graph-based clustering methods.
Targeted noise injection and small community are devised to attack three popular
graph clustering models, including community discovery, node2vec, and singular
value decomposition (SVD). Based on this, the authors found that adversaries with
limited open-source background knowledge can launch successful attacks. In term
of simple defenses, it can decrease the success ratio to 25% by the cost of only 0.2%
clusters over-noisy.

3.2.5 Forgery Attack

In a forgery attack, misleading messages are generated with fake information, so
that adversaries can initiate some other plotting attacks such as the location-tracking
attack. There are five phases in a forgery attack, in which we use vehicular social
networks as an example. Firstly, the victim node and the adversary node establish
a link with location information. Secondly, the adversary node creates malicious
payload to the victim node. Thirdly, the victim node sends a request to a social spot
s1 for cookies. Fourthly, s1 gives the email address of victim node to the adversary
node. Lastly, the social spots reset the certificates. In this way, an outside forgery
attack is performed and the privacy of the victim nodes will be compromised [26].

3.2.6 Eavesdropping Attack

In the case of eavesdropping attack, it is quite intuitive that adversaries eavesdrop the
information communication and transmission process by means of modern hacking
technologies, including internet, electromagnetic wave, and so on. This type of attack
is launched by unauthorized real-time interception of a private communication [27].
Therefore, it is vital to secure communication to prevent privacy leakage.
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3.2.7 Sybil Attack

The Sybil attack is normally launched under the scenario of a reputation-involved
system. During the attack process, an adversary generates a large number of pseudo
names and further gains the maximum influence [28]. Based on the influence, the
adversary can mislead the other users in the system or even fool the central authority.
Privacy leakage happens during the attack. Whether the attack can be successfully
launched is decided by the cost to fake identities and the trust mechanism between
central authority and the identities. In [29], Liu et al. did a study on extended Sybil
defences. The authors found that current sybil attack models in social networks are
static, which is not practical. This work takes temporal dynamics into consideration
and involves three new features. Firstly, the new model considers the capabilities of
adversaries to modify Sybil-controlled parts of a structural social graph. Secondly,
another new feature is the capabilities to modify the connections which Sybil identi-
ties of him/her maintain to honest users. Thirdly, the proposed model benefits from
the regular dynamics of connections structure and thereby trains social networks’
honest parts.
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Chapter 4
Personalized Privacy Protection
Solutions

In this chapter, we demonstrate personalized privacy protection techniques that
applied to secure real-world applications such as cyber-physical systems, social net-
works, smart homes, and location-based services.

4.1 Personalized Privacy in Cyber Physical Systems

The ubiquitous existence and fast proliferation of mobile devices and internet access
accelerates the popularization of cyber-physical social networks (CPSN). The CPSN
is an enhanced version of the classic social networks that map cyber space to physical
world by users actively publishing data including location information on the service
apps [1].According to [2], various cyber-physical social networks (CPSNs) havebeen
installed on over 80% smart mobile devices. Everyone can browse the published
text, user nickname, and location information in CPSNs, for example, local business
service system like “Groupon” or “Scoopon” [3]. In a CSPN, users act like sensors
themselves and the data published is regarded as the sensing data [4], which is usually
accessible to the public without proper access control and subsequently raises great
privacy concerns.

The privacy leakage of sensitive information arises extensive concerns because
of the proliferation of various cyber-physical social networks (CPSNs) installed on
smart mobile devices. One of the greatest bottleneck of data sharing over CPSNs is
privacy, in particular, customizable privacy issues [5]. The data is shared with various
recipients, including adversaries. However, existing privacy protection schemes offer
privacy protection of the same level, which is referred as uniform privacy protection.
This causes possible leakage of sensitive information or degradation of data utility.
Motivated by this, customizable privacy protection models are proposed to address
the problem. They have been applied with a lot of real-world scenarios, for example,
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edge computing [5, 6] and mobile crowd-sensing in Industrial Internet of Things
(IIoT) [7]. However, current works focus more on data publishing of a whole data
set, while privacy-preserving data sharing in CPSNs is barely discussed.

Despite the flexibility and individual-specificity offered by customizable differen-
tial privacy, it is subjected to leading attacks such as background knowledge attack
and collusion attack. The rationale behind this issue is that the customization of
privacy protection levels enables customized information from the recipients side,
which could be used to infer or collude for further sensitive information. The cus-
tomized data contains unexpected correlation of injected noises constrained by dif-
ferential privacy, which is not sufficiently studied. Adversaries can leverage back-
ground knowledge or collude with each other to ceaselessly launch these two attacks
since the data shared in CPSNs is updated from time to time [8]. In addition, both
adversaries and attacks are measured qualitatively rather than quantitatively in most
existing works [9]. In this context, the adversaries and attacks cannot be modelled
where the negative effects cannot be theoretically considered while neglecting this
puts customizable differential privacy protection under further threats.

In addition to privacy protection, it is equally important to consider the data utility
in CPSNs. Data utility determines the functionality of CPSNs, which means users
cannot be satisfied by browsing over-sanitized information [4]. Simultaneously, data
analysts require the statistical regularity of the released data for research purposes
such as recommendationmechanisms inCPSNs [10].All these issues jointly generate
the demand on a balance between privacy protection and data utility, which is also
known as a trade-off.

In order to optimize the trade-off in CPSNs, we propose a customizable reliable
differential privacy protectionmodel (CRDP). In CRDP, we start from customization
of privacy protection levels using differential privacy based on the social distance.
Social distance denotes the distance between two users in CPSNs and is represented
by least number of hops in this context. Then, a QoS-based mapping function is
developed to map social distances to customizable privacy protection levels con-
sidering their non-linear correlation. Intuitively, a longer social distance means less
intimacy of two users, which demands a higher degree of privacy protection.

In customizable privacy protection cases, the background knowledge attack and
collusion attack are additional severe and have always been two primary issues [11].
We formulate them under the framework of ε-differential privacy using quantita-
tive measurements. On account of this, we use a modified Laplacian mechanism
in which the noise generation process complies with a Markov stochastic process
featuring memoryless property. In this way, the correlations among the noises are
properly de-correlated, and thereby the composition mechanism no longer uninten-
tionally provide any attack incentives. We also show that the optimized trade-off
simultaneously satisfies both customizable privacy protection and the optimality of
the Laplacian mechanism. In addition, our extensive experiments demonstrate that
the CRDP model has superior performances than current leading models from the
perspectives of both customizable privacy protection, high data utility, and attack
resistance.

The main contributions of this work are summarized as follows.
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• We propose a customizable reliable ε-differential privacy model (CRDP) built
upon the intimacy of users measured by hop-defined social distance. We devise a
QoS-based mapping function which maps social distance to customizable privacy
protection levels. Consequently, CRDP achieves flexible privacy protection with
less privacy budget while upgrading data utility simultaneously.

• Under customizable privacy protection scenario, we identify background knowl-
edge attack and collusion attack as two leading attacks. The attacks are modelled
under the customizable privacy protection framework, followed by quantitative
measurement and analysis on them. Built upon this, we reveal the fountainhead of
the attacks and then put forward a solution.

• To defeat the two leading attacks, a modified Laplacian mechanism is employed
to generate controllable random noises. We further demonstrate that if the noisy
generation process complies with a Markov stochastic process, the correlations
between the noises can be de-coupled and the composition mechanism is disabled
to provide incentive to the attacks. As a result, the CRDP model can minimize the
background knowledge attack and eliminate the collusion attack.

4.1.1 Literature Review

Cyber-physical social networks have brought considerable connivence to daily life,
but privacy-leaking issues attracts extensive concerns [12]. In CPSN scenarios, there
are numerous existing models to provide privacy protection from different perspec-
tives. There are two main branches: data clustering models and differential privacy
models [13]. The data clusteringmodel started fromK-anonymity [14], and extended
toL-diversity [15] andT-closeness [16] to take diversity and distribution into account.
The clustering models are practical but limited to scalability [2]. Dwork et al. pro-
posed differential privacy in 2006, which is a pioneering work providing strict pri-
vacy protection [17]. In the framework of differential privacy, Laplacian mechanism
is widely used to generate real-valued random noisy responses [18]. Differential pri-
vacy and its extensions are still fast growing in number [19] and have been applied
into practice in various fields, for example, identity privacy [5], pathological archives
[20], location privacy [21], mobile devices [7]. The primary issue is that uniform pri-
vacy protection is still the mainstream method. All users’ privacy protection levels
are set as the same despite different requirements of users [22]. This increases overall
privacy budget while degrading data utility.

In addition to privacy protection, researchers make considerable efforts on the
optimal trade-off. In smart sensing scenario, Wang et al. leveraged Markov deci-
sion process establish a model while using reinforcement machine learning to derive
the expected trade-off [23]. Similar researches haven been conducted in multi-agent
systems [24], distributed algorithms [25], etc. Although there are plentiful exist-
ing research on privacy protection and optimization of trade-off, it is not sufficient
since the uniform protection method fails to capture the emerging demands of cus-
tomizable privacy protection. In CPSNs, users with different social distances needs
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customizable privacy protection levels [5]. A pioneering work of customizable pri-
vacy protection discusses the dilemma between conservation or liberty [26]. This is
followed by several research of customizable privacy protection, such as data aggre-
gation in CSPNs [27], privacy-preserving anomaly detection [28], and data diffusion
over networks [29].

Customized privacy protection can achieve a better trade-off than the traditional
uniform privacy protection [30]. Nevertheless, the background knowledge attack and
collusion attack become two big issues of customizable privacy [22]. Background
knowledge [31] is seldom to be modelled qualitatively since the volume background
knowledge is hard to measure. That’s also the reason why there is only a potential to
minimize it but not fully eliminated. Collusion attack [32] are launched if adversaries
believe the collusion can reveals further sensitive information. The incentive of col-
lusion attack in this context is triggered by composition mechanism of differential
privacy unintentionally. Therefore, it is possible to fully eliminate it if the incentive
is removed by disabling the composition mechanism.

In the case of social distance, there are some existing popular models, for instance,
effective distance [33], shortest path distance [34], resistance distance [35], and so
on. The proposed model can fit in any distance metrics. To better clarify, we use the
shortest path in this section. Other popular distancematrices based privacy protection
methods includemodels proposed byKasiviswanathan et al. [36] andXiao et al. [37],
which devised a novel scheme to leverage node differential privacy to analyze graph
data and developed a differentially private network data sharing model by leveraging
structure inference, respectively. However, none of them take customizable privacy
protection into consideration.

4.1.2 Customizable Privacy Protection Modelling

In this section, we model the proposed customizable reliable differential privacy
protection model (CRDP) built upon the intimacy of users, which is defined by
social distance in this section. In cyber-physical social networks (CPSNs), a specific
user may share a piece of sensitive data to various recipients while the shared data
should be received in different forms according to corresponding privacy demands.
The sensitive data in CPSNs are classified as Table4.3. Intuitively, a longer social
distance will result in a higher privacy protection level. The rationale is that sen-
sitive information of users is more confidential to people who are less intimate. In
CRDP, we customize the privacy protection levels based on the corresponding pri-
vacy requirements rather than the traditional way that fixes the privacy protection
level as a constant (Table4.1).

In CPSNs, the life cycle of the sensitive data starts from being submitted to the
service provider. This piece of data is stored in an associated database as a record. If
the other users inCPSNs submit a request to access some data including it, the request
will be translated to a query to the database. The service provider then processes the
data with a randomized differentially private mechanism and responds to the data
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Table 4.1 Sensitive data classification in CPSNs

Data classification Description

Time stamp xi ∈ R+ is positive a real value such as
hh:mm:ss

Location xi ∈ R3 is usually the GPS coordinates like
longitude

Dualistic states xi ∈ {0, 1} represents a binary value like
gender or employment situation

Text information xi ∈ ABC represents a serial of alphabets such
as address

Fig. 4.1 An example of customizable privacy-preserving data sharing based on social distance:
Alice is the data curator in this case while Bob and Dan are two one-hop friends and Carol is one
two-hop friend. Bob and Dan can observe a more accurate data with less noise comparing to Carol,
which is an instance of customization

requestor.We develop amodified Laplacian mechanism to generate noise and deploy
it in the server. If another user tries to query the server, the system will compute the
shortest social distance and then map it to a customized privacy protection level.
Then, the noise is injected to the real output and the noisy output is responded to the
requester. The requester is free to conduct any post-processing to realize the value like
spreading pattern [38] and recommendation system [39]. In addition, the modified
Laplacian mechanism enables an optimized trade-off with reliable resistance against
the background knowledge attack and collusion attack.

In Fig. 4.1, the example shows thatAlice published her location informationwhich
is (220.12, 120.45). For her one-hop friends, Bob and Dan, they can observe the
location as (215.23, 125.62). As to her two-hop friend, Carol, her observable location
is (200.05, 110.02). Obviously, the friends with longer social distance (hop in this
case) obtain the information with more noise. The reason why Bob and Dan observe
the same information is that the proposed model leverages the shortest path.
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Table 4.2 Notation table

Abbreviation Description

M A mechanism complying with DP

L AP Laplace mechanism of DP

ε Privacy protection level or privacy budget

S(·) Sigmoid function

d Social distance

θ Steepness of Sigmoid function

m The symmetry line of Sigmoid function

k The mapping coefficient

y Output with injected noise

DU Data utility

Comp(·) Composition mechanism of DP

E Expectation value

v Value of noise

4.1.2.1 Preliminaries

To better clarify, a notation table and two general concepts are presented in this
section, which are the Laplacian mechanism and the composition mechanism in
differential privacy (DP) [40]. In privacy-preserving field, differential privacy is the
mainstream method because it protects the privacy of strict mathematical guarantee.
Laplacian mechanism is a popular randomized mechanism that injects differentially
private noise to the original data. Compositionmechanism enables the cooperation of
different mechanisms so that complex and advanced mechanisms can be developed.

4.1.2.2 Notation Table

In this subsection, we present a notation table that containsmost important and global
variables to provide guidance of the technical part. The detailed information is as
Table4.2.

4.1.2.3 Laplacian Mechanism and Laplacian Noise

In order to protect privacy in numeral scenarios, Laplacian mechanism injects con-
trollable noises in real-valued scenario to achieve differential privacy.

We use {M : Rn → �(Rn)} as the randomized mechanism to inject Laplacian
distributed noise N as

M(D) = D + L AP
(
δ
)
, (4.1)
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Fig. 4.2 Composition
mechanism with three
participants: Alice, Bob, and
Carol, have different
randomized algorithms with
the values of epsilon as i , j ,
and k, the ceiling value of ε

is i + j + k after the
composition mechanism is
triggered

where δ decides the size of noise with global sensitivity and ε. Usually, we regard

M as a ε-differentially private mechanism if the injected noise follows L AP
(
δ
)
.

4.1.2.4 The Composition Mechanism

The composition mechanism allows various mechanisms to make joint efforts so that
complicated and advanced mechanisms can be designed by composing the separated
mechanisms as a whole.

Let {M1,M2, . . . ,Mn : D → �(Y)} be the randomizedmechanismswhich cor-
respondingly satisfy {ε1, ε2, . . . , εn}-differential privacy. Then,we can derive that the
mechanism {M : D → �(Yn)} composed by M = {M1,M2, . . . ,Mn} complies
with

∑n
i εi -differential privacy. The

∑n
i εi is the upper bound of privacy protection

level after composition. In this section, we consider
∑n

i εi as theworst case of privacy
leakage rooting in composition mechanism.

In Fig. 4.2, we show an example of composition mechanism, where there are three
participants, Alice, Bob, andCarol. All three participants have processed the raw data
with their associated privacy protection levels: ε = i , ε = j , and ε = k. Dan is the
data requestor who can access the differentially private data composed by the three
mechanisms, which is denoted by ε = i + j + k.

4.1.2.5 Shortest Social Distance Using Dijkstra Algorithm

In CRDP, we use the value of hop to represent the social distance. Usually, there are
several paths between two non-adjacent users. We select the shortest path and use
the value of its hops as the shortest distance. The reason why we choose the shortest
distance is to fairly measure the most intimate relationship of them. To calculate the
social distance, we establish a social graph built upon CPSNs using graph theory.
Then, the Dijkstra algorithm is used to identify the shortest path. In addition, we pre-
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set a threshold of maximum distance dth to improve the performance by reducing
the computational cost.

The reasonwhywe choose social distance is that it captures the feature of intimacy
between two specific users in CPSNs. Therefore, it is suitable tomeasure relationship
of users. InCRDP,weuse the shortest path of social graph to represent social distance.
It is clear that the distancematrix can be extend to any other ones in various scenarios.
In this modelling section, we focus more on the customization and reliability of the
privacy-preserving data sharing in CPSNs.

To better analyze a CPSN, we use a social graph G = {vi , ei j |v ∈ V, e ∈ E} in
this context. A node in G denotes an user in a specific CPSN while a pair of nodes
(ui , u j ) ∈ E represents the edge, namely, the relationship between the two users.
During the whole lifecycle of an user, ui has several pieces of sensitive data xi ∈ X,
where X is the dataset of sensitive data. The sensitive data xi will be shared by ui
with a CPSN and be accessed by other users under privacy guarantee. When a dif-
ferent user u j tries to access the data, the system calculates a noisy output yi j and
shares it to u j based on their social distance di j . The social distance di j is a mapping
function {di j |V × V → R+} while {ε|R+ → R+} that maps the social distances

to customizable privacy protection levels ε
(

1
di j

)
. The target of CRDP is to generate

approximations {yi j }i, j∈V which provides customizable privacy protection while sat-
isfying data utility constraints and reliability requirements. The reliability requires
that CRDP can eliminate collusion attacks and background knowledge attacks. To
simplify, we use root-mean-square-error (RMSE) to measure the data utility.

We use the classic Dijkstra algorithm to calculate the shortest social distance
between two users of CPSN. Firstly, we use the user who shares the data as the
source user. Then, the system obtains all the shortest distances from the source users
to the other users based on the social graph. In this way, the algorithm can generate
a shortest-distance tree with a complexity of O(|V |2) where |V | is the total number
of associated users in a CSPN.

Given ui as the initial user and social distance di j be the distance from initial
user ui to target user u j , the Dijkstra algorithm first assigns initial distances and
then improve them progressively. The distance for initial user is set to be 0 while
the distances for all the other users are infinity. We give the the initial user ui a
status called “current” and mark all the other users as “unvisited”. Based on this,
we establish an unvisited set {u j |ui ∈ U, j �= i} which contains all the other users.
In the case of the current user, we take all its neighbourhood nodes and compute
the tentative distances, respectively. Then, the tentative distances with its current
assigned distance are compared to decide which is the minimum value denoting the
new current distance. For instance, if current user u j has a distance of 5 and the edge
between A and its neighbour user u j+1 has a length of 1, we say the distance through
u j to u j+1 is the sum of 5 and 1, namely, 6. In the case that the distance of u j+1 was
previously set a value larger than 6, the current distance is marked as 6. Otherwise,
the current value should be maintained the same.

After all the neighbourhood nodes are traversed, the current user is labelled as
“visited” while being deleted from the unvisited set. After all users with greatest
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threshold are labelled as “visited” or there are infinite smallest tentative distances in
the “unvisited set”, the current value is regarded as the shortest distance and iteration
is suspended. In particular, the left users are supposed to be irrelative to the source
user if there are infinite smallest tentative distance.

4.1.2.6 QoS-Based Mapping Function

We use the Sigmoid function S(·) to as the mapping function to calculate customiz-
able privacy protection level ε based on social distance di j . The Sigmoid function
S(·) is a popular matrix to measure the satisfactory degree of users regarding quality
of service (QoS). We formulate the Sigmoid mapping function as Eq.4.2.

εi = S
(
di j

)
= k

1 + exp(−(di j ) · θ − m)
, (4.2)

where k decides the amplitude of the highest privacy protection level. The parameter
θ controls the steepness of middle range of the curve. Besides, m is the arithmetic
mean value of S(·).

The reason why we choose Sigmoid function is as follows. We require high
customizable privacy protection levels when di j increases in a low range. Then, after
di j increases across a threshold, the privacy protection level should drop sharply. In
addition, further growth of privacy protection level brings marginal benefits when
di j increases in a high range. In Fig. 4.3, we demonstrate the curve transformation
with the change of each parameter. Figure4.3 shows that the Sigmoid function S(·)
functions well as the mapping function from the aspect of QoS in CPSNs.

Fig. 4.3 Curve
transformation of sigmoid
function with different
parameter: The parameters,
which are k, θ , and m,
controls the general trends,
which makes it applicable to
various scenarios
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4.1.2.7 Customizable Privacy Protection Model Formulation

Based on the social graph and mapping function in Sects. 4.1.2.5 and 4.1.2.6, we
present the model of CRDP which provides customizable privacy protection with
attack-proof features in a CPSN. The number of hops is used to measure the social
distance and a QoS-based Sigmoid function generates customizable protection levels
based on hops. A greater number of hops means a longer social distance and thereby
leads to a higher privacy protection level.

A source user ui shares a piece of sensitive data to the other users {u j |u j ∈
U, j �= i} in a CSPN. The sensitive data should be under privacy guarantee before
being shared out. Most current models assume an uniform privacy protection level,
which is not feasible, especially in CPSNs, because various relationships exist in it,
such as friends, colleagues, playmates, etc. To show the problem clearly, an instance
with two customizable privacy protection levels is presented as follows.

Let εi and εi+1 be two different privacy protection levels satisfying εi+1 > εi , and
Mεi→εi+1 : D → �(Y2) be a randomized mechanism. The user ui publishes two
noisy outputs {yi, j , yi+1, j }, to two other different users, which complies with εi -DP
and εi+1-DP, respectively. We assume these two users are malicious and collude with
each other to steal more accurate sensitive information. Then, the privacy protection
mechanism should comply with

MDP

(
εi + ε′

i+1

)
= MDP

(
εi+1

)
, (4.3)

where ε′
i+1 is the privacy protection level of the second noisy response. The afore-

mentioned composition mechanism shows

MDP

(
ε′
i+1

)
= MDP

(
εi+1 − εi

)
, (4.4)

where it could be derived that ε′
i+1 < εi+1. The result means that the privacy protec-

tion level of the second user is not relaxed and breaches the assumption εi+1 > εi ,
especially when ε(1) < εi+1 � 1. In this case, the degradation of data causes the
infeasibility of the traditional differential privacy mechanism.

With CRDP, we address this problem by customizing privacy protection levels
based on social distance using differential privacy. The customizable differential
privacy is extended from classic differential privacy as defined below.

Let ε ≥ 0,D be the space of the sensitive data, andA ⊆ D × D to denote an adja-
cent relation. By taking Eq.4.2, a randomizedmechanismM → �(Y) is considered
to be ε-differentially private if and only if
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Pr
[
M(D) ∈ �

]
= exp(ε) · Pr

[
M(D′) ∈ �

]
,

= exp

(
k × 1

1 + exp(−θ · (di j ) − m)

)
· Pr

[
M(D′) ∈ �

]
,

s.t.

∀� ⊆ Y,

∀(D, D′) ∈ A,

(4.5)

where Y is the noisy outcome. As the protected data is streaming data in this case,
the adjacent relationship in this case is defined as the two datasets in adjacent time
slots. That means we consider Dt and Dt+1 as the adjacent datasets. This will enables
the dynamic features of the proposed model.

The objective of CRDP is to achieve customizable privacy protection in a CPSN
with {M : D → �Dn}, which generates n noisy outcomes {yi j }nj=1 and {yi j }nj=1
and shares the customizable responses to the corresponding users. Therefore, the
mechanism M meets the following constraints.

The first constraint is to provide customizable privacy protection. For each piece of

sensitive data xi , all of its approximations {yi j }nj=1 should satisfy ε
(

1
di j

)
-differential

privacy based on correspondingly social distance.
The second constraint is decrease the ceiling value of privacy protection level

after composition. In terms of all noisy outcomes {yi j }nj=1, the maximum value of
composed privacy protection is

Comp
(
εi

)
=

n,n∑
i=1, j �=i

MDP

(
ε
( 1

di j

))
, (4.6)

where MDP is the randomized mechanism complying with differential privacy.
The third constraint is that CRDP has the maximum data utility. All noisy out-

comes {yi j }nj=1 should be as accurate as possible comparing with the actual outcome
xi , which guarantees maximum data utility. In this work, we use root-mean-square-
error (RMSE) [41] to measure the data utility, where less RMSE means higher data
utility, and vice versa.

In a customizable privacy-preserving data sharing scenario, there are different
approximations {yi j }nj=1 resulting in multiple values of data utility. Therefore, when
we talking about the optimized utility in this work, we mean the sum of data utility
as

∑n
i=1

∑n
j �=i E ||yi j − xi ||22.

Let min(DU ) be the minimum-expected data utility, we formulate the optimized
tradeoff as Eq.4.7.
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Objective :max(DU ) & max
(∑

ε
)

s.t.

customizable εi = k

1 + exp(−(di j ) · θ − m)

∑
MDP

(
ε
( 1

di j

))
≤ maxMDP

(
ε
( 1

di j

))
,

∑
E

∣∣∣
∣∣∣yi j − xi

∣∣∣
∣∣∣
2

2
≥ min(DU )

(4.7)

Algorithm 1 Customizable Reliable Differential Privacy Algorithm
Require: X as the sensitive data of user ui and dth as maximum social distance;
Ensure: Customizable noisy output Y shared with u j ;
1: Initialize dt where dii = 0 & di j = ∞;
2: Initialize the source user us as current;
3: Initialize the status of the other users as unvisited and store them in the unvisited set;
4: while an user ui j within dth is not traversed do
5: Derive the dt s of us ’s adjacent users;
6: Compare current value with new dt s and label the smaller value as the new di j ;
7: Label the status of us as visited
8: Delete us from unvisited set;
9: Record the shortest social distance di j ;
10: Update uc = u j with the shortest dt ;
11: end while
12: Another user u j requests sensitive data X of ui ;
13: Use the Sigmoid function to calculate customizable privacy protection level ε;
14: Initialize parameters of the QoS-based mapping function;
15: Implement the modified Laplacian Mechanism to inject noise to X ;
16: Return the differentially private response Y

4.1.3 Adversaries and Attacks Modelling

Basedon thedata sharing scenariomodelled inSect. 4.1.2.7, there are twomainstream
types of attacks harassing the customizable privacy-preservingdata sharingprocess in
cyber-physical social networks (CPSNs), including collusion attack and background
knowledge attack [42]. These two kinds of attacks have already been identified as two
primary barriers in privacy field while most other leading attacks are combinations
or variants of these two attacks [22]. By mathematical modelling these two attacks,
we enable flexible modelling of other leading attacks by simple adjustment. In the
customizable privacy-preserving data sharing scenario, we formulate the collusion
attack and background knowledge attack under the framework of differential privacy
based on their unique features.



4.1 Personalized Privacy in Cyber Physical Systems 35

4.1.3.1 Collusion Attack

Usually, the definition of collusion attack is two or more adversaries sharing their in-
place data with each other to dig out more sensitive data. There are three properties
to commit the collusion attack. Firstly, at least two or more adversaries sharing
the same interest. Secondly, each of the adversary already has some sensitive data
corresponding to the interest in place. Thirdly, the adversaries hold the belief that
they can definitely gain more sensitive information after collusion attack.

Under the scenario of Sect. 4.1.2.7, the recipient users { j | j ∈ n, j �= i} are

regarded as adversaries. The customizable privacy protection levels
{
ε
(

1
di j

)∣∣∣ε ∈
R+

}
denote the sensitive data in hands of the adversaries. The composition mecha-

nism is the incentive of adversaries colluding with one another.
Given the noisy responses {yi j }nj=1 of xi from ui to u j , each of the {yi j }nj=1 submits

to ε
(

1
di j

)
-differential privacy. The upper bound of the collusion attack that involves

n adversaries is

Comp

(
1

dij

)
=

∑
i, j �=i

MDP

(
ε
( 1

di j

))
, (4.8)

where the composition of customizable privacy protection levels equals to the sum
of privacy protection levels.

4.1.3.2 Background Knowledge Attack

Background knowledge attack is another fundamental attack in privacy domain. This
is natural because an adversary may have some background knowledge, especially
in CPSNs, where the users have a relationship with each other. That’s also the reason
why we believe the users with longer social distance have greater potential threats.
There are also three properties for launching a background knowledge attack. First
of all, the attack can be launched by only one adversary. Then, an adversary has
to have some prior-belief of the interested sensitive data, which is also treated as
the background knowledge. Last but not least, an adversary keeps collecting other
information to enrich the background knowledge. The attack is successfully carried
out when background knowledge is enough.

Under the scenario of Sect. 4.1.2.7, one recipient u j is regarded as an background
knowledge attacker and his prior-belief is assumed as a fixed εad . Every time the
privacy protection level changes from ε(di j ) to ε(di j+1), the adversary collects the
updated information and composes it with his prior belief until the background
knowledge is enough.

Given the multiple released noisy responses yi j of di j from ui to u j , each of the
yi j submits to ε(di j )-differential privacy. The upper bound of the collusion attack is
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Comp
(
s
)

= MDP

(
εad +

D∑
di j

ε(di j )

)
, (4.9)

where the composition of multiple privacy protection levels equals to the sum of
privacy protection levels.

4.1.3.3 Universal Attack Modelling

Under the scenario of progressively release sensitive data with customizable differ-
ential privacy, we propose the universal attack, which is a generalized form of both
collusion attack and background knowledge attack.

There are three reasons that we can formulate these attacks together. Initially, there
two attacks are formalized into standard ε-differential privacy manner. Sequentially,
the attack can be launched because there are more than one ε(·) existing in the
attack circumstances. Lastly, the upper bound of composition mechanism provides
incentive to the attacks in the same manner.

Given the noisy responses {yi j }nj=1 of xi from ui to u j , each of the {yi j }nj=1

submits to ε
(

1
di j

)
-differential privacy. The upper privacy bound of the collusion

attack involving n adversaries is

Comp

(
1

dij

)
=

∑
i, j �=

MDP

(
εad + ε

( 1

di j

))

= MDP

(
εad + ε

( 1

di1

)
+ ε

( 1

di2

)
+ · · · + ε

( 1

din

))
,

(4.10)

where the composition of customizable privacy protection levels equals to the sum
of privacy protection levels.

4.1.4 System Analysis

Based on the system modelling, we show the superiority of CRDP, which satisfies
customizable privacy protection, progressively release, and optimized utility. The
analysis shows the stochastic process and optimum Laplacian mechanism.

4.1.4.1 Differentially Private Stochastic Process

For n-tuple real-valued data d, we target on developing a differentially private mech-
anism M to generate the approximation yi j , in which yi j is sent from ui to u j . Two
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features are required for the mechanismM. Firstly, the accuracy, which is known as
data utility in this context, only depends on the social distance 1

di j
. All other param-

eters have no negative impact on the data utility. Then, any clusters of CPSN users
cannot infer more sensitive information about another user ui after collusion denoted
by

∑
ε( 1

di j ).
Motivated by this, we introduce a private stochastic process defined on a contin-

uous domain. This private stochastic process is used to assist the noise generation
and decouple the correlations among noises as follows.

Let ε be the privacy protection level, and εi , εi+1,εi+2 (εi < εi+1 < εi+2) be three
adjacent privacy protection levels, the private stochastic process should possess the
following properties.

• Thenoise complieswithLaplacianMechanism:∀ε > 0, d Pr
(
Vε = v

)
∝ exp

(
−

ε||v||2
)
;

• The process complies with Markov stochastic process: ∀εi < εi+1 < εi+2, Vεi

|Vεi+1 , Vεi ⊥Vεi+2 ;
• The transfer probability in Markov process is

d Pr
(
Vεi = vi

∣∣∣Vεi+1 = vi+1

)
∝ δ(vi − vi + 1)

+ (n + 1)ε
1+ n

2
i ||vi − vi+1||1−

n
2

2

(2π)
n
2

Bn
2 −1

(
εi ||vi − vi+1||2

)
τ

+ O
(
τ 2

)
,

s.t.

τ = εi

εi+1
− 1,

(4.11)

4.1.4.2 Optimum Laplacian Mechanism

The Laplacian mechanism has already been proved to satisfy ε-differential privacy.
However, in general cases, theLaplacianmechanism is not optimal as far asminimum
mean-squared error. Nevertheless, the Laplacian mechanism should be optimal for
the minimum root-mean-square-error (RMSE) if the noise generation process is
properly-designed.

Let M : Rn → �(Rn) be the ε-differentially private mechanism, we have M
which satisfies yi j = di j + V , where V ∼ ρ(V ) ∈ �(Rn). The RMSE will be min-
imal when the designed noise density follows

f n1 (v) =
(

ε

2

)
exp

(
− ε

∣∣∣
∣∣∣v

∣∣∣
∣∣∣
1

)
, (4.12)
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where f n1 (v) represents the noise density in the case of v. By substituting Eq.4.12
to RMSE, we can obtain

E
∣∣∣
∣∣∣yti j − di j

∣∣∣
∣∣∣
2

2
= EV∼ρ

∣∣∣
∣∣∣V

∣∣∣
∣∣∣
2

≥ EV∼ f n1

∣∣∣
∣∣∣V

∣∣∣
∣∣∣
2

2
= 2n

ε2
.

(4.13)

The optimumLaplacianmechanismdescribes the optimal trade-off in this context.
The trade-off is indispensable for the proposedCRDPmodel aswedoneed the highest
data utility in addition to customizable privacy protection.

4.1.4.3 Mechanism Design and Analysis

To start with, we consider the single-dimension case. The following theorem shows
a modified composition mechanism that satisfies all above requirements including
customizable privacy protection and universal attack defence.

Two privacy protection levels ε1, ε2, which are abbreviation for ε1

(
1
di j

)
, ε2

(
1
di j

)
.

They correspond to two randommechanisms:M1 andM2.Weassume0 < ε1

(
1
di j

)
<

ε2

(
1
di j

)
, which is also workable otherwise. Based on this, the mechanism can be rep-

resented as
yi1 = d + V1, yi2 = d + V2, (V1, V2) ∼ ρ�(R2). (4.14)

Moreover, the density fε1( 1
di j

),ε2(
1
di j

) is

fε1,ε2(x, y) = ε21

2ε2
exp

(
− ε2|y|

)
δ(x − y)

+ ε1(ε
2
2 − ε21)

4ε2
exp

(
− ε1|x − y| − ε2|y|

)
.

(4.15)

With above analysis, we summarize the following properties of the above theorem.

• The random mechanism M1 is ε1

(
1
di j

)
-differentially private;

• The randommechanismM1 is optimal. Namely,M1 minimizes the mean-squared
error E(V1)

2;

• The random mechanism M2 is ε2

(
1
di j

)
-differentially private;

• The random mechanism M2 is optimal. In particular, M2 minimizes the mean-
squared error E(V2)

2;

• The random mechanism (M1,M2) is ε2

(
1
di j

)
-differentially private.
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4.1.5 Performance Evaluation

To show the performances of the proposed model, we begin with testifying the trade-
off of CRDP. Followed by this, we further demonstrate the performances of CRDP
over classic ε-differential privacy (CDP) and the classic customizable differential
privacy (CCDP) against background knowledge attack and collusion attack. The
obtained experimental results on real-world datasets are superior comparing with
the two baseline models and thereby confirm the superiority of CRDP.

We evaluate our model on the “Google +” dataset collected by Jure Leskovec [43].
This dataset contains 107, 614 Nodes and 13, 673, 453 edges. We use the Dijkstra
algorithm to find the shortest social distance and use it to customize the privacy
protection levels. This can be extended to any other kinds of distance metrics. The
algorithms are implemented on Matlab 2017a and are executed on Mac OS platform
with Core I5@2.7 GHz CPU and 8G memory.

In the experiments, we compare the proposed customizable reliable ε-differential
privacy (CRDP) model with both classic ε-differential privacy (CDP) and classic
customizable ε-differential privacy (CCDP). In classic ε-differential privacy, the
privacy protection level is fixed for all the circumstances and the generated noises
complies to the laplacian mechanism. While in classic customizable ε-differential
privacy, the privacy protection level is customizable and the noises complies to the
laplacian mechanism. In the proposed customizable ε-differential privacy model, the
privacy protection level is customizable and the noises complies with the proposed
theorem. The parameter initialization is discussed in following subsections.

In the following experiments, we assume the maximum social distance is 6 based
on the famous theory entitled Six Degree of Separation [44–46]. We randomly par-
tition 1 piece of the above CPSN with 1, 500 nodes. In the segmented network, we
identify there are only 4 users with a maximum social distance of 6 while none of
the users have a social distance over 6, which also testifies the assumption. We pick
the one at the middles of this network.

4.1.5.1 Privacy Protection Levels

In term of privacy protection levels, we consider the both single CPSN and multiple
CPSNs case. In single CPSN, the privacy protection level is fixed and the data is
released once and for all, therefore all the other users can access the same data with
the same privacy protection level. However, although the privacy privacy protection
level is fixed in different privacy networks, the randomness of Laplacian mechanism
lead to different noisy responses. Thus, users may access different data with the same
privacy protection level. The differences are clearly shown in Fig. 4.4.

In Fig. 4.5, the privacy protection level of CDP remains 2.63 while the privacy
protection levels of CCDP and CRDP increase from 5.36 and 0.15 to 10.88 and 2.63,
respectively. Between the twomodels, the privacy protection level of CCDP increases
with the increment of the privacy protection levels’ sum while the maximum privacy
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Fig. 4.4 Data utility
comparison among three
models: The measurement
matrix is MSE-based,
therefore, the utility upgrades
with the decrease of the
value. Therefore, CRDP has
the best performance
regarding data utility
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protection level of CRDP equals to the largest privacy protection level. Based on the
results, we can tell the CDP is not affected by composition mechanism but maintains
a relative high privacy protection level, which is 2.63 throughout. The CCDP suffers
from composition mechanism and the privacy protection keeps degrading, which
makes it unacceptable. In the case of CRDP, the privacy protection level keeps in
a low and steady situation and the maximum value equals the the largest existing
privacy protection level.The amplitude increase is 2.48, which confirms high-quality
customizable privacy protection of CRDP.

In Fig. 4.5, the privacy protection levels of all three models increases with the
increment of ε quantity. CDP increases in a linearly style while CCDP and CRDP
increase in an exponential style. In this case, the only difference is that the CDP
is affected by composition mechanism and the privacy protection level increases
rapidly. As the privacy protection levels of CDPmaintain 2.63, the privacy protection
level of CDP increases lineally to 6 × 2.63 in the end. CRDP has a higher privacy
protection level by 45.5% and 83.2% compared to CCDP and CDP. In this case, the
CRDP embodies better performances than CDP and CCDP.

4.1.5.2 Data Utility

To begin with, we use a random algorithm to choose 6 customizable privacy pro-
tection levels from the interval of ε ∈ [0,∞) based on social distances. Then the
fix privacy protection level is chosen to be the minimum one. Laplacian mechanism
is performed to generate noisy responses. At last, the composition mechanism is
performed. The data utility are calculated by RMSE and Eq.4.13.

In Fig. 4.5, we can see the expected-squared error of CDP maintains as 2.52 and
the value is the highest throughout. Although the expected squared errors of CCDP
and CRDP keep decreasing, the CRDP enjoys higher descent amplitude from 2.46 to
0.33. This illustrates that CDP has relative lower data utility compared to CCDP and



4.1 Personalized Privacy in Cyber Physical Systems 41

Fig. 4.5 Privacy protection
level comparison in term of
customizable ε based on
social distance: a In the
scenario of various users
with different social
distances, the CRDP
provides flexible privacy
protection while maintaining
high protection level and
data utility. b In a potential
scenario when the users are
in different CPSNs, the
superiority of CRDP is more
significant
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CRDP while CRDP enjoys the optimal data utility among all of the three models.
The histogram shows the data utility of CRDP increases by 8% overall in comparison
to CCDP, not to mention CDP. The results conform to the above analysis.

4.1.5.3 Performances Against Background Knowledge Attack and
Collusion Attack

We focus on the performances against background knowledge attack and collusion
attack in this subsection. The two types of attacks are discussed correspondingly.
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4.1.5.4 Performances Against Background Attack

In Fig. 4.6, there are two stair-lines and a straight-line representing CCDP, CRDP,
and CDP, respectively. There are also two green dashed-lines to denote the possible
background knowledge of an adversary. CDP keeps a constant while CRDP and
CCDP increases as the stair-lines. The smaller the ε is, the better protection the
model provides. As we use ε-differential privacy to model the prior belief of the
adversary, we have the observation that the smaller the ε is, the more background
knowledge the adversary has. If the bottom green dashed-line (ε = 0.47) represents
the adversary, that means the adversary nearly knows all the background knowledge
and all privacy models can not provide any protection. If the adversary’s prior belief
is above the upper green dashed-line (ε = 2.85), the CDP and CRDP fully functions.
If the adversary’s prior belief is between the two green dashed-lines, that means only

Fig. 4.6 Performances
against background
knowledge attack in CPSNs:
a CRDP can guarantee the
background knowledge will
not enrich even if multiple
users share their own data to
each other. b CRDP can also
guarantee the background
knowledge will not enrich
even if multiple users share
their own data across
multiple CPSNs
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the proposed CRDP can protect the sensitive information. Therefore, CRDP is the
best way to provide privacy protection in CPSNs.

In Fig. 4.6, the CDP increases by a large amplitude to nearly 12. Thus, it can
not provide any protection in term of background knowledge attack. Although the
CCDP can provide partial protection, it fails to function after ε ≥ 4. But the CRDP
still functions well in the range between the green dashed-lines from ε = 0.47 until
ε = 2.85.

All in all, we can conclude the CRDP is the only model which can fully function
in both occasions. CDP and CCDP suffers from background knowledge attack with
varying degrees in different scenarios.

4.1.5.5 Performances Against Collusion Attack

Collusion attack appears under theCPSNscenario.Thedifferences between collusion
attack and background attack are discussed in Sect. 4.1.3. In the case of defence,
collusion attack can be eliminated in the proposed model. With CRDP, the incentive
of collusion is dispelled so that the collusion attack can not be launched.

In Fig. 4.7, privacy protection level of CDPmaintains a constant 0.47while CRDP
andCCDP increases as the fold-lines.As the cases inSect. 4.1.5.1,we can see theCDP
is still free of composition mechanism, which means CDP is unaffected regarding to
collusion attack. However, privacy protection levels of CRDP and CCDP increases
with the increment of ε’s quantity from 0.47 and 0.47 to 2.05 and 6.91, respectively.
Despite the similar increasing trend, there is a big difference. The CCDP suffers
from collusion attack as two or more adversaries can gain more information from the
sum of εs. The advantage of CRDP is that two or more adversaries gains no further
information after collusion. The reason is that the sum of εs equals to the maximum ε

after collusion. Therefore, the adversary with lowest ε, namely, 0.47 has no incentive
to collude with others. CRDP thereby chops off the root of collusion attack.

In Fig. 4.7, the only difference is that performance against collusion of CDP
degrades severely. Collusion attack can easily breach the privacy of CDP in mul-
tiple CPSNs as shown. The sum of εs increases linearly until 6 × 0.47. As for CCDP
and CRDP, the circumstances remains the same. We can easily conclude that CRDP
functions well in multiple CPSNs case.

To conclude, the proposed CRDP shows the higher performances in term of elim-
inating the incentive of collusion attacks.

4.1.5.6 Performance of Cost

To measure the costs of CRDP and two baseline models, we choose to use the
processing time as the index. We measure the time consumption of all three models
against the increment of data size by 250 when ε is set to be 3. The shortest distance
of all users is known and stored by service providers as part of the network statistics.
Therefore, we will not consider the processing time of the calculation of shortest
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Fig. 4.7 Performances
against collusion attack in
CPSNs: In both figures, the
collusion attack could be
eliminated because the
collusion can only help to
improve the data accuracy of
users with less accurate data.
For the users with
high-accurate data, there is
no incentive for them
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distances in this scenario. The processing time in Fig. 4.8 shows that all processing
time is linear to the volume of data size. CRDP and CCDP have similar processing
time in average. They have a relatively longer processing time compared with CDP
and the overflow rate is about 15%. The randomness of processing time of CRDP and
CCDP is resulted by the highest value of the social distance in the data sample, usually
ranges from 4 to 6. The processing time is inms level while the deployment of CRDP
causes only 15% of extra time consumption compared with CDP and 0% compared
with CCDP. Consequently, the performance of cost is acceptable considering the
realization of flexible privacy protection and optimized data utility.
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Fig. 4.8 Processing time
comparison of three models:
CRDP and CCDP have
similar processing time in
average. They have a
relatively longer processing
time compared with CDP but
the overflow rate is about
15%
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4.1.6 Summary

In this work, we show the disadvantage of fixed privacy protection levels and the
major flaws of current customizable privacy protection methods. Our analysis shows
that there is either privacy leakage or over-protection if privacy protection level
is fixed for all parties. To address this, we develop a novel customizable reliable
privacy protection (CRDP) model on top of differential privacy, in which the pri-
vacy protection level is customized by social distance. We calculate social distance
using the shortest path algorithm and pre-set a threshold to reduce the computational
cost, which is followed by a QoS-based mapping function which maps social dis-
tance to customizable privacy protection levels. Built upon this, we further develop
an advanced mechanism to sample the Laplacian noise complying with a Markov
stochastic process. The correlations among noises are then de-coupled and compo-
sition mechanism cannot provide any incentive to attacks. With the new mechanism,
we derive the optimized trade-off while the background attack is minimized and
the collusion attack is eliminated. Extensive experiments are implemented to show
the superiority of CRDP over existing works from the perspectives of customizable
privacy protection and attack resistance.

4.2 Personalized Privacy in Social Networks Using
Differential Privacy

Social networks have become an important part of human society. According to the
latest statistics [47], Facebook has had more than 2.7 billion active users in 2020
while it had only 100 million in 2008. This rapid and continuous growth of social
networks indicates that communication on them has become a prominent method for
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people to connect and share information on the Internet. Furthermore, people even
use these services for their business promotion, such as advertising and marketing
activities. Social networks have become more ubiquitous due to the new advances
in smartphone technology [48, 49]. This has provided an opportunity for social
network service providers to utilize location information of users in their services.
For example, Facebook Places, Foursquare and Yelp are popular social networks that
mostly rely on utilizing users’ location data in their services. They offer a variety of
useful services, from location recommendation to nearby friend alert [50].

However, a big challenge for social networks is how to protect location privacy of
users. This challenge has become one of themost important issues in socialmedia due
to the existing structure of social networks that enables an adversary to track move-
ments of users [48, 49]. For example, a new Chrome extension called Marauder’s
Map has been developed that enables Facebook users to easily track movements of
other users and plot them on a map with an accuracy of around one meter [51]. It
uses the location data that users have shared in Facebook Messenger chats. More-
over, different methods have been proposed for user location inference based on
users’ tweets [52–54]. This is really a big issue since other private information of
users can be revealed by analyzing their location data (e.g., home address, health
condition, interests, etc.).

To address privacy issues, social network service providers offer some built-in
tools enabling users to decide on their own privacy preferences. In addition, different
methods have been proposed to protect user location privacy in social networks
and Geo-Social Networks (GeoSNs) [55–58]. However, these tools and methods
introduce additional problems that may lead to further privacy leakage as follows.

Firstly, current solutions rely on user collaboration while some users may not be
competent enough to collaborate in such processes. Moreover, some users are not
even aware that social networks have been equipped with these privacy protection
tools. They might customize their default privacy settings only after their privacy is
violated [51, 59, 60]. Secondly, the mentioned privacy protection tools and methods
are not efficient enough to protect different users’ privacy requirements [51, 55, 60].
Specifically, they are not flexible in terms of social distance between users and rigidly
divide users to be either friends or strangers [61]. These privacy protection tools look
at the level of privacy protection as a rigid binary function, while in reality, we treat
privacy differently against different relationships. Although differential privacy is
the dominant tool used for privacy protection, it cannot offer customized privacy
protection in its current form. Finally, applying rigid privacy policies keeps users
information local and limits data utility for public [61].

To address the aforementioned problems, we propose a Distance-Based Location
Privacy Protection (DBLP2) mechanism in this section. The proposed mechanism
protects location privacy of social network users based on their social distances. We
define social distance as a measurement index of social relationship which indicates
the intimacy of users based on their interactions in the social network. To offer cus-
tomizable privacy protection, we extend the standard differential privacy framework.
For this purpose, we add variable artificial noise to the real location of a user in order
to obtain a sanitized location. The amount of noise is decided based on the social dis-
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tance between an information requester and the information provider. In the proposed
mechanism, a smaller social distance indicates a closer relationship, as a result, less
noise is added to the location data. Since the proposed location privacy protection
process is run automatically by the system, it does not rely on users’ collaboration. In
addition, the proposed mechanism keeps a balance between data utility and privacy
protection by generating responses with optimal accuracy. Consequently, it improves
utility of the whole network.

We conducted an extensive security analysis on the proposed system. The results
show that it is resilient to post processings, i.e., performing computation on the
system output cannot weaken its privacy guarantees. Furthermore, we prove that
the system is immune to collusion attacks, in which a group of users collaborate
and share their responses to make a better approximation of a user’s private location.
Hence, the result of any collusion attack gains nomore extra information. As a result,
no additional privacy-preserving noise is required when multiple users ask for the
location of the same user.

Our main contributions are listed as follows.

• We extend the traditional differential privacy framework to customizable differen-
tial privacy. The proposed scheme can offer privacy protection at individual level,
which is desired by various users. To the best of our knowledge, this is an early
work in personalized privacy protection.

• We propose a distance-based and customizable location privacy protection mecha-
nismDBLP2 for social network users by extending the standard differential privacy
framework. The proposed mechanism provides a flexible location privacy protec-
tion framework without requiring users’ collaboration. In addition, it improves
data utility by providing privacy-aware access rights and generating responses
with optimal accuracy.

• We develop a weighted and directed graph model to measure the social distance
between users by customizing the concept of effective distance.

4.2.1 Literature Review

Privacy protection in social networks have been studied comprehensively. Abawajy
et al. [59] have analyzed different privacy risks and attacks in social media along
with the presentation of a threat model. They have also quantified and classified the
background knowledge which is used by adversaries to violate users’ privacy. In
addition, Fire, Goldschmidt and Elovici [60] presented some strategies and methods
in privacy-preserving social network data publishing through a detailed review of
different security and privacy issues. They have reviewed a range of existing solutions
for these privacy issues along with eight simple-to-implement recommendations
which can improve users’ security and privacy when using these platforms [60].

A few location privacy protection mechanisms have been proposed based on dif-
ferential privacy. A perturbation technique based on differential privacy was intro-
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duced [62] to achieve geo-indistinguishability for protecting the exact location of
a user. This technique adds random Laplace-distributed noise to users’ location in
order to sanitize their location before publishing. A differentially private hierarchi-
cal location sanitization (DPHLS) approach has been proposed for location privacy
protection in large-scale user trajectories. The approach provides a personalized hier-
archical mechanism that protects a user’s location privacy by hiding the location in
a dataset which includes a subset of all possible locations that might be visited in a
region [56]. By doing this, the level of location randomization is reduced, hence, the
amount of noise required for satisfying differential privacy conditions is minimized.

Another research study in the differential privacy field has been conducted [63]
to consider the problem of releasing private data under differential privacy when the
privacy level is subject to change over time. In spite of other works that consider
privacy level as a fixed value, they have studied cases in which users may wish to
relax their privacy level for subsequent releases of the same data after either a re-
evaluation of the privacy concerns or the need for better accuracy. For this reason,
the authors have presented a mechanism whose outputs can be described by a lazy
Markov stochastic process to analyze the case of gradual release of private data.

Some other research studies have recently been done on the location privacy
of Geo-Social Networks (GeoSNs) users [55, 57, 58]. GeoSNs are a variety of
social networks by which users can find their favorite events, persons or groups in
a specific region or identify popular places by comparing how many people have
already checked-in at different places. This is done by utilizing users’ location data
which have been shared by them in that region. In fact, GeoSNs combine location
recommendation services (such as services offered by location-based services) with
social network functionality [64, 65]. In other words, they can be viewed as location-
based social networks which connect people in a specific region based on their
interests.

In [65] different GeoSNs were classified into three categories Content-Centric,
Check-In Based and Tracking-Based according to the services they offer. In addition,
the main privacy issues that threaten user location privacy were identified. Moreover,
the authors of [57] have studied techniques that sanitize users’ location data based on
differential privacy framework before publishing them as location recommendations
in GeoSNs. Moreover, to enhance the accuracy of the location recommendations,
they have identified some effective factors which improve data accuracy.

In [58], a location-privacy-aware framework is offered to publish reviews for local
business service systems. The proposed framework publishes reviews based on utility
to achieve two main goals, maximizing the amount of public reviews which users
share and having the maximum number of businesses that obey the proposed public
principle. Moreover, in [66], the differential privacy framework has been adopted
to the context of location-based services to quantify the level of indistinguishability
in the users’ location data. Their proposed scheme is a symmetric mechanism that
injects noise to the real location of the user through a noise function to obfuscate the
user’s location before its submission. They have also analyzed the mechanism with
respect to location privacy and utility.
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One of the latest research on the location privacy of GeoSNs users is [67] in
which the importance of users’ awareness of the outcomes of sharing their locations
in GeoSNs along with the resultant privacy threats were discussed. Moreover, a
feedback tool has been designed to enable users to realize the level of threat related
to the disclosure of their location data. To evaluate the effectiveness of the proposed
feedback tool, they have conducted a user study which confirms the necessity of
users’ location privacy awareness.

4.2.2 Preliminaries

This section presents the foundation for the next sections. After briefly reviewing
the concept of differential privacy and the Laplace mechanism, we introduce the
necessity of customizing the adjacency relation defined in the standard differential
privacy to match its definition with the location domain.

4.2.2.1 Differential Privacy

Differential privacy is a privacy preserving framework that enables data analyzing
bodies to promise privacy guarantees to individualswho share their personal informa-
tion. In fact, differentially private mechanisms can make users’ private data available
for data analysis, without needing data clean rooms, data usage agreements or data
protection plans. More precisely, a differentially private mechanism that publishes
users’ private data provides a form of indistinguishability between every two adjacent
databases. Here, “adjacent” means that they differ only in a single record. However,
as you see later, we will extend the concept of “adjacency” to the location domain.

Differential Privacy [17]: The randomized mechanism A with domain H is
ε−differential private if for all S ⊆ Range(A) and for all adjacent x, y ∈ H (i.e.
||x − y||1 ≤ 1) we have

Pr [A(x) ⊆ S] ≤ eεPr [A(y) ⊆ S],

where ε is the privacy level which is a positive value and denotes the level of privacy
guarantees such that a smaller value of ε represents a stricter privacy requirement.
In other words, for a smaller ε, the mechanism makes any adjacent data x and y
more indistinguishable, i.e. for a small value of ε, with almost the same probability,
the publishedA(x) andA(y) are placed in the same region S. However, for a large
ε, this probability is much higher for A(x) than A(y) which makes them more
distinguishable.

Therefore, mechanism A can address privacy concerns that individuals might
have about the release of their private information. Note that differential privacy is a
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definition, not an algorithm. In other words, we can have many differentially private
algorithms for a privacy scenario and a given ε.

4.2.2.2 Laplace Mechanism

One of the most popular mechanisms developed based on the differential privacy
framework is the Laplace mechanism [68, 69] in which Laplace-distributed noise is
added to users’ private data to make it ε−differentially private.

Laplace Mechanism [69]: Given the private data x ∈ H , the Laplace mechanism
is defined as:

AL(x, ε) = x + N , (4.16)

where, N is Laplace-distributed noise with scale parameter 1/ε and zero mean, i.e.,

N ∼ Lap

(
0,

1

ε

)
(4.17)

The probability density function for N is:

fN (n) = ε

2
e(−ε|n|), (4.18)

where ε denotes the privacy level required by the user. The Laplace distribution is a
symmetric version of the exponential distribution. According to its probability den-
sity function, with high probability, the Laplace mechanism generates much stronger
noise for small values of privacy level and vice versa [68].

In this section, we consider the set of private data H ⊆ R2 since our target is
to protect users’ location data which is assumed as L =< lati tude, longitude >

where lati tude, longitude ∈ R are GPS coordinates in the ranges [−90, 90] and
[−180, 180] respectively. Moreover, the adjacency relation defined in the standard
differential privacy should be customized, since we need amechanism for publishing
location data which guarantees that adjacent locations are indistinguishable to some
extent. For this reason, we will customize the adjacency relation definition later in
Sect. 4.4 in order to use differential privacy framework in the location domain.

4.2.3 The Proposed DBLP2 Mechanism

In this section, the proposed DBLP2 mechanism is presented. Firstly, we present
the system architecture and propose a graph model for social networks. Then, we
discuss how social distances are converted to privacy levels. Finally, we present the
proposed customizable differential privacy framework. The designed mechanism is
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independent of user collaboration and improves the utility of social networks. In
other words, it satisfies the following properties:

Flexible privacy: The system must generate ε(di j )-differential private responses,
where di j is the social distance between user ui and u j . Thus, the privacy level ε

must be a function of social distances.
Independent of user collaboration: The system must embrace the whole respon-

sibility of users’ privacy protection regardless of whether users collaborate with the
system or not. Therefore, by default, the system must perform a standard distance-
to-privacy function for each user to obtain the required privacy levels against other
users. Competent users can customize this function based on their own requirements.

Optimal accuracy: Responses generated by the system must be as accurate as
possible regarding the trade-off between privacy protection and data utility. There-
fore, to preserve data utility, the level of location generalization must be kept
to a minimum, i.e., the system needs to minimize the expected squared error
‖ Li j − Li ‖2 (i, j ∈ V ), where Li is the real location of user ui and Li j is an
approximation of Li generated by the system for sending to user u j .

4.2.3.1 System Architecture

In this work, we assume the social network service provider as a centralized trusted
entity that is in charge of keeping users’ raw private location data, calculating the
social distances and executing our proposed DBLP2 mechanism.

Figure4.9 shows the proposed system architecture. As you see, when Bob sends
a request for Alice’s Location data, firstly, using their social distance, i.e. dAlice,Bob,
the privacy level ε that Alice requires against Bob is obtained. The required privacy
level ε is calculated by a distance-to-privacy function f . Default or Alice settings
have a critical role to convert dAlice,Bob to ε. Since function f can be different for
different users (depending how location privacy is important for the user), it must be
customizable by users based on their requirement. The default settings are designed

Fig. 4.9 The proposed DBLP2 system architecture
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based on the behavior of non-competent users. As you will see in Sect. 4.3, these
default settings model a moderate behavior which most users have in social networks
in terms of privacy protection. Obviously, Alice can personalize these settings based
on her privacy protection requirements.

Finally, using a customizeddifferential privacymechanism, an appropriate amount
of noise (regarding the obtained privacy level ε) is injected to Alice’s real location
(L Alice) and the sanitized location L ′

Alice is generated for offering to Bob. In the next
subsections, details of the mentioned stages are discussed.

4.2.3.2 Graph Model

We model social networks by a directed and weighted graph G = (V, E) in which
nodes represent social network users and edges define social relations between users.
Therefore, if user ui has |ui | friends in her friend list, node ui is connected to a set
of |ui | neighboring nodes. Now suppose the graph has |V | = N nodes and for each
edge (i, j) ∈ E we assign a weight wi j which represents the social distance between
user ui and u j . In most cases, a social network user has different social distances
from other users who are in her friend list. For example, although a family member
and a colleague of her can both be in her friend list, she is more comfortable with the
family member than the colleague in terms of privacy concerns. Hence, we believe
that weighted graphs are more appropriate models for social networks rather than
unweighted graphs because they enable us to model different social distances by
weighted edges.

Moreover, we adopt a directed graph to model the network instead of undirected
because we believe that social relations between users are not necessarily symmetric.
In other words, two friends in a social network might have different feelings about
each other. For example, although Bob regards himself as very close to Alice, she
may consider some privacy protection settings against Bob. We call this attribute
friendship asymmetry in social networks.Adirected graphmodel allows us to analyze
privacy protection requirements for each user separately. Therefore, for any given
users ui and u j , equations di j = d ji and wi j = wji are not necessarily true.

Using the proposed graph model, the social distance di j can be obtained. For this
reason, we extend the effective distance definition [70] to obtain the distance between
friend users (neighbor nodes in the graph) in the social network (or equivalently
wi j where (i, j) ∈ E). However, other methods and techniques for social distance
measurement [71, 72] can be integrated into the DBLP2 mechanism.

The extended effective distance from the two neighbor nodes ui and u j is defined
as

e(i, j) = 1 − log(pi j ), (4.19)

where pi j is the percentage of user ui ’s messages which have been sent to user u j ,
(i.e., 0 < pi j ≤ 1) and is calculated by
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Fig. 4.10 A simple example showing three users of a social network modeled by a simple graph.
a In the current privacy protection schemes adopted by social network service providers, all of a
user’s friends have the same access rights regardless of how frequent they have been in contact
with that user. Moreover, the friendship asymmetry attribute is not considered in these models. b
Since most of user ui ’s messages (50%) have been sent to u j , after applying effective weights to
the graph, u j has a smaller distances to ui than uk . The distance between two non-neighbor nodes
can be obtained by adding the individual weights of the shortest path between them

pi j = mi j∑|ui |
k=1 mik

, (4.20)

where mi j is the number of messages that user ui has sent to user u j and |ui | is the
cardinality of user ui (the number of ui ’s friends).

The concept of effective distance reflects the idea that a small value of pi j or
equivalently a small number of messages exchanged between user ui and u j results
in a large distance between them, and vice versa. Therefore, for each edge (i, j) ∈ E
we adopt

wi j = e(i, j), (4.21)

as the effective weight that represents the social distance between two friend users
ui and u j .

A simple example is illustrated in Fig. 4.10 which shows how effective weights
are applied to the nodes of a social network graph. As you see, 50% of user ui ’s
messages has been sent to u j (i.e., Pi j = 0.5) while she has sent only 2% of her
messages to uk . Therefore, after calculating effective weights for each friend and
applying them to the graph. You see that ui has a smaller distance to u j than uk .
The friendship asymmetry attribute is also considered in our model which makes the
social network graph a directed graph.

By applying effective weights to the whole network’s graph, we are able to cal-
culate the distance between non-friend users. For this reason, we just need to add
individual effective weights on each path between two non-neighbor nodes and find
the path with the minimum additive effective weights, i.e.

di j = min

⎛
⎝

Kp∑
l=1

wp
l

⎞
⎠ , (4.22)

where wp
l is the effective weight of the lth edge on the pth path between node ui and

u j and Kp is the the number of edges that make path p.
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Different methods have been proposed to find the shortest path between a pair of
nodes in graphs [71, 72]. Since the purpose of this section is not to offer an algorithm
for the shortest path problem, we just assume that we have the distance between any
pairs of nodes in the network.

4.2.3.3 Converting Social Distances to Privacy Levels

Before injecting noise to a user’s location data, we need to quantify her privacy level
against other users in a social network since we need to design a system with flexible
(variable) privacy level. Hence, we adopt the social distance as a determinant factor
to obtain different privacy levels that a user requires against other users.

To discuss how social distances are mapped to privacy levels, we assume f is a
function which converts social distance between user ui and u j , i.e. di j (i, j ∈ V ),
to a privacy level ε(di j ). The following properties can be considered for a standard
function f in social networks.

• f is a decreasing function since the standard differential privacy definition specifies
that a larger value of ε represents a more relaxed privacy level (or equivalently a
small social distance) and vice versa. Thus, there is always an inverse relationship
between di j and privacy level ε. The slope of these inverse changes depends on
the user behavior in terms of privacy protection, thus, it can be different for each
user.

• For large distances (d → ∞), ε must be near zero (ε → 0). This means a tight
privacy constraint for strangers who are far from a user in the network.

• For small distances, i.e. d → 0, ε must be a relatively large value (ε >> 1) which
represents a loose privacy constraint for a user’s close friends in the network.

Different functions can be defined with the mentioned properties. For example,
an exponential function f in the following can be adopted to convert social distances
to privacy levels.

f (di j ) = e(a−bdi j ) , (4.23)

where, a, b > 0 are regression coefficients used to calibrate the formula. However,
function f can have different properties for different users (dependant on howprivacy
is important for each user). For example, a user might be very conservative and only
allows her family members and close friends to see her location. On the other hand,
there are always some social network users with minimal privacy concerns. Hence,
a single function f can not satisfy privacy requirements of all users with different
privacy protection requirements. Therefore, users should be able to customize f
based on their own requirements.

However, to make the system independent of user collaboration, we consider the
behavior of the moderate user shown in Fig. 4.11 as a standard model and adopt its
function as the standard function f for all users. Those users who want to customize
this function can change the related settings. For example, by applying constants
c1, c2 and c3 to the mentioned function f , we obtain the following function f ′.
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Fig. 4.11 Anexample of four userswith different privacyprotection requirements. The conservative
user is relaxed only with her family members and close friends (small social distances) and needs
strict privacy protection (small ε) as distance is increased. On the other hand, the very relaxed user
has no concern about his privacy in the network

ε = f ′(di j ) = c1 + e(c3−c2di j ), (4.24)

where c1, c2, c3 ≥ 0. A default value is defined by the system for constants c1 to c3
to create the standard function. However, each user is able to customize the function
by changing the appropriate settings. Therefore, all four groups of users introduced
in Fig. 4.11 are covered through a single function.

4.2.3.4 Customizable Differential Privacy

After discussing how social distances are converted to appropriate privacy levels,
we are ready now to present the noise injection mechanism for the DBLP2 system.
We adopt the differential privacy framework because of its verified privacy guaran-
tees. The target is to randomize a user’s real location such that there must always
be a minimum level of indistinguishability for an adversary between the user’s real
location and any other location which is adjacent to it. This level of indistinguisha-
bility is varied inversely with the privacy level ε, i.e. a large value of privacy level ε
(smaller social distances equivalently) results in a lower level of indistinguishability
and vice versa. However, for the sake of data utility, unnecessary randomizationmust
be avoided such that a balance between data utility and the level of privacy protection
must be kept regarding the trade-off between data utility and privacy protection.

Since the proposed mechanism publishes location data, we customize the adja-
cency relation defined in the standard differential privacy in order to use differential
privacy framework in the location domain. This is shown in Definition4.1.
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Definition 4.1 Adjacency relation: Locations L and L ′ are considered adjacent if
the distance between them is less than a predefined value D, i.e.

||L − L ′||2 ≤ D (4.25)

Using Definition4.1 we customize the standard definition of differential privacy
to our needs. For this reason, we present the concept of (D, ε)-location privacy in
Definition4.2.

Definition 4.2 (D, ε)-location privacy: Suppose L ∈ R2 be a user’s private location
and L ′ ∈ R2 is adjacent to L , (i.e. ||L − L ′||2 ≤ D). Mechanism A : R2 → R2 is
(D, ε)-location private if for any S ⊆ Range(A) we have

ln

(
Pr [A(L) ∈ S]
Pr [A(L ′) ∈ S]

)
< ε (4.26)

Intuitively, if an adversary wants to infer L , the distinguishability between L and
any adjacent location L ′ that he selects is limited by ε. In other words, all adjacent
locations L ′ have an equal chance to be placed in the region whereA(L) is located.
Therefore, the level of distinguishability is determined by the privacy level ε. To
simplify the notions , in the rest of this section, we simply use notion “ε-differential
privacy” instead of “(D, ε)-location privacy”.

Now suppose Li ∈ R2 is the GPS coordinates of user ui ’s real location, i.e.
Li =< L(1)

i , L(2)
i >. If di j ∈ R+ is the social distance between user ui and u j , then

using mechanismM : R2 → R2 to generate response Li j that user u j receives as an
approximation of user ui ’s location.

Li j = M(Li , ε(di j )) = Li + N (ε(di j )), (4.27)

where ε(di j ) is the privacy level required by user ui against user u j and N is a
two-dimensional Laplace-distributed random variable with scale ε(di j ).

It can be concluded that the accuracy of the response Li j depends on the amount
of injected noise N (ε(di j )). The noise level itself is determined by the privacy level
ε (which is the scale of N ’s distribution) because the probability density function
of the Laplace distribution states that a smaller amount of noise is generated with
high probability for larger values of ε and vice versa. Therefore, since ε is an inverse
function of di j , we can say that the system generates a more accurate response for
friends with smaller social distance (or larger privacy level equivalently) while casual
friends and strangers receives more generalized responses.

We already mentioned three properties for the system, i.e. flexible (variable) pri-
vacy, independent of user collaboration, and optimal accuracy. Regarding the first
property, we can say that the system offers variable privacy because users with dif-
ferent social distances from a specific user receive responses with different accuracy.
This accuracy has an inverse relation with the social distance between the users.



4.2 Personalized Privacy in Social Networks Using Differential Privacy 57

Therefore, the system provides a variable privacy protection tool for social network
users to preserve their location privacy against a spectrum of users (from family
members and close friend to strangers). Moreover, it is independent of user collab-
oration. The reason is that, the system always considers a default privacy protection
plan for all users by taking function f ′ with a default value for constants c1 to c3.
Therefore, there is always a default privacy plan for each user even if she is not aware
of such a privacy protection tool.

After the distance to privacy function is determined, the noise injectionmechanism
is executed independent of user collaboration. This is applied even to non-competent
userswho can not collaboratewith privacy protection systems due to different reasons
(e.g. lack of sufficient language or computer skills) or are not aware of privacy
violation risks in the social network until their privacy is violated.

Regarding the third property (i.e. optimal accuracy), we analyze the accuracy of
system responses in terms of squared errors in the next section.

4.2.4 System Analysis

This section analyzes the performance of the system from accuracy and security
perspectives. First, we assess accuracy of the responses generated by the system
to ensure that it offers optimal utility. Next, the system immunity against privacy
attacks is assessed. Our analysis shows that the system offers optimal accuracy which
depends on ε only. In addition, froma security point of view, the results of our analysis
indicate that the proposed system is resilient to post processing and collusion attacks.

4.2.4.1 Accuracy

It is vital for a privacy protection system to keep a balance between data utility and
the level of privacy protection. To maintain data utility, the system must preserve the
accuracy of privacy-aware responses. For this reason, the optimal amount of noise
should be injected to the users’ private location regarding the trade-off between
privacy protection and data utility. In other words, the noise magnitude must not be
more than what is required for privacy protection.

In the proposed mechanism, the accuracy of response Li j can be measured by
squared error �i j as

�i j = ||Li j − Li ||22 i, j ∈ V, (4.28)

where a smaller error represents more accuracy. Then, we have

[
L(1)
i j

L(2)
i j

]
=

[
L(1)
i

L(2)
i

]
+

[
N1(ε(di j ))
N2(ε(di j ))

]
, (4.29)
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where L(k)
i j ∈ R (k = 1, 2) are the GPS coordinates of response Li j and Nk(ε(di j ))

(k = 1, 2) are independent and identically distributed random variables, i.e.

Nk ∼ Lap(0, ε(di j )) ∀i, j ∈ V, k = 1, 2 (4.30)

Therefore, the squared error �i j is obtained as

�i j = N 2
1 (ε(di j )) + N 2

2 (ε(di j )) i, j ∈ V (4.31)

N 2
1 + N 2

2 = � corresponds to a circle with radius
√

�, for cumulative distribution
function of �. Therefore, we have

F�(δ) = Pr [� ≤ δ] = Pr [(N 2
1 + N 2

2 ) ≤ δ]

=
∫ √

δ

−√
δ

∫ √
δ−n22

−
√

δ−n22

fN1,N2(n1, n2)dn1dn2.

Since N1 and N2 are independent and identically distributed we have

fN1,N2(n1, n2) = fN1(n1) fN2(n2) = ε2

4
e−ε(|n1|+|n2|). (4.32)

Therefore,

F�(δ) =
∫ √

δ

−√
δ

fN2(n2)
∫ √

δ−n22

−
√

δ−n22

ε

2
e−ε|n1|dn1

= ε

2

∫ √
δ

−√
δ

(1 − e−ε
√

δ−n22)e−ε|n2|dn2

By taking differentiation, we obtain the probability density function (PDF) of � as

f�(δ) = d

dδ
F�(δ) = ε

2
√

δ
e−ε

√
δ (4.33)

Fromabove, it is derived that�has generalized gammadistribution [73]with scale
parameter 1/ε2, expected value 2/ε2 and variance 20/ε4. This means that the random
variable � depends only on ε, i.e. for larger values of ε (equivalently, smaller social
distances), with high probability, a smaller � is offered and vice versa. Therefore,
the accuracy of the responses Li j is determined by the privacy level ε only and they
have a direct relation, i.e. any increase in ε results in amore accurate response. This is
exactly what the mechanism needs to satisfy: flexible (variable) privacy and optimal
accuracy (Fig. 4.12).
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Fig. 4.12 Probability density function for generalized gamma distribution. As you see, for ε = 3
the maximum possible error � is around 3, while this value is increased as ε decreases. This means
that, with high probability, the mechanism offers less squared error � for larger values of ε

4.2.4.2 Security

In the following, we analyze the proposed system’s performance against privacy
attacks. For this reason, we first show that the system is immune to post processing. In
other words, if an adversary has no additional knowledge about a user’s real location,
he cannot make the system’s responses less private by performing computation on
the output of the system. Next, we prove that the proposed system is resilient against
collusion attacks in which a group of users collaborate and share their received
responses to obtain a more accurate approximation.

Proposition 4.1 (Resilience to post processing) If M : R2 → R2 is the proposed
mechanism which preserves ε-differential privacy, then for any function f : R2 →
R2, the composition f ◦ M : R2 → R2 also preserves ε− differential privacy.

Proof Assume location L ′ is adjacent to L , i.e. ||L ′ − L|| ≤ D (see Definition4.1)
and S′ ⊂ R2.Bydefining S = {l ∈ R2 : f (l) ∈ S′} andbecauseM is a ε−differential
private mechanism we have

Pr [ f (M(L)) ∈ S′] = Pr [M(L) ∈ S] ≤ eεPr [(L ′) ∈ S′] (4.34)

Therefore, according to the definition of S we obtain

Pr [ f (M(L)) ∈ S′] ≤ eεPr [ f (M(L ′)) ∈ S′] (4.35)

which means f ◦ M is also ε−differential private.

Resilience to post processing is a common advantage of mechanisms that adopt
the differential privacy framework. It guarantees that after the system publishes an
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ε−differential private response, an adversary without any additional knowledge on
the private data cannot increase privacy loss and make it less private.

Therefore, the proposed mechanism is resilient to post processing. This makes it
immune to privacy attacks that rely solely on post processing. Moreover, we proof
that the proposed mechanism is also resilient to collusion attacks in which a group of
users combine their responses to make a more accurate approximation. In practice,
an adversary can create multiple fake accounts in the social network and establish
such a colluding group.

Theorem 4.1 (Resilience to collusion):Consider a groupofKusersC ⊆ V whocol-
laborate and share their response M(li , ε(di j )) = li j ( j = 1, 2, . . . , K ), (i ∈ V ) to
obtain l(i)c . If li j be an ε(di j )-differentially private response, then l(i)c is (max j∈Cε(di j )-
differentially private.

Proof ⎡
⎢⎢⎢⎢⎢⎢⎣

li1
li2
.

.

.

li K

⎤
⎥⎥⎥⎥⎥⎥⎦

= li +

⎡
⎢⎢⎢⎢⎢⎢⎣

N (ε(di1))
N (ε(di2))

.

.

.

N (ε(diK ))

⎤
⎥⎥⎥⎥⎥⎥⎦

, (4.36)

where li is the private location of user ui .We sort the responses Li j ( j = 1, 2, . . . , K )

such that
ε(di1) < ε(di2) < · · · < ε(diK ), (4.37)

which means li K is the most accurate response among li j ( j ∈ C). To obtain l(i)c , the
adversary combines K received responses li j . Therefore,

l(i)c =
K∑
j=1

wjli j =
K∑
j=1

wj (li + N (ε(di j ))), (4.38)

where wj is the weight considered for response j in the combination process. For
simplicity we assume wj ( j ∈ C) are equal, i.e.

wj = 1

K
j = 1, 2, . . . , K . (4.39)

Therefore,

l(i)c = li + 1

K

K∑
j=1

N (ε(di j )) (4.40)
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By defining N (ε(di j )) = Ni j we have

l(i)c = li + 1

K

K∑
j=1

[NiK +
K∑

m= j+1

(Nim−1 − Nim)]. (4.41)

Since li + NiK = li K we obtain

l(i)c = li K +
K∑
j=1

K∑
m= j+1

(Nim−1 − Nim) (4.42)

We can say that l(i)c consists of two parts. First, εi K -differential private li K which
is the most accurate response in C since εi K = max j∈C εi j and second, a noise
section. Since Nim−1 and Nim are independent Laplace-distributed random vari-
ables, (Nim−1 − Nim) has also Laplace distribution. Therefore, we can consider
φ = ∑K

j=1

∑K
m= j+1(Nim−1 − Nim) as Laplace-distributed noise added to li K . In con-

clusion, we can say that l(i)c is the εi K -differential private response li K which has been
post processed by function g(x) = x = φ, i.e.

l(i)c = g(li K ) = g(M(li )) = li K + φ. (4.43)

According to Proposition4.1, mechanismM is immune to post processing, hence,
l(i)c is also εi K−differential private. Therefore, the result of any collusion attack is
equivalent to a (max j∈C ε(di j ))-differential private response which means no more
accuracy is obtained. consequently, there is no need for additional privacy preserving
noise when multiple users ask for a user’s private location.

4.2.5 Performance Evaluation

In this section, we evaluate the performance of our proposed DBLP2 system. Firstly,
we evaluate the proposed system’s performance regarding the four types of users,
i.e. conservative user, very relaxed user, relaxed user, and moderate user. Finally, we
assess the immunity of the proposed system against collusion attacks in Sect. 4.1.3.

4.2.5.1 Variable Privacy

Toevaluate the systemperformance in terms of variable privacy, a single user scenario
is considered in which the user’s location privacy is protected against a variety of
users. For this reason, we assess the magnitude of the injected noise for a spectrum
of users (i.e. from family members and close friends to casual friends and strangers).
To model this scenario, we increase the social distance d from 0 to ∞ and obtain
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Fig. 4.13 The magnitude of the injected noise for a a conservative user, b very relaxed user, c
relaxed user, and d moderate user

the related privacy level ε using the function. Then, for each value of the obtained
privacy level ε, the magnitude of the injected Laplace noise is calculated.

By selecting the appropriate values for constants c1, c2 and c3, the distance to
privacy function f ′ can model the behavior of different users in choosing a privacy
protection policy. Therefore, we adopt this function for the experiments to convert
social distances to privacy levels. In this regard, the behavior of the four types of
users introduced in Sect. 4.3 are modeled using this function by selecting the suitable
values for c1, c2 and c3. Finally, based on the privacy levels obtained, the related noise
magnitude is calculated. The results of our experiments are shown in Fig. 4.13.

For the first type of user, i.e. the conservative user, the result shows that the
amount of injected noise is largely increased when the social distance is raised above
zero. This means that the system generates responses with high accuracy for the
user’s family members and close friends (who have small social distance) while
other users receive a totally inaccurate response. We performed the experiments for
three different values of constant c2 to see the effect of this parameter. As you see, c2
determines the threshold social distance at which a tight privacy protection (required
by the user) starts. In other words, c2 represents how a user is conservative. We have
also selected c1 = 0 and c3 = 0.1 in this case (c1 must be zero for this type of user).

Figure4.13b shows the result for a very relaxed user (c2 = c3 = 0). In this case,
c1 determines a high privacy level (relaxed privacy) which the user selects against all
the other users. As you see, the system always generates a very small noise regardless
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of the social distance (a relatively accurate response for all the other users). The level
of this noise is determined by c1. In other words, for larger c1 (higher privacy level)
a more accurate response is generated. You can realize the difference between the
system responses generated for the first and second type of users, if you compare
the amount of the noise generated for each category. Moreover, the amplitude of the
changes in the amount of generated noise is higher for a smaller c1. The reason is that
the variance of the generated Laplace noise is 2/ε2. Thus, the variance is increased
as c1 is decreased.

The noise magnitude for the third type of user, i.e. the relaxed user, is shown in
Fig. 4.13c for different values of c1 and c2 (c3 = 3 is selected in this case). The noise
magnitude for this type of user is almost the same as what we have in Fig. 4.13b
(notice the amount of noise magnitude in Fig4.13b and c). The only difference is
that in this case, the user requires less privacy protection for small social distances
while in the second type, there is no difference between different social distances in
terms of privacy protection.

Finally, for the last type of users, i.e. the moderate user, which we propose her
behavior as the standard behavior, the result is shown in Fig. 4.13d for different values
of c2 (c1 = 0, c3 = 3). As you see, for small social distances, the system generates
accurate responses (the noise magnitude is very small) while the level of accuracy
is gradually increased as the social distance gets bigger. The constant c2 determines
the slope of this increment such that for a bigger c2, the noise magnitude is increased
with a higher rate.

4.2.5.2 Collusion Attacks

In this part, we consider a collusion attack in which five users share their received
responses to obtain a more accurate approximation of the victim’s location. In prac-
tice, an adversary can establish such a colluding group by creating five fake accounts
in the social network. We assume that these five users have different social distances
from the victim. In other words, the victim has different privacy levels ε1, ε2, . . . , ε5
against these five users. Hence, they receive responses with different accuracy as
well, i.e. the user with the largest ε (smallest social distance) receives the most accu-
rate response and vice versa. We compare the accuracies of these responses and the
collusion outcome to see if there exists any motivation for an adversary to perform a
collusion attack or not. In order to have a better picture of the system performance,
we have performed the experiments 50 times for each user and obtained the squared
error � of the five responses and the outcome of the collusion in each iteration. You
can see the result in Fig. 4.14.

Aswe discussed in last subsection, the resultant squared error is a random variable
with the generalized gamma distribution. Therefore, as Fig. 4.14 shows, a different
error has been obtained for a specific user for separate experiments. In addition, the
amplitude of these changes is higher in a response with a lower ε. The reason is that
the variance of the squared error �, i.e. 20/ε4, is larger for a lower ε. Moreover, as
we expect, the accuracy of each response only depends on the privacy level ε(d).
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Fig. 4.14 The result of a collusion attack in which five users with different social distances from
the victim have shared their response to obtain a more accurate location data

Consequently, in each iteration, the user with the lowest ε has received the response
with the largest error and vice versa.

You see in Fig. 4.14 that the outcome of the collusion attack is almost the same as
themost accurate response andhas never beenmore accurate than it. This confirms the
results of our analysis which state that the result of any collusion attack is equivalent
to a (max j∈C ε(di j ))-differential private response. Consequently, there is no logical
motivation for an adversary to conduct such a collusion attack since no additional
benefit can be gained.

Moreover, regarding the combination process of the responses, Fig. 4.14a shows
the result of the experiments when the same weights have been considered for the
responses, i.e. the responses have equal share in creating the collusion result. How-
ever, the results shown in Fig. 4.14b is for a case in which the responses have been
combined with different weights. As you see, the same result has been obtained in
both cases which confirms that the combination process does not affect the immunity
of the system against collusion attacks.
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4.3 Personalized Privacy in Social Networks Using
Anonymity Based Methods

In this section of the book, we investigate anonymity as another approach to provide
privacy in social networks. As far as we know, social networks do not offer publicly
available anonymous group messaging. If these services are employed by social
network service providers, users can be able to create a group in social media and
anonymously post their opinions. For example, consider a group of journalists; each
journalist wishes to publish some secret government information that he/she obtained
from a confidential source. Using an anonymous communication protocol, they can
create a group in social media and anonymously publish their posts without the risk
of prosecution. Note that the protocol not only needs to hide the origin of each post,
but it must also be resistant against traffic analysis to prevent a government agency
or an ISP from identifying the message publishers by monitoring and analysing the
journalists’ traffic in the network.

To offer anonymity, several anonymous communication networks (ACNs) have
been proposed so far such as onion routing [74], AN.ON [75], and Tor [76]. These
solutions work based on mixnet [77], a basic anonymous communication protocol.
However, to guarantee users’ anonymity, they need access to a set of geographically
distributed servers (or mixes) such that at least some of them are trusted [78]. In addi-
tion, mixnet-based networks cannot provide the necessary protection against traffic
analysis attacks [79–82]. These attacks can be conducted by powerful adversaries
like large ISPs who can monitor users’ traffic in the network [80]. Dining Cryptog-
raphers network (DC-net) [83] is another anonymous communication protocol that
guarantees protection against traffic analysis attacks. Unlike mixnet, DC-net is com-
pletely performed by the users themselves and does not require any proxy. However,
DC-net suffers from three critical issues that reduce its practicality. Firstly, there
is a collision possibility issue. Users’ messages are exposed to corruption due to
possible collisions. In DC-net, every user publishes a vector of data that has N ele-
ments (positions or slots) where N is the number of users in the group who want to
anonymously publish a message. It requires every user to place his/her message in a
unique slot where other users must insert their keys XORed together. Any deviation
from this procedure makes all the users’ messages unrecoverable. Secondly, DC-net
is vulnerable to disruptions and Denial of Service (DoS) attacks since a malicious
user can disrupt the protocol by sending irrelevant bit-streams in each of the N slots.

Finally, DC-net is able to provide anonymity only for a few protocol cycles. We
name this issue the Short stability problem. To the best of our knowledge, no previous
research work has identified this flaw in the DC-net performance. We prove that it is
feasible to infer the origin of each message, after users published their messages for
at least three protocol cycles.
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4.3.1 Literature Review

In this section, we present a brief review of the literature on anonymous com-
munication protocols. Prior significant research work in this area started in the
early 1980s when Chaum presented mixnet [77]. In mixnet, users’ encrypted mes-
sages are batched together and successively relayed into the network after they are
decrypted and shuffled by a set of proxies (named as mixes). Several extensions of
the mixnet protocol have been proposed so far such as onion routing [74], Tor [76],
and An.On [75]. However, these protocols require that users’ messages are passed
through a series of proxieswhich results in high latency andmakes themvulnerable to
traffic analysis.Moreover, they are vulnerable to active attacks and disruptions which
break the anonymity guarantees and cause protocol jamming, respectively [80]. In
addition, mixnet-based protocols offer anonymity as long as at least one mix in the
network executes the protocol honestly.

Beside the original mixnet, Chaum introduced DC-net as another option towards
anonymous communication [83]. DC-net is a distributed and non-interactive protocol
that allows a group of users to anonymously publish their messages in a single
broadcast round. It provides users with secure anonymous communication if the
protocol is executed honestly. However, DC-net suffers from three critical issues
that make it impractical [78, 84].

To address the DC-net problems, a number of DC-net extensions have been intro-
duced. Dissent [84] focuses on addressing traffic analysis and DoS attacks to which
mixnet and DC-net protocols are vulnerable. For this reason, the authors of Dissent
have proposed a mechanism to trace disrupting (misbehaving) users. This is called
accountability in the literature. However, in Dissent, the employed shuffling mech-
anism imposes a delay at the start of each round that makes the protocol impractical
for delay-sensitive applications.

Herbivore [85] is another anonymous group messaging protocol that provides
anonymity by dividing a large group of network users into smaller DC-net subgroups.
In fact, in Herbivore, the size of user groups is reduced in order to limit the attack
surface. This enables the protocol to provide only small sizes of anonymity sets.

Although DC-net-based protocols have a decentralized and non-interactive struc-
ture, a few numbers of server-based protocols have also been proposed in the litera-
ture. For example, Wolinsky et al. [86] suggest a client/server architecture to achieve
a high level of scalability. In their proposed protocol many untrusted clients anony-
mously publish their messages through a smaller and more trusted set of servers. The
protocol offers traffic analysis resistance and strong anonymity, provided that there
is at least one honest server. However, the proposed disruptor tracing procedure is
too costly. To solve this issue, public-key cryptography and zero-knowledge proofs
are used in Verdict [80] to infer and exclude any misbehaviour before it results in a
disruption. However, no security analysis has been presented in the paper to proof
its security. Riffle [81] is another server-based protocol proposed in this area of
research. It consists of a small set of servers that provide anonymity for a group of
users. However, it still relies on at least one trusted proxy server.
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Prior work on privacy issue of Location-Based Services has mostly focused on
K-Anonymity and Dummy-Based methods although some efforts have recently done
on other techniques such asDifferential Privacy, and Cryptography-Based schemes.

K-Anonymity efforts [87–90] require a trusted third-party serverwhich is called an
anonymizer, between users and LSP. The anonymizer receives service requests from
a user and enlarges its location into a region (cloaking region) so that it contains the
locations of K-1 other users as well as location of the requesting user. Therefore, the
adversary cannot identify the requesting user among other K-1 users. The advantage
of these methods is that the communication cost between users and anonymizer is
reduced, however, they suffer fromdecreasedQoSbecausewhen there are not enough
users near the requested user, the anonymizer has to increase the radius of cloaking
region, hence, the increased processing times results in a greater service latency.
To solve this problem, some efforts have been done in [89, 90] to increase QoS. In
these papers the area of cloaking region is minimized by using footprints-historical
locations of other users.

Several dummy-based location privacy schemes have been proposed so far for
location privacy protection. In all of them users send their location data including
noise (some fake location data or dummies) to LSP directly. Thus, there is no need
to a trusted anonymizer. In [91], a dummy generation algorithms have been pre-
sented, which is Moving in a Limited Neighbourhood. In this work, the dummies
are generated in a neighbourhood of the previous position of the dummies. Also, a
cost reduction technique was proposed in [91] to limit the communications overhead
caused by sending dummies. However, generating dummies at random or through a
fixed rule can not provide flexible location privacy for users.Hence, in [92], a Privacy-
Area Aware scheme is proposed based on a flexible dummy generation algorithm
in which dummies are generated according to either a virtual grid or circle. This
approach provides configurable and controllable dummy generation by which it is
possible to control the user’s location privacy. But a disadvantage of this method is
that it doesn’t consider nature of the region. For example, some dummies may be
generated in places which are unlikely for a user to be there (e.g., in a river). To
solve this problem, in [93] a Dummy-Location Selection (DLS) method has been
proposed to prevent the adversary from exploiting side information such as a region
map. This is done by carefully selecting dummies based on the entropy metric.

However, in [64, 94] it has been showed that when a user adopts one of the
aforementioned dummy-based methods, the adversary can identify some dummies
with a minimum correct ratio of 58% by means of the spatiotemporal correlation
between neighbouring location sets. Therefore, they have proposed a Spatiotempo-
ral Correlation-Aware privacy protection scheme in which correlated dummies are
filtered out and only uncorrelated dummies are sent to LSP. But this method can
protect user’s location privacy under some conditions only and if the adversary esti-
mates the threshold angle which is used to filter space correlated dummies, he will
be able to identify dummies or even the user’s real location.
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4.3.2 Preliminaries

This section presents the foundation for the next sections.After briefly reviewingDC-
net protocol, we introduce its drawbacks and explain why it requires modifications.

4.3.2.1 DC-Net Overview

DC-net [83] is a distributed and non-interactive protocol proposed to provide anony-
mous communications for a group of users who wish to anonymously publish their
messages in the group. Its title comes from the example by which Chaum explained
his proposed protocol (Fig. 4.15).

Three cryptographers sit around a table in a restaurant to have dinner. They are
informed by a waiter that someone has anonymously paid their bill. The payer can be
one of them or the bill might have been paid by the NSA (National Security Agency).
They respect each other’s right to make an anonymous payment, but they are curious
to see if NSA has paid the bill. Thus, they perform the following protocol.

For all pairs, two cryptographers share a secret bit by tossing an unbiased coin
behind their menu such that only those two cryptographers see the result. Thus,
cryptographer A, for example, has two secret bits kAB and kAC that have been shared
with cryptographer B and C , respectively. Then, if a cryptographer has paid the bill,
he XORs his shared keys with bit 1. Otherwise, the XOR operation is performed with
bit 0. In both cases, each cryptographer announces his result. If the three published

Fig. 4.15 The dining
cryptographers network in a
simple example



4.3 Personalized Privacy in Social Networks Using Anonymity Based Methods 69

results are XORed together, the result bit is 0 if NSA has paid their bill. If one of the
cryptographers has paid the bill, the result is 1.

This basic protocol has been extended to multiple users in [95]. Let’s consider N
users u1, u2, u3, . . . , uN who wish to anonymously publish some L-bit messagesmi

(i = 1, 2, . . . , N ). Assume that each pair of users (ui , u j ) shares an L-bit key ki j (w)

in a set-up phase where ki j (w) = k j i (w) for i, j,w ∈ {1, 2, . . . , N }. Moreover, in
this phase, every user computes the following XORed Keys (XK) vector:

Xi = [xi (1) xi (2) xi (3) . . . xi (N )], (4.44)

where
xi (w) = ⊕N

j=1
j �=i

ki j (w), w = 1, 2, . . . , N . (4.45)

After the set-up phase, users can broadcast their messages by performing the follow-
ing steps:

(1) Every user ui randomly selects a slot (position) si ∈ {1, 2, . . . , N } in his/her
Xi vector.

(2) The XK vector Xi is converted to Yi by replacing xi (si ) with mi ⊕ xi (si ).
Then, Yi is published.

Since ⊕N
i=1xi (w) = 0 for w = 1, 2, . . . , N , if users have selected different posi-

tions, we have:
⊕N

i=1 Yi = M
′
, (4.46)

where M
′
is the users’ messages vector M = [m1 m2 m3 . . .mN ] in which the

elements have been shuffled. We define M
′
as the Shuffled Messages Vector (SMV)

since we need to refer to this vector frequently.
Therefore, the users’ messages are published for the group in such a way that the

origin of each message is anonymous.

4.3.3 DC-Net Drawbacks

Although DC-net offers strong anonymity, it suffers from some critical issues:

• Collision possibility: In DC-net, it is assumed that the users select different slots
(or positions) in the XK vector Xi . However, if two users ui and u j place their
messages in the same slot (i.e., si = s j are selected by them),mi ⊕ m j is recovered
in theM

′
vector at the final stage that makes bothmi andm j unrecoverable (note

that in this case, one element of M
′
is obtained as 0).

• Vulnerability against disruptions (security issue): DC-net works well only when
users execute the protocol honestly. The protocol is jammed if a malicious user,
for example, fills Yi with some random bits and publishes it. In this case none of
the users’ messages is successfully recovered.
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Apart from that, we identified another critical issue, i.e. short stability, in the
DC-net performance which is discussed in the next subsection.

4.3.4 The Short Stability Issue

We noticed that DC-net provides anonymity only for a few protocol cycles. After
users publish their messages for at least three cycles, it is possible to infer the origin
of each message by analysing vectors Yi published in the previous three cycles by
the users. To clarify this, consider the following example:

DC-net is performed by a group of four users u1, u2, u3, and u4 who want
to publish some 5-bit messages. They publish Y(1)

i ,Y(2)
i , and Y(3)

i (i = 1, 2, 3, 4)
in the first three protocol cycles. Suppose the XK vector for user u1 is X1 =
[11000 10100 00110 10110], and for these three cycles, he/she selects slots 2, 4,
and 1 in the XK vector X1 to XOR his/her messages m(1)

1 = 10011,m(2)
1 = 11001,

andm(3)
1 = 10101, withX1 components, respectively. Thus, for the published vector

Y1 we have:
Y(1)

1 = [11000 00111 00110 10110]
Y(2)

1 = [11000 10100 00110 01111]
Y(3)

1 = [01101 10100 00110 10110]
By analysing these three vectors, the XK vector X1 is easily obtained. Intuitively,

if different slots are selected by the user u1, for a specificw ∈ {1, 2, 3, 4}, x1(w) is the
element in the set {y(l)

1 (w)} (l = 1, 2, 3) that has been repeated at least twice. Having
X1, the other users are able to compute X1 ⊕ Y( j)

1 and identify u1 as the publisher of
m(1)

1 , m(2)
1 , and m(3)

1 . If the same slot is chosen for at least two cycles, the elements
of the above set are totally different (assuming there are different messages in each
cycle). In this case, this slot is identified as the one in which the user has XORed
his/her message during at least two of these cycles.

4.3.5 HSDC-Net: Secure Anonymous Messaging in Online
Social Networks

In this section, we propose Harmonized and Stable DC-net (HSDC-net), a self-
organizing protocol for anonymous communications. In our protocol design, we first
resolve the short stability issue and obtain SDC-net, a stable extension of DC-net.
Then, we integrate the Slot Reservation and Disruption Management sub-protocols
into SDC-net to overcome the collision and security issues, respectively. Our pro-
totype implementation shows that HSDC-net achieves low latencies that makes it a
practical protocol (Fig. 4.16).

Suppose a group of N users who want to anonymously publish their messages
in the group. Assume they all use a simple messaging application that does not
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Fig. 4.16 HSDC-net system architecture

offer anonymity. We add HSDC-net (as a separate and independent module) to the
messaging application to make it an anonymous message exchanging application.
In this scenario, HSDC-net delivers the SMV to the messaging application in which
the other users’ messages are placed in such a way that the origin of each message
is anonymous.

The proposed protocol is performed in three phases (1) Initialization, (2) Schedul-
ing, and (3) Message Publishing (MP). In the scheduling phase, after the protocol
initialization, the available N slots are anonymously allocated to the users. Then, they
publish their messages by continuously executing the MP phase. In the following,
we present each phase individually and in the order that they are performed.

4.3.5.1 Initialization

In this phase, all the N users in the group execute an initialization algorithm
individually. Considering user u1, this algorithm takes as input the user vector
U = [u2 u3 . . . uN ] and generates the following items in collaboration with the
users specified in U :

• A matrix of pairwise symmetric keys K(0)
1 =

⎡
⎢⎢⎣

K(0)
12

K(0)
13

. . .

K(0)
1N

⎤
⎥⎥⎦,

in which K(0)
1 j = [k(0)

1 j (1) k(0)
1 j (2) . . . k(0)

1 j (N )], where k(0)
1 j (w), (w = 1, 2, . . . , N )

is an L-bit secret symmetric key that u1 shares with u j ( j = 2, 3, . . . , N ) to use
in slot w.

• Vector R1 = [r12 r13 . . . r1N ], where r1 j is a random integer number shared secretly
between users u1 and u j .

Moreover, by executing this algorithm, each user ui signs the following two items
using his/her private key and sends them to user u j ( j = 1, 2, . . . , N , j �= i) (we
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assume every user has adopted a public/private key pair and already published his/her
public key in the network):

• The j th row of matrix K(0)
i (i.e., K(0)

1 j for user u1).• The j th element in Ri (i.e., ri j ).

We will use these signatures for disruption management.

4.3.5.2 Scheduling Phase

In this phase, every user ui performs the SR sub-protocol that is executed in the
following steps:
(1) ui creates vector Si = [Si (1) Si (2) . . . Si (N )], in which every element consists
of L zero bits (i.e., Si (w) = 0 for w = 1, 2, . . . , N ).
(2) Two random integer numbers l and n are selected by ui in [1, L] and [1, N ],
respectively. Then, the lth bit in Si (n) is set to 1 to obtain S

′
i (assuming S

′
i is a single

bit-stream, it has only a single bit 1 in the position l + (n − 1)L).
(3) ui computes and publishes the following vector Zi :

Zi = [Zi (1) Zi (2) . . .Zi (N )],
where Zi (w) = [⊕N

j=1
j �=i

k(0)
i j (w)] ⊕ S

′
i (w), w = 1, 2, . . . , N .

(4) Upon receiving N − 1 vector Z j ( j = 1, 2, . . . , N , j �= i) from the other users
(whoperformed the sameprocedure),ui computes vectorV = [V(1) V(2) . . .V(N )],
inwhichV(w) = ⊕N

i=1Zi (w). Note thatV(w) = ⊕N
i=1S

′
i (w)because the terms related

to the pairwise keys are cancelled out when they are XORed together. Thus, if we
consider vector V as a single bit stream, it shows all the 1 bits set by the users (in
step 2) placed in their primary positions (Fig. 4.17).
(5) ui computes the hamming weight of V, i.e., H = Hamming(V) that indicates
how many bits 1 exist in V. Based on the obtained H , two situations are supposable:

Fig. 4.17 A simple
illustration of SR
performance
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• If H = N , there is no collision and every user has selected a unique slot. In this
case, (considering V as a single bit stream) ui highlights his/her selected 1 (set
in step 2) in V, keeps all the 1s and removes all the 0s of V. This results in a bit
stream of size N in which all the N bits are 1. In this bit stream, the bit number
associated with the position in which the highlighted bit 1 has been placed is the
slot assigned to ui .

• If H �= N , it means two or more users have selected the same random numbers l
and n in step 2. In this case, the SR sub-protocol needs to be restarted. However, to
protect users against the DC-net short stability issue, we need to change the users’
pairwise keys. To do this, every user ui changes his/her symmetric keysK(0)

i toK(1)
i

by adding ri j to all the elements in the j th row of K(0)
i , ( j = 1, 2, . . . , N , j �= i).

Using this technique, users can non-interactively obtain a new set of pairwise keys
without imposing any further communication overhead.

As you see, we consider S
′
i as a single LN -bit vector in which every bit represents a

slot. By doing this, the N users have LN slots to select from instead of only N slots.
This can reduce the probability of collision to a negligible level if L is a relatively
large number.

4.3.5.3 Message Publishing (MP) Phase

After the N available slots of SMV are allocated to the N users in the scheduling
phase, every user ui can anonymously publish his/her messages. This can be done
by performing the original DC-net protocol. However, as discussed before, the short
stability issue must be addressed first. For this reason, we propose Stable DC-net
(SDC-net) that addresses this issue.

Stable DC-net (SDC-net): In SDC-net, users change their pairwise keys before
they start a new round of the MP phase (publishing a new message is done with a
new set of pairwise keys). This makes the elements of Y(p)

i dissimilar for different
rounds (p = 0, 1, 2, . . .).

Suppose ui wants to publish his/her message m(p)
i in round p of the MP phase.

To change his/her pairwise keys, ui simply adds ri j (which has been secretly shared
with user u j in the initialization phase) to all the elements in the j th row of K(p−1)

i

( j = 1, 2, . . . , N , j �= i). This results in K(p)
i which is a set of different keys in

comparison to K(p−1)
i . Therefore, by applying a different set of keys, a different XK

vector Xi is obtained in each round of MP that makes Y(p)
i completely dissimilar to

Y(p−1)
i . Note that, the new sets of pairwise keys are obtained by the users without

imposing any further communication overhead to the protocol.
Now, let’s return back to explain the MP phase. In round p of this phase, user

ui publishes message m(p)
i by invoking algorithm SDC − net (U,K(p)

i ,m(p)
i , slti ).

This algorithm takes as input, the vector U of N − 1 users, matrix of pairwise keys
K(p)

i , user’s message m(p)
i , and the slot number assigned to ui . The output of this

algorithm is the Y(p)
i vector that its elements are obtained using
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y(p)
i (w) = ⊕N

j=1
j �=i

ki j (w), f or w = 1, 2, . . . , N ,w �= slti , (4.47)

and
y(p)
i (slti ) = m(p)

i ⊕ (⊕N
j=1
j �=i

ki j (slti )) (4.48)

Similar to DC-net, every user is able to obtain the SMV by XORing the received
N − 1 vector Y(p)

j ( j = 1, 2, . . . , N , j �= i) with his/her own vector Y(p)
i , i.e.:

SMV (p) = ⊕N
i=1Y

(p)
i (4.49)

As we mentioned before, users’ messages are shuffled in SMV such that the origin
of each message is unknown.

4.3.5.4 Disruption Management

As we discussed before, the original DC-net protocol is jammed if one or more
users perform dishonestly. Since misbehaviours of dishonest users are inherently
unavoidable, protecting DC-net against disruptions and jamming attacks is difficult
and imposes additional time and communication overheads on the protocol [80].
Therefore, creating accountability is a good solution to address this issue.

After a disruption is detected (if the users’messages in SMVhave been corrupted),
assuming the disruption is detected in round p, the following steps are performed by
every user ui who detects the disruption:
(1) ui publicly informs other users that his/her message in slot slt has been corrupted
(note that revealing slt does not jeopardize ui ’s anonymity since other users cannot
see his/her real message which has been corrupted).
(2)Upon receiving ui ’s announcement, other users publish the set of their keys related
to this slot, i.e., u j ( j = 1, 2, . . . , N , j �= i) publishes {k(p)

jl (slt)}Nl=1
l �= j

.

(3) Every user u j checks the other users’ published keys to see if a user (say ul) has
published a key different than their shared pairwise key k(p)

jl .
(4) If u j (in step 3) finds that user ul has published a key different than their shared
pairwise key (i.e. k(p)

jl ), he/she announces ul’s identity as the disruptor. To support

his/her claim, u j publishes ul ’s signature on the real k
(p)
jl and r jl received during the

initialization phase.
(5) ui computes Dj = ⊕N

l=1
l �= j

k(p)
jl (slt) for j �= i .

(6) If Dj �= Y(p)
j (slt), u j ’s identity is published by ui as the disruptor. Other users

can also confirm this by computing Dj and comparing it with Y(p)
l (slt).

(7) The messaging application is notified by sending the identity of the disruptor(s).
After the identity of disruptor(s) is publicly announced, the users can resume the

protocol, this time by excluding the disruptor(s). To do this, they need to update their
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matrix of pairwise symmetric keys K(p)
i by eliminating the row(s) associated with

the disruptor(s). However, they do not need to perform the initialization phase and
set up new pairwise keys as the previous keys are still valid.

4.3.5.5 Multiple Reservations

In HSDC-net, it is possible that a user reserves more than one slot in the scheduling
phase. The reason is that during the scheduling phase, the users have LN slots to
select from which is much larger than the number of users in the group, i.e. N ,
specifically, if L is a large number. This is an advantage for users with a high activity
rate that need to publish more messages during a single cycle. To reserve B slots
(B > 1) when performing the SR sub-protocol, a user needs to repeat step 2 of SR for
B times. Note that in this case, the users’ XK vectors and SMV have N + A(B − 1)
elements (or slots), where A is the number of users who reserve B slots. On the
other hand, it is required to consider an upper limit on the number of slots that every
user can reserve. This protects the protocol from performance degradation caused
by collisions.

4.3.6 Security Analysis

In this section, we show how the proposed protocol performs against different secu-
rity threats. The target of these security threats can be either deanonymizing users’
messages or disrupting the protocol performance.

DoS attacks on SR sub-protocol: Suppose a malicious user uD reserves many
slots by setting the majority (or all) of vector ZD’s bits to 1. This results in many
collisions during the scheduling phase. According to our experimental results, using
the SR sub-protocol, the maximum number of SR restarts is 2, which can be consid-
ered as a threshold to decide on a DoS attack. When a DoS attack is detected during
the scheduling phase, the DM sub-protocol is invoked which outputs the identity of
disruptor(s). Then, after uD is excluded from the list of peers, the honest users can
resume the protocol.

Collusions: Consider NC colluding users (uc,1, uc,2, . . . , uc,NC ) who want to
deanonymize the messages of a specific user uv . For this reason, they join the group
of which uv is a member, such that the final group size is N (N > NC ). Moreover,
the NC colluding users share their matrix of pairwise keys (i.e.,K(0)

i ) along with their
random vector Ri . To deanonymize uv’s messages in round p, they need to compute
uv’s XK vector X(p)

v , compare it with the received Y(p)
v , and obtain m(p)

v . They can
compute A1(w) = ⊕NC

j=1k
(p)
v, j (w) (w = 1, 2, . . . , N ) since they have already shared

their matrix of pairwise keys and random vector R. Thus, they start to build X(p)
v :

x(p)
v (w) = A1(w) ⊕ A2(w), w = 1, 2, . . . , N , (4.50)
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where A2(w) = ⊕N
j=NC+1k

(p)
v, j (w).

As you see, they need to have A2(w) to obtain each x(p)
v (w) for w = 1, 2, . . . , N .

However, computing A2(w) requires the knowledge of pairwise keys k(p)
v, j ( j =

NC + 1, NC + 2, . . . , N ) shared between uv and the non-colluding users (uNC+1,

uNC+2, . . . , uN ). Hence, the attack is defeated since A2(w) is unknown to the col-
luding users. Furthermore, by employing a group entry control mechanism (like the
one proposed in [85]), we can prevent malicious users from setting up large size
collusion groups.

Node Failures: Suppose user uo becomes offline while the protocol is being
performed. This prevents the other users from computing SMV because uo is no
longer broadcasting his/her vector Yo. In this case, the remaining users can easily
exclude uo and resume the protocol. To do this, assuming uo is disconnected at round
p, every user ui needs to exclude his/her keys shared with uo (i.e. {k(p)

io (w)}Nw=1
w �=i

) from

Equations 10.1 and 10.2 before computing his/herYi vector. In other words, the users
must remove the row associated with uo from their matrix of pairwise symmetric
keysK(p)

i to be able to perform the next rounds of the protocol. However, they do not
need to perform the initialization phase and set up new pairwise keys as the previous
keys are still valid.

4.3.7 Performance Evaluation

In this section, we evaluate the performance of HSDC-net and present the results
of our prototype implementation. In our evaluations, we consider Twitter, Facebook
Messenger, and Instagram. We conducted our experiments based on the maximum
number of characters permessage allowed in these applications. For Twitter, themax-
imum number of characters in a tweet has recently increased from 140 to 280 char-
acters . However, this value is 500 and 2000 characters for Instagram and Facebook
Messenger, respectively . We considered 2 bytes of data per character on average, as
UTF-8 coding system is used by these applications.

We developed a prototype implementation of HSDC-net to evaluate its deploy-
ment in microblogging applications. The implementation is written in Python and
uses OpenSSL 1.1.0 for eliptic curve DSA signatures and PKI operations. We used
the Deterlab [96] infrastructure to test the prototype under realistic network condi-
tions. Deterlab provides a shared testbed for distributed protocols and enables us to
easily change network topology and node configurations.

Setup: The testbed topology that we used in Deterlab consists of three 100 Mbps
LANs with 10 ms latency between the core switches and clients. The three LANs are
connected together using 10Mbps linkswith 20ms latency.We executed the protocol
for 5 to 50 clients. Two types of client machines were used for the experiments: 3GHz
Intel XeonDual Core with 2GB of RAM and 2.13 GHz Intel Xeon CPUX3210Quad
Core with 4GB of RAM (Figs. 4.18, 4.19 and 4.20).
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Fig. 4.18 Probability of collision after a single run of SR for a B = 3 and b B = 5

Fig. 4.19 a Time required to initialize the protocol, reserve a slot, and perform one cycle of
anonymous message publishing. b End-to-end latency to publish an anonymous post

Fig. 4.20 Time required to
reserve B slots in a single
run of SR for different values
of B
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Collisions: Figures show the probability of collision for different values of the
number of simultaneously active users and the scheduling overhead efficiency factor
B. Collisions are more likely to occur for larger values of B that shows a sensible
trade-off between collision probability and the efficiency factor B. Note that the
values of collision probability shown in the figures have been obtained based on only
a single run of the scheduling phase. However, we noticed that even for larger values
of B, almost 100% of the slots for the next B MP cycles are successfully allocated
in at most two runs of the scheduling phase.

Latency: It shows the time required to perform the three phases of HSDC-net. In
this figure, the shown results are for the scenario inwhich the clients publishmessages
of length 560 bytes (the maximum size of a single tweet on average). Large values of
N result in larger XK vectors that make the system slower. Note that the illustrated
time required for performing the message publishing phase includes the time needed
for a single run of the SR sub-protocol. For example, considering N = 50, it takes
1.1 s for the clients to anonymously publish a tweet in the group. 0.56 s of this time is
spent on the slot reservation phase. The end-to-end latency to publish an anonymous
post is for Twitter, Instagram, and Facebook Messenger. Twitter has the quickest
responses since it has the smallest XK vector.

The time required to reserve B slots in a single run of the SR sub-protocol is
shown. As the figure indicates, for B = 1 and B = 3 only a single run of SR is
required to reserve B slots. However, some collisions have occurred for B = 5 and
B = 7 in larger values of N that caused the SR sub-protocol to be restarted.

Finally, the end-to-end latency of HSDC-net and some of the most well-known
anonymity protocols are compared. As you see, HSDC-net outperforms Dissent [84]
andVerdict [80] protocols in terms of speed. The reason is that the SR andMP phases
in HSDC-net are performed using simple and lightweight operations i.e. XOR and
SUM. However, in Dissent and Verdict, heavy-duty tasks are performed for public-
key encryption/decryptions and zero-knowledge proofs. Note that the latency of
HSDC-net will be shorter if we have B > 1 because in this case only a single run of
SR is required for B consecutive cycles of message publishing (Fig. 4.21).

Communication overhead:We also examined themaximum possible size of the
XK vector for Twitter, Facebook Messenger, and Instagram. Considering 50 users
who publish their messages simultaneously in a group, the maximum size of an XK
vector is obtained 27, 49, and 195 KB, for these applications, respectively. These
values are quite practical since they are in range of the average size of an ordinary
email that is 75 KB. Note that, realistically, N is the number of users that want
to simultaneously publish their messages not the maximum number of a group’s
members. Thus, the real group size can be much larger than N .
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Fig. 4.21 End-to-end
latency to anonymously
publish a tweet for
HSDC-net and some
well-known anonymity
schemes

4.4 Personalized Privacy in Smart Homes

The proliferation of smart devices in recent years has led to novel smart home applica-
tions that upgrade traditional home appliances to intelligent units and automatically
adapt their services without human assistance. In a smart home system, a central
gateway is required to coordinate the functions of various smart home devices and
allow bidirectional communications. However, the gateway may cause leakage of
sensitive information unless proper privacy protections are applied. In this work, we
first introduce a smart home model based on fog computing and secured by differ-
ential privacy. Then, we apply a personalized differential privacy scheme to provide
privacy protection. Furthermore, we consider a collusion attack and propose our dif-
ferential privacy model called APDP based on a modified Laplace mechanism and
a Markov process to strengthen privacy protection, thus resisting the attack. Lastly,
we perform extensive experiments based on the real-world datasets to evaluate the
proposed APDP model.

4.4.1 Literature Review

The concept of a smart home has beenwidely explored in recent years [97, 98]. Alam
et al. [99] describe the definition of a smart home as “an application of ubiquitous or
pervasive computing or environment” and analyze the development of smart homes.
Stojkoska et al. [100] present a holistic approach to the integration of state-of-the-art
IoT solutions into smart homes. Chan et al. [101] present an international selection
of leading smart home projects, as well as the associated technologies of wearable
or implantable monitoring systems and assistive robotics. Datta et al. [102] develop
an IoT architecture that enables smarter, connected and personalized healthcare and
wellness services for residents of smart homes. Cicirelli et al. [103] propose a frame-
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work that primarily relies on the cloud-assisted agent-based smart home environment
architecture, offering basic abstraction entities for design and implementation. Jie et
al. [104] describe the integration of IoT technologies into smart home systems.

Fog computing has many advantages in terms of privacy protection and perfor-
mance in a smart home. Dastjerdi et al. [105] introduce fog computing components,
software systems and applications. Luan et al. [106] provide an overview of fog
computing from the networking perspective to improve the efficiency aspects of fog
computing. Chiang et al. [107] describe the range of new challenges in the emerging
IoT and the difficulty of overcoming these challenges with today’s computing and
networking models. Brogi et al. [108] propose a general and extensible model to
support QoS-aware deployments of IoT applications in a fog infrastructure. Bo Tang
et al. [109] present a hierarchical distributed fog computing architecture to support
the integration of a very large number of infrastructure components and services into
future smart cities. Soumya Kanti Datta et al. [110] discuss the architecture of fog
computing that is deployed at roadside units (RSUs) and M2M gateways that offers
consumer-centric IoT services. Wangbong Lee et al. [111] present a gateway-based
fog computing architecture for wireless sensor and actuator networks (WSANs).

Security and privacy issues in smart homes have been extensively considered
by many researchers. Several existing approaches provide privacy protection uni-
formly. The clustering-based methods include K-anonymity [14], L-diversity [15],
T-closeness [16] and their variants [112]. Clustering-based methods provide satis-
factory protection under the scenario of datasets with records that share the same
attributes; however, such methods do not work well in the data diffusion scenario.
Dwork proposed differential privacy that offers privacy protection with a solid the-
oretical foundation [17]. Under the framework of differential privacy, numerous
mechanisms have been proposed to achieve privacy preservation, e.g., Laplace noise
[113] and sampling [40]. Although differential privacy can offer strict protection,
most existing approaches use fixed privacy levels to cope with various requirements.
Recent privacy studies of smart homes also include the communication protocol
[114], data analytics in cloud-based smart homes [115], location sharing [116], etc.

In this era of big data, privacy protection is required in every aspect of the system
[117, 118]. Komninos et al. [119] present dangers encountered in some of the most
illustrative scenarios of interaction among entities of the smart home and smart grid
environments, evaluating their impact on the entire grid. Geneiatakis et al. [120]
set up the scene for a security and privacy threat analysis for a typical smart home
architecture that relies on existing IoT devices and platforms that are readily available
in themarket. Lee et al. [121] discuss the concept of the IoT fog aswell as the existing
security measures useful in securing the IoT fog and then explore potential threats
to the IoT fog. Yang et al. propose privacy preserving collaborative filtering via the
Johnson-Lindenstrauss transform [122]. Zhang et al. [123] introduce various aspects
of smart city applications, discuss the system architecture, then present the general
security and privacy requirements, and identify several security challenges for the
smart city.

Personalized privacy can optimize the data utility while reducing the overall pri-
vacy budget [124, 125]. For personalized privacy, Wang et al. [4] use a Markov
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decision process to control the granularity of the published data. Koufogiannis et
al. [61] leverage personalized differential privacy to protect the privacy based on
distance in social networks. Götz et al. [126] explore privately releasing user context
streams for personalized mobile applications. In addition, Aghasian et al. propose
a method to measure the privacy closure based on multiple social networks [127].
However, all exisiting works barely consider the personalized privacy protection in
smart home scenario. In addition, personalized privacy will result in collusion attack
in a certain extent, which is merely discussed either. We will try to solve these issues
in the rest of this work.

4.4.2 Smart Home Modeling Based on Fog Computing and
Differential Privacy

The objective of the smart home model is to provide high-quality services to the
user while maximizing the network bandwidth and minimizing processing latency.
In the proposed model, we consider a fog structure and use a fog server as the bridge
between the cloud server and the IoT applications. The fog server has a certain
computing capability and storage used to perform computational tasks, reducing the
processing time and service latency. For clarity, we first analyze the details of the
smart home architecture and then model it as a graph based on graph theory. The
rationale is that we regard fog servers, cloud servers, and smart devices as nodes and
the connections between them as edges.

4.4.2.1 Fog Computing-Based Smart Home Model

To offer quality services at home, a smart home can provide many different compo-
nents. In this section, we discuss the architecture of general application with basic
components.

Figure4.22 demonstrates the architecture of a smart home based on fog comput-
ing, which has four layers: IoT devices, the fog server, the public cloud, and the
application layer. The IoT layer includes smart devices deployed at home, such as
sensors, wearable devices, smart meters, electric devices, and monitoring devices.
With these smart devices, the IoT layer can obtain all of the status information in a
smart home and send it to the fog simultaneously or perform post-processing at the
fog server. Therefore, the IoT layer primarily performs the functions of data collec-
tion and service provision to users. The fog layer has computing, storage, control,
communication, security, and privacy protection capabilities. It can process most of
the data collected from the IoT and sends the analytic results to the cloud or provides
direct feedback to IoT devices. When the data size is beyond the fog’s processing
ability, a request is sent to the cloud to participate in further processing. This fog-
based structure can improve the real-time processing ability in a smart home, reduce
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Fig. 4.22 Hierarchical
structure of a smart home

the system latency, and save the network bandwidth. The public cloud layer has supe-
rior computing and storage capabilities that provide support to the fog. In addition, it
can provide a variety of access types to the application layer, which is the top layer.
Entities provide services such as medical center, alarm center, and electric utility.

Building on the fog-based smart home structure, we model a smart home as
a graph. We develop a personalized differential privacy protection model. It can
minimize the overall privacy budget while improving data utility. In Sect. 4.4.5, we
leverage a modified Laplace mechanism that introduces a noise generation process
into a stochastic process and decouples the correlation among noises. As a result, we
can eliminate the collusion attack under this scenario.
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4.4.2.2 Trust Distance-Based Differential Privacy

Based on the proposed smart home structure, we further model it using graph theory.
We use a weighted graph

G =
{
n, e,w

∣∣∣n ∈ N , e ∈ E,w ∈ W
}

(4.51)

to denote the smart home based on the fog computing paradigm. In graph G, we use
n ∈ N to represent each node, e ∈ E to denote the relationship between nodes, and
w ∈ W to show the weights between nodes. If there are two nodes ni and ni and at
least one series of edges {eik1 , eik2 , . . . , ekn j } connects them, we conclude that the
nodes have a relationship. Based on the relationship, we also use dT to describe the
trust distance, where dT ∈ DT t.

The application layer contains many nodes (applications), such as TVs, lighting,
and cyber-physical equipment. The nodes may further connect to several sub-nodes.
In this case, the nodes in the end are specific to a certain function and may leak
the user’s private information, e.g., the blood pressure measurement. Based on this
observation, we set the trust distance DT as the number of hops between the nodes
and the fog server. Therefore, the privacy level ε increases with the growth of trust
distance DT , while ε decreases with the reduction of DT .

For each node ni , when fog server nF tries to diffuse its data di j to cloud nC j , the
fog server generates a proxy of the data as

ŷi j = di j + Lap

(
δ

ε

)
, (4.52)

where Lap( δ
ε
) denotes theLaplace noise [113],while δ and ε are the global sensitivity

and privacy level, respectively.
The node ni demands that the proxy ŷi j satisfy ε(DT )-differential privacy to

protect the private data. For privacy level ε(DT ), DT is a distance function denoting
the distance between node ni and fog server nF .

For simplicity, we regard graph G as an undirected graph. However, this assump-
tion can be eliminated, as the model works the sameway for directed graphs.We also
assume that the fog server is a trusted central authority and can process the data with
ε-differential privacy and transmit the data via a secure communication channel. In
the fog server, the privacy budget is a constant B that equals the sum of all privacy
levels of all the published data.

4.4.3 Personalized Differential Privacy Scheme

We propose a personalized differential privacy-preserving data publishing model of
a smart home, where the sensitive data of a certain node ni may be shared with
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Table 4.3 Sensitive data classification

Type Contents

Location di ∈ R3 represents the GPS coordinates:
longitude, latitude,and elevation

Timestamp di ∈ R+ indicates a positive instance of time,
e.g., “2000-12-20 00:00:00”

Dual states di ∈ {0, 1} indicates a binary status such as the
standby status

Text data di ∈ ABC denotes a string of alphabetic
characters like the name of a TV series

the cloud through fog server nF . The usual data types are listed in Table4.3. The
sensitive data’s privacy level usually varies with and is based on the trust distance.
The reason is that the contents are more private and specific if the trust distance
is longer. The nodes with the longest trust distance, e.g., the wearable equipment
and smart meters, possess the most private data. Moreover, the sensitive data may
be released to multiple clouds if the resources of a single cloud cannot satisfy the
needs. For multiple clouds, the sensitive data should be provided different levels of
protection according to various requirements. In both cases, the fog server should
provide personalized privacy protection to the sensitive data of node ni .

4.4.3.1 Differential Privacy

Differential privacyhas a solid theoretical foundation for providingprivacyprotection
to two adjacent datasets. In two adjacent datasets denoted by D and D′, it is required
that D′ have one more record than D and that an adversary cannot re-identify this
specific record.

ε is a positive privacy parameter decided by the overall privacy budget of the
system. D′ and D are two adjacent datasets with an adjacent relationship. Denote
by A a randomized algorithm that sanitizes the datasets. The algorithm M is called
ε-differentially private on D′ and D if and only if

Pr
[
A(D′) ∈ �

]
= exp

(
ε
)

× Pr
[
A(D) ∈ �

]
, (4.53)

where the probability space � is taken over the randomness used byA.

4.4.3.2 Laplace Mechanism

The Laplace mechanism is most typically used to attain ε-differential privacy in a
numeric scenario. The key feature of this method is the generation of a random noise
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that follows the Laplace distribution. After the noise has been added to the raw data,
an adversary cannot re-identify the location of the extra record.

The mechanism M : Rn → �(Rn) that adds Laplace-distributed noise N is
defined by

M(D) = D + N,

s.t.

N ∼ Lap

(
δ

ε

)
,

Lap
(
b
)

∼ d Pr
[
N = n

]
= exp

(
− ||n||2

b

)
,

(4.54)

where d Pr[N = n] is the density of Lap(b). Following the above formulation, we
regard M as an ε-differentially private mechanism under an adjacency relation.

4.4.3.3 Privacy Protection Based on Trust Distance

Building on the smart homemodel provided in Sect. 4.4.2.2, we formulate the person-
alized privacy protection model based on trust distance in a fog computing structure.

In a smart home, if the computing power of the fog server is insufficient, the
sensitive data of node ni may be passed to cloud server nC j . Such data need to be
protected for privacy reasons. Most existing approaches usually consider uniform
privacy level protection and apply the protection once and for all. However, uniform
protection cannot meet the new requirements of the smart home for various sources
of data and possible multiple clouds. Therefore, we focus on providing personalized
privacy protection to smart homes in this section.

In this section,we focus onpersonalizing the trust distance DT to avoid private data
leakage in a single cloud. The objective is to design a differential privacy mechanism
{A : D → δDn} that publishes the sensitive data di from node ni to recipient node
n j . The mechanism A generates n outcomes ŷni j that are then released to the cloud.
Furthermore, A needs to meet the following constraints.

The first constraint is providing personalized privacy protection. For all the sen-
sitive data dT

i j , the generated n proxies ŷni j have to satisfy ε(dT
i j )-differential privacy,

where MAP() is a mapping function that maps trust distance dT
i j to privacy level ε.

The second constraint is limiting the upper bound of personalized privacy levels
after composition. For all the proxies ŷni j , the ceiling of all composition mechanisms
should equal the maximum ε(dT

i j ), rather than the sum of all ε(dT
i j ).

n∑
i=1; j �=i

ADP

(
MAP

(
dT
i j

))
= maxADP

(
MAP

(
dT
i j

))
, (4.55)

where the superscript DP denotes differential privacy.



86 4 Personalized Privacy Protection Solutions

The third constraint is to obtain the maximum utility under the personalized pri-
vacy scenario. For all the noisy responses ŷni j , they should denote the most accu-
rate outputs of the raw data di j . The least noisy response results in the maximum
data utility. In terms of numeric value, the data utility is usually measured by the
root-mean-square error. Thus, the minimum root-mean-square error results in the
maximum data utility.

In the proposed personalized privacy protection model, there are various noisy
outputs ŷni j , and therefore, there are multiple corresponding data utility values. In
this work, we specifically refer to the sum of data utility values when considering
the maximum data utility in Eq.4.56.

n∑
i=1, j �=i

E
∣∣∣
∣∣∣ŷni j − di j

∣∣∣
∣∣∣
2

2
. (4.56)

4.4.3.4 Privacy Protection in Multiple Clouds

In addition to the features of the sensitive data itself, the data may also be released
to multiple clouds from the fog server. The privacy challenges have long been dis-
cussed by earlier studies. In this subsection, we try to solve the personalized privacy
protection problem in the multiple-cloud scenario. For instance, when the TV sta-
tion asks for a TV series, the fog server will pass the query to a certain cloud server
nC j . However, after a few episodes, the fog server may observe that this cloud has
stopped storing the TV series, or lacks a few episodes. In this case, the fog server
has to send the query to other clouds to obtain assistance. In this way, the sensitive
data are released to multiple clouds, and privacy protection is necessary.

The fog server publishes node ni ’s sensitive data k ∈ K times, where K denotes
the number of clouds that receive the same data. The personalized privacy level is
represented by MAP(k). It is a mapping function that maps k to privacy level ε.

We consider a one-round relaxation example for clarity. The results can also be
intuitively extended to multiple rounds.

Assume that there are two privacy levels ε(K ) and ε(K ′), where ε(K ′) > ε(K ).
There is a mechanismAε(K )→ε(K ′) : D → �(Ŷ2) that publishes the sensitive data to
two different cloud servers. In the first cloud server, node ni publishes a proxy ŷKi j to
cloud server nC j . The proxy ŷ1i j satisfies ε(K )-differential privacy. In the next cloud
server, the privacy level is relaxed to ε(K ′)-differential privacy. If clouds collude to
steal the more accurate sensitive data, the proposed mechanism should satisfy

ADP

(
ε(K ) + ε(K ′)′

)
= ADP

(
ε(K ′)

)
, (4.57)

where ε(K ′)′ is the privacy level of the second noisy response. As the upper bound
of the composition theorem indicates, we have
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ADP

(
ε(K ′)′

)
= ADP

(
ε(K ′) − ε(K )

))
, (4.58)

from which we can obtain ε(K ′)′ < ε(K ′). This result implies that the second proxy
cannot relax the privacy level at all but must instead tighten the privacy level. This is
a contradiction, especially if ε(K ) < ε(K ′) � 1. The data utility degrades signifi-
cantly, resulting in applications becoming impractical. The problem of personalized
privacy-preserving data publishing inmultiple clouds can be formulated as described
below.

We propose a mechanism {Aε(1)→ε(K ) : D → δ ŷk} that is differentially private
if the sensitive data are published in multiple clouds. The mechanism A generates
multiple proxies ŷk and releases them to k different clouds.With the increase of ε(K ),
the outcomes become progressively more accurate. In this scenario, the mechanism
A should further satisfy the following constraints.

The first constraint is providing personalized privacy protection. For all the sen-
sitive data dT

i j , the generated n proxies ŷni j have to satisfy ε(dT
i j )-differential privacy,

where MAP() is a mapping function that maps trust distance dT
i j to privacy level ε.

The second constraint is limiting the upper bound of personalized privacy levels
after composition. For all the proxies ŷni j , the ceiling of all composition mechanisms
should equal the maximum ε(dT

i j ), rather than the sum of all ε(dT
i j ).

n∑
i=1; j �=i

ADP

(
MAP

(
dT
i j

))
= maxADP

(
MAP

(
dT
i j

))
, (4.59)

where the superscript DP denotes differential privacy.
The third constraint is to obtain the maximum utility under the personalized pri-

vacy scenario. For all the noisy responses ŷni j , they should denote the most accurate
outputs of the raw data di j . The least noisy response results in the maximum data
utility. In terms of numeric values, data utility is usually measured by the root-mean-
square error. Thus, minimizing the root-mean-square error results in the maximum
data utility.

The last requirement is personalized privacy levels of data publishing in multiple
clouds. For data release to multiple clouds, the privacy levels {ε(1), ε(2), . . . , ε(K )}
increase monotonically, which can be described by ε(1) < ε(2) < · · · < ε(K )}.

4.4.3.5 Generic Personalized Privacy Scheme for a Smart Home

In the above subsections, we analyze two types of personalized privacy protection
application scenarios. The results show that personalized differential privacy is nec-
essary, especially in a fog server. As the computing power of a fog server is limited,
the privacy budget provided is also limited and fixed in a relevant small range.

For the trust distance problem and the multiple-cloud problem, we observe that
both involve the same challenge, i.e., personalized privacy level functions ε(). There-
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fore, they are the same problem in a certain sense. Building on this, we formulate
the problem of trust distance-based personalized privacy data diffusion over multiple
clouds as follows.

Our target is to design a differentially private mechanism {Aε(dT
i1,1)→ε(dT

i j ,k)
: D →

δ ŷT } that publishes the sensitive data from node ni to cloud server nC j through the
fog server in a smart home. The mechanism generates n × k noisy proxies that are
published to k cloud servers. The privacy level ε(dT

i j , k) increases with incremented
k, and the noisy proxies become progressively more accurate. The privacy level
ε(dT

i j , k) decreases as dT
i j increases, and the proxies become progressively more

noisy. Additionally, the mechanism A needs to satisfy the following constraints.

• Multiple-cloud data release: For a data release to multiple clouds with a fixed
distance dT

i j , the privacy levels {ε(dT
i j , 1), ε(d

T
i j , 2), . . . , ε(d

T
i j , T )} increase mono-

tonically, as represented by ε(dT
i j , 1) < ε(dT

i j , 2) < · · · < ε(dT
i j , T ).

• Personalized privacy protection: For all the sensitive data di j , each proxy ŷTi j should
satisfy ε(dT (i j), k)-differential privacy.

• Limited upper bound of composition: For all the noisy proxies yki j , the ceiling after
composition should be the maximum ε( 1

di j
, t), rather than the sum of ε( 1

di j
, t). The

mathematical description is provided by Eq.4.60.

n,n,K∑
i=1, j �=i,K

ADP

(
MAP

(
dT
i j , L

))
= max

di j ,k
ADP

(
MAP

(
dT
i j , k

))
. (4.60)

• Maximum data utility: All the proxies yTi j have to be the most accurate noisy
responses of actual outputsdi j , which results in themaximumutility. In the numeric
data sense, data utility is measured by the root-mean-square error, as shown in
Eq.4.61. Furthermore, theminimum root-mean-square error leads to themaximum
data utility.

n,n,K∑
i=1, j �=i,k

E
∣∣∣
∣∣∣yTi j − dT

i

∣∣∣
∣∣∣
2

2
. (4.61)

4.4.4 Collusion Attack Under Differential Privacy

After analyzing the two personalized privacy protection scenarios, we observe that
adversaries can launch collusion attacks that impact the protection’s effectiveness.
Under the personalized differential privacy protection scenario, adversary and collu-
sion attacks have certain new features and can be formulated mathematically under
differential privacy.

We model the adversary in the differential privacy sense in this work. In most
existing approaches, the adversary is considered qualitatively, rather than quantita-
tively. Furthermore, the attack cannot be formulated based on the adversary. The
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result is that we can only measure the relative attack impact, e.g., via the information
theory-based entropy. Therefore, we propose the differential privacy-based adversary
model as follows.

In the proposed personalized differential privacy model, the privacy levels are
modeled by ε(·). Therefore, we model the adversary by

Pad = ADP

(
εad

)
, (4.62)

where the background knowledge of the adversary can be regarded as complying
with εad -differential privacy.

The advantage ofmodeling the adversary in this way is that we can use the compo-
sition theorem to include the impact of the adversary in the privacy protection model.
In addition, the collusion attack can be further analyzed based on this definition.

A collusion attack is widely known as the scenario of two or more adversaries
colluding with each other to obtain more accurate data. In our case, two or more
clouds may share their data to perform a collusion attack and cause a leakage of
private data. There are three conditions for launching a collusion attack. First, the
sensitive data have been published on two or more clouds. Second, each of the clouds
already possesses some data, and the clouds share the same interest. Third, the clouds
have the incentive that they can obtain more information after colluding.

Building upon the adversary model, we can further develop the collusion attack
definition.

Given m ∈ M adversaries (cloud servers) and their corresponding privacy levels
εdT , kM , the collusion attack can be described by

CA(DT , K , M) =
DT ,K ,M∑

dT ∈DT ,k∈K ,m∈M
ε(dT , k)m

= ε(dT , k)1 + ε(dT , k)2 + · · · + ε(dT , k)m,

(4.63)

where CA(·) is the sum of all privacy levels (εs). As discussed above, the increase of
the privacy level ε leads to a degradation of privacy protection. As the composition
theorem is a built-in feature of differential privacy, collusion attacks can always be
launched without proper operation.

4.4.5 APDP Model

In our proposed smart home model, the privacy protection is guaranteed by differen-
tial privacy with Laplace noise. However, the existence of composition features of
differential privacy may result in degradation of privacy protection. Therefore, we
introduce the APDP model that uses a modified Laplace mechanism, in which the
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noise generation is integrated with the Markov process. As a result, the correlations
among noises are broken, and hence, our APDP model is able to resist the collusion
attack.

4.4.5.1 Composition Mechanism Underlying APDP

APDP is created to incorporate various mechanisms to provide privacy protection.
In addition to the Laplace mechanism, other mechanisms include the exponential
mechanism, the Gaussian mechanism, sampling, etc.

Assume that mechanisms {A1,A2, . . . ,An} : D → �(Y) respectively satisfy
{ε1, ε2, . . . , εn}-differential privacy. The composition mechanism A : D → �(Yn)

defined by A = {A1,A2, . . . ,An} is called ∑n
i εi -differentially private.

ADP

(
εcom

)
=

n∑
i

ADP

(
εi

)
. (4.64)

The respective privacy level
∑n

i εi denotes the upper bound of the composition
theorem. However,

∑n
i εi overstates the actual privacy level. In this section, we

introduceAPDP to explore correlations amongmechanisms that ensure better privacy
protection.

4.4.5.2 Incorporating a Markov Process

I have modified the section to highlight APDP; please change accordingly to suit the
change.

For n-dimensional numeric data d, our target is to propose a smart home-suitable
mechanism A inside APDP to generate the noisy outputs ŷKi j that are sent by smart
home node ni to cloud server n j and published in K cloud servers. A must have two
features. First, the accuracy ||ŷKi j − dK

i j || should solely depend on the trust distance
dT and the number of multiple cloud servers k, while all the other responses do not
degrade the accuracy. Second, any group of cloud servers has no ability to infer more
sensitive information about smart home node ni after collusion

∑
ε(dT , k).

Motivated by this, we introduce a Markov process inside APDP that is defined
over a continuous domain. This Markov transfer process will be further applied to
fulfill the privacy-preserving mechanism in the following study.

Given the privacy level ε and three specific privacy levels εi−1, εi , and εi+1, where
εi−1 < εi < εi+1, the Markov process has the following properties.

• The noise follows the Laplace distribution: ∀ε > 0, d Pr
(
Vε = v

)
∝ exp

(
−

ε||v||2
)
.

• The noise generation process is a Markov process: ∀εi−1 < εi < εi+1, Vεi−1

|Vεi , Vεi−1⊥Vεi+1 .
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• The transfer probability of the Markov process is

d Pr
(
Vεi = vi

∣∣∣Vεi+1 = vi+1

)
∝ δ(vi − vi + 1)

+ (n + 1)ε
1+ n

2
i ||vi − vi+1||1−

n
2

2

(2π)
n
2

Bn
2 −1

(
εi ||vi − vi+1||2

)
τ

+ O
(
τ 2

)

s.t.

τ = εi

εi+1
− 1,

(4.65)

where B is the Bessel function.

We need the Markov process to guarantee that the correlations between noises
are properly decoupled. Therefore, the proposed APDP model is able to resist the
collusion attack (Fig. 4.23).

4.4.5.3 APDP Analysis

The Laplace mechanism is a popular approach to satisfying ε-differential privacy
requirements. However, it cannot be optimal in terms of the minimum mean-square
error. Therefore, in APDP, we target achieving the optimum Laplace mechanism
for both minimum entropy and minimum mean-square error by designing the noise
properly. (You need to play down the tone of the mechanism while highlighting
APDP, which has a built-in mechanism and is customizable and configurable.)

Given the ε-differentially private mechanism A : Rn → �(Rn), A satisfies yKi j =
di j + N , where N ∼ ρ(N ) ∈ �(Rn). The mean-square error can be minimized if
the noise density f satisfies

f n1 (v) =
(

ε

2

)
exp

(
− ε

∣∣∣
∣∣∣v

∣∣∣
∣∣∣
1

)
, (4.66)

where f n1 (v) denotes the density of noise at v. Thus, we have

E
∣∣∣
∣∣∣yti j − di j

∣∣∣
∣∣∣
2

2
= EV∼ρ

∣∣∣
∣∣∣V

∣∣∣
∣∣∣
2

≥ EV∼ f n1

∣∣∣
∣∣∣V

∣∣∣
∣∣∣
2

2

= 2n

ε2
.

(4.67)

The optimum Laplace mechanism provides the solution to achieving optimized
data utility at a fixed privacy level. We further prove that the proposed method can
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Fig. 4.23 Privacy level
comparison in multiple
clouds
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satisfy the optimum Laplace mechanism, which makes the proposed model more
feasible and practical.

First, a one-dimensional case is considered for clarity. It can be further extended
to multiple dimensions. In the following proposed theorem, we establish a method
that satisfies all the requirements and illustrates the feasibility and effectiveness.

Two privacy levels, ε1 and ε2, which represent abbreviated notations of ε1

(
1
di j

, t
)

and ε2

(
1
di j

, t
)
, satisfying 0 < ε1

(
1
di j

, t
)

< ε2

(
1
di j

, t
)
, are given. Then, the form of

the mechanism is
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yti1 = d + V1, y
t
i2 = d + V2, (V1, V2) ∼ ρ�(R2). (4.68)

Moreover, the density fε1( 1
di j

,t),ε2(
1
di j

,t) is

fε1,ε2(x, y) = ε21

2ε2
exp

(
− ε2|y|

)
δ(x − y)

+ ε1(ε
2
2 − ε21)

4ε2
exp

(
− ε1|x − y| − ε2|y|

)
.

(4.69)

Based on the theorem, we can conclude that the theorem has the following prop-
erties.

• The mechanism A1 is ε1

(
dT , k

)
-differentially private.

• The mechanism A1 is optimal. Namely, A1 minimizes the mean-square error
E(V1)

2.

• The mechanism A2 is ε2

(
dT , k

)
-differentially private.

• The mechanism A2 is optimal. Namely, A2 minimizes the mean-square error
E(V2)

2.

• The mechanism (A1,A2) is ε2

(
dT , k

)
-differentially private.

The rationale for the noise following aMarkov stochastic process is that aMarkov
process requires that the current state be only related to the preceding state. This
implies that the current state is not impacted by the other states before the preceding
state. In this case, the current noise is only determined by the preceding noise. In
the proposed model, the privacy level increases with the trust distance, as does the
noise. Therefore, the current user has no incentive to collude with the next user who
has an inaccurate output with a greater noise.

4.4.6 Performance Evaluation

In this part, we demonstrate the performance of the proposed model in terms of pri-
vacy protection and data utility and compare the proposal to the ordinary personalized
differential privacy that only personalizes the privacy levels but does not consider
resistance to attacks. We also show that our proposal can outperform the existing
approaches from the perspective of background knowledge attack. As a result, the
experimental results based on real-world datasets show that our proposed model can
minimize the overall privacy budget and maximize the data utility while eliminating
the background knowledge attack.

We use a real-world smart home dataset that is collected in [128, 129] and is
based on a health-related smart home. The data are collected under 7 scenarios,
including sleeping, resting, dressing, eating, toilet use, hygiene and communication.
Fifteen candidates are contained in this dataset. Specifically, the shortest path is
denoted by the hop account that captures the features of our model. However, our
model can accommodate any type of distance metric used in existing approaches.
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The algorithms are implemented in MATLAB 2015 and run on a Mac OS platform
with a Core i5 CPU running at 2.7GHz with 8GB of RAM.

In the comparison experiments, we compare the proposed attack-proof person-
alized differential privacy model (APDP) with uniform differential privacy (UDP)
[17] and ordinary or normal personalized differential privacy (NPDP) [61]. First,
UDP provides uniform privacy levels to all nodes. Second, NPDP provides differ-
ent privacy levels based on various requirements. Third, APDP offers attack-proof
personalized privacy levels built upon NPDP. We demonstrate the evaluation results
below.

4.4.6.1 Privacy Protection

As Fig. 4.24 shows, we use 1 to 6 nodes to simulate the composition mechanism. We
can conclude that the proposed APDP has the best performance in term of privacy

Fig. 4.24 Privacy level
comparison in multiple
clouds against collusion
attack
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protection. With the increase of the node quantity, the privacy level of UDP does not
increase and remains stable. The privacy levels of both NPDP and APDP increase
due to the impact of the composition mechanism. Comparing these two models, we
observe that APDP increases quickly and that the privacy levels release fast. The pri-
vacy issues are quite severe. However, APDP performs better, as it increases slowly,
and the maximum values equals that of UDP. Therefore, APDP can minimize the
negative impact of the composition mechanism and provide better privacy protection
from the perspective of both strictness and customization (Fig. 4.24).

In Fig. 4.24, we illustrate the case of multiple clouds instead of multiple nodes.
Similarly, we use 6 clouds as an example. In the case ofmultiple clouds, all the clouds
are independent, and there is no co-relation inside them. Therefore, the composition
theorem has a more significant impact on privacy protection. All three models suffer
from performance degradation with the increase in the number of clouds. We can
conclude that the privacy level of UDP increases the fastest, followed byNPDP. Only
the privacy level of APDP increases moderately, and the maximum privacy level is
still satisfactory.

In summary, APDP has the best privacy protection compared to UDP and NPDP
under the scenarios of both multiple nodes and multiple clouds.

4.4.6.2 Data Utility

In the case of data utility, we reach the following conclusions based on Fig. 4.25. The
vertical axis denotes the amount of injected noise. Therefore, the smaller the noise
is, the higher the data utility. The trends show that the data utility of UDP maintains
the same level and remains the highest regardless of the number of multiple clouds.
As for NPDP and APDP, the utilities of both approaches increase with the number

Fig. 4.25 Data utility
comparison
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of multiple clouds. However, compared to NPDP, APDP rises faster, i.e., it provides
a higher data utility. In addition, the more clouds there are, the higher the data utility.

4.4.6.3 Defense Against a Collusion Attack

In Fig. 4.26, we illustrate the performance of the three models against a collusion
attack in multiple clouds. In this case, there are two attacks, which are represented by
two green dashed lines. We demonstrate that UDP cannot prevent a collusion attack,
while NPDP and APDP have the ability to defeat the attack to different degrees.
NPDP can resist an attack to a certain degree; however, it ultimately fails as the
green dashed line has an intersection with the red line. However, APDP is fully
attack-proof, as the yellow line is consistently under the green dashed line.

In Fig. 4.26, we illustrate the performance of the three models against a collusion
attack with multiple nodes. Similar to the above, there are two attacks, which are
represented by two green dashed lines. We demonstrate that UDP can prevent a
collusion attack because the privacy level is not released after composition. NPDP
and APDP have the ability to defeat the attack to different degrees. NPDP can resist
the attack to a certain degree; however, it ultimately fails as the green dashed line
has an intersection with the red line. APDP is fully attack-proof, as the yellow line
is consistently under the green dashed line.

To summarize, APDP has the best performance in terms of collusion attack resis-
tance. It can eliminate the collusion attack due to the properly decoupled noise
generated by the modified Laplace mechanism.

Fig. 4.26 Distance-bounding protocols are generally exposed to three types of security attacks: a
Distance Fraud, bMafia Fraud, and c Terrorist Fraud
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4.5 Personalized Privacy in Location-Based Services

In recent years, advancements in smartphone technology and positioning systems
have resulted in the emergence of location-based applications and services such as
activity-tracking applications, location-based services (LBS), database-driven cog-
nitive radio networks (CRNs), and location-based access control systems. In these
services, mobile users’ real-time location data is utilised by a location-based service
provider (LBSP) to provide users with requested information or access to a resource
or service. These applications are fast growing and very popular due to the range of
useful services they offer [130, 131].

However, it is possible for dishonest users to submit fake check-ins by changing
their GPS data. To clarify and highlight the fake location submission issue consider
LBSPs like Yelp and Foursquare that may offer some rewards (such as gift vouchers)
to users who frequently check in at specific locations. This creates an incentive
for dishonest users to submit fake check-ins by manipulating their GPS data. For
example, in a research study, Zhang et al. [132] found that 75% of Foursquare check-
ins are false and submitted by dishonest users to obtain more rewards. Furthermore,
in database-driven CRNs, malicious users can submit fake locations to the database
to access channels which are not available in their location [133].

In this chapter, we highlight and review the existing location verification schemes.
These schemes are also called locationproof (LP) schemes in the literature.Moreover,
we present some preliminaries as the foundation for the next three chapters.

4.5.1 Literature Review

In this section, we review the literature on location proof (LP) schemes. They are gen-
erally categorised into two groups depending on the system architecture: centralized
and distributed. In the centralized schemes, a trusted fixed wireless infrastructure,
usually a WiFi access point, is employed to check the proximity of mobile users and
generate LPs for them. On the other hand, in the decentralized schemes, this task is
done by ordinarymobile users who act as witnesses and issue LPs for each other. This
makes their implementation easier and cheaper than the centralized mechanisms. In
this section, we review the related literature on each category separately.

4.5.1.1 Centralized Schemes

In this approach, a central trusted node such as a wireless access point is utilised to
generate LPs for users in a specific site. The idea of employing wireless access points
as location proof generators was introduced by Waters et al. [134] for the first time.
They measure the round-trip signal propagation latency to decide on the proximity
of a user to a trusted access point referred to as the location manager. However, the
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proposed scheme is vulnerable against relay attacks and specifically against Terrorist
Frauds. In other words, their algorithm lacks a mechanism by which the location
manager ensures that the received ID is really for the user who has submitted the LP
request.

To address this issue, Saroiu et al. [135] proposed a technique in which the access
point broadcasts beacon frames consisted of a sequence number. To obtain an LP,
users must sign the last transmitted sequence number with their private key and send
it back to the access point along with their public key (the access point broadcasts
beacons every 100 milliseconds). This makes the system resistant against Terrorist
Frauds since the malicious prover does not have enough time to receive the sequence
number from the adversary, sign and send it back to the adversary. However, the
proposed algorithm has privacy issues because users must reveal their identity pub-
licly. Javali et al. [136] have used the same idea to make their algorithm resistant
against relay attacks. They also utilise the unique wireless channel characteristics,
i.e., channel state information (CSI) to decide on users’ proximity. The proposed
scheme consists of three entities, i.e., Access Point, Verifier and Server which makes
the system expensive. In addition, the user’s identity is revealed publicly whichmight
cause privacy issues. Table4.4 presents a comparison of these LP schemes.

4.5.1.2 Distributed Schemes

In the distributed scenarios, users collaboratewith the system togenerateLPs. In other
words, users act as witnesses for each other. The main advantage of this approach is
that there is no need for a trusted access point to issue LPs. Therefore, this type of
systems can be used in locations where users are far from a trusted entity. APPLAUS
introduced by Zhu et al. [139] is one of the pioneer research works on distributed
location proof systems. In APPLAUS, mobile devices use their short-range Blue-
tooth interface to communicate with their nearby devices who request an LP. To
preserve users’ location privacy, they need to select a set of M pseudonyms and
change them periodically. These pseudonyms are considered as users’ public keys
which are required to be registered with a trusted Certificate Authority (CA) along
with the associated private keys. However, changing pseudonyms regularly creates
a high level of computation and communication overhead. In addition, the users are
required to generate dummy LPs as well.

Davis et al. proposed a privacy-preserving alibi (location proof) scheme in [140]
which has a distributed architecture. To preserve users’ location privacy, in the intro-
duced scheme, their identity is not revealed while an alibi is being created. Thus, only
a judge with whom a user submits his/her alibi can see the user’s identity. However,
collusions and other security threats have not been considered in the work.

In the distributed solutions, Prover-Witness collusions are possible because wit-
ness devices are not always trusted. A witness device can issue an LP for a dishonest
user while one of them (or both) is not located at the claimed location. This is one
of the major challenges of these schemes. For example, in PROPS which has been
proposed by Gambs et al. [143], Prover-Witness collusions have not been discussed
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Table 4.4 Comparison of LP schemes

LP scheme Features Advantages Disadvantages

Waters et al. [83] Round-trip signal
propagation delay is
measured to decide on
device proximity

Privacy-aware
Lightweight

Vulnerable to P-P
collusions

Javali et al. [136] No DB mechanism is
used

Resistant to P-P
collusions

Privacy issue

Utilises channel state
information (CSI) to
decide on users
proximity

Fast Expensive for
implementation

Saroiu et al. [135] Access point
broadcasts sequence
numbers periodically

Resistant to P-P
collusions

Privacy issue

Provers sign the last
transmitted sequence
number to request an
LP

VeriPlace [137] To obtain a final LP, a
user needs to get an
intermediate LP from
a trusted access point

Privacy-aware Needs three types of
trusted entities run by
separate parties

STAMP [138] An entropy-based trust
model is used to
address P-W
collusions

Supports location
granularity

Vulnerable to P-P
collusions (the broken
Bussard-Bagga DB
protocol is employed)

APPLAUS [139] Provers adopt different
pseudonyms and
change them
periodically

Privacy-aware High communication
overheads
High computation
overheads

Alibi [140] Provers’ ID is revealed
only when they choose
to submit their alibi to
a judge

Privacy-aware
Lightweight

Vulnerable to
collusion attacks

Link [141] A group of local users
collaboratively verify
a prover’s location

Resilient to situations
when there is not
enough neighbour
devices

Privacy issue

SPARSE [142] No DB mechanism is
used for secure
proximity checking

Resistant to P-P
collusions
Privacy-aware

Prevents P-W
collusions only in
crowded scenarios

PROPS [143] Group signatures and
ZKP are used to make
provers anonymous

Efficient and
privacy-aware

Vulnerable to P-W
collusions
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although it provides an efficient and privacy-aware platform for users to create LPs
for other users.

To the best of our knowledge, there is no efficient and reliable solution proposed
in the literature to resolve the Prover-Witness collusions issue with a high level of
reliability even though some significant efforts have been made so far. For example,
in LINK introduced by Talasila et al. [141] a group of users collaboratively verify a
user’s location upon his/her request sent through a short-range Bluetooth interface. It
is assumed that there is a trusted Location Certification Authority (LCA) to which the
verifying users (located in the vicinity of the requesting user) send their verification
messages. Then, the LCA checks validity of the claim in case of a Prover-Witness
collusion. This is done by checking three parameters: the spatiotemporal correlation
between the prover and verifiers, the trust scores of the users, and the history of the
trust scores. However, it does not detect and prevent Prover-Witness collusions with
a high level of reliability. Moreover, in the LINK scheme, users’ location privacy has
not been considered in the scheme design since a user needs to broadcast his/her ID
to the neighbour verifiers.

STAMP introduced by Wang et al. [138] is another example in which an entropy-
based trust model is proposed to address the Prover-Witness collusions issue. This
method is also unable to provide the necessary reliability to detect Prover-Witness
collusions. In addition, to address Terrorist Frauds, STAMP employs the Bussard-
Bagga protocol [144] as the distance bounding protocol which has already been
shown to be unsafe [145]. Moreover, the computation time required by STAMP to
create an LP is long when users have a large private key [138].

Although different novel methods have been introduced so far, each of them
has its own constraints, i.e., privacy issues [135, 136, 141], vulnerability against
collusions [134, 138–141, 143], high level of communication and computation
overheads [139], and expensive implementation [136, 137]. The scheme proposed
in [142] prevents Prover-Witness (P-W) collusions only in crowded scenarios.

4.5.2 Preliminaries

In this section, we first review distance bounding (DB) protocols and present the
security attacks that these protocols might experience. These attacks are a threat for
location proof systems as well because most LP schemes employ a DB protocol
for proximity checking. Following this, we review TREAD and discuss the need
of TREAD modification. Furthermore, we present an overview of the blockchain
technology and review the three different types of blockchains. Since we introduce a
blockchain-based LP scheme in chapter 8, it is needed to review the basic concepts
of blockchain systems first. Following this, we present some of the design challenges
that we need to address in this part of our research work.
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4.5.2.1 Distance-Bounding Protocols

Distance-bounding protocols [144–148], were introduced to determine an upper
bound on the distance between a prover and a verifier, whilst at the same time,
the prover device authenticates itself to the verifier. In other words, DB protocols
aim to provide authenticated proximity proofs in order to prevent some security
attacks. Despite some implementation challenges, in the future, DB protocols will
be employed by bank payment companies and car manufacturers due to recent
advances [145].

All DB protocols work based on the fact that RF signals do not travel faster
than light. First, the verifier sends a challenge bit and the prover replies promptly
by sending the corresponding response regarding the received challenge bit. This
procedure is called fast bit exchange in the literature. Then, the verifier measures the
related round-trip time (RT T ) which must be less than a specified threshold. This
threshold is obtained by computing RT Tmax that is related to the maximum allowed
distance to the prover and is obtained through the following equation:

RT Tmax = 2dmax

C
+ to, (4.70)

where dmax is the maximum allowed distance, C is the speed of light, and to is an
overhead time that is added to cover the computation time [145]. This process is
repeated n rounds with n different challenge bits (where n is the length of prover’s
private key). Finally, the verifier either accepts or rejects the prover’s claim.

In addition to the proximity checking, the verifier must authenticate the neighbor
prover at the same time. Otherwise, an adversary can collude with a remotemalicious
prover and perform the fast bit exchangemechanism on behalf of the remote prover.
In this regard, there are some security attacks that a well-designed DB protocol
must be resistant against. In the literature, the following security threats have been
identified so far [145]. These attacks threat an LP scheme as well since most of the
LP schemes employ a DB protocol as their core function.

Distance Frauds: In a distance fraud, a malicious prover tries to convince an
honest verifier that his physical distance to the verifier is less than what it really is.
This attack can occur if there is no relationship between challenge bits and response
bits and the malicious prover knows the time at which the challenge bits are sent. In
this case, the malicious prover can send each response bit before its challenge bit is
received.

Mafia Frauds: In this attack, an adversary tries to convince an honest verifier that
a remote honest prover is in the vicinity of the verifier. The adversary in this attack
can bemodeled by amalicious prover that communicates with the honest verifier and
a malicious verifier who interacts with the honest prover (Fig. 4.26). The car locking
system is a good example to understand this type of attacks where an adversary tries
to open a car’s door by convincing the reader unit that the key is close to the car.

Terrorist Frauds: In this attack, a remote malicious prover colludes with an adver-
sary who is close to an honest verifier to convince the verifier that he/she is in the
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Table 4.5 Comparison of the success probability of different security threats for some well-known
DB protocols

DB protocol Distance frauds Mafia frauds Terrorist frauds

Swiss-Knife [147] (3/4)n (1/2)n to 1 (3/4)θn

Gambs et al. [148] (3/4)n (1/2)n 1

Bussard-Bagga [144] 1 (1/2)n 1

privDB [150] (3/4)n (1/2)n 1

SKI [151] (3/4)n (2/3)n (5/6)θn

Fischlin–Onete [146] (3/4)n (3/4)n (3/4)θn

vicinity of the verifier. Although in their collusion, they never share private informa-
tion (e.g., private key) with each other, it is still possible that they establish a very
fast communication tunnel between themselves and the adversary relays the verifier’s
message to the malicious prover who can sign and send it back to the adversary for
submission. Therefore, just a simple assumption that users never share their private
key can not protect the system against this type of attacks.

Moreover, there is another attack called Distance Hijacking introduced by Cre-
mers et al. [149]. They believe this attack is an extension of distance frauds which
is very close to Terrorist Frauds as well. In a distance hijacking attack, a remote
malicious prover tries to provide wrong information about his distance to an honest
verifier by exploiting the presence of one or multiple honest provers.

To address the mentioned attacks, different DB protocols have been introduced so
far [144, 146–148]. However, each protocol has its own constraints (for more detail
refer to [145]). For example, the popular Bussard-Bagga protocol (introduced by
Bussard et al. [144] to address the Terrorist Frauds) was proven insecure by Bay et
al. [145]. Table4.5 compares somewell-knownDBprotocols in termsof vulnerability
against thementioned security threats and frauds. In this table, the success probability
of the most common security threats have been shown. n indicates the number of
rounds in the DB process and θ is a parameter related to a Terrorist Fraud such that
it is difficult to prevent from the exhaustive searches that are done to recover θn bits
(see [145] for more details).

Aswe see in the table, most of theDB protocols are vulnerable to at least one secu-
rity attack. Moreover, the two fraud-resistant protocols, i.e. SKI [151] and Fischlin–
Onete [146], need a large n to provide sufficient reliability which makes the DB
process slow since the process is performed for n rounds.

4.5.2.2 TREAD

TREAD is a secure and light-weight DB protocol proposed by Avoine et al. [152] to
address the aforementioned problems. In TREAD, a novel idea has been deployed
to make the protocol resistant to Terrorist Frauds: if a dishonest prover colludes
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Fig. 4.27 Message
exchange diagram for
TREAD

with another user to conduct a Terrorist Fraud, he can be easily and unlimitedly
impersonated by the accomplice later. This risk is not easily taken by any rational
prover.

Assuming there is a prover device in the vicinity of a trusted verifier who
have secretly shared the encryption/decryption key pair ek and dk, and the sig-
nature/verification key pair sk and vk, TREAD is performed in three phases, i.e.
Initialization, Distance Bounding, and Verification (Fig. 4.27).

(1) Initialization: In this phase, the following activities are performed by the
prover and verifier devices:

Prover: The prover device generates two random bit-strings a and b from the
uniform distribution on {0, 1}n , computes the signature σP = Ssk(a||b||I DP) and
the encrypted message e = Eek(a||b||I DP ||σP) where I DP is the prover’s ID (see
Table4.6 for a list of notations). Then, it sends e||I DP to the verifier.

Verifier: Upon receiving e||I DP , the verifier device decrypts e using the decryp-
tion key dk and checks the prover’s signature σP using the verification key vk to see
if it is correct. If σP matches the prover’s signature, the verifier generates a random
bit-string h from the uniform distribution on {0, 1}n and sends it to the prover.

Table 4.6 List of cryptography notations

Notation Description

‖ Concatenation

Sent (m) Signature of entity ent on message m

Eent (m) Encryption of message m using public key of
entity ent

Loc GPS coordinates related to the prover’s
Location

I DP The prover’s identity

I DW The witness’s identity

⊕ XOR operation
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(2) Distance Bounding: In this phase, the prover and verifier devices start to
perform the n-stage fast bit exchange process :

Verifier: In stage i, (i = 1, 2, . . . , n), the verifier picks a random bit ci , sends it
to the prover and starts its timer.

Prover: Upon receiving ci , the prover immediately computes the following bit
ri = and sends it back to the verifier:

ri =
{
ai , if ci = 0

bi ⊕ hi , if ci = 1
(4.71)

Verifier:When ri is received by the verifier device, it stops the timer and records
its value �ti . Then, it performs stage i + 1 until all the n stages are done after which
it goes to the verification phase.

(3) Verification: In this phase, the verifier device checks all the received ri for
i = 1, 2, . . . , n to see if they have been correctly computed based on hi , ci , ai and
bi (the last two bits received in the initialization phase). Then �ti must be less than
the predefined threshold RT Tmax for i = 1, 2, . . . , n.

Finally, the prover’s request is accepted if the above checkings are successfully
passed for all n stages.

As we see, in case of a Terrorist Fraud, a dishonest prover (located far from the
verifier) not only has to provide the accomplice with his σP and e, but also his random
bit-strings a and b. Otherwise, the accomplice is unable to correctly respond to the
challenge bits ci in the DB phase. This enables the accomplice to easily impersonate
him later using a, b, σP , and e. See [152] for a comprehensive security analysis on
TREAD.

4.5.2.3 TREAD Modification

In spite of the security guarantees that TREAD offers, it needs some amendment
before we make use of it in our proposed architecture. In the following, we show
how the prover’s location privacy is negatively affected, if TREAD is integrated into
PASPORT without any customization.

In TREAD, the prover’s ID is sent to a neighbor verifier (which is assumed
to be trusted) through a short-range communication interface. Due to PASPORT’s
decentralized architecture, the trusted verifier is located far away from the prover.
Instead, a witness device (which is untrusted from a privacy point of view) collects
the prover’s data and performs the DB procedure. Thus, the prover’s ID is sent to
the witness devices in the form of a plain text message if we integrate TREAD into
PASPORT without any modification. This breaches the prover’s location privacy.
Hence, it is necessary to modify TREAD and make it a privacy-aware DB protocol.

Note that prover anonymity can be offered by TREAD if group signatures are
used [152]. However, they guarantee provers’ anonymity up to group level only.
Since we do not want to use group signatures in the PASPORT’s architecture, in
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the next section, we propose a private version of TREAD, i.e. P-TREAD, by which
a prover device can anonymously broadcast its LP request for neighbor witnesses
while he/she benefits from the TREAD security guarantees.

4.5.3 PASPORT: The Proposed Scheme

In this section, we present Privacy-Aware and Secure Proof Of pRoximiTy (PAS-
PORT), which performs LP generation and verification for mobile users in a secure
and privacy-aware manner. The proposed scheme provides the integrity and non-
transferability of generated LPs. To make PASPORT resistant to P-P collusions and
perform private proximity checking, we develop a privacy-aware distance bounding
(DB) protocol P-TREAD and integrate it into PASPORT. P-TREAD is a modified
version of TREAD [152], a state of the art and secure distance bounding protocol
without privacy consideration. Our customization does not affect TREAD’s main
structure and features. Thus, PASPORT benefits from its security guarantees [50].
By employing P-TREAD as the distance bounding mechanism, a malicious prover
colludingwith an adversary can easily be impersonated by the adversary later. Gener-
ally, users do not take such a risk by initiating a Prover-Prover collusion. In addition,
to resolve the P-W collusions issue, we propose a witness selection mechanism that
randomly assigns the availablewitnesses to the requesting provers instead of allowing
them to choose the witnesses themselves. We show that by adopting this mechanism,
a P-Wcollusion can be conductedwith only a negligible success probability if LBSPs
create sufficient incentives for users to act as witnesses and generate LPs for provers.

In this section, we firstly present the PASPORT framework and its entities. Sec-
ondly, we present the trust and threat model which we have considered in our work.
Following this, we introduce P-TREAD.Finally, the full framework of the PASPORT
scheme is presented.

4.5.3.1 Architecture and Entities

The proposed system architecture is shown in Fig. 4.28. As we see, the system has
a distributed architecture and consists of three types of entities, i.e., Prover, Witness
and Verifier. A Prover is a mobile user who requires to prove his/her location to a
verifier. A Witness is the entity that accepts to issue an LP for a neighboring prover
upon request. We assume service providers create sufficient incentives for mobile
users to become awitness and certify other users’ location. In PASPORT,we consider
witnesses as mobile users.

Finally, a Verifier is the unit who is authorized by the service provider to verify
LPs claimed by provers. We assume provers communicate with witnesses through a
short-range communication interface such as Wi-Fi or Bluetooth. This short-range
communication channel is supposed to be anonymous such that users can broadcast
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Fig. 4.28 The proposed
system architecture

their messages over it without revealing their identifying data such as IP or MAC
address.

4.5.3.2 Trust and Threat Model

We assume mobile users are registered with the service provider. Each user has a
unique public-private pair key stored on his/her mobile device and certified by a
Certification Authority (CA). Users’ identity is determined through their public key
and we assume users never share their private key with other users because they do
not give their mobile devices to others [136, 138]. Thus, in a collusion scenario, we
suppose a malicious prover never goes that far to provide another party with his/her
private key. We also assume all the messages exchanged between the entities might
be eavesdropped by passive eavesdroppers. In the following, we discuss the trust and
threat model for each entity individually.

Prover. It is assumed that the prover makes an effort to obtain false LPs. This can
be done through different scenarios in which a prover might (a) try to provide the
witnesses with fake information about his/her location to convince them to generate
LPs for him/her, (b) manipulate the LP issued for him/her to change its location or
time field, (c) attempt to steal an LP issued for another user and use it for him/herself,
and (d) collude with other users (provers or witnesses) to obtain LPs. Moreover, we
assume provers try to obtain the identity of witnesses.

Witness. A witness might collude with a prover to generate a fake LP for him/her.
In addition, a witness may try to deny an LP which has been issued by him/herself.
Witnesses are assumed to be curious about the provers’ identity.

Verifier. We suppose the verifier is trusted and never leaks users’ identity and
their spatiotemporal data. It is assumed that the verifier keeps a regularly updated
list of witnesses who are present at the given location and have accepted to generate
LPs for other users. The verifier accepts the LPs issued by these witnesses only. We
suppose service providers create necessary incentives to encourage selfish users to
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collaborate with the system. Otherwise they might not generate LPs to save their
battery power or reduce their communication costs.

Regarding collusions, we consider both Prover-Prover and Prover-Witness collu-
sions in our threat model as it can be directly derived from the above assumptions.
In the next subsection, we introduce the proposed privacy-aware DB protocol P-
TREAD.

4.5.3.3 P-TREAD

In this subsection, we present P-TREAD, a modified version of TREAD, for private
proximity checking in the PASPORT architecture.

As discussed in the Preliminaries subsection, to protect users’ privacy, we need
to customize TREAD in such a way that provers can anonymously submit an LP
request to neighbor witnesses. For this reason, in P-TREAD, we limit a witness’ role
to only collecting (not verifying) the required data from the prover (the verification is
performed by the remote trusted verifier). All the privacy-sensitive data are encrypted
by the prover and sent to a witness who signs and sends them back to the prover as
an LP. Then, after the claim (received LP) is submitted to the verifier by the prover,
verification of the claim can be performed by the trusted verifier in the next phase.We
divide the whole procedure into two phases, (a) data collection and LP generation,
and (b) authentication and verification.

Phase 1. Data collection & LP generation. In this part of the protocol, the ini-
tialization phase of TREAD is performed with the following exceptions:

• The prover device does not send I DP to the witnesses as a plain text message (it
only sends e to the witnesses).

• e is computed by the prover device using the verifier’s public key. Therefore, the
witnesses can not decrypt it and deanonymize the prover. We assume that the
verifier publishes its public key for the users. Moreover, every user has registered
a public/private key pair with the verifier.

• The witness devices do not check the prover’s signature σP since the prover must
be anonymous (in addition, they can not decrypt e and obtain the signature). Later,
σP will be checked by the verifier in the next phase.

Then, the DB procedure is performed similar to the DB phase of TREAD by which
the prover’s responses ri to challenge bits ci (i = 1, 2, . . . , n) are collected. After
data collection is finished, the witness device creates the following LP and sends it
to the prover:

LP = EVeri f ier (m2||SWitness(m2)) (4.72)

where m2 = r ||c||h||e||I DW ||Loc||time and I DW is the witness ID. Note that the
prover can not see I DW since it is encrypted using the verifier’s public key. This
preserves location privacy of the witnesses as well. Finally, the prover submits the
following message with the remote verifier:
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LP
′ = EVeri f ier (LP||a||b||I DP) (4.73)

In other words, the witness collects the required information from the prover (e and
r ), creates message LP , and sends it to the prover for submission. In this phase, the
witness can not see the prover’s identity as it has been encrypted by the verifier’s
public key in message e.

Phase 2. Authentication & verification. In this phase, the verifier authenticates
the prover based on the received LP

′
and verifies the validity of the LP issued by

the witness. To do this, it first decrypts LP
′
using its private key and extracts LP , a,

b, and I DP . Then, it checks the following:

• The signature σP placed in message e must match the prover’s signature based on
I DP .

• The received I DPs placed in e and LP
′
must match.

• The witness signature on message m2 must match the signature associated with
I DW .

• The two a||bs placed in the messages e and LP
′
must match.

• The received response r must match r
′
where r

′
is obtained based on the received

a, b, h, and c bit-strings.

If all the above checks are successfully passed, the prover’s location claim is accepted
by the verifier.

As we see, by using P-TREAD, a prover can anonymously request an LP from
neighbor witnesses while the main structure of TREAD is preserved which brings
security guarantees for users. In the next subsection, we integrate P-TREAD into
our main LP scheme, i.e. PASPORT, to perform secure and private device proximity
checking.

4.5.3.4 The Workflow of PASPORT Framework

The proposedLP scheme consists of threemain phases: Initialization,LocationProof
Generation, and Location Claim and Verification (Fig. 4.29).

(1) Initialization: In this phase users register with the system and the Certification
Authority certifies users’ public-private key pairs. Moreover, the verifier creates a
Witness Table in which it keeps the identity and location of mobile users who accept
to be a witness. This table is regularly updated as witnesses sign on or off at every
site. Furthermore, for every registered user in the system, the verifier records a list
of provers for which the user generates an LP. These lists are used by the verifier
to select which witnesses are qualified to generate LPs for a specific prover. This is
done to prevent Prover-Witness collusions.

(2) Location Proof Generation: This phase is run in two stages:Witness Selection
and P-TREAD Execution.

(2.1) Witness Selection: In this stage, the prover submits an LP request to the
verifier. Upon receiving the prover’s request, the verifier selects K witnesses form
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Fig. 4.29 Message flow between the three entities of the proposed scheme

its Witness Table to generate LPs for the prover. This is done to neutralize Prover-
Witness collusions because in this case, the prover does not have control over the
witness selection process. However, to further protect PASPORT against prover-
witness collusions, we integrate an entropy-based trust model as a supplementary
method into the witness selection mechanism. Using this trust model, a trust score
is computed by the verifier for every available witness device w based on its LP
generation history and the number of LPs that w and the prover have issued for each
other in the past. If the obtained score is above a threshold, the device is selected to
witness for a requesting prover. The following step by step activities are performed
in this stage:

1. Prover: First, the prover sends the following message Req to the verifier to
inform it that he/she wants to start requesting an LP. This message can be sent to
the verifier through the prover’s Internet connection.

Req = EVeri f ier (I DP‖Loc) (4.74)

2. Verifier: Upon receiving the prover’s message, the verifier extracts all the wit-
nesses who have recently (in a reasonable period of time) proved that they are
in an acceptable distance to location Loc from its Witness Table (this acceptable
distance is defined depending on the application). Then, K witnesses are selected
among the shortlisted witnesses using the proposed trust model. These K wit-
nesses are then qualified to generate LPs for this prover. If there are not enough
qualified witnesses, the verifier suspend this request until the necessary number
of qualified witnesses become available. Then, the verifier generates a unique ID
for this LP (LP_I D) and sends it to the selected witnesses and the prover as well.
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(2.2) P-TREADExecution: In this stage, the prover starts to perform the P-TREAD
protocol.

1. Prover: The prover generates two n-bit random numbers a and b, and then com-
putes the followingmessage e and broadcasts it through the predefined short-range
communication interface (WiFi or Bluetooth).

e = LP_I D‖EVeri f ier (m1‖SProver (m1)) , (4.75)

where m1 = a‖b‖I DP‖Loc.
2. Witness: A witness upon receiving e, extracts the LP_I D and compares it with

the one received from the verifier. If they are not same, it discards e. Otherwise,
it generates an n-bit random number h and sends it to the prover.

3. Prover: The prover computes (zi = bi ⊕ hi ) for i = 1, 2, . . . , n and sends an
Ack to the witness.

4. Witness: The witness starts an n-stage time sensitive DB process by generating
a random bit ci at each stage i and sending it to the prover. It also starts a timer
immediately after sending ci .

5. Prover: Upon receiving ci , the prover instantly sends the following response ri
to the witness:

ri = ai .c̄i + zi .ci (4.76)

6. Witness: The witness stops the timer when the response ri is received from the
prover. The timer must show a time less than the predefined threshold 2dmax

C +
to, where dmax is the maximum allowable distance between the prover and the
witness,C is the speed of light, and tO is the overhead time required by the prover
to compute the response bit ri upon receiving ci . If all the n responses are received
in the correct time, the witness issues the following location proof and sends it to
the prover:

LP = EVeri f ier (m2‖SWitness(m2)) , (4.77)

where m2 = r‖c‖h‖e‖I DW‖Loc′ ‖time.
For timer values larger than this threshold, the witness generates the following
location proof:

LP = EVeri f ier (m3‖SWitness(m3)) , (4.78)

where m3 = I DW‖reject .
As we see, we adopt the sign-then-encrypt model to compute PASPORT mes-

sages. This protects the privacy of provers (witnesses). The reason is that if the
more common encrypt-then-sign model is chosen, a witness (prover) can check the
signature on e (on LP) with the public keys of all the users and find the prover’s
(witness’) identity. Moreover, by using this method, eavesdroppers never infer the
users’ identity.

(3) Location Proof Claim and Verification: Upon receiving LPs from all the K
witnesses, the prover concatenates them in message m4 and sends it to the verifier.
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m4 = EVeri f ier (LP1‖LP2‖ . . . ‖LPK‖a‖b) (4.79)

The verifier checks the received location proofs and either accepts or rejects the
prover’s claim. First, it decrypts eachwitness’s location proof andmessage e using its
private key. Then, it computes r

′
i = ai .c̄i + (bi ⊕ hi ).ci for i = 1, 2, 3, . . . , n regard-

ing the received a, b, c, and h. If r
′
i �= ri , the verifier rejects the prover’s claim.

Otherwise, the following checks are performed by the verifier:

• Is the witness with identity I DW among the witnesses which have been qualified
by the verifier in the Witness Selection stage?

• Are the two I DPs extracted form Req and m1 the same?
• Are prover’s and witnesses’ signatures onm1 andm2 correct regarding I D_P and

I DW s respectively?
• Is Loc in an acceptable range of Loc

′
?

• Is t ime in an acceptable range of the current time?
• Are the two a‖b s received in the messages m1 and m4 the same?
• Is K − KR ≥ T correct? Where KR is the number of rejected location proofs and
T is a threshold which is defined depending on the application.

Assuming the prover’s location claim passes all the above checks successfully,
the verifier accepts the prover’s claim.

4.5.3.5 Witness Trust Model

To further protect PASPORT against prover-witness collusions, we integrate an
entropy-based trust model into the PASPORT witness selection mechanism. Using
this trust model, the verifier computes a trust score for a witness device based on
its LP generation history. If the obtained score is above a threshold, the device is
selected to witness for a requesting prover. In fact, a witness device receives a low
score if it has issued many LPs for that prover. Thus, the prover device is prevented
from receiving its LPs from a small group of witnesses only.

We adopt an entropy-based approach to measure the trust scores. In information
theory, entropy represents the average amount of information that we get from a
message produced by a stochastic source of data. It works based on the fact that
when a low-probability message is received, it carries more information than when
the source of data produces a high-probability message. Thus, it is a suitable measure
of the level of diversity and randomness that a prover device should have in the list of
its witnesses. In other words, when a higher entropy is obtained for a witness device,
it is more likely that it has generated LPs for a diverse range of provers rather than
for a small group of prover devices.

Considerw is a witness device that has already issued at least one LP for N prover
devices p1, p2, . . . , pN . Assume A(w, pi ) is a percentage of the past LP transactions
between w and pi out of w’s total past LP transactions. The entropy of w is obtained
using the following equation.
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ew = −
N∑
i=1

A(w, pi )log(A(w, pi )) (4.80)

We define S(w, pi ) as the trust score of device w to be selected as a witness for
the prover device pi .

S(w, pi ) = ewepi
1 + B(w, pi )

, (4.81)

where B(w, pi ) is the number of LPs that w and pi have issued for each other in the
past out of their total number of LP transactions.

As a result, in the witness selection phase, the verifier selects those devices with
the highest trust score. This prevents the system from selecting a witness who may
have a connection with the prover and has already issued several LPs for the prover.
Moreover, using this model, possible prover-witness collusions can be detected and
prevented by the system because a prover device who has received majority of its
LPs from a small group of witnesses is more likely to collude with these witnesses.

4.5.3.6 PASPORT Usability

Since PASPORT has a decentralized architecture, it relies on the collaboration of
mobile users to generate location proofs for each other. Note that users usually need
to have an LP for crowded public places (e.g., shopping centers). This mitigates the
concerns about the number of available witnesses. However, mobile users may refuse
to collaborate with the system in order to save their battery power or reduce their
communication costs. To address this issue, service providers should create sufficient
incentives for mobile users to collaborate with the system and certify other users’
location. In this regard, we propose two approaches to overcome the issue.

1. Location-based service providers can incentivize mobile users to collaborate by
offering them some rewards, badges and benefits that they are currently providing
to their users. These rewards can be granted to mobile devices based on their
contribution in the network, e.g., the number of LPs that they have generated for
other users in a given time period. Moreover, other businesses such as insurance
companies and government agencies that might utilize LPs of their customers
can contribute to make the rewards more valuable. This creates the necessary
incentive for mobile users to collaborate with the system.

2. The second approach is to integrate an incentive mechanism into the proposed
scheme, e.g., using a blockchain architecture that remunerate users with a given
amount of a cryptocurrency. Since PASPORT is a decentralized scheme, the dis-
tributed architecture of blockchains is an appropriate platform to address this
issue. This encourages mobile users to collaborate with the system and respond
to other users’ LP requests.
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Thus, by applying the incentive policies on the proposed scheme and encouraging
mobile users, a sufficient number of witness devices are become available for the
verifier to select.

4.5.4 Security Analysis

In this section, we perform a comprehensive security and privacy analysis to show
that PASPORT achieves the necessary security and privacy properties of a secure
and privacy-aware LP scheme described in [153].

1. Resistance toDistance Frauds: In PASPORT, distance frauds are prevented by
the time sensitive DB process (performed in stages 2–2–d, 2–2–e and 2–2–f) which
is performed via a short-range communication interface. Moreover, the existence of
the random number h ensures us that ai �= bi ⊕ hi . Otherwise (if the witness does
not send h and the prover responds just with ri = ai .c̄i + bi .ci ), a remote malicious
prover can simply select a = b and send ri = ai = bi before it receives the challenge
bit ci (in this case ri does not depend on the challenge bit ci ). Thus, for a remote
malicious prover the only way to have his fake location verified is colluding with
a dishonest prover or witness. As we see in this section, PASPORT is resistant
to Prover-Prover collusions and reduces the success probability of Prover-Witness
collusions to a negligible value.

2. Unforgeability: It is not feasible for a malicious prover to create a location
proof himself without proving his location to a qualified witness. The reason is that
the verifier checks each qualified witness’ ID with their signature onm2. Since users
do not share their private key with each other, the malicious prover can not create
the witness’ signature on m2 even if he knows the identity of each qualified witness.
Moreover, an adversary who tries to forge another user’s location proof will not be
successful because he does not have the victim’s private key to signm1. Furthermore,
if a location proof is created by a dishonest witnessW

′
who has not been selected as

a qualified witness, it will be easily detected by the verifier by comparing the identity
of W

′
with all the qualified witnesses’ identity.

3. Non-Transferability: Suppose an adversary wants to use a location proof
which has been issued for prover P . Even if the adversary knows the prover’s ID,
i.e., I DP , he still does not have the random numbers a and b to createm4 and submit
his claim. Note that random numbers a and b have been encrypted using the verifier’s
public key. Thus, neither the adversary nor the witness can see them. Moreover, the
presence of t ime inm2 makes it infeasible for the prover device P to give its location
proof along with I DP , a and b to another device for later submissions. In this case,
the prover can not change time because it has been signed by the witness’ private
key and encrypted using the verifier’s public key.

4. Resistance to Mafia Frauds: Suppose an adversary A wants to perform a
Mafia Fraud on prover P and witnessW who are both honest. Suppose A consists of
(or is modeled by) a witness W̄ and a prover P̄ . Even if we assume that W̄ obtains
message e by communicating with P , it is not feasible for p̄ to fool W using e. The
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reason is that P̄ must successfully perform the DB process by sending response bits
ri to W . This requires the total knowledge of random numbers a and b which P
never sends them to W̄ . Moreover, A does not gain any further knowledge about
a and b by pretending to be different witnesses (for example n malicious witness
W̄1, W̄2, …, W̄n). This is because P generates different numbers a and b whenever
he/she performs P-TREAD. In other words, for different witnesses, different a‖b is
generated. Therefore, PASPORT is resistant to Mafia Frauds.

5. Resistance to Terrorist Frauds (Prover-Prover collusions): Suppose a
remote malicious prover P colludes with an adversary A which is close to an honest
witness W to obtain a fake LP. In this attack, A must send message e to W and
perform DB process on behalf of P . To perform this attack, P helps A by generating
message e and sending it to A. In addition, P has to send the random numbers a and
b to A as well. Otherwise, A can not respond to challenge bits ci in DB process and
the attack is defeated. However, if P sends a‖b to A, he can easily impersonate P
later for as many times as he wants. Therefore, the prover must select one between
performing the attack and being impersonated. In fact, in PASPORT, the cost of a
Prover-Prover collusion is increased to such a level that no rational prover accepts
its risk.

6. Resistance to Sybil Attacks: In a Sybil attack, an adversary tries to control
or influence a peer-to-peer network by creating multiple fake identities. There are
a number of countermeasures that can be adopted to make PASPORT resistant to
Sybil attacks.

1. Identity Verification: Since PASPORT is a permissioned peer-to-peer network
(rather than a permissionless network, e.g., Bitcoin), all users’ identities are ver-
ified before they are authorized to access the system. This can be supported by
forcing users to perform a two-factor authentication process when they register to
the network. For example, users may be asked to provide a security code sent to
their mobile phone or email address. In this case, the network rejects to create a
new account if a duplicate mobile phone number or email address is provided by
the adversary. This makes a Sybil attack non-economic for malicious users since
they have to provide many SIM cards or email addresses to proceed with the
attack. Alternatively, users may need to sign up using individual email addresses
or social network profiles, e.g., Facebook accounts. Furthermore, in a specific
time interval, no more than a specific number of accounts may be allowed to be
created using a single IP address.

2. Unequal Reputation: A supplementary technique to prevent Sybil attacks is to
consider different levels of reputation for different accounts. Using this technique,
witness devices associated with the accounts with an older creation date receive
more reputation and their testimony is highly accepted. Newly-created accounts
must remain active for a specific period before they become eligible to witness.
This limits the power of new accounts. Therefore, creating many new accounts
does not result in any advantage for a Sybil attacker against other older reputable
accounts.
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3. Cost to create an identity: To prevent malicious users from creating multiple
fake accounts, the network may consider a small cost for every user that wants to
join the network. In this case, the cost to create a single account is small. However,
the total cost to create many identities is higher than the reward or benefit that
the attacker receives after successfully conducting the Sybil attack. Note that it is
more important to make it expensive for an attacker to create and control multiple
accounts in a short period of time rather than just creating a new account. In
other words, considering a cost for identity creation should not restrict honest
users from joining the network. In fact, the amount of cost should be selected in
such a way that creating many accounts becomes non-economic comparing to the
benefits that the attacker receives.

7. Resistance to Witnesses Collusions: Witnesses might collude to obtain an
honest prover’s e and a‖b to impersonate P later. Since P generates different ran-
dom numbers a and b each time he/she communicates with a witness, the colluding
witnesses do not gain more information than what they could obtain without collu-
sion.

8. PreventingProver-WitnessCollusions: In PASPORT, using thewitness selec-
tion mechanism, the verifier qualifies some witnesses to generate LPs for a prover. A
list of these qualifiedwitnesses is kept and linked to the LP_I D by the verifier. Later,
in the claim verification phase, the verifier rejects those location proofs generated by
unqualified witnesses. Therefore, a malicious prover can not select a specific witness
to generate an LP for him.

Let’s consider a case in which a remote malicious prover P colludes with some
dishonest witnesses which are present at the desired location. We assume KD is the
number of these colluding witnesses who have not generated an LP for P before in
a specific period of time. Now, suppose N > KD is the total number of witnesses
who have accepted to collaborate with the system at this location (including the
dishonest witnesses) and have not generated an LP for P since a specific time. Note
that creating necessary incentives for the witnesses by the service provider can make
N a large number. In PASPORT, a location claim is accepted if there are at least
T valid (non-rejected) location proofs associated with the claim. Thus, for KD ≤ T
the attack is definitely defeated. If T ≤ KD ≤ K and x is the number of dishonest
witnesseswho have been qualified and selected by the verifier, the success probability
of a Prover-Witness collusion is obtained through the following equation:

Psuccess = P(x ≥ T )

= P(x = T ) + P(x = T + 1) + . . . + P(x = KD)

=
KD∑
j=T

P(x = j) =
∑KD

j=T

(KD

j

)(N−KD

K− j

)
(N
K

)
(4.82)

Note that themalicious prover has to colludewith thewitnesseswho are physically
present at the location. This makes it very difficult to have a large KD . However, we
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assume he can select KD ≥ K . In this case, if T = K is selected by the system, we
have:

Psuccess = P(x = T ) =
(KD

K

)
(N
K

) = KD!(N − K )!
N !(KD − K )! (4.83)

Figure4.30 shows the collusion success probability for different KD and system
parameters. Aswe see, if K ≥ 0.5N is selected, the success probability of a collusion
is always less than 0.03. In STAMP [138], a similar LP scheme, the systemwill detect
collusions with a 0.9 success rate if a malicious prover P colludes with 5% of all
the users. Note that in STAMP, P can select any user to collude with, no matter
where he/she is located. In PASPORT, if P colludes with approximately 50% of the
witnesses who are physically present at the desired location and have not generated
an LP for him before, the system can prevent this collusion with a success rate
better than 0.97. Obviously, the second situation which offers a better prevention
rate is much tougher for P to fulfill. Therefore, with carefully chosen parameters,
PASPORT provides a more reliable solution for Prover-Witness collusions than what
is proposed in STAMP.

9. Resistance to Distance Hijacking: In distance hijacking attacks, a remote
malicious prover H tries to fool an honest witness W on their mutual distance by
using the involuntary help of an honest prover P which is close to W . Suppose
H initiates the protocol by sending Req to the verifier. Upon receiving the related
LP_I D, H must broadcast his message eH through a short-range interface but he is
not physically close enough to the qualified witnesses to do so. Thus, the attack can
not proceed. Even if we assume that H broadcasts eH for the witnesses, the attack
is defeated. The reason is that in this attack it is assumed that P responds to W ’s
challenge bits in the DB process since H is remote. However, the honest prover P
is not aware of random numbers aH and bH by which H has already created eH .
Instead, P replies toW with his/her own response bits ri computed using P’s random
numbers aP and bP in the message eP . This causes W to generate the LP based on
eP other than eH . Therefore, if H uses the generated LP to submit his claim with the
verifier, this claim will be rejected since the signature on m1 (in eP ) does not match
with H ’s identity. If H sends his aH‖bH to P beforehand, the Distance Hijacking
attack converts to a Terrorist Fraud in which P colludes with the remote malicious
prover. As we discussed before, PASPORT is resistant to Terrorist Frauds as well.

10. Prover Location Privacy: The prover’s ID appears in messages Req, m1

and m4. These messages are encrypted by the verifier’s public key. Thus, the veri-
fier is the only entity who can identify the prover and neither the witnesses nor an
eavesdropper can see the prover’s ID. As we discussed before, the sign-then-encrypt
model improves PASPORT’s ability to preserve user’s location privacy.

11. Witness Location Privacy: Since a witness device encrypts its ID using the
verifier’s public key, it is not feasible for the prover or an eavesdropper to identify the
witness. Also, users’ signatures do not reveal their identity because of the employed
sign-then-encrypt model.
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Fig. 4.30 Success
probability of a
Prover-Witness collusion for
different values of KD and
system parameters
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12. Resistance to Eavesdropping: In PASPORT, the prover and witness encrypt
their messages with the verifier’s public key. Therefore, an eavesdropper gains noth-
ing by listening to their communications. Only LP_I D is sent without encryption
that has no value by itself. Moreover, obtaining message e without the total knowl-
edge of random numbers a and b does not enable an eavesdropper to impersonate
the prover later. In addition, since PASPORT provides non-transferability, an eaves-
dropper can not make a claim with an eavesdropped LP issued for another user.

4.5.5 Performance Evaluation

To study the feasibility of the proposed scheme, we implemented a Java prototype
of the proposed scheme on the Android platform. Our experiments were performed
on two Android mobile devices: (1) a LG G4–H818P equipped with a Hexa-Core
1.8 GHz processor, 3 GB of RAM, and running Android OS 5.1, acting as a prover,
and (2) a Sony Xperia Z1 equipped with a Quad-Core 2.2 GHz processor, 2 GB
of RAM, with Android OS 4.4.4, acting as a witness. We adopted Bluetooth as the
communication interface between the mobile devices and conducted the tests in both
indoor and outdoor environments. Each measurement shown in this section has been
obtained by averaging the results of 10 independent tests. We used RSA key pairs
for encryption and SHA1 as the one-way hash function to compute users’ signatures.
Since the LP verification phase is performed by the verifier server that has a high
level of storage and computational power,we focus our experiments on the P-TREAD
Execution phase that is performed by mobile devices with limited resources.

During the application runtime, we measured the CPU utilization of the imple-
mented code by installing a monitoring application that reports the amount of CPU
usage of the processes running on the device. As we see in Fig. 4.31a, the CPU usage
for a user in standby mode is almost 0.5% and independent of the key size. However,
due to heavy computations required for encryption and signature calculations in the
LP generation phases, the average CPU usage increases to 2.5%, 8%, and 19% for
key sizes 1024, 2048, and 3072, respectively.

We also recorded the amount of time that PASPORT requires to generate an LP
after the prover device receives LP_I D from the verifier. We compared the results
to the decentralized schemes STAMP and APPLAUS. Figure4.31b and c show the
results for different key sizes (in APPLAUS, the authors have not implemented their
scheme for key sizes larger than 256). As expected, longer times were recorded for
larger key sizes. The reason is that the DB phase is performed for n challenge bits.
Thus, for larger values of n, it takes longer for the DB phase to be performed. As
the figures show, PASPORT provides faster responses than similar schemes. The
reason is that in STAMP and APPLAUS, the Bussard-Bagga DB protocol is used
for provers’ proximity checking while in PASPORT, we integrate P-TREAD into
the scheme to perform this job that is a more lightweight protocol regardless of
its security advantages over the Bussard-Bagga protocol. Unlike P-TREAD, in the
Bussard-Bagga protocol, different commitment and decommitment computations are
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Fig. 4.31 a CPU usage for different key sizes. b and c Time required for LP generation in our
scheme, STAMP [138], and APPLAUS [139] under different key sizes. In APPLAUS, the authors
have not implemented their scheme for key sizes larger than 256



120 4 Personalized Privacy Protection Solutions

Fig. 4.32 a and b Time required for LP generation over different physical distances. The shown
measurements are for the key sizes 2048 for (a) and 256 for (b). c P-TREAD distance bounding
protocol takes most of the time required for LP generation
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needed to be performed by the prover and witness devices, respectively. Moreover,
STAMP requires to perform at least two commitment calculations in order to provide
location privacy. InAPPLAUS, to preserve users’ location privacy, they need to select
a set of M pseudonyms and change them periodically. This creates a high level of
computation and communication overhead.

To evaluate the impact of physical distance between the mobile users on LP gen-
eration, we conduct our experiments for different distances and compare the results
to the performance of STAMP and APPLAUS. As we see, for longer distances, the
required time for PASPORT to generate an LP increases since higher communication
latencies occurring in this case. Note that distance only affects the Bluetooth commu-
nication latency and does not change the amount of time required for computations
performed in mobile devices.

Finally, Fig. 4.32c shows what percentage of the time required for LP generation
is taken by the P-TREAD Execution phase. As we see, most of this time is taken by
the DB protocol since it requires multiple Bluetooth transmissions. As we discussed
before, this time is increased for larger key sizes. As a result, the selection of key
size has a critical impact on the scheme’s performance. Although larger key sizes
provide stronger security, they impose more computational and storage overheads.

Fig. 4.33 Outdoor path for the mobility tests (300m)
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Fig. 4.34 Time required for LP generation when multiple witness devices are involved. a Outdoor
and b indoor environments

We also performed some experiments for the scenario in which multiple witness
devices participate in the LP generation process. To evaluate the effect of device
mobility, we performed the outdoor experimentswhile the prover andwitness devices
were moving with an average speed of 1.2m/s. Figure4.33 shows the 300m outdoor
path that we used for themobility test. During themobility test, an average distance of
7mwasmaintained between the prover andwitness devices. Figure4.34a and b show
the time required by five different witness devices to generate LPs for a single prover
device in indoor and outdoor environments, respectively. We noticed an average
increase of 8% in the latency of LP generation for the indoor environment. This is
due to signal attenuations, absorptions and reflections caused by indoor elements such
aswalls, windows, and furniture.However, it does not have a significant impact on the
system performance. Therefore, PASPORT performs well in indoor environments. It
is expected that PASPORT shows a better performance if users communicate using
WiFi as it provides more coverage distance than Bluetooth.
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Chapter 5
Future Research Directions

In previous chapters, we have present the big picture of existing personalized privacy
protection solutions along with several privacy concerns and leading attacks. How-
ever, a mass of significant and prospective issues remain under-explored. The pros-
perity of machine learning, the Internet of Things, and blockchain brings appealing
opportunities for researches on personalized privacy protection while posing further
challenges in data utility upgradation in big data scenarios. Beyond this, there are
numerous other topics that desiderata consideration in personalized privacy protec-
tion, and we outline several potentially promising research directions that may be
worthy of future efforts.

5.1 Personalized Privacy-Preserving Attribute-based
Encryption

Cryptography has always been a popular and promising tool for privacy protection.
However, how to leverage cryptography-based methods to achieve personalized pri-
vacy protection is still in its infancy. Based on the authors’ review and analysis
of existing literature, we identify the feasibility of using attribute-based encryption
(ABE) to provide privacy protection in a personalized manner.

Currently, the gap between ABE and personalized privacy protection is how to
quantify the attributes of ABE, and further, how to may the quantified attributes to a
specific privacy protection level. To close the gap, it is necessary to create an attribute-
by-data matrix, in which all pre-defined attributes are the entities of each column
while each row represents a piece of encrypted data. In the matrix, the value is either
1 or 0. 1 denotes the corresponding attribute is necessary to decrypt this piece of data
while 0 means this attribute is undesired. In this way, each row is transformed into a
multi-dimensional attribute vector that can be measured and compared. Besides, to
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avoid the situation that several pieces of data require the same subset of attributes, we
put a binary-number index to denote the index vector of each piece of data before the
attribute vector and thereby obtain a unique vector for each piece of data. Similarly,
we can model an individual with several attributes as an attribute vector and compute
the cross product with each of the rows in the attribute-by-data matrix. Then, we will
keep the unchanged rows in the matrix as the personalized matrix for this individual.
The construction of an attribute-by-data matrix can achieve quantifying andmapping
simultaneously.

Using ABE to attain personalized privacy protection is a special case of access
control. This type of personalized access control is different from the current binary
access control in cryptography-based methods. It is more flexible and thereby can
meet the diverse demands of real-world privacy protection.

5.2 Personalized Privacy-Preserving Federated Learning
Using Generative Adversarial Network

In addition to cryptography-basedmethods,machine learning is playing an important
role in privacy protection. On one hand, some machine learning algorithms may
reveal sensitive information due to its predictive features. On the other hand, several
machine learning algorithms and novel paradigms are proposed to achieve privacy
protection.

One of the most popular machine learning paradigms that aim at addressing pri-
vacy issues is federated learning. It enables the protection of local data and efficient
communication simultaneously. However, the model parameters received by the cen-
tral server of federated learning can be potentially accessed by others, which may be
used to breach the local data privacy if a series of model parameters are collected.
Although homomorphic encryption is a technique that allows a central server to
operate on the ciphertext of model parameters, it highly relies on a very complicated
and powerful computing infrastructure, which is not feasible in the proposed edge
intelligence platform.

To preserve the privacy of model parameters, differential privacy (DP) and its
extensions are the mainstream methods. DP aims to provide strict privacy protection
to hide sensitive information by adding controllable noise. However, the existing
DP-based solutions hold the common assumption that the injected noise complies
with the Laplace mechanism. It usually does not hold for federated learning, in
which the generated data is too sparse to follow a specific distribution. Moreover,
the assumption of Laplace mechanism compliance has a significantly and randomly
negative impact on data utility. As a result, the direct deployment of DP to the model
parameters will drag down the performance of federated learning or even cause
a failure of convergence. It is shown that GAN could be used to generate imitative
synthetic data to potentially protect the privacy of sensitive data constrained by game
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theory. However, it cannot provide a strict privacy guarantee with solid theory, which
fails to meet the privacy requirements of edge computing.

Therefore, we plan to design a generative adversarial network (GAN) enhanced
DP scheme to achieve personalized privacy-preserving federated learningwhile guar-
anteeing high data utility. In order to develop the personalized GAN enhanced DP
algorithm, we will first investigate the feasibility of using GAN to generate differen-
tially private synthetic model parameters, for which a new perceptron is proposed,
namely, DP-Identifier. Then the DP-Identifier is designed to be part of the game
process to model the confrontation with the Generator and Discriminator, which are
two key components of a classic GAN. In this case, the Generator generates syn-
thetic model parameters while the Discriminator and DP-Identifier try to check if the
generated model parameters are not distinguishable from origin model parameters
and satisfy DP requirements simultaneously. The two correlated gaming processes
are constrained and optimized by game theory with iteration. Subsequently, the gen-
erated synthetic model parameters comply with DP requirements without the impact
of sparse data while maximizing the data utility by removing the high randomness
caused by the Laplace mechanism. Furthermore, we plan to extend the current static
game process in GAN to a dynamic one that considers the impact on the convergence
and system status caused by adversaries’ actions. The dynamic game process can be
represented by an extension of theMarkov decision process. In this way, the novel DP
mechanism can adaptively adjust the balance between privacy protection and model
parameters utility which are controlled by the DP-Identifier and the Discriminator,
respectively. The novel DP mechanism is able to protect the privacy of the model
parameters in federated learning while not dragging down the performances and
convergence speed. New cost functions and adversary models should be proposed
and optimized correspondingly.

5.3 Personalized Privacy-Preserving Blockchain-Enabled
Federated Learning

As mentioned in the previous section, personalized privacy-preserving federated
learning can be enabled using GAN. However, it still uses the traditional centralized
processing FL paradigm, which leads to single-point failure and man-in-the-middle
attacks. Besides, it faces several other challenges, such as data falsification and lack
of incentive mechanism. Therefore, we intend to devise a novel FL paradigm, in
particular, blockchain-enabled federated learning (BE-FL).

Firstly, it is essential to describe the devised consensus algorithm, namely, Proof-
of-Federated-Learning (PoFL), and how the federated learning process is interpreted
by PoFL. PoFL is the backbone of the blockchain-enabled federated learning archi-
tecture. In addition, we propose a novel personalized incentive mechanism, which
motivates the participation of consensus and federated learning tasks simultaneously.
In this paradigm, we use participants to denote the entities taking part in the training
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process in classic FL and miner to denote all the participants of the blockchain-
enabled federated learning system. To achieve higher performance, novel mecha-
nisms are deployed to select a group of local models. The miners associated with
the selected local models are defined as the training miners who are involved in both
the FL training and consensus processes. Besides, we name the miner who gener-
ates the candidate block as the aggregation miner. In the global aggregation phase,
all training miners can conduct the aggregation and broadcast their blocks contain-
ing the corresponding global parameters. Each of the training miners will select the
global parameters which are the closest to his/her own during a time threshold. After
reaching the time threshold, the block with themost-selected global parameters is the
candidate block while the associated miner is the aggregation miner of this round.

In PoFL, the mining process of classical blockchain systems corresponds to the
local model training while the block generation and propagation process correspond
to local model selection and global model aggregation in FL. The whole workflow
starts with the first-round local model training, after which trained parameters of all
local models are saved in blocks and then broadcast to the blockchain network. A
smart contract, which is forced to execute by all BE-FLminers, deploys an improved
detection algorithm of falsified local model parameters and an optimal local model
selection algorithm. The detection algorithm filters out all the falsified local model
parameters and the optimal localmodel selection algorithm identifies the localmodels
that are best for global aggregation. Then the trainingminers have the right to train the
selected local model parameters and generate a set of global model parameters with
an advanced aggregation method. The shared cost functions are used to determine
the quality of the local models, with which the local model parameters are selected
with dynamic optimization algorithms. The training miners, as mentioned above,
then generates a set of the global model parameters and storing them in a candidate
block, which is again broadcast to the blockchain network. After cross verification,
the candidate block with authenticated global model parameters will be appended on
the ledger of each miner. After a defined threshold of time or percentage of miners is
reached, the consensus process completes while the generator of the candidate block
is regarded as the aggregation miner. The aggregation miner and training miners
associated with all selected training local models are rewarded with a personalized
incentive mechanism. Meanwhile, the miners use the global model parameters and
their local data as the inputs to generate augmented synthetic data for the local training
of the new round, which can mitigate heterogeneous issues. The iteration keeps
going until the convergence of FL is reached. The personalized privacy protection is
partially enabled by blockchain and partially achieved by FL, respectively.
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5.4 Collusion Attack Resistance in Personalized Privacy
Protection

Although personalized privacy protection provides many advantageous features,
there are some emerging issues corresponding to it. One of the most severe issues is
the collusion attack. As is known to all, a collusion attack is a traditional attack in
the privacy-preserving domain. In this attack, multiple adversaries collude with each
other with background knowledge owned by themselves. In personalized privacy
protection scenarios, it becomes even risky since the published data received by each
individual may be different. The difference leads to an extra possibility of privacy
leakage.

For example, in differential privacy, personalized privacy means assigning dif-
ferent ε values to different individuals. Therefore, the published data satisfies
{ε1, ε2, ..., εn}-differential privacy. The composition mechanism, as a built-in mech-
anism in differential privacy, defines that if a ε1-differential privacy mechanism and
a ε2-differential privacy mechanism composed with each other, the ceiling of the
new mechanism satisfies by (ε1 + ε2)-differential privacy. Since a higher value of ε

means a lower privacy protection level, the composition mechanism of differential
privacy results in significant collusion attacks in personalized differential privacy.

One way to solve this issue is to update the noise generation mechanism. To deal
with real-valued scenarios, the Laplace mechanism is widely used and proves its
feasibility in real-world cases. It is possible to modify it such that the new Laplace
mechanism generates the noise complying with a Markov stochastic process. In
this way, the correlations of noise are de-coupled and therefore the composition
mechanism works in a different way. The composed mechanism of ε1-differential
privacy and ε2-differential privacy satisfiesmax(ε1, ε2)-differential privacy. This will
eliminate the incentive of the individual to collude with each other. Subsequently,
the collusion attack can be defeated. A similar methodology may apply to other
personalized privacy protection scenarios as well.

5.5 Trade-Off Optimization between Personalized Privacy
Protection and Data Utility

Personalized privacy protection provides flexible privacy protection and enables a
generalized privacy protection paradigm. However, in addition to personalized pri-
vacy protection, it is also essential to take data utility into consideration. Thus, another
promising research direction is to optimize the trade-off between personalized pri-
vacy protection and data utility.

Data utility and personalized privacy protection can be both regarded as two
key indexes of quality of service (QoS). Therefore, to achieve optimization, it is
intuitive to create a QoS-based function that considers both of them. To model the
problem, it is possible to use the Markov decision process (MDP). We can model
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the privacy protection levels as information loss, which is defined by information
theory. Then the data utility can be measured by root-mean-square-error. Actually,
all other measurements work, but we just discuss the most popular one here. Actions
in MDP can be modeled by the values of privacy protection level, for example, the
values of ε of differential privacy or the granularity of published data. States in MDP
can be denoted by the published data of the current time slot and the attack response
from the previous time slot. The rewards are then formulated as the data utility.
By establishing a state transmission matrix, the MDP can dynamically optimize the
trade-off considering the overall rewards of future time slots. Besides, there are other
optimization methods, for instance, convex optimization, genetic algorithms, etc.



Chapter 6
Summary and Outlook

In this book, we summarize the latest work on personalized privacy protection in
terms of information technology. Personalized privacy protection is still in its infancy.
The theories, algorithms, and other conceptual designs surveyed in this book could be
a starting point for forthcoming researchers and readers to probe this under-explored
domain. We aim to offer a systematic summary of existing research and application
outputs on personalized privacy protection, which also testifies the theoretical and
practical applicability in diverse big data scenarios. We also subsequently present a
couple of potentially promising directions, with whichwe expect to assist in avoiding
superfluous efforts from subsequent interested explorers.

In general, an abundant volume of literature has been reviewed and analysed to
show the current research and application status of personalized privacy protection
solutions. We describe and compare the primary privacy concerns and attacks, some
of which remain a bottleneck to personalized privacy protection. In particular, we
have discussed the personalized privacy protection in cyber physical systems, social
networks, smart homes, and location-based services. However, the proposed models
are generalized models and able to be applied in more extensive scenarios.

We also include several mainstream theories for personalized privacy protection,
including differential privacy, machine learning, game theory, and anonymity and
clustering-based methods, and correspondingly explained and articulated while their
feasibility has been demonstrated when fitting into various real-world practices.

Based on the existing research and results, we further discuss several future
research directions, which are personalized privacy-preserving attribute-based
encryption, personalized privacy-preserving federated learning using generative
adversarial network, personalized privacy-preserving blockchain-enabled federated
learning, collusion attack resistance in personalized privacy protection, and trade-off
optimization between personalized privacy protection and data utility.

As aforementioned, privacy protection in the digital space is a new research
domain. We have far more questions than answers, we definitely will counter many
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unprecedented problems, and many unknown of unknowns. Based on our study, we
would like to share some big pictures with energetic young researcher as below.

First of all, we believe privacy protection needs the effort from multiple disci-
plines, for example, psychology, social science, law, information technology, and so
on. It is certain that computer science herself cannot solve the privacy problem alone.
According to the logic of science, we need firstly measure privacy, then represent
privacy using mathematical models, and then confirm the ideas and conclusions by
theoretical or experimental proof. Up to date, we do not have an effective way to
get the first step done, namely measuring privacy. Similar to other soft concepts like
happiness, madness, privacy is hard to measure. Issac Newton complained that “I can
calculate themovement of stars, but not themadness ofmen”, after 300 years, we still
not face the similar difficulty. At the other hand, we see the dramatic development
of all disciplines in the science family, we believe the light is on the horizon for us,
but we do need to master multiple necessary skill sets to complete the mission.

Cross discipline research looks beautiful, but not easy to carry out. The Science
magazine had a statistics several years ago, the result showed that among the research
papers published on Science in the last 100 years, nearly 70% papers are cross
disciplinary work. This result demonstrates that cross disciplinary study is powerful
in research. However, our experience and the literature also show that it is hard to
execute it. In general, a few coffees at the campus may generate some idea among
colleagues from different discipline, but when we execute it, it is extremely hard as
we speak different “languages”. Strong leadership and financial support maybe the
key for these kinds of collaboration. A common suggestion is we need to learn the
skills of the other disciplines rather than bringing problems to the other party and
waiting for solutions.

Secondly, theoretical tools for privacy is desperately needed, and it is a promis-
ing target for related communities. So far, differential privacy is the only new tool
invented for privacy (we treat cryptography as the tool for secrecy sharing, not for
privacy). However, differential privacy was invented for privacy protection in statis-
tical information retrieval, which is only a very small part of the landscape of digital
privacy. There are two possibilities on this issue.

• We extend the existing tools to deal with the new problems of privacy, e.g., upgrade
cryptographic tools to fulfill the tasks of privacy preserving in big data publishing.
The traditional symmetric and asymmetric encryption tools were designed to share
a secret between two pairs (one-to-one communication), and the attribute-based
encryption was developed to share a secret among a small group (one-to-many
communication, we note the many here is a small number). However, in big data
publishing, we release the data for anyone whowants to access under the condition
of protecting the privacy of the data owners (one-to-any communication). So far
cryptography cannot offer a suitable solution for it.

• Invent new tools. The invention of new tools is the result of application demands.
We believe the research community will develop new tools for digital privacy as
the demands are in place. It is a tough job, and also an exciting goal for hard
working and talented people.
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This small book is the short summary of our work in the recent years, and also
the first step of our research group. We hope our shallow effort can attract interested
readers to explore the promising landwith us in both academia and industry domains.

We hope you enjoy reading the book, and sincerely looking forward to have your
feedback, comments, suggestions and your work in the field.


	Preface
	Contents
	1 Introduction
	1.1 Privacy Research Landscape
	1.2 Personalized Privacy Overview
	1.3 Contribution of This Book
	1.4 Book Overview

	2 Existing Privacy Protection Solutions
	2.1 Preliminary of Privacy Study
	2.2 Anonymity Based and Clustering Based Methods
	2.3 Differential Privacy Methods
	2.4 Cryptography Based Methods
	2.5 Machine Learning and AI Methods
	References

	3 Leading Attacks in Privacy Protection Domain
	3.1 Major Privacy Concerns
	3.1.1 Identity Privacy
	3.1.2 Anonymization Versus De-Anonymization
	3.1.3 Location Privacy
	3.1.4 Content Oriented Privacy (CO Privacy)
	3.1.5 Interest Privacy
	3.1.6 Backward Privacy and Forward Privacy (B&G Privacy)

	3.2 Leading Privacy Breaching Attacks
	3.2.1 Background Knowledge Attack
	3.2.2 Collusion Attack
	3.2.3 Linkage Attack
	3.2.4 Structural Attack
	3.2.5 Forgery Attack
	3.2.6 Eavesdropping Attack
	3.2.7 Sybil Attack

	References

	4 Personalized Privacy Protection Solutions
	4.1 Personalized Privacy in Cyber Physical Systems
	4.1.1 Literature Review
	4.1.2 Customizable Privacy Protection Modelling
	4.1.3 Adversaries and Attacks Modelling
	4.1.4 System Analysis
	4.1.5 Performance Evaluation
	4.1.6 Summary

	4.2 Personalized Privacy in Social Networks Using Differential Privacy
	4.2.1 Literature Review
	4.2.2 Preliminaries
	4.2.3 The Proposed DBLP2 Mechanism
	4.2.4 System Analysis
	4.2.5 Performance Evaluation

	4.3 Personalized Privacy in Social Networks Using Anonymity Based Methods
	4.3.1 Literature Review
	4.3.2 Preliminaries
	4.3.3 DC-Net Drawbacks
	4.3.4 The Short Stability Issue
	4.3.5 HSDC-Net: Secure Anonymous Messaging in Online Social Networks
	4.3.6 Security Analysis
	4.3.7 Performance Evaluation

	4.4 Personalized Privacy in Smart Homes
	4.4.1 Literature Review
	4.4.2 Smart Home Modeling Based on Fog Computing and Differential Privacy
	4.4.3 Personalized Differential Privacy Scheme
	4.4.4 Collusion Attack Under Differential Privacy
	4.4.5 APDP Model
	4.4.6 Performance Evaluation

	4.5 Personalized Privacy in Location-Based Services
	4.5.1 Literature Review
	4.5.2 Preliminaries
	4.5.3 PASPORT: The Proposed Scheme
	4.5.4 Security Analysis
	4.5.5 Performance Evaluation

	References

	5 Future Research Directions
	5.1 Personalized Privacy-Preserving Attribute-based Encryption
	5.2 Personalized Privacy-Preserving Federated Learning Using Generative Adversarial Network
	5.3 Personalized Privacy-Preserving Blockchain-Enabled Federated Learning
	5.4 Collusion Attack Resistance in Personalized Privacy Protection
	5.5 Trade-Off Optimization between Personalized Privacy Protection and Data Utility

	6 Summary and Outlook



