
Chapter 13
Heavy Metal Resistance in Prokaryotes:
Mechanism and Application

Armine Margaryan, Hovik Panosyan, and Nils-Kåre Birkeland

Abstract Metal-rich natural and artificial habitats are extreme environments for the
development and evolution of unique microbial communities, which have adapted to
the toxic levels of the metals. Diverse bacterial groups have developed abilities to
deal with the toxic metals by bioaccumulation of the metal ions inside the cell
actively or passively, extracellular precipitation, efflux of heavy metals outside to
the microbial cell surface, biotransformation of toxic metals to less toxic forms, and
metal adsorption on the cell wall. Metalophilic microbes are found in all bacterial
and archaeal groups studied, but mostly appear among aerobic and facultative
anaerobic chemoheterotrophic and chemolithoautotrophic microorganisms of the
Bacillus, Pseudomonas, Staphylococcus, Actinobacteria, Cuprividus,
Acidobacterium, Acidithiobacillus, Thiobacillus, Ferroplasma, and Sulfolobus gen-
era. The phenomenon of microbial heavy metal resistance has fundamental impor-
tance and is particularly relevant in microbial ecology, especially in connection with
the roles of microbes in biogeochemical cycling of heavy metals and in the biore-
mediation of metal-contaminated environments. The heavy metal resistance mech-
anisms and different applications of metal resistant/metalophilic bacteria and archaea
have been expounded deeply in this chapter.
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13.1 Heavy Metals and Its Toxicity on Microbes

There is no widely agreed criterion-based definition of a heavy metal. In metallurgy,
a heavy metal may be defined on the basis of density, in physics the differentiating
criterion might be atomic number, and in chemistry or biology the distinguishing
criteria could be atomic mass (Hawkes 1997; Ali and Khan 2018; Meija et al. 2016).
Based on density definition, the heavy metals are those elements that have a density
above 5 g/cm3 (Nies 1999). Based on atomic number definition, heavy metals are
those elements which atomic number greater than 20 (Ca), sometimes this is capped
at 92 (U). Definitions based on atomic number have been criticized for including
metals with low densities. Atomic mass definitions can range: it reserved those
elements with an atomic mass greater than Na (atomic mass 22.98), greater than
50 (Ni (58.69), Cu (63.54), Mo (95.95), etc.) or more than 200 (e.g., Hg (200), TI
(204), Pb (207), Bi (209), and the Th series) (Baldwin and Marshall 1999; Ali and
Khan 2018; Pourret and Hursthouse 2019).

Correspondingly, the list of heavy metals according to different definitions will
include different elements. Of the 90 natural elements, 21 are non-metals, 16 are
light metals, and the remaining 53 (including As) are heavy metals (Ali and Khan
2018).

Most heavy metals are transition elements with incompletely filled d orbitals.
These d orbitals provide heavy metal cations with the ability to form complex
compounds which may or may not be redox-active. Thus, the heavy metal cations
which play an important role as micronutrients in the vital processes of microorgan-
isms or other living organisms are essential metals. For example, Mo(II), Fe(II), Cu
(II), Mn(II), Zn(II), Ni(II), and Co(II) are involved in the catalytic acceleration of
biochemical processes. They can serve as cofactors or be part of enzymes such as
nitrogenases, superoxide dismutases, dehydrogenases, cytochrome oxidases, ure-
ases, etc. (Ehrlich 1997a; Nies 1999). Cu(II) and Ni(II) are involved in bacterial
cell’s redox processes (Nies 1999). Zn(II) ions stabilize the structure of DNA and
proteins of the bacterial cell wall, since they have redox stability at certain pH and Eh
values of biological media (Nies 1999). A significant number of bacteria and archaea
are able to use ions of certain metals (Fe(III), Mn(II), Cr(VI), etc.) and metalloids as
donors or acceptors of electrons in energy metabolism (Ehrlich 1997a). Thus, many
archaeal and bacterial species have the ability to derive energy from the reduction of
a variety of metals. Archaeal species Archaeoglobus fulgidus, Pyrococcus furiosus,
and bacterial speciesDesulforomonas, Desulfovibrio are capable of reducing Fe(III),
and two Pyrobaculum sp. can effectively grow respiring Fe(III) (Vargas et al. 1998;
Feinberg et al. 2008; Kashefi et al. 2008). At least one archaeal species,
Pyrobaculum arsenaticum, can use arsenate as a terminal electron acceptor for
growth (Oremland and Stolz 2005).

Nickel is another important requirement for methanogens: it is required for
methanogenesis in Methanobacterium strains (Hartzell et al. 1988) and in the
methanogenic archaea Methanobrevibacter smithii and M. barkeri for incorporation
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into cofactor, a yellow chromophore found in the methylreductase of
Methanobacterium (Diekert et al. 1981; Ellefson et al. 1982).

Tungsten and molybdenum have similar chemical properties. Molybdenum is a
trace metal required by virtually every species, and tungsten can replace molybde-
num in some instances (Kletzin and Adams 1996). Tungsten is an essential trace
metal for hyperthermophile archaea P. furiosus, as it involves in aldehyde oxidore-
ductases activity. Thermococcus litoralis uses another tungsten-containing enzyme,
FOR (Dhawan et al. 2000). Several bacterial species, including strains of Pseudo-
monas, Chloroflexus, Thiobacillus, Alcaligenes, and Thermus genera and archaea
Pyrobaculum arsenaticum, P. aerophilum can generate energy either by oxidation or
reduction of specific arsenic oxyanions (Ben Fekih et al. 2018).

Some heavy metal ions, for example Cd(II), Pb(II), Sn(II), Hg(II), and Ag(I), do
not have vital biological significance for microorganisms, besides form strong toxic
complexes, which makes them too dangerous for any physiological function (Bruins
et al. 2000). These heavy metals can also show more specific forms of chemical
attack through mimicry. In this regard the toxic metals may act as mimics of essential
metals, binding to physiological sites that normally are reserved for an essential
element. Through mimicry, the toxic metals may gain access to, and potentially
disrupt, a variety of important or even critical metal-mediated cellular functions
(Cousins et al. 2006; Kasprzak 2002). In the Fig. 13.1 is presented the diagram
showing the heavy metal’s classification based on their toxicity.

At high concentrations, all heavy metals (both those that are essential and those
that do not have biological significance) are toxic to microbes and other organisms
(Nies 1999). Toxicity of heavy metals is manifested in detrimental effects on
microorganisms, such as changes in the conformational structures of nucleic acids
and proteins, in violation of redox processes and in maintaining the osmotic balance
(Ehrlich 1997a; Nies 1999; Igiri et al. 2018). Cd, Hg, Ag ions tend to connect within
the cell with sulfhydryl groups, inhibiting the activity of sensitive enzymes. The
cations of some metals can replace physiologically significant ions in biomolecules,
thereby violating their functions. Ni and Co ions can displace Fe, Zn—Mg ions, Cd
and Zn ions—Ca ions (Ehrlich 1997a; Nies 1999). Heavy metal cations can combine
with glutathione groups of gram-negative bacteria, forming a bisglutathione com-
plex, which tends to interact with molecular oxygen to form oxidized glutathione
(GS-SG) (Kachur et al. 1998). The latter can be reduced in NADPH-dependent
reactions, and as a result, the formed metal cations bind other glutathione molecules,

Essential

Cu, Zn, Co, Ni, Cr, 
Mn, Fe, Mo, V, W

Non-essential

Ba, Li, Zr, Rb, 
Sr, Cs, T

Less toxic

Sn, Al

Essential

Cu, Zn, Co, Ni, Cr,
Mn, Fe, Mo, V, W

Non-essential

Ba, Li, Zr, Rb,
Sr, Cs, T

Less toxic

Sn, Al

Highly toxic

Pb, Hg, Cd, Ag, Au, Ti, 
metalloids Ge, Sb, As

Heavy metals

Fig. 13.1 Classification of heavy metals based on their biological role and effects
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thereby causing oxidative stress. Oxygen-containing anions of some heavy metals
and metalloids can be involved in the metabolism of structurally similar anions of
vital elements, such as S and P. For example, a chromate ion can affect the
metabolism of a sulfate ion, arsenate—a metabolism of phosphate (Nies 1999;
White and Gadd 2000). Cd and Pb pose deleterious effect on microbes, damage
cell membranes, and destroy the structure of DNA. This harmfulness is generated by
the displacement of metals from their native binding sites or ligand interactions.

Arsenic is a metalloid that occurs naturally in the environments mainly in tow
forms: the trivalent species (As(III)), commonly as the oxyanion arsenite (AsO2

�),
and the pentavalent species (As(V)), or arsenate (AsO4

3�). Arsenite is more toxic
than arsenate as it is able to bind strongly to sulfhydryl groups in proteins and weakly
to thiol groups, such as those in glutathione, lipoic acid, and cysteine. The primary
toxic effects of arsenate arise from its transformation to arsenite, besides arsenate has
ability to compete with phosphate oxyanions for both transport and energetics
functions (Ben Fekih et al. 2018).

The morphology, metabolism, and growth of microbes are affected by changing
the nucleic acid structure, causing functional disturbance, disrupting cell mem-
branes, inhibiting enzyme activity, and oxidative phosphorylation (Fig. 13.2)
(Ahemad 2012; Igiri et al. 2018).

Cr(VI) is usually present as the oxyanion chromate and based on its high
oxidizing potential, considered as the most toxic form of chromium. Toxic effects
of chromate for bacteria are associated with its structural similarity to sulfate
(SO4

2�). The CrO4
2� crosses the cell membrane in some species via the sulfate

transport system and cases an oxidative damage to biomolecules. Cr(VI) does not
interact directly with DNA, hence its genotoxicity is attributed to its intracellular
reduction to Cr(III) via reactive intermediates. The resulting types of DNA damage
that are produced can be grouped into two categories: (1) oxidative DNA damage

Protein Denaturation
(Hg, Pb, Cd)

Microorganism
Inhibition of Cell Division

(Hg, Pb, Cd, Ni, Cr)
Cell Membrane Disruption

(Hg, Pb, Zn, Cd, Ni, Cu)

Inhibition of Enzyme Activity
(Hg, Pb, Zn, Cd, Ni, Cu, As)

Transcription Inhibition 

DNA        mRNA        Protein synthesis

DNA Damage     Transcription Inhibition
(Hg, Pb, Cd, As, Cr)           (Hg, Pb, Cd)

Growth Inhibition 
(Cr, Zn, Se, Ag)

Oxidative Stress 
(Cr, Ni, Cd)

Fig. 13.2 Heavy metal toxicity mechanisms to microorganisms
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and (2) Cr(III)-DNA interactions (Cervantes and Campos-García 2007; Díaz-
Magaña et al. 2009; Luo et al. 2019).

13.2 Microbial Heavy Metal Transporters

To have any physiological or toxic effect, most heavy metal ions should enter the
microbial cell. Microorganisms have two main types of transport systems for heavy
metal ions. The first type of transport system is fast, nonspecific, which is expressed
constitutively and is controlled through the cytoplasmic membrane of bacteria by the
proton gradient (pmf—proton motive force) (Silver 1996; Sar et al. 1998; Nies
1999). The second type is a substrate-specific slow transport, often requiring ATP
as an energy source in addition to the proton gradient (Table 13.1). This “energet-
ically expensive” type of transport system is inducible and is used by the cell in
certain metabolic states, for example, in a state of hunger (Nies 2003, 2007; Nies and
Silver 1995).

ATP-binding cassette (ABC) transporters are a major category of membrane-
associated bacterial protein structures involved in the transport of a wide range of
substrates including heavy metals. For example, Ni can be absorbed by the NikA-E
transport system (ABC family transporter), which consists of five components
(NikA periplasmic Ni-binding protein, NikB and NikC transmembrane pores for
passage of Ni, NikD and NikE ions hydrolyze ATP and use energy to ion transport
Ni(II)). The NikA protein can also bind Co, Cu, and Fe ions, but with a tenfold low
affinity (Eitinger and Mandrand-Berthelot 2000; Mulrooney and Hausinger 2003).
In different microbes, the Znu transport system of the ABC family absorbs Zn ions
and has a similar structure to the Nik transporter.

Heavy metal ions like Ni, Co, Zn, and Mn can be accumulated also in gram-
negative bacteria and archaea by the fast and nonspecific CorA system (metal
inorganic transporter of the MIT family) (Smith and Maguire 1995; Hynninen
2010). In B. subtilis, Mg, Ni, Mn, Co, and Zn ions can be absorbed by the metal
citrate transport protein CitM and CitH (Hantke 2001; Krom et al. 2000).

The fast ion transport along the concentration gradient is an important factor
contributing to the toxicity of heavy metals. When cells are exposed to high
concentrations of heavy metals, which can accumulate through nonspecific transport
systems, the “passage” into the cytoplasm can remain open, even at “toxicologically
dangerous” concentrations of metals in the cytoplasm, since this process is consti-
tutive (Nies 1999). Despite heavy metal toxicity, microbes possessing different
metal resistance strategies, such as detoxification, metal absorption, uptake and
accumulation, extracellular precipitation, efflux of heavy metals from the cells.
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13.3 Heavy Metal Resistance in Prokaryotes

Heavy metal ions cannot undergo degradation or significant modification like toxic
organic compounds in the environment. Microbes, leaving in the heavy metal-
polluted environment, develop different mechanisms to tolerate toxic concentrations
of the metals (Nies 2007). Microbes can have one or a combination of several
different strategies of metal resistance (Bruins et al. 2000; Nies and Silver 1995).

In bacteria, all existing mechanisms that allow surviving in the presence of toxic
concentrations of heavy metals in the medium can be attributed to several main
types. This is an active release of metal from the cell, restriction of metal intake due
to changes in cell permeability, intracellular metal binding and detoxification,
extracellular binding, enzymatic metal detoxification into a less toxic form and a
decrease in the metal sensitivity of cellular components (Fig. 13.3) (Nies and Silver
1995; Nies 2007; Bruins et al. 2000; Ahemad 2015).

Among the Archaea, thermophiles and hyperthermophiles of the Crenarchaeota
and the methanogens and thermophiles of Euryarchaeota utilize P-type ATPases and

Fig. 13.3 Various bacterial interactions with heavy metals in metal-polluted soil. Biosorption:
Precipitation/crystallization of metals occurs due to bacteria-mediated reactions or as a result of the
production of specific metabolites. Bioaccumulation: Plasmid-DNA-encoded efflux transporters
(e.g., ATPase pumps or chemiosmotic ion/proton pumps) expel the accumulated metals outside the
cell. Bioprecipitation: Metals bind to the anionic functional groups (e.g., sulfhydryl, carboxyl,
hydroxyl, sulfonate, amine, and amide groups) of extracellular materials present on cell surfaces.
Bioleaching: Organic acids secreted by bacteria solubilize the insoluble metal minerals. Biotrans-
formation: Some bacteria utilize methylation as an alternative for metal resistance/detoxification
mechanism, which involves the transfer of methyl groups to metals and metalloids
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ABC transporters for metal transport and homeostasis (Coombs and Barkay 2005;
Bartolucci et al. 2013).

13.3.1 Active Transport of Heavy Metals

Microbes use active transport mechanisms to efflux toxic metals from the cytoplasm.
Metals that do not have physiological significance usually enter into the cell through
transport systems designed for the necessary cations, but then quickly get out of the
cell by efflux pumps (Ehrlich 1997a). It was found that active ion efflux systems can
be either ATP-independent or using ATP energy (see Table 13.1). All of them are
highly specific for cations or anions that are exported from the cell (Nies and Silver
1995; Hynninen 2010). A large number of varieties of this mechanism of metal
resistance in bacteria and archaea are described (Table 13.1). Three families of
transport systems are mainly involved in the export of heavy metal ions from the
cell: a three-component transmembrane transporter in Gram-negative bacteria is
Capsule biogenesis/assembly (CBA) family transporter, which acts as a
chemosmotic antiport; cation diffusion facilitator (CDF), which acts as a
chemosmotic ion-proton exchanger and P-type ATPase located in the inner mem-
brane and using ATP energy to export metal ions from the cytoplasm to periplasm
(Fig. 13.4) (Hynninen 2010; Nies 2003, 2007; Grass et al. 2001).

13.3.2 CBA Family Transporters

CBA family transporters are a three-component protein complex that span the whole
cell wall of Gram-negative bacteria and expel ions from cyto- and periplasm to

Fig. 13.4 The main transporter families that determine bacterial heavy metal resistance. P-type
ATPases pump their substrates from cytoplasm to periplasm using energy provided by ATP
hydrolysis. CBA transporters are three-component complexes in Gram-negative bacteria that efflux
ions from cyto- and periplasm to outside using a chemiosmotic gradient. CDF transporters are
driven by a proton motive force and they export ions from cytoplasm to periplasm (Hynninen 2010)
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outside using a chemiosmotic gradient. The most important component of the
transporter is the intramembrane protein RND (resistance, nodulation, and division),
which was first described as a bacterial transport protein involved in the resistance
processes of heavy metals in R. metallidurans, nodulation of Mesorhizobium loti,
and cell division of E. coli (Nies 2003).

An example of the RND family transporter is the Czc system for the active export
of Cd(II), Zn(II), Co(II) cations from a bacterial cell. The Czc system is described
and studied in detail in the facultative chemolithoautotrophic bacteria Alcaligenes
eutrophus CH34. The Czc system is regulated by a proton concentration gradient
across the inner membrane and is ATP-independent (Silver 1996; Collard et al.
1994; Diels et al. 1995). The Czc system consists of three main parts (Fig. 13.5)
(Rosen 2002; Anton et al. 1999).

13.3.3 CDF Family Transporters

The cation diffusion facilitators (CDFs) are a family of membrane-bound proteins
that maintain cellular homeostasis of essential metal ions. Proteins of the secondary
cationic CDF transporter catalyzing the efflux of heavy metals and were found in

Cytoplasm

Periplasm

A

B

C

E

D

Fig. 13.5 Structural models of CBA and CDF families pumps. (a) Czc, functioning as a proton/
cation antiport, consisting of intramembrane (CzcA), extramembrane (CzcC) and integral (CzcB)
proteins, (b) CzcD, transporting Cd, Zn and Co ions in B. subtilis, (c) CusABC, and (d) CnrABC /
NccABC are similar in structure and function to the CzcABC system, (e) ZitB is similar to the CzcD
system (modified from Aguilar-Barajas et al. 2010)
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both prokaryotes and eukaryotes. All proteins of the CDF family are substrate-
specific. The main substrate for CDF transporters is Zn(II) ions, but Co(II), Ni(II),
Cd(II), and Fe(II) can also initiate transporter. The CDF system is regulated by a
proton concentration gradient, ΔΨ, ΔpH, or K(I) concentration gradient (Nies 2007;
Guffanti et al. 2002; Paulsen and Saier 1997).

CDF coding genes were found in the chromosomes of a number of microorgan-
isms, but protein functionality has been characterized only in few microbes. In
B. subtilis, czcD genes are located in the operon along with trikA dehydrogenase
gene (Nies 2003). The czcD-trkA operon is complementary to the K(I) transport
system in E. coli (Guffanti et al. 2002). CzcD was first described in bacteria
Ralstonia metallidurans CH34 as a regulator of czcABC gene expression, but
CzcD (Fig. 13.5) can also participate in the transport of Cd(II), Zn(II), Co(II) in
the absence of the CzcABC system (Anton et al. 1999; Nies 2003; Scherer and Nies
2009; von Rozycki and Nies 2009).

In B. subtilis, CzcD is regulated by a K(I) concentration gradient and leads to the
emission of Cd(II), Zn(II) and Co(II) (Guffanti et al. 2002). In E. coli cells, the CzcD
system is regulated by a proton concentration gradient and leads to the emission of
Zn(II) and Cd(II) ions, but not Co(II) (Nies 2003; Paulsen and Saier 1997).

In E. coli, the ZitB protein (product of the ybgR gene) of the CDF family has also
been described, which determines resistance to Zn ions, reducing ion accumulation
(Fig. 13.5) (Grass et al. 2001).

In Staphylococcus aureus, CzcD determines resistance to Zn(II) and Co(II), in
Thermus thermophilus determines resistance to Zn(II) and Cd(II). CDF proteins can
also export Pb ions (Spada et al. 2002; Xiong and Jayaswal 1998).

13.3.4 P-Type ATPase Family Transporters

P-type ATPase is a family of transport protein that exports ions against a concen-
tration gradient using ATP. It is highly substrate-specific. The substrates are Na, K,
Mg, Ca, Cu, Ag, Zn, Cd, Co, and Pb cations. Heavy metal-transporting ATPases
have a metal-binding domain (MBD) and are described in both gram-positive and
gram-negative bacteria. Prototype of P-type ATPase is ZntA system for active efflux
of Zn(II), Cd(II), and Pb(II) from E. coli cell (Fig. 13.6) and CadA for active efflux of
Cd(II) from S. aureus cell (Fig. 13.6).

CadA consists with six domains located in the membrane, four of which are
involved in translocation of cations, and a conservative Cys-Pro-Cys tripeptide. Two
intracellular domains common to all P-type ATPases are aspartyl kinase and phos-
phatase domain. During metal transport, ATP phosphorylates the protein, probably
at the location of the invariant aspartic acid (Asp 415). Phosphorylation occurs only
in the presence of Cd ions (Tsai et al. 1992). The transport system CadA was also
found in the bacteria Bacillus subtilis, Pseudomonas metallidurans, Cupriavidus
metallidurans, Synechocystis sp. etc. (Lee et al. 2001; Scherer and Nies 2009).
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PbrA system, the member of P-type ATPase, actively removes Pb ions from the
cytoplasm of the bacterium Cupriavidus metallidurans (Fig. 13.6). The structure and
function of the protein PbrA is similar to the CadA and ZntA. PbrB lipoprotein is
located on the outer membrane, which probably transports Pb ions from periplasm to
the environment (Aguilar-Barajas et al. 2010).

In Enterobacter hirae have been found the CopA and CopB system of the P-type
ATPase family, which are for Cu(II) transport. CopA determines the absorption of
Cu ions, and CopB efflux of Cu ions from the cytoplasm. The synthesis of the both
proteins is regulated by operon genes (Fig. 13.6) (Argüello et al. 2013). The
promoter region of the operon is controlled by the CopY repressor, regulated by
Cu ions. CopZ protein, together with Cu ions, activates the promoter. The binding of
copper to CopZ leads to the formation of the complex, which attached to CopY, as a
result the operon, is activated (Rademacher and Masepohl 2012).

Homologous systems have been described in Pseudomonas syringae,
Xanthomonas campestris, and E. coli (Cooksey 1994). In the copper metabolism
of P. syringae, two regulatory copRS genes and four structural copABCD genes were

Cytoplasm

Periplasm

ATP

ATP ATP

ADP

ADP
ADP

ATP ADP

ADP

ATP

A

B C

D

E

Fig. 13.6 Transport systems of metals—P-type ATPases: (a) CopABCD copper transport system;
(b) CopA ATPase P-type transformation of Cu(I) into Cu(II); (c) CadA ATPase of the P-type,
removal of Cd, Zn, and Pb ions from the cytoplasm; (d) CopA system of absorption of Cu(II) and
CopB of Cu(II) export in E. hirae cells; (e) PbrA ATPase P-type removal of Pb ions from the
cytoplasm; ZntA ATPase P-type removal of Zn, Cd and Pb ions from the cytoplasm (modified from
Aguilar-Barajas et al. 2010)
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found, while in X. campestris and E. coli, the corresponding genes are called pcoRS
and pcoABCD. The copR and copS genes are located immediately after the copper
tolerance operon (copABCD) on the pPT23D plasmid and transcribed as an operon
from two genes of the same constitutive promoter (Mills et al. 1994; Rademacher
and Masepohl 2012) (Fig. 13.6).

The product of copS gene is the copper-sensitive CopS protein, which located in
the inner membrane. The product of copR gene is the regulatory protein CopR,
which located in the cytoplasm. With an increased periplasmic concentration of Cu
(II), CopR transphosphorylates the CopS protein and activates transcription of the
cop operon (Rademacher and Masepohl 2012; Mills et al. 1994).

The plasmid operon copABCD in the bacterium Pseudomonas syringae is one of
the first described copper resistance systems in bacteria. The copABCD operon
encodes a system that prevents the penetration of copper into the cell cytoplasm.
CopA and CopC are periplasmic proteins that bind copper. The proteins CopA and
CopC able to bind 11 and 1 copper atoms, respectively, on the same polypeptide
(Aguilar-Barajas et al. 2010). The activation of transporters leads to the accumula-
tion of copper in the periplasmic space, which protects the cell from the toxic effect
of the ion. CopA also exhibits oxidase activity, transforming Cu(I) into Cu(II),
thereby protecting the periplasmic enzymes from the toxic effect of copper (Argüello
et al. 2013).

CopC is probably a chaperone protein that transports Cu ions to the integral CopD
protein. CopD consists of eight transmembrane segments and transports copper both
into the cytoplasm and from the cytoplasm to the periplasm. CopB is an outer
membrane protein that absorbs copper (Aguilar-Barajas et al. 2010).

P-type ATPase has been found in 17 archaea species, by screening the databases
from TIGR, NCBI, DOE, and TCDB. In all analyzed archaea species contained 1–3
metal ATPases, which belong to six different phylogenetic TC (Transport Classifi-
cation) clusters. The proteins belonging to these clusters export (more rarely import),
a variety of monovalent or divalent metals (copper, zinc, lead, cadmium, or silver)
(De Hertogh et al. 2004). Only three transmembrane motifs for metal-transporting
ATPases identified in archaea, which correspond to the group IB-1 (Cu(I)/Ag(I)),
group IB-2 (Zn(II)/Cd(II)/Pb(II)), and group IB-3 (Cu(II)/Cu(I)/Ag(I)) motifs
(Argüello et al. 2003).

Two metal-transporting ATPase genes CopA and CopB from the thermophilic
archae Archaeoglobus fulgidus were cloned in E. coli, purified, and their ATPase
activity were biochemically characterized (Mana-Capelli et al. 2003; Mandal and
Argüello 2003). The thermophilic ATPase activity of CopAwas best activated by the
monovalent metals Ag(I) and Cu(I) while CopBwas activated by the divalent Cu(II).

ATPases along with the ABC transporters, transcriptional regulators, and certain
metallochaperones were found to be involved in metal resistance and homeostasis in
the haloarchaeon Halobacterium sp. strain NRC-1 (Kaur et al. 2006). The list of
archaea P-type ATPases are shown in the Table 13.2.
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13.3.5 Limitation of Metal Intake Due to Changes in Cell
Permeability

When a cell is exposed to concentrations of heavy metals in the environment, the
microbe may undergo structural changes in the cell wall, membrane, and cytoplas-
mic membrane. These processes are not always the result of the toxic effects of the
metals. They can be a manifestation of induced defense mechanisms that limit the
flow of toxic ions into the cell cytoplasm (Bruins et al. 2000; Ehrlich 1997a).

The first sites of cell and heavy metal interaction are at the cell surface. The
bacterial cytoplasmic membrane, and to a lesser extent the outer membrane in Gram-
negative bacteria, are a major barrier to the entry of hydrophilic substances, includ-
ing metal ions, into the interior of the cell. In Gram-negative bacteria, like E. coli, the
outer membrane contains protein channels called porins, that allow low-molecular-
weight substances such as metal ions to diffuse across the membrane into the
periplasmic space. In E. coli synthesis of the major porin can be prevented by

Table 13.2 The list of archaeal P-Type ATPases (De Hertogh et al. 2004)

Microorganism Substrate Function TC typical organism

Aeropyrum pernix Zn(II), Cd(II), Pb(II) Efflux Bacteria; plants; fungi; protozoa

Archaeoglobus
fulgidus

Cu(I)/Ag(I) Efflux Archaea (CopA), Bacteria

Ferroplasma
acidarmanus

Cu(II) Uptake Bacteria

Halobacterium sp. Cu(II) Uptake Bacteria

Zn(II), Cd(II), Pb(II),
Cu(I)/Ag(I)

Efflux Bacteria; plants; fungi; protozoa,
archaea (CopA)

Methanosarcina
acetivorans

Cu(I), Ag(I), Zn
(II) Cd2C-, Pb2C

Efflux Bacteria; plants; fungi; protozoa

Methanosarcina
barkeri

Mg(II)/Ni(II), Cu(I),
Ag(I), Zn(II), Cd(II),
Pb(II)

Efflux Archaea, eukaryotes (Wilson’s
disease), Bacteria; plants; fungi;
protozoa

Methanosarcina
mazei

Cu(I), Ag(I) Efflux Eukaryotes (Wilson’s disease),
Bacteria

Methanobact.
thermoautotrophicum

Cu(I), Ag(I), Zn(II),
Cd(II), Pb(II)

Efflux Archaea (CopA), Bacteria; plants;
fungi; protozoa

Pyrobaculum
aerophilum,
Pyrococcus furiosus,
Sulfolobus
solfataricus,
Sulfolobus tokodaii,
Thermoplasma
acidophilum,
Thermotoga
maritima,
Thermoplasma
volcanium

Cu(I)/Ag(I) Efflux Archaea (CopA)
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mutations in a single gene resulting in increased metal resistance. The outer mem-
brane can also act as a limited (i.e., saturable) trap for heavy metals by
nonspecifically binding them, therefore contributing to the natural metal tolerance
of cells (Rouch et al. 1995).

An unusual mechanism of metal resistance is found in Pseudomonas syringae,
which accumulate blue Cu(II) ions in the periplasmic space and outer membrane. At
least part of this copper sequestering activity is determined by copper-binding
periplasmic CopA protein products of the copper resistance operon (cop). Copper
resistance operons related to cop have been described in the related plant pathogen
Xanthomonas campestris and in E. coli, but these resistance systems may differ
functionally from the P. syringae system (Cooksey 1994).

A significant advantage for survival in environments contaminated with heavy
metals is reducing bioavailability or mobility of heavy metal ions by the released
exopolysaccharide (EPS). Anionic property of EPS allows the biopolymer to effec-
tively sequester positively charged heavy metal ions and restricts the entry of metal
ions into the cell. The anionic property of EPS imparts by abundant active and
ionisable functional groups and non-carbohydrate substituents like phosphodiester
(techoic acid), phosphate, hydroxyl groups, or acetamido group of chitin, structural
polysaccharides of fungi. On contrary to homopolysaccharides, extracellular
heteropolysaccharides are often polyanionic due to association of some of such
functional groups with polysaccharide backbone. The sorption and immobilization
again occurs via different mechanisms like ion exchange, complexation, precipita-
tion, etc. (Gupta and Diwan 2017). As an example can be serve Ochrobactrum
anthropi, isolated from activated sludge. This bacteria producing the most EPS for
the removal of Cr(VI), Cd(II) and Cu(II) (Ozdemir et al. 2003).

Staphylococcus xylosus and Staphylococcus carnosus strains were characterized
by production of surface-exposed chimeric two different polyhistidyl peptides, His3-
Glu-His3 and His6 due to the expression of recombinant plasmid genes designed for
binding to divalent metal ions. As a result, the entry of Cd ions and other toxic metals
into the cell is limited, which suggests that such bacteria could find use in bioreme-
diation of heavy metals (Samuelson et al. 2000).

It has been shown, that EPS synthesized by Arthrobacter viscosus accumulate 2.3
times more Cd(II) than an equivalent weight of intact cells and have 13.7 times the
sorptive capacity of Arthrobacter globiformis cells, which do not produce EPS
(Hrynkiewicz et al. 2015).

Numerous halophilic bacteria and archaea can also tolerate high concentrations of
heavy metals by secrete EPS. Halomonas strains can tolerate high concentrations of
Pb(II) and Cd(II) (5 mM) by the EPS-mediated adsorption of the metallic ions
(Voica et al. 2016). Dry biomass of the haloarchaeon Halobacterium sp. GUSF
was an effective adsorbent for Mn(II) from saline solutions, the process of adsorp-
tion involving cell surface carboxyl, amino, phosphate and hydroxyl groups (Naik
and Furtado 2014). The high EPS-producing halotolerant cyanobacterium
Aphanothece halophytica grown at 6% NaCl (w/v) was capable of accelerated Zn
(II) adsorption up to a critical cell density that may result in aggregation, reducing
the matrix surface available for metal binding (Incharoensakdi and Kitjaharn 2002).
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13.3.6 Intracellular Binding of Toxic Metals and Their
Detoxification

The accumulation of metal in the cytoplasm and its detoxification can occur due to
the binding of toxic ions to specific proteins, like low-weight cysteine-rich proteins
and peptides. A variety of metal-binding peptides like glutathione (GSH) and pro-
teins like metallothioneins and phytochelatins produced by certain microbes like
Cyanobacterium synococcus, Synechococcus sp., E. coli, P. putida (Gupta and
Diwan 2017; Bruins et al. 2000; Silver 1996).

Citrobacter sp., isolated from metal-polluted soil can resist Cd(II) toxicity by
forming insoluble complexes of Cd-phosphate (CdHPO4); this transformation is
mediated by a cell-bound phosphatase that precipitates inorganic phosphate with
heavy metals. A strain of Pseudomonas putida isolated from sewage can sequester
intracellular Cd(II) by producing three low-molecular-weight cysteine-rich proteins
related to eukaryotic metallothioneins, while K. aerogenes excretes sulfur into the
surrounding environment to immobilize Cd(II) ions as insoluble Cd-sulfide
(Hrynkiewicz et al. 2015). The ability to intracellularly accumulate lead phosphate
in the form of granules was exhibited by the P. aeruginosa (Naik et al. 2012). For
Mycobacterium scrofulaceum, the ability to intracellular accumulation of Cu(II) in
the form of sulfide was found (Bruins et al. 2000).

Cyanobacteria at toxic concentrations of free Cu ions in the medium produce
extracellular chelating ligands that bind to Cu(II) ions, reducing their bioavailability.
In Synechococcus spp., a ubiquitous and important group of phytoplankton, synthe-
sis of chelating ligands is regulated by the concentration of free Cu(II) ions in the
medium according to the feedback mechanism (Moffett and Brand 1996).

In some cases, the formation of metal precipitating anions may result from normal
cellular metabolism, such as the formation of sulfides under anaerobic conditions by
sulfate-reducing bacteria of the genus Desulphovibrio. In other cases, the process is
inducible under certain environmental conditions, for example, the formation of
sulfides by bacteria of the genus Clostridium (Karnachuk et al. 2003).

Metallothioneins and phytochelatins are not represented in archaeal genomes,
however members of the CutA family of metal-binding proteins are found in
archaea, bacteria, and eukaryotes. The crystal structure of the Pyrococcus horikoshii
CutA has been determined with and without copper, contributing to the clarification
of the protein’s function. In fact, binding of heavy metals induced the reversible
multimerization of CutA. Thus, a role has been proposed for CutA in the capture and
precipitation of metal ions. Interestingly, while the metal-binding site of the E. coli
homolog contains Cys and His residues, these amino acids are absent in the
Pyrococcus protein (Bini 2010).
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13.3.7 Reduction of Heavy Metal Ions and Enzymatic
Detoxification

Bacteria and Archaea are reducing a broad spectrum of heavy metal ions: chromate,
molybdate, vanadate, iron, etc. (Table 13.3). Some bacteria and archaea can use
metals and metalloids as electron donors or acceptors for energy generation. Metals
in the oxidized form could serve as terminal acceptors of electrons during anaerobic
respiration.

The most studied example of the manifestation of the metal resistance mechanism
in bacteria associated with the process of intracellular enzymatic metal detoxification
is the Hg ion resistance system (Nies 1999). Stability is due to the functioning of the
operon and was revealed both in gram-positive (S. aureus, Bacillus sp.) and gram-
negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens,
Thiobacillus ferrooxidans) (Bruins et al. 2000). As a result of the expression of the
genes that make up the mer operon, Hg(II) in two stages is reduced to metallic
mercury, which then diffuses through the cell membrane and is released into the
environment (Fig. 13.7). Due to the volatility of metallic mercury, its content in the
medium can rapidly decrease (Silver 1996).

In Alcaligenes faecalis bacteria, the mechanisms of enzymatic oxidation of As
(III) compounds present in the form of AsO2 to As(V) compounds in the form of
AsO4, which are less toxic, have been studied and described (Anderson et al. 2003).

Microorganisms have developed, or acquired, various genetic systems to cope
with arsenic toxicity. These systems include the ars operons, groups of genes widely

Table 13.3 Reduction of metals and metalloids by different microorganisms (modified from
Ianeva 2009)

Reduction
process Microorganism

Hg(II)/Hg(0) Bacillus cereus, Klebsiella pneumonia, P. stutzeri

Fe(III)/Fe(II) Geobacter sp., G. metallireducens, Bacillus thermoamylovorans,
Ferroplasma spp., Thermoplasma spp.

Cr(VI)/Cr(III) Desulfomicrobium norvegicum, Microbacterium sp., Ochrobacterium
intermedium, Brevibacterium sp., Pseudomonas spp.

As(V)/As(III) S. aureus

U(VI)/U(IV) Desulfovibrio desulfuricans, Shewanella putrefaciens, Thermoterrabacterium
ferrireducens, Metallosphaera prunae, M. sedula

Mn(IV)/Mn(II) Shewanella putrefaciens

Se(VI)/Se(IV)/
Se(0)
Se(IV)/Se(0)

R. metallidurans, B. thermoamylovorans,
Shewanella oneidensis

V(V)/V(IV) S. oneidensis, G. metallireducens

Tc(VII)/Tc(IV) Geobacter sulfurreducens, S. putrefaciens

Mo(VI)/Mo(V) Thiobacillus ferrooxidans

Au(III)/Au(0) Stenotrophomonas sp.

Te(IV)/Te(0) B. thermoamylovorans, S. oneidensis
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distributed in bacterial and archaeal species. ars operons frequently occur in most
prokaryotic genomes, and it has been stressed that they are more common than genes
for tryptophan biosynthesis. This operon first has been found in the plasmid pI258 in
the clinical bacteria Staphylococcus aureus. The plasmid pI258 was found to encode
multiple resistances to antibiotics, arsenate, arsenite and other heavy metal deriva-
tives (Ben Fekih et al. 2018; Novick and Roth 1968). Arsenic resistance genes have
identified in R773 plasmid in Escherichia coli strain isolated from a patient with a
urinary tract infection (Hedges and Baumberg 1973). The nucleotide sequence of the
determinants from the E. coli R773 plasmid identified the arsRDABC operon
involved in the arsenic resistance phenotype, and staphylococcal plasmids pI258
and pSX267 both contained similar, but simpler arsRBC operons encoding proteins
with homology to those encoded by R773 (Ben Fekih et al. 2018). The distribution
of ars operon genes in bacteria and archaea are presented in the Table 13.4.

Nearly every organism has resistance pathways for inorganic arsenic. The min-
imal constituents are usually an As(III)-responsive repressor (ArsR), and an As(III)
efflux permease (ArsB or ACR3) that functions to extrude trivalent As(III) from
cells. The As(III)-stimulated ATPase (ArsA), and the As(III) metallochaperone
(ArsD), which are always associated in ars operons, appears to be later adaptations
that enhances the ability of ArsB to extrude As(III) and increase resistance. ArsC and
other arsenate reductases are required for resistance to arsenate (Yang and Rosen
2016; Ben Fekih et al. 2018). Recently, a parallel pathway for organic arsenicals has
been identified. The ars genes responsible for the organo-arsenical detoxification
include arsM, which encodes an As(III) S-adenosylmethionine methyltransferase,
arsI, which encodes a CeAs bond lyase, and arsH, which encodes a methylarsenite
oxidase (Fig. 13.8).

Pentavalent inorganic arsenate (As(V)) is reduced by the ArsC arsenate reductase
to trivalent arsenite (As(III)). Some microbes encode As(III) S-adenosylmethionine
methyltransferases ArsM protein, that transform As(III) into the considerably more
toxic (for humans, carcinogenic) organo-arsenical MAs(III). Other microbes can

Cytoplasm

NADH

NAD+

Fig. 13.7 Mechanism of detoxification by the Hg(II) Mer system (Aguilar-Barajas et al. 2010)
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produce the ArsI C-As lyase, a dioxygenase that cleaves off the methyl group,
forming inorganic As(III). Since As(III) is less toxic than MAs(III), this reaction
detoxifies the organo-arsenical product. Other bacteria have the ArsH NADPHFMN
oxidoreductase that oxidizes MAs(III) to relatively nontoxic pentavalent MAs(V),
also a detoxification process (Yang and Rosen 2016). The protein structure of the
ArsC (from S. aureus), ArsM (from Cyanidioschyzon sp.), ArsI (from T. curvata)
and ArsH (from S. meliloti), presented in the illustration, were used from Protein
Data Bank (https://www.rcsb.org/).

Outer example of the heavy metal detoxification is hexavalent chromate reduc-
tion. Bacterial developed the mechanisms for reduction of Cr(VI) to the Cr(III)
species and efflux of chromate from cell cytoplasm. Several chromate reductases
have been identified in diverse bacterial species (Table 13.5). Most characterized
enzymes belong to the NAD(P)H-dependent flavoprotein family of reductases.

Candidatus “Methanoperedens” independently utilizes chromate as electron
acceptor to form Cr(III) compounds, or it can oxidizes methane to generate inter-
mediates or electrons, which will be utilized to reduce chromate to Cr(III) com-
pounds by unknown chromate reducers synergistically (Luo et al. 2019).

Efflux of chromate by the ChrA membrane transporter, a plasmid-encoded
protein, has been demonstrated in Pseudomonas and Cupriavidus species
(Fig. 13.9). Chromate efflux by ChrA consists of an energy-dependent process
driven by the membrane potential. The CHR protein family, which includes putative
ChrA homologs, currently contains about 135 sequences from all three domains of
life. Other mechanisms of bacterial resistance to chromate involve the expression of
components of the machinery for repair of DNA damage as well as free-radical
scavenging enzymes (Cervantes and Campos-García 2007; Díaz-Magaña et al.
2009).

Fig. 13.8 Enzymes of
organo-arsenical production
and detoxification
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13.4 Application and Prospects of Heavy Metal Resistant
Microbes

Accumulation of high concentrations of heavy metals in environments can cause
many human health risks and serious ecological problems. The ability of microor-
ganisms to adsorb heavy metals or change the forms of their presence in the
environment attracts wide attention of researchers in connection with the possibility
of biotechnological use of heavy metal resistant bacteria or archaea for wastewater
treatment, bioremediation of contaminated environments, as well as in
biogeotechnology of metals (Volesky 1994; Gadd 2005; White and Gadd 2000).

Table 13.5 The sours and properties several chromate-reducing enzymes (Pradhan et al. 2016;
Singh et al. 2015)

Organism Enzyme (function) Substrates

P. ambigua G-l Chr (chromate and
nitroreductase)

Chromate, nitro-compounds

P. putida Chr (chromate and
quinoneductase)

Quinones, chromate, 2,6-Dichloroindo phe-
nol, potassium Ferricyanide

E. coli YieF, ChrA (chromate
and quinone)

Quinones, chromate, 2,6-Dichloroindo phe-
nol, potassium Ferricyanide, V(V), Mo(VI)

NfsA (chromate and
nitroreductase)

Chromate, nitro-compounds

NemA (chromate
reductase)

Chromate

E. coli K12 ChrR (quinoneductase) Quinones

T. scotoductus
SA-01

Chr (chromate reductase) Chromate

Rhodobacter
sphaeroides

Chr (chromate reductase) Chromate

ApcA (chromate and
azoreductase)

Chromate, chromate bitrate, TNT

Vibrio harveyi NfsB (nitroreductase) Nitrofurazone, Trinitroluene, chromate

Gluconobacter
hansenii

Gh-ChrR (chromate
reductase)

Chromate uranyl

B. subtilis YcnD (FMN reductase) Chromate, Nitroaromatic compounds,
Quinones

Desulfovibrio
vulgaris

Cytochrome c3 (periplas-
mic c type cytochrome)

Chromate

D. desulfuricans Thioredoxin
oxidoreductase

Chromate, Mo, U, Se, Te

D. alaskensis

Desulfuromonas
acetoxidans

Cytochrome c7 (periplas-
mic c type cytochrome)

Chromate

Acidiphilium
cryptum

ApcA (chromate and
azoreductase)

Chromate, chromate bitrate, TNT

Methanobacterium
sp.

FMN reductase Chromate
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Bioremediation using microorganisms is receiving much attention due to their
good performance and employed in order to transform toxic heavy metals into a less
harmful state (Ndeddy Aka and Babalola 2016; Akcil et al. 2015) or using microbial
enzymes to clean-up polluted environment (Okoduwa et al. 2017). The technique is
environmentally friendly and cost effective in the revitalization of the environment
(Turpeinen et al. 2004; Ma et al. 2016). In the Table 13.6 showed a number of
microbes which can be used for removing metal ions from solutions. However,
bioremediation of heavy metals has limitations. Among these are production of toxic
metabolites by microbes and non-biodegradability of heavy metals.

Bioremediation of the environment from toxic metal can be achieved by
biosorption ability of the microbes. Biosorption is the group of all processes, during
which alive or dead microbial biomass removes heavy metals or other pollutants
from solutions (Gavrilescu 2004). Biosorption occurring with the participation of
microorganisms may be conducted by surface adsorption concerning the gathering
of metals on the cell surface and linking them with extracellular polymers, such as
exopolysaccharide (EPS). EPS released out of self-defense against harsh conditions
of starvation, pH and temperature, hence it displays exemplary physiological,
rheological and physiochemical properties. The ionic nature of metals, its size and
charge density in turn regulates its interaction with negatively charged EPS (Gupta
and Diwan 2017). In the Table 13.7 is given some microbial EPS involved in heavy
metal remediation.

It is often when biosorption occurs as the first phase of the following intracellular
accumulation and the process of surface adsorption occurring very fast—during
several minutes may have a dominant role in metal linking or may lead to high metal
accumulation in the middle of the cell in a longer time (Gavrilescu 2004).

The practical application of biosorption to the removal or the recovery of heavy
metals is mainly the result of the reversibility of this process. Desorption allows the
recovery of metals (which is profitable in the case of more valuable heavy metals like

Fig. 13.9 Schematic diagram of Cr(VI) transport into bacterial cell, its reduction pathways, and
efflux (modified from Pradhan et al. 2016)
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Table 13.6 Remediation of heavy metal by microorganisms (modified from Igiri et al. 2018)

Bioremediator Metals
Metal ion
concentration (mg/L)

Sorption
efficiency (%)

Acinetobacter sp. Cr 16 87

Sporosarcina saromensis (M52) 50 82.5

Bacillus cereus 1500 81

B. cereus (immobilized) 1500 96

B. circulans MN1 1100 71.4

B. cereus plus 0.5 glucose 1 78

B. cereus 1 72

Bacillus sp. SFC 25 80

50 43

B. subtilis 057 99.6

Desulfovibrio desulfuricans (KCTC 5768)
(immobilize on zeolite)

200
100
50

56.1
99.8
99.6

Staphylococcus sp. 4.108 45

Bacillus sp. (B2) 50–37.06
200–81.5

74.1
40.75

Bacillus sp. (B4) 50–36.57 73.14

Bacillus sp. (B9) 50–30.75
100–60
200–78.7

61.5
60
39.39

Bacillus sp. (B2) 100–42.15 42.15

Bacillus sp. (B4) 100–73.41
200–97.76

73.41
48.88

Micrococcus sp. 100 90

Acinetobacter sp. B9 (MTCC10506) 7
15
16
30

93.7
81
78
67

Streptomyces sp. 6.42 72

Immobilized B. subtilis 570–2 99.6

Bacillus subtilis 570–2 99.6

Immobilized P. aeruginosa 570–4 99.3

Pseudomonas aeruginosa 570–2 99.6

Stenotrophomonas sp. 16.59 81.27

Spirulina sp. 5 98.3

Acinetobacter sp. + Arthrobacter sp. 16 78

P. aeruginosa + B. subtilis 570–2 99/5

Pseudomonas aeruginosa Hg 150 29.83

Vibrio parahaemolyticus (PG02) 5
10

90
80

Bacillus licheniformis 0.1 73

Vibrio fluvialis 0.25 60

Klebsiella pneumonia 100 28.65

(continued)
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Table 13.6 (continued)

Bioremediator Metals
Metal ion
concentration (mg/L)

Sorption
efficiency (%)

Cellulosimicrobium sp. (KX710177) Pb 50
100
200
300

99.33
96.98
84.62
62.28

Gemella sp. 0.3 55.16 � 0.06

Micrococcus sp. 0.3 36.55 � 0.01

Pseudomonas sp. 1 87.9

Staphylococcus sp. 0.183 82.6

Streptomyces sp. 0.286 32.5

B. iodinium 100–1.8 87

Desulfovibrio desulfuricans (KCTC 5768)
(immobilize on zeolite)

Cu 50
100
200

97.4
98.2
78.7

Staphylococcus sp. 1.536 42

Streptomyces sp. 1.129 18

Enterobacter cloacae 100 20

Desulfovibrio desulfuricans (immobilize on
zeolite)

100 98.2

Flavobacterium sp. 1.194 20.3

Arthrobacter strain D9 0.05 22

Enterobacter cloaceae 100 65

Micrococcus sp. 0.3 38.64 � 0.06

Gemella sp. 0.3 50.99 � 0.01

Pseudomonas sp. 1 41

Flavobacterium sp. 0.161 25

A. faecalis (GP06) 100–19.2 70

Pseudomonas aeruginosa (CH07) 100–17.4 75

Desulfovibrio desulfuricans (immobilize on
zeolite)

Ni 50
100
200

90.3
90.1
90.1

Micrococcus sp. 50 55

Pseudomonas sp. 1 53

Acinetobacter sp. B9 51 68.94

Enterobacter cloacae Co 100 8

Bacillus firmus Zn – 61.8

Pseudomonas sp. 1 49.8

Aeratedmicrobial sediment fuel cells
(A-SMFCs)

Cr
Cu
Ni

– 80.7
72.72
80.37

Non-aerated microbial sediment fuel cells
(NA-SMFCs)

Cr
Cu
Ni

– 67.36
59.36
52.74
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Table 13.7 Heavy metal remediation by microbial EPS

EPS-producing
microbes

Metal ion
removed Remarks Reference

Hyphomonas
MHS-3,
Hyphomonas sp.

Cu(II), Hg(II),
Pb(II), Cd(II),
Zn(II)

Adsorbent system was effective over
wide range of pH (1–11) and temper-
ature range (0–200 �C). The marine
strains were able to remove the metal
ions from an initial concentration of
50–100 ppb to US EPAa drinking
water standards

Chmurny et al.
(1998)

Arthrobacter
viscosus

Cr(VI) Devised for industrial applications for
hexavalent chromium removal,
through the retention of metal ions in
the biofilms, in solutions with concen-
trations between 50 and 250 mg/L

Tavares and
Neves (2008)

Ochrobactrum
anthropi

Cr(VI), Cd
(II), Cu(II)

57.8 mg Cr(VI)/g EPS at initial metal
load of 280 ppm, 26 mg Cu(II)/g EPS
at initial metal load of 91.6 ppm

Ozdemir et al.
(2003)

Acetobacter Fe(III), Cu
(II), Mn(II),
Zn(II), Co(II)

90% reduction from initial metal load
of 0.1 mmol/dm3 (Fe(III) > Cu
(II) > Mn(II) > Zn(II); Co(II))

Oshima et al.
(2008)

Bacillus firmus Pb(II), Zn(II),
Co(II)

1103 mg Pb(II)/g EPS (98.3%,),
860 mg Cu(II)/g EPS (74.9%)

Salehizadeh and
Shojaosadati
(2003)

Methylobacterium
organophilum

Pb(II), Cu(II) 21% Cu(II),18% Pb(II) removal from
0.04 ppm initial metal load

Kim et al.
(1996)

Herminiimonas
arsenicoxydans

Arsenic Up to 5 mmol/L metal ion uptake Marchal et al.
(2010)

Halomonas sp. Trace metals Metal analysis of the purified EPS
revealed that it contained high levels
of K, Ca, Mg and several essential
trace metals, including Zn, Cu, Fe and
the metalloid Si
Capacity to sequester trace metals and
mediate their bioavailability to
eukaryotic phytoplankton

Gutierrez et al.
(2012)

Shewanella
oneidensis

Cd(II) 80% Cd(II) removal Ha et al. (2010)

Azotobacter
chroococcum

Pb(II), Hg(II) 40.48% Pb(II)(33.5 mg Pb(II)/g of
EPS); 47.87% Hg(II) (38.9 mg of Hg
(II)/g EPS)

Rasulov et al.
(2013)

Cupriavidus
pauculus

Cd(II), Ni(II),
Cu(II), Co(II)

The tolerance levels of C. pauculus
1490 to Cd(II), Ni(II), Cu(II) and Co
(II) were 300 mg/L, 400 mg/L,
400 mg/L and 400 mg/L, respectively.
EPS yield reaching
956.12 � 10.59 mg/g(DW) at 100 mg/
L

Zeng et al.
(2020)

Anabaena
spiroides

Mn(II) 8.52 mg Mn(II)/g EPS Freire-Nordi
et al. (2005)

(continued)
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gold, copper, and zinc) or their removal (Wang and Chen 2009). As the biosorbents
can be:

• Biomass of microorganisms is the secondary product in the sewage or pharma-
ceutical industry and in sewage treatment processes;

• Microorganisms from cultured and proliferated on a special base indicating the
ability to efficiently metals;

• Sorbents of vegetable or animal origin (as nutshells, crust-rich tannins, sea plants,
humus, moss peat, etc.).

The direct use of microorganisms with distinctive features of catabolic potential
and/or their products such as enzymes and bio surfactant is a novel approach to
enhance and boost their remediation efficacy (Le et al. 2017; Schenk et al. 2012).
Different alternatives have also been anticipated to widen the applications of micro-
biological techniques toward the remediation of heavy metals. For instance, the use
of microbial fuel cell to degrade recalcitrant heavy metals has been explored. Biofilm
mediated bioremediation can be applied for cleaning up of heavy metal-
contaminated environment.

High bioremediation potential and feasibility of the microbial detoxification of
arsenic by reduction, oxidation, and methylation process, make bacteria an
impending foundation for green chemistry to exterminate arsenic in the environment
(Sher and Rehman 2019).

Many microorganisms are capable of precipitating metal ions. The method of
precipitation of metals in the form of sulfides is based on the ability of sulfate-
reducing bacteria (Desulfovibrio, Desulfotomaculum, Desulfomonas, Desulfobacter,
Desulfobulbus, Desulfococcus, Desulfosarcina, Desulfonema) to form H2S, which
precipitates metals from solutions almost completely. Thus, from solutions
containing 8.6 g/L Cu, the extraction of Cu was 98.5%. Toxic metals can also
precipitate during their recovery. For example, chromium-reducing bacteria under
anaerobic conditions reduce Cr(VI) to Cr(III), which is precipitated (Cervantes and
Campos-García 2007).

Soil microorganisms, including plant growth promoting bacteria, through toxic
metal stress evading mechanisms, can be used as bioinoculant or biofertilizers,
which substantially improve the growth of plants implanted in heavy

Table 13.7 (continued)

EPS-producing
microbes

Metal ion
removed Remarks Reference

Gloeocapsa
gelatinosa

Pb(II) 82.22 _ 4.82 mg Pb(II)/g CPS Raungsomboon
et al. (2006)

Calothrix
marchica

65 mg Pb(II)/g CPS Ruangsomboon
et al. (2007)

Cyanospira
capsulata

Cu(II) 115 mg Cu(II)/g EPS at 12.3 ppm ini-
tial metal load

De Philippis
et al. (2007)

Nostoc PCC7936 85.0 � 3.2 mg Cu(II)/g EPS at
12.3 ppm initial metal load

Sharma et al.
(2008)
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metal-contaminated soils by lowering the metal toxicity (Madhaiyan et al. 2007;
Wani and Khan 2010; Khan et al. 2012). In addition, there are other mechanisms of
plant growth promotion by bacteria e.g., they protect colonizing plants from the
pathogens attack directly by inhibiting/killing pathogens through the production of
antibiotics, hydrogen cyanide, and phenazines, etc. (Saravanakumar et al. 2007;
Cazorla et al. 2007).

Metalophilic bacteria and archaea play an important role in the process of
leaching of metals from ores, concentrates, rocks and solutions, thus they are widely
used in biogeometallurgy. In the Table 13.8 showed chemolithotrophic bacteria that
oxidize Fe(II), S(II), S, and sulfide minerals important for biohydrometallurgy (Sand
et al. 1992; Ehrlich 1997b; Vardanyan and Vardanyan 2018).

Many prokaryotes, including archaea, are capable of transforming the oxidation
state of metals in processes leading to either their solubilization or biomineralization.
Although these phenomena have been observed in the environment and studied in
cultures, there is still much to be learned about the genetic determinants of these
metal transformations.
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Table 13.8 Microorganisms important for biohydrometallurgy

Microbes Energy source Optimum growth condition Reference

Bacteria

Acidithiobacillus
ferrooxidans

Sulfide minerals, S, S
(II), Fe(II), FeS2

pH 1.7–2.0 (1.0–5.5);
30–35 �C (2–40 �C); O2

Quatrini and
Johnson (2019)

Leptospirillum
ferrooxidans

Fe(II), FeS2 pH 2.0–2.5 (1.0–4.0);
30–45 �C (2–50 �C); O2

Sand et al.
(1992)

A. thiooxidans S, S(II) pH 2.0–2.5 (0.5–6.0); 30 �C
(2–40 �C); O2

Yang et al.
(2019)

A. caldus S, S(II)
Fe(II), S, S(II), sulfide
minerals

pH 2.0–2.5 (0.5–6.0); 45 �C
(30–52 �C); O2

Chen et al.
(2012)

Sulfobacillus
thermosulfidooxidans,
S. acidophilus

pH 1.7–2.4 (1.1–5.0);
48–50 �C (20–60 �C); O2

Norris et al.
(1996)

Archaea

Acidianus brierleyi S, S(II), Fe(II) pH 1.5–2.0; 70 �C
(45–75 �C); O2

Segerer et al.
(1986)

Metallosphaera
sedula

pH 1.0–4.5; 75 �C
(50–80 �C); O2

Huber et al.
(1989)

Sulfolobus metallicus S, sulfide minerals, Fe
(II)
FeS2

pH 1.0–4.5; (50–75 �C); O2 Huber and
Stetter (1991)

Ferroplasma
acidiphilum

pH 1.7–1.8 (1.3–2.2); 35 �C
(15–45 �C); O2

Golyshina et al.
(2000)
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