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Abstract. The application of monolithic/un-doped/single-phase ceramics has
been limited due to their difficulty in sintering and low fracture toughness. Ceramic
matrix composites have gained predominant attention in the past decades in com-
parison tomonolithic/un-doped/single phase ceramics, this is as a result of the high
fracture toughness, good wear resistance, and high hardness that they (ceramic
matrix composite) possess. Also, the use of sintering additives in collaboration
with the application of modern consolidation viz spark plasma sintering (SPS) has
gained high prominence to nullify these challenges faced by ceramics. Although,
previous review has highlighted the use of diverse techniques (hot press, hot iso-
static, pressureless sintering, and SPS) on the consolidation of ceramics and its
composites. Amidst all these techniques, SPS has stood to be an effective pow-
der metallurgy route for achieving good microstructure and excellent mechanical
properties. This review takes a research on the effects of nitrides based sinter-
ing additives on the microstructure, densification, and mechanical properties of
titanium carbides ceramic matrix by SPS. The review finally concludes on the
potential research importance on the types of sintering additives inclusion that
should be in further research processes for improvement in material properties of
titanium carbides.
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1 Introduction

Titanium carbide usually demonstrates metallic and ceramic-like features, with a typical
crystal structure as depicted in Fig. 1. It has lately grown high interest as a result of its
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combined unique properties viz significant elastic modulus (~400 GPa), high melting
point (3,160 °C), high hardness, high oxidation resistance, excellent wear-resistance,
low thermal expansion, high electrical conductivity, and considerable chemical stabil-
ity [1–5]. These outstanding properties have made Titanium carbide a high potential
material for elevated temperature applications including wear-resistance coatings, cor-
rosion resistance parts, impact- barrier armors, ceramic cutting tools, crucibles, etc.,
[4–6]. Although monolithically, the sinterability of titanium carbide is challenging in
achieving the desired results. These challenges of titanium carbide are due to the solid
covalent bond, low self-diffusion coefficient, and oxide layers which are mostly B2O3
and TiO2 [4, 5, 7, 8]. Therefore, consolidation of monolithic TiC with enhanced den-
sification required an elevated sintering temperature greater than 2000 °C with high
pressure. These sintering parameters usually resulted in uncontrolled grain growth, poor
microstructure, and inefficient mechanical properties [6, 8].

To nullify the aforementioned challenges, sintering additive and/or sintering aid
are usually applied to lower the sintering temperature [9, 10]. B4C, TiSi2, Si3Ni4, TiC,
MoSi2,WC, TaC, AlN, SiC are examples of non-metallic sintering aids/additives that are
being added to ceramicmatrix composite to inhibit grain growth and reduce consolidation
temperature [11–13]. Additionally, applying metallic additives viz Co, Ni, Fe, Mo also
enhances the sinterability and fracture toughness of the manufactured ceramic materials
this is attributed to the toughening stimulationmechanismand the creation of liquid phase
[12–15]. The improvement of combined fracture toughness, hardness, modulus strength
with enhanced performance and densification are prompted by the use of ceramic matrix
composites (CMC). CMC also ensures that sintering temperatures are lowered compared
to undoped ceramics which usually involves the use of high temperatures for sintering
[16–18]. As a substitute route, spark plasma sintering (SPS) is an important method for
the consolidation of ceramics, SPS enables the production of fine microstructure which
consequently improves mechanical properties, these attributes were as a result of its
fast heating and short holding time in comparison with conventional sintering viz, hot
pressing, hot isostatic pressing, flash sintering, etc. [19–21]. In the SPS technique, the
ceramics materials are introduced in the graphite die, then using a pulsed electric current
under an externally applied pressure, the sintering process is accomplished [23, 24]. This
article gives a critical review on TiC reinforced with sintering additives consolidated by
SPS. An observation will be carried out on how nitride-based material additives have
had an influence on the densification, microstructure, and mechanical properties of a
TiC ceramic-based matrix.

1.1 Limitations and Challenges of TiC

Difficulty in densification as a result of poor sinterability and high covalent nature of
TiC has created some challenges in sintering it, Monolithic application of TiC is limited
owning to poor fracture toughness, brittle-like nature, and poor thermal shock resistance
[25–30]. Hence, the use of sintering additive in addition to the use of modern techniques
of sintering has been observed to minimize these challenges [30–33].
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Fig. 1. A crystal structure of TiC [34].

2 Effects of Sintering Additives

Various sintering additives have different influences on the sinterability, microstruc-
ture, densification, and mechanical properties of various ceramic materials. The types,
quantity, and proper dissipation of these sintering additives go a long way in achieving
enhanced properties of the ceramic matrix composites. More also, the individual proper-
ties of the sintering additives which are reinforced in the ceramic matrix contribute to the
whole properties of the sintered ceramic matrix composites. Some sintering additives
have depreciating or enhancing effects on the overall properties of c ceramic matrix
composite which are largely attributed to the properties of the reinforcing additives [34].

2.1 Spark Plasma Sintering of TiC Matrix Composites Using Nitrides Based
Material as Sintering Additive

Nitrides-based additives such as AlN, TiN, etc., reduced the hardness of TiC ceramic
matrix to some percentage but enhances the fracture toughness which has been a chal-
lenge for ceramics generally. More also, the reduction in the flexural strength of some
TiC ceramic composites was as a result of higher hardness of TiC than the nitrides based
sintering additives, therefore the percentage increment of these nitrides based additives
reduces the hardness and strength of the TiC ceramics composites but consequently
enhances fracture toughness [35, 36].

Pazhouhanfar et al. [37], observed the effects of 5wt.%TiNon themicrostructural and
mechanical properties of TiC composites. The composites were consolidated at 1900 °C
for 10 min under 40 MPa. Densification of 97% was reported for the doped TiC which
was 1.6% greater than the relative density of the monolithic (95.5%). Figure 2(a) shows
the graphical representation of the relative density of these samples. But densification
of 98% and 99% was achieved for a monolithic TiC when sintered by SPS at 1600 °C
and 1900 °C respectively, the achievement of the later densification was attributed to
the use of fine size particle powder (<2 µm) [30, 38]. The introduction of TiN in the
composites as a secondary phase was reported to inhibit grain growth.

The addition of 5wt% TiN to the monolithic TiC reduced the Vickers hardness by
12% compared to the undoped TiC Fig. 2(b) showed this graphically. The formation
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Fig. 2. Shows the densification for undoped TiC and doped TiC with 5wt% of TiN [37]. (b) and
(c) showing the flexural strength and Vickers hardness of monolithic TiC and doped TiC with
5wt% TiN respectively [37].

of solid solution phase of Ti(C, N) in the absence of bonding phase contributed to the
reduction of the hardness of the doped TiC, similar observations were made in previous
works [39, 40]. The flexural strength of the undoped TiC was reported to be greater than
the doped TiC, as seen in Fig. 2(c), the existence of the in-situ brittle phase of Ti(C, N)
formed was said to contribute to the reduced flexural strength of the doped TiC.

Russias et al. [36] studied the effects of TiN in TiC cermets. It was reported that
the addition of TiN to the cermets resulted in grain growth inhibition and transforms
the repartition of diverse phases. The existence of TiN reduces the cermet hardness
but consequently enhances the cermet’s toughness. The hardness reduction was as a
result of the lower hardness of TiN as a reinforcement in the cermet which at the same
proportion promoted the fracture toughness. This outcome hasmostly been observed that
the corresponding improvement in hardness and fracture toughness is hard to achieve
when sintering additives are being added to a ceramic matrix, as the increase in one leads
to the decrease of the other and vice versa [35, 41].

Fattahi et al. [42], reported improved densification and flexural strength when TiC
based composites were doped with 5wt% AlN at a sintering temperature of 1900 °C
for 10 min under 40 MPa. The addition of AlN and the in-situ Ti3 Al was reported to
influence the full densification of the composites, but its Vickers hardness reduced by
2% in comparison to the monolithic TiC due to the phases of AlN and Ti3 Al present
in the composites whose hardness are lower than TiC, [43, 44], Fig. 3(b) the light- gray
color in the micrograph depicted phases of the TiC matrix, while the dark-gray-color
were the secondary in-situ formed phases or AlN [43, 44]. The reported flexural strength
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for the monolithic and doped TiC was 504 MPa and 688 MPa grain size. The enhanced
relative density of the doped sample and the formation of the in-situ phase created a clean
interface between the secondary phases and the matrix all quantified to the improved
flexural strength. The microstructural observation as shown in (Fig. 3a), depicted that
the monolithic TiC contained some pores, suggesting inadequate sintering temperature
to fully densify the material, while the doped sample with 5 wt% AlN showed highly
full densification without any visible porosity in the microstructure (Fig. 3b).

Fig. 3. A SEM graphs of the sintered (a) undoped TiC and (b) doped TiC with 5 wt% AlN [42].

Shaddel et al. [41] reported contrasting densification and mechanical properties of
TiC composites when it was doped 5 wt% BN in comparison to Fattahi et al. exper-
iment [42] under the same sintering condition. The addition of BN did not influence
the densification of the samples, that both the doped and undoped TiC achieved simi-
lar results of approximately 95%. More also, the sintering additive had a depreciating
effect on the mechanical properties such that the flexural strength and Vickers hardness
reduced at around 15% and 7%, respectively, in comparison to the acquired values for
the monolithic samples. The content and texture composites and the in-situ carbonic
phases formed when TiC was doped with BN were said to be the cause for the drop in
hardness [45], more also, the non-provision by the remaining BN particles in cleaning
the interface with TiC had a poor impact on the flexural strength of the doped samples
compared with the monolithic sample.

3 Comparison of Different Nitrides in Terms of Properties
(Densification and Mechanical Properties)

Different nitrides based have been studied on the microstructure, densification, and
mechanical property of TiC (as depicted in graph 1), it was observed that AlN provided
improvement in achieving good densification and combined excellent mechanical prop-
erties (Table 1). The Fig. 4, majorly showed the influences of sintering additives on the
densification and mechanical properties of TiC compared to undoped TiC.
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Table 1. Showing the effects of different nitrides sintering additives with TiC using Spark Plasma
Sintering for consolidation.

Material
composition

Processing
condition

Sintered
density

Hardness
(GPa)

Fracture
toughness
(MPa m1/2)

Flexural
Strength
(MPa)

References

TiC–5wt%
TiN

1900 °C,
40 MPa,
10 min

97 274.5
(HV0.1)

– 450 [37]

Monolithic
TiC

1900 °C,
40 MPa,
10 min

99.9 25.7 – – [38]

TiC-5wt%
AlN

1900 °C,
40 MPa,
10 min

101.27 3050
(HV100)

– 688 [42]

TiC-5wt%
BN

1900 ◦C
40 MPa,
7 min

95 2914
(HV100)

– 429 [41]

Monolithic
TiC

1650 °C, 100
MPa, 5 min

97.9 28 5.9 – [46]
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Fig. 4. Relative density and mechanical properties of TiC ceramic materials.
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4 Conclusion

The addition of nitrides based on titanium carbides ceramic composites has been
observed to produce some contrasting results in the densification and mechanical prop-
erties of TiC matrix. It can be inferred that not all nitrides based additives yielded good
improvement on the properties of ceramics based matrix, as some of the (nitrides addi-
tives) have a depreciating effect while others produce enhancement in the properties of
TiC based matrix composites. Therefore, more works should undertake more in adding
non-metallic ceramics together with nitrides additive whose hardness is not far less than
the parent composites, with this concept an improved combined mechanical properties
can be attained without any depreciating effect in any of the desired properties.

Acknowledgments. Appreciation goes to all the author for their contributions to the success of
this review.
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