
Chapter 8
Link Analysis

Link analysis has been recognized as an effective technique in data science to
explore the relationships of objects. The objects can be social events, people,
organization and even business transactions. This chapter reports the practical
models of link analysis in various data-driven application areas. Section 8.1 presents
a recommendation system for marketing optimization [1]. Section 8.2 is about
advertisement clicking prediction [2]. Section 8.3 presents a model for customer
churn prediction [3]. Section 8.4 provides node coupling clustering approaches
for link prediction [4]. Finally, Sect. 8.5 discusses a pyramid scheme model for
consumption rebate frauds [5].

8.1 Recommender System for Marketing Optimization

This section proposes a new method called trigger and triggered (TT) model. It aims
to solve the problems described above and provide a lifecycle recommendation. The
proposed method consists of two parts. The first part eliminates concentration noise
in the training data and can be used as independent anonymous recommendation
system. The second part serves as a recommendation system with lifecycle aware-
ness among products. In the following, Sect. 8.1.1 introduces terminologies and
related techniques while Sect. 8.1.2 describes the proposed model.

8.1.1 Terminologies and Related Techniques

8.1.1.1 Score Matrix

For convenience of discussion, this section uses the term “score-matrix” to describe
the score between different stock keeping units (SKU, a unique identification of
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each products). The score of SKU can be the number of times of co-purchases, or
that of sequential purchases (a customer buys B because of the product A is bought
first) or the similarity of products.

8.1.1.2 Weibull Distribution

The Weibull distribution [6] is one of the most widely used lifetime distributions.
It was originally proposed by the Swedish physicist Waloddi Weibull, who used
the model to approximate the distribution of breaking strength of materials.
The versatility of distribution can take on the characteristics of other types of
distributions, by tuning value of the shape parameter [6]. The probability density
function of a Weibull model with a random variable x is shown in (8.1):
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(8.1)

where α, β and γ are known as the shape, scale and threshold parameters,
respectively with constraints that α > 0, β > 0, γ > 0. The advantage of Weibull
distribution is its versatility of distribution. Therefore, in this section we use the
characteristics to simulate distributions with a left long tail or right long tail, that
looks like the sequential consumptions from a customer.

8.1.1.3 Gradient Descent

Gradient descent [7] is an optimization algorithm. It uses the method of first-order
iterative gradient optimization to find the minimum of a function. To find a local
minimum of a function, small steps are taken forward from the negative direction
of the gradient of the function at current points. Stochastic gradient descent is a
stochastic approximation of the gradient descent by aggregating a batch of gradient
descent of sample data, which can largely increase the speed of parameter tuning
[8]. Conjugate gradient descent derives from gradient descent, but instead of using
gradient descent, it applies conjugate directions in the process of optimization [9].

8.1.1.4 Loss Function and Measurement

There are several metrics in the evaluation of recommender system [10, 11]:
accuracy, coverage and diversity. Accuracy is the most important metric in a
recommender system. A recommender system for top-k will give top k items to
users in a sequence. There are multiple ways to measure its accuracy, for example:

precision@k =
∣∣Tclicked ∩ TK,recommended

∣∣
K

(8.2)
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where Tclicked is the items have been clicked in the test set for a user, TK, recommended
is the k items recommended to a user.

If the rank of recommendation items is the major concern, the metric ap @ k will
be used (see Eq. (8.3)).

ap@k =
k∑

n=1

P(n)

min (m, k)
(8.3)

where p(n) denotes the precision at the nth item in the item list.
For ap @ k metric, the same recommendation with different ranks will give

different evaluations. For example, if user bought 3 items, follows recommended
item #1 and #3, then ap@10 = (1/1 + 2/3)/3 � 0.56. For the same recommendation
list, if user follows item #1 and #10, then ap@10 = (1/1 + 2/10)/3 = 0.4.

The metrics are applied to evaluate the difference between estimated and actual
purchase time, which are ŷc

u and yc
u. This section uses the mean absolute error

(MAE), the root means square error (RMSE) and the mean absolute percentage
error (MAPE) to evaluate the overall effect. The definitions are shown in (8.4), (8.5)
and (8.6).
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Nu × Nc

∑
c

∑
u
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u

∣∣∣ (8.4)

RMSE =

√√√√∑
c

∑
u

(
yc
u − ŷc

u

)2

Nu × Nc
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MAPE = 1
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∣∣∣∣∣ (8.6)

8.1.2 Trigger and Triggered Model

The goal of recommender systems is not only to satisfy customers but also to
meet the demands of marketing. From the view of marketing, the accuracy along
with the history data cannot be the only measurement, the goal of marketing
is the other important metric. In addition, the other contribution in this method
is to effectively connect experts’ knowledge with algorithm. Unlike traditional
recommender systems, Trigger and Triggered (TT) model concerns more on con-
centration elimination, marketing optimization and lifecycle of trigger and triggered
products. The workflow moves from product to personalized granularity through
two independent algorithms: TT_PAR and TT_PPE. TT_PAR is responsible for the
generation of meaningful trigger and triggered pairs, and TT_PPE is for the lifecycle
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Generate add-on products as 

anonymous recommendation

Give meaningful trigger and 

triggered products as input

Monitor the lifecycle of trigger 

and triggered products at 

personalized level

Fig. 8.1 The workflow of TT_PAR and TT_PPE algorithms

of sequential purchases. The relationship between these two algorithms is shown in
Fig. 8.1.

The algorithm TT_PAR handles eliminating concentration noise and maximizing
marketing goals quite well. Trigger and triggered pairs happened in short timeframe
can be treated directly as an anonymous add-on recommendation, and positive
results are shown in the experiment. The TT_PPE algorithm takes trigger and
triggered pairs from each customer as inputs. By combining with customers’ activ-
ities and demographic information, the lifecycles of trigger and triggered products
are estimated, which can be used for both onsite and offsite recommendation and
promotions. The TT_PPE algorithm provides more accurate prediction on lifecycle
of product pairs by comparing with other practical algorithms.

8.1.2.1 Meaningful Trigger and Triggered Pairs

When an algorithm is designed to auto recommend products, accuracy is always
the most important criterion. However, focusing on accuracy alone may lead to the
phenomenon of “filter bubbles”, which means hot products become more popular
but other options may decrease their exposure to customers as a result of sale
diversity diminishing. For example, if a laptop is the most popular item in an
e-commerce site and the popularity reaches to a critical point, the laptop might
be treated as first recommendation option from the view of accuracy, no matter
whatever the customer bought last time. This problem is even more serious when a
store is featured by a certain type of products.

On the other hand, from the marketing perspective, accuracy is the primary
objective. For instance, when the sales of refrigerator inexplicably decline, the
recommender system should transform its role as a promotor to locate potential
customers and increasing exposure of refrigerators.
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Table 8.1 The example of a
customer’s consumption
records

Date Product id

2018-01-02 1
2018-01-02 2
2018-01-03 1
2018-01-10 3
2018-01-10 1
2018-01-10 4
2018-01-13 3
2018-01-20 3

Therefore, extracting meaningful trigger and triggered pairs in the history is
important. For example, in a dataset, “iPhone–iPhone case” and “iPhone–bed”
could be two pairs with the same numbers of co-purchase records. To deliver
qualified results, the meaningless pair “iPhone–bed” should be excluded. This
section illustrates the proposed method to run pair cleaning. The cleaned pairs can
be used independently as an anonymous recommendation or combining with other
information for lifecycle prediction.

8.1.2.2 Transformation of Trigger and Triggered Pairs

Trigger-Triggered (TT) pairs are product pairs of a user (at categorical level)
purchased at a different time. An example of an original transaction record for user
u is shown in Table 8.1.

In a store, a customer normally buys multiple products at the same day, and the
same product items or new items will appear in future consumption. As mentioned
above, “the same product” purchase is defined as a repetitive purchase and “new
item” purchase is defined as a complementary purchase.

In general, the TT-pairs are created between purchases at a different time.

8.1.2.3 Extract Meaningful Pairs

It is necessary to design an algorithm to decrease the bias in triggered items. A
TT-Paris filtering method is proposed to solve the problem. It starts with a reverted
ranking approach, and applies second-order mining (a post-stage of data mining
projects in which humans collectively make judgments on data mining models’
performance.) [12, 13] to find meaningful pairs that are most important to the
marketing. The tt-pairs filtering consists of two steps.

Algorithm 8.1 TT-Pairs Filtering

Step1: obtain reverted ranking using formula (8.7)

Step2: second-order mining by experts
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Below we explain these two steps in detail.

Step 1: Rank the tt-pairs via tt-score, and extract k pairs with the highest grades.
The purpose of tt-score is to diminish the concentration bias in triggereds. TT-
pairs are ranked by tt-score instead of numbers of occurrence. The tt-score is
calculated as follows:

t tscore = nor
(
Otrigger1t riggeredj ,Otrigger2t riggeredj , . . .

,Otriggerntriggeredj

)
nor (· ) = x−xmin

xmax−xmin+δ

(8.7)

where O denotes occurrences and δ is a constant value used to increase weights
of a list with higher occurrences.

Step 2: Experts’ opinions about the best products.
To collect experts’ opinions about the important products, a filtering and grading
system is designed for marketing experts. The experts are required to filter the
most important pairs and to grade the products.
In this system, once a category code is selected, its triggered candidates are
shown in the following two sections: “Add On Products” and “Products in
Selection Pool”. The first section is what the expert chooses as the most important
triggers and the second section includes all candidates that can be added to the
selected section.
For grading system, the marketing experts will give their weights to three
components: margin, quantity and price for each product (in categorical level),
and observe the correctness of their grades. The final scores for products are
published after their adjustment.
The formula of calculating score is shown in (8.8):

pscore = α × margin + β × quantity + γ × price (8.8)

The product score shows the importance of products. Products with pscore higher
than a threshold will be selected. Finally, part of the top k tt-pairs extracted from
step 1 will be excluded if their pscore is less than the expert-defined threshold.

8.1.3 Trigger-Triggered Model for the Anonymous
Recommendation

The anonymous recommendation should match three basic requirements: (1) reduce
concentration bias in the dataset and reflect the logic correlation between products,
(2) help the marketing to promote products, (3) guarantee the variety of products
can be shown on the site.
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Fig. 8.2 Scoring matrix

To realize these goals, we use both the information of the category and SKU level
of products. The categorical connections between tt-pairs are generated based on tt-
scores and experts’ selection which is described in Sect. 8.1.1. The application of
tt-scores and experts’ inputs significantly reduce the problem of concentration bias.
At the product level, linear programming is applied to find the right SKU pairs.

In Fig. 8.2, the matrix is the correlation score of products (tt-pairs). The size of
the matrix is constrained by the generated group pair, and only relative SKUs in
the groups can be connected. The scores in the matrix derive from the historical
transactions. The formula of the score is shown in (8.9):

ppScore = CO − Occurrence + α × pscore (8.9)

where CO − Occurrence is the number of co-occurrence of these two products
in the last 1 year. The definition of co-occurrence is that the trigger and triggered
products have been bought at the same time or the triggered products have been
bought within 30 days after trigger products bought firstly. The linear programming
problem (shown in (8.10)) is aimed to choose the best scores among all pairs while
satisfying the goals of marketing promotion and recommendation variety will be
reached.

maximize Z = ppScoreij × βij

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

βij = 0 or 1
n∑

i=1
βc

ij ≤ ϕj

n∑
j=1

βc
ij ≤ ωi

∑
js is market ing promtion

βc
ij = δj

(8.10)
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where ϕ and ω are both a constant non-negative integer value, and δ is a constant
positive integer value. The parameter ϕ is used to constrain the maximum numbers
of products in each triggered category, that improves the variety of recommendation.
The parameter ω is used to constrain the maximum numbers of a product can
be shown as a triggered recommendation in the recommendation list. The value
restricts over-recommendation on popular items. The parameter δ is used to
promote specific products, makes sure the products can be shown more frequent
at recommendation list.

8.1.4 Trigger-Triggered Model for Product Promotion

Managing the lifecycle of consumption is a key to the success of customer
engagement. Appropriate advertising should be sent to customers at the appropriate
time in order to stimulate customers’ potential consumption. For example, a good
promotion plan should send customers a new iPhone promotion 1 or 2 year after the
consumption of an iPhone, or a case promotion should be sent much earlier once the
customer bought a phone. A product trigger and triggered system has been designed
to track lifecycle of products at individual level, which can be used for product
promotion by real time recommendation system or digital advertising through email
or ad platforms. The principle of the system design is that once a certain product has
been purchased, then the tracking system is activated, and related products will be
sent to customers at right time if the products have not been purchased yet at that
time.

To study the time frame between two sequential purchase activities in personal-
ized level, it is to estimate the probability of a user’s consumption at a time interval
(j, j + Δt). That is the conditional probability p(T ∈ (j, j + Δt|product_u_t)): if
the consumer u is going to buy product i in the future, what is the most likely time
the consumer will buy. By examining the dataset, it is shown that the probability
distribution of p(T ∈ (j, j + Δt|product_u_t)) is usually a long tail with left
or right peak. Therefore, a normal distribution may not be a good candidate to
simulate it. Alternatively, a Weibull distribution has been applied. Wang and Zhang
[14] have applied Weibull distribution to predict the time frame in ecommerce
application. Different from that work, in the section we use a Weibull model with
three parameters to predict the time frame. Threshold parameter is included to deal
with the case that some triggered items normally are not purchased immediately
after the consumption of trigger products. In addition, we use gradient descent
approach to tune the parameters instead of variational inference proposed in [14].
Even though gradient descent inference takes more time to locate a minimum, it
will be easier to derive the algorithm. The probability density function of a Weibull
model with random variable x is shown in (8.11).

As indicated in the formula, the scale parameter β is transformed to be a linear
function of variables βTX, where X is a vector of variables to capture signals of
purchase, including a binary value indicating if the customer bought any same
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product or similar products in time bins t1, t2 . . . tm, or if triggereds have been
purchased during promotion dates, or seasonality information, and etc. To make
sure the derived scale parameter βT

1 X > 0, let’s transform βT
1 X to be eβT

1 X. The
derived density equation is:

f (y) = α

eβT
1 x

(
y − μ

eβT
1 x

)α−1

exp

(
−
(

y − μ

eβT
1 x

)α)
(8.11)

For each ith observation at each specific tt-pair c, the density function of purchase
time is shown in (8.12):
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(8.12)

The distributions of parameters are: αc ∼ N(μα , δα), μc ∼ N(μμ, δμ),
βc ∼ N(μβ , δβ ). It is denoted that ω = (μa, δa, μμ, δμ, μβ ,

∑
β ).

To solve the equation, we build a model separately for each product group m,
where group refers to products at a particular categorical level. Therefore, in each
group, the parameters are ϕ = ({α1, μ1, β1}, {α2, μ2, β2}, . . . , {αm, μm, βm}). By
grouping pairs, the purchase signal of similar products in a group is used. The joint
likelihood for all variables is extended, as shown in (8.13):

L
(
ϕ|Dg

) ∝ L
(
Dg, ϕ

) = p (ω)
m∏

c=1
p (αc, μc, βc|ω)

nm∏
i=1

p
(

yc
i | αc, μc, βc,Xc

i

) (8.13)

Since the model contains many variables, the traditional method is computation-
ally too expensive to get an answer. Instead, functions of parameters are replaced as
constant ci and MLE is used to estimate parameters, as shown in (8.14):

ϕ =
({

α̂1, μ̂1, β̂1
}

,
{
α̂2, μ̂2, β̂2

}
, . . . ,

{
α̂m, μ̂m, β̂m

})
= argmax {L (Data, ϕ)}

= argmin
{ m∑

c=1

(
c1α

c2 + c2μ
c2 + c3β

c2
)+

m∑
c=1

nm∑
i=1

− log
(
p
(
yc
i |Xc

i , α
c, βc, μc

)) }
(8.14)

The pseudocode to solve the previous equation is shown in the following Algorithm
8.2. The parameters (μa, μμ, μβ ) are initialized in the beginning. It is hidden
parameters for grouping. Then Step 1 in the algorithm is to get a local minimal
value of parameters ϕ, that is ({α1, μ1, β1}, {α2, μ2, β2}, . . . , {αm, μm, βm}). On the
basis of ϕ, parameters (μa, μμ, μβ ) are updated. These two iteration steps continue
until converge.
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Algorithm 8.2 Trigger-TriggeredModel

Initialize
(
μa,μμ,μβ

) =
(
μ0

α, μ0
μ,μ0

β

)
i = 0
repeat
for tt-pair c = (1, 2, . . . ,m) in group:

updating parameters (αm, μm, βm) in (8.15) on the basis of known(
μi

α, μi
μ, μi

β

)
end for
i = i + 1
updating parameters

(
μi

α, μi
μ, μi

β

)
in (8.16) based on known (αm, μm, βm)

end repeat (convergence)

(αm,μm, βm) = argmin
{
c1α

c − μa
2 + c2μ

c − μμ
2

+ c3β
c − μβ

2 +
nm∑
i=1

− log
(
p
(
yc
i |Xc

i , α
c, βc, μc

)) } (8.15)

(
μa,μμ,μβ

) = argmin
{
c1α

c − μa
2 + c2μ

c − μμ
2

+ c3β
c − μβ

2 + c4μa
2 + c5μμ

2

+ μβ
2

nm∑
i=1

− log
(
p
(
yc
i |Xc

i , α
c, βc, μc

)) } (8.16)

Formulas (8.15) and (8.16) are hierarchical expression of (8.14) where prior
knowledge are applied, two steps of inference improve the stability of prediction.

The updating methods at here can be algorithms such as Conjugate Gradient
Descent, Broyden-Fletcher-Goldfarb-Shanno or others [7]. The optimum function
[15] in R has been applied for parameters inference.

The experimental study of using a transaction dataset is collected from a retail
store can be found in [1].

8.2 Advertisement Clicking Prediction by Using Multiple
Criteria Mathematical Programming

This section proposes a multi-criteria linear regression (MCLR) [16] and kernel-
based multiple criteria regression (KMCR) [17, 18] algorithms to predict CTR of
ads in a web search engine given its logs in the past.
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8.2.1 Research Background of Behavioral Targeting

8.2.1.1 Concept of Click-Through Rate

This section provides the concept of click-through rate (CTR). For example: As Fig.
8.3 showing, when one user views a known Chinese website 163.com, which has an
ad slot that can display an advertisement. For the media 163.com, the problem is:
Which advertiser should be chosen for this ad slot? The answer can be: Choose the
one with max revenue. The definition is:

Max revenue = Max {CPCi × P−CT Ri} (8.17)

where i represents the ith of the advertiser; CPC is the Cost per Click [The money
paid to the media when one ad is clicked, set by advertiser]; and P _ CTR is the
Prediction CTR [Expected CTR, is given by prediction model, the predict target in
this section].

Note that the CTR model is very important for the platform to keep their revenue
maximum. Some machine learning based regression algorithms such as logistic
regression [19], maximum entropy [20], support vector regression (SVR) [21] and
conditional random field (CRF) [22] have been adopted to predict the clicks of
advertisements presented for a query.

In this section, the proposed multi-criteria linear regression (MCLR) and kernel-
based multiple criteria regression (KMCR) algorithms will be used for CTR
prediction. Note that the regression models for CTR problems are different from
classification models because the former do not need the testing process for
verification while the later do. However, the clicking events prediction needs
classification models as introduced below.

Fig. 8.3 Application scenarios of CTR

http://163.com
http://163.com
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8.2.1.2 Concept of Clicking Events Prediction

For the advertiser with several candidate advertisements has the chance to display
their advertisements on the ad slot, he needs to decide which ad to display. Under
this scenario, a clicking events prediction model is needed to solve this problem.
Through model prediction, the advertiser can learn about which ad will be clicked
or not, then he can choose displaying ad that will be clicked for a good revenue.
Figure 8.4 shows the application scenario of Clicking Events Prediction.

8.2.2 Feature Creation and Selection

To show the practical ability of the proposed method, the datasets of track2 of the
KDD Cup 2012 are used for testing (http://www.kddcup2012.org/). The training
set contains 155,750,158 instances that are derived from log message of search
sessions, where a search session refers to an interaction between a user and the
search engine. During each session, the user can be impressed with multiple ads,
then, the same ads under the same setting (such as position, depth) from multiple
sessions are aggregated to make an instance in the datasets. Each instance can be
viewed as a vector (#click, #impression, DisplayURL, AdID, AdvertiserID, Depth,
Position, QueryID, KeywordID, TitleID, DescriptionID, UserID). It means that
under a specific setting, the user (UserID) has been impressed with the ad (AdID) for
#impression times, and has clicked #click times of those. In addition to the instances,

Fig. 8.4 Application scenario of Clicking Events Prediction

http://www.kddcup2012.org/
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the datasets also contain token lists of query, keyword, title and description, where
a token is a word represented by its hash value. The gender and segmented age
information of each user are also provided in the dataset. The test set contains
20,297,594 instances and shares the same format as the training set, except for the
lack of #click and #impression. The test set is generated with log messages that
come from sessions latter than those of the training set. More detailed information
about the datasets can be found in (http://www.kddcup2012.org/).

However, a major challenge is to create efficient features. Feature creation and
selection are the most important steps in solving a supervised learning problem.
After comparing different methods, this section chooses two of them to create the
features, which are called T-Set-1 and T-Set-2, respectively:

8.2.2.1 Feature Creation Method for T-Set-1

In T-Set-1, the bag of words model was used. This method is frequency-based
method that is used to predict the probability of each presented word on a clicked
instance based on each feature (tokens). Then, we built the whole feature space by
combining the query dictionary and ad dictionary.

8.2.2.2 Feature Creation Method for T-Set-2

Two kinds of features, original feature and synthetic feature, are used for modeling
in this section:

1. Original Features: The original feature set contains discrete features and con-
tinuous features. The discrete features are the unique ID of each ad, advertiser,
query, keyword, tile, description, token, gender and age for one user, depth and
position of ads, and the displayed URL. The continuous features are the click-
through rates of each value of the discrete features. When a discrete feature is
being used; the corresponding click-through rate will be activated and adopted as
a continuous feature.

2. Synthetic Feature: First of all, we join any two original discrete features with
each other and use them as synthetic features. We also test some 3-tuple features
but only the QueryID_AdID_UserID is available. Since most 3-tuple features are
too sparse and seldom activated. Secondly, we join the original discrete features
with each of the tokens. Position information is added to the original discrete
features to generate one 2-tuple position-based feature. Bigram features are also
adopted for analyzing the queries, titles and descriptions.

http://www.kddcup2012.org/
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8.2.2.3 Normalization

Since the ranges of all the variables’ value are significantly different, a linear
scaling transformation needs to be performed for each variable. The transformation
expresses as:

xn = xi − min (x1,K, xn)

max (x1,K, xn) − min (x1,K, xn)
(8.18)

where xn is the normalized value and xi is the instance value.

8.2.2.4 Categorization Method for Positive/Negative Samples

To analyze the dataset for predicting accurately, let’s consider:

Advertisement 1: The time of display is 10, the time of click is 0.
Advertisement 2: The time of display is 10, the time of click is 1.
Advertisement 3: The time of display is 10, the time of click is 8.

From above, it can be seen that the gap between advertisements 2 and 3 is bigger
than the gap between advertisements 1 and 2. If we simply categorize those samples
based on click times, those with click times greater than 1 are categorized as positive
samples and those less than 1 as negative samples, then the advertisement 2 and 3
are both labeled as 1 while the label of advertisement 1 is −1. In this situation, the
influence of advertisement 2 and 3 are the same. However, as the time of click 0 and
1 is closer than 1 and 8, it is not reasonable. Therefore, we treat the click-through-
rate as a probability problem. For one wonderful advertisement, someone will click
it while others won’t. Therefore, in this section, we calculate the click-through-rate
(CTR) of each instance, and the average CTR. Then we compare each instance’s
CTR with the average CTR. If it is greater than the average CTR, the label of the
instance should be 1; otherwise, it should be 0. The formula to calculate the CTR is
described as below:

Click − T hrough − Rate(CT R) = (#click + α ∗ β) /

(#impression + β)
(8.19)

where α = 0.05, β = 75, that obtained from the experiment.
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8.2.2.5 Confusion Matrix

The confusion matrix is used for the performance analysis:

TP (True Positive) the number of records in the first class that has been classified correctly
FP (False Positive) the number of records in the second class that has been classified into

the first class
TN (True Negative) the number of records in the second class that has been classified

correctly
FN (False Negative) the number of records in the first class that has been classified into the

second class

Then four different performance measures are:

Specif icity = T N
T N+FP

;
Sensitivity = T P

T P+FN
;

False Positive Rate = FP
T N+FP

;
False Negative Rate = T N

FN+T N
.

(8.20)

8.2.2.6 Receiver Operating Characteristics (ROC) Graph

Receiver Operating Characteristics (ROC) graph is a useful technique for organizing
classifiers and visualizing their performance. ROC graphs are commonly used in
decision making, and in recent years have been increasingly adopted in the machine
learning and data mining research communities. In addition to a generally useful
performance graphing method, they have properties that make them especially use-
ful for domains with skewed class distribution and unequal classification error costs.
These characteristics have become increasingly important as research continues
into the areas of cost-sensitive learning and learning in the presence of unbalanced
classes. The reader can find details of experimental and comparison studies of the
MCLR and KMCR regression models as well as the classifications MCLP and
KMCP for the clicking events prediction in [2].

8.3 Customer Churn Prediction Based on Feature Clustering
and Nonparallel Support Vector Machine

Bank customer churn prediction is one of the key businesses for modern commercial
banks. Recently, various methods have been investigated to identify the customers
who would leave away. This section presents a framework based on feature
clustering and classification technique to help commercial banks make an effective
decision on customer churn problem.
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8.3.1 Related Work

8.3.1.1 Maximal Information Coefficient

Relationship coefficient is usually used for measuring the similarity of two variables.
Person coefficient is one of the most famous relationship metrics, because it is easy
to calculate and has a naive explanation. However, only linear relationship can be
captured well using this metric when other kinds of dependence work badly such as
sin or cubic function. Recently, [23] proposed a novel relationship measure called
MIC. Inspired by innovative idea, they show that MIC could capture a wide range of
associations both functional and not. Furthermore, the MIC value is roughly equal
to the coefficient of determination R2 in statistics [23]. Now we provide a little
introduction to MIC.

Given a finite set D whose elements are two dimensions data points, one
dimension is x-values and the other is y-values. Suppose x-values is divided into
x bins and y-values into y bins, this type of partition is called x-by-y grid G. Let D|G
represent the distribution of D divided by a x-by-y grid G. I ∗ (D, x, y) = max I(D|G),
where I(D|G) is the mutual information of D|G. There are infinite amount of x-by-
y grids, so there are infinite number of I(D|G) either. Set the maximal I(D|G) as
I ∗ (D, x, y). Given different x- and y-value, a matrix named characteristic matrix
could be constructed as M(D)x,y = I∗(D,x,y)

log min{x,y} . Furthermore, MIC can be obtained
by MIC(D) = maxxy < B(n){M(D)x, y}, where B(n) is the upper bound of the grid size.
The elements in characteristic matrix I ∗ (D, x, y) is chosen from a infinite amount
of I(D|G), thus Reshef et al. develop an approximation algorithm and program for
generating characteristic matrix and the estimators derived from MIC [24, 25]. With
these state-of-the-art utilities, data exploration could be easily completed before
other data mining procedure.

8.3.1.2 Affinity Propagation Clustering

Clustering data through similarity is a popular step in many scientific analysis
and application systems. Frey and Dueck [26] developed a modern clustering
method named “affinity propagation” (AP) which constructs clusters by information
messages exchanged between data points. Given the similarities of each two distinct
data points as input, AP algorithm considers all the instance as potential centroids
at the beginning of the algorithm. And then, algorithm merges small cluster into
bigger ones step by step. Different from classical clustering algorithms like k-means,
each instance is regarded as one node in a network by AP clustering approach.
Messages was transmitted between nodes, so each data point reconsidered their
situation through new information and properly modified the cluster they belong
to. This procedure went on until a good set of clusters and centroids produced.

In this process, there are mainly two categories of message exchanged between
data points. One of them is sent from point i to point j which formulated as r(i, j).
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It illustrates the strength point i choosing point j as its centroid. The other sort
information is from point j to point i as a(i, j). It shows the confidence that one point
j recommends itself as the centroid of another point i. And the author of AP take
r(i, j) ← s(i, j) − maxj ′ s. t. j ′ 
= j{a(i, j

′
) + s(i, j

′
)} and a (i, j) ← min {0, r (k, k)} +∑

i′s.t.i′ 
=i,j max
{
0, r

(
i ′, k

)}} to update current situation. Update is needed only
for the pairs of points whose similarities are already known. This trait makes the
algorithm much faster than other methods. To identify the centroid of point i, point
j that maximizes r(i, j) + a(i, j) should be considered during each iteration. AP
clustering method requires a similarity matrix s as input, and the element of the
matrix s(i, j) provides the distance from point i to point j. In addition, the diagonal
values of the matrix is not assigned 1 as usual. These values are called “preference”
which show how point i is likely to be chosen as a centroid. That is to say, the larger
s(i, i) is, the more probability that point i play a role of a centroid. Obviously, s(i, i)
are key parameters which control the number of final clusters by AP method.

8.3.1.3 Nonparallel Support Vector Machine

Optimization has a long history for discovering valuable patterns and making
decisions [27]. A lot of approaches have been investigated based on optimization
techniques such as SVM [28], multiple criteria linear programming (MCLP) [29],
etc. SVM is a serial of modern methods for data mining and pattern recognition
including classification, regression and other data analytical task. Based on the
theory of statistical learning, SVM use a single hyperplane to construct discrimi-
native model which follow the Structure Risk Minimization (SRM) principle [28].
Recently, inspired by twin SVM [30, 31] (see Chap. 3 as well) proposed a novel
classification method called NPSVM. Similar to twin SVM, this method applied
two nonparallel hyperplanes to handle the classification problem [31].

f+(x) = ωT+· x + b+ = 0 and f−(x) = ωT−· x + b− = 0 (8.21)

Given a binary classification dataset D = {(x1, y1), (x2, y2), . . . , (x	, y	)} with 	

instances and n attributes, let 	+ + 	− = 	, 	+ positive and 	− negative instances.
In order to express by matrix, the positive instances were represented by matrix
A ∈ R	+×n. Each row of matrix A is one instance. The negatives were expressed
by matrix B ∈ R	−×n. So the primal optimization problems for NPSVM are

min
ω+,b+,η+,ξ−

1
2ηT+η+ + c1e

T−ξ− + 1
2c2

(‖ ω+‖2
2 + b2+

)
s.t. − (Bω+ + b+e−) + ξ≥e− ≥ e−,

Aω+ + b+e+ = η+,

ξ− ≥ 0

(8.22)

http://dx.doi.org/10.1007/978-981-16-3607-3_3
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and

min
ω−,b−,η−,ξ∓

1
2ηT−η− + c3e

T+ξ∓ + 1
2c4

(‖ ω−‖2
2 + b2−

)
s.t. Aω− + b−e+ + ξ+ = e+,

Bω− + b−e− = η−,

ξ+ ≥ 0

(8.23)

where c1, c2 are the model parameters, and e+ and e− are the vector of ones with
proper dimensions. For each hyperplane in 1, NPSVM try to make the instances of
one category close to this hyperplane, and the distance between the instance of the
other class and the hyperplane is more than 1 at least. The Wolf Dual problem for
Eqs. (8.22) and (8.23) could be expressed as

min
α1,α3

1
2

(
αT

1 , αT
3

)
Q
(
αT

1 , αT
3

)T − c2e
T α1

s.t. 0 ≤ α1 ≤ c1e,
(8.24)

where

Q =
[

BBT BAT

ABT AAT + c2I

]
+ E (8.25)

and

min
α′

1,α
′
3

1
2

(
α′T

1 , α′T
3

)
Q
(
α′T

1 , α′T
3

)T − c4e
T α′

s.t. 0 ≤ α′
3 ≤ c3e,

(8.26)

where

Q =
[

AAT −ABT

− BAT BBT + c4I

]
+

[
E −E

− E E

]
(8.27)

The final decision could be made by comparing the distance to these two
hyperplanes, respectively. The distance could be obtained from

f+(x) = ω+· x + b+
= − 1

c2

(
BT α1 + AT α3

) · x
− 1

c2

(
eT α1 + eT+α3

) (8.28)
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and

f−(x) = ω−· x + b−
= − 1

c4

(−AT α′
1 + BT α′

3

) · x
− 1

c4

(−eT−α′
1 + eT+α′

3

) (8.29)

Once the distances has been obtained, for a new customer xj ∈ Rn, the attrition
prediction could be obtained according to the closer hyperplane in Eq. (8.21), such
as

f (x) = argmin
∣∣f±

(
xj

)∣∣ = argmin

∣∣∣ωT±· xj + b±
∣∣∣ , (8.30)

where |·| means the perpendicular distance from point xj to hyperplane ωT±· x+b± =
0.

8.3.2 Customer Churn Prediction with NPSVM

Missing items in data would produce big problems for calculation. Usually, the
missing elements are filled by some fixed real number which is easily distinguish-
able. Another way to process missing values is to remove the features that the ratio
of missing items is higher than certain threshold (like 30%). However, this kind of
operations may be subjective and not suitable.

Instead of directly deleting features, feature selection strategy is applied. Fur-
thermore, to eliminate useless descriptors, it focuses on the relationship and missing
ratio among features. Pairwise relationship between features are applied to reduce
the calculation problem from the missing value. The MIC relationship measure are
calculated through the available values at the same instance for each pair of features,
e.g., there are five customers with two features, “-” represents missing items.

The values for the first feature are {1, 3, 7, 9, -}, and for the other are {-, 2, 6,
7, -}. So items {3, 7, 9} and {2, 6, 7} are the available values that could be used for
the MIC calculation. Thus, even there are numerous missing items for some feature,
the relationship between two features could also been obtained.

In order to combine feature relationship and the missing ratio together for feature
filter, a new measure is defined as:

Pref erence(i) = Max(MICV alue) + λ

log (MissingRatio(i)) + ε
, (8.31)

where ε is a very small real number and λ is the parameter which is also a real
number. Equation (8.31) provides a new preference measure which balances the
consideration between missing ratio and relationship of features. On the left part of
Eq. (8.31), Max (MICValue) is the maximum of all the MIC values among each pair
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of features. The right part represents the missing ratio of feature i. When affinity
propagation algorithm takes this measure as parameter, as it is showed in Ref. 1,
the larger the preference parameters are, the more probability an instance tended
to become the center of clusters. That means when the missing ratio for feature i
is too large, the corresponding value would be much smaller than the other. As a
result, feature i would has less probability to be chosen as centroid. Finally, only the
centroid features are preserved as the selected features.

Based on these chosen data, two hyperplane for churn and not churn customer
could be constructed according to NPSVM model (8.24) and (8.26). In intuition,
each hyperplane represents one category of customers. Once the two hyperplanes
have been achieved, different decision functions could be obtained by providing
different weights for the two distances f−(x) and f+(x). The parameter μ balances
the two distances after the model construction. This characteristic provides the
capability to make further adjustments when the preference has changed. The
advantage is that the reconstruction and calculation for the model does not need
any more. Once the two hyperplanes have been received, the further adjustments
could be achieved for giving different μ values and recalculating only Eq. (8.30).
The detail of the procedure could be found in Algorithm 8.3.

Algorithm 8.3 MICAP-NPSVM Customer Churn Prediction Framework

Input:
Customer churn training dataset D = {�,C}, Ω = (f1, f2, . . . , fn). The

missing ratio vector
MissingRatio for all the features. Parameters c1, c2, c3, c4, λ, μ, ε.

Output:
Customer churn prediction function F(x).

1: Begin
2: Ω

′ = ∅;
3: for all fi, fj ∈ Ω , i 
= j do

4:
(
f ′

i , f
′
j

)
= FilterMissingI tems

(
fi, fj

) ;
5: M (i, j) = CalculateMIC

(
f ′

i , f
′
j

)
;

6: end for
7: M (i, i) = Max(M) + λ

log(MissingRatio(i))+ε
;

8: Y = {Cluster1,Cluster2, . . . ,Cluster	, } = APClustering(M);
9: for all Clusterk ∈ Y do
10: I = ClusterCentroid(Clusterk), I ∈ Clusterk;
11: Ω

′ = Ω
′ ∪ I

12: end for
13: Constructing new dataset D′ according to Ω

′
;

14: Generating churn customer matrix A and not churn customer matrix B from
the new dataset D′;

15: Construct and solve the optimization problem (8.24) and (8.26);
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16: Calculating the distance from instance x to the two hyperplanes f−(x) and
f−(x) by Eqs. (8.28) and (8.29);

17: Obtain decision function by F(x) = abs(f−(x)) − μ · abs(f+(x)).
18: End

The input of the method is the original dataset of customer churn and the
model parameters. In practice, the parameter of c1 to c4 could be arranged as
c1 = c3, λ = 0.5, μ = 1, ε = 0.001. Line 4 extracts two different features fi, fj from
the original dataset D, and filters the rows with missing values in either of the two
features. Line 5 calculates the MIC based on the result of line 4 and stores the
MIC values in the similarity matrix M. According to Eq. (8.31), line 7 combines
the maximum of all the MIC values and the missing ratio of each feature as the
preference measure. Line 8 applies affinity clustering on the similarity matrix M
and obtains feature cluster set Y. Line 9 to 12 selects the centroid of each cluster
from Y and generates a new dataset according to the chosen features D′ in line 13.
Line 14 extracted the churn customer data as matrix A, not churn customer data as
matrix B. Line 15 constructs the optimization problem (8.24) and (8.26) through
matrix A and B, and then solves it. Line 16 constructs the two hyperplanes by Eqs.
(8.28) and (8.29). Line 17 achieve the customer churn prediction decision function
through F(x) = abs(f−(x)) − μ · abs(f+(x)). The detailed data analysis based on a
well-known commercial bank of China can be found in [3].

8.4 Node-Coupling Clustering Approaches for Link
Prediction

This section provides two novel node-coupling clustering approaches and their
extensions for the link prediction problem. They consider the different roles of
nodes, and combine the coupling degrees of the common neighbor nodes of a
predicted node-pair with cluster geometries of nodes. Our approaches remarkably
outperform the existing methods in terms of efficiency accuracy and effectiveness.

8.4.1 Preliminaries

8.4.1.1 Clustering Coefficient

In graph theory, clustering coefficient is a metric that can evaluate the extent to
which nodes tend to cluster together in a graph [32]. It can capture the clustering
information of nodes in a graph [33]. An undirected network can be described as a
graph G = (V,E), where V denotes the set of nodes and E indicates the set of edges.
vi 2 V is a node in Graph G. The clustering coefficient of node vi in Graph G can be
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defined as

C(i) = Ei

ki ·(ki−1)
2

= 2· Ei

(ki · (ki − 1))
(8.32)

where C(i) denotes the clustering coefficient value of node vi. ki represents the
degree value of node vi. Ei is the number of the con-nected links among ki neighbors
of node vi. For example, there is a node v1 in Graph G. The degree value of
node v1 is 5 (i.e. k1 = 5). The number of connected links among the neighbors
of node v1 is 6 (i.e. E1 = 6). Thus, the clustering coefficient value of node v1 is:
C(1) = 2·E1

(k1·(k1−1))
= 2·6

5·(5−1)
= 0.6.

8.4.1.2 Evaluation Metrics

In this section, we present two popular metrics for link prediction accuracy: Area
under curve (AUC) and Precision. In general, a link prediction method can compute
a score Sxy for each unknown link to evaluate its existence probability and give an
ordered list of all unknown links based on these Sxy values [34].

It can evaluate the overall performance of a link prediction method. As described
in [35, 36], the AUC value can be considered as the probability that the Sxy value
of an existing yet unknown link is more than that of a non-existing link at random.
That is, we randomly select an existing yet unknown link in the test set and com-
pare its score with that of a non-existing link at a time. There are N independent
comparisons, where the times that the existing yet unknown links have higher Sxy
value are H, and the times that they have the same Sxy value are E. The AUC value
is defined as:

AUC = H + 0.5· E
N

(8.33)

This metric considers N links with the highest Sxy values in all unknown links.
If there are T existing yet unknown links in the top N unknown links [35, 36], the
Precision is defined as:

Precision = T

N
(8.34)

8.4.2 Node-Coupling Clustering Approaches

In this section presents the proposed approaches for link prediction. Firstly, it
presents a new node-coupling degree metric—node-coupling clustering coefficient.
Then, it discusses the process of our approaches. Finally, the complexity analysis is
given.
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8.4.2.1 Node-Coupling Clustering Coefficient

Many similarity-based methods only consider the number or degrees of common
neighbor nodes of a predicted node-pair in link prediction, and few exploit further
the coupling degrees among the common neighbor nodes and the clustering
information to improve the prediction accuracy. Based on the above reason, we
propose a new node-coupling degree metric—node-coupling clustering coefficient
(NCCC), which can capture the clustering information of a network and evaluate
the coupling degrees between the common neighbor nodes of a predicted node-pair.
It also considers different roles of the common neighbor nodes of a predicted node-
pair in a network. Now, we introduce this metric through a simple example.

Figure 8.5 shows an example for predicting the link between nodes M and N in
two networks. Two original networks are described in Fig. 8.5a, b. Figure 8.5c, d are
two subgraphs that consist of nodes M; N and their common neighbors in Fig. 8.5a,
b, respectively. We aim to predict which link between nodes M and N is more likely
to exist in Fig. 8.5a, b. In general, we find that the coupling degrees of nodes M; N
and their common neighbors are higher in Fig. 8.5c, d. Thus, we believe the link of
nodes M; N in Fig. 8.5a is more likely to exist than in Fig. 8.5b. If we apply CN;
AA; RA; PA to predict the link of nodes M; N in these two original networks, we can
gain the same prediction result for each method. The reasons are as follows: from
Fig. 8.5a, b, we can see that the common neighbor set {bdf } of nodes M; N are the
same, and every corresponding common neighbor node has the same degree value
in these two original networks. The similarity metric is the number of the common
neighbor nodes of a predicted node-pair in CN. CN has the same prediction results
because of the same common neighbor node set {bdf } of nodes M; N in these two
original networks. RA; AA are based on the degree values of the common neighbor
nodes. RA has the same prediction probability as AA because of the same degree
value of every corresponding common neighbor node in {bdf } in these two original
networks. For the same reason, PA provides the same prediction result because that
there are the corresponding same degree values for nodes M and N in these two
original networks. However, the link probabilities between node M and node N in
Fig. 8.5a, b are not likely to be the same.

In the above case, inspired by [37, 38], we propose a new node-coupling
degree metric based on the clustering information and node degree—node-coupling

a b c

M d

a b c d

N

gfe

a b c

M

h i

kj

d N

gfe

b

M d N

f

b

M d N

f

Fig. 8.5 An example for predicting the link between nodes M and N in two original networks
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clustering coefficient. This metric cannot only resolve the above prediction problem
in Fig. 8.5, but also capture the clustering information of a network. If node n is
a com-mon neighbor node of the predicted node-pair (M,N), the node-coupling
clustering coefficient of noden, NCCC(n), can be defined as follows:

NCCC(n) =
∑

i∈Cn

(
1
di

+ C(i)
)

∑
j∈�n

(
1
dj

+ C(j)
) (8.35)

where Γ n is the neighbor node set of nodes n. (M,N) denotes a predicted
node-pair n ∈ Γ (M) ∪ Γ (N). Cn denotes the common neighbor node set
of the node-pair (M,N) in Γ (N), which includes nodes M, N. Namely
Cn = Γ (M) ∩ Γ (N) ∩ Γ (n) ∪ {M,N}. di denotes the degree value of node i. C(i)
denotes the clustering coefficient of node i. In this metric, 1

di
+ C(i) is considered

as the contribution of node i to the coupling degree of the common neighbor nodes
of the predicted node-pair (M,N). The node-coupling clustering coefficient of node
n is the ratio of the contribution sum of all nodes in Cn to that in Γ (n). In this way,
our approaches can apply this metric that incorporates the clustering information
and different roles of each related node to improve the prediction accuracy for link
prediction.

In Eq. (8.35), since Cn ⊆ Γ (n),
∑

i∈Cn

(
1
di

+ C(i)
)

≤ ∑
j∈�n

(
1
dj

+ C(j)
)

. As

a result, NCCC(n) ∈ (0, 1]. Specially, NCCC(n) = 1 when Cn = Γ (n).

8.4.2.2 Node-Coupling Clustering Approach Based on Probability Theory
(NCCPT)

From probability theory, we propose a new link prediction approach based on the
node-coupling clustering coefficient (NCCC) in the previous section. Given a pair
of predicted nodes (x, y), node n is a common neighbor node of the node-pair (x, y).
P(n) denotes the link existence probability that node x and node y connect because
of node n. P(n) denotes the link non-existence probability that node n connects
node x to node y. Therefore, P(n) = NCCC(n) and P(n) = 1 − NCCC(n).
{A1,A2, . . . ,Ai, . . . ,Am} is the common neighbor set of the predicted node-pair
(x, y), namely Γ (x) ∩ Γ (y) = {A1,A2, . . . ,Ai, . . . ,Am}. We assume that these
common neighbor nodes of the node-pair (x, y) are independent to each other. If
there exists a link between nodes x and y, at least one common neighbor node
in {A1,A2, . . . ,Ai, . . . ,Am} connects node x to node y. According to probability
theory, the link existence probability of the predicted node-pair (x, y), Sxy can be
written as follows:
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Sxy = 1 − P (A1)· P (A2) · · · P (Ai) · · · P (Am)

= 1 − (1 − P (A1)) · (1 − P (A2)) · · · (1 − P (Ai)) · · · (1 − P (Am))

= 1 − (1 − NCCC (A1)) · (1 − NCCC (A2)) · · · (1 − NCCC (Ai)) · · ·
(1 − NCCC (Am))

= 1 − ∏
n∈�(x)∩�(y)

⎛
⎝1 −

∑
i∈Cn

(
1
di

+C(i)
)

∑
j∈�n

(
1
dj

+C(j)

)
⎞
⎠

(8.36)

Equation (8.36) is a new node similarity metric in our approach. Clearly, a
larger value of Sxy means a higher probability that there exists a potential
link between node x and y. The related parameters in Eq. (8.36) have been
described in the last section. In Eq. (8.36), since NCCC(n) ∈ (0, 1], we will have

∏
n∈�(x)∩�(y)

⎛
⎝1 −

∑
i∈Cn

(
1
di

+C(i)
)

∑
j∈�n

(
1
dj

+C(j)

)
⎞
⎠ ∈ (0, 1], and Sxy ∈ (0, 1]. Specially, Sxy = 1

when Cn = Γ (n) for every node in Γ (x) ∩ Γ (y). For example, we apply our
approach to predict the link probability of nodes M, N in Fig. 8.5.

Fig.5(a) : SMN = 1 −
(

1 − 2.92
4.92(b)

)
·
(

1 − 2.8
2.8(d)

)
·
(

1 − 2.92
4.92(f )

)
= 1.

F ig.5(b) : SMN = 1 −
(

1 − 0.67
3.67(b)

)
·
(

1 − 0.67
2.67(d)

)
·
(

1 − 0.67
3.67(f )

)
= 0.50.

From the above computing results, we find that the potential link between node
M and node N is more likely to exist in Fig. 8.5a than in Fig. 8.5b. Algorithm 8.4
describes the process of our above approach.

8.4.3 Node-Coupling Clustering Approach Based on Common
Neighbors (NCCCN)

The traditional CN method is based on the number of the com-mon neighbor nodes
of a predicted node-pair [39]. Its similarity metric is defined as follows:

SCN
xy = |�(x) ∩ �(y)| (8.37)

where Γ (i) denotes the common neighbor node set of node i. |Γ (i)| represents the
number of the common neighbor nodes of node i.

Although CN has low complexity in the link prediction problem, it does not
consider the different roles of the common neighbor nodes of a predicted node-pair.
This results in low prediction accuracy. Here, we propose a new link prediction
approach based on CN, which combines the different contributions of different
nodes to the connecting probability with the clustering information of a network.
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In our approach, (x, y) is a predicted node-pair. Node n is a common neighbor
node of the node-pair (x, y). NCCC(n) can be considered as the contribution of
node n that connects node x to node y. Score(n) denotes the contribution score
value that node n connects node x to node y. Therefore, Score(n) = NCCC(n).
{A1,A2, . . . ,Ai, . . . ,Am} is the common neighbor set of the predicted node-pair
(x, y), namely Γ (x) ∩ Γ (y) = {A1,A2, . . . ,Ai, . . . ,Am}. Here, these common
neighbor nodes of the node-pair (x, y) are assumed to be independent to each other.
We use the contribution sum of all common neighbor nodes of the predicted node-
pair (x, y), Sxy, to evaluate the link existence likelihood between node x and y.
Therefore, the new similarity metric in our approach is defined as follows:

Sxy = Score (A1) + Score (A2) + · · · + Score (Ai) + · · · + Score (Am)

= NCCC (A1) + NCCC (A2) + · · · + NCCC (Ai) + · · · + NCCC (Am)

= ∑
1≤i≤m NCCC (Ai)

= ∑
n∈�(x)∩�(y)

∑
i∈Cn

(
1
di

+C(i)
)

∑
j∈�n

(
1
dj

+C(j)

)

(8.38)

In our approach, the related parameters in Eq. (8.38) have been described in Sect.
8.4.2. Clearly, a larger value of Sxy means a higher likelihood that there exists a
potential link between node x and y. Γ (x) ∩ Γ (y) is the number of common neighbor
nodes of the predicted node-pair (x, y). In Eq. (8.38), since 0 < NCCC(n) ≤ 1,

we have 0 <
∑

n∈�(x)∩�(y)

∑
i∈Cn

(
1
di

+C(i)
)

∑
j∈�n

(
1
dj

+C(j)

) ≤| �(x) ∩ �(y) |, and Sxy ∈ (0,

|Γ (x) ∩ Γ (y)| ). Specially, Sxy = � Γ (x) ∩ Γ (y)� when Cn = Γ (n) or every node in
Γ (x) ∩ Γ (y). For example, we use this approach to compute the similarity score of
the predicted node-pair (M,N) in Fig. 8.5a, b, respectively.

Fig.5(a) : SMN = 2.92
4.92(b)

+ 2.8
2.8(d)

+ 2.92
4.92(f )

= 2.19.

F ig.5(b) : SMN = 0.67
3.67(b)

+ 0.67
2.67(d)

+ 0.67
3.67(f )

= 0.61.

We obtain the same prediction result as NCCPT. From this example, we find that
our node-coupling clustering approaches can provide better prediction results than
the traditional methods. Algorithm 8.4 illustrates the process of our above approach.

8.4.4 The Extensions of NCCPT and NCCCN

To further improve the performance of link prediction, we extend NCCPT and
NCCCN by adding its clustering coefficient information of every selected common
neighbor node, Cn, to the above two approaches respectively.



8.4 Node-Coupling Clustering Approaches for Link Prediction 459

For the same reason, (x, y) is a predicted node-pair; node n is a common
neighbor node of the node-pair (x, y). When we add the node clustering coefficient
information, Cn, in the contribution of node n to the connecting probability based
on NCCPT, we can obtain a new contribution of node n:

NCCC(n) + Cn. However, 0 ≤ NCCC(n) + Cn ≤ 2. This is outside the scope
of the probability value. In order to extend NCCPT, we use the average value of
NCCC(n) and Cn, 1

2 · (Cn + NCCC(n)), as the contribution of node n. Therefore,
Sxy in the extended NCCPT approach (ENCCPT) is defined as follows:

Sxy = 1 − P (A1)· P (A2) · · · P (Ai) · · · P (Am)

= 1 − (1 − P (A1)) · (1 − P (A2)) · · · (1 − P (Ai)) · · · (1 − P (Am))

= 1 −
(

1 − 1
2 · (NCCC (A1) + C (A1))

)
·
(

1 − 1
2 · (NCCC (A2) + C (A2))

)
· · ·

(
1 − 1

2 · (NCCC (Ai) + C (Ai))

)
· · ·

(
1 − 1

2 · (NCCC (Am) + C (Am))

)

= 1 − ∏
n∈�(x)∩�(y)

⎛
⎝1 − 1

2 ·
⎛
⎝ ∑

i∈Cn

(
1
di

+C(i)
)

∑
j∈�n

(
1
dj

+C(j)

)
⎞
⎠ + Cn

⎞
⎠

(8.39)

where Cn is the clustering coefficient of node n. The other parameters are the
same as Eq. (8.36). In Eq. (8.39), since NCCC(n) ∈ (0, 1] and Cn ∈ [0, 1], we

have
∏

n∈�(x)∩�(y)

⎛
⎝1 − 1

2 ·
⎛
⎝ ∑

i∈Cn

(
1
di

+C(i)
)

∑
j∈�n

(
1
dj

+C(j)

)
⎞
⎠ + Cn

⎞
⎠ ∈ [0, 1), and Sxy ∈ (0, 1].

Specially, Sxy = 1 when Cn = Γ (n) and Cn = 1 for every node in Γ (x) ∩ Γ (y). For
instance, ENCCPT is used to predict the link existence probabilities of node-pair
(M,N) in Fig. 8.5a, b as follows:

Fig.5(a) : SMN = 1 −
(

1 − 0.5·
(

2.92
4.92 + 0.2

)
(b)

)
·
(

1 − 0.5·
(

2.8
2.8 + 0.67

)
(d)

)
·
(

1 − 0.5·
(

2.92
4.92 + 0.2

)
(f )

)
= 0.94.

F ig.5(b) : SMN = 1 −
(

1 − 0.5·
(

0.67
3.67 + 0

)
(b)

)
·
(

1 − 0.5·
(

0.67
2.67 + 0

)
(d)

)
·
(

1 − 0.5·
(

0.67
3.67 + 0

)
(f )

)
= 0.28.

Similarly, (x, y) represents a pair of predicted nodes, and node n is a common
neighbor node of the node-pair (x, y). When we add the node clustering coefficient
information, Cn, in the contribution of node n that connects node x to node y
based on NCCCN, we can obtain a new contribution of node n: NCCC(n) + Cn.
Score(n) denotes the contribution score value that node n connects node x to node
y. Therefore, Score(n) = NCCC(n) + Cn. Hence, the extended NCCCN approach
(ENCCCN) is shown in the following Eq. (8.40).
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Sxy = Score (A1) + Score (A2) + · · · + Score (Ai) + · · · + Score (Am)

= (NCCC (A1) + C (A1)) + (NCCC (A2) + C (A2)) + · · ·
+ (NCCC (Ai) + C (Ai)) + · · · + (NCCC (Am) + C (Am))

= ∑
1≤i≤m (NCCC (Ai) + C (Ai))

= ∑
n∈�(x)∩�(y)

⎛
⎝ ∑

i∈Cn

(
1
di

+C(i)
)

∑
j∈�n

(
1
dj

+C(j)

) + C(n)

⎞
⎠

(8.40)

where C(n) denotes the clustering coefficient of node n. Other parameters are the
same as Eq. (8.38). In Eq. (8.40), since 0 < NCCC(n) ≤ 1 and 0 ≤ C(n) ≤ 1, we have

0 < NCCC(n) + C(n) ≤ 2, and 0 <
∑

n∈�(x)∩�(y)

⎛
⎝ ∑

i∈Cn

(
1
di

+C(i)
)

∑
j∈�n

(
1
dj

+C(j)

) + C(n)

⎞
⎠ ≤

2· | �(x) ∩ �(y) |, namely Sxy ∈ (0, 2 · � Γ (x) ∩ Γ (y) � ]. Specially,
Sxy = 2 · � Γ (x) ∩ Γ (y)� when C(n) = Γ (n) and C(n) = 1 for every mode in
Γ (x) ∩ Γ (y). For instance, we use ENCCCN to predict the existence possibility
of the link between nodes M and N in Fig. 8.5a, b, respectively. The results are as
follows:

Fig.5(a) : SMN = 1 −
(

1 − 0.5·
(

2.92
4.92 + 0.2

)
(b)

)
·
(

1 − 0.5·
(

2.8
2.8 + 0.67

)
(d)

)
·
(

1 − 0.5·
(

2.92
4.92 + 0.2

)
(f )

)
= 0.94.

F ig.5(b) : SMN = 1 −
(

1 − 0.5·
(

0.67
3.67 + 0

)
(b)

)
·
(

1 − 0.5·
(

0.67
2.67 + 0

)
(d)

)
·
(

1 − 0.5·
(

0.67
3.67 + 0

)
(f )

)
= 0.28.

From the above prediction results, it can be found that ENCCPT and ENCCCN
have the same prediction results as NCCPT and NCCCN. Moreover, we notice that
the prediction results of ENCCPT and ENCCCN have more obvious differences
than NCCPT and NCCCN in the same example, respectively. This results in better
prediction results compared with our baseline approaches (i.e. NCCPT, NCCCN),
and it shows the importance of the clustering information in the link prediction.
Algorithm 8.4 describes the process of our above extended approaches.

8.4.5 Complexity Analysis of Our Approaches

In real applications, most link prediction methods are based on local analysis and
global analysis. CN is the simplest link prediction method in these methods. As
a representative of the methods based on local analysis, CN has low complexity
and suitable for large-scale networks. Its time complexity is O(n2), where n is the
number of nodes in a network. Its space complexity is O(n2). In contrast, Katz is a
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representative of the methods based on global analysis. Its time complexity is O(n3).
Its space complexity is O(n2). The methods based on global analysis are impractical
for large-scale networks because of their high complexity.

Algorithm 8.4 Node-Coupling Clustering Approaches

1: Set d[ ] = 0; C[ ] = 0;
2: Divide the original network G into the training set TS and test set PS;
3: for each node i in G do
4: Compute the degree value of this node: d[i];
5: Compute the clustering coefficient of this node: C[i];
6: end for
7: for each nonexistent edge (x, y) in G do
8: Compute the similarity score Sxy by Eqs. (8.36), (8.38), (8.39) or Eq. (8.40);
9: end for

10: Arrange the list of all Sxy in descending order;
11: Compute AUC by Eq. (8.33);
12: Return AUC;

As illustrated in Algorithm 8.4, the main operations of our algorithms consist
of lines 3–6 and lines 7–9. The time complexity of lines 3–6 is Oðn2Þ in the
worst case. The time complexity of lines 7–9 is O(n2). Therefore, the overall time
complexity of our algorithms is O(n2). The space complexity of our algorithms is
O(n2). Because our approaches have the same complexity as CN, they are suitable
for large-scale networks. The experimental analysis to evaluate the performance of
proposed approaches on two synthetic datasets and six real datasets can be found in
[4].

8.5 Pyramid Scheme Model for Consumption Rebate Frauds

This section provides a pyramid scheme model which has the principal characters of
many pyramid schemes that have appeared in recent years: promising high returns,
rewarding the participants for recruiting the next generation of participants, and the
organizer takes all of the money away when they find that the money from the new
participants is not enough to pay the previous participants interest and rewards. It
assumes that the pyramid scheme is carried out in the tree network, Erdős-Réney
(ER) random network, Strogatz–Watts (SW) small-world network, or Barabasi–
Albert (BA) scale-free network. The section then gives the analytical results of the
generations that the pyramid scheme can last in these cases.
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8.5.1 Networks

8.5.1.1 Tree Network

Tree networks are connected acyclic graphs. The word tree suggests branching out
from a root and never completing a cycle. Tree networks are hierarchical, and each
node can have an arbitrary number of child nodes. Trees as graphs have many
applications, especially in data storage, searching, and communication [40].

8.5.1.2 Random Network

Random network, also known as stochastic network or stochastic graph, refers to a
complex network created by stochastic process. The most typical random network
is the ER model proposed by Paul Erdős and Alfred Réney [41]. The ER model is
based on a natural construction method: suppose there are n nodes, and assume that
the possibility of connection between each pair of nodes is constant 0 < p < 1. The
network constructed in this way is an ER model network. Scientists first used this
model to explain real-life networks.

8.5.1.3 Small-World Network

The original model of small-world was first proposed by Watts and Strogatz, and
it is the most classical model of small-world network, which is called SW small-
world network [32]. The SW small-world network model can be constructed as
follows: take a one-dimensional lattice of L vertices with connections or bonds
between nearest neighbors and periodic boundary conditions (the lattice is a ring),
then go through each of the bonds in turn and independently with some probability
φ “rewiring” it. Rewiring in this context means shifting one end of the bond to a new
vertex chosen uniformly at random from the whole lattice, with the exception that no
two vertices can have more than one bond running between them and no vertex can
be connected by a bond to itself. The most striking feature of small-world networks
is that most nodes are not neighbors of one another, but the neighbors of any given
node are likely to be neighbors of each other and most nodes can be reached from
every other node by a small number of hops or steps. It has been found that many
networks in real life have the small-world property, such as social networks [42],
the connections of neural networks [32], and the bond structure of long macro-
molecules in the chemical [43].

8.5.1.4 Scale-Free Network

A scale-free network is a network whose degree distribution follows a power law,
at least asymptotically. The first model of scale-free network was proposed by
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Barabasi and Albert, which is called BA scale-free network [44]. The BA model
describes a growing open system starting from a group of core nodes, new nodes
are constantly added to the system. The two basic assumptions of the BA scale-
free network model are as follows: (1) from m0 nodes, a new node is added at
each time step, and m nodes from the m0 nodes are selected to be connected to
the new node (m ≤ m0); (2) the probability Π i that the new node is connected to
an existing node i satisfies �i = ki/

∑N−1
j=1 kj , where ki denotes the degree of the

node i and N denotes the number of nodes. In this way, when added enough new
nodes, the network generated by the model will reach a stable evolution state, and
then the degree distribution follows the power law distribution. In [45], it was shown
that the degree distribution of many networks in real world is approximate or exact
obedience to the power law distribution.

8.5.2 The Model

8.5.2.1 Assumptions

We consider a simple pyramid scheme that meets the basic features of many pyramid
schemes in the real world, especially the consumption rebate platforms. First, it
has an organizer that attracts participants through promising a high rate of return
compared to the normal interest rate. Besides the promising return, any participant
will be rewarded by the organizer with a proportion of the total investment of
the participants he or she directly attracted, thus the early participants will be
motivated enough to recruit the next-generation participants and the next-generation
participants will do the same thing in order to get more returns. Secondly, we assume
all the participants at current generation are recruited by the participants at the upper
generation, and the organizer pays the participants at the previous generations the
interests and rewards when all possible participants at current generation have joined
in the scheme. The third assumption is that the organizer will take all the money
away when he finds the money from the new participants is not enough to pay the
previous participants interest and rewards. To simplify the model, we also assume all
the participants invest the same amount of money and invest only once. Figure 8.6
is a schematic diagram of the pyramid scheme, which has one organizer and two
generations of participants.

Based on these assumptions, we discuss the pyramid scheme spreads in the tree
network, random network, small world network, and scale-free network below.

8.5.2.2 Tree Network Case

If the pyramid scheme expands in the form of tree network that has a constant
branching coefficient a and the root node of the tree network represents the
organiser, we can simply write the number of participants at the g-th generation
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Fig. 8.6 A schematic diagram of pyramid scheme. From top to bottom are the organizer, the first-
generation participants, and the second-generation participants

as n1 αg − 1 and the total amount of money entering the pyramid scheme at the
g-th generation as mn1 αg − 1, where n1 is the number of participants at the
first generation and m is the amount of money that every participant invests. For
simplification, we assume n1 = a and m= 1. We suppose the number of all potential
participants is N in this case. Removing the interest and rewards, the relationship
between the net inflow of money M of the pyramid scheme and the generation g
when all possible participants at the g-th generation have joined in the scheme can
be given by:

M(g) = αg − r0

g−1∑
i=1

αi − r1α
g (8.41)

where r0 is the promised rate of return of the organizer, and r1 is the ratio of
the money rewarded to a participant to the total investment of the participants he
or she directly recruited. Normally in real pyramid scheme cases, r0 and r1 are
between 0% and 50%. The first term of Eq. (8.41) represents the investment of
all the participants, the second term represents the interest paid to the participants
before the generation g, and the third term represents the rewards paid to the
recruiters of participants at the g-th generation. Notice that in our pyramid scheme,
the participants at the g-th generation are all recruited by the participants at the
(g − 1)-th generation.

The second term of Eq. (8.41) is the sum of geometric sequences, after summing
them up, Eq. (8.41) can be rewritten as:

M(g) = α

α − 1

[
(1 − r1) αg − (1 + r0 − r1) αg−1 + r0

]
. (8.42)
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Through Eq. (8.42) we can find that if the branching coefficient a satisfies the
condition:

α ≥ 1 − r1 + r0

1 − r1
(8.43)

the inflow of money M(g) of the pyramid scheme is always positive, so the pyramid
scheme will continue forever under the circumstances.

However, the potential participants are limited to N and the pyramid scheme will
stop eventually. The maximum generation G of the pyramid scheme is given by:

GT R =
[

logα

Nα − N + α

α

]
+ 1 (8.44)

where [x] is the integer part of x. At the G-th generation, all the potential participants
have joined the pyramid scheme, and the organizer will take away all the money
and not pay the interest and rewards any more. We can write the final income of the
pyramid as:

Rp = N − r0

G−2∑
i=1

(G − i − 1) αi − r1

G−1∑
i=2

αi (8.45)

and the income of the participants at the i-th generation is:

Ri =
{

r0 (G − i − 1) · αi + r1α
i+1 − αi, f or 1 ≤ i ≤ G − 2,

− αi, f or G − 2 ≤ i ≤ G.
(8.46)

Figure 8.7a shows the analytical result and the simulative result of maximum
generation GER when the branching coefficient α changes, and we take the
parameters N = 10,000, r0 = 0.1, r1 = 0.1. Figure 8.7b shows the analytical result
and the simulative result of maximum generation GER when the number of possible
participants N changes, and we take the parameters α = 4, r0 = 0.1, r1 = 0.1.
Figure 8.7 illustrates intuitively that in the tree network case, if other conditions of
the pyramid scheme remain unchanged, the larger the branch coefficient—that is,
the newer participants each person recruits—, the fewer generations the pyramid
scheme can last. Meanwhile, when other conditions remain unchanged, the larger
the number of potential participants, the more generations the pyramid scheme can
sustain, but every new generation needs more participants and this growth of new
participants is exponential.
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Fig. 8.7 (a) The analytical result and the simulative result of maximum generation GTN when
the branching coefficient a change. We take the parameters N = 10,000, r0 = 0.1, r1 = 0.1. (b)
The analytical result and the simulative result of maximum generation GTN when the number of
possible participants N changes. We take the parameters a = 4, r0 = 0.1, r1 = 0.1

8.5.2.3 Random Network Case

If the pyramid scheme takes place in an ER random net-work that has an average
degree k and N nodes, we assume the organizer is a random node in the network
and other nodes represent the potential participants. The organizer recruits the
potential participants nearest to him as the first-generation participants, and the
first-generation participants recruit the potential participants nearest to them as the
second-generation participants, and so on. So the generation of any participant in
the pyramid scheme is given by the shortest path length to the node representing the
organizer. Katzav et al. [46] have given the approximate analytical results for the
distribution of shortest path lengths in ER random networks, the number of nodes
at the i-th generation is about ki if ilogNk < 1 and all the nodes are included in the
pyramid scheme if ilogNk > 1. Therefore, the pyramid scheme in the ER random
network is approximate to the case in the tree network above and the difference is
the branching coefficient α should be replaced by the average degree k.

First, like the case in the tree network, r0, r1, and k should satisfy the following
condition:

k ≥ 1 − r1 + r0

1 − r1
(8.47)

The approximate maximum generation G of the pyramid scheme in this case is
given by:

GER ≈ ∣∣1/logNk
∣∣ + 1 (8.48)
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Fig. 8.8 (a) The analytical result and the simulative result of maximum generation GER when
the average degree k changes. We take the parameters N = 10,000, r0 = 0.1, r1 = 0.1. (b)
The analytical result and the simulative result of maximum generation GER when the number of
possible participants N changes. We take the parameters k = 4, r0 = 0.1, r1 = 0.1. The simulative
results are averaged after 100 simulations

In addition, we can also write the approximate expressions of the organiser’s and
participants’ income which have the same form of Eq. (8.46), which we omit
here. Figure 8.8a shows the analytical result and the simulative result of maximum
generation GER when the average degree k changes, and we take the parameters
N = 1000, r0 = 0.1, r1 = 0.1. Figure 8.8b shows the analytical result and
the simulative result of maximum generation GER when the number of possible
participants N changes, and we take the parameters k = 4, r0 = 0.1, r1 = 0.1.
The simulative results in the figures are averaged after 100 simulations. From Fig.
8.8, we can find that in the ER random network case, the relationship between
maximum generationGER and mean degree k, and the relationship betweenGER and
N are similar to those in the tree network case, where the mean degree k represents
the amount of participants that each participant can recruit averagely. We can also
find that within the range of parameters we have chosen, the analytical results and
simulative results are very close.

8.5.2.4 Small World Network Case

Now we consider the pyramid scheme carries out in an SW small-world network,
to some extent this case is similar to the case in the ER random network. We
also randomly choose a node as the organizer, other nodes represent the potential
participants, and r0, r1 represent the interest rate and reward ratio, respectively. The
generation of any participant in the pyramid scheme is the shortest path length to
the node representing the organizer. Newman and Watts [47] pointed out that the
number of nodes increases exponentially with the average length of the shortest
path when the nodes are infinite. The approximate surface area of a sphere of radius
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r on the SW small-world network can be given by [47]

A(r) = 2e4r/ξ, (8.49)

where ξ = 1/φk, and φ is the rewriting probability and k is the degree of the
corresponding rule graph.

Changing r to g, we can obtain the approximate number of participants at the g-th
generation. Because of the exponential form of A(g), we can deal with this case just
like in the cases of tree network and ER random network. The branching coefficient
α should be replaced by e4/ξ , and the following condition should be satisfied:

e4/ξ ≥ 1 − r1 + r0

1 − r1
. (8.50)

If the nodes are finite, then the number of nodes reaches the maximum when the
distance from the node to the organizer is near the average length of the shortest
path. If the distance is greater than the average length of the shortest path, the
number of nodes quickly reduces to 0, so it can be approximately considered that
the maximum generation G is close to the average length of the shortest path. The
average path length d of the SW small-world network is given by [47]

lSW ≈ N

K
f (φKN) , (8.51)

where

f (u) ≈
{

1/4, if u → 0,

lnu/u, if u → ∞.
(8.52)

The number of nodes with the average shortest path length to the node representing
the organizer is the largest. So we can infer the maximum generation GSW of the
pyramid scheme is given by [48]

GSW ≈ [
lSW

] + 1 (8.53)

In the simulation, we find that the values of r0 and r1 are very important.
Generally speaking, the greater the values of r0 and r1 satisfying Eq. (8.50) are, the
closer the simulation results and numerical results are. This happens because when
the values of r0 and r1 are larger, the pyramid scheme can easily terminate when
the number of generations exceeds the average shortest path length. Figure 8.9a
shows the analytical result and the simulative result of maximum generation GSW
when the possible participants f changes, and we take the parameters N = 1000,
K = 3, r0 = 0.2, r1 = 0.2. Figure 8.9b shows the analytical result and the simulative
result of maximum generation GSW when the number of possible participants N
changes, and we take the parameters K = 3, φ = 0.1, r0 = 0.2, r1 = 0.2. The
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Fig. 8.9 (a) The analytical result and the simulative result of maximum generation GSW when the
possible participants f changes. We take the parameters N = 1000, K = 3, r0 = 0.2, r1 = 0.2. (b)
The analytical result and the simulative result of maximum generation GSW when the number of
possible participants N changes. We take the parameters K = 3, φ = 0.1, r0 = 0.2, r1 = 0.2. The
simulative results are averaged after 100 simulations

simulative results in the figures are averaged after 100 simulations. In Fig. 8.9, we
find that within the range of parameters we selected, the maximum generation GSW
of the pyramid scheme is not very sensitive to the reconnection probability φ and
the potential participants, and the analytical results are basically in accordance with
the simulative results.

8.5.2.5 Scale-Free Network Case

If the pyramid scheme expands in a BA scale-free net-work, similar to the cases in
ER random network and SW small-world network above, then we also randomly
choose a node as the organizer and other nodes represent the potential participants.
The organizer recruits participants and the participants recruit the next generation
participants through the network connections. To ensure positive inflows, the
following condition must be satisfied:

(1 − r1) n (g + 1) ≥ r0

g∑
i=1

n(g), (8.54)

where n(g) represents the number of participants at the g-th generation, and n(g+ 1)
represents the number of participants at the (g + 1)-th generation. The distribution
of shortest path length approximates the normal distribution and the position
corresponding to the highest point of the normal distribution is the average shortest
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path length [49]. The average path length s of the BA scale-free network is given by
[50]

lBA ≈ lnN

lnlnN
. (8.55)

Before the peak, the number of participants per generation grows faster than
the exponential growth. But after that, the number of participants per generation
declines rapidly, so the condition can no longer be satisfied. So we can infer that the
maximum generation GBA is close to the average shortest path length, and is given
by

GBA ≈ [
lBA

] + 1. (8.56)

Figure 8.10 shows the analytical result and the simulative result of maximum
generation GBA when the number of possible participants N changes. We taken
the parameters r0 = 0.2, r1 = 0.2, and the simulative result is averaged after 100
simulations. We can find that in scale-free networks, the maximum generation GBA
is not very sensitive to the potential participants in Fig. 8.10. The analytical results
can basically reflect this characteristic.

Fig. 8.10 The analytical result and the simulative result of maximum generation GBA when the
number of possible participants N changes. We take the parameters r0 = 0.2, r1 = 0.2. The
simulative result is averaged after 100 simulations
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8.5.3 A Pyramid Scheme in Real World

Although real cases of pyramid scheme are easy to find in news reports, there are few
cases that give details of the number of people involved and the pyramid generations.
Usually, when the organizer of the pyramid scheme disappears, the participants with
loss will report the case to the police, who will then investigate the case. On July 23,
2018, China news network Guangzhou Station reported a pyramid scheme that had
75,663 account numbers and 46 generations, and the pyramid scheme had amassed
76 million yuan in 3 months [51]. This is the same type of pyramid scheme as
described in the introduction. Using the analysis in Sect. 8.3, we assume that the
pyramid scheme carries on the tree network, ER random network, SW small-world
network, and BA scale-free net-work. We then verify which network can describe
the pyramid scheme in the real world well. We assume that one account number
represents a participant.

If this real pyramid scheme expands in a tree network, we can calculate the
tree network’ branching coefficient α ≈ 1.28. This means on average less than two
participants are recruited by each participant. However, we cannot know more about
the connections between the participants, except the branching coefficient.

If this real pyramid scheme spreads in an ER Random network, we can calculate
the average degree k ≈ 1.28 through Eq. (8.48). So each node is connected to 1.28
nodes on average, and the connection probability in the ER random network is less
than 1.28/75663 ≈ 1.7 × 10−5, which is very small, then isolated nodes and nodes
with degree 1 easily to appear in the network. Although this case is similar to that
of tree network, the branching coefficient in the random network is not stable and it
is easy to end the pyramid scheme if Eq. (8.43) is not satisfied (the minimum of the
formula (1 − r1 + r0)/(1 − r1) is greater than 1). So we think the pyramid scheme
can hardly happen in the ER random network.

If this real pyramid scheme carries out in a BA scale-free network, through
the analysis and simulation, we find that developing to 46 generations needs far
more than 75,663 participants. Therefore, the connections between participants are
impossible to form a BA scale-free network.

If this real pyramid scheme takes place in a SW small-world network and accords
to all our assumptions, then we could find a simulative result to fit the result of
the real pyramid scheme. The parameters we select are N = 100,000, φ = 0.02,
K = 4, r0 = 0.1, r1 = 0.1, and each participant invests 23,500 yuan. The simulative
pyramid scheme has 74,652 participants, and develops to 46 generations, and the
fund pool of the pyramid is about 76 million yuan. The simulation results are in
good agreement with the real pyramid scheme. Figure 8.11a, b show the cumulative
number of participants Ncum, the number of participants Ng in each generation, and
the cumulative money Mcum changing over generation g in the simulative pyramid
scheme.

Figure 8.11 shows that, the number of participants and the amount of accu-
mulated money of the pyramid scheme grow slowly in the initial stage and
explosively in the later stage. Once the growth rate slows down, the amount of the
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Fig. 8.11 The cumulative number of participants Ncum, the number of participants Ng in each
generation, and the cumulative money Mcum changing over generation g in the simulative pyramid
scheme. This is one simulative result in the SW small-world case, the parameters we select are
N = 100,000, φ = 0.02, r0 = 0.1, r1 = 0.1, and each participant invests 23,500 yuan

pyramid scheme’s accumulated money will soon reach a peak and the organizer
will escape. The probability of reconnection in simulation is 0.02, which can be
understood according to the actual situation and means that participants tend to
recruit new participants from familiar people. In fact, according to our investigation
and many news reports, such pyramid frauds always arise in small cities and
most of the participants recruit new participants from their familiar people. As the
generations go on, the network constituted by all participants has the properties
of small world: agglomeration and having some flocks, which are similar to the
interpersonal network. Although our model has been simplified and approximated,
it is enlightening to explain the real case.

Through this simulation analysis, we can speculate that the connections between
participants in the real case may constitute a SW small-world network.

This work is helpful to understand the operation mechanism and characteristics
of the pyramid schemes of consumption rebate type. The model may be able to
apply to some current illegal high-interest loans, if these illegal projects promise a
high interest rate and reward the investors who encourage others to invest in such
projects but the money accumulated is not actually invested in any real projects.
It shows that the pyramid schemes of consumption rebate type are not easy to be
detected by the supervision because of the small amount of funds and the small
number of participants accumulated in the initial stage. After the rapid growth of
funds and participants, it often comes to the end of this kind of pyramid frauds, and
the organizers have often already fled. Therefore for regulators, it is better to nip
such platforms in the bud to avoid any more people suffering a loss. In addition,
to some extent, this research finding provides some basis for further study of such
frauds. For example, we will further consider how the participants’ beliefs about
always having enough new participants affect the operation of these frauds.



References 473

References

1. Deng, W., Shi, Y., Chen, Z., Kwak, W., Tang, H.: Recommender system for marketing
optimization. World Wide Web. 23(4), 1–21 (2020)

2. Lee, J., Shi, Y., Wang, F., Lee, H., Kim, H.K.: Advertisement clicking prediction by using
multiple criteria mathematical programming. World Wide Web. 19(4), 707–724 (2016)

3. Zhao, X., Shi, Y., Lee, J., Kim, H.K., Lee, H.: Customer churn prediction based on feature
clustering and nonparallel support vector machine. Int. J. Inf. Technol. Decis. Making. 13
(2014)

4. Li, F., He, J., Huang, G., Zhang, Y., Shi, Y., Zhou, R.: Node-coupling clustering approaches for
link prediction. Knowl. Based Syst. 2015, S0950705115003536 (2015)

5. Shi, Y., Li, B., Long, W.: Pyramid scheme model for consumption rebate frauds. Chin. Phys.
B. 28(7), 078901 (2019). https://doi.org/10.1088/1674-1056/28/7/078901

6. Pinder, J.E., Wiener, J.G., Smith, M.H.: The Weibull distribution: a new method of summariz-
ing survivorship data. Ecology. 59(1), 175–179 (1978) http://www.jstor.org/stable/1936645

7. Shanno, D.: On Broyden-Fletcher-Goldfarb-Shanno method. J. Optimiz. Theory. App. 46(1),
87–94 (1985)

8. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier,
Y., Saporta, G. (eds.) Proceedings of COMPSTAT’2010, pp. 177–186. Physica-Verlag HD,
Heidelberg (2010)

9. Hager, W., Zhang, H.: A new conjugate gradient method with guaranteed descent and
an efficient line search. SIAM. J. Optimiz. 16(1), 170–192 (2005). https://doi.org/10.1137/
030601880

10. Celma, O., Herrera, P.: A new approach to evaluating novel recommendations. In: Proceedings
of the 2008 ACM Conference on Recommender Systems, RecSys ’08, p. 179C186. Association
for Computing Machinery, New York (2008). https://doi.org/10.1145/1454008.1454038

11. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering
recommender systems. ACM Trans. Inform. Syst. 22(1), 5–53 (2004)

12. Nie, G., Zhang, L., Zhang, Y., Deng, W., Shi, Y.: Find intelligent knowledge by second-order
mining: three cases from China. In: 2010 IEEE International Conference on Data Mining
Workshops, pp. 1189–1195 (2010). https://doi.org/10.1109/ICDMW.2010.115

13. Zhang, L., Li, J., Li, A., Zhang, P., Nie, G., Shi, Y.: A new research field: intelligent
knowledge management. In: 2009 International Conference on Business Intelligence and
Financial Engineering, pp. 450–454 (2009). https://doi.org/10.1109/BIFE.2009.108

14. Wang, J., Zhang, Y.: Opportunity model for e-commerce recommendation: right product; right
time. In: Proceedings of the 36th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ‘13, p. 303C312. Association for Computing
Machinery, New York (2013). https://doi.org/10.1145/2484028.2484067

15. Nash, J.C., Varadhan, R., Grothendieck, G.: ““Package optimr””. https://CRAN.R-project.org/
package=optimr (2016)

16. Zhang, D., Shi, Y., Tian, Y., Zhu, M.: A class of classification and regression methods by
multi-objective programming. Front. Comput. Sci. China. 3(2), 192–204 (2009)

17. Zhao, X., Deng, W., Shi, Y.: Feature selection with attributes clustering by maximal informa-
tion coefficient. Proc. Comput. Sci. 17(1), 70–79 (2013)

18. Zhao, X., Shi, Y., Niu, L.: Kernel based simple regularized multiple criteria linear program for
binary classification and regression. Intell. Data Anal. 19(3), 505–527 (2015). https://doi.org/
10.3233/IDA-150729

19. Richardson, M., Dominowska, E., Ragno, R.: Predicting clicks: estimating the click-through
rate for new ads. In: WWW 2007 International World Wide Web Conference (2007)

20. Cheng, H., Cantu-Paz, E.: Personalized click prediction in sponsored search. In: Proceedings
of the Third ACM International Conference on Web Search and Data Mining, WSDM ’10, p.
351C360. Association for Computing Machinery, New York (2010). https://doi.org/10.1145/
1718487.1718531

http://dx.doi.org/10.1088/1674-1056/28/7/078901
http://www.jstor.org/stable/1936645
http://dx.doi.org/10.1137/030601880
http://dx.doi.org/10.1145/1454008.1454038
http://dx.doi.org/10.1109/ICDMW.2010.115
http://dx.doi.org/10.1109/BIFE.2009.108
http://dx.doi.org/10.1145/2484028.2484067
https://cran.r-project.org/package=optimr
http://dx.doi.org/10.3233/IDA-150729
http://dx.doi.org/10.1145/1718487.1718531


474 8 Link Analysis

21. Li, J., Zhang, P., Cao, Y., Liu, P., Guo, L.: Efficient behavior targeting using svm ensemble
indexing. In: Proceedings of the 2012 IEEE 12th International Conference on Data Mining,
ICDM ’12, p. 409C418. IEEE Computer Society, New York (2012). https://doi.org/10.1109/
ICDM.2012.152

22. Guo, Q., Agichtein, E.: Ready to buy or just browsing? Detecting web searcher goals from
interaction data. In: Proceedings of the 33rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’10, p. 130C137. Association for Computing
Machinery, New York (2010). https://doi.org/10.1145/1835449.1835473

23. Reshef, D.N., Reshef, Y.A., Finucane, H.K., Grossman, S.R., Mcvean, G., Turnbaugh, P.J.,
Lander, E.S., Mitzenmacher, M., Sabeti, P.C.: Detecting novel associations in large data sets.
Science. 334(6062), 1518–1524 (2011)

24. David, R., Yakir, R.: MINE software package. http://www.exploredata.net/
25. Reshef, D.N., Reshef, Y.A.: Supporting Online Material | Science. https://

science.sciencemag.org/content/suppl/2011/12/14/334.6062.1518.DC1
26. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science. 315(5814),

972–976 (2007). https://doi.org/10.1126/science.1136800
27. Shi, Y., Tian, Y., Kou, G., Peng, Y., Li, J.: Optimization Based Data Mining: Theory and

Applications. Springer, New York (2011). https://doi.org/10.1007/978-0-85729-504-0
28. Vapnik, V.N.: The nature of statistical learning theory (1995)
29. Shi, Y.: Multiple criteria and multiple constraint levels linear programming: concepts, tech-

niques and applications (2015)
30. Jayadeva, Khemchandani, R., Chandra, S.: Twin support vector machines for pattern classifica-

tion. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 905C910 (2007). https://doi.org/10.1109/
TPAMI.2007.1068

31. Tian, Y., Qi, Z., Ju, X., Shi, Y., Liu, X.: Nonparallel support vector machines for pattern
classification. IEEE Trans. Syst. Man. Cyb. 44(7), 1067–1079 (2014). https://doi.org/10.1109/
TCYB.2013.2279167

32. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature. 393(6684),
440–442 (1998). https://doi.org/10.1038/30918

33. Huang, Z., Ma, C., Xu, J., Huang, J.: Link prediction based on clustering coefficient. Appl.
Phys. 4, 101–106 (2014)

34. Geisser, S.: Predictive Inference: An Introduction. Chapman Hall, London (1993)
35. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Physica A. 390(6), 1150–1170

(2011). https://doi.org/10.1016/j.physa.2010.11.027. https://www.sciencedirect.com/science/
article/pii/S037843711000991X

36. Liu, Z., Zhang, Q.M., Lü, L., Zhou, T.: Link prediction in complex networks: a local naive
Bayes model. Europhys. Lett. 96(4), 48007 (2011). https://doi.org/10.1209/0295-5075/96/
48007

37. Dong, Y., Ke, Q., Wu, B.: Link prediction based on node similarity. Comput. Sci. 38(7), 162–
164, 199 (2011) CSCD:4281527

38. Zhou, T., Lu, L., Zhang, Y.C.: Predicting missing links via local information. Eur. Phys. J. B.
71(4), 623–630 (2009). https://doi.org/10.1140/epjb/e2009-00335-8

39. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: Proceed-
ings of the Twelfth International Conference on Information and Knowledge Management,
CIKM ‘03, p. 556C559. Association for Computing Machinery, New York (2003). https://
doi.org/10.1145/956863.956972

40. West, D.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Hoboken, NJ (2001)
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